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Abstract 

Systems biology looks for emergent system effects from large scale assemblies of molecules 

and data, for instance in the human platelets. However, the computational efforts in all 

steps before such insights are possible can hardly be under estimated. In practice this 

involves numerous programming tasks, the establishment of new database systems but as 

well their maintenance, curation and data validation. Furthermore, network insights are 

only possible if strong algorithms decipher the interactions, decoding the hidden system 

effects. This thesis and my work are all about these challenges. To answer this requirement, 

an integrated platelet network, PlateletWeb, was assembled from different sources and 

further analyzed for signaling in a systems biological manner including multilevel data 

integration and visualization. PlateletWeb is an integrated network database and was 

established by combining the data from recent platelet proteome and transcriptome (SAGE) 

studies. The information on protein-protein interactions and kinase-substrate relationships 

extracted from bioinformatical databases as well as published literature were added to this 

resource. Moreover, the mass spectrometry-based platelet phosphoproteome was 

combined with site-specific phosphorylation/ dephosphorylation information and then 

enhanced with data from Phosphosite and complemented by bioinformatical sequence 

analysis for site-specific kinase predictions. The number of catalogued platelet proteins was 

increased by over 80% as compared to the previous version. The integration of annotations 

on kinases, protein domains, transmembrane regions, Gene Ontology, disease associations 

and drug targets provides ample functional tools for platelet signaling analysis. The 

PlateletWeb resource provides a novel systems biological workbench for the analysis of 

platelet signaling in the functional context of protein networks. By comprehensive 

exploration, over 15000 phosphorylation sites were found, out of which 2500 have the 

corresponding kinase associations. The network motifs were also investigated in this 

anucleate cell and characterize signaling modules based on integrated information on 

phosphorylation and protein-protein interactions.  



9 | P a g e  
 

Furthermore, many algorithmic approaches have been introduced, including an exact 

approach (heinz) based on integer linear programming. At the same time, the concept of 

semantic similarities between two genes using Gene Ontology (GO) annotations has become 

an important basis for many analytical approaches in bioinformatics. Assuming that a 

higher number of semantically similar gene functional annotations reflect biologically more 

relevant interactions, an edge score was devised for functional network analysis. Bringing 

these two approaches together, the edge score, based on the GO similarity, and the node 

score, based on the expression of the proteins in the analyzed cell type (e.g. data from 

proteomic studies), the functional module as a maximum-scoring sub network in large 

protein-protein interaction networks was identified. This method was applied to various 

proteome datasets (different types of blood cells, embryonic stem cells) to identify protein 

modules that functionally characterize the respective cell type. This scalable method allows 

a smooth integration of data from various sources and retrieves biologically relevant 

signaling modules. 
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Zusammenfassung 

Systembiologie sucht nach Systemeffekten in großflächigen Anordnungen von Molekülen 

und Daten, beispielsweise in menschlichen Blutplättchen. Allerdings kann der 

Rechenaufwand in den Schritten, die für solche Einsichten nötig sind, kaum unterschätzt 

werden. In der Praxis umfasst dies zahlreiche Programmieraufgaben, die Einrichtung neuer 

Datenbanksysteme, sowie deren Wartung, aber auch die Pflege und Validierung der 

vorgehaltenen Daten. Zudem sind Netzwerkeinsichten nur möglich, wenn effiziente und 

gute Algorithmen für versteckte Systemeffekte oder auch codierende Wechselwirkungen 

entschlüsseln. Diese Dissertation und meine Arbeit sind auf diese Herausforderungen 

konzentriert.  

Um diese Anforderung zu erfüllen, wurde ein integriertes Thrombozytennetzwerk, 

PlateletWeb, aus verschiedenen Quellen zusammengestellt und weiterhin auf 

Signalverarbeitung und –weitergabe einschließlich mehrstufiger Datenintegration und 

Visualisierung systembiologisch analysiert. PlateletWeb ist eine integrierte 

Netzwerkdatenbank, die durch die Kombination von Daten aus den neuesten 

Thrombozyten Proteom und Transkriptom (SAGE) Studien etabliert wurde. Information 

über Protein-Protein-Wechselwirkungen und Kinase-Substrat-Paaren wurde aus 

bioinformatischen Datenbanken hinzugefügt, extrahierte Daten aus der veröffentlichten 

Literatur ergänzten dies weiter. Darüber hinaus wurde das Blutplättchen-Phosphoproteom 

aufgrund von Daten aus der Massenspektroskopie mit ortsspezifischen Phosphorylierungs-

/ Dephosphorylierungsdaten kombiniert. Ergänzt wurde dies um Daten aus der Datenbank 

Phosphosite und durch bioinformatische Sequenzanalyse unter Nutzung ortsspezifischer 

Kinasevorhersagen. Die Zahl der katalogisierten Thrombozytenproteine wurde im 

Vergleich mit der Vorversion von 2008 um mehr als 80% erhöht (beinahe Verdoppelung 

der Daten, insbesondere aber neue, zusätzliche Datenkategorien, z.B. über Pharmaka, 

Phosphorylierung, Gen-Ontologie, daneben auch weitere Validierung und Pflege der 

vorhandenen Daten). Die neue Integration von Annotationen für Kinasen, Proteindomänen, 

Transmembranregionen, Gene Ontology, Krankheitsbezüge und Azneimittelziele bietet 
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neue, mächtige Werkzeuge für die funktionelle und systembiologische Analyse von 

Thrombozytensignalwegen. Die PlateletWeb Datenbank liefert eine neuartige 

systembiologische Werkbank zur Analyse von medizinisch relevanten 

Blutplättchensignalen (z.B. Plättchenaktivierung bei Thrombose, Hämostase etc.) im 

funktionellen Zusammenhang von Proteinnetzwerken. Durch umfassende Untersuchungen  

wurden über 15000 Phosphorylierungsstellen identifiziert, von denen 2500 einer Kinase 

zugeordnet werden konnten. Netzwerkmotive wurden auch in diesen Zellen ohne Zellkern 

untersucht und neue und interessante Signalmodule charakterisiert. Dies war nur durch die 

integrierte Information über Phosphorylierung und Protein-Protein-Wechselwirkungen 

möglich. 

Darüber hinaus wurden zahlreiche algorithmische Ansätze verwand, darunter ein exakter 

Ansatz zur Bayesschen Analyse von Interaktionsnetzwerken (Heinz) basierend auf linearer 

Integer-Programmierung. Gleichzeitig hat sich unser Konzept der semantischen 

Ähnlichkeiten zwischen zwei Genen basiert auf Gene Ontology (GO) Annotationen etabliert 

und ist eine wichtige Grundlage für viele analytische Ansätze in der Bioinformatik 

geworden. Unter der Annahme, dass eine höhere Anzahl von semantisch ähnlichen 

funktionellen Genannotationen biologisch relevantere Interaktionen reflektieren, wurde 

eine Bewertung der Kanten für funktionelle Netzwerkanalyse entwickelt.  

Die Kombination beider Ansäte, die Kantenbewertung, basierend auf der GO-Ähnlichkeit 

und die Netzknotenbewertung bezogen auf die Expression der Proteine ermöglichte in den 

analysierten Zelltypen (unter Nutzung von Daten z.B. aus Proteomstudien) die 

Identifizierung funktioneller Module als maximal bewertete Subnetzwerke in großen 

Proteinnetzwerken. Dieses Verfahren wurde an verschiedenen Proteomdatensätzen 

getestet (verschiedene Arten von Blutzellen, embryonale Stammzellen), um Proteinmodule 

zu identifizieren, die funktionell den jeweiligen Zelltyp charakterisieren. Weitere Ansätze 

der Methode erfassen die Analyse von quantitativen Phosphoproteom-Daten zur 

Identifizierung des Signalflusses in einem Kinase-Substrat Netzwerk. Diese skalierbaren 

Ansätze ermöglichen eine reibungslose Integration von Daten aus verschiedenen Quellen 

und liefern biologisch relevante Signalmodule. 
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1 Introduction  

Understanding the systems biological background of cellular processes is crucial for 

instance, identifying potential new biomarkers in human diseases. Genomic and proteomic 

data were generated in recent years by new tools and technologies. The focus is to integrate 

the information from multiple sources and manage the data with high reliability. The 

integrated data should have a backward tracking which would help identify every protein’s 

identification evidence and its functional information. This ever increasing number of 

proteomic and phosphoproteomic data generated by mass spectrometry calls for new 

strategies in data organization, representation and analysis.  

A cell type of particular interest is the blood platelet for its role in thrombosis and 

hemostasis and cardiovascular disease, which is still the major cause of all deaths.  Platelets 

(also called as thrombocytes) are small, irregularly shaped clear cell fragments which do 

not have a nucleus. The average life span is around 5 to 9 days. They circulate in the blood 

freely, if the number of platelets is too low, then this might result in excessive bleeding. 

However, if the platelet count is too high, blood clots can form and cause serious disease 

such as stroke or active heart failure.  Platelets thus play a key role in hemostasis and 

represent a central target for research in many pathophysiological processes, including 

cardiovascular diseases, inflammatory processes and metastasis (Varga-Szabo, Pleines et al. 

2008).  

In this thesis project, an integrated platelet interactome was assembled from multiple 

sources based on the manually curated protein data and the interactions between each of 

them. This platelet interactome could contain keys to solving the exact mechanisms of 

platelet activation and aggregation. Understanding the underlying mechanisms of platelet 

activation could hold the answer to new treatments and potential drug targets. Also, 

platelets are important anucleate cells where only posttranscriptional regulation is 

possible. A tight regulation of protein interactions is needed to ensure proper signaling. A 

thorough analysis of the platelet proteome and interactome provides a better 

understanding of signaling principles in anucleate cells. 
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A huge amount of mass spectrometry data on platelet proteins has been accumulated in 

recent years. However, a platform to combine both the phosphorylation and interaction 

information of these proteins is missing. The PlateletWeb is developed in order to 

overcome this factor and thus is the resource where the complete information about the 

platelet proteins was easily accessible. Furthermore, the integration of various data sources 

proves useful for a complex systems biological analysis of a given cell system. The proteome 

and transcriptome information on platelet proteins was combined along with 

phosphorylation and interaction data, thereby assembling a human platelet interactome 

and phosphoproteome containing platelet kinases and phosphorylations from literature 

and experimental sources. Kinase predictions for experimentally validated phosphosites 

were also included in the network (Linding, Jensen et al. 2007; Miller, Jensen et al. 2008). The 

newly created interactome was complemented by drug target information, disease 

associations, gene ontology annotation and KEGG pathway data allowing a more thorough 

analysis of platelet signaling. Finally, an integrated network of human platelets was 

established covering the proteome, phosphoproteome and transcriptome based on data 

from mass-spectrometry studies, public databases and literature research as described in 

Materials and Methods. Careful annotation resulted in a set of 5025 platelet proteins with 

evidence on either proteome or transcriptome level. 

Additional to this, in order to make the PlateletWeb a complete resource for platelet 

information, the data from DrugBank and KEGG were included. The drug database 

associated with the protein along with the genetic diseases provides a simple 

understanding of various levels of the protein information otherwise a tedious task to 

investigate. The KEGG pathways and the KEGG orthology were also provided focusing 

basically on the platelet proteins. Furthermore the transmembrane domain predictions, the 

protein characteristics, the Gene ontology information etc. on each of the platelet protein 

would make the PlateletWeb resource, a complete systems biological workbench providing 

an unmatched information about the platelets at one single place. 

Based on this information a study on other cell types was initiated to investigate the role of 

similar proteins and similar pathways in multiple species. An interactome of mouse 



14 | P a g e  
 

proteins was established and this was then mapped to the human proteins in order to find 

the orthologs and homologs of the proteins. Similar to the PlateletWeb database (Boyanova, 

Nilla et al. 2012), complete protein information was also added to the mouse database. A 

first draft of information was initiated, which forms the basis of a mouse platelet database 

to be published later. Furthermore, it can be updated to many other species and look for the 

protein of interest from multiple aspects.  

Additionally, the complete cell type analysis was made possible using the heinz algorithm 

included with the GOSim analysis. I could make the best use of the well curated Gene 

Ontology information and impute it into the heinz algorithm to quantify the proteins and 

their interactions. This helped to retrieve networks which are of high biological relevance. 

The complete analysis requires a higher computational details and insights with 

comparatively a higher challenge on the algorithm preparation. This GOSim algorithm 

design is mainly focus on the key aspect of it working with any sample proteins that are 

identified in any proteomic study.    

Furthermore, the motif analysis was performed to see the network patterns with in the 

constructed network of platelet interactome and identify the enrichment of a specific sub 

graphs with in the network. This was helped to identify the key switches in the network 

module and there by interpreting the information from the statistical overview.  

The available gene ontology information provided for all the proteins would help in 

understanding the protein in terms of their biological process, their molecular functionality 

and the place in the cell where it is located in the human readable format. This information 

is taken from the GO consortium and assembled to the platelet proteins. The gene 

enrichment analysis when performed, this human readable gene ontology would provide 

first insights on what the protein cluster does.  

The interaction between two proteins is specified in multiple ways; however, the 

quantification of the relation between two proteins would be a further step in achieving the 

similar clusters of proteins which perform a similar task. This quantification is performed 

by taking the gene ontology information between two proteins which are interacting 
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between each other and then checking for the semantic similarity between them and there 

after quantifying it. This would help to extract and understand the modules from the 

complete network of proteins which are specific to a certain criteria. A complete testing was 

performed by taking already existing modules (to cross check the validity of the extracted 

modules) and also by trying to figure out the new modules in different proteins identified in 

multiple samples.  

The quantitative and qualitative analysis which was carried out further helped to get the 

insights of the proteins which are otherwise might be overlooked.  

Thus PlateletWeb is the key resource for understanding, analyzing and predominantly a 

highly capable source of information about the platelet proteins giving the complete insight 

of each protein individually as well as the role of protein within a specific network module 

and the role of the cluster of proteins as a whole. Thus the PlateletWeb could be rightly 

termed as the “Systems biological workbench”. 
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2 Materials and Methods 

2.1 Proteomic databases 

The information about the platelet proteins, their interactions, phosphorylations, kinase 

information, drugs, genetic diseases information along with the gene ontology information 

is taken from multiple databases. The main source of information was the proteomic 

databases; the main focus is on the manually curated data, which would provide with the 

high end reliable information. The proteomic databases used to compile the data are given 

below. 

 

 HPRD 2.1.1

The Human Protein Reference Database is a database of manually curated proteomic data 

focusing mainly on human proteins. This database was initially assembled in 2003 with 

notable updates there on (Peri, Navarro et al. 2003). This database contains relatively a 

small set of 2,750 proteins and 25,050 literature references. The current version (HPRD 

release 9) (Keshava Prasad, Goel et al. 2009) contains over 30,000 proteins, with more than 

40,000 protein-protein interactions and over 90,000 post translational modifications. These 

statistics are obtained after careful annotations performed by biologists based on literature 

analysis of more than 450,000 PubMed links. Data is manually curated and no text mining 

algorithms are used. This sophisticated process ensures a very high quality of protein data 

coming from published articles.  

 

 Other databases 2.1.2

Information on human proteins and their interactions were downloaded from Entrez gene 

Database (NCBI)(Maglott, Ostell et al. 2007). NCBI provides a unique identifier called Entrez 

gene identifier (also called GeneID) where every gene is assigned a unique number. This 

ensures a proper cross link between multiple databases there by not repeating the same 
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gene twice even though taken from multiple sources. All proteins in the complete 

PlateletWeb database are identified uniquely on the basis of gene identifiers. 

 

 Individual Platelet Studies 2.1.3

The Platelet proteome catalogue was first defined by Dittrich et al (Dittrich, Birschmann et 

al. 2008) which includes an assembly of a comprehensive proteome and transcriptome 

database of human platelets. A model of the platelet interactome was later created with the 

platelet proteins. Based on this catalog of the platelet proteome, further data from various 

mass spectrometry studies published over the last 10 years have been assembled. Most of 

these studies are mainly focusing on the unfractionated platelets, specific platelet 

subcompartments including the plasma membrane, secretome and microparticles. 

Additionally, a previously performed Serial Analysis of Gene Expression (SAGE) study of 

human platelets was included. Also literature curated information was extracted from the 

NCBI GeneRifs (Maglott, Ostell et al. 2007) and were filtered for new platelet proteins. This 

comprehensive set of platelet proteins from multiple sources resulted in 5025platelet 

proteins. 

 

 Kinases and Phosphatases 2.1.4

A comprehensive list of human kinases were extracted from Manning et al (Manning, Whyte 

et al. 2002) and used for reference and validation of the HPRD phosphorylation data.  A 

kinase is a type of enzyme that transfers phosphate groups from high-energy donor 

molecules, such as ATP to specific substrates. This process is called phosphorylation and is 

important to identify the dynamics in the protein network regulation. All kinases were 

mapped to the human kinome tree created by Linding et al (Miller, Jensen et al. 2008) and 

visualized using the interactive online tool Tree Of Life (Letunic and Bork 2007). The 

catalogue of human phosphatases was acquired from the Human Protein Phosphatases PCR 

Array (Quiagen; 82 phosphatases) and the assembly of protein tyrosine phosphatases in the 

human genome (Alonso, Sasin et al. 2004) (103 phosphatases). The rest of the phosphatases 
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were added by manual search in the PlateletWeb for proteins with the term “protein 

phosphatases” in their description. The total number of human protein phosphatases adds 

up to 191 (phosphatases associated with a substrate: 39, platelet phosphatases: 73, platelet 

phosphatases with a substrate: 24).  

 

2.2 Protein-protein interactions (PPI) 

A considerable number of databases came into existence in the recent past focusing mainly 

on the protein-protein interactions, many of which are emphasizing on more than one 

species (Wang, Nath et al. 1999; Goddard, Ladds et al. 2006; Stark, Breitkreutz et al. 2006; 

Stark, Breitkreutz et al. 2011) give a few citations here: BioGrid, BIND and all the rest). The 

core idea of PlateletWeb is to create a network of human platelet proteins for detailed 

analysis on a single and multiple protein level. In order to accomplish this, the information 

from multiple databases was taken into consideration. The manually curated human 

protein-protein interactions were extracted from the Human Proteome Reference Database 

(HPRD) (version 9.0, 04/2010) (Keshava Prasad, Goel et al. 2009), which contains 39,194 

simple binary PPIs and 93,710 post-translational modifications. The post-translational 

modifications were also considered for the interactions list, as the modification itself is 

possible only if there exist an interaction between the proteins. Information about the type 

of experiment, in which the interaction was found, is also presented with each of the 

interaction.  Two proteins are considered to interact in vivo when the interaction was 

detected in a mammalian cell at the time of experiment. If it could not be concluded in the 

context of mammalian cells, it was considered in vitro. The third type of experiment is the 

Yeast 2-hybrid which describes interactions only detected in a yeast cell after performing 

this type of experiment. These can be technically termed as in vivo, but were annotated 

specifically as Y2H in order to identify the false positives interactions, if any. HPRD also 

includes data from Biological General Repository for Interaction Datasets (BioGrid) (Stark, 

Breitkreutz et al. 2011) and Biomolecular Interaction Network Database (BIND) (Alfarano, 

Andrade et al. 2005). Each interaction is also marked with its interaction sources thus 

helping to trace back to its source study.   
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The data was downloaded from the HPRD server in the FLAT file format. This file was then 

parsed using the Perl program and created as a table in the MySQL database. With the help 

of this structured query language, it was possible to remove the duplicate interactions and 

maintain the data in a definite order. The HPRD provides its proteins with a unique 

identifier called HPRD Id. The Entrez gene identifiers were them mapped to maintain 

consistency and ease of use. 

Another database that was taken into consideration with a particular interest is 

Phosphosite (accessed 01/2011) (Hornbeck, Chabra et al. 2004). Phosphosite is a systems 

biological resource which provides information about the protein post translational 

modifications. The database is manually curated and provided over 3000 protein 

translational modifications many of which are additional to the ones listed in the HPRD 

database. Additionally, an additional set of post translational modifications (both 

phosphorylations and dephosphorylations) on Serine (S) Threonine (T) and Tyrosine (Y) 

phosphorylations were included as a table in MySQL.  

A set of phosphorylations were also complemented by kinase predictions for platelet-

specific phosphoproteome data (Zahedi, Lewandrowski et al. 2008) using the NetworKIN 

algorithm (Linding, Jensen et al. 2007; Miller, Jensen et al. 2008). NetworKIN is a method for 

predicting in vivo kinase-substrate relationships. This algorithm combines two different 

approaches for phosphorylation prediction  - consensus sequence motif search and protein 

association networks (a network context of kinase and phosphoproteins which makes up to 

60-80% of computational capability to assign in vivo substrate specificity) in order to 

generate a full, realistic and statistically more probable prediction of the involved kinase. 

An online website was provided to predict the kinase substrate relationships 

(http://networkin.info/version_2_0/search.php). Results from experimental mass 

spectrometry analysis with determined phosphorylation sites were inserted into the 

website’s search functionality, which predicts the kinase responsible for a specific 

phosphorylation. Two different scores (a motif score and a context score) are calculated for 

each algorithm and presented in the final results. The predicted kinase substrate 

http://networkin.info/version_2_0/search.php
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relationships were also taken into consideration as additional information into the PPI 

network.  

In total, the complete human PPI network contains 54,218 simple interactions, 4,406 

phosphorylation events and 135 dephosphorylation events between 10,916 human 

proteins. 

 

2.3 Network motif analysis 

Networks are complex structures which are defined by nodes and interconnected edges. 

These networks carry a pattern which when recognized could provide an in-depth of 

network regulation and signaling. To unravel these networks, Milo et al (Milo, Shen-Orr et al. 

2002) defined the term “Network Motifs”. These network motifs are the patterns occurring 

in the complex network with numbers higher than those in the randomized networks.  

The Mfinder Version 1.2 software was used in order to enumerate the specific network 

motifs in the interactome and phosphoproteome network. The enrichment of a specific 

motif within the network is thereby calculated and helps to investigate various platelet 

signaling pathways. 

The software Mfinder Version 1.2(Milo, Shen-Orr et al. 2002; Kashtan, Itzkovitz et al. 2004) 

was used for detection of specific predefined(Zaidel-Bar, Itzkovitz et al. 2007) network 

motifs in the combined platelet interactome and phosphorylation network and analysis of 

overrepresentation as previously described by Milo et al(Milo, Shen-Orr et al. 2002). The 

algorithm identifies all n-node subgraphs in the input network. A set of randomized 

networks (100 randomizations were used in this analysis) was created by rewiring the 

edges but maintaining the same incoming and outgoing degree at each node. All 

randomized networks are examined for network patterns in the same way as the real 

network (=biological network) and the number of occurrences is calculated in each case. Z-

scores are obtained by subtracting the mean motif count in the randomized network from 

the observed count in the real network and subsequently dividing the result by the 

standard deviation of the randomized motif count (The Z-scores are defined with the 
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following formula: (Nreal – Nrand )/SD (Milo, Shen-Orr et al. 2002)). These final scores 

indicate the significance of enrichment for each motif in the real network. Subgraphs with 

high absolute Z-scores tend to be significantly enriched and are regarded as network 

motifs(Milo, Shen-Orr et al. 2002).  

 

2.4 Drugs and diseases 

Drug data were downloaded from DrugBank Version 3.0 (Knox, Law et al. 2011), which 

includes detailed information on drugs as well as on drug targets. The physical drug-target 

interactions are identified to get the overview on the possible indirect functional effects. 

The drugs are divided into multiple broad categories, mainly in approved and experimental 

groups. The database contains 4311 human drugs, which have a human drug target in the 

PlateletWeb knowledge base (approved, 1195; experimental, 3015) and act on 2106 distinct 

human proteins. There are 950 platelet proteins among these drug targets. Genetic disease 

information was extracted from HPRD and is available for 701 platelet proteins.  

 

2.5 KEGG Pathways 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a Pathway database. It is a collection 

of databases dealing with genomes, enzymatic pathways, and biological chemicals. The 

KEGG pathways were downloaded from the KEGG database (Release 57.0, January 1, 2011). 

However, from the middle of 2011, KEGG has switched to a subscription model and access 

via FTP is no longer free. Each pathway was termed individually to identify the platelet 

proteins. The platelet proteins identified in the pathways were visualized in the PlateletWeb 

knowledge base using the Advanced Pathway Painter v2.26. Enrichment analysis of 

pathways was performed using Fisher’s exact test comparing the number of platelet 

proteins in the pathway against the number of all platelet proteins annotated in KEGG 

pathways.  
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2.6 Gene Ontology 

In order to understand their biological role, genes are annotated by scientists using human 

language. This would help to understand the purpose of genes in a natural language format. 

However, when taking about the large-scale proteomics, there is a high probability that the 

genes are redundantly annotated with fair amount of ambiguity. In order to overcome this 

issue, the Gene Ontology consortium (Ashburner, Ball et al. 2000; 2008) has been developed 

which strives for a well-defined and structured functional assignment of genes. The GO 

terminology is arranged in a hierarchical way, which is also termed directed acyclic graph 

(DAG). As one goes down the hierarchy, terms become more specific. A parent GO term can 

be then sub divided into one or many different child terms, which describe a much more 

specific biological role than the general term.  

The GO is divided into three branches, Biological Process (BP), Molecular Function (MF) 

and Cellular Component (CC). The BP tree defines the overall process in which the gene 

product is involved, MF specifies the biochemical function and CC denotes the compartment 

or subcellular stricter where the gene product is located. As an example, the term 

“apoptosis” is identified in Biological Process, “kinase activity”, a molecular function and the 

term “nucleus” belongs to the ontology cellular component.  

Each biological function in the gene ontology is associated with a GO term, which is a unique 

identifier. Also, each of the go terms can be associated with one or more proteins and each 

of the proteins can be assigned to more than one go terms. The GO can be accessed as a 

downloadable file format or in the form of the MySQL table structure, where the required 

data can be easily queried. Alongside, there are a large number of tools available along with 

the GO which would help in elucidating the functional role of proteins.  

The vocabulary in GO has been constantly growing, with over 35,774 terms defined as on 

February 2012. Among them, the biological process has 21,964 terms defined; the 

molecular function has 9,238 and 2,960 in cellular component.  
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The whole database was downloaded and filtered for human proteins from GO and this was 

used for the functional profiling of the proteomic data. There are 4,728 platelet proteins 

annotated with a GO function, which accounts for a coverage of 94%. 

 

2.7 Semantic Similarity 

The concept of semantic similarity is mainly based on the very key notation, when there 

exist 2 nodes A and B and the main aim is to determine how similar these nodes are to each 

other. This can be quantified ranging between the values of 1 and 0. A value of 1 represents 

high similarity between the nodes and a value of 0 represents either no similarity or 

extremely low similarity.  

This concept was applied to proteins and their biological ontologies. The valuation for the 

semantic similarity between two genes is based on the Gene Ontology terms that are 

common between these genes.  The scores for the semantic similarity were initially 

calculated based on the method defined by Schlicker et al (Schlicker, Domingues et al. 2006) 

where the probability of the most informative common ancestor (MICA) is defined. The 

function of semantic similarity between “two terms” is defined as: 

(SimRel(C1,C2) = SimLin(C1,C2) x (1-CMICA)) (Schlicker, Domingues et al. 2006), 

where C1 and C2 represent two GO terms. This algorithm was further extended by Frohlich 

et al  (Frohlich, Speer et al. 2007) to calculate functional similarity between “two genes” 

(GOSim). The getGeneSim function in the GOSim package along with the funSimAvg as 

similarity measure (Schlicker, Domingues et al. 2006) determines the average of best 

matching GO term similarity for both genes. The semantic measurement was calculated for 

all the three ontologies (BP, MF and CC) on all interactions listed in the interactome. These 

results were then combined together for each interaction into one composite score using 

the BioNet package in R (Beisser, Klau et al. 2010). 

 



24 | P a g e  
 

2.8 Heinz algorithm extended with semantic similarity 

Recent experimental advancements are allowing the detection of the proteome which is 

either expressed in the cell or in a particular compartment of the cell. Once the proteins are 

identified, it’s a challenge to interpret them in the biological context. The analysis of a 

network obtained by combining data from expression profiling study of lymphoma patients 

with the comprehensive interactome data from HPRD was performed previously by Dittrich 

et al (Dittrich, Klau et al. 2008). In this prospect, the p-values are derived from the analysis 

of differential expression between two tumor subtypes as well from the analysis of survival 

data by cox regression for each node in the interaction network. The main idea is to identify 

functional modules in the PPI network, sharing common cellular functions. In order to 

achieve this, a maximally scoring network is devised along with the scoring of the nodes in 

the network to be identified. 

This identification of the functional modules in the network was extended by weighing the 

edges depending upon the semantic similarity of their nodes. If two genes are semantically 

similar to each other they would get a higher value close to or equal to 1 and if they are not 

semantically similar, they would get a value close to 0 or equal to 0. These scores were 

calculated using the “GOSim package” for all the three ontologies – BP, MF and CC. The 

scores were then converted into empirical p-values and using the aggregation statistics 

previously defined by Dittrich et al (Dittrich, Klau et al. 2008), which was based on 

distribution of the order statistics, a single p-value was obtained. Based on these aggregated 

p-values, a scoring function was defined which represents the p-values as a mixture of a 

noise and a signal component.  The scores obtained from this scoring function were termed 

“Edge Scores”. Once the edge scores were calculated, the nodes of interest (proteins 

identified in the sample) were scored by calculating the negative average of the scores of 

their connected edges. The rest of the nodes were given the average of all edge scores.  

The BioNet package (Beisser, Klau et al. 2010) provides an extensive framework for 

integrated network analysis using R and BioConductor. The methods for finding the optimal 

and suboptimal solutions were extensively used for finding the functional networks. 
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In order to identify the functional modules, an extensive usage of heavy induced graphs 

(heinz) was made. The algorithm to identify the optimal scoring subnetwork is based on the 

software dhea (district heating) from Ljubic et al. (Ljubic, Weiskircher et al. 2006). The 

program is developed in C++ to generate the optimal and suboptimal solutions. This is 

controlled over a Python script. The dhea code uses the commercial CPLEX license to 

calculate the suboptimal solutions. The dhea code and heinz python script are publicly 

available for academic and research purposes within the heinz (heaviest induced subgraph) 

package of the open source library, LiSA (http://www.planet-lisa.net). If the CPLEX license 

is not available, the maximum-scoring subnetwork can still be calculated with the included 

heuristic in the BioNet package (runFastHeinz). 

 

2.9 Phosphoproteomics (Quantitative analysis) 

Phosphoproteomics is one of the rapidly evolving fields in mass-spectrometry analysis. In 

contrast to previous methods which mainly rely on whole-protein data, this approach 

focuses on the analysis of cell-wide phosphorylation patterns. This integrated analysis 

combines protein-protein interaction (PPI) networks along with phosphoproteomic data to 

functionally describe signaling pathways and the change of information flow during various 

states of stimulation. Quantitative phosphoproteome data for node scoring in networks 

derived from PPI data along with the kinase-substrate relationships is used to understand 

this in the systems biological manner. Additional kinase information is integrated into the 

network as it is essential for understanding the regulatory mechanisms of protein signaling. 

The maximum-scoring subnetwork using an exact approach (heinz) is used to identify 

differentially phosphorylated signaling modules in cellular networks. This exact approach 

for searching biologically relevant functional modules has already been introduced in 

microarray analysis and is now extended to site-specific phosphoproteomics data. The 

algorithm in combination with human kinase-substrate relationships from in vivo and in 

vitro experiments on a dataset of differentially phosphorylated human embryonic stem cells 

(hESCs) (Rigbolt, Prokhorova et al. 2011) was used. With this approach, the analysis of 

http://www.planet-lisa.net/
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networks under various conditions (including time-series experiments) is carried out, 

thereby characterizing system states in a network context.  

A total of 6,521 proteins were identified in the original dataset (Rigbolt, Prokhorova et al. 

2011) using Stable isotope labeling by amino acids in cell culture (SILAC) method, of which 

5765 proteins were mapped in the PlateletWeb database along with 205 kinases. The site- 

specific phosphorylation changes were measures after application of non-controlled 

medium (NCM) 30 minutes, 1 hour, 6 hours and 24 hours after stimulation. 12,070 distinct 

peptides with 141 kinases acting on these phosphosites were identified. Of these, 539 

phosphosites and 281 proteins were associated with at least 1 kinase. The SILAC ratios 

were calculated in order to get the differential phosphorylation between the treated and the 

controlled cells. 

The SILAC ratios were then transformed into the site specific node scores and used the 

algorithm to obtain time-specific response modules of phosphorylation signaling during 

hESCs differentiation. 

 

2.10  Visualization and other tools  

TMHMM: Transmembrane domains have been predicted using the TMHMM Server, Version 

2.0 (Krogh, Larsson et al. 2001) yielding a total of 5,107 transmembrane proteins, of which 

1,158 are platelet proteins 

 

Cytoscape: Cytoscape is an open source platform for complex network analysis and 

visualization. It is a java based tool and can be run as standalone software on the local 

computer. Throughout the study, the visualization of the subnetworks is performed by 

Cytoscape version 2.6.3, unless specified. 

 



27 | P a g e  
 

Bingo Plugin: Bingo (Biological Network Gene Ontology Tool) is a plugin for Cytoscape. It 

helps to determine which Gene Ontology categories are statistically over or under 

represented in a set of genes. Gene enrichment analysis was performed by the BINGO plug-

in v2.44 of the network analysis software Cytoscape 2.8. For the full GO annotation 

comparison, all platelet proteins with a GO functional annotation in the network were 

considered (Biological Process (BP): 3,263; Molecular Function (MF): 3,412; Cellular 

Component (CC): 3,394 of total 5,025 platelet proteins). Statistically significant categories 

(P<0.0001) were selected according to their corrected p-values, using a hypergeometric 

test. Visualization of the BP, MF and CC results was performed for selected GO terms with 

less than 600 proteins. The top 25 GO terms were then used for visualization and colored 

according to the common parent with high information content in the hierarchical GO tree. 

  

R: R is a language for statistical computing and graphics. It is free software under the terms 

of GNU in the source code form. R was used vigorously throughout the project for multiple 

analyses after installing the required packages.  

 

Igraph: “igraph” is a free software package for creating and manipulating undirected and 

directed graphs. This package was used for the online visualization (on the PlateletWeb 

website) of networks on a chosen subset of proteins. This package can be used in multiple 

forms, for this work, R package was installed and used. 

 

MySQL: MySQL is a relational database management system and it’s a structured query 

language. The data taken from multiple sources were saved in the form of tables in the 

database and uniqueness was maintained for the gene identifiers.   

 

PHP/CSS YAML framework: The PlateletWeb website was designed using the PHP 

(Hypertext Preprocessor) with an extensive usage of CSS (Cascaded Style Sheets) and its 
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framework, YAML (Yet Another Multicolumn Layout). MySQL was used as the backend for 

the website. 

 

Perl: Parsing of sequences and flat files were performed using Perl (Practical Extraction 

and Reporting Language). 

 

Microsoft Office; Notepad++: Typesetting of manuscripts and periodical updates were 

saved in Microsoft Word and Notepad++. Additionally, the Microsoft Excel was used for a 

first overview of the processed data in the graphical formats.  

 

XAMPP: XAMPP (Cross platform, Apache, MySQL, PHP and Perl) is a free and open source 

cross platform webserver package. XAMPP is extensively used for the development version 

of the PlateletWeb knowledgebase and the PlateletWeb resource.  
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3 Results 

3.1 PlateletWeb 

Understanding the cellular mechanisms of platelet activation and their pharmacological 

modulation is of major interest in cardiovascular platelet research. A first step towards 

obtaining deeper insight into platelet signaling networks is to look at key molecular 

building blocks. Therefore, a multi-functional platelet network database (PlateletWeb) was 

established by collecting proteome data from large-scale proteome studies, well-curated 

protein databases, published literature as well as from transcriptome data (Dittrich, 

Birschmann et al. 2005; Dittrich, Birschmann et al. 2008). PlateletWeb provides a novel 

systems biology workbench for the analysis of platelet signaling in the functional context of 

integrated networks.  An integrated network database was established combining data 

from recent platelet proteome and transcriptome (SAGE) studies with information on 

protein-protein interactions and kinase substrate relationships extracted from 

bioinformatical databases as well as published literature. Moreover, mass spectrometry-

based platelet phosphoproteome was combined with site-specific phosphorylation / 

dephosphorylation information from the Human Protein Database (HPRD) and Phosphosite 

and complemented by bioinformatical sequence analysis for site-specific kinase predictions. 

The number of catalogued platelet proteins was increased by over 80% as compared to the 

previous version (Dittrich, Birschmann et al. 2008).  Integration of comprehensive 

annotations on kinases, protein domains, transmembrane regions, Gene Ontology, disease 

associations as well as drug targets provides ample functional tools for platelet signaling 

analysis. The resource is made available as PlateletWeb knowledgebase and this can be 

reached from the website http://plateletweb.bioapps.biozentrum.uni-

wuerzburg.de/plateletweb.php 

 

 Data sources 3.1.1

The PlateletWeb database is a highly scalable, reliable and up to date database, which has 

the tendency to expand easily with more information that comes in. My part in the study 

http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/plateletweb.php
http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/plateletweb.php
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was to make sure and implement this database with the huge consideration on various 

factors, for instance scalability, non-redundancy, consistency etc. In order to achieve this, 

the structure of the database should be consistent throughout and the addition of 

information from any source would not affect the already existing information. In order to 

achieve this, a careful analysis on the proteins from multiple sources was made and similar 

proteins from multiple databases are mapped to gain a highly reliable and sophisticated 

database which contains unique protein coming from multiple sources. The assembly of this 

information requires a high detailed overview on the source data that is being used. A 

careful annotation of each of these proteins is also required in some special cases where the 

protein in the source is wrongly annotated.  

Platelet proteome data was assembled from recent mass spectrometry studies of 

unfractionated platelets and specific platelet subcompartments. Platelet proteins were 

gathered from various studies including the latest proteomic whole cell and secretome 

analysis to ensure a complete set of new proteins. Additionally the data was taken from 

multiple data sources which have the human protein specific information. The information 

was combined and emphasis was given on the platelet proteins.  

Platelet proteome data have been collected manually from all available literature and 

proteomic databases and combined with transcriptome data (SAGE). It resulted in a set of 

5025 platelet proteins, including 22 major platelet datasets, creating a comprehensive and 

reliable backbone for platelet-specific information. 
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Figure 1 - Proteins extracted from literature and databases 

Different sources are compared in this Venn diagrams, e.g. 201 proteins are found by all three 

methods. The intersections and specific numbers show that the different sources are rather 

complementary then redundant. 

Proteins were categorized according to the cellular subcompartments from which they 

were isolated, which revealed that membranes and secretome are the most abundant 

fractions. Proteins were analyzed individually depending on the source of platelet 

information (proteome and transcriptome). The proteome group was in turn subdivided 

into proteome studies (large-scale proteomic analysis) and proteome databases 

(bioinformatic databases). The majority of proteins (3783 proteins, 75%) have been 

described on the proteome level, 14% (722 proteins) have additional evidence on the 

transcriptome level, and 25% (1242) of all platelet proteins have been detected exclusively 

on the mRNAlevel. 

A detailed analysis of the platelet protein sources was performed to identify the studies and 

fractions, from which the platelet proteins were extracted. The largest part of platelet 

proteins are coming from the meta database of mass spectrometry data GPMBD (citation). 

The transcriptome represents the second most abundant source of platelet information. 
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Interestingly, the membrane platelet proteome study by Lewandrowski et al contains the 

highest number of extracted platelet proteins in a single study. A complete list of platelet 

proteins along with their study and fraction is provided in the table below.  

 

Table 1 - Number of platelet proteins extracted from all studies:  

Study/Database 
Number of 

proteins 
Fraction 

GPMBD 2011 2064 whole platelet 

SAGE(Dittrich, Birschmann et al. 2006) 1964 whole platelet 

Lewandrowski 2009(Lewandrowski, Wortelkamp et al. 

2009) 
1269 membrane 

Piersma 2009(Piersma, Broxterman et al. 2009) 707 secretome 

Haudek 2009(Haudek, Slany et al. 2009) 671 whole platelet 

Martens 2005(Martens, Van Damme et al. 2005) 608 whole platelet 

Garcia 2005(Garcia, Smalley et al. 2005) 554 microparticles 

Uniprot 2009(2009) 538 undefined 

Wong 2009(Wong, McRedmond et al. 2009) 358 whole platelet 

Garcia 2004(García, Prabhakar et al. 2004) 305 whole platelet 

Moebius 2005(Moebius, Zahedi et al. 2005) 281 membrane 

Thon 2008(Thon, Schubert et al. 2008) 279 whole platelet 

Zahedi 2008(Zahedi, Lewandrowski et al. 2008) 277 phosphoproteo
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Study/Database 
Number of 

proteins 
Fraction 

me 

HPRD(Keshava Prasad, Goel et al. 2009) 230 undefined 

Maynard 2007(Maynard, Heijnen et al. 2007) 206 alpha granules 

Coppinger 2004(Coppinger, Cagney et al. 2004) 182 secretome 

Guerrier 2007(Guerrier, Claverol et al. 2007) 176 whole platelet 

Coppinger 2007(Coppinger, Fitzgerald et al. 2007) 132 secretome 

GeneRIF 120 undefined 

Springer 2009(Springer, Miller et al. 2009) 119 whole platelet 

O'Neill 2002(O'Neill, Brock et al. 2002) 116 whole platelet 

Marcus 2000(Marcus, Immler et al. 2000) 109 whole platelet 

Garcia 2006(Garcia, Senis et al. 2006) 77 whole platelet 

Yu 2010(Yu, Leng et al. 2010) 77 whole platelet 

Thiele 2007(Thiele, Steil et al. 2007) 29 whole platelet 

Glenister 2008(Glenister, Payne et al. 2008) 16 whole platelet 

 

All platelet information sources are presented with the source of data, number of platelet 

proteins and the fraction from which the proteins were extracted. Each platelet protein was 

identified in at least one or several studies, this information was provided on the 

PlateletWeb website under “Platelet Evidence”. 
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Analysis indicates that whole platelet investigation is predominantly used in platelet 

proteomics. This resource helps in understand information about the complete platelet 

easily along with its interactions and phosphorylations with other platelet proteins as well 

as the human proteins.  Single compartment analysis such as membrane or microparticles is 

difficult to achieve due to technical limitations in extraction of specific platelets sub 

compartments. 

 

 PlateletWeb Statistics 3.1.2

The analysis on any of the databases reveals the amount of information it contains and this 

can be easily achieved by using the statistics. Additionally, the numbers would help to 

maintain the integrity in the complete network and it easily shows the flaws if for instance, 

some proteins or some interactions are falsely identified (false positives or false negatives). 

However, to gain the statistical analysis, it is required to have the complete database at 

hand and initiate the huge process on analyzing the network from multiple aspects. The 

assembly of the database is the key for the analysis. This analysis is of course of huge help 

when a new version of the same database is created, with new data or information and then 

comparisons reveals the insights which can otherwise be never detectable. Having 

meticulously assembled the different databases from multiple sources, the work achieved 

in this thesis now allows to easily complying with the up to date information on the human 

proteins, emphasizing on the human platelets.  

The complete human proteome with interactome information was compiled which revealed 

54,218 simple interactions with over 4400 phosphorylation events between 10,915 human 

proteins. Additionally 135 dephosphorylation events were included into this interactome. 

The table 2 below depicts the numbers showing the increase of interactome information 

when compared with the previous version from us (Dittrich, Birschmann et al. 2008). 

The comparison on the older to the latest version of PlateletWeb is important as it reveals 

the amount of data that was explored for this study along with the increased improvements 

in the platelet resources. The source of information was increased from a total of 6 
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proteomic studies to over 15 studies. Additionally, the data from the public databases like 

HPRD (Keshava Prasad, Goel et al. 2009), GPMDB and Uniprot, the transcriptomic database, 

SAGE (Dittrich, Birschmann et al. 2006) were taken and put together for the PlateletWeb.  

This would help to realize each of the platelet protein with its source as in which studies the 

protein is discovered as platelet, and in which databases this was as well defined. This 

complete analysis will help to classically consider the genuineness of the platelet protein.   

The number of interactions of the platelet proteins was increased from 2839 to an 

impeccable number of 58758 making it more than 20 times bigger interactome network. 

This was achieved by considering all the well-known interactions in the literature and the 

databases. Similarly, the number of proteins itself was increased from 3093 to 19813, a 

factor of 6. This huge numbers indicate a much bigger network of proteins with much 

improved dataset when compared to the previous version. 

This improved new version of PlateletWeb has a huge number phosphorylations and 

dephosphorylations, including the sites, the events and the kinase predictions in some 

cases. Additionally, each platelet protein was check to see if this is a phosphorylated kinase 

or protein alongside the complete protein information. This resource thus provides 

complete information on platelet proteins. The table 2 showcases the numbers that were 

increased form the older version to the present version of PlateletWeb database.  

 

Table 2 - Human Interactome statistics:  

 Study/Database PlateletWeb 2008 PlateletWeb 2012 

Total interactions 2839 58758 

Total proteins 3093 19813 

Platelet proteins 3093 5025 

Phosphorylation and Dephosphorylation events - 6243 
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 Study/Database PlateletWeb 2008 PlateletWeb 2012 

Total phosphorylation sites - 73734 

Total dephosphorylation events - 171 

Platelet phosphorylation events - 28800 

Platelet dephosphorylation events - 99 

Total phosphorylated proteins - 10441 

Total phosphorylated kinases - 461 

Platelet phosphorylated proteins - 3532 

Platelet phosphorylated kinases - 216 

 

The interactome was then used to check for its characteristics, and was also compared with 

the previous version of the platelet interactome network. This revealed an incredible 

increase in the platelet interactome (84.34%) which in turn enables to consider a high 

number of proteins for the statistical analysis. 

The size of the largest connected component has changed from 1365 (70.65%) to 3060 

(84.34%). This suggests the extremely good connectivity of the proteins with in the 

network. The network regulation can be investigated in detail because of this increase in 

the interaction and phosphorylation data.  

The number of singletons is another important aspect, which describes the reliability of this 

network. The number of singletons remained almost constant. Considering the fact of the 

increased number of platelet proteins, these singletons signify the extremely good 

connectivity of the platelet network.  The increase in connectivity also influences the 

average degree of nodes, which specifies the average number of interactions of each 

protein. This was improved from 2.951 to 6.771, a pretty higher connectivity of the platelet 
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network. Also, the maximum path length has decreased from 15 to 10 indicating a tight 

moduled network. 

 

Table 3 - Platelet Interactome Statistics 

Network Parameter 
Interactome 

Dittrich2008 
PlateletWeb2012 

Number of all nodes 1932 3628 

Number of Interactions 2851 13652 

Number of components 532 536 

Size of largest component 1365 3060 

Size of largest component (%) 70.65% 84.34% 

Singletons 503 510 

Singletons (%) 26.04% 14.06% 

Average degree 2.951 6.771 

Characteristic path length 4.972 3.917 

Maximal path length 15 10 

 

The proteins were then separated according to the residue and the numbers provide an 

overview of the distribution of Serine-and Threonine-phosphorylation sites in human 

platelets. Serine phosphorylations are predominant, followed by threonine and tyrosine 

phosphorylated residues. This tendency is found generally in all phosphorylation sites and 

specifically also in literature platelet sites. The experimentally-validated sites have a 

comparably low percentage of tyrosine phosphorylations (4.0%), which might be due to the 
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lack of tyrosine-specific antibodies. According to previous studies, tyrosine 

phosphorylations are often found on less abundant proteins and their detection is 

complicated due to the lower stability the phosphorylated tyrosine (Olsen, Blagoev et al. 

2006). 

 

Table 4 - Phosphorylation sites 

 S T Y 

Literature all sites 45195 15249 13277 

Literature platelet sites 16469 6180 6138 

Experimental all / platelet sites 441 72 21 

526 kinases were identified in the human proteome of which 229 were identified as platelet 

kinases. Additionally, the kinases substrate relations were calculated to determine how 

many platelet substrates have associated platelet and non-platelet kinases. When 

introducing a limitation of platelet kinases acting on platelet substrates, then the platelet 

kinases were reduced to 162 and the platelet substrates to 740. Association with a platelet 

kinase increases the chances of the phosphorylation to take place in platelets under normal 

biological conditions. Therefore, these phosphorylation events give strong indication for 

signaling regulation in the platelet when there is no experimental evidence available in 

literature for this cell type. 

 

Table 5 – Kinase substrate associations; Kinase acting on substrates 

 

PlateletWeb 2012 
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PlateletWeb 2012 

Kinases on All substrates 329 

Kinases on Platelet substrates 268 

Platelet Kinases on All substrates 176 

Platelet Kinases on Platelet substrates 162 

 

Table 6 – Kinase substrate associations; Substrates targeted by kinases 

 PlateletWeb 2012 

Substrates targeted by Kinases 1801 

Platelet Substrates targeted by Kinases 810 

All Substrates targeted by Platelet Kinases 1614 

Platelet Substrates targeted by Platelet Kinases 740 

 

The Gene Ontology information is taken from the GO Consortium and all the human 

proteins were annotated in the PlateletWeb. The following table provides the statistics of 

Gene Ontology terms associated with the platelet proteins. 

 

Table 7 –Gene Ontology information associated with Platelet proteins   

 PlateletWeb 2012 

Total GO Terms with all human proteins annotated in PlateletWeb 13736 
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 PlateletWeb 2012 

Total GO Annotations with platelet proteins 10148 

Total proteins associated with GO Term 17546 

Platelet proteins associated with GO Term 4728 

 

Along with the functionality of each platelet protein, relevant information was added about 

its drug associations. Drug modulation is an important aspect in cell biology because it 

allows controlled tuning of various cell processes and often represents a first step in 

development of new therapies. The drug information is taken form DrugBank, and then 

mapped with the platelet proteins in the PlateletWeb resource, which revealed a high 

number of platelet drug targets. Almost half of the known human drugs (2706 out of 4311 

drugs) are targeting platelet proteins. The high amount of platelet drug targets indicates 

that drug discovery is focused on many proteins in the platelet cell and underlines the 

importance of platelets in clinical research.   

 

Table 8 – Drug Targets   

 PlateletWeb 2012 

Total Drug Targets 2106 

Platelet Drug Targets 950 

Total Drugs 4311 

Drugs acting on platelet proteins 2706 
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 Knowledgebase and the flow of information 3.1.3

The platelet data is accumulated from various sources using the techniques of data mining 

and manual curation. In order to investigate the biological insights of this data, a resource 

was created which helped to understand platelet signaling pathways. This resource is 

further extended to create a website (knowledgebase) for platelets as a platelet systems 

biological platform which was termed PlateletWeb. This knowledgebase combines and 

visualizes the most recent proteomic studies investigating platelet proteins and provides 

basis to a more comprehensive analysis of platelet-specific functions. Based on data from 

our resource gave a complete overview of platelet signaling, interactions, phosphorylation 

events and identified enrichment of platelet-specific pathways and functions.  The kinome 

and phosphoproteome were analyzed, followed by the introduction of drug options and 

network modulation. Furthermore, the physical information of the protein along with the 

Gene Ontology and KEGG pathway information was also visualized and made available in 

the knowledgebase. The platform allows a comprehensive and detailed analysis of the 

platelet not only on a single protein level but also on the scale of network regulation and 

functional association of signaling components. Alongside, the access of the information 

contained in the resource is made easy by creating multiple search functions which would 

help to extract the information easily and quickly from the knowledgebase.  

Assembling the database itself is one main aspect; however it is not finished without 

creating a proper graphical user interface to retrieve the right amount of information. The 

accessing of the information would require sophisticated website development to give the 

ease of use. This would make the database a user friendly resource which can be easily 

accessible from anywhere around the world. A first hand website is created for the previous 

version (Dittrich, Birschmann et al. 2008), which was extended to add the new information 

with a high significance on the platelet proteins.   

A detailed tutorial on the usage of the platform is presented in the supplemental Appendix 1 

(PlateletWeb user guide). 

The following flowchart depicts the way the key aspects of PlateletWeb knowledgebase and 

the way it helps to access the right data. The knowledgebase design is biased towards the 
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end user’s perspective. For instance, it is possible to get the complete details of the protein 

starting from the interactions, its phosphorylations, its site specific information, the 

physical properties etc., by just entering the name of the protein. Additionally, the similar 

names, which would give another chance to recheck the protein is also considered. Some 

proteins have alternative names and this presentation of similar proteins would help in 

order to get the information for the right protein. The complete protein description page, 

containing multiple sections, each of which, concentrating on a particular information of the 

protein can also be retrieved. This is a simple search which provides the ease of use and 

gets the information about the protein instantly.  

It is also possible to concentrate on a group of proteins with similar functionality or to 

extract a group of proteins which are, for instance, phosphorylating on the tyrosine residue. 

There is multiple simplified advanced search criteria were defined with in the 

knowledgebase which would give access to retrieve the set of proteins with similar 

classification. These proteins can be either searched from the point of view of the drug 

targets or the containing similar gene ontology term or at the lowest level having similar 

physical properties. A protein or group of proteins with similar attributes is retrieved in 

such cases and this can then be also visualized. For example, in the advanced search it is 

possible to extract platelet proteins with multiple similar features: having the same 

function (e.g. hemostasis) and protein domain (e.g. transmembrane domain TM) and 

phosphorylated on a tyrosine residue. This particular search yields three proteins with the 

predefined criteria: GP1BA, ITGB3 and PECAM-1. All three proteins are well-known platelet 

signaling modulators, playing a role in platelet activation using SH2 domain binding. 

Additionally, the information obtained at any instance, either at the level of similar proteins 

or the phosphorylations of a particular protein or even the description of the protein, they 

all can be printed. Apart from this, the download options enable to download specially the 

information about the sequences and the subnetworks that are visualized. The flow chart 

gives the pictorial representation of the complete work flow of the website.   
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Figure 2 – Flowchart of the PlateletWeb workbench. 

The query can be provided using simple search or advanced search. This provides the complete 

information about the protein(s) and it is also possible to download or print the result. 

 

Query Protein Advanced Search 
 

Search by: 
• Gene identifiers 
• Drug targets 
• Specific terms 
• Combinational search 
• Physical properties 

List of similar proteins 
Interaction and phosphorylation state 

Information about the protein 
 

• Source of detection for platelet proteins 
• Interaction and phosphorylation information 
• Visualization of sub networks 
• Gene ontology information 
• Drug / disease annotations 
• Transmembrane predictions 
• KEGG pathways emphasizing on platelet proteins 
• Summary and description of proteins 
• Protein domains and motifs 
• Protein physical characteristics 

Print / download information 
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The database is very useful to investigated interactions in the platelet. By choosing the 

protein name (e.g. VASP) an overview of the protein description, physical and biological 

properties and phosphorylations is revealed. In contrast, to find the interaction partners 

such as Abi1, a network view of the neighboring proteins can be obtained. This view is 

extended by introducing a new option to extract a set of proteins with their network 

context, thus allowing a detailed investigation of phosphorylations and interactions of 

specific protein datasets.  

 

 Subnetwork extraction 3.1.4

In order to gain the perspective of the proteins in the network format, the visualization 

plays a crucial role. This would give the required perspective and orientation on the 

proteins that are of interest. In order to visualize the proteins in the network format, an 

additional feature was added to the PlateletWeb resource. Subnetworks can be extracted 

from the knowledgebase for proteins identified in proteomic analysis or in a given sample 

of proteins. This can help to visualize and understand the proteins in their network context 

and further emphasis can be given onto the signaling modules. The combination of 

proteomic and transcriptomic information of the platelet proteins, along with the 

phosphorylation, dephosphorylation and interaction data together with the drug 

information and the site- specific information would give a maximum insight of the 

signaling process within the module. Additionally, the differentiation between kinases, 

substrates, platelet proteins, non-platelet proteins and drugs would help to analyze the 

subnetwork module in a much more systematic way. The resulting network can be easily 

saved onto the computer and visualized in vector graphics or can be further imported and 

investigated using the network analysis software, Cytoscape.  

 

 

Case study: LXR and PECAM1 interactions 
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The PlateletWeb resource can be used to investigate the pathways and all the interactions 

of any platelet proteins of interest. Newly identified antithrombotic targets such as LXR 

(Spyridon, Moraes et al. 2011) or the signaling modulator PECAM1 (Moraes, Barrett et al. 

2010) can be easily investigated in the context of interacting partners and phosphorylation 

events. 

 

LXR interactions: 

The central network around the two isoforms of the liver X receptor (LXRα and LXRβ), 

presents all interactions and known phosphorylation events obtained using the subnetwork 

extraction feature of PlateletWeb. The LXRβ isoform has been detected in platelets and it is 

therefore visualized in yellow. Phosphorylated platelet proteins are presented in red. The 

interaction network reveals a kinase-substrate relationship between the LXRα and the 

casein kinase CSNK2A1. Furthermore, the PlateletWeb knowledge base presents options to 

explore the antithrombotic effects around the LXRβ. By first extracting the neighboring 

interactions and then focusing on the GP6 receptor downstream signaling implied to be 

associated with LXR binding effects observed in platelets (Spyridon, Moraes et al. 2011), the 

connection between the two can be thoroughly examined. For instance, LXRβ is directly 

interacting with the ryanodine receptor RXRA in platelets, which is associated with the Src 

kinase. This kinase along with the kinases SYK, LYN and FYN is one of the major activatory 

kinases in human platelet signaling (Varga-Szabo, Pleines et al. 2008). It is also very closely 

associated with the GP6 receptor and the LAT protein. Thus, by using interaction and 

phosphorylation information available in PlateletWeb complex network associations can be 

investigated and visualized. 
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Figure 3 - Interaction and phosphorylation network of LXR 

Visualization of this LXR interaction network is created by integrating information from 

multiple sources. The circles indicate the proteins, while the triangles indicate the kinases. The 

interactions in the network are depicted using the gray lines and the phosphorylations and 

dephosphorylations using the green lines. Phosphorylations are in turn specified according to 

their source of detection: red arrows indicate phosphorylations reported from human cells 

(HPRD), blue arrows are used in the cases where a kinase prediction is assigned to an 

experimentally-validated phosphorylation site. The protein nodes are colored according to the 

source of phosphorylation (red indicating that the protein is phosphorylated in human cells 

and blue indicating that the protein is phosphorylated in platelets. The yellow color specifies a 

non-phosphorylated platelet protein. The phosphorylation site is presented on each directed 

edge, providing further information of the kinase phosphorylating on the site.  
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PECAM1 interactions 

One of the essential mechanisms of integrin outside-in signaling is integrin clustering, 

which then leads to dephosphorylation of Src at Y530 and subsequent autophosphorylation 

at Y419. Pecam-1 acts as a positive regulator in integrin a2bb3 engagement, clustering and 

SHP-2 recruitment and activation (Jackson, Kupcho et al. 1997; Jackson, Ward et al. 1997). If 

SHP2-Pecam1 localization is absent, dephosphorylation of Src doesn’t take place, which 

leads to defective downstream signaling and delay in cell spreading, clot retraction and 

focal adhesions. Phosphorylation of both ITIM-motifs of PECAM1 (Y663, Y686 = Y690, Y 

713) is needed for recruitment and activation of SHP2 (= PTPN11) (Newman and Newman 

2003). Example of the regulation of collagen stimulated platelets through PECAM-1. The 

modification of the interaction of PI3KR1 to LAT and GRB2-associated binding protein 1 

(GAB1) (Moraes, Barrett et al. 2010) can be visualized in a network context additionally 

including SRC to examine phosphorylation events and identify PTPN11 (also known as 

SHP2) as key counter-player for dephosphorylation events. 

 

Figure 4 - Interaction and phosphorylation network of PECAM1 

The interaction network of PECAM1 showing its interactions, phosphorylations along with the 

kinases and the proteins associated with it.  
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However, the subnetwork extraction is not restricted to a single protein. The following 

figure represents the visualization of the vWF signaling subnetwork extracted from the 

PlateletWeb knowledgebase which contains the list of platelet proteins, non-platelet 

proteins, kinases, substrates, interactions, phosphorylations, dephosphorylations, drugs, 

and drug targets. However, only a few drugs were shown in the picture for improved 

visualization and simplicity. 

 

Figure 5 – Extraction of subnetwork from the complete human interactome 

A subnetwork can be extracted from the human interactome including the protein 

information, the phosphorylations, the interactions and the drug targets. 

 SAGE/Proteome Distribution 3.1.5

Considering all the SAGE (Dittrich, Birschmann et al. 2006) and proteomic data for the 

platelet proteins, an enrichment analysis was performed. The main challenge is to find and 
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integrate the vast amount of reliable data which is available from multiple resources. The 

figure below shows the proteins detected on the SAGE and proteome level in biological 

processes of the platelet proteins. The analysis reveals that the term “translation” contains 

the highest percentage of SAGE proteins. This is partly carry-over effect from 

Megakaryocytes, however, there is also translation in platelets, in particular upon activation 

(as shown in the example by the Weyrich group (Weyrich, Schwertz et al. 2009)). An 

extremely pure preparation of platelets (Dittrich, Birschmann et al. 2006; Dittrich, 

Strassberger et al. 2010) was used for library preparation. 

 

Figure 6 - Distribution of platelet proteins according to detection level 

 

 Platelet Enrichment 3.1.6

Biological processes were tested for enrichment in platelets. The top most significantly 

enriched specific terms were plotted against the negative log10 of the P value and colored 

according to their general functional category. Number of platelet proteins and total 

proteins for each term are given in parentheses. There is enrichment of terms related to 

transport, membrane organization, actin-filament based processes, and GTPase-mediated 

signal transduction. 
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Figure 7 - Platelet enrichment: Functional analysis of Biological Process 

 

 

Figure 8 - Platelet enrichment: Functional analysis of Molecular Function 
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Figure 9 - Platelet enrichment: Functional analysis of Cellular Component 

 

Functional characteristics of platelet genes and gene products are stored in the knowledge 

base, including the GO categories. This allows a functional characterization of the platelet 

network. Comparison of the GO functional categories of the platelet interactome with those 

of the entire human interactome network indicated a significant enrichment of platelet 

relevant biologic processes such as “vesicle-mediated transport” (P value = 1.54 × 10-26), 

“small GTPase mediated signal transduction” (P value = 1.08 × 10-15), and “actin 

cytoskeleton organization” (P value = 4.09 × 10-10) (Figure 7). These processes are well 

established in the platelet as they are needed for platelet exocytosis, cytoskeleton 

organization and shape change. Similarly, enriched molecular functions mediate key 

platelet processes such as “actin binding” (P value = 8.51 × 10-12) and “cytoskeletal protein 

binding” (P value = 1.09 × 10-11) (supplemental Figure 8A), while cellular components were 

enriched for mitochondrial compartments and membrane components (supplemental 

Figure 8B).  
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 Platelet-specific kinase tree reveals distribution and enrichment of tyrosine 3.1.7

kinase substrates in human platelets 

Site-specific phosphorylations from public databases were extracted to incorporate the 

central phosphorylation signaling network into the PlateletWeb resource. This was mainly 

based on experimental data of human cells and tissue expressions published in literature 

(Hornbeck, Chabra et al. 2004; Keshava Prasad, Goel et al. 2009). The extracted human 

phosphorylations consist of 10,441 human proteins with 73,734 phosphorylation sites.  

From them, 28,800 of the phosphorylations account for platelet phosphorylation sites, 

which represent around 39% of the total phosphorylation sites. These literature-derived 

data were complemented by a set of 533 phosphosites experimentally measured in human 

platelets (Zahedi, Lewandrowski et al. 2008), of which 16 sites have not yet been described 

in the human proteome. 

Data on both human and platelet phosphorylation sites were further distributed according 

to the residue and this showed a majority of sites (over 50% in both cases) are on a serine 

residue and an almost equal amounts of threonine and tyrosine phosphorylations (around 

22% each, in both cases).  However, in contrast, the experimentally validated platelet 

phosphosites contain a substantially lower share of around 4% tyrosine phosphorylations 

combined with higher percentage (around 80%) serine phosphorylations.  

By supplying information about the responsible kinase, phosphorylation sites can be 

analyzed in the network context. The main theme for this would be the kinase-substrate 

relationship. In this regard, the focus is mainly on the phosphorylated platelet proteins 

associated with a kinase. These represented only 23% (814) of all phosphorylated platelet 

proteins (3,532). On the other hand, 3,080 distinct phosphorylation sites have the 

associated kinase. However, kinase data for experimentally validated phosphorylations was 

available for only 69 phosphosites. A novel network-based algorithm was used to predict 

potential kinases for these sites (Linding, Jensen et al. 2007; Miller, Jensen et al. 2008), which 

resulted in kinase predictions for a further 436 sites yielding a total kinase annotation for 

505 (94.5%) phosphosites. When introduced into the entire platelet phosphoproteome, 
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these predictions contribute to 16% of all modification events with available kinase or 

phosphatase information 

The entire platelet proteome dataset contains 229 kinases (43.5% of 526 total human 

kinases), 162 (70.7%) of which have well described substrates in the platelet proteome. 

Nearly all (216, 94%) have documented phosphorylation sites. The kinase families TK, 

CMGC and AGC contain the highest percentage of platelet kinases. The number of kinases 

belonging to each kinase group is separated into numbers for platelet kinases and non-platelet 

kinases. Then, the percentage of platelet and non-platelet kinases in the respective groups is 

calculated. A total of 218 platelet kinases and 295 non-platelet human kinases are considered. 

Dephosphorylation is achieved by 73 platelet phosphatases (38.2 % of 191 total human 

phosphatases) of which 24 have characterized substrates. 

 

Table 9 - Platelet kinome in relation to all human kinases  

Kinase family Platelet Kinase 
Non-platelet 

kinases 

Platelet 

kinases (in %) 

Non-platelet 

kinases (in %) 

AGC 34 29 15.60 9.83 

Atypical 12 26 5.50 8.81 

CAMK 22 52 10.09 17.63 

CK1 5 7 2.29 2.37 

CMGC 35 28 16.06 9.49 

Other 21 57 9.63 19.32 

RGC 0 5 0.00 1.69 

STE 27 20 12.39 6.78 
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Kinase family Platelet Kinase 
Non-platelet 

kinases 

Platelet 

kinases (in %) 

Non-platelet 

kinases (in %) 

TK 51 39 23.39 13.22 

TKL 11 32 5.05 10.85 

 

 

All platelet kinases were mapped onto the human kinome tree (Miller, Jensen et al. 2008) in 

order to analyze them and their substrates in a phylogenetic context. 
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Figure 10 – Human Kinome Tree 

Most of the platelet signaling pathways relies on kinases, which allow phosphorylation of 

many proteins in the platelet after stimulation. The assembled platelet interactome consists of 

229 platelet kinases from overall 513 human kinases. Mapping the platelet kinase 1and 

substrate data onto the phylogenetic human kinome tree we marked platelet kinases 

according to their level of platelet expression (proteome, transcriptome or both) and show the 

number of platelet and non-platelet substrates for each kinase as two-coloured bars next to its 
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name. Substrates information is presented as integrated into PlateletWeb from human 

phosphorylation databases. The overall distribution evidences abundance of PKC kinases and 

Src-family which are found in most of the platelet activation signaling pathways. 

Mapping the platelet kinase and substrate data onto the phylogenetic human kinome tree 

the platelet kinases according to their level of platelet expression (proteome, transcriptome 

or both) were marked and showed the number of platelet and non-platelet substrates for 

each kinase (data in the supplement).  The majority of platelet tyrosine kinases were found 

on the proteome level. In order to get the detailed analysis, the tyrosine kinase subtree was 

extracted for detailed analysis from the main phylogenetic tree.  
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Figure 11 - Tyrosine Kinase tree 

The Tyrosine kinase subtree reveals a strong representation of Src-family kinases, which have 

many characterized substrates in platelets and mediate platelet activation through numerous 

phosphorylation events.  

In order to get the detailed overview of the kinase families (Manning, Whyte et al. 2002), an 

enrichment analysis was performed. The tables below show the results of the enrichment 

analysis. 
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Table 10 - Statistical analysis of kinase and kinase substrates’ enrichment 

Kinase family 
Platelet 

kinases 

Non-platelet 

kinases 
Total kinases p-value 

Corrected 

p-value 

TK 51 39 90 0.01 0.08 

Other 21 57 78 0.01 0.08 

CAMK 22 52 74 0.04 0.11 

AGC 34 29 63 0.11 0.13 

CMGC 35 28 63 0.06 0.11 

STE 27 20 47 0.06 0.11 

TKL 11 32 43 0.04 0.11 

Atypical 12 26 38 0.23 0.26 

CK1 5 7 12 1 1 

RGC 0 5 5 0.08 0.11 

All kinases 218 295 513   

 

 

Enrichment of kinases in platelets according to the phosphorylated residue (** Dual-

specificity kinases are not represented, therefore the sum of the column doesn’t equal the 

number shown) 

Table 11 - Enrichment of kinases in platelets according to the phosphorylated residue 
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ST and Y 

Kinases 

Platelet 

kinases 

Non-platelet 

kinases 
Total kinases p-value 

Corrected 

p-value 

ST Kinases 136 215 351 0.29 0.29 

Y Kinases 51 45 96 0.06 0.12 

All ST and Y 

Kinases** 
187 260 447   

 

Enrichment of kinase substrates in platelets according to the phosphorylating kinase family 

(* The substrates can be targeted by more than one kinase family, therefore the sum of the 

column doesn’t equal the number of total substrates) 

Table 12 - Enrichment of kinase substrates in platelets according to the phosphorylating 
kinase family 

Kinase 

substrates 

Platelet 

substrates 

Non-platelet 

substrates 

Total 

substrates 
p-value 

Corrected 

p-value 

CMGC 363 463 826 0.67252 0.76 

AGC 308 360 668 0.584902 0.75 

TK 222 167 389 1.52E-05 1.37E-04 

CAMK 89 138 227 0.118601 0.18 

STE 74 52 126 0.002967 0.01 

Other 60 107 167 0.027813 0.05 

Atypical 47 90 137 0.02 0.045 
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Kinase 

substrates 

Platelet 

substrates 

Non-platelet 

substrates 

Total 

substrates 
p-value 

Corrected 

p-value 

TKL 35 21 56 0.009605 0.03 

CK1 24 28 52 0.888071 0.89 

All Substrates* 804 989 1793   

CMGC 363 463 826 0.67252 0.76 

 

 

Enrichment of kinase substrates in platelets according to the type of phosphorylating 

kinase - (* the substrates can be targeted by more than one kinase family, therefore the sum 

of the column doesn’t equal the number of total substrates) 

Table 13 - Enrichment of kinase substrates in platelets according to the type of 
phosphorylating kinase 

ST and Y 

substrates 

Platelet 

substrates 

Non-

platelet 

substrates 

Total 

substrates 
p-value 

Corrected 

p-value 

All distinct 

substrates of 

ST Kinases 

580 741 1321 0.609655 0.61 

All distinct 

substrates of Y 

Kinases 

222 167 389 1.52E-05 3.04E-05 

All ST and Y 

substrates* 
804 989 1793   
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Although kinases of the tyrosine and AGC family are relatively abundant in human platelets, 

no significant overrepresentation of a particular kinase family could be detected after 

multiple testing correction. Analogously, the enrichment of platelet kinase substrates 

according to kinase family and residue was investigated. The analysis yielded a significant 

enrichment of platelet substrates of STE (P = 0.013), TKL (P = 0.03) and predominantly 

substrates of the TK kinase family (P value = 1.4 × 10-4), also reflected on the residue level 

by a significant enrichment of tyrosine-specific kinase substrates. The STE family contains a 

broad repertoire of kinases important for the upstream signaling in the MAPK/ERK 

pathway (MAPKKK kinases). The TK group contains the main activatory kinases of the Src-

family for which a large number of platelet substrates have been and they participate in 

processes such as collagen and vWF-induced platelet activation (Gardiner, Arthur et al. 

2010).  
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Figure 12 – Enrichment of kinases and substrates with respect to the residues and kinase 
families 
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 Protein domains 3.1.8

 

Further analysis indicated that gated interaction mediating domains SH2 (supplemental 

Figure 5) are overrepresented in platelets, consistent with their role as counterparts of 

tyrosine kinases through recognition of tyrosine phosphorylated residues (Liu, Jablonowski 

et al. 2006).  The most often occurring protein domains in platelets are listed. The y-axis 

depicts the –log10 of the P value (Fisher test). The top 10 significantly enriched domains 

include RAB domain, Serine threonine kinase and Tyrosine kinase domain. Furthermore, 

the gated interaction mediating domains SH2 and SH3 are overrepresented due to their 

crucial role in platelet activation. 

 

Figure 13 – Protein domains  

Enrichment of protein domains and their distribution 



64 | P a g e  
 

Analyzing the building blocks of the platelet signaling network in terms of domain 

architecture, many of the most frequent domains among hub proteins (platelet proteins 

with more than 50 platelet interactions) are mediators for protein-protein interactions 

including adaptor domains. These include the gated interaction mediating domains SH2, 

SH3 as well as kinase domains which are crucial for signaling and dynamic switches in 

complex formation of the highly connected central phosphorylation network. Domains 

found in platelet proteins with the highest number of interactions (a total of 27 platelet 

proteins with over 50 platelet interactions, some proteins containing more than 1 listed 

domains). The number of proteins containing the respective domain is shown. 

 

Figure 14 – The number of proteins with over 50 interactions contained in the domain 

Number of proteins  

with over  

50 interactions 

Domain 

Name 
Domain Description 

7 SH2 Src homology 2 domains 

7 S_T_kinase Serine_Threonine protein kinases, catalytic domain 

6 SH3 Src homology 3 domains 

5 CC Coiled Coil 

5 Tyr_Kinase Tyrosine kinase domain 

2 ACTIN Actin 

2 C1 
Protein kinase C conserved region 1 (C1) domains 

(Cysteine-rich domains) 
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Number of proteins  

with over  

50 interactions 

Domain 

Name 
Domain Description 

2 C2 Protein kinase C conserved region 2 (CalB) 

2 TM Transmembrane Domain 

1 ARM Armadillo/beta-catenin-like repeats 

1 B41 Band 41 homologues 

1 CASc 
Caspase, interleukin-1 beta converting enzyme 

(ICE) homologues 

1 GS GS motif 

1 LIM Zinc-binding domain present in Lin-11, Isl-1, Mec-3 

1 MH1 MAD homology 1 

1 MH2 MAD homology 2 

1 PH Pleckstrin homology domain 

1 RHO 
Rho (Ras homology) subfamily of Ras-like small 

GTPases 

1 RHOGAP GTPase-activator protein for Rho-like GTPases 

1 SP Signal Peptide 

1 Tyr_Phos Protein tyrosine phosphatase, catalytic domain 
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Number of proteins  

with over  

50 interactions 

Domain 

Name 
Domain Description 

1 UBQ Ubiquitin homologues 

 

The results conclude multiple facts considering PlateletWeb as a base. The comprehensive 

dataset which was assembled contained various sources with high manual curation 

information. Most of the proteins detected exclusively on the proteome level make the 

dataset more reliable. The proteins identified on the transcriptome level, also contributed 

equally to the PlateletWeb repository. The fact that platelets don’t have nucleus means that 

they can’t perform the transcription, however translation is definitely possible if mRNA is 

left from the megakaryocytes from which the platelets are derived. Platelets contain a pool 

of mRNA which can be spliced and translated in a signal-dependent manner (Denis, Tolley et 

al. 2005; Dittrich, Birschmann et al. 2006; Schwertz, Tolley et al. 2006; Rowley, Oler et al. 

2011). Large-scale proteomic data is crucial for understanding the systems biological 

background of cellular processes as well as for identifying potential new biomarkers in 

human diseases as recently shown for atherothrombosis (Tunon, Martin-Ventura et al. 

2010; Dittrich, Birschmann et al. 2011) . 

Interestingly, there are a lot more phosphorylation events than dephosphorylation events 

available from HPRD. This can be explained by the fact that phosphorylation triggers most 

of the activatory and inhibitory pathways in platelets and a tight regulation is needed to 

ensure signaling events take place in an organized and strictly defined manner. Therefore, a 

high number of kinases are needed to fine-tune platelet’s responses.  

The PlateletWeb database is flexible to include and extend any newly available data or 

change in the present information. The extensive usage of the Perl scripts and the MySQL 

database help the easy transformation and inclusion of any additional information into the 

resource. Additionally, the website design is also easily extensible and scalable to cope up 
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with huge amount of information. Both the database and the resource allow the additional 

extensions which might be required when completely new functionality has to be added. 

Apart from the additional features, there is a huge possibility to bridge multiple species 

together. For instance, a protein is found in the human proteome is identified as a platelet 

protein. It is also possible to scale this information on multiple species for example on a 

mouse and see the further information of the same protein in the mouse proteome and get 

the detailed analysis of it. This example shows the capability of this resource when an 

exponential growth of the database with additional information at sight. .  

The platelet interactome statistics revealed few key notes when compared with the 

previous version. The increase in the largest component, (from 70% to 84%) showcases the 

fact that the proteins are connected between themselves leaving very few singletons behind 

(decreased from 26.04% to 14.06%). All the enrichment analysis performed was based on 

the connecting graphs, and this implicates that a reasonable amount of proteins were 

considered for the enrichment analysis that was performed. This higher number of proteins 

participating in the enrichment analysis provides with more concrete results. Furthermore, 

the average degree of the network has a whooping increase from 2.951 to 6.771 illustrates 

the higher connectivity possessing in the network. This was possible because of the 

increased number of interactions included with in the network. 

The identification and assembly of the kinases into the PlateletWeb provided a strong base 

for understanding the platelets in more detail. A phosphorylation network consisting of all 

the kinases and networks was also been assembled for further analysis. A comprehensive 

list of human kinases extracted from Manning et al (Manning, Whyte et al. 2002) and later 

were used for reference and validation of the HPRD phosphorylation data. Thus, the entire 

platelet proteome dataset contained 229 kinases (43.5% of 526 total human kinases), 162 

(70.7%) of which have well described substrates in the platelet proteome. Nearly all (216, 

94%) have documented phosphorylation sites. 

The PlateletWeb knowledge base presents a variety of advanced options for systems 

biological analysis of platelet signaling. Each protein has been provided with characteristic 

features from the functional and network context along with the technique for identification 
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in platelets (level of detection). The phosphorylation status of all proteins can be analyzed, 

distinguishing individually between phosphorylations derived from published literature 

and those directly measured in human platelets. Furthermore, information on physical 

properties such as isoform-specific sequence information, presence of transmembrane 

domains, isoelectric point and molecular weight data are provided and searchable which 

could be helpful tool for the analysis of Western Blot and 2D Gel experiments. Associations 

with diseases can be found using a key-word functionality search in the description of 

proteins. The resource even allows users to combine various search options into a more 

complex advanced search concentrating on specific platelet proteins. 

To better understand the platelet commitment in processes such as immune defense, a 

functionality search (using GO terms) results in proteins involved in “immune response“ 

and associated functions. Additionally, it is possible to combine GO terminology with the 

phosphorylation state, level of detection and presence of particular protein domains to 

retrieve groups of proteins fulfilling the search-defined criteria. Drug information provides 

additional insight about platelet proteins associated with specific drugs. As an example, 

results on pharmacological modification by inhibiting prostacyclin receptors retrieve 

analogues of prostacyclin (Epoprostenol, Iloprost, and Treprostinil). The knowledge base 

thus allows a comprehensive and detailed analysis of the platelet not only on a single 

protein level but also on the scale of network regulation and functional association of 

signaling components. A detailed tutorial on the usage of the platform is presented in 

Supplementary Material.  

The intriguing feature of PlateletWeb, the subnetwork extraction helps to understand the 

proteins from multiple aspects. For instance, a similar protein can be found performing 

special functions in multiple networks. The flow of the information in each of the networks 

could be easily identified using this feature of PlateletWeb. Additionally, the example of LXR 

provides an insight of how the mechanism can be understood and used. 

Motivating the insights on the platelet tyrosine, the conclusion indicates that most of these 

kinases were found on the proteome level. The detailed analysis of the phylogenetic tree 

further provided the substantial motivation to this fact. The kinase subtree revealed a very 
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strong representation of Src-family kinases, which have many characterized substrates in 

platelets and mediate platelet activation through numerous phosphorylation events. In 

contrast to this, a clear absence of kinase groups such as the neurotropic tyrosine kinases 

(TRKA, B, C) and neural growth kinases (ROR1) can be observed, as these are kinases with a 

high specificity for neuronal tissues. 

The analysis on the protein domains, especially on the enrichment test suggested that the 

most often occurring domain is the RAB domain. RAB proteins have a specific function in 

membrane tethering and fusion by recruiting factors, which interact with SNARE proteins 

and form SNARE complexes (Zhang, Naslavsky et al. 2012). The enrichment of these 

domains might be explained by their strong involvement in vesicle transport, which is also 

the underlying mechanism of endocytosis. Additionally, platelets were also found enriched 

for the endocytosis pathway and the two findings correspond well with each other 

(Boyanova, Nilla et al. 2012).  

The SH2 and SH3 domain enrichment is well explained by the fact, that these domains bind 

to tyrosine phosphorylated residues of platelet proteins after platelet activation 

transmitted by the kinase Src (Liu, Jablonowski et al. 2006). 

In another aspect of the analysis on the protein domains, the high interacting proteins with 

over 50 interactors were considered. Interestingly the placement of the domains was 

changed, SH2 replaces RAB as the most often occurring domain among highly connected 

proteins. This change can be explained due to the fact that this domain is an important 

signal transductor during platelet activation and many proteins after tyrosine 

phosphorylation can bind to these domains. Therefore, it can be assumed that the 

enrichment of such domains ensures a more global signal transduction. The analyses 

underline the tight functional relationship of SH2-domain proteins and tyrosine kinases 

(Liu, Jablonowski et al. 2006) in platelets, which is well reflected by the overrepresentation 

of tyrosine kinase substrates and SH2 domains in the enrichment analyses. 
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3.2 Motif analysis 

 Analysis 3.2.1

To get more insight into the way how information is processed in the anucleate cell type, 

network motifs which proteins participate in certain complexes of interactions were 

considered. In order to eliminate the bias of already known biological knowledge when 

extracting subnetworks, the network motifs were introduced. Although having the 

knowledge is useful, an unbiased method to search for structural topological elements in 

the configuration of the network can provide with advanced insights on the complete 

network. Network motifs can be defined as the unique patterns of interactions between 

proteins that appear significantly more often in the real network compared with 

randomized networks. These patterns are considered to be selected by evolution. 

Therefore, motif analysis introduces new insights on the types of network regulation. In the 

transcription networks, they were shown to have important information processing 

functions (Milo, Shen-Orr et al. 2002; Shen-Orr, Milo et al. 2002; Alon 2003; Mangan and Alon 

2003). This implies that the found motifs might be of importance for the regulation of the 

observed system. Here, the integrated platelet network consisting of protein-protein 

interactions (undirected edges) and kinase-substrate interactions (directed edges; arrows 

from the kinase to the substrate) focusing on a set of 14 motifs were analyzed, which are 

previously been described to have an impact on information processing in transcriptional 

networks (Milo, Shen-Orr et al. 2002) as well as in signal transduction networks (Zaidel-Bar, 

Itzkovitz et al. 2007). 

There are multiple tools available to detect the network motifs – Pajek (Batagelj and Mrvar 

1998; Batagelj and Mrvar 2003; De Nooy, Mrvar et al. 2005) MAVisto (Schreiber and 

Schwobbermeyer 2005; Schwobbermeyer and Wunschiers 2012), FANMOD (Wernicke and 

Rasche 2006), MFinder software (Kashtan, Itzkovitz et al. 2004) to name a few. Alongside, 

there are multiple plugins available for Cytoscape – Netmatch (Ferro, Giugno et al. 2007), 

CyClus3D (Audenaert, Van Parys et al. 2011) are frequently used. 

Here, the MFinder software (Kashtan, Itzkovitz et al. 2004) was used in order to detect 

network motifs in the platelet proteome. The software enumerates all n-node patters and 
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classifies them into one of several topologically distinct sub-graphs. The original network is 

randomized 1000 times keeping the incoming and outgoing edges at each node the same for 

all the randomized networks. This rewiring of the edges would create complete random 

networks with random connections for all the 100 randomized networks. Subgraphs that 

are observed significantly more frequently in the real network than in randomized 

networks are regarded as network motifs. In the table below, the higher the z-score, the 

higher the significance of the particular motif in the real network. Scores are shown for all 

14 motifs from Zaidel-Bar et al (Zaidel-Bar, Itzkovitz et al. 2007). The motif ID indicates the 

corresponding number of the same motif defined Milo et al (Milo, Shen-Orr et al. 2002).   

 

Table 14 – Motif analysis – the significant motifs and their Z-scores 

Motif number Motif ID N-Real N-Rand stats N-Real Z-Score 

1 110 831 261.9+-18.3 31.16 

2 108 128 86.6+-10.9 3.79 

3 102 46 15.3+-4.2 7.31 

4 238 3432 806.9+-35.6 73.72 

5 350 1699 406.9+-130.9 9.87 

6 5086 2611 352.0+-60.5 37.32 

7 478 128 30.7+-17.5 5.57 

8 6558 106 12.9+-4.2 21.95 

9 908 50 26.3+-8.5 2.77 

10 6604 56 28.6+-10.3 2.65 
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Motif number Motif ID N-Real N-Rand stats N-Real Z-Score 

11 5022 116 17.5+-6.7 14.68 

12 5084 829 165.8+-31.4 21.12 

13 4574 420 97.3+-22.8 14.13 

14 13262 2038 155.0+-34.1 55.16 

 

 

Figure 15 – Motif analysis  

The 8 key motifs showcased in a simple module of network  
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The 8 key motifs with high biological importance and highest z-values are shown in the 

figure. There are altogether 686 platelet proteins, which build up these motifs. All kinases 

and proteins shown on figure 2 participate in the most significant eight motifs. The two 

motifs which occur most often in the platelet network are motif 110 and motif 238, which 

contains only interactions. The eight motifs allow various kinases to be partners of different 

logical circuits and allow each kinase to play different roles in different regulation types. 

Interestingly, results included two top motifs critical for rapid information processing: One 

is a scaffold motif which captures one enzyme or kinase by a scaffold protein which then 

furthermore allows the kinase to choose between two substrates. In Motif 13(4574 in the 

above depiction) for example one protein (the protein YWHAG from the 14-3-3 family) 

scaffolds an enzyme and two alternative substrates, in this particular case the kinase are 

PKC, which alternatively phosphorylates SRC or GSK3A. The main protein could serve as an 

adaptor molecule for the phosphorylation event, thereby facilitating the kinase activity in 

the one or other direction. A systematic examination was conducted to see how often a 

certain protein in the motif appears among all found motifs of this type, and came to a 

conclusion that in the position of the scaffold protein mainly kinases and actual scaffold 

proteins were most frequently appearing.  

For motif 13(4574 motif) not only the kinases such as FYN and SRC were found but also the 

adaptor proteins such as GRB2, YWHAG and phosphatases (PTPN11, PTPN1) in the first 

position in the motif, which plays the role of a scaffold for the enzyme and its substrates. 

The second position was exclusively taken by kinases, among which SRC, AKT1, INSR and 

PKC were overrepresented. The third and fourth position was predominantly occupied by 

the following proteins: CTNNB1 (Catenin), GRB2, CAV1, STAT3. These are the most frequent 

substrates of kinases from this particular regulatory motif. The same motif, consisting of 

these as well as other proteins, is found 19 times in the integrin signaling pathway, which 

indicates the high importance of such a pattern in the interactome. 

Motif 110 assembles signaling complexes. For instance, the analysis on ILK PINCH pathway, 

crucial for integrin signaling(Lange, Wickström et al. 2009) (Supplementary Information, 

fig.S4): the ILK kinase, which phosphorylates GSK3also known as GSK3) is found 
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together with Paxillin – an adaptor protein needed for ILK localization to focal adhesions 

and downstream integrin signaling(Nikolopoulos and Turner 2001). 

 

Figure 16 - Motif analysis on the ILK network: 

In the above figure (A), all the proteins interacting with ILK (Integrin-linked Kinase), were 

extracted and visualized according to their interactions and phosphorylation state (red line, 

phosphorylation; grey line, interaction; blue line, kinase-substrate prediction). The proteins 

were colored as follows – red, protein phosphorylated in human cells; blue, protein 

phosphorylated in platelets; yellow, a platelet protein. The kinases are represented by 

triangles. The motif 110 was found once in the above network (B), containing the integrin-

linked kinase (ILK), its substrate GSK3B and the adaptor molecule Paxillin (PXN), which 

regulates ILK localization to focal adhesions. 

Another biologically motif of high relevance is the motif 8 (6558), where an adaptor protein 

acts as a scaffold for two kinases and their common substrate. Systematical analysis of the 

proteins contained in the motif, showed that on position 1 there was an actual adaptor 

protein in most cases and positions 2 and 3 were taken by kinases. A relevant biological 
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example is the binding of DOK2 to HCK and SRC kinases, which both phosphorylate RASA1. 

Thus, it can be concluded that this motif might be important in regulating platelet cellular 

processes. 

The proteins that were found in most motif structures were taken into consideration and 

then constructed an interaction and phosphorylation network using these proteins. They 

build a dense interaction network, and some of the most prominent platelet kinases can be 

found, such as PKC and LYN. 

Motif analysis has further increased our knowledge of what possible mechanisms might be 

involved in the platelet phosphoproteome and interactome network, pinpointing motif 110 

as the pattern with highest significance. Therefore, it can be suggested that motif 110 plays 

a leading role in cellular signaling of the anucleate platelet. The bingo analysis was 

performed on all the motifs and the network motif results for 110, 4574 and 6558 are 

shown in the supplementary material. 

To perform the motif analysis a complete interactome network has to be created. This 

means that if the network is changed by adding or removing the amount of information in 

it, there is a possibility of the network information to be changed. However, this does not 

mean the information the motif analysis is providing is falsified. It can be understood as, 

with the amount of information content we have at hand, the results offer the first hand 

insight of the network patterns. When further information content is added or deleted with 

respect to the interactome network, it is then possible to make a comparative analysis and 

focus on what patterns have actually changed and the implication of the information. Also 

the comparison analysis on the other species networks on the similar proteins would also 

yield yet more useful information which might not be easily understood. Additionally, the 

statistical analysis that is performed decreases any false positives that might be already 

creeping in to the network. The motif analysis can be thus considered a highly reliable way 

to identify the network patterns that might be existing in the interactome networks. 
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3.3 Identifying functional modules using semantic similarity and Heinz 

(Qualitative analysis) 

 Qualitative analysis 3.3.1

The extraction of functional modules is a key in understanding the proteins in the context of 

their interactions. Lots of research was conducted on this fact, however each of the methods 

that were described have both their advantages and disadvantages. The key for this 

research is to minimize the disadvantages and bring out the functional modules which 

provide with most concrete information.  

The main problem is that the large proteomic datasets (with over 100 proteins) yield huge 

networks, which are difficult to interpret and must be considered to further divide them 

into smaller networks for understanding it. However, in many cases, this results in losing of 

the important information. Additionally, the proteins are rarely grouped according to their 

functional relevance. In most of the cases, the proteins bearing similar functionality tend to 

interact together more tightly rather than the other way round. When the subnetwork is 

built, the proteins with higher functional relevance are expected to come together and 

provide the functional module with higher information content in it.  

Additional to this, in the proteomic analysis, it’s not always necessary to get the differential 

expression numbers. In other words, a number defining the proteins role in the network is 

missed. So, all the proteins should be equally rated to get the interacting network out of all 

the proteins. However, this does not satisfy the needs of the end users. The difficulty in 

quantifying the proteins which are identified in the proteomic analysis and extracting the 

most biologically informative subnetwork prompted to further investigate and improvise 

the concept of extracting the subnetworks from the proteomic analysis. 

The main objective of the qualitative analyses is to derive the biologically interesting 

subnetworks of interpretable size or of fixed size from large scale protein protein 

interaction data by logically quantifying the proteins and their interactions. This problem 

was previously addressed in multiple ways (Ideker, Thorsson et al. 2001; Dittrich, Klau et al. 

2008). For the first time, Idekar et al has analyzed and expressed this as the problem of 
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finding optimal-scoring subgraph. This problem was then transformed by dittrich et. al, to 

the well-known PCST problem from Operations Research. With this an alternative NP-

completeness proof they could solve large instances of this problem in reasonable 

computation time. This solution which is retrieved can be considered as the optimal 

solutions. The algorithm takes another step, and it calculates the suboptimal solutions with 

given Hamming distances to previously found solution. However this algorithm is given on 

the basis of the proteins which have the differential expression data associated with it. In 

our scenario, we do not have the required differential expression data, but just the proteins 

which are identified in the sample proteins.   

In order to address this issue of handing of the proteins, a scoring on the interactions 

(edges) was made. An edge score can then be used to focus on the most relevant module. 

The edge score, in this case, should reflect some kind of functional relevance with in the 

protein-protein interactions (PPI). GO similarity has been developed as measurement of 

similarity of two proteins in terms of their functional annotation. The main reason behind 

using the semantic similarity is due to the fact that the proteins with a high functional 

similarity will be involved in similar cellular processes, thus the interaction between then 

can be assumed to be more relevant. 

Here the Gene Ontology semantic similarity was used as a basis for functional scoring of the 

PPI. Various measurements of GO similarity have been described in literature, here a score 

based on the similarity measure proposed by Schlicker was developed.  

 

 The Beta Uniform Mixture Model 3.3.2

The Beta Uniform Mixture model (BUM) was introduced by Pounds and Morris et al 

(Pounds and Morris 2003) in 2003.  

This approach can be used in microarray or proteomics data where a statistical test is 

calculated for each gene/protein in the dataset resulting in a single p-value. This p-value is 

interpretable when using only one statistical test, but in the case of multiple testing the p-

values lose their meaning as Type I error rates.  
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The principle of the BUM is that under a null hypothesis where none of the genes/proteins 

is of any importance, the p-values will be uniformly distributed. In the case where there are 

genes with a specific importance to the experiment (holding a signal), there would be an 

overrepresentation of small p-values and the histogram will represent a peak near the zero. 

This alternative hypothesis can be modeled by a beta distribution where the p-values are 

visualized as a mixture distribution of signal and noise component. 

 

 Example: why edge scores 3.3.3

A small example here illustrates the importance of using the semantic similarity of the 

genes and scoring it onto the edges. In this example, let A and B are two proteins which are 

of interest and are identified in the sample proteins. Both A and B are connected over three 

different proteins, C, D and E. Considering the edges has no scores on them, the solutions 

are either ACB, ADB or AEB. However, when adding the biological insights into this small 

network by using the semantic similarity between the proteins and giving the edges a score 

depending upon the calculated similarity, the maximum scoring graph will always be the 

one with the higher connectivity. In our example, the solution would be only ACB as protein 

C being semantically similar with both proteins A and B.  

 

Figure 17 – The schematic showing the difference in the network when the edge scores are 
included 
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 Calculation of Edge scores 3.3.4

The edge scores of the network are calculated in multiple steps. The complete scenario is 

presented below in the form of steps, for easier readability.  

Step 1: The interactome (original) is randomized twice (random1 and random2) as the key 

idea is to consider the probability of the observed score showing up in the randomized 

distribution 

Step 2: The semantic similarity is calculated using GOSim on all three interactomes 

(original, random1 and random2) by setting the ontology to biological process 

Step 3: The empirical cumulative distribution function (ecdf) is computed, which when used 

as function with an object, returns the percentiles. Here, the object is the Semantic 

similarity scores calculated for the interactome.  

Using the statistical software R, the p-values can be achieved by the following: 

BiologicalProcessFunctionRandom1 <- ecdf(BiologicalProcessRandom1GOScore) 

BiologicalProcessFunctionRandom2 <- ecdf(BiologicalProcessRandom2GOScore) 

where “BiologicalProcessFunctionRandom1” and “BiologicalProcessFunctionRandom2” are 

the functions that are created for the randomized interactomes which contains the GOSim 

scores of the Randomized networks.   

These functions can now provide the percentiles:  

bp_r1percentiles <- BiologicalProcessFunctionRandom1(BiologicalProcessOriginalGOScore) 

bp_r2percentiles <- BiologicalProcessFunctionRandom2(BiologicalProcessOriginalGOScore) 

bp_r1s1 <- BiologicalProcessFunctionRandom1(BiologicalProcessRandom2GOScore) 

bp_r2s2 <- BiologicalProcessFunctionRandom2(BiologicalProcessRandom2GOScore) 

The first two percentiles, “bp_r1percentiles” and “bp_r2percentiles” are calculated for 

attaining the edge scores. The next two, “bp_r1s1” and “bp_r2s2” are calculated in order to 
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test if the randomized interactome GOSim scores are bringing any additional effect to the 

original network. These percentiles are transformed into p-values. 

bp_pvals_r1p <- 1- bp_r1percentiles 

bp_pvals_r2p <- 1- bp_r2percentiles 

bp_pvals_r1s1 <- 1-bp_r1s1 

bp_pvals_r2s2 <- 1-bp_r2s2 

Step 4: These calculated p-values can be fit to the Beta Uniform Distribution (BUM) model 

 

Figure 18 – Beta uniform mixture models and the pi-upper values between the randomized 
and original networks 

 

The left most figure gives a pi-upper of 0.7 is the model for bp_pvals_r1p, the middle one for 

bp_pvals_r2p and the extreme right is for bp_pvals_r1s1. The p-values on the extreme right 

only show the noise and no signal component and the pi-upper is 1. 
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Step 5: Repeat the steps 2, 3 and 4 by setting the ontologies to Molecular Function and 

Cellular Component.  

Step 6: Aggregate the p-values using first order statistic 

Step 7: Fit BUM model to the aggregated p-values to decompose the signal from the noise.  

Step 8: Convert the p-values to heinz scores by setting the FDR using the BioNet package.   

 

 Example: Conversion of percentiles into p-values 3.3.5

The conversion of percentiles into the p-values requires a little more insight, and this can be 

explained with a small example.  

Initially, using the ecdf function, a cumulative distribution function is computed. In order to 

calculate the probability of Original interaction GOSim score greater than, say 2.7, it can be 

mapped onto the curve. Using this value of GOSim as the function parameter, the percentile 

is calculated.  The idea is to see the probability of our observed score of 2.7 showing up on 

the randomized distribution “P[GOSimscore > 2.7]”. It is important to know that the total 

value of cumulative distribution is always 1. Thus the probability is easily attained by 

removing the percentile of data from the distribution.  

 

 

0.5 1.0 1.5 2.0 2.5 3.0 GOScores 
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Figure 19 – Figure depicting the way the percentiles are converted into the p-values 

 

 Node scores  3.3.6

The algorithm requires the node scores to calculate the maximum scoring subnetwork. The 

algorithm was previously considered for the data from the microarray experiment or the 

survival data (Dittrich, Klau et al. 2008). In this module,  the algorithm is extended in order 

to identify the functional modules without any known information except the proteins list 

identified in the proteomic analysis. This implicates a non-availability of the values to 

consider on the node scores. In order to overcome this issue, a node score algorithm is 

constructed. The following figure depicts how the node scores are calculated using the 

already known edge scores which is calculated using the semantic similarity.  

 

Figure 20 – Calculation of Maximum scoring subnetwork 

The proteins identified in the sample are given an adjusted value based on the edge score  

 Nodescore = -avg(connected edge scores) 
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This node scores would help to quantify and provide the most optimal values to the 

proteins identified in the sample. The rest of the nodes in the interactome are given the 

average of all the edge scores to maintain the background distribution of the network. This 

would ensure a constant values of edge scores for all the edges and change in the node 

scores for different samples of data.  

 

 Extracting sub networks 3.3.7

The large-scale proteomic datasets generated in recent years have posed a big challenge for 

developing new strategies to analyze the data in a biologically meaningful way. The large 

number of proteins identified in samples (>100 proteins identified) make it impossible to 

isolate functional modules of sizes suitable for analysis. Just by mapping the proteins onto a 

predefined PPI network is not enough to focus onto the relevantly changed modules 

contained in the sample. Additional functional information on the interacting proteins is 

therefore needed. GO similarity has been developed as a measurement of similarity of two 

proteins in terms of their functional annotation (Guzzi, Mina et al. 2011). The rationale 

behind this scoring system is that proteins with a high functional similarity will be involved 

in similar cellular processes, thus the interaction between them can be assumed as more 

biologically relevant. Therefore, one possible solution to this problem is the addition of 

functional association information onto the edges in the human interactome thereby 

assigning interaction values according to the functional similarity of the gene ontology 

associations of the interacting proteins. Thus, the edge score would reflect functional 

relevance of the particular edge in the PPI.  

A score based on the similarity measure proposed by Schlicker (Schlicker, Domingues et al. 

2006) was developed as detailed in the Experimental Procedures. A functional interaction 

score was developed based on GO semantic similarity values for all three ontologies (BP, 

MF and CC). Proteins from a biological sample were assigned values derived from the 

functional interaction scores, whereas linking proteins from the interactome were given the 

average of all interaction scores. Both protein and interaction scores were added to the 

human PPI network, which contains 55,196 edges and 10,688 nodes. An algorithm for 
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detection of functional modules was used for extraction of functionally connected 

subnetworks, containing the proteins in the sample. The algorithm searches for maximum-

scoring subnetworks based on the pre-given edge and node scores. Linking proteins from 

the human interactome are included in the solution if this increases the maximum score of 

the extracted subnetwork. These linking proteins might be important players in the overall 

signaling changes of the analyzed protein sample. Using GO semantic similarity for the 

functional interaction scores of interacting protein pairs ensures that the algorithm 

includes paths having high similarity over those having low similarity. Therefore, 

functionally related clusters of proteins are extracted in the final solution along with linking 

proteins with a similar function. As proteomic analyses are often fractionated and detection 

of some proteins proves to be extremely difficult, this approach is useful for unraveling the 

network context of identified proteins along with proteins missing in the original sample 

due to technical difficulties. Scores can be adjusted to a threshold, so that more proteins 

from the original sample are included. Thus, the solution can become more or less stringent, 

including a higher or a lower number of proteins. 
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Figure 21 – A schematic of the idea for identifying functional modules using edge and node 
scores  

 Beta-mixture model (BUM) of Biological Process transformed scores 3.3.8

To combine GO semantic similarity of edges with the topology of the human interactome 

network a new score monotonously dependent on the original Schlicker scores was 

introduced. This score allows a natural way of integrating multiple sources of information 

and is therefore very flexible. A combination of p-values representing different data can be 

smoothly integrated into the framework. The scores are also adjusted to the functionality of 

the human interactome. For the calculation, Schlicker BP score was calculated for the 

human interactome edges and a randomized network of the same size but a different 

topology (same number of nodes and edges, but rewired). The original network scores and 

the scores from the randomized one were used for obtaining empirical p-values. A beta 



86 | P a g e  
 

mixture model (BUM) was then applied to determine the information content and the 

signal/noise ratio. The distribution of p-values in this model consists of noise (a uniform 

distribution (under the blue threshold =Pi-upper)) and signal (beta distribution).  

The obtained p-values could be fitted to a beta uniform mixture model (BUM) (Figure 2A) 

indicating that the human interactome contains interacting proteins with high functional 

similarity significantly more often than the randomized network model. The Pi-upper value 

(the threshold separating signal from noise) was 0.46710439372661.  

In the case of the randomized network, the obtained p-values were uniformly distributed 

(Figure 2B), which indicates the lack of any relevant functional dependency for nodes from 

this network. The Pi-upper value in this case was 1. The quality of model fit in both cases 

was assessed by QQ Plots (Supplementary Figure S3).  

Scores were further obtained from GO semantic similarity values of MF and CC based on the 

Schlicker algorithm. Then, a new score was proposed, which smoothly integrates all derived 

p-values from the three ontologies into a single combined score, further used in all our 

analyses (see “Experimental Procedures, Calculation of Functional Interaction Scores”). 

When comparing the information content of each individual score, presented as the 1 - Pi-

upper value of each BUM model, BP showed the highest signal content, followed closely by 

the combined functional interaction score based on all three ontology scores 

(Supplementary Figure S4). 

Differences between the three separate ontologies could be analyzed after running the 

heinz algorithm based on the edge scores only without the node scores and limiting the 

resulting network to a size of 200 in each case to ensure a reasonable comparison. Thus, 

there was no need for changing the False Discovery Rate (FDR) parameter as the algorithm 

searches for the maximum scoring subnetwork limited to 200 nodes.  Results indicated a 

very low overlap between the three ontologies. While BP and CC had 63 proteins in 

common (%), MF was very distinct from both with only 10 and 13 proteins overlap. This 

might be due to the nature of the terms in Molecular Function, which focus more on the 

chemical properties of proteins and isn’t necessarily associated with the same biological 
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process or compartment in the cell. Thus, MF represents a different aspect and contains 

other information not necessarily covered by BP and CC. The distinct nature of all three 

ontologies made it reasonable to combine them in a more suitable score, which would 

contain information from all three ontologies. Therefore, aggregating the pvalues, a score 

which could be used as a combined ready score for the network was obtained. Results show 

that this score is mainly based on BP as the functions of the two resulting networks are very 

similar. This might be because BP has the highest information content and therefore 

influences the final score to a large extent. 

Multiple analyses were performed taking different cases into consideration. The heinz 

algorithm was run considering the size parameter of 200 and giving the nodes a score of 0. 

The edge scores are given the originally derived scores for each of the ontologies without 

the change in the FDR. This revealed that the overlap between the modules derived 

between BP, MF and CC were very low in the edge heinz. There were only 4 proteins which 

were common to all the three ontology runs, which when checked were belonging to the 

proteasome complex. When checked individually between the ontologies, a higher overlap 

was found between BP and CC (63 proteins). Also, MF represents a different aspect and 

contains further more information which need not have to be necessarily covered in the 

other two ontologies. When the aggregated p-value of order 1 was taken, it was close to the 

BP, which can be interpreted as the algorithm is considering the most information from BP 

and combining it with the CC and MF, as BP is with a very high information content.   

In order to validate the algorithm when induced with semantic similarity, vigorous testing 

and analysis was performed. This also proved the point that this algorithm can be used in 

the network of any size. The following case studies provide the results when the algorithm 

is used with different sizes of the network. 

  

 Case study 1: Embryonic stem cells for different ontologies 3.3.9

In order to understand how the algorithm reacts when showcased with the same network 

on three different similarities (BP, MF, CC), the analysis on the study from Brill et al (Brill, 
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Xiong et al. 2009) on embryonic stem cells and their phosphorylations was conducted.  

Using the identified proteins as the nodes of interest, the node scores derived from the pre-

calculated edge scores were included. The size of the resulting network was once again 

restricted to 200 nodes. The aim was to see how well the go similarity scores concentrate 

the network onto biologically relevant information. There was only a very small overlap 

between results with biological data (ESC data, Figure 22) and results with no biological 

information (only edge scores, Figure 23) indicating that there is no bias of the edge scores 

to the network. Furthermore, using the sample proteins gives more specific information 

than taking only edge scores, as it is focusing the network onto a set of nodes which are of 

particular interest and their function. The overlap between the separate ontologies was a 

lot higher in each of the cases pinpointing that node information combined with edge data 

gives a more detailed and consistent biological results than using only the go similarity 

scores. The ESC resulting module shows functional clusters, characteristic for embryonic 

stem cells, such as translation initiation factors, nuclear transport, cell cycle/division and 

MAP-kinase-kinase-kinases (MAPKKK). These clusters are clearly different from the 

clusters obtained by using only edge scores without any node information (Figure 23). In 

this solution there are only complexes with a very high functional similarity. 

 

A set of 200 proteins were taken and the algorithm was implemented with multiple criteria. 

The following table shows a matrix of different criteria and the overlap of the proteins in 

each of the cases. Only the edge information of the proteins was taken and the algorithm 

produced the networks with the following count of proteins in the resulting network. 

 

Edges Only 

Aggregate 

Original 

interactome 1 

Aggregate 

Original 

interactome 3 

Biological 

Process 

Molecular 

Function 

Cellular 

Component 

Aggregate 200 100 148 25 78 
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Edges Only 

Aggregate 

Original 

interactome 1 

Aggregate 

Original 

interactome 3 

Biological 

Process 

Molecular 

Function 

Cellular 

Component 

Original 

interactome 1 

Aggregate 

Original 

interactome 3 

100 200 114 16 70 

Biological 

Process 
148 114 200 10 63 

Molecular 

Function 
25 16 10 200 13 

Cellular 

Component 
78 70 63 13 200 

 

The table showcases that the aggregated order 1 is similar to Biological process than the 

other two (molecular function and cellular component). Also, the molecular function 

contains the most distinct information with very low overlap among all the three 

ontologies. The solutions for each of the ontologies are also very different reflecting the 

variability between information coming from the three ontologies.  

 

The similar analysis was performed with same edge scores, however this time with the 

nodes in the back ground.  The algorithm was made run on multiple criteria again, and this 

time the results conclude in a different way.  
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Edges with 

nodes 

background 

Aggregate 

Original 

interactome 1 

Aggregate 

Original 

interactome 3 

Biological 

Process 

Molecular 

Function 

Cellular 

Component 

Aggregate 

Original 

interactome 1 

200 26 88 - 30 

Aggregate 

Original 

interactome 3 

26 200 51 - 52 

Biological 

Process 
88 51 200 - - 

Molecular 

Function 
- - - - - 

Cellular 

Component 
30 52 - - 200 

 

The number of proteins was once again, 200 and this was once again compared in the 

matrix format. In this scenario, the number of proteins in the solution modules was too 

little in most of the cases. Also in the cases like molecular function, the algorithm could not 

give any module out and the algorithm continues to run to find out the functional modules. 

The algorithm was made stopped in the middle for the molecular function as it is clear that 

there are no or none of the functional modules existing within the set of proteins on the 

molecular functional level. Additionally, the relation between Aggregate interactome 1 and 

3 provides a drastic change.  The following figures show the gained results from the 

algorithm runs.  
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Figure 22 - A network solution of ESC proteins with edge scores  

This network depicts the solution achieved from the ESC proteins with the edge scores. The 

functional interaction scores are equal to the aggregated p-values. The size of proteins is 

200 and the subnet edge score was -192.542332563.  

The red shades represent low to high scores from light red to dark red. Edge scores are also 

used. Linking proteins from the human interactome are shown in blue. 
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Figure 23 - A network solution using only edge scores  

The figure shows the network solution only using the edge scores. Again, the functional 

interaction scores are equal to the aggregate p-values. In this scenario only the edge scores 

are used without the node scores. The subnet edge score total was -21.2314232112.  
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 Case study 2: Extraction of network modules using qualitative proteome data 3.3.10

The main advantage of heinz algorithm is that it can be easily possible to visualize the 

proteins identified in the proteomic analysis even though they are not directly interacting 

(connected) with each other. The heinz algorithm together with the functional similarity 

between the proteins helps to connect these proteins in more optimal way, keeping the 

functional integrity of the analysis intact. In order to validate this, the function was applied 

on two smaller networks (Yang, Xiao et al. 2006), (Liu, Song et al. 2008).  

In the first case, a human gastric epithelial cell line (AGC) was analyzed after infection with 

avian influenza virus (H9N2) using mass spectrometry identifying 22 proteins. These 

proteins were used as the set of interest and analyzed with and without edge scores. In the 

case without edge scores, there was no score applied to the edges and the nodes that are 

identified in the analysis were given a constant value of +5 to assure that they all appear in 

the final network solution. The remaining nodes in the interactome were given a value of -1 

(a negative value, indicating that the proteins might or might not be actively participating in 

the network). The resulting network contains more basic information driven only by the 

nodes from the sample and not integrating any additional biological data. In the alternative 

case, the aggregated pvalues were used to combine the three ontologies and used as the 

edge scores, and the nodes of interest are then derived from the edge scores. Additionally, a 

constant of 10 was added to these node scores to ensure that all proteins are in the 

resulting network. The result with edge scores provided more defined pathway connecting 

keratins to the rest of the proteins (over RAF1). 

Proteins obtained with proteomics analysis can be visualized in a network context, even 

though they are not directly connected with each other. Introducing functional interaction 

scores to the module detection algorithm helps to connect these proteins in an optimal way 

based on the functional context of the protein modules and the scores of the interactions 

connecting them.  

In order to test this, we applied the algorithm on a small biological sample from a human 

gastric cell line (AGC, originating from a gastric epithelial cell line) analyzed after infection 

with avian influenza virus (H9N2) using mass spectrometry. The study identified 22 
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proteins (Wu, Noh et al. 1996). Two separate analyses of this protein sample were 

performed to investigate the advantages of functional interactions scores: including and not 

including interaction scores in the module extracting algorithm (see “Experimental 

Procedures”). When adding functional interaction scores, we used the previously described 

method for combining the three GO similarity scores and proteins from the sample assigned 

a node score derived from the edge score (Figure1B). High constraints for the node scores 

were used to ensure that all identified proteins are found in the resulting network (see 

“Experimental Procedures, Constraints of the algorithm solution”).  

The method with functional interaction scores (Figure 3B) yielded 39 proteins, whereas the 

method without interaction scores extracted 37 proteins (Figure 3A). Both networks 

contain linking proteins and paths, which partially overlap (14 paths and 5 linking proteins 

are same). There are 28 proteins in common for the two solutions but there are also unique 

proteins, which appear only when functional scores are introduced to the edges (AKT1, 

EPB41, GNG4, HRAS, HSPA4, JAK2, KRT5, PDK1, RAF1, YWHAB). The number of literature 

citations for each interaction is very low in the network without functional scores. In the 

network with scores there are five interactions with more than one citation, indicating the 

algorithm chooses well-annotated interactions. 

 

 Case Study 3: Human Blood cell constituents 3.3.11

To test whether our method is applicable for differentiation of various cell types in terms of 

functional modules, we used a proteomics study by Haudek et al (Haudek, Slany et al. 2009), 

where mass spectrometry of human blood cell constituents was performed.   

The module detection algorithm was performed on the protein samples of all 7 cell 

constituents separately: plasma, T-cells, neutrophils, monocytes, platelets, erythrocytes and 

PBMC (peripheral blood mononuclear cell). In the next step, the resulting networks from all 

blood cell types were analyzed for enrichment of biological processes. GO terms containing 

less than 3 or more than 600 proteins were excluded from the analysis. The significance 

threshold of terms in this case was set to a corrected p-value of least 1 × 10-5 in at least one 
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of the cell constituents. Clustering of GO terms was performed with hierarchical clustering 

based on Euclidean distance calculation.  

Blood constituents clustered in a way consistent with their developmental stages. As 

expected, plasma proteins build an out-group, distant from all other blood constituents as 

they are not a cell type. Two big groups are formed (platelets, neutrophils and erythrocytes 

vs. monocytes, tcells and PBMC), which are consistent with hematopoiesis stages. 

There are terms specific to platelets like the term “platelet activation” and hemostatic 

processes, while other terms such as “cell killing” and “leukocyte-mediated cytotoxicity” are 

enriched in monocytes, which biologically differentiate these from other blood cell types. 

Ubiquitin and proteasome processes are highly enriched in three cell types: T-cells, 

monocytes and PBMC (which are a mixture of cells with a round nucleus, including T-cells 

and monocytes). The term “translation” is overrepresented in T-cells and PBMC when 

compared to all other constituents. The biological process “generation of precursor 

metabolites and energy” is overrepresented in monocytes.  

In a second analysis we included significantly enriched terms in exclusively one cell type 

with a p-value of at least 0.05. Specific functions for each cell type could be extracted, 

indicating the resulting modules are cell-type specific and focus on the characteristic 

functional modules of the given cell type (Supplementary Table S1). 
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Figure 24 – Human blood cells constitutents; the protein network identified using the sample 
of proteins  
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Figure 25 – Heat map of the human blood cell constituents; Testing of the module detection 
method for various cell types  
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 Analysis on the concept of functional modules 3.3.12

The concept of extraction of the proteins of interest, and trying to get to see the 

functionality they possess is a vast study and loads of new ideas break open to investigate 

this issue. The interconnected proteins may or may not follow a pattern which makes the 

analysis difficult to interpret in first place. It’s highly impossible to formulate and interpret 

the extraction and visualization of the proteins as the needs of the end users differs at 

different points of the experimental analysis. However, this limitation does not stop from 

investigating new ideas on extracting the functional modules using statistical and 

mathematical functions, which might be repeatedly used for any scenario. 

An extreme research is being done in trying to extract the functional modules however 

every method that come across has both the advantages and disadvantages in using it. In 

this research the proteins were scored as a function of the interaction score. The main 

power of having this formulation is that it provides the ease of using this on any protein 

sample as it is pre calculated. Additionally, the nodes with high scoring interactions are 

downgraded so that they are not dominating the overall possible solution. As an example, 

the proteins with higher number of interactions might come up more often than expected in 

any protein sample taken. This might bias the results of the functional module. 

Downgrading these hubs according to the network structure can provide the actual result 

which might be on higher biological relevance. 

After analyzing the performance of the method on small networks, our next step included 

large-scale proteomic studies of blood constituents. The overexpression of the term 

“translation” in T-cells might be explained with the fact, that there is a high protein 

turnover and proliferative events in these cells causing an increased protein production. 

Another interesting aspect was the enrichment of proteasome and ubiquitin processes in 

particularly three cell types: T-cells, monocytes and PBMC. The existence and role of the 

proteasome in immune as well as non- immune cells has been extensively reviewed by 

Ebstein et al (Ebstein, Kloetzel et al. 2012). Interestingly, these three cell types constitutively 

express three proteasome subunits (PSMB8, PSM10 and PSMB9), which are normally not 

included in the proteasome but induced after stimulation. Thus, they build the so called 

immunoprotesome, which plays an important role in antigen presentation by MHC class I 
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molecules, cell proliferation, cell signaling and cytokine production (Ebstein, Kloetzel et al. 

2012). This type of proteasome has been identified mainly in dendritic cells and antigen 

presenting B-cells. As monocytes replenish the pool of macrophages and dendritic cells in 

the body, the immunoproteasome is found in these cells as well. T-cells show a constitutive 

expression of all three molecules and the immunoproteasome facilitates protein 

homeostasis and cell proliferation in these cells (Zaiss, de Graaf et al. 2008). PBMCs are a 

mixture of macrophages, monocytes and lymphocytes therefore it is logical that they would 

also have this function. All three proteins are present only in the described three cell types, 

and are lacking or not fully expressed in the other blood cells. This might explain why there 

is an overrepresentation of proteasome processes when compared to the profile of other 

blood constituents.  
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3.4 Phosphoproteomics (Quantitative analysis) 

 Workflow 3.4.1

The understanding of the proteins and their functional involvement in the network requires 

in depth research and thus provokes to invent new methods. Additionally, the kinase 

substrate relationships in the network context provide with a vast knowledge on the 

signaling networks in the context of the phosphoproteomics and its analysis. The heinz 

algorithm discussed in the previous chapters would help in determining the underlying 

network signaling, however, this does not necessarily provide the biologically significant 

information. The quantitative analysis performed in mass spectrometry provides the new 

information about the proteins and the differentially expressed quantified value.  

This quantitative information gained from the analysis can be used as the node scores for 

the heinz algorithm. Additionally, site specific information is induced and added into the 

node scores provide with highly significant information as the resulting modules. In order 

to test this concept and idea, a network which has all the phosphorylation sites from the 

dataset that are associated with kinases were taken into consideration(Rigbolt, Prokhorova 

et al. 2011). Additionally, the kinase information is added from the PlateletWeb database in 

order to provide the real kinase substrate relationships and see the real signal flow. This 

would then become the additional information provided to the data set, which is not either 

detected or specified in the proteomic analysis performed on the proteins.  

The methodology of quantitative analysis of the dataset using heinz consists of various 

steps, which are detailed in the steps below. 

The analysis was performed on the research resource (Rigbolt, Prokhorova et al. 2011), and 

the genes were then mapped to the PlateletWeb dataset. This was important because the 

dataset contained the mappings of the IPI, however, the PlateletWeb was using the Gene 

identifiers in order to identify the gene uniquely. The dataset defines profiling of the 

proteins in two different conditions (treatments), NCM and PMA. For this analysis, the NCM 

was used as it contains the information and was well defined in the dataset. The dataset 
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provided with 4 different values at 4 different time points defined for NCM which was taken 

into consideration.  

Furthermore the dataset defines class1 sites, which were also used to filter the dataset as it 

provides with most concrete dataset for the analysis. This dataset once mapped with the 

gene identifiers can be ready for the step 2 of the analysis.  

All the mapped proteins which are under NCM time line and have the class1 sites can now 

be made ready to convert into heinz scores to get the functional modules out. For this an 

additional 1 is added to the complete dataset so that the logs and sumlog of the data can be 

calculated. This marks as an important step for this method as the sumlog of the differential 

dataset of 0 is not defined. In other words, if there is no change recorded in the dataset, the 

log value of this number tunes to undefined value, which is not an intended scenario. In 

overcome this fact, an additional value of 1 is added to the complete dataset, which would 

mark the same factor without a huge difference in the logarithmic values. Later, just to 

figure out the regulation, the absolute log value for all the 4 time lines are taken. This would 

mean that there are no negative values for the down regulation of the data. 

The site information has to be added to the proteins that are identified in the dataset. At 

first the discrimination between the sites having a mapped kinase from the interactome, 

and the sites not having a known kinase has to be made. The emphasis is given to the sites 

with associated kinases. This will help to have only the sites with the kinases in the network 

(this will be the edge file for heinz). Additionally, it’s important to note that there are not 

edge scores given, so the edge score is considered to be 0. The largest connected component 

of the network in Cytoscape which is containing the interactome kinases and the dataset 

kinases and proteins is used as the edge file for heinz.  

Each of the proteins might have multiple sites, and here only the maximum scoring sites 

was considered when more than 1 site is given for a protein. To achieve this, the sumlog is 

calculated for all the 4 values and the maximum sumlog between two sites was taken into 

consideration. This can be also termed as “Sumlog of the rows (4 timelines) and then the 

maximum of the sumlog columns (sites)”. 
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An FDR for each of the 4 absolute logs was provided individually so that when the 

subnetwork is extracted by the algorithm, the number of positive nodes is at least 50 in 

each case. This file can be termed as the input node file for the heinz algorithm. 

Finally, with both the node file and edge file (even though its 0 in this case) intact, the heinz 

algorithm can be executed in order to find the maximum connecting subnetwork on all the 

4 different time lines. With the resulting information, the scores for all the 4 different points 

are then extracted and combine the resulting protein networks into one single network. 

This can be visualized using the Cytoscape in all the 5 different time points.  

This methodology when performed resulted in the information content, which is described 

below.  

From the dataset, 67 phosphorylated proteins were resulted of which 14 are kinases and 

120 phosphorylation sites with kinase information was also obtained. Additionally from the 

human interactome (PlateletWeb), 33 kinases were added building up 159 phosphorylation 

events. This numbers might not be a huge exploration on the first sight, however, when all 

the 4 time lines are visualized; this revealed many patterns in the networks which can be 

further investigated.  

An output figure for the 24 hours timeline is shown below (Figure 23). The colors represent 

the absolute logarithmic values (log2) of the phosphorylation ratio between the 

measurements at 24h when compared to the control. The interval of values is depicted in a 

color scale from blue (low value) to red (high value). Nodes represent the maximally 

changing phosphorylation site. Kinases from the human phosphoproteome extracted from 

literature information (PlateletWeb knowledge base) are shown as yellow triangles. The 

network allows detailed investigation of the signal flow during embryonic stem cell 

differentiation with special focus on single phosphorylation sites and clusters of 

phosphorylation sites changing in a similar manner such as the phosphorylation targets of 

CDK2. Thus, integrated network analysis of the phosphoproteome helps to identify changes 

not only on a single protein level, but also indicators for network dynamics which could be 

shown in the example given in Figure 24.  



103 | P a g e  
 

 

 

Figure 26 – The module at 24 hours of time line  

 

To further analyze the results, we focused on a classical pathway playing a crucial role in 

growth and cell division of hESCs. The Raf/MEK/ERK (RAF1/MAP2K1/MAPK1) pathway is 

visualized with the changes of phosphorylation at each time point. This signaling module is 

only completed after adding the MAP-kinase-kinase (MAP2K1) and its phosphorylation by 

RAF1 (Wu, Noh et al. 1996), both derived from the human phosphoproteome. Moreover, 

regulatory switches are revealed by following changes in signaling of a specific module of 

CDK2 phosphorylating SNW1 at S224 (Wu, Noh et al. 1996) (max 1h) and ORC1 at S273 

(Mendez, Zou-Yang et al. 2002) (max 6h). SNW1 is a coactivator that enhances transcription 

from some Polymerase II promoters (Zhang, Dowd et al. 2003), while ORC1 initiates DNA 

replication (Hemerly, Prasanth et al. 2009). A recent study revealed that phosphorylation of 

ORC2 Protein Dissociates Origin Recognition Complex from Chromatin and Replication 

Origins (Lee, Bang et al. 2012). This phosphorylation was mainly on threonine sides, but 

they were regulated by the CDK2 kinase, thus, the phosphorylation here may also play a 

role in dissociating ORC1 from chromatin. 
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Figure 27 -  Four time points of quantitative phosphoproteomics analysis of the 
RAF/MEK/ERK pathway 

 

The methodology is first of its kind and takes understandably long time. This can, however 

be fine-tuned to the needs and can also be optimized with respect to the resulting data. 

Various added values can be achieved using this method. One of the most prominent usages 

would be to have a detailed analysis of regulation of phosphorylation sites which is 

understandably lacked in the original dataset. This dataset can be very well visualized in the 

context of protein-protein interactions. Apart from the site specific information between 

the proteins, the additional interactions and their associations can be easily identified in the 

context of the networks. Secondly, the temporal changes in particular sites (time point 

changes) can be easily identified and investigated further. Furthermore, the 
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phosphorylation events are added so that the regulation in the dataset can be analyzed; for 

example the kinases and the proteins are available but the link between this may be missing 

in the dataset. Another key factor which makes this an active methodology is because of the 

capability to visualize and track the signaling flow inside the pathway. This from a different 

perspective, the motif analysis is simplified. Additionally, it provides the power to identify 

individual modules, extract them and further analyze depending upon the context. Apart 

from all these important usages, it is also possible to identify the clusters of phosphosites 

which are up or down regulated in a similar pattern.  

With all the above discussed usages, the method can be termed as a value added service 

that can be brought along with the heinz algorithm and PlateletWeb dataset.  
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4 Discussion 

Systems biology focuses mainly on the complex interactions with in the biological systems, 

which is not possible without proper informatics associated with it. Informatics can be 

considered as a service, which can be easily induced into any science to help it carry on the 

research quicker and simpler. In general, the clinic directors hire the doctor students for the 

tasks associated with the biology. However, the systems biological tasks require an inner 

depth of knowledge on multiple informatics aspects which requires the informaticians to 

get in. A cleverly established database which can be easily expandable and scalable with the 

new information, easily accessible with it providing the right information, proper curation 

from multiple sources, high modulation, assembling the data together with no 

redundancies, proper management, data validation, sophisticated data analysis, its 

integration and finally the visualization if requires etc. would all be possible with a proper 

background in the informatics along with the knowledge on the biological requirements. 

Additionally, the extreme challenges like the algorithms for the proteomic analysis 

demands for contemporary ways of inducing multiple sources of knowledge and high 

capability of analyzing the data structure. These algorithms normally would requires to 

define once and they should be capable on working in any kind of implementations which 

they are intended to work on. 

 

4.1 PlateletWeb 

The PlateletWeb knowledge base is a medium which helps investigate the signaling 

mechanisms and modular functions in a comprehensive manner. This functionality 

however is not just limited to just the hemostasis. The usability scale ranges from the 

pattern which can be as simple as retrieving the information about the protein of interest to 

the scale where the sample of proteins which are obtained in the proteomic analysis. The 

proteins can be visualized in the sub network format based on the interactome constructed 

in the PlateletWeb resource. With this the complete multi-tasking and functional 

modularity of the platelets can be analyzed and studied. In order to make sure the quality of 

the PlateletWeb resource applicable for the newest findings, I have performed the analysis 
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on the newly identified antithrombotic targets such as LXR (Spyridon, Moraes et al. 2011) 

and on the signaling modulator PECAM1 (Moraes, Barrett et al. 2010). It is concluded that 

with the help of this resource, these targets can be easily investigated in the context of 

interacting partners and phosphorylation events. Additionally, a complete platelet and 

kinase enrichment is performed and this helped me to analyze the kinases in depth. A 

detailed analysis was also performed in order to see that the PlateletWeb provides a 

semantic, systematic and a structured overview of the platelet interactome and 

phosphoproteome including validated interactions and phosphorylations based on 

published studies and experimentally validated phosphorylation sites in platelets. 

Additionally, the inclusion of drugs and drug targets enabled the systemic analysis of 

pharmacological regulation in platelets. The complete website with the relational database 

as the basis enabled me to create new specific features for the PlateletWeb website which 

would ease the data retrieved from the PlateletWeb resource. Advanced search options in 

the PlateletWeb website for drugs, diseases and functional annotations effectively enable 

the implementation of data mining strategies for the detection of novel platelet specific 

targets. Additional bindings and cross links created for each and every protein helped to 

reduce the false positives in the resource. All proteins are also associated with their drug 

associations, allowing bidirectional navigation through the network of drug target 

relationships. This similar format was also ensured in the kinase substrate relationships. 

Protein kinases are key regulators of platelet signaling. The kinase activity, which is crucial 

in a variety of human diseases such as cancer is associated with over 400 human diseases 

(Melnikova and Golden 2004). The knowledge about human kinases and their substrates in a 

network context, coupled with information on associated drugs can indicate putative new 

pharmacological targets. My analysis provided the first insights on to the enrichment 

methodologies to check how and which platelet proteins play the key role. Modern 

phosphoproteomic studies deliver large amounts of valuable data on site-specific 

phosphorylation including quantitative measurements of dynamic signaling events (Rigbolt, 

Prokhorova et al. 2011). Usually, however, they offer no information about the 

corresponding kinase which thus remains the missing link in the reconstruction of the 

cellular signaling cascades from phosphoproteome data. Here, the bioinformatical 
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predictions and literate-curated networks may provide the necessary kinase associations 

and deliver a cellular context for the analysis of the raw experimental data. This integrated 

analysis, however, is not restricted to a single protein level. The proteins of interest from a 

sample can be investigated at an instance by extracting a subnetwork from the human 

phosphoproteome, kinome and interactome and PlateletWeb allows the visual 

representation of resulting subnetworks in vector graphics or export for further analysis in 

Cytoscape. Various pathways considered to play a key role were extracted, visualized and 

analyzed for signal regulation. Alternatively, platelet proteins belonging to characteristic 

pathways (defined by KEGG) are highlighted and available for pathway network analysis.  

The enrichment analysis of drug targets and disease genes in hub platelet proteins were 

also performed and this resulted in the first insight which proclaimed that the highly 

connected proteins in the network are among the enriched drug targets and disease genes. 

The large amount of available platelet data gave rise to a series of analysis aimed at 

elucidating the systems biological background of platelet signaling. Using pathway data 

from KEGG the investigation is based on the enrichment for a specific pathway in platelet 

proteins. After testing whether the found platelet proteins are significantly higher in 

number than expected by chance, the test concluded that a group of pathways are found 

with significantly higher number of platelet proteins. Among the top-enriched pathways are 

key pathways in platelet signaling: cytoskeleton reorganization and focal adhesion. The 

PlateletWeb knowledge base is a comprehensive internet-based resource for platelet 

researchers, which presents intriguing novel options for a systems biological investigation 

of platelet signaling. It provides many opportunities for the investigation of dynamic 

network restructuring also in regard to the recently recognized condition-dependent 

further tasks of the platelet in infection, inflammation, cancer and sepsis (Leslie 2010). 

Future efforts in the development of PlateletWeb will focus on the integration of novel 

platelet studies (e.g. new transcriptome information from recent RNA sequencing data 

(Rowley, Oler et al. 2011)) and updated datasets from the source databases while 

maintaining the high standard of data curation.  
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4.2 Other databases (mouse and cd molecules) 

 CD Molecule database 4.2.1

Cluster of differentiation (CD) molecules are cell surface molecules and targets for 

immunophenotyping (Fabryova and Simon 2009). These CD molecules can act in several 

ways, for instace as receptors or ligands (Gregory 2000). Using the PlateletWeb database, a 

more specific database was created, termed the CD molecule database (CDDB). This is an 

interaction database for CD molecules, similar to the PlateletWeb database. It also provides 

the information about the proteins, protein information and summary, the KEGG pathways, 

the architeture types and tissue expression. This database gives the first insight to provide 

information as how the PlateletWeb database can be extended into further more specific 

modules. The database front end, created with PHP shows a list of total interacting proteins 

and a list of interacting CD molecules only. This small scale database can be used to gain 

information when conducting the experiments with cluster of differentiation molecules. 

However, similar to the PlateletWeb database, this database contains the information only 

on the human proteins. This might be a problem for preparing experiments as mos of them 

are conducted not on human beings but on the studied model organisms such as mus 

musculus.  

Thus, this CD molecule database was expanded to the species mouse by including the 

orthologs and interlogs from the human proteome. The complete search functionality was 

also added to this database to retrieve the relavant data from the database. This database 

was designed by me and was helping the practical training student, Benjamin Merget for his 

thesis. 

 

 Mouse database 4.2.2

Mice have become a major animal model in platelet research and more and more data for 

this organism becomes available, the establishment of cellular signalling network of murine 

platelets becomes an interesting and realistic perspective. A first insight was perfomed and 

the data is curated manually from multiple databases (Kanapin, Batalov et al. 2003; 
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Vassilatis, Hohmann et al. 2003; Senis, Tomlinson et al. 2007; Li, Cai et al. 2010; Turner, Razick 

et al. 2010; Flicek, Amode et al. 2011; Rowley, Oler et al. 2011). The first database was 

constructed using the mouse proteome and interactome information topped up with the 

information on each protein and its functional information. This was then matched with the 

proteins from the PlateletWeb to contain the interlogs and homologs. The construction of 

the database, however requires lots of criteria to be considered and can be understood as a 

first step for the potentially high end research. 

   

4.3 Semantic similarity 

Semantic similarity measures are useful to assess the physiological relevance of protein-

protein interactions. Using the annotations like Gene Ontology (GO) it is possible to quantify 

the similarity between the genes based on their functions. Proteins that interact in the cell 

are likely to be performing similar functions or involved in similar biological processes or 

even found on the same component. Here an algorithm was introduced to extract the 

functional modules from the proteins identified in the proteomic analysis using the 

semantic similarity and the exact approach (heinz). The GOSim package (Frohlich, Speer et 

al. 2007) was used in order to calculate the semantic similarity between the proteins. The 

GOSim package offers an easy way to gain insights to the functional modules of the genes.  

 

 Semantic Similarity of Terms 4.3.1

The semantic similarity between the terms has to be considered before moving onto the 

similarity between the genes. Various methods (Resnik 1995; Lord, Stevens et al. 2003; 

Schlicker, Domingues et al. 2006; Wang, Du et al. 2007; Schlicker and Albrecht 2008; 

Benabderrahmane, Smail-Tabbone et al. 2010; Yu, Li et al. 2010) are available to calculate the 

semantic similarity between two terms. The usage of the semantic similarity was discussed 

thoroughly in multiple reviews (Guo, Liu et al. 2006; Xu, Du et al. 2008; Pesquita, Faria et al. 

2009), and Resnik was considered the best applicable measure for GO based semantic 

similarity on PPI. 
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Semantic similarity measures can be broadly classified into two groups, the edge based and 

the node based. The similarity based on the shared paths between two terms is given by the 

edge based (Cheng, Cline et al. 2004; Wu, Su et al. 2005; Yu, Gao et al. 2005; del Pozo, Pazos et 

al. 2008) methods. The node based methods (Resnik 1995; Jiang and Conrath 1997; Lin 

1998) on the other hand rely on comparing the properties of the input terms taking their 

terms themselves, ancestors and the descendants into account. Information content (IC) is 

the concept which is commonly used in all these approaches. The IC gives a measure of how 

specific and informative the term is. The probability assigned to a term is defined as its 

relative frequency of occurrence. The root has probability p(root) = 1 if it is unique. The IC 

of a term c can be quantified as the negative log likelihood,  

          

where p(c) is the probability of occurrence of c in a specific corpus being normally 

estimated by its frequency of annotation. This is also called as most informative common 

ancestor (MICA). 

IC provides a measure of a terms specificity that is independent of its depth in the Ontology. 

This is due to the fact that the IC of a term is dependent on its children but not on its 

parents. Because of this main reason, the approaches based on IC are less sensitive to the 

issues of variable semantic distance and variable node density. However, IC is biased 

because terms related to areas of scientific interest are expected to be well annotated when 

compared to other terms. Even in such cases, the use of the IC still makes sense from a 

probabilistic point of view, as it is more probable and less meaningful that two gene 

products share a commonly used term than an uncommonly used term(Pesquita, Faria et al. 

2009).  

 

Resnik measure 

Resnik (Resnik 1995) uses the concept of information content “IC” to define more consistent 

semantic similarity measure. The similarity between two terms is high if the information 
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shared between them is higher. This shared information is considered by the set of common 

ancestors in the graph. The amount of shared information and thus the similarity between 

the two terms is quantified by the information content of the common ancestors. Thus, the 

semantic similarity between two terms can be given as  

   Resnik  1  2      
          

           

where s(c1, c2) is the set of common ancestors of terms c1 and c2.  

The above equation can also be written as: 

   Resnik  1  2      
          

          

In this measure, the minimum similarity is zero and there is no maximum for this measure.  

 

“Lin’s” and “Jiang and Conrath’s” Measure 

Resnik measure is effective in determining the information shared by two terms; however it 

does not consider how distant the terms are from their common ancestors. Lin (Lin 1998) 

then defines the similarity between two terms as the ratio of the distance of terms and the 

information needed to fully describe the two terms. The commonality of the terms can be 

defined by the common ancestors of the terms.  To take that distance into account, both 

Lin’s and Jiang and Conrath’s (Jiang and Conrath 1997) measure relate the IC of the MICA to 

the IC of the terms being compared. The information needed to fully describe both terms is 

the sum of their information, since the random selection of one term is independent of the 

random selection of the second term. The defining equation is given by 

SimLin(c1, c2) = 
             

             
 

SimJC(c1, c2) = 1 – IC(c1) + IC(c2) – 2 x IC(cMICA) 

In both the cases, S(c1, c2) are the sets of common ancestors of terms c1 and c2. The 

minimum possible similarity value in these methods is 0 and the maximum is 1. 
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However, being relative measures, similarity measures of both Lin and JC are displaced 

from the graph. The measures are proportional to the IC differences between the terms and 

their common ancestor, independently of the absolute IC of the ancestor. The relevance is 

not considered in both the measures.  

 

Schlicker Measure 

To overcome this limitation, Schlicker (Schlicker, Domingues et al. 2006) tuned up with a 

measure which would combine both Lin and Resnik similarity measures. This would help to 

take the relevance information into account, which takes the lowest common ancestor into 

account. The probability of the lowest common ancestor reflects the level of detail. Generic 

terms do not have a high relevance for the comparison of the exact function of different 

gene products.  The Schlicker measure is as follows: 

   Rel  1  2      
          

(
          

                 
        ) 

This equation can as well be written as: 

SimRel(c1,c2) = SimLin(c1,c2) x (1-p(cMICA)) 

Similar to Lin, Rel measure also has the minimum similarity value of 0 and the maximum 

similarity value of 1. The relevance of a term decreases with the increasing probability in 

this method. 

 

 Semantic Similarity between Genes 4.3.2

Genes are usually annotated with more than one gene ontology terms in the GO database. In 

this scenario, in order to calculate the semantic similarity between the two genes, the 

semantic similarity between all the GO terms of each gene should be compared. 

Computation of maximum and average similarity between any pair of GO terms is defined in 

the existing tools like FuSSiMeg (Couto, Silva et al. 2003), eGOn (GÜnther, Langaas et al. 

2006) and DAVID (Huang da, Sherman et al. 2009; Huang da, Sherman et al. 2009). However, 
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eGOn and DAVID approaches measure gene functional similarities based on the probability 

of the appearance of GO terms or the kappa statistics of similar annotation terms correlated 

with different genes and ignore the semantic relations (is-a and part-of) among these terms 

in the GO graph.   

Functional Semantic Similarity Measures between Gene-Products (FuSSiMeG) is a 

functional similarity measure between gene-products that compares the semantic 

similarity between the terms in their annotations. This is a hybrid semantic similarity 

measure, which integrates the information content with conceptual distance (edge based) 

factors. In order to compute the similarity between functional properties, FuSSiMeG 

assumes that two gene-products have a functional similarity when they are annotated with 

similar functional terms. FuSSiMeG then measures the similarity between gene products by 

the maximum similarity between their assigned terms.  

Given two terms g and g´ annotated with GO terms t1, t2 … tn and t1´, t2´… tm´ the functional 

similarity between two genes g and g´ is defined as  

 

Here the semantic similarity measure ranges between 0 and 1.  

Another semantic similarity measure, G-SESAME (Wang, Du et al. 2007) addresses the 

critical need of determining the functional similarities based on gene annotation 

information from heterogeneous data sources. This algorithm focuses on the relationships 

of the GO terms with in a specific ontology to determine the semantic similarity which helps 

in gaining the consistent measurement between two GO terms.  

Another graph based method is GOSemSim (Yu, Li et al. 2010), which is an R package for 

measuring the semantic similarity among GO terms and gene products. Many functions are 

provided by the GOSemSim package, geneSim is specifically used to compute the semantic 

similarity between GO descriptions of gene products. Different measures can be used along 

with this function, some of them being “Wang”, "Resnik", "Lin", "Rel", and "Jiang".  However 

Sim gene(g,g´) =  max   sim(ti,tj´) 
    i=1,…,n 
    j=1,…,m 
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when this package is tested on the human species for the complete interactome with 

multiple measures, the output has extremely biased results near the minimum and the 

maximum. When two similar genes are compared, it would give a 1 as the output value. 

Many gene products are forming complexes which perform the same biological function 

and therefore have almost similar functionality. However, in order to identify the 

differences in similar genes (not the same gene); the focus has to be shifted to similar 

method providing higher resolution.  

In this regard, a complementary tool which beholds similar functionality is GOSim (Frohlich, 

Speer et al. 2007). Taken FuSSiMeg as basic idea, GOSim extends the resulting value by 

further normalizing to account for an unequal number of GO terms for both genes. 

 

The GOSim package systematically integrates existing tools like FuSSiMeg by integrating its 

functionality and providing additional similarity concepts for gene products. This is 

implemented as a package for statistical computing environment R and has been integrated 

into the CRAN project.  

 

 Unique score between two genes  4.3.3

The usage of GOSim package helped to gain the semantic similarity between two genes 

using the function getGeneSim. However, the Gene Ontology is defined in three broad 

categories – Biological Process (BP), Molecular Function (MF) and Cellular Component (CC). 

The Semantic similarity has to be calculated for given two genes on all the three ontologies 

considering one at a time. This would result in three scores for the given two genes. For 

instance, when quantifying the semantic similarity between the genes “VASP” (Entrez gene 

identifier – 7408) and “SRC” (Entrez gene identifier – 6714) the GOSim package returns the 

semantic similarity for BP as 0.4608678, CC as 0.3648075 and MF as 0.2174619. Schlicker 

et al (Schlicker, Domingues et al. 2006) introduced funsim score from the scores of BP and 

𝑠𝑖𝑚𝑔𝑒𝑛𝑒(g,g´) 

Sim gene(g,g´) =         ------------------------------------------------- 

                                           𝑠𝑖𝑚𝑔𝑒𝑛𝑒 𝑔 𝑔 𝑠𝑖𝑚𝑔𝑒𝑛𝑒 𝑔´𝑔´  
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MF of a pair of gene products. Two gene products with a high score in one ontology but an 

average score in the other can be considered average matches. However, in such case, their 

score should be higher than the score of two gene products that are average matches in 

both categories. Here, simply adding the two scores or taking the average scores would not 

distinguish between these two cases. In order to gain the distinction, the squaring of the 

scores favors high similarity in one and a low score in the other one over average scores in 

both ontologies. The funSim score ranges between 0 for completely unrelated gene products 

and 1 for gene products with identical functionality. Due to its definition, the funSim score is 

lower than the average two scores in most cases. In order to obtain a more intuitive score, 

the rfunSim score (Schlicker, Rahnenfuhrer et al. 2007) was defined for two gene products 

were defined. However, although the three ontologies scores were considered, I stick to the 

funSimAll, with all the three scores considered together, once again defined by Schlicker et 

al [http://funsimmat.bioinf.mpi-inf.mpg.de/help3.php]. 

The funSimAll score is calculated from the Scores of BP, MF and CC for a pair of genes. It is 

defined as: 
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In this equation, max(BPscore), max(MFscore) and max(CCscore) denotes the maximum 

possible score for BP, MF and CC respectively. Once again, the funSimAll score ranges 

between 0 for completely unrelated gene products and 1 for gene products with identical 

functionality.  Introducing the semantic similarity calculated between two genes VASP and 

SRC, the result would be  
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] 

The funSimAll result of this equation is 0.130924. However the proteins are highly 

annotated in the Biological Process as the interacting proteins share the common biological 

goal and they are comparatively less in both Molecular Function and Cellular Component. 

This would directly affect the funSimAll calculation, if the annotations are missing for one or 
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more of the ontologies for the set of proteins. Prominent genes might lose functional 

information if they are not annotated in all 3 ontologies. In order to overcome this issue, the 

GOScores are converted into the p-values and these are then aggregated using the aggregate 

statistic based on the distribution of the order statistics (Dittrich, Klau et al. 2008; Beisser, 

Klau et al. 2010). Thus a single functional edge score is achieved for each of the gene pairs.  
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5 Conclusion and Outlook 

The systems biology insights are possible due to the cleaver construction of the database. 

The PlateletWeb is a systems biological workbench, is a valuable resource which provides a 

much needed complete information for the analysis of platelet signaling in the functional 

context of integrated networks. The establishment of this database provides trivial and vital 

information about the platelet proteome and the interactome when analyzing the protein 

alone or when considering its role in the network context. The information gained from 

multiple resources and databases, improves the accuracy and the consistency in the data 

and decreases the false positives if any. In general, meeting the highly relevant and 

computational challenges of systems biology regards for powerful biological database 

which was then developed to knowledgebase. The functionality of the website with its 

advanced features like the “advanced search” provides the information only specific to the 

context. Additional information about the protein physical attributes, the Gene ontology 

information about each of the protein, the drug target information and the disease 

associations provide an ample function tools for platelet signaling analysis. The graphical 

visualizations available in the PlateletWeb knowledgebase helps understand the protein 

from the context of the network modules. The kinase, phosphatase information provides 

the signaling flow in the network context and provides ample of information for complete 

analysis of the modules. PlateletWeb allows detailed topological, interactome and 

phosphoproteome analysis and thus serves as a valuable platform for the comprehensive 

cellular network analysis, for instance regarding PGI2 and ADP P2Y12 receptor signaling 

pathways.  

The analysis on the interactome network provides new insights on how the data is 

distributed across the network. Also, the platelet specific kinase tree revealed the 

distribution and enrichment of Tyrosine kinase substrates in the human platelets. The motif 

analysis gives the insights on how the information is processed in the anucleate cell types. 

The unique patterns of interactions between proteins that appear significantly more often 

in the real network compared with randomized networks were identified, thus gaining the 

new insights on the types of network regulation. The 8 key motifs with high biological 
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importance and highest z-values are identified. The complete detailed analysis was 

performed to understand these key motifs and the way the motif 4574 play a key role in the 

network regulation. Motif analysis has further increased the knowledge of what possible 

mechanisms might be involved in the platelet phosphoproteome and interactome network 

and identifying the most important motifs in the platelet interactome. The availability of 

Gene Ontology information for most of the proteins helped in understanding the proteins in 

terms of their biological process, molecular functionality and the cellular component. This 

information is used for the complete gene enrichment analysis which provides the insights 

for how the proteins are scattered and grouped together. Taking this Gene ontology 

information about each of the proteins, the quantification of the relation between two 

proteins was achieved. This was then introduced to the heinz algorithm resulting in the 

biologically significant modules for the first time. This quantification, performed by taking 

the gene ontology information between two proteins which are interacting between each 

other and then checking for the semantic similarity between them. This helped to extract 

and understand the modules from the complete network of proteins which are specific to a 

certain criteria. A complete testing was performed by taking already existing modules and 

also by investigating new modules in different proteins identified in multiple samples.  

The database can be further extended and this was also performed by extracting only the 

CD molecules and identifying the components. Using the PlateletWeb database, a more 

specific database was created, termed the CD molecule database (CDDB). This database has 

the capability to expand to multiple species and this was clearly concluded on a high note 

with the introduction of mouse interactome data. The orthologs and the interlogs of the 

mouse and human data can bring the complete analysis of the protein with focusing on 

multiple aspects. The resource can be paired up with multiple species, which for obvious 

reasons can be a valuable asset to the field of science and medicine.   
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6 Supplementary material 

Supplementary Table 1 - Information on Gene Ontology enrichment analysis for Motifs 

110 (5a), 4574 (5b) and 6558 (5c). Biological process (BP), molecular function (MF) and 

cellular component (CC) analysis are presented with the corrected p-value and the number 

of proteins from the real network (=biological network), which are associated with this GO-

term. The p-values are adjusted using the Benjamini and Hochberg correction(Benjamini 

and Yekutieli 2001). 

Abbreviations: RN - Number of proteins from real network; NPGT - Number of proteins 

from GO-term; 

Supplementary Table 1a – Biological Process; Motif 110: 

Total number of proteins in the network: 300; Number of all GO annotated Proteins: 8652 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

8286 4.53E-12 3.49E-10 12 24 Insulin receptor signaling pathway 

7169 3.16E-11 2.24E-09 27 172 
transmembrane receptor protein 

tyrosine kinase signaling pathway 

43066 5.94E-10 3.64E-08 27 195 negative regulation of apoptosis 

43069 7.50E-10 4.44E-08 27 197 
negative regulation of programmed cell 

death 

1775 2.33E-08 1.12E-06 21 145 cell activation 

30036 6.08E-08 2.77E-06 21 153 
actin cytoskeleton organization and 

biogenesis 

30029 6.92E-08 3.07E-06 22 168 actin filament-based process 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

45321 1.07E-07 4.64E-06 18 118 leukocyte activation 

7265 2.86E-07 1.16E-05 15 88 Ras protein signal transduction 

51049 8.48E-07 3.14E-05 18 135 regulation of transport 

32879 9.48E-07 3.43E-05 18 136 regulation of localization 

 

  

Supplementary Table 1b – Molecular Function; Motif 110: 

Total number of proteins in the network: 308; Number of all GO annotated Proteins: 9108 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

4715 3.07E-16 2.65E-14 17 36 
non-membrane spanning protein 

tyrosine kinase activity 

4713 4.80E-15 2.48E-13 30 156 protein tyrosine kinase activity 

19904 3.08E-11 9.35E-10 23 127 protein domain specific binding 

4697 8.18E-09 2.11E-07 8 15 protein kinase C activity 

5057 9.04E-09 2.23E-07 20 128 receptor signaling protein activity 

4716 3.24E-08 7.61E-07 7 12 
receptor signaling protein tyrosine 

kinase activity 

32403 2.22E-06 4.25E-05 14 92 protein complex binding 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

5158 5.20E-06 9.60E-05 7 22 insulin receptor binding 

43560 6.24E-06 1.11E-04 4 5 insulin receptor substrate binding 

19992 1.08E-05 1.74E-04 10 54 diacylglycerol binding 

43548 1.82E-05 2.86E-04 4 6 phosphoinositide 3-kinase binding 

 

Supplementary Table 1c – Cellular Component; Motif 110: 

Total number of proteins in the network: 298; Number of all GO annotated Proteins: 9082 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

5912 1.36E-08 6.96E-07 12 45 adherens junction 

5925 1.56E-07 6.32E-06 9 28 focal adhesion 

31252 6.20E-07 1.96E-05 12 62 leading edge 

5924 5.64E-07 1.96E-05 9 32 cell-substrate adherens junction 

45121 1.07E-06 2.77E-05 11 54 membrane raft 

30055 9.95E-07 2.77E-05 9 34 cell-substrate junction 

48770 5.90E-06 1.29E-04 12 76 pigment granule 

42470 5.90E-06 1.29E-04 12 76 melanosome 

16323 1.16E-05 1.94E-04 12 81 basolateral plasma membrane 

5942 3.81E-05 5.15E-04 5 13 phosphoinositide 3-kinase complex 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

1726 7.82E-05 1.01E-03 7 33 ruffle 

 

Supplementary Table 1d – Biological Process; Motif 4574: 

Total number of proteins in the network: 158; Number of all GO annotated Proteins: 8652 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

8286 1.08E-13 1.06E-11 11 24 insulin receptor signaling pathway 

7169 4.23E-13 3.86E-11 22 172 
transmembrane receptor protein 

tyrosine kinase signaling pathway 

7265 5.64E-09 2.67E-07 13 88 Ras protein signal transduction 

43066 8.43E-08 3.59E-06 17 195 negative regulation of apoptosis 

43069 9.79E-08 3.79E-06 17 197 
negative regulation of programmed cell 

death 

7159 2.32E-07 8.49E-06 6 16 leukocyte adhesion 

46777 5.93E-07 2.05E-05 8 41 
protein amino acid 

autophosphorylation 

16540 8.73E-07 2.74E-05 8 43 protein autoprocessing 

48009 3.59E-06 1.07E-04 4 7 
insulin-like growth factor receptor 

signaling pathway 

30856 3.59E-06 1.07E-04 4 7 
regulation of epithelial cell 

differentiation 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

51049 6.04E-06 1.64E-04 12 135 regulation of transport 

 

Supplementary Table 1e – Molecular Function; Motif 4574: 

Total number of proteins in the network: 162; Number of all GO annotated Proteins: 9108 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

4715 1.18E-17 7.23E-16 15 36 
non-membrane spanning protein 

tyrosine kinase activity 

4713 3.30E-14 1.73E-12 22 156 protein tyrosine kinase activity 

4716 2.44E-08 5.27E-07 6 12 
receptor signaling protein tyrosine 

kinase activity 

32403 7.07E-08 1.37E-06 12 92 protein complex binding 

5158 6.74E-08 1.37E-06 7 22 insulin receptor binding 

4697 1.27E-07 2.32E-06 6 15 protein kinase C activity 

5057 3.98E-07 6.35E-06 13 128 receptor signaling protein activity 

43560 4.76E-07 7.06E-06 4 5 insulin receptor substrate binding 

43548 1.41E-06 1.91E-05 4 6 phosphoinositide 3-kinase binding 

19904 2.45E-06 3.21E-05 12 127 protein domain specific binding 

42169 8.71E-06 1.07E-04 5 17 SH2 domain binding 
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Supplementary Table 1f – Cellular Component; Motif 4574: 

Total number of proteins in the network: 159; Number of all GO annotated Proteins: 9082 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

45121 2.52E-08 1.17E-06 10 54 membrane raft 

5912 9.20E-07 3.06E-05 8 45 adherens junction 

16599 4.03E-06 1.04E-04 5 15 caveola 

5916 5.13E-05 7.97E-04 3 5 fascia adherens 

30018 7.90E-05 1.15E-03 4 14 Z disc 

31252 9.68E-05 1.33E-03 7 62 leading edge 

5925 1.10E-04 1.42E-03 5 28 focal adhesion 

5924 2.12E-04 2.47E-03 5 32 cell-substrate adherens junction 

30055 2.85E-04 3.02E-03 5 34 cell-substrate junction 

48770 3.51E-04 3.28E-03 7 76 pigment granule 

42470 3.51E-04 3.28E-03 7 76 melanosome 

 

Supplementary Table 1g – Biological Process; Motif 6558: 

Total number of proteins in the network: 90; Number of all GO annotated Proteins: 8652 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

8286 1.09E-12 5.72E-11 9 24 insulin receptor signaling pathway 

7169 1.42E-12 7.11E-11 17 172 
transmembrane receptor protein 

tyrosine kinase signaling pathway 

46777 7.22E-09 2.65E-07 8 41 
protein amino acid 

autophosphorylation 

43066 1.10E-08 3.79E-07 14 195 negative regulation of apoptosis 

16540 1.08E-08 3.79E-07 8 43 protein autoprocessing 

43069 1.26E-08 4.19E-07 14 197 
negative regulation of programmed cell 

death 

165 3.75E-07 9.85E-06 10 119 MAPKKK cascade 

48009 3.74E-07 9.85E-06 4 7 
insulin-like growth factor receptor 

signaling pathway 

30856 3.74E-07 9.85E-06 4 7 
regulation of epithelial cell 

differentiation 

43405 5.37E-07 1.36E-05 9 95 regulation of MAP kinase activity 

16485 7.74E-07 1.85E-05 8 73 protein processing 

 

Supplementary Table 1h – Molecular Function; Motif 6558: 

Total number of proteins in the network: 95; Number of all GO annotated Proteins: 9108 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

4715 3.23E-23 2.09E-21 16 36 
non-membrane spanning protein 

tyrosine kinase activity 

4713 7.86E-17 3.39E-15 20 156 protein tyrosine kinase activity 

5057 5.93E-10 9.03E-09 13 128 receptor signaling protein activity 

4716 9.65E-10 1.39E-08 6 12 
receptor signaling protein tyrosine 

kinase activity 

4697 5.09E-09 6.28E-08 6 15 protein kinase C activity 

19904 6.56E-09 7.72E-08 12 127 protein domain specific binding 

43560 5.51E-08 5.95E-07 4 5 insulin receptor substrate binding 

19992 7.29E-08 7.56E-07 8 54 diacylglycerol binding 

42169 6.22E-07 6.20E-06 5 17 SH2 domain binding 

5158 2.54E-06 2.35E-05 5 22 insulin receptor binding 

4715 3.23E-23 2.09E-21 16 36 
insulin-like growth factor receptor 

binding 

 

Supplementary Table 1i – Cellular Component; Motif 6558: 

Total number of proteins in the network: 92; Number of all GO annotated Proteins: 9082 

GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

45121 1.04E-06 5.78E-05 7 54 membrane raft 
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GO ID p-value 
Corrected 

p-value 
RN NPGT Description of GO Term 

16599 1.24E-05 4.10E-04 4 15 caveola 

5912 8.48E-05 2.17E-03 5 45 adherens junction 

31252 3.92E-04 8.14E-03 5 62 leading edge 

30877 6.01E-04 1.11E-02 2 4 beta-catenin destruction complex 

5916 9.95E-04 1.27E-02 2 5 fascia adherens 

16323 1.34E-03 1.58E-02 5 81 basolateral plasma membrane 

5925 2.74E-03 2.53E-02 3 28 focal adhesion 

5924 4.03E-03 3.52E-02 3 32 cell-substrate adherens junction 

30027 5.21E-03 3.97E-02 3 35 lamellipodium 

30055 4.80E-03 3.97E-02 3 34 cell-substrate junction 
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8 Appendix 1 - PlateletWeb user guide 

(This information is also published on Blood journal and can be found at Boyanova et. al 

(Boyanova, Nilla et al. 2012)). 

1. Introduction 

 

1.1  Using the PlateletWeb knowledge base 

PlateletWeb is a bioinformatical knowledge base covering the platelet proteome, 

transcriptome and interactome. By combining data of published platelet proteome and 

transcriptome studies with comprehensive protein-protein interaction data a first model of 

the platelet interactome has been derived. PlateletWeb makes this platelet interactome 

accessible to all researchers and allows an easy navigation through the web of platelet 

interactions. Additional information about the type of evidence (proteome, transcriptome 

or both) for each protein is provided. Based on the data of a recent phosphoproteome study 

the type of phosphorylation (serine/threonine, tyrosine) is indicated by an icon on the right 

side.  

1.2  Search for a specific protein 

Searching for a specific protein is easy: Simply enter the name of the protein or a part of the 

name (at least three characters) into the search field and submit your query. You will obtain 

a list of all proteins matching your query term. If the query term is too general it will 

produce too many (>50) matches. In this case no results will be returned and you will be 

asked to specify your search. 

1.3  Navigate through the platelet interactome and phosphoproteome 

The result list contains the name and a short description for each protein. The marker on 

the left side indicates whether the protein has been described on the level of the proteome, 

transcriptome or both. On the right hand side information about the phosphorylation status 

of each protein in unstimulated platelets is provided. Most importantly the link beneath the 

protein description displays the number of interaction partners in the platelet. By clicking 
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on this link you will obtain the list of interaction partners (all interactants or only platelet 

interactants). This allows you to navigate through the entire interactome network.  

 

2. Overview / Legend 

 

2.1  Platelet Proteins 

Icons describing the level of detection for each protein 

 

Proteome  

proteins found on the level of the platelet proteome 

 

SAGE  

proteins found on the level of the platelet transcriptome 

 

Both  

proteins found on the level of the platelet proteome as well as on the 

level of the transcriptome 

 

None  

proteins which have not been detected in the platelet 

 

2.2  Type of Experiment 

Icons describing the type of experiment which detects the interactions and 

phosphorylations of the proteins 

 

in vivo Experiment 

 

in vitro Experiment 

 

Yeast-two-hybrid (Y2H) Experiment 

 

2.3  Protein Phosphorylations 
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Icons describing the type of phosphorylations of each protein 

 

Experimental Platelet Phosphorylation S/T 

denotes platelet proteins phosphorylated on serine or/and threonine 

residues. The phosphosites are detected in platelets 

 

Experimental Platelet Phosphorylation Y 

 denotes platelet proteins phosphorylated on a tyrosine residue. The 

phosphosites are detected in platelets 

 

Experimental Platelet Phosphorylation S/T/Y  

denotes proteins phosphorylated on serine or/and threonine as well 

as tyrosine residues. The phosphosites are detected in platelets 

 

Experimental Human Phosphorylation S/T  

denotes proteins phosphorylated on serine or/and threonine residues. 

The phosphosites are detected in human cells 

 

Experimental Human Phosphorylation Y  

denotes proteins phosphorylated on a tyrosine residue. The 

phosphosites are detected in human cells 

 

Experimental Human Phosphorylation S/T/Y  

denotes proteins phosphorylated on serine or/and threonine as well 

as tyrosine residues. The phosphosites are detected in human cells 

 

2.4  Kinase Type 

Icons describing the type of kinase 

 

S/T Kinase  

denotes kinases that phosphorylate targets on serine or/and 

threonine residues 

 

Y Kinase  

denotes kinases that phosphorylate targets on tyrosine residues 
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S/T/Y Kinase  

denotes kinases that phosphorylate targets on serine or/and 

threonine as well as tyrosine residues 

 

2.5  Phosphatases 

Icons describing the Phosphatase 

 

Phosphatase  

denotes manually curated protein phosphotases 

 

2.6  Sources of Information 

Icons describing the source of information about Interactions and phosphorylations of the 

proteins 

 

HPRD  

denotes HPRD (Human Protein Reference Database) as the source of 

phosphorylation information  

 

PhosphoSite 

denotes PhosphoSite as the source of phosphorylation information  

 

NetworKIN  

denotes NetworKIN as the source of kinase predictions for 

experimental platelet phosphorylations 

 

2.7  Interaction Type 

Icons describing the Interaction type of the proteins 

 

Protein-protein interaction  

denotes interactions between proteins based on the NCBI dataset 
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(Entrez gene) 

 

Phosphorylation  

denotes phosphorylation reactions (kinases) derived from 

annotations in the HPRD and PhosphoSite databases  

 

Kinase predictions  

denotes phosphorylation reactions for kinases predicted by 

NetworKIN for experimental platelet phosphorylations 

 

Dephosphorylation  

denotes dephosphorylation reactions (phosphatases) derived from 

annotations in the HPRD database  

 

3. Where do I begin? 

PlateletWeb is a comprehensive systems biology tool, which allows a thorough analysis of 

HUMAN platelet and non-platelet proteins, their interactions, phosphorylation state and 

physical characteristics. The database contains validated experimental data on the platelet 

proteome and phosphoproteome, along with literature-derived information from HPRD 

(Human Protein Database Version 9.0). It is the first database of its kind, which gives the 

opportunity for extracting interactive subnetworks of proteins on a platelet and non-

platelet level. The user can choose between regular search of a specific protein of interest 

OR advanced search providing detailed information. 

 

Search  

In the search field on the left side of the window, just type in 

the name of the protein you are interested in and click on the 

"SUBMIT" button in order to get the protein related 

information. 
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This retrieves the list of proteins matching your search term. In our example, our search 

term is "VASP" and so we got the proteins matching VASP as output. 

 

Click on "platelet interacting proteins" to view the list of platelet interactions (In the 

picture, a subset of the proteins are shown).  

Alternatively, you can also click on "Total interacting proteins" for the complete list of 

interactions with this protein. 

 

 

To view in picture format: 
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On the top of the interactions page, you will find the link “To View in Network format, click 

here” which leads to the graphical representation of all retrieved interactions with the 

searched protein. 

What Next: Using the links “Please click here to download the file in pdf format” and “Click 

here to download the compressed file for Cytoscape” you can either view and save the 

image in the pdf (Adobe Reader) format or alternatively download the information to view 

in Cytoscape.  

Finally, 

As we can see, just by providing the name of the protein, one can easily navigate through all 

its interactions, get the complete description, view and/or download the network graph 

associated with it. Apart from this, there is always the possibility of searching for proteins 

with their physical characteristics, (using advanced search), download the subnetwork for a 

specific set of proteins (Cytoscape Download), and retrieve the complete information about 

their phosphorylation state, and if the proteins are kinases, their phosphorylation targets. 
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4. Description of Protein 

Once the protein's name is entered in the search field, a list of proteins matching the search 

term appears. By clicking on the protein's name in the list, the user can then open the page 

containing its description. This page includes information about the protein’s approved 

symbol, its multiple identifiers, the study and the fraction where the protein has been 

detected, its phosphorylation sites and alternative names. It also contains additional protein 

characteristics such as protein domains and motifs, Gene Ontology (GO) terms and 

predictions for transmembrane domains along with drugs and genetic diseases associated 

with the protein. 

 

In the special case of kinases, it is possible to examine all phosphorylation targets of a 

specific kinase and link to the targets' description directly. 
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A.  General information about the protein 

The protein detection level along with its phosphorylated residues is presented. 

 

B. Total Interacting Proteins / Platelet Interacting Proteins 

The number of human and platelet interacting partners with links to the interacting 
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proteins and network view. 

 

C. Platelet Evidence 

Clicking on this link would provide a list of proteome studies, in which the protein was 

detected. Furthermore, it contains information about the cellular compartment of the 

protein along with a link to the study. The studies are divided into 2 groups, proteome 

data and database/SAGE source information. Additionally, the studies are categorized 

according to the cell fraction of the protein and the number of appearances in each 

fraction is displayed. 

 

D. Summary 

A short description of the protein and its functions is presented along with the links to 

PubMed. 

 

E. Nomenclature / Alternative Names 

Other names assigned to the protein. 

 

F. Approved Symbol 

This is the HUGO approved Symbol of the protein. 

 

G. (De-) Phosphorylations 

Total phosphorylations, divided into human phosphorylation sites and platelet 

phosphorylation sites. 

(see Section 5 for additional information) 

 

H. Phosphorylation Targets 

Kinases and Phosphatases are provided with a list of all their platelet and human 

substrates. 
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I. Domains and Motifs 

All domains and motifs of the protein are listed with a short abbreviation of the domain 

name and a complete domain description where available. 

 

J. Gene Ontology 

Full listing of all GO annotations of the protein. Further accessible are the GO terms, 

which contain at least 1 but not more than 150 platelet proteins. A link to all related 

children terms is displayed next to each of the protein's GO terms. 

 

K. KEGG Information 

Information about KEGG enzyme classification (for enzymes), orthology along with 

graphical presentation of pathways containing the platelet proteins (in yellow). 

 

L. Protein Physical Characteristics 

Isoform-specific information about the physical properties of the protein. Further 

details on the protein's molecular weight, isoform accession, its length, isoelectric point 

and the protein sequence in a downloadable FASTA format can be accessed. 

 

M. Associated Drugs (DrugBank Associations) 

All drugs are listed with their corresponding accession number for DrugBank. Clicking 

on the link "(db)" retrieves the DrugBank webpage with detailed information about the 

drug. 

 

N. Associated Genetic Diseases 

The "(Pd)" link next to each genetic disease term navigates to the PubMed information 

source. 

 

O. Predicted Transmembrane Domains 

Information on the number of predicted transmembrane domains for each isoform of 
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the protein is shown here. 

 

P. Additional Identifiers 

External links associated to the protein - identifiers from HPRD, NCBI gene id, OMIM id 

and the Swissprot accession number are provided here. 

 

 

 

5. Phosphorylation and Kinase information 

Query: PECAM-1 phosphorylations (example) 

 

Result:
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Clicking on the "(De-) Phosphorylations" link retrieves a list of all phosphorylated and de-

phosphorylated residues and their position in the protein's sequence. It is also possible to 

view the human (de-) phosphorylations and platelet phosphorylations individually. 

 

Underneath this information, you can find the isoforms in which the site is identified. 

Further down within the same phosphosite, one can find the phosphorylated motif 

sequence with the site highlighted in the middle. Additionally, the phosphorylating kinase 

(if available) is shown next to it. The source of phosphorylation information is presented 

under Reference. For kinase predictions on platelet phosphorylation sites the reference is 

given as NetworKIN (prediction algorithm). For all data from literature, the reference is 

either PhosphoSite or HPRD (Source: PubMed). Finally, each phosphorylation is presented 

with the type of experiment used for its detection. For some of the experimentally validated 

phosphorylations, there is a NetworKIN kinase prediction displayed on the description page 

of the protein. The HPRD-derived kinase-substrate pairs are also listed, but are not 

necessarily proven to play a role in platelets specifically. Still, it is a strong indication if both 

the kinase and its target protein are found in platelets and the target is phosphorylated. 

 

6. Advanced Search Features 

The advanced search features allow combining different search options into a more 

complex search with an emphasis on platelet proteins to obtain more specific results. 

 

6.1  Keyword search  

As an example, the search term “rheumatoid arthritis” reveals 27 total human proteins of 

which 10 are identified in platelets.  
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6.2  Physical property search 

Search for proteins in a particular range according to their molecular weight, isoelectric 

point or protein length.  

Query:  

 

Result: 

 

 

Note: Both results are SRC, however they belong to two different isoforms. It is possible to 

further navigate to the protein description page and the interactions and phosphorylations 

page from here.  
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6.3  Gene ontology Search 

Query: 

Search for the term “protein activation” 

Result: 

 

 

6.4  Combination search  

A combination of functional enrichment, protein domains and the detection level along with 

the phosphorylation information. This search option is very useful for a given biological 

question, for example connected to platelet activatory (or inhibitory) processes. 

Query: As an example, a search can be performed identifying hemostasic proteins, which 

bind tyrosine phosphorylated residues and therefore contain an SH2 domain and are 

additionally phosphorylated on a serine or a threonine residue, detected in a platelet 

proteome experiment. 
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Result: This search results in 5 platelet proteins having the given characteristics.
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6.5  Drug search 

Query: 

Search the drug name “clopidogrel” for its drug targets reveals,  

Result: 

 

The DrugBank source page can be accessed from the link in the resulting panel (Drug ID: 

DB00758). 

 

6.6  Pathway search 

Query: 

Search for the similar terms of “adhesion” in KEGG pathway reveals  

Result: 
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6.7  Subnetwork extraction 

The "Extract subnetwork" option in the advanced search is introduced for the analysis of a 

set of proteins. The aim of this feature is to extract networks of interest from PlateletWeb 

and to visualize the interactions in a group of pre-selected proteins. The names of the 

proteins are entered in the search field, separated by a tab or comma. Click on the submit 

button to go to the next step. 

The resulting list of proteins is supplemented by a list of similar names in case proteins 

were not found in the search. Non-platelet proteins can also be added and analyzed. If the 

proper list of proteins is already available, the user can now choose between a graphical 

presentation of the constructed network and a list of interactions given in a text-format.  

By clicking on the "Network format" the network appears on the screen, depicting the 

proteins as nodes and the interactions between them as edges. All interactions and 

phosphorylation states are color and shape coded in the final result. 

Additionally, an option for network download is available by saving the network in a pdf 

file. 

 

If the user prefers extracting the data and creating a visualization with Cytoscape, there is a 

compressed Cytoscape file available for download. It contains a .sif file of the extracted 

interactome network, as well as edge and node attributes files (.eda, .noa), which can be 

added into Cytoscape to visualize specific features of the network. 

The edge attribute file contains the phosphorylation sites for each phosphorylated protein 

and the node attribute files include information about the node itself: name of the protein, 

whether the protein is a "kinase or not", whether it is "phosphorylated or not" etc.  

An easy option is to save the file on the desktop and then extract the folders. The 

visualization characteristics and legends are contained in the .props file in the folder 

"properties".  
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Steps for importing the files into Cytoscape: 

File -> Import -> Network (multiple file types) -> .sif file from tmp folder 

File -> Import -> Node attributes -> .noa files from tmp folder 

File -> Import -> Edge attributes -> .eda files from tmp folder 

File -> Import -> Vizmap property file -> cytoscapevisuals.props from properties folder 

In order to view the optimal network in Cytoscape, select Layout -> yFiles -> Organic. The 

final version of the created network should be visible and available for further analysis.  

Query: 

ITGB3, SRC, CIB1, AKT1, PDK2, PPP2CA, BMPR1B, PDHX 

Result: 
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