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B Summary - English 

γ-Aminobutyric acid type A receptors (GABAARs) and glycine receptors (GlyRs) are the major 

mediators of fast synaptic inhibition in the central nervous system. For proper synaptic function their 

precise localization and exact concentration within the neuronal surface membrane is essential. 

These properties are mediated by scaffolding proteins which directly contact the large intracellular 

loops of the receptors and tether them to cytoskeletal elements of the neuronal cells. In my thesis I 

deciphered the molecular details of several underlying protein-protein interactions, namely the 

interaction of a subset of GABAAR and GlyR subunits with the scaffolding proteins gephyrin, radixin 

and collybistin. I determined short linear motifs within the large intracellular loops of the receptors 

that directly engage in subunit specific scaffold protein interactions. My quantitative binding studies 

revealed that gephyrin`s E domain primarily recognizes the GABAAR α1 (Kd = 17 µM) and α3 (Kd = 5 

µM) subunits, in contrast, the SH3 domain of collybistin mainly interacts with the GABAAR α2 subunit 

(Kd = 1 µM), while the FERM domain of radixin tightly binds to the GABAAR α5 subunit (Kd = 8 µM). 

My work additionally demonstrated that this simple relationship is complicated by (i) missing or (ii) 

overlapping binding specificities between the scaffold proteins and the receptor subunits. Moreover, 

this thesis addressed the possibility of (iii) posttranslational negative regulation as well as 

amplification generated by (iv) avidity effects as summarized below. 

(i) First, using biochemical methods I mapped the radixin-GABAAR α5 interaction in detail. My 

structural analysis and competition assays suggest that radixin mediates the receptor subunit binding 

via a universal binding site within the F3 subdomain of its FERM domain. This binding site is formed 

by an α-helix that offers a large hydrophobic pocket, which accepts a variety of different hydrophobic 

residues adopting different conformations, and a β-strand that readily engages in peptide backbone 

interactions. Not surprisingly, this binding site has been implicated in a wide variety of different 

scaffold interactions, thus emphasizing the importance of the essential FERM activation mechanism 

described earlier and suggesting additional pathways to allow tight regulation of this interaction. 

(ii) Next, I analyzed in detail the process of gephyrin-mediated GABAAR clustering. My X-ray 

crystallographic studies and binding assays revealed that gephyrin mediates binding of the GABAAR 

α1, α2 and α3 subunit via a universal binding site that also mediates the interactions with the GlyR β 

subunit. Using structure-guided mutagenesis I identified key residues within gephyrin and the 

receptor subunits that act as major contributors to the overall binding strength. Namely, two 

conserved aromatic residues within the N-terminal half of the receptor binding region engage in 

crucial hydrophobic interactions with gephyrin. Accordingly, J. Mukherjee from the group of our 

collaborator Steven J. Moss verified a substantial decrease in GABAAR cluster number and size in 

primary hippocampal neurons upon exchange of these residues within the GABAAR α2 subunit. 

Extension of my studies to collybistin (CB) revealed an overlapping but reciprocal subunit preference 

for this protein in comparison to gephyrin. The GABAAR α3 subunit exclusively binds gephyrin, in 

contrast the GABAAR α1 subunit mainly targets gephyrin (Kd = 17 µM) but additionally displays a 

moderate affinity (Kd ≈ 400 µM) towards the SH3 domain of CB. The GABAAR α2 subunit binds tightly 

to the SH3 domain of CB (Kd = 1 µM) and additionally displays a weak gephyrin affinity (Kd ≈ 500 µM). 

Notably, I could exclude the possibility of synergistic effects between gephyrin`s E domain, the SH3 

domain of CB and the GABAAR α2 subunit. Instead, I found that the GABAAR α2 subunit binds 

gephyrin and CB in a mutually exclusive manner. These results suggest that CB`s role in receptor 

clustering is solely determined by competing binding events of its constituting domains. Namely, the 
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intra-molecular association between the PH/DH domain and the SH3 domain within CB competes 

with different inter-molecular interactions of CB: GABAAR α2 binding to the SH3 domain, PIP2 binding 

to the PH domain and gephyrin presumably binding to the PH and DH domain of CB.  

(iii) Interestingly, the receptor motifs, which have been mapped in my thesis to directly interact 

with the scaffold proteins, were shown in earlier studies to be posttranslationally modified in vivo. In 

particular, the GABAAR α1 and GlyR β subunits have been implicated as targets of the ERK/MAPK and 

PKC phosphorylation-pathways, respectively, while the GABAAR α5 subunit motif was shown to be 

ubiquitinated. In this dissertation, I analyzed Thr348, a possible ERK phosphorylation site within 

GABAAR α1. My binding assays verified a severe reduction of the direct gephyrin binding strength 

upon introduction of the respective phosphomimetic residue. The relevance of this in vitro result was 

highlighted by J. Mukherjee who confirmed a significant reduction in GABAAR cluster number and 

size upon introduction of the same mutation. The ERK/MAPK pathway is therefore a promising 

candidate for regulation of GABAergic transmission. 

(iv) In vivo, gephyrin presumably forms a multivalent scaffold, which is based on the self-

association of its G (GephG) and E domains (GephE). Given the multimeric nature of gephyrin and the 

pentameric receptor architecture, I tested the possibility of avidity in the clustering of inhibitory 

neurotransmitter receptors. Cocrystallization of selected minimum peptides with GephE and their 

crystal structure analyses enabled me to define a receptor-derived peptide that offers a maximized 

gephyrin affinity. The structure of the GephE-GlyR β receptor complex reveals two receptor-binding 

sites in close spatial vicinity (15 Å). I therefore designed bivalent peptides that enable to target both 

GephE sites at the same time and, as expected, a variety of biophysical methods verified an avidity-

potentiated and unmatched high gephyrin affinity for these bidentate compounds. Notably, I could 

extend the dimerization approach to low affinity gephyrin ligands, namely short GABAAR-derived 

peptides that could not be studied using conventional monomeric ligands. Additionally, I verified that 

this compound specifically targets GephE`s receptor binding site, and that it thereby inhibits its 

receptor binding activity. Further development of this molecule may offer the possibility to 

specifically analyze the effect of uncoupling the gephyrin-receptor interaction in cell culture-based 

assays, without altering protein function or expression level that accompanies conventional methods 

such as protein knock-out, RNA interference or the usage of antibodies.  
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C Zusammenfassung - Deutsch 

γ-Aminobuttersäure-Rezeptoren vom Typ A (GABAARs) und Glyzin-Rezeptoren (GlyRs) sind die 

wichtigsten Vermittler der schnellen synaptischen Inhibition im zentralen Nervensystem. Von 

wesentlicher Bedeutung für ihre ordnungsgemäße Funktion in der inhibitorischen Signalübertragung 

ist ihre präzise Lokalisation und Konzentration innerhalb der neuronalen Oberflächenmembran. 

Diese Eigenschaften werden durch Gerüstproteine vermittelt, welche direkt an die großen 

intrazellulären Schleifen der Rezeptoren, sowie an Bausteine des neuronalen Zytoskeletts binden. In 

meiner Dissertation habe ich die molekularen Details mehrerer zugrunde liegenden Protein-Protein 

Wechselwirkungen untersucht. Im Speziellen habe ich die Interaktion ausgewählter GABAAR und GlyR 

Untereinheiten mit den Gerüstproteinen Gephyrin, Radixin und Collybistin analysiert. Ich habe kurze 

lineare Aminosäuren-Motive innerhalb der großen intrazellulären Schleifen der Rezeptoren 

identifiziert, welche die direkten und Untereinheit-spezifischen Interaktionen vermitteln. Die 

Quantifizierung der jeweiligen Bindungsstärke ergab, dass Gephyrins E-Domäne vor allem an die 

GABAAR α1 (Kd = 17 µM) und α3 (Kd = 5 µM) -Untereinheiten bindet, wohingegen die SH3-Domäne 

von Collybistin hauptsächlich mit der GABAAR α2-Untereinheit interagiert (Kd = 1 µM). 

Demgegenüber bindet die FERM-Domäne von Radixin fest an die α5-Untereinheit des GABAAR (Kd = 8 

µM). Weiterhin zeigt meine Arbeit, dass diese einfache Beziehung durch (i) fehlende oder (ii) 

überlappende Bindungsspezifitäten zwischen den Gerüstproteinen und den Rezeptor-Untereinheiten 

komplex reguliert wird. Ferner beschreibe ich hier, wie im Folgenden ausgeführt, die Möglichkeit 

einer (iii) negativen Modulation mittels posttranslationaler Modifikation, sowie einer Verstärkung der 

Bindung durch (iv) Aviditäts-Effekte. 

(i) Als erstes habe ich mit Hilfe biochemischer Methoden die Radixin-GABAAR α5 Interaktion im 

Detail untersucht. Meine Strukturanalyse und Kompetitionsstudien legen den Schluss nahe, dass 

Radixin die betreffende Rezeptor-Untereinheit mittels einer universellen Bindungstasche in der F3 

Subdomäne innerhalb seiner FERM Domäne bindet. Diese Bindungsstelle wird durch zwei markante 

Strukturelemente gebildet: Einer α-Helix, die eine große hydrophobe Tasche bildet, welche eine 

Vielzahl unterschiedlicher hydrophober Reste in verschiedenen Konformationen akzeptiert, sowie ein 

β-Strang, der Peptidrückgrat-Interaktionen eingehen kann. Es überrascht nicht, dass eine Vielzahl an 

Studien die Beteiligung dieser Bindungsseite mit unterschiedlichen Liganden beschrieben hat. Diese 

Promiskuität unterstreicht die Bedeutung des Aktivierungsmechanismus der zuvor für die Radixin 

FERM GABAAR α5-Untereinheit beschrieben wurde und impliziert weitere Regulationsmechanismen, 

die eine koordinierte Interaktion in vivo ermöglichen. 

(ii) Weiterhin habe ich mich ausführlich der Analyse der Gephyrin-vermittelten GABAAR 

Clusterbildung gewidmet. Meine röntgenkristallographischen Studien und Bindungsstudien zeigen, 

dass Gephyrin mit den GABAAR α1, α2 und α3 Untereinheiten über eine universelle Bindungsstelle 

interagiert, welche auch die Wechselwirkungen mit der β-Untereinheit des GlyR vermittelt. Mittels 

Struktur-basierter Mutagenesestudien konnte ich die Schlüsselreste innerhalb von Gephyrin und der 

Rezeptor-Untereinheiten identifizieren, die einen entscheidenden Beitrag zur Gesamt-

Bindungsstärke liefern. Insbesondere zwei konservierte aromatische Reste in der N-terminalen Hälfte 

der Rezeptorbindungsregion gehen entscheidende hydrophobe Wechselwirkungen mit Gephyrin ein. 

Dementsprechend konnte J. Mukherjee, ein Mitarbeiter in der Gruppe unseres Kooperationspartners 

Steven J. Moss, zeigen, dass der Austausch dieser Reste innerhalb der α2-Untereinheit des GABAAR 

ausreicht, um einen deutlichen Rückgang der Rezeptor Cluster-Anzahl und ihrer Größe in primären 
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hippokampalen Neuronen zu verursachen. Die Ausweitung meiner Rezeptor-Interaktions-Studien auf 

Collybistin (CB) ergab, dass dieses Protein im Vergleich zu Gephyrin eine umgekehrte, aber dennoch 

überlappende Rezeptor-Untereinheiten-Präferenz aufweist. Die GABAAR α3-Untereinheit bindet 

ausschließlich an Gephyrin (Kd = 5 µM), während die GABAAR α1-Untereinheit zwar vor allem 

Gephyrin bindet (Kd = 17 µM), zusätzlich jedoch eine schwache Affinität (Kd ≈ 400 µM) für die SH3-

Domäne von CB aufweist. Im Gegensatz dazu bindet die GABAAR α2-Untereinheit hochaffin an die 

SH3-Domäne von CB (Kd = 1 µM) und zeigt zusätzlich eine schwache Gephyrin Affinität (Kd ≈ 500 µM). 

Interessanterweise konnte ich Synergieeffekte zwischen der GABAAR α2-Untereinheit, Gephyrins E-

Domäne und CBs SH3-Domäne ausschließen und statt dessen zeigen, dass diese Rezeptor-

Untereinheit exklusiv entweder Gephyrin oder CB bindet. Diese Ergebnisse lassen vermuten, dass die 

Rolle von CB in der Rezeptor-Anhäufung allein durch die konkurrierenden Bindungs-Ereignisse seiner 

konstituierenden Domänen bestimmt wird. Die intramolekulare Assoziation zwischen der PH und der 

DH-Domäne mit der SH3-Domäne von CB konkurriert mit unterschiedlichen intermolekularen 

Wechselwirkungen von CB. Und zwar mit der GABAAR α2-Untereinheit-Bindung an die SH3-Domäne, 

mit der PIP2-Bindung an die PH-Domäne, sowie mit der Gephyrin-Bindung, welche vermutlich von der 

PH und DH-Domäne von CB vermittelt wird. 

(iii) Interessanterweise bestätigen frühere Studien, dass die Rezeptor-Motive, die ich hier 

identifiziert habe und welche direkt mit den Gerüst-Proteinen wechselwirken, in vivo 

posttranslational modifiziert vorliegen. Insbesondere wurde gezeigt, dass die Gephyrin-Bindemotive 

der GABAAR α1-Untereinheit und GlyR β-Untereinheiten Ziele des ERK/MAPK und PKC-

Phosphorylierungs-Weges sind, während das Radixin-Bindungs-Motiv innerhalb der GABAAR α5-

Untereinheit ubiquitiniert vorliegt. In dieser Dissertation habe ich im Besonderen die ERK-

Phosphorylierung von Thr348 in der GABAAR α1-Untereinheit untersucht. Tatsächlich konnten meine 

Bindungs-Assays eine starke Reduktion der direkten Gephyrin Bindungsstärke beim Einbringen eines 

phosphomimetischen Restes bestätigen. Darüber hinaus konnte J. Mukherjee eine signifikante 

Reduktion der Cluster-Anzahl und Größe beim Einführen der gleichen Mutation in die α1-

Untereinheit beinhaltenden GABAARs in hippokampalen Neuronen beobachten. Der ERK/MAPK-

Regulation-Weg ist daher ein aussichtsreicher Kandidat für die Regulation der GABAergen-

Signalübertragung. 

(iv) In vivo bildet Gephyrin vermutlich durch Selbstorganisation seiner G (GephG) und E-Domänen 

(GephE) ein multivalentes Gerüst. Angesichts der multimeren Natur Gephyrins und der pentameren 

Rezeptorarchitektur habe ich die Möglichkeit von Aviditäts-Effekten im Prozess der synaptischen 

Neurotransmitter-Rezeptor-Anhäufung untersucht. Die Kristallstrukturen von GephE im Komplex mit 

ausgewählten Peptiden zeigen zwei Rezeptor-Bindungsstellen in räumlicher Nähe (15 Å). Auf der 

Basis dieser Information habe ich bivalente Peptide entworfen, welche beide Rezeptor-

Bindungsstellen in Gephyrin simultan besetzen können und, wie erwartet, konnte ich mit Hilfe 

verschiedener biophysikalischen Methoden eine unübertroffen hohe, durch Avidität potenzierte, 

Gephyrin-Affinität nachweisen. Mir gelang es diesen Aviditäts-Effekt für einen schwachen Gephyrin 

Liganden, ein GABAAR-abgeleitetes Peptid, welcher nicht mit herkömmlichen monomeren Liganden 

untersucht werden konnte, nutzbar zu machen. Darüber hinaus konnte ich zeigen, dass diese 

Verbindung gezielt die Rezeptor-Bindungsstelle in GephE besetzt und auf diese Weise hemmend auf 

Gephyrins Rezeptorbindungsaktivität wirkt. Eine weitere Entwicklung dieser Verbindung könnte die 

Möglichkeit eröffnen, spezifisch die Wirkung der Entkopplung der Gephyrin Rezeptor-Interaktion in 

der Zellkultur-Experimenten zu analysieren ohne dabei die Anzahl oder die Funktion der Proteine zu 
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beeinträchtigen, was einen Nebeneffekt von konventionellen Methoden wie Gen „knock-out“, RNA-

Interferenz oder den Einsatz von Antikörpern darstellt.  



Molecular Basis of GlyR and GABAAR Clustering - Chapter 1 Introduction 

 

11 
 

1 Introduction 

The nervous system is a network of cells that are specialized to process and transmit information. 

In vertebrates and most invertebrates the brain forms its center which, based on sensory input, 

allows for fast reactions to the environment by controlling, among other processes, muscle activity 

and hormone secretion. An adult male human brain weighs 1.5 kg on average and contains 86 billion 

neuronal cells together with 85 billion non-neuronal cells [1]. The neuronal cells are linked by trillions 

of specific connections which are referred to as synapses. The integration of information in the 

central nervous system is achieved by modulating the chemical signaling across the synaptic 

contacts. To understand neuronal function it is necessary to decipher the design and regulatory 

mechanisms of these synapses. Therefore, the aim of my work was to gain new insights into the 

architecture of inhibitory synapses by analyzing underlying protein-protein interactions at the 

molecular level. 

1.1 Synaptic Transmission  

The majority of all synapses are chemical synapses, where the plasma membrane of the signal-

originating neuron is in close apposition to the membrane of the signal-receiving cell at distances 

ranging from 15 to 25 nm [2, 3]. Both, the pre- and postsynaptic site, contain a complex array of 

proteins that not only link together both membranes and the machinery on either side to the 

cytoskeletal matrix but also carry out the signaling events and regulate the strength of the synaptic 

transmission. Upon electrical triggering, the presynaptic neuron releases small molecules, which are 

referred to as neurotransmitters and these bind to receptors located in the postsynaptic membrane. 

The ligand-binding event is translated via structural rearrangements into an opening of the 

respective cognate receptor, which then functions as an ion-selective pore. Excitatory receptors 

allow for the influx of positively charged ions, which depolarize the neuronal membrane, increasing 

the possibility that the neuron will initiate electrical responses itself. In contrast, inhibitory receptors, 

allow the influx of negatively charged ions, which reduce the activity of the target neuron by 

stabilizing or hyperpolarizing the resting membrane potential, which in turn makes it more difficult to 

depolarize the neuron and generate an action potential. Fast synaptic inhibition in the human brain is 

mainly mediated by the two receptor classes discussed in the next section. 

1.2 γ-Aminobutyric Acid Type A and Glycine Receptors 

γ-Aminobutyric acid (GABA) and glycine are the major neurotransmitters mediating synaptic 

inhibition in the central nervous system. Their inhibitory action is mainly mediated by GABA 

receptors of the A subclass (GABAARs) and glycine receptors (GlyRs) which both belong to the 

superfamily of Cys-loop pentameric ligand-gated ion channels (pLGICs). This family additionally 

compromises the nicotinic acetylcholine receptor (nAChR), the serotonin receptor (5-HT) and the 

zinc-activated receptor [4]. The 44 known subunit members exhibit a minimal sequence identity of 

around 30% between subunit classes of different receptors, whereas subunits within the same class 

for a given receptor display around 70% identity [5]. Despite the low overall identity there is a great 

similarity at the level of the secondary, tertiary and quaternary structure, which will be described in 

detail in the next section. 
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1.2.1 Receptor Architecture 

Cys-loop pLGICs are transmembrane proteins, composed of five symmetrically arranged subunits, 

in which similar domains establish the membrane topology (Figure 1). The N terminal extracellular 

region with the conserved Cys-loop motif is followed by four transmembrane (TM) α-helices. The 

large intracellular loop of high sequence divergence is located between TM3 and TM4, while TM2 

lines the ion-conducting pore. The end is formed by a relatively short extracellular C-terminal region.  

While atomic resolution structures of integral mammalian pLGICs are still missing, several 

homologous or truncated proteins could be analyzed. Among them the molluscan acetylcholine-

binding protein (AChBP), a homologue of the amino-terminal ligand-binding domain of an nAChR 

which was refined to 2.2 Å [6], the prokaryotic pLGIC homologue ELIC from the plant pathogen 

Erwinia chrysanthemi refined to 3.3 Å [7, 8] and GLIC from the cyanobacterium Gloebacter violaceous 

refined to 2.9 Å [9].  

For both, GABAARs and GlyRs, several subunits are available for receptor assembly. The resulting 

receptor composition determines key properties like pharmacological interactions, gating properties, 

expression pattern and finally accumulation at different neuronal surfaces, which is central to my 

work and therefore will be discussed extensively in the following three sections. 

  

Figure 1. Architecture of Cys-loop pLGICs. 
A, Cys-loop pLGIC subunit architecture. A 
single subunit contains four hydrophobic 
transmembrane (TM) helices. The large N 
terminal domain is located extracellularly 
and contains the neurotransmitter binding 
site as well as binding sites for modulators. 
The intracellular domain between TM3 and 
TM4 (black box) is the most divergent part 
of individual receptor subunits and 
contains consensus sites for protein 
kinases and intracellular interactors. B, 
Pentameric assembly of the GABAAR. Most 
commonly GABAARs are composed of two 
α, two β and one γ subunit. Abbreviations: 
Bz: Benzodiazepine, Cl-: Chloride-Ion, 
GABA: γ-amino butyric acid). © 2012 V 
Tretter, M Mukherjee, HM Maric, H 
Schindelin, W Sieghart and SJ Moss  

A B 
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Figure 2. Subcellular localization of GABAARs is determined 

by their subunit composition. GABAARs containing α1-3 or 

the γ subunit are mainly localized at postsynaptic sites. In 

contrast, receptors containing the α4-6 or δ subunit are 

commonly found at extrasynaptic sites. © 2012 HM Maric 

1.2.2 Receptor Subunit Composition 

Until now one GlyR β subunit gene and four α subunit encoding genes have been identified [10-

12] and alternative exon splicing results in two additional isoforms for the GlyR α1-3 subunits [13]. 

GlyRs are thought to be most commonly assembled from two α and three β subunits [14], with the 

resulting α-β subunit interfaces forming the ligand binding sites. 

GABAAR subunits are encoded by at least 19 different genes, grouped by homology into eight 

subclasses (α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3) [15]. Within a subunit class the sequence identity is 

about 70% and between classes it is around 30% [5]. The γ2 [16] and β2 [17] subunits exist as splice 

variants differing in eight and 38 amino acids, respectively. In theory, all possible subunit 

combinations would allow millions (195) of structurally distinct GABAARs, however, only eleven 

receptor subunit combinations of two α, two β and single γ2 or δ subunit are thought to be 

reasonably abundant in vivo [18] and another fifteen receptor subunit combinations are proposed to 

exist with a limited distribution [18]. The next paragraph will summarize how the subunit 

composition determines receptor localization. 

1.2.3 Cellular and Subcellular Receptor Localization 

The large intracellular loop between TM3 and TM4 is thought to be the major determinant for the 

anchoring and accumulation of all pLGICs at postsynaptic and extrasynaptic sites. Due to their 

pentameric assembly GlyRs and GABAARs offer up to five intracellular loops per single receptor to 

interact with proteins beneath the neuronal surface membrane.  

In GlyRs, the β subunit was identified early as the determinant of receptor anchoring and 

clustering at postsynaptic sites [19-21]. In contrast the molecular basis of GABAAR accumulation and 

the participating proteins remained elusive until recently. Similar to GlyRs subcellular targeting of 

GABAARs depends on their receptor subunit composition. The aim of my work was therefore to 

analyze recently proposed subunit-specific scaffold interactions. Verification and quantification as 

well as the identification of key residues would greatly enhance our understanding of the 

architecture and function of the inhibitory synapse. 

Synaptic GABAARs are thought to be subunit 

combinations of two α1-3 subunits, two β2-3 

and one γ2 subunit (Figure 2) [22]. In contrast, 

extrasynaptic receptors where shown to 

contain δ instead of γ subunits or α4-6 subunits 

instead of α1-3 subunits (Figure 2) [23-26]. In 

line with these findings Tretter et al. identified 

for the first time a direct interaction of 

GABAARs with gephyrin [27]. My thesis, 

presented here, provides a detailed analysis of 

this and additional GABAAR-gephyrin 

interactions and therefore the next section will 

summarize key findings concerning gephyrin’s 

role in the architecture of inhibitory synapses.  
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1.3 Gephyrin 

Gephyrin (after the Greek word bridge (γέφυρα)) was first identified as a 93 kDa protein that 

copurified with GlyRs [28]. Gephyrin is broadly expressed and essential for postsynaptic receptor 

clustering [19, 21, 29-31] and molybdenum cofactor (Moco) biosynthesis [32]. Gephyrin knock-out 

mice appear superficially normal at birth but because of respiratory and nutritional defects they die 

within hours after birth [33]. They display a progressive startle reflex in response to tactile stimuli, 

similar but more severe than mice carrying mutations in the genes encoding the GlyR α1 or β subunit 

that cause Startle disease [34], which is also referred to as hyperekplexia. Until now more than ten 

different gephyrin splice variants have been reported [30, 35, 36], however, their distinct functions 

remain to be elucidated.  

A large variety of proteins where shown to directly interact with gephyrin. In particular, several 

proteins were demonstrated to be critical for gephyrin’s function in mediating receptor clustering at 

postsynaptic sites (Figure 3):  

(A) Microtubules [37] and cytoskeleton-associated proteins such as the small actin-binding 

protein profilin [38] or Mena/VASP [39]. 

(B) The peptidyl-prolyl-cis-trans-isomerase NIMA interacting 1 protein (PIN1) that was proposed 

to promote a conformational change in gephyrin, which would alter its GlyR affinity [40]. 

(C) The cell adhesion molecules neuroligin 2 (NL2) [41] and neuroligin 4 (NL4) [42], which, 

together with the Cdc42-specific guanine nucleotide exchange factor collybistin (CB) [43], are 

thought to induce gephyrin clustering.  

(D) Proteins involved in microtubule-based anterograde and retrograde transport such as kinesin 

[44] and the dynein light chain [45]. 

(E) GABAAR associated protein (GABARAP) which interacts with the GABAAR γ2 subunit as well as 

with gephyrin [46, 47]. GABARAP was discussed as the possible missing link, explaining coclustering 

of gephyrin and certain GABAARs, however, GABARAP knockout mice were shown to be viable and 

neuronal cultures from these mice still exhibited a strong postsynaptic coclustering of gephyrin and 

GABAARs [48]. Instead, the major role of GABARAP may be receptor insertion into the cell surface 

membrane during synaptic delivery [49, 50].  

 



Molecular Basis of GlyR and GABAAR Clustering - Chapter 1 Introduction 

 

15 
 

Figure 3. Minimum-scheme of receptor clustering at the postsynaptic membrane. Neuroligins are thought to link the pre- 

and postsynaptic membrane and induce the formation of postsynaptic specializations. Recent investigations suggest that 

collybistin (red), a Cdc42 (orange) guanine nucleotide exchange factor, induces clustering of gephyrin (green). Gephyrin is 

thought to form a hexagonal lattice (green) beneath the postsynaptic neuronal membrane which interacts directly with 

microtubules (grey, thick helical arrangements) and indirectly with F-actin (grey, think helical arrangement). GlyR number 

at the neuronal surface membrane depends on transport processes mediated by the dynein motor (blue). Direct 

interactions of the GlyR (blue) and possibly also GABAAR (yellow) with the gephyrin scaffold are thought to be main 

determinants of the receptor residence time at postsynaptic sites, thereby regulating fast inhibitory synaptic transmission. 

© 2012 C Delto 

The described interactions of gephyrin with key proteins of the synapse additionally depend on 

gephyrin’s regulated self-association and the resulting higher order architecture which will be 

presented in detail in the next chapter. 
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Figure 4. Architecture of gephyrin. Gephyrin is composed of an N-
terminal G domain and a C-terminal E domain, which are connected by a 
presumably unstructured linker. Based on X-ray crystallographic 
structures, which revealed the E domain to form a dimer and the G 
domain to trimerize, it was hypothesized that gephyrin forms a hexagonal 
lattice beneath the neuronal membrane at postsynaptic sites. © 2012 V 
Tretter, M Mukherjee, HM Maric, H Schindelin, W Sieghart and SJ Moss 

1.3.1 Self-Association of Gephyrin 

Gephyrin is a modular protein 

composed of an N-terminal G 

domain and a C-terminal E domain. 

Based on the crystal structures of 

the bacterial MogA [51] and MoeA 

[52] proteins, which are homologous 

to the G and E domain, respectively, 

it was hypothesized that gephyrin 

forms a two-dimensional hexagonal 

lattice [53] beneath the neuronal 

surface membrane (Figure 4) at 

postsynaptic sites. Crystallographic 

analyses revealed that the E domain 

forms a dimer [52, 54, 55] and that 

the G domain trimerizes [51, 56, 57] 

(Figure 4), however, bacterially 

expressed full-length protein only 

forms a trimer in solution [58]. 

Subsequently, in vitro, trimeric, 

hexameric and higher order 

structures have been observed, 

depending in part on whether the E-

domain is in a dimeric or monomeric 

conformation [59, 60].  

While the molecular mechanisms responsible for gephyrin cluster assembly and disassembly still 

remain to be elucidated, it was demonstrated that oligomerization is essential for postsynaptic 

clustering [60] and that it differs between the splice variants [59, 61]. Interestingly, alternative 

splicing additionally alters gephyrin’s folding, phosphorylation status and even GlyR binding [61], 

while its metabolic function was shown to be independent of splicing effects [62]. How these 

differences in function correlate with the respective oligomerization state has not yet been 

elucidated at the molecular level. Possibly, gephyrin’s oligomeric state allows for an avidity-based 

ligand selection. Until now, quantitative studies applied only monomeric intracellular receptor loops 

or parts of them and hence did not take into account the multivalency of the interaction presumably 

present in vivo. Nonetheless, the gephyrin receptor complex has to be considered as a multimeric 

assembly. Each GlyR contains up to three gephyrin-binding β-subunits [14] while gephyrin offers 

three binding sites in its soluble trimeric form [58], and most likely a high density of binding sites in 

its clustered form. Therefore it can be inferred that the actual interaction strength in vivo is 

potentiated by avidity effects depending on the number of gephyrin-binding subunits in the 

pentameric receptor assembly and the oligomeric state of gephyrin. Hence, the second goal of my 

work was the analysis of a multivalent scaffold receptor complex, as well as the quantification of the 

avidity-based potentiated binding affinity. This aim is based on the detailed crystallographic and 

biophysical characterization of the gephyrin-GlyR complex [55] which will be highlighted in the next 

paragraph.  
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Figure 5. Structural basis of gephyrin-mediated GlyR 

anchoring. A, Overall architecture of the complex (PDB-ID: 
2FTS). The GlyR β-loop is shown in stick representation 
whereas gephyrin`s E domain and G domain are shown in 
cartoon representation. B, Close-up view into the binding 
pocket. The GlyR β-loop is tightly packed in the cleft 
formed by subdomains III and IV from one monomer, as 
well as subdomain IV from the other monomer. All 
residues in close proximity to the interface are highlighted 
as stick model and numbered. Phosphorylation of Ser403 
(marked in red) by PKC results in a weakened gephyrin 
interaction strength. © 2012 HM Maric 

1.3.2 Gephyrin-Mediated GlyR Clustering 

It is well established that GlyRs are highly enriched at postsynaptic sites located opposite of 

glycinergic nerve endings via a direct interaction with gephyrin, and that this process relies on 

synaptic activity [19, 21, 29-31, 63, 64]. Accordingly, GlyR clustering is abolished in spinal cord 

cultures after depletion of gephyrin expression using antisense-oligonucleotides [31] as well as in 

gephyrin knock-out mice [33].  

    Colocalization of GlyRs and gephyrin 

depends on a 13 residue motif residing in 

the cytoplasmic TM3-TM4 loop of the β-

subunit which was identified by biochemical 

techniques [19, 21] and subsequently 

described by X-ray crystallography [55] 

(Figure 5). On the other hand, gephyrin can 

interact with sub-synaptic microtubules [37], 

microfilaments [63], and their regulators 

such as profilin I and II [38], as outlined in 

Section 1.3 and Figures 3 and 4. Taken 

together, it was therefore concluded that 

gephyrin regulates the density of GlyRs at 

postsynaptic sites via direct interactions with 

the receptors and the cytoskeleton [63]. 

Following these results a more recent study 

[65] identified a protein kinase C (PKC) 

phosphorylation site within the structurally 

resolved part of the GlyR β-loop (residue 

Ser403, marked in red in figure 5) that 

causes a reduction of the binding affinity 

between the receptor and gephyrin. The 

same study identified accelerated receptor 

diffusion in the plasma membrane and that 

such GlyRs accumulate less strongly at 

synapses. It can therefore be concluded that 

the plasticity of inhibitory synapses can be 

regulated by kinases. 

The insights on the structural basis of gephyrin-mediated GlyR clustering form the basis of my 

studies on the multivalency of the GlyR-gephyrin interaction and turned out to be of great 

importance for my investigations of gephyrin’s role in GABAAR clustering. Indeed, gephyrin was 

proposed early to play a similar role in the accumulation of GABAARs at postsynaptic sites, and 

following this idea a pleiotropy of neurobiological studies, summarized in the following chapter, 

already addressed gephyrin’s role in GABAAR clustering. 
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1.3.3 Gephyrin-Mediated GABAAR Clustering 

As described in the previous paragraph, gephyrin-mediated GlyR clustering was identified early, 

and could be analyzed at atomic resolution later, however, gephyrin’s role in GABAAR-clustering 

remained elusive until recently. GlyRs and GABAARs share a close evolutionary relationship, as 

indicated by similarities in the respective gene structures [34]. Additionally, the neurotransmitters 

glycine and GABA share the same presynaptic transporter, the vesicular inhibitory amino acid 

transporter (VIAAT) [29, 66, 67]. Not surprisingly, in the spinal cord and several distinct brainstem 

areas, glycine and GABA can be coreleased from the same presynaptic terminal to activate 

postsynaptic GlyRs and GABAARs. Interestingly, gephyrin is indeed also involved in the aggregation 

and postsynaptic stabilization of GABAARs, and it is well established that glycinergic and GABAergic 

neurotransmission can be intermingled to provide inhibition of neuronal activity.  

The early finding of colocalization of a subset of GABAARs and gephyrin in clusters on neuronal 

surfaces implied that these receptors are either directly associated with this scaffold protein, or 

interact via a linker protein [68-70]. Reducing the expression of gephyrin in cultured neurons or mice 

results in the selective loss of synaptic localization of GABAARs composed of α2βγ2 or α3βγ2 subunits 

[69, 71]. In contrast to this finding, a major subset of GABAARs comprised of either α1βγ2 or α5βγ2 

subunits can accumulate and cluster at synapses independently of gephyrin [72, 73], indicating a 

receptor subunit-specific role of gephyrin. Vice versa, the picture is complicated by the finding that 

GABAARs are essential for postsynaptic clustering of gephyrin at all synapses, independently of the 

GABAAR subunits being present [69, 74-77].  

The γ2 subunit has been consistently proposed as a candidate for mediating synaptic targeting of 

GABAARs [78, 79]. In line with this idea, knockout mice with a deletion of the γ2 subunit die soon 

after birth and lack GABAAR clusters [71]. Transfection of neuronal cultures from these mice with γ2 

cDNA restored clustering [80], while transfection of cultured hippocampal neurons with shRNAi 

constructs against gephyrin reduced the number of γ2-containing GABAAR clusters [81]. Despite this 

evidence, a direct interaction of the GABAAR γ2 subunit and gephyrin could not be demonstrated 

until now. Compared to α1-3 containing GABAARs, γ2-containing receptors show a stronger 

extrasynaptic localization as judged from stainings of hippocampal pyramidal neurons in culture and 

in vivo [82]. Indeed GABAARs of the α5βxγ2 composition were found to be located mostly at 

extrasynaptic sites, despite containing a γ2 subunit, where they are associated with the sub-

membraneously located protein radixin [25, 26, 83]. While a role in the synaptic anchoring of 

GABAARs cannot be ruled out, it can be assumed that γ2 subunits might not be the major single 

determinant for the synaptic targeting of GABAARs.  

  



Molecular Basis of GlyR and GABAAR Clustering - Chapter 1 Introduction 

 

19 
 

 

Figure 6. Residues 360-375 mediate clustering of α2-containing GABAARs. The 
structures of the chimeric variants are indicated in the line diagram with grey 
lines indicating the intracellular loop of α2 and black lines indicating the α1-
loop. α2 containing receptors display a stronger clustering than α1 containing 
receptors. Specifically residues 360-375 in the α2 subunit determine the 
receptor subunit cluster number. The α1-loop in which α2 residues 360-375 are 
introduced instead of the corresponding α1 residues (Chim1) shows strong 
clustering. In contrast, absence of α2 residues 360-375, either by exchange or 
deletion, disrupts receptor clustering (Chim2 and Δα2). © 2008 V Tretter, TC 
Jacob, J Mukherjee, JM Fritschy, MN Pangalos, SJ Moss 

In 2008 Tretter et al. 

succeeded in demonstrating a 

specific interaction between 

gephyrin and the GABAAR α2 

subunit. Detergent-free 

conditions allowed the 

definition of a minimal core-

sequence which is sufficient 

for gephyrin-mediated 

receptor clustering (Figure 6) 

[27]. The lack of a detailed and 

quantitative in vitro 

characterization of this 

interaction may be attributed 

to the extensive hydrophobic 

nature of the identified 

GABAAR α2 gephyrin-binding 

motif. Interestingly, the 

identified linear motif is unique among all 19 GABAAR subunits and in addition displays no obvious 

conservation with the GlyR β subunit motif. This possibly implies a different binding site on gephyrin 

and suggests a distinct regulation of this interaction. Recent yeast two-hybrid (Y2H) assays further 

suggested an interaction between gephyrin and the GABAAR α3 subunit [84] and, interestingly, 

propose unique binding sites on gephyrin for the GABAAR α2, α3 as well as GlyR β subunits [84]. 

Prompted by the findings described in section 1.3.2 and 1.3.3 we formulated five gephyrin-related 

goals, which were central to my thesis: 

� Development of bivalent receptor derived minimum peptides to verify and quantify the 

multivalency of the receptor gephyrin interaction in vitro. 

 

� Falsification or verification of the proposed [27, 84] direct gephyrin GABAAR α1-3 interactions, 

mapping of the binding sites as well as identification of key residues for complex formation. 

 

� Deciphering gephyrin’s receptor subunit preference and test for synergisitc or competitive 

binding effects. 

 

� If applicable, obtaining cocrystal structures of the different gephyrin-GABAAR subunit 

complexes. 

 

� If possible identify possible phosphorylation sites within the identified motifs and 

demonstrate reduction of the direct gephyrin affinity upon introduction of phosphomimetic 

residues.  

 

Interestingly recent Y2H experiments suggested a possible role of CB in the process of gephyrin-

mediated receptor clustering [84]. In particular, a tripartite complex of gephyrin, CB and GABAAR α2 

was poposed. Therefore my study was expanded to cover CB which will be introduced in the next 

chapter. 
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1.4 Collybistin 

Collybistin (CB) (from the Greek word 

to exchange (κολλυ-βιστομαι)) and its 

human homolog hPEM-2 (human 

homolog of posterior end mark-2) are 

members of the guanine nucleotide 

exchange factor (GEF) superfamily. The 

CB gene is highly expressed in the brain 

and is located on the human X-

chromosome. GEFs catalyze GDP–GTP 

exchange on small GTPases and those 

that act on the Rho/Rac/Cdc42 GTPase 

family [85] and universally feature a Dbl 

homology (DH) domain (also called 

RhoGEF domain) followed by a pleckstrin 

homology (PH) domain. hPEM-2 appears 

to activate Cdc42 but not Rac or RhoA 

[86-88], which influences cell 

morphology by initiating actin 

cytoskeleton remodeling [89]. 

Accordingly, it has been proposed that, 

at inhibitory synapses, CB initiates local 

remodeling of the sub-synaptic 

cytoskeleton [90]. In contrast, analysis of 

Cdc42 knockout mice indicated that 

Cdc42 is dispensable for gephyrin and 

GABAAR clustering [91].  

While there is only one CB isoform 

identified in humans, there exist at least 

six in rats and four in mice. CB splice 

variants differ either in their C termini or 

in the presence or absence of an N-

terminal SH3 domain [43, 87, 92] (Figure 

7). The highly conserved DH domain 

interacts directly with the GTPase while 

the PH domain binds with high affinity to 

membrane phosphoinositides and 

thereby recruits CB to the membrane 

[43, 91, 93].  

  

Figure 7. Architecture and structure of Rho GEFs 4 and 9. 

A, Schematic representation of the domain architecture of 
known Rho GEF 9 (CB) isoforms and Rho GEF 4 (ASEF). 
Different colors denote distinct sequences at the N or C 
termini. The C terminal region of CB3 is identical to hPEM-
2, the only isoform described in humans. Human Rho GEF 9 
and 4 domains share between 60% and 72% sequence 
identity. In mice, the CB1-CB3 nomenclature does not apply 
because the sequence closest to rat CB3 is encoded in 
three variants with different N-termini, whereas the 
sequence closest to either CB1 or CB2 has a unique C 
terminus. B, Rho GEF crystal structures. Structure of Rho 
GEF 4 (ASEF) PDB-ID: 2PZ1 and Rho GEF 9 (CB) PDB-ID: 
2DFK. The high sequence identity is mirrored at the level of 
secondary structure. © 2012 HM Maric 
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1.4.1 Collybistin`s Role in GABAAR Clustering 

 The SH3 domain of CB was proposed to act as 

an auto-inhibitory domain by binding intra-

molecularly to both the PH and DH domains. In line 

with this idea, the crystal structure of CB without 

the SH3 domain but in complex with Cdc42 

describes CBs open active form, while the structure 

of the CB homologous protein ASEF which contains 

an SH3 domain describes a closed inactive 

conformation [94, 95] (Figure 8). In theory, either 

PH domain-binding phosphoinositides, or SH3 

ligand-binding could trigger the disruption of the 

possibly inhibiting SH3-PH domain interaction. 

Recent Y2H assays suggested GABAAR α2 [84] 

and NL-2 [41] as possible activators for CB by 

directly interacting with the SH3 domain and 

thereby releasing it from the PH and DH domains. 

Interestingly, mapping studies additionally 

proposed an overlapping binding site for gephyrin 

and CB on the large intracellular loop of the 

GABAAR α2 subunit and based on Y2H studies it was 

even suggested that a tripartite gephyrin-CB-

GABAAR α2 complex may form in a synergistic 

binding event. In line with the GABAAR-dependent 

function of CB to initiate sub-membranous 

postsynaptic gephyrin-clustering, the missense 

mutation G55A within the SH3 domain of CB 

disrupts both the clustering of α2-containing 

GABAARs and of gephyrin in cultured neurons [84], 

as well as the direct receptor-CB interaction in Y2H 

assays. Interestingly, this naturally occurring 

mutation is associated with hyperekplexia, epilepsy, 

and mental retardation in patients [43, 96]. So far 

neither NL-2 nor GABAAR α2 binding could be 

verified with purified proteins [43, 87]. 

Based on these recent findings we added the following CB-related goals to the work presented 

here: 

� Verification or falsification of possible direct interactions between CB SH3 and GABAAR α1-3 

subunits using recombinant purified proteins. 

 

� Determination of binding parameters and hence determination of SH3-mediated GABAAR 

subunit preference of CB.  

Figure 8. Structural basis of SH3-mediated CB 

inhibition. A, Superposition of CB2SH3- (marked in in 

grey) lacking the SH3 domain and its close homolog 

ASEF (colored in blue, orange and pink) with an N-

terminal SH3 domain. (Rho GEF 4 (ASEF) PDB-ID: 2PZ1 

and Rho GEF 9 (CB) PDB-ID: 2DFK). The DH and PH 

domains engage in direct intra-molecular interactions 

with the SH3 domain resulting in a 30 Å shift towards 

the SH3 domain, when compared to the domain 

arrangement in CB. Possible inter-molecular ligands 

may have to compete against this domain self-

masking. It was therefore proposed that the CB 

structure lacking the SH3 domain displays a Rho GEF 

domain arrangement that resembles its activated 

form, while the ASEF structure would provide a view 

of an inactivated Rho GEF. B, Schematic domain 

architecture of CB2SH3- and ASEF. © 2012 HM Maric 
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1.4.2 Collybistin`s Role in Gephyrin Clustering 

Interestingly, in addition to GABAAR clustering, CB has been consistently implicated in the 

postsynaptic clustering of gephyrin [97]. Mass spectrometry-based proteomic studies identified 

CB at inhibitory synapses [98] and video-microscopic analysis verified colocalization with gephyrin 

at inhibitory synapses [84]. Furthermore, coexpression of CB with gephyrin in heterologous cells, 

yields gephyrin aggregates that can be either found intracellularly or at the membrane, depending 

on whether CB contains an SH3 domain (intracellular) or lacks it (sub-membrane) [87].  

Knockout (KO) studies with the collybistin gene [99] revealed a complex role of CB in gephyrin-

mediated GABAAR clustering. CB KO mice show a loss of gephyrin and GABAAR clusters in the 

hippocampus and amygdala, while in the brainstem, neocortex and several other brain areas the 

clustering of gephyrin, GABAARs or GlyRs is unaffected. It was suggested that other GEFs might 

compensate for the loss of CB function in these brain areas. In line with the unaltered GlyR 

distribution, CB KO mice showed no signs of a motor neuron phenotype, which would be 

indicative of an impaired glycinergic inhibition [100]. However, in accordance with a region-

specific loss of γ2-subunit containing GABAAR clusters, the CB KO mice show an enhanced reaction 

to aversive stimuli, as demonstrated by anxiety-related test paradigms, like the open field and the 

elevated plus-maze [99]. Indeed, a similar anxiety phenotype has been observed in mice 

expressing only a single functional GABAAR γ2-subunit allele [101] and therefore the anxiety-

related responses were explained by the reduced synaptic GABAAR clusters in the CB KO mice in 

the septohippocampal and amygdala systems. 

In contrast, the molecular basis of CB’s role in gephyrin and GABAAR clustering still remains to 

be established. While gephyrin was identified early on as a potential direct binding partner in 

yeast two-hybrid assays [43], an interaction that could later be verified with purified proteins [94], 

the specific interaction sites and the overall binding strength of this interaction remain elusive. 

Based on the findings summarized in this chapter we expanded my CB-related aims:  

 

� Comparison of gephyrin`s and CB`s GABAAR binding with purified proteins in vitro. 

 

� Analysis of a possible gephyrin, CB SH3 and GABAAR tripartite interaction to reveal synergistic 

or competitive binding events among the different binding partners. 

 

This work focused on GABAA and glycine receptor-related direct scaffold interactions and 

therefore the analysis of the interaction of full-length CB with gephyrin was not addressed. While 

gephyrin and CB were proposed to mediate GABAAR clustering at postsynaptic sites, radixin was 

shown to cluster these receptors at extrasynaptic sites. Radixin-mediated clustering was analyzed 

in this work and therefore will be discussed in the following final chapter of the introduction.   
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Figure 9. Architecture of 

ERM protein family 

members. Schematic 
representation of the 
domain architectures of 
ezrin, moesin and radixin. 
Sequence identities, are 
indicated for each domain. 
© 2012 HM Maric 

1.5 Radixin 

Radixin (derived from the Latin word for root (radix)), was originally identified as an actin-binding 

protein [102]. A Radixin-knockout in mice leads to deafness [103] due to defective stereocilia in the 

inner and outer hair cells, which show a high radixin expression level [104]. In line with this finding, 

mutations in the human radixin gene also correlate with neurosensory hearing loss [105]. 

Additionally, radixin modulates the localization of the multidrug resistance-associated protein 2 

(MRP2), an organic anion transporter, at the canalicular membrane in hepatocytes [106, 107]. 

Together, ezrin, radixin and moesin (ERM) share 70% identity and form the ERM protein family. 

The majority of ERM proteins were shown to act as linker proteins that couple extracellular proteins 

to the cytoskeleton. They are composed of three conserved domains (Figure 9): 

(A) An N terminal FERM domain which functions as a universal protein-binding module. Its name 

derives from the first proteins that were shown to contain this domain (four-point-one (4.1), ezrin, 

radixin, moesin). This domain was demonstrated to directly interact with receptors, other 

transmembrane proteins, extracellular matrix molecules and adhesion proteins [26, 108-113].  

(B) A central α-helical domain, which either adopts an elongated conformation or folds back on 

the FERM domain, thus allowing the C terminal domain to mask FERM ligand binding sites.  

(C) The high affinity auto-inhibitory module of the FERM domain which is therefore also referred 

to as ERM adhesion domain (ERMAD). The mechanisms of ERMAD-mediated FERM inhibition could 

be resolved structurally and will be discussed in the next paragraph. 

(D) The C terminal domain, which was shown to directly bind to actin filaments [114].  

Despite their close sequence and structural homology ERM protein family members display a 

unique expression pattern in various cell types and tissues, even within the CNS [115, 116]. In the 

brain, ERM proteins have been implicated in growth cone development [116-119], axonal outgrowth, 

morphological rearrangements, motility and signaling [120, 121]. Radixin has been detected in dorsal 

root ganglion neurons [122], embryonic hippocampal cells [117] and in adult hippocampal astrocytes 

[115].  

Numerous studies demonstrate that the variety of functions displayed by ERM family members is 

mirrored by a variety of different modes of self-association, phosphorylation and ligand binding [123, 

124]. The next section will specifically summarize the functional implications of FERM-ligand 

cocrystal structures.  

100% 100% 

60%  87% 

α-helical linker FERM  

51% 86% 
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Moesin 

  

  

  

  

FERM-masking Membrane association and ligand binding 
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100% 
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Figure 10. Comparison of different FERM domain 

crystal structures. A, Most commonly FERM 

domains adopt a typical clover-like architecture 

(PDB-ID: 1GC7) formed by their three subdomains 

F1, F2 and F3. B, The Talin FERM domain (PDB-ID: 

3IVF) instead adopts a linear conformation (colored 

according to the subdomain architecture), which is 

superimposed onto a clover-like FERM domain in 

grey. © 2012 HM Maric 

1.5.1 Function of the FERM Domain of Radixin 

Among the FERM domain structures of different proteins that have been solved independently 

using X-ray crystallography are:  

� Ezrin [125], radixin [126] and moesin [127], which together form the ERM-protein family 

described in the previous section. 

 

� Talin [128], a protein concentrated at regions of cell-substratum contact in lymphocytes and at 

cell–cell contacts. 

 

� Merlin [129] [130] and DAL-1 (differentially expressed in adenocarcinoma of the lung protein, 

also known as 4.1B) [131], which are important tumor suppressor proteins. 

 

� Myosin-x [132], an unconventional myosin motor protein. 

 

� Focal adhesion kinase (FAK) [133], a tyrosine kinase involved in signaling through integrins. 

 

� 4.1R [134] (part of the 4.1 gene family consisting of 4.1B, 4.1R, 4.1G and 4.1N), which plays a key 

role in regulating physical properties of the erythrocyte membrane skeleton by stabilizing the 

spectrin-actin interaction and due to its importance to the red blood cell designated 4.1R 

 

The FERM domain can be subdivided into 

three subdomains (F1, F2 and F3) which are 

arranged in a shape resembling a clover leaf 

(Figure 10A). A single exception to this 

arrangement is talin’s FERM domain which 

instead adopts a linear subdomain 

arrangement, despite sharing 26% sequence 

identity with radixin’s FERM domain (Figure 

10B). The three subdomains display significant 

structural homology to protein folds 

associated with specific functions. Specifically, 

F1 folds similar to ubiquitin, F2 shows a 

secondary structure comparable to the acyl 

coenzyme A binding protein while F3 adopts a 

fold similar to the phosphotyrosine binding 

(pTB) domain. Interestingly, pTB domains 

adopt a similar fold as PH domains and, in case 

of CB and FERM, they both mediate 

membrane targeting by binding membrane-

bound phosphoinositols. 

F1 

F2 

F3 

F1 

F2 

F3 

F0 

A B 
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Figure 11. Structural basis of the multiple ligand-binding modes of FERM. A, FERM-IP3-complex (PDB-ID: 1GC6). B, FERM 
in complex with ICAM1 (cyan, PDB-ID: 1J19), NEP (violet, PDB ID: 2YVC), CD-43 (green, PDB-ID: 2EMS), FERM (pink, PDB-ID: 
2D2Q), TSLC1 (red, PDB-ID: 3BIN) and PSGL1 (yellow, PDB-ID: 2EMT). C, FERM in complex with NHERF-1 (red, PDB-ID: 
2D11), EBp50 (orange, PDB-ID: 1SGH). D, Structure of full-length moesin. Moesin’s ERMAD and helical linker region occupy 
all known ligand binding sites of FERM. The linker interferes with IP3 binding (magenta), ERMAD interferes with ICAM1, 
NEP, CD-43, TSLC1, PSGL1 binding (cyan), as well as EBp50 and NHERF-1 binding (red) and additionally occupies large parts 
of the FERM domain surface (blue). © 2012 HM Maric 

 

Crystal structures of the isolated FERM domains provide a view of its active form since the 

inhibitory ERMAD is absent. Various crystal structures of FERM domain-ligand complexes define 

different modes of binding which rely on distinct consensus motifs (Figure 11). The pocket between 

F2 and F3 can be occupied by inositol triphosphate (IP3), the soluble head group of 

phosphatidylinositol 4,5-bisphosphate (PIP2) (Figure 11A). The cytoplasmic tails of the intercellular 

adhesion molecule 2 (ICAM2), cluster of differentiation (CD) proteins 43 and 44, p-selectin 

glycoprotein ligand 1 (pSGl1), neutral endopeptidase (NEP) and tumor suppressor in lung cancer 1 

(TSLC1) bind into the large groove bordered by a β-strand and an α-helix of subdomain F3 (Figure 

11B), although they are only moderately conserved. This interaction involves a peptide backbone 

interaction with a FERM β-strand (Figure 11B) and is similar to the binding of the phosphorylated 

peptide of insulin receptor substrate 1 (IRS1) to the pTB domain of the insulin receptor [135, 136]. In 

contrast, peptides, which are derived from either NHERF-1 or EBp50 (Figure 11C), display no 

sequence homology to the aforementioned FERM ligands and bind through a different surface on 

subdomain F3 [137].  

A B 

C D 
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Figure 12. Mapping of the direct FERM GABAAR α5 subunit 
interaction. In Y2H studies residues 89-185 of radixin are 
sufficient to yield a positive signal for GABAAR α5 binding and vice 

versa α5 residues 342-357 are sufficient for radixin binding. © 
2012 HM Maric 

Interestingly, EBp50 reduces the affinity of the FERM domain for the ligands discussed above, 

despite binding to a different binding site [138]. The crystal structure of the moesin FERM domain in 

complex with its ERMAD defined the molecular basis of ERMAD-based FERM inactivation [139] 

(Figure 11D). Specifically, a β-strand and four α-helices mask a large surface on the F2 and F3 

subdomains [140]. ERMAD occupies both, the ICAM2 and the EBp50 binding sites. The independent 

binding of ERMAD helices to FERM [141] is thought to result in an avidity-based potentiation of the 

FERM-ERMAD binding affinity. Therefore, this masking mechanism most likely explains earlier 

findings of inactive full-length ERMs [142]. ERM protein oligomerization was shown early [143, 144] 

and functional implications have been proposed. Indeed, a second masking mechanism was 

identified, which relies on a FERM domain head to tail dimerization [145]. 

Activation of ERM proteins is a multistep process [146], which requires several conformational 

changes [114]. The intra-molecular FERM-ERMAD association is thought to mask the F-actin [147, 

148] as well as the ligand binding sites. PIP2 binding of FERM [149] induces a conformational change 

which renders a conserved threonine residue more accessible to phosphorylation [146]. In line with 

this idea, simultaneous mutation of four lysine residues in the ezrin FERM domain (analogous to the 

mutant radixin-GFP K(253,254,262,263)N blocks PIP2 binding and therefore membrane association 

[150]. PIP2 binding together with the phosphorylation opens the intra-molecular FERM-ERMAD 

association, thereby exposing the C terminal F-actin and N terminal ligand binding sites [147].  

1.5.2 Radixin-Mediated GABAAR Clustering 

The group of Matthias Kneussel (ZMNH Hamburg) identified radixin as an essential clustering 

factor for α5-containing GABAARs [26].  

Making use of the Y2H system the 

binding sites on both proteins were mapped 

(Figure 12) and direct binding was verified 

using recombinant proteins in pull-down-

assays of brain lysates. The same study 

furthermore revealed that both, radixin’s 

phosphorylation-dependent activation as 

well as its binding to actin, are crucial 

prerequisites for receptor clustering. 

Additionally, the study ruled out that radixin 

is involved in receptor trafficking and 

verified that the direct interaction with the receptor is specific to radixin and does not occur with 

either one of its close homologs moesin or ezrin. Finally, radixin and gephyrin were shown to neither 

colocalize nor bind to each other and hence most likely represent separate receptor-anchoring 

systems. 

Previous studies showed that GABAARs with an α5βxγ2 composition are mainly localized 

extrasynaptically despite the presence of a γ2 subunit, [79, 151]. Extrasynaptic inhibitory receptors 

mediate tonic inhibition, which reduces the overall probability for action potential generation. 

Interestingly, upon loss of extrasynaptic GABAAR α5 clusters, bicuculline-sensitive tonic currents are 

still present, indicating that un-clustered receptors remain functional in the neuronal surface [26]. 

Therefore, the reason why extrasynaptic GABAAR containing α5 subunits assemble into clusters [151, 

 

Linker FERM  ERMAD Radixin 

Extracellular   Intracellular  GABA
A
R α5 I II III IV 

Residues 342-357 sufficient for radixin binding in Y2H  

Residues 89-185 sufficient for GABA
A
R α5 binding in Y2H  
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152] remains unclear, nevertheless, different possible functions of the clustering have been 

proposed [26]: 

(A) Glial cells were shown earlier be able to release neurotransmitters including GABA [153, 154], 

therefore extrasynaptic GABAAR α5 clusters might represent neuron–glia contact membrane 

specializations.  

(B) Extrasynaptic GABAAR clusters might be involved in signaling cascades similar to those 

proposed for extrasynaptic glutamate receptors. Here, activation of extrasynaptic NMDARs, unlike 

synaptic receptors, would cause cAMP-response element binding protein (CREB) dephosphorylation 

eventually resulting in mitochondrial dysfunction and cell death [155]. 

(C) Clusters at extrasynaptic sites may function as a reserve pool for the rapid recruitment into 

synapses. Although the majority of radixin-associated GABAAR α5 subunit clusters are located at 

extrasynaptic sites, both proteins indeed occasionally localize to inhibitory synapses [26, 79]. 

To decipher the molecular basis of radixin-mediated extrasynaptic GABAAR clustering my 

experiments addressed the following issues: 

� Verification or falsification of the direct FERM α5-loop interaction with purified proteins and 

determination of the respective binding affinity. 

 

� Fine-mapping of the involved binding regions and comparison to known FERM ligand-binding 

sites.  

 

� If possible, obtaining a high resolution cocrystal structure of the FERM α5-loop complex. 

 

� Identification of possible posttranslational modifications within the fine-mapped binding sites 

proposing a regulation mechanism. 
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2 Materials and Methods 

2.1 Biochemicals 

2.1.1 Bacterial Strains 

Table 1. Bacterial strains. 

Name Genotype Source 
 
BL21-CodonPlus(DE3)-RIL 

 

E.coli B F-ompT hsdS(rB-mB-) dcm+ Tetr gal I (DE3) 
endA Hte [argU ileY leuW Camr] 
 

 
Stratagene 

DH5α F- φ80lacZΔM15 Δ(lacZYAargF) U169 deoR recA1 
endA1 hsdR17(rk-, mk+) phoA supE44thi-1 gyrA96 
relA1 λ- 

Invitrogen 

 

2.1.2 Crosslinkers 

Maleimide crosslinkers were purchased from Pierce Thermo Scientific (Rockford, USA) and 

haloalkyl crosslinkers from Invitrogen (Carlsbad, USA). 

Table 2. Crosslinker. 

Crosslinker 
Sulfhydryl 

reactive group 
Linker and Length 

(Å) 
Molecular Weight 

(g/mol) 
Structure 

Bromomethyl-2,6-dimethyl-pyrazolo 
1,2a-pyrazole-1,7-dione 

(Dibromobimane) 
(bbBr) 

Haloalkyl 
Pyrazolopyrazole 

(6) 
350.10 

 

1,2-Bismaleidoethane 
(BMOE) 

Maleimide 
Ethyl 

(8) 
220.18 

 

1,4-Bismaleidobutane 
(BMB) 

Maleimide 
Butyl 
(11) 

248.23  

1,6-Bismaleidohexane 
(BMH) 

Maleimide 
Hexyl 
(13) 

276.23 
 

1,8-Bismaleidodiethylenglycol 
(BM(PEG)2) 

Maleimide 
Diethyleneglycol 

(15) 

308.29 
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2.1.3 Enzymes 

Table 3. Enzymes. 

Enzyme Source 
       Chymotrypsin        Sigma-Aldrich 

Desoxyribonuclease I Invitrogen 
DpnI New England Biolabs 
Factor Xa Calbiochem 
Papain Roth 
Phusion DNA Polymerase Finnzymes 
Thrombin GE Healthcare 
Trypsin Sigma-Aldrich 

 

2.1.4 Peptides 

Table 4. Peptides. 

Peptides were purchased from Genscript USA Inc. (Piscataway, New Jersey, USA) and PANATecs 

(Tübingen, Germany) at a minimal purity of 90%. 

Source Protein Sequence Modification 
Solubility 

(1 mM) 

Binding Assays / 

Dimerization / 

Crystallization 

GABAAR α1 336-350 KNNTYAPTATSYTPN - pH 6-8 Y / N / N 

GABAAR α1 336-350 KNNTYAPTATSYTPN N-Biotin pH 6-8 Y / N / N 

GABAAR α1 + Cys TYAPTATSYTPNLARGDC - pH 6-8 Y / Y / N 

GABAAR α1 / GlyR β TYAPTATLPRDFELSNYDCY - pH 6-8 Y / Y / N 

GABAAR α2 335-359 QNNAYAVAVANYAPN - 20% DMSO Y / N / N 

GABAAR α2 335-359 QNNAYAVAVANYAPN N-Biotin 20% DMSO Y / N / N 

GABAAR α2 + Cys AYAVAVANYAPNLSKDC - 20% DMSO Y / Y / N 

GABAAR α3 366-380 KNTTFNIVGTTYPIN - 10% DMSO Y / N / N 

GABAAR α3 366-380 KNTTFNIVGTTYPIN N-Biotin 10% DMSO Y / N / N 

GABAAR α3 + Cys TFNIVGTTYPINLAKDTEC - 10% DMSO Y / Y / N 

GABAAR α5 342-357 NYFTKRGWAWDGKKAL N-Biotin pH 6-8 Y / N / N 

GABAAR α5 342-364 NYFTKRGWAWDGKKALEAAKIKK N-Biotin pH 6-8 Y / N / N 

GABAAR α5 346-365 KRGWAWDGKKALEAAKIKKK - pH 6-8 Y / N / N 

GABAAR β2+Cys DFSLYTMDPHENILLSTC - pH 6-8 Y / Y / N 

GABAAR γ2+Cys MFSFKAPTIDIRPRSATIC - pH 6-8 Y / Y / N 

GlyR β 398-411 FSIVGSLPRDFELS - pH 6-8 Y / N / Y 

GlyR β 398-411 FSIVGSLPRDFELS N-Biotin pH 6-8 Y / N / N 

GlyR β 397-416 DFSIVGSLPRDFELSNYDCY - pH 6-8 Y / Y / Y 

GlyR β / GABAAR α1 DFSIVGSSYTPNLARGDPGL - pH 6-8 Y / N / N 

GlyR β / GABAAR α3 DFSIVGSTYPINLAKDTEFS - pH 6-8 Y / N / N 
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2.1.5 Plasmids 

Table 5. Plasmids. 

Insert Tag / Vector / Cleavage 
Purification / 

Crystallization 
Source 

Collybistin I  4-72 (SH3)    
   SH3 WT N-GST / PGEX-4T2 / Thrombin Y / N Brose N. 
   SH3 D33N N-GST / PGEX-4T2 / Thrombin - Amato M. 
   SH3 D33N,D51N N-GST / PGEX-4T2 / Thrombin Y / N Amato M. 
   SH3 W45A N-GST / PGEX-4T2 / Thrombin - Amato M. 
GABAAR α1 (α1)    

   α1 full-lengh WT pEGFP-N2 - Kneussel M. 

   α1 (307-393) WT N-GST / PGEX-5x-1 / FactorXa - Kneussel M. 

   α1 (307-393) WT N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) Y340A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) Y347A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) A341S, P342I N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) A341S N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) P342I N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) T348A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) T348E N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) T348D N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) Δ357–368 N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) Δ333–348 N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α1 (307-393) α6 (333–348) N-His6 / pET M-11 / TEV Y / N Maric H.M. 

GABAAR α2 (α2)    

   α2 (307-391) WT N-His6 / pET M-11 / TEV Y / N Tretter V. 

   α2 (307-391) V343G N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α2 (307-334) (Q335stop) N-His6 / pET M-11 / TEV - Amato M. 
   α2 (307-350) (S351stop) N-His6 / pET M-11 / TEV - Amato M. 

GABAAR α3 (α3)    

   α3 (332-429) WT N-His6 / pET M-11 / TEV Y / N Tretter V. 

   α3 (332-429) F369A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α3 (332-429) I371A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α3 (332-429) G373V N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α3 (332-429) Y376A N-His6 / pET M-11 / TEV Y / N Maric H.M. 

   α3 (332-429) Δ369–378 N-His6 / pET M-11 / TEV Y / N Tretter V. 

   α3 (332-429) Δ362-378 N-His6 / pET M-11 / TEV Y / N Tretter V. 

   α3 (332-429) Δ362-368 N-His6 / pET M-11 / TEV Y / N Tretter V. 

   α3 (332-429) Δ362-378 N-His6 / pET M-11 / TEV Y / N Tretter V. 

GABAAR α5 (α5)    

   α5 (342-429) WT N-His6 / pET M-11/ TEV Y / N Maric H.M. 

   α5 (348-429) WT N-His6 / pET M -11/ TEV Y / N Maric H.M. 

   α5 (352-429) Wt N-His6 / pET M -11/ TEV Y / N Maric H.M. 

   α5 (357-429) WT N-His6 / pET M -11/ TEV Y / N Maric H.M. 

   α5 (342-429) K354A/K355A N-His6 / pET M -11/ TEV - Maric H.M. 

   α5 (342-429) W349A/W351A N-His6 / pET M -11/ TEV - Maric H.M. 

   α5 (342-429) L350A N-His6 / pET M -11/ TEV Y / N Maric H.M. 

   α5 (342-429) WT N- GST / pET M -30/ TEV Y / N Maric H.M. 

   α5 (342-429) WT N-NusA / pET M-60/ TEV Y / N Maric H.M. 

   α5 full-length WT Myc / pBK-CMV / - - Kneussel M. 

   α5 full-length WT HA /pBK-CMV / - - Kneussel M. 

   α5 (342-429) WT N-GST / PGEX-5x-1 / FactorXa Y / N Kneussel M. 

GABAAR β2 (β2)    

   β2 (302-464) WT N-GST / PGEX-5x-1 / FactorXa - Moss S.J. 
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GABAAR γ2 (γ2)    

   γ2 (317-403) WT N-GST / PGEX-5x-1 / FactorXa - Moss S.J. 

Gephyrin (Geph)    

   GephGL WT (1-310) N-His6 / pQE-30 / Thrombin Y / N Kim E.Y. 

   GephG WT (1-188) N-His6 / pQE-30 / Thrombin Y / Y Kim E.Y. 

   Full-length Geph P2 (1-736) WT N-His6 / pQE-30 / Thrombin Y / N Kim E.Y. 

   GephE (318-736) WT N-Intein / pTWIN / pH-Shift Y / Y Kim E.Y. 

   GephE (318-736) F330A N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   GephE (318-736) P713E N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   GephE (318-736) P713E, P714E N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   Full-length Geph P2 (1-736) WT N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   Full-length Geph P2 (1-736) F330A N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   Full-length Geph P2 (1-736) P713E N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

   Full-length Geph P2 (1-736)P713E, P714E N-Intein / pTWIN / pH-Shift Y / N Kim E.Y. 

GlyR β (β)    

   β (378-426) WT C-Intein / pTYB-2/ Thiolat Y / Y Kim E.Y. 

   β (378-426) F398A C-Intein / pTYB-2/ Thiolat Y / N Kim E.Y. 

   β (378-426) S399A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

   β (378-426) I400A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

   β (378-426) S403A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

   β (378-426) F408A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

   β (378-426) F398A, I400A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

   β (378-426) F398A, I400A, F408A C-Intein / pTYB-2 / Thiolat Y / N Kim E.Y. 

Radixin (Rdx)    

   Rdx FERM (1-310) WT N-GST / pET M-30 / TEV Y / N Maric H.M.  

   Rdx FERM (1-310) WT N-NusA / pET M-60 / TEV Y / N Maric H.M.  

   Rdx FERM (1-310) WT N-His6 / pET M-11 / TEV Y / Y Maric H.M. 

   Rdx FERM (1-295) WT N-His6 / pET M-11 / TEV Y / Y Maric H.M. 

   Rdx full-length (1-583) WT N-GST / pGEX-5x-1 / FactorXa Y / N Maric H.M. 

   Rdx full-length (1-583) T564A N-GFP / pEGFP-N2 / - - Kneussel M. 

   Rdx full-length (1-583) T564D N-GFP / pEGFP-N2 / - - Kneussel M. 

   Rdx (1-468) WT N-GFP / pEGFP-N2 / - - Kneussel M. 

   Rdx (1-468) WT myc / pBK-CMV / - - Kneussel M. 

   Rdx (1-468) K(253/254/262/263)N myc / pBK-CMV / - - Kneussel M. 

Abbreviations: Y: Yes; N: No.  
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2.2 Chemicals 

2.2.1 Crystallization Screens 

Screen formulations were based on commercial available screens given in table 6 and pipeted in-

house using the Lissy liquid handling robot and the appropriate stock solutions.  

Table 6. Crystallization screens.  

Name Source 
Additive Screen Hampton Research 
Crystal Screen I + II Hampton Research 
Index Screen HT Hampton Research 
Nextal PEG Suite Qiagen 
Nucleix Suite Qiagen 
Optimix 1 – 5 Topaz 
Protein Complex Screen Qiagen 
Wizard Screen 1 Emerald BioSystems 
Wizard Screen 2 Emerald BioSystems 

 

2.2.2 Low Molecular Weight Chemicals 

Chemicals were purchased at analytical grade or better from Applichem (Darmstadt), Carl Roth 

(Karlsruhe), Fluka (Neu-Ulm), Hampton Research (Laguna Hills, USA) or Sigma Aldrich (Seelze). 

Table 7. Low molecular weight chemicals. 

Chemical Catalogue ID Supplier 

2-Propanol (Isopropanol) 6752.4 Roth 

Acetic acid (glacial) 7332.2 Roth 

Acetonitrile AE70.2 Roth 

Ammonia CP17.1 Roth 

Ammonium carbonate 09832 Fluka 

Ammonium peroxodisulfate 09913 Fluka 

Ammonium sulfate 9318.1 Roth 

Ampicillin (sodium salt) K029.2 Roth 

Calcium chloride HN04.3 Roth 

Chelex-100 Sodium 790150 Sigma-Aldrich 

Chloramphenicol 3886.3 Roth 

Coomassie Brilliant Blue R25 3862.2 Roth 

Dimethylformamide T921.1 Roth 

Dimethylsulfoxide A994.2 Roth 

Dithiothreitol 6908.4 Roth 

Ethanol (absolute) 9065.2 Roth 

Ethanol (denatured) K928.4 Roth 

Formic acid 399388 Sigma-Aldrich 

Glycerol A3552 AppliChem 

Guanidinium chloride 0037.1 Roth 

Hydrochloric acid 4623.2 Roth 
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Imidazole 3899.4 Roth 

L-Glutathione (reduced) A2084 AppliChem 

Magnesium chloride HN03.3 Roth 

MES 69892 Sigma-Aldrich 

Methanol 4627.5 Roth 

Nickel sulfate T111.1 Roth 

Phenylmethylsulfonyl fluoride 6367.2 Roth 

Polyethylene glycol 10,000 81280 Fluka 

Polyethylene glycol 3,000 81227 Fluka 

Polyethylene glycol 400 81350 Fluka 

Polyethylene glycol 5,000 monomethyl ether 81323 Sigma-Aldrich 

Potassium chloride HN02.3 Roth 

Potassium hydroxide 6751 Roth 

Potassium phosphate dibasic P749.3 Roth 

Potassium phosphate monobasic P9791 Sigma-Aldrich 

Potassium phosphate tribasic 60494 Fluka 

Sodium acetate 3580.1 Roth 

Sodium azide K305.1 Roth 

Sodium chloride 3957.2 Roth 

Sodium dodecylsulfate 2326.2 Roth 

Sodium hydroxide 6771.1 Roth 

Trichloroacetic acid 91228 Fluka 

Trifluoroacetic acid 302031 Sigma-Aldrich 

TRIS (2-Amino-2-hydroxymethyl-propane-1,3-diol) 4855.3 Roth 

Tris(2-carboxyethyl)phosphine HN95.2 Roth 

Urea 2317.2 Roth 

 

2.2.3 Solutions 

Buffers were adjusted to the respective pH values by adding either 32% (w/v) sodium hydroxide 

or 37% (v/v) hydrochloric acid. 

Table 8.  Media for bacterial culture. 

 Composition Plasmid dependent additives 
 
LB-Medium 

 
10 g/l Tryptone 

10 g/l NaCl 

5 g/l Yeast Extract 

 
Ampicillin (100 µg/ml) 
Kanamycin ( 50 µg/ml) 
Chloramphenicol (34 µg/ml) 
IPTG (1 mM) 

 

Abbrevations: LB: Lysogeny broth, IPTG: Isopropyl-β-1-thiogalactopyranoside 
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Table 9. Buffers for bacterial lysis and transformation. 

Bacterial lysis Competent Cells - 1 (Comp1) Competent Cells - 2 (Comp2) 

 
50   mM Hepes pH 7 
500 mM NaCl 

30 mM Potassium Acetate pH 5.0 
10 mM CaCl2 
15% Glycerol 

10 mM MOPS pH 6.8 
75 mM CaCl2 
15% Glycerol 

 

Abbrevations: Hepes: 4-2-hydroxyethyl-1-piperazineethanesulfonic acid; MOPS: 3-N-morpholinopropanesulfonic acid. 

 
Table 10. Protein purification buffers. 

Ni
2+

-Affinity  Ion exchange Size exclusion 

10       mM Tris pH 8 
500     mM NaCl 
5-300 mM Imidazole pH 8 

10         mM Tris pH 8 
50-500 mM NaCl 
1           mM BME 

10   mM Tris pH 8 
250 mM NaCl 
1     mM BME 

 

Abbrevations: Tris: Trishydroxymethylaminoethane; BME: β-mercapthoethanol 

 
Table 11. Protein interaction buffers. 

SEC, ITC, DSC, Octet and pull-down experiments Native gel buffer 

10   mM Tris pH 8 
250 mM NaCl 
1     mM BME 

25   mM Tris pH 8  
192 mM Glycine pH 8 

 

Abbrevations: Tris: Trishydroxymethylaminoethane; BME: β-mercapthoethanol; SEC: Size-exclusion chromatography, ITC: 

Isothermal titration calorimetry; DSC: Differential scanning calorimetry. 

 
Table 12. Protein-Gel Solutions. 

PAGE Staining PAGE Destaining PAGE Running Buffer (1x) 

50% Ethanol 
10% Acetic acid 
0.1% Coomassie brilliant  blue 
 

1% Acetic acid 192 mM Glycine 
0.1%        SDS 
25 mM    Tris 

PAGE Loading Buffer PAGE 10-25% Resolving Gel PAGE 5-10% Stacking Gel 

50 mM Tris pH 6.8 
100 mM DTT 
2%  SDS 
0.1% Bromphenol Blue 

10-25% AA / BAA (30:1) 
375 mM Tris pH 8.8 
0.1% SDS 
0.25% APS 
0.05% TEMED 
 
 

5-10% AA/ BAA  (30:1) 
125 mM Tris pH 6.8 
0.1% SDS 
0.25% APS 
0.15% TEMED 
 

1x DNA Gel Buffer 5% Native Gel 1x Native Gel Running Buffer 
10 mM Tris pH 8 
1 mM EDTA 

5% AA/ BAA (30:1 to 100:1) 
0.5x Tris-Glycine pH 8 
0.2% APS 
0.1% TEMED 

25 mM Tris  
192 mM Glycine 
 

 
Abbrevations: PAGE: Polyacrylamide gel electrophoresis; AA: Acrylamide, BAA, Bisacrylamide, APS: Ammoniumpersulfate, 

TEMED: Tetramethylethylendiamine; DTT: Dithiothreitol; SDS: Sodiumdodecylsulfate. 
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2.3 Equipment 
2.3.1 Instruments 

Table 12. Instruments. 

Type Model Supplier 

Autoclave  Systec V-150 Systec 

Balance 0.5-500 g XS 6002S Dual Range Mettler Toledo 

Balance 0-1 g XS 105 Dual Range Mettler Toledo 

CD-Spectropolarimeter  J-810 Jasco 

Cell disruptors 
M-110P Microfluidics 

E615 Constant Cell Disruption Systems LTD 

Centrifuge 0-1000 mL Avanti J-26 XP Beckmann Coulter 

Centrifuge 0-2 mL 5417 R Eppendorf 

Centrifuge 0-50mL: 5810 R Eppendorf 

Column body (FPLC) XK 16 GE Healthcare 

Column body (gravity flow) 
Econo-Column 1,5 x 15 cm 

Econo-Column 2,5 x 20 cm  
Biorad 

Crystal mounting CryoLoop Hampton Research 

Crystallization robot HoneyBee 963  Zinsser Analytik 

Dish washer Professional G7883 CD Miele 

Fluorescence spectrometer Flouromax4  Horiba Jobin Yvon 

FPLC system  Äkta purifier GE Healthcare 

FPLC: Anion exchange column MonoQ 10/100 GL GE Healthcare 

FPLC: Size exclusion chromatography 

columns s 

Superdex 200 HiLoad 26/60 

Superdex 200 GL 10/300 

Superdex  75 GL 10/300 

GE Healthcare 

FPLC: Nickel affinity column Ni-MAC Cartridge 5 mL Merck (Novagen) 

Gelelectophoresis chamber Mini-Protean 3-cell Biorad 

Ice machine Eismaschine 94774 Ziegra Eismaschinen 

Illumination table P265.1 Roth 

Incubator Type B15 Thermo Electron Corp. 

Liquid culture incubators 
ISF-1-W 

ISF-1-X 
Kühner 

Isothermal titration calorimetry 
VP-ITC 

ITC200 
Microcal, GE Healthcare 

Liquid handling robot Lissy  Zinsser Analytik 

Magnetic stirrer  MR 3002 Heidolph 

Microscope SteREO Discovery.V12 Zeiss 

Microscope: Camera AxioCam MRC Zeiss 

Microscope: Light source  KL 2500 LCD Zeiss 

PCR Cycler Mastercylcer EPgradient S Eppendorf 

pH-Electrode BlueLine 14pH Schott 

Pipettes Pipet lite Rainin 

Pippetboy Pipetus Hirschmann Laborgeraete 

Power supply PowerPac Basic Biorad 

Scanner Scanjet G2710 Hewlett-Packard 

Spectrophotometer Bio-Photometer Eppendorf 

Spectrophotometer Nanodrop ND 1000  Peqlab 

Thermoblock  Rotilabo-Block Heater 250 Roth 

Thermomixer Comfort Eppendorf 

X-ray cryosystem X-Stream 2000 Rigaku 

X-ray detector R-AXIS HTC Rigaku 

X-ray generator MicroMax-007HF Rigaku 

X-ray optics VariMax HF Osmic Inc. 
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2.3.2 Consumables 

Table 13. Consumables. 

Type Model Supplier 

24-well plate SuperClear Crystalgen 

96-well plate ClearPlate Halfarea MB Greiner 

Chitin Beads S6651L New England Biolabs 

Concentrator, MWO 3-60 kDa 0.5-20 mL Vivaspin 0.5-20 Sartorius stedim Biotech 

Cover slides Circular (22 mm diameter) Jena Bioscience 

Disposable cuvettes UVette Eppendorf 

DEAE Sepharose DFF100 Sigma-Aldrich 

Dialysis cassettes Slide-A-Lyzer Pierce Biotechnology 

Dialysis tubing Spectra/Por SpectrumLabs.Com 

Filter 0.22 µm Roth 

Micro reaction tubes Safe-ock 1.5 mL / 2 mL Eppendorf 

Pipette tips  10 µl, 200 µl, 1000 µl, 5000 µl Rainin 

Reaction tubes Greiner tube 15 ml / 50 ml Greiner 

Reaction tubes Reaction tube 0.2, 0.5, 1.5, 2.0 ml Eppendorf 

 

2.3.3 Kits 

Table 13. Kits. 

Kit Purpose Supplier 

Quick Ligation Kit  DNA Ligation New England Biolabs 

Site-Directed Mutagenesis Kit  Site-Directed Mutagenesis Stratagene 

NucleoSpin Extract Kit  Plasmid isolation from gels Macherey-Nagel 

NucleoBond Plasmid Kit Plasmid isolation from solutions Macherey-Nagel 

 

2.3.4 Software and Databases 

Table 14. Software and databases. 

Software Author/Reference 
CCP4 program suite [156] 
ClustalW2 EMBL-EBI 
Coot [157] 
Crystal Clear Rigaku 
Excel Script for thermofluor analysis Structural Genomics Consortium, Oxford 
ExPASY  http://www.expasy.ch/ 
Mosflm [158] 
MolProbity Server [159] 
Origin 7 ITC Microcal 
OriginPro 8.5 Origin Lab Corporation 
PDB www.pdb.org 
Phaser [160] 
Phenix [161] 
Pubmed NCBI 
Pymol DeLano 2002 
Quantity One (Molecular Imager) Biorad 
Refmac [162]  
Scala [163] 
XDS [164] 
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2.4 DNA Analysis and Manipulation  

This section describes methods to isolate, analyze and manipulate DNA.  

2.4.1 DNA Gel Electrophoresis 

Deoxyribonucleic acid (DNA) fragments were separated by size via electrophoresis in agarose gels 

containing 1% (w/v) NEE0 ultra quality agarose (Carl Roth), 1x TE buffer and 0.5 μg ethidium bromide 

per ml gel. Prior to electrophoresis at 100 V for 30 min, DNA-containing samples were mixed with 

DNA sample buffer and the gel was immersed into TE buffer. Ethidium bromide intercalates into the 

DNA double helix and allows for fluorescence-based DNA detection.  

2.4.2 DNA Gel Extraction 

DNA was recovered from agarose gels using the NucleoSpin extract kit (Macherey-Nagel) 

according to the manual of the manufacturer. Bands of interest were excised under low intensity UV 

light, the gel was dissolved und the DNA bound to an anion exchange column. After washing with 

ethanol the DNA was eluted with buffer from the extraction kit. 

2.4.3 DNA Digestion and Ligation 

Plasmids were specifically linearized using restriction enzymes and buffers (New England Biolabs) 

according to the instructions of the supplier. Inserts and linearized plasmids were ligated using the 

Quick Ligation Kit (New England Biolabs) according to the manual of the manufacturer. 

2.4.4 Site-Directed Mutagenesis 

Mutants were generated using the QuickChange Site-Directed Mutagenesis kit (Stratagene) 

according to the manufacturer’s instructions. In short, two complementary primers were designed 

carrying the mutated sequence. Making use of a two-stage protocol [165] with one PCR cycle 

containing just a single forward or reverse primer the formation of primer dimers was avoided. The 

single reactions were combined and subjected to 25 additional PCR cycles. The PCR reaction mix and 

the PCR program were adapted to the Phusion High Fidelity polymerase (Fermentas) according to the 

manual. 

Table 15. QuickChange PCR reaction mix. 

Additive Stock concentration Final concentration Amounts for 20 µl reaction 

Reaction buffer 5 x 1 x 4 µl 
Template 10 ng/ µl 10    ng 1 µl 
Primer 10 µM 500 nM 1 µl 
DNTPs 10 mM 500 µM 1 µl 
Phusion Polymerase 2 U/µl 0.1 U 1 µl 
ddH2O   12 µl 
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Table 16. QuickChange PCR program.  

Step Temperature Time Cycles 
Initial Denaturation 98 °C 30 sec  
Denaturation 98 °C 10 sec 1 Cycle each Primer 
Annealing 65 °C 30 sec + 
Extension 72 °C 90 sec 25 Cycles Fwd and Rev Primers combined 
Final Extension 72 °C 5 min  
Cooling 4 °C   

Next 10 U of DpnI were added to each reaction followed by overnight incubation at room 

temperature. 3 μl of the digested DNA were transformed into DH5α competent cells, plated on 

ampicillin LB agar plates and incubated overnight at 37 °C.  

DNA extraction from single colonies was accomplished using the NucleoBond Plasmid Kit. 

Introduced mutations were verified using DNA sequence analysis (Seqlab, Göttingen). 

2.4.5 Plasmid Isolation 

Single colonies grown on a LB-agar plate were transferred to LB-medium containing the 

appropriate antibiotics. After incubation at 37 °C and shaking at 200 rpm overnight the suspensions 

were centrifuged at 4,000 x g for 10 min. The DNA was extracted from the resulting cell pellets using 

the NucleoBond Plasmid Kit (Macherey-Nagel) according to the manufacturer’s instructions. 

2.4.6 DNA Sequencing 

All cloned and mutated plasmids were sequenced by SeqLab (Goettingen, Germany) using the 

Prepaid-AdvantageRead 900 offer using 10 µl of Plasmid (20-100 ng/μl) and T7 Primers (pETM-

Vectors) or appropriate Primers (pGEX-Vectors). 
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2.5 Cell Culture and Protein Expression 

This section describes methods employed to culture, transform, induce and lyse E. coli cells. 

2.5.1 Cell Cultivation and Storage  

For general usage the respective E. coli strain was grown in LB-Medium under permanent 

selection with the appropriate antibiotic(s). For long-term storage, 500 μl of an E. coli overnight 

culture were mixed with 1 ml of 20% (v/v) autoclaved glycerol, shock frozen in liquid nitrogen and 

stored at -80 ˚C. 

2.5.2 Preparation of Competent Cells 

E. coli cells were grown into early log phase (OD600 = 0.4) and harvested by centrifugation 

(Eppendorf Centrifuge, 4000 x g, 10 minutes, 4 °C). The cell pellet was re-suspended in 15 ml of ice 

cold sterile-filtered Comp1-Buffer and incubated on ice for 90 minutes. The cells were then harvested 

by another centrifugation step (Eppendorf Centrifuge, 2000 x g, 20 minutes, 4 °C) and re-suspended 

in 2 mL of ice cold sterile-filtered Comp2-Buffer and aliquoted into 50 μl aliquots, which were flash 

frozen in liquid nitrogen and stored at -80 ˚C. 

2.5.3 Transformation 

1-10 ng DNA was added to an aliquot (50-100 μl) of chemo-competent E. coli cells (Stratagene). 

The cells were incubated on ice for 10 minutes and subsequently heat-shocked at 42 °C for 90 sec. 

After incubation on ice for 1 min 800 µl LB-medium was added and the cells were incubated at 37° C 

for 1 h at 200 rpm in a Thermomixer (Eppendorf). Afterwards the cells were plated on an LB-agar 

plate with the appropriate antibiotics and incubated overnight at 37 °C. 

2.5.4 Protein Expression 

50-200 mL LB-medium with the appropriate antibiotics were inoculated with one colony of freshly 

transformed cells and incubated overnight at 37 °C and 200 rpm (Kühner Shaker ISF1-X). 2.5 L LB-

medium containing Erlenmeyer flasks with the appropriate antibiotics (Amp/Cam) were inoculated 

with 10 mL of the overnight-culture. After incubation at 37 °C and 200 rpm (Shaker ISF-1-W, Kühner) 

until an OD600 of 0.5 - 0.7 had been reached the expression was induced with 0.1 mM isopropyl-β-

thiogalactoside (IPTG). Upon induction the temperature was decreased to 25 °C and after 18 h the 

cells were harvested by a 20 min centrifugation at 4000 x g and 4 °C (Beckmann Coulter Avanti 

Centrifuge J-26 XP) and either stored at -80 °C or lysed immediately for subsequent purification. 

2.5.5 Cell Lysis 

Cells were re-suspended in Lysis-buffer and passed twice through a cell disruptor (e616, Constant 

Cell Disruption Systems LTD or an M-110P mircofluidizer, Microfluidics) at a pressure setting of 1.8 

kbar. The resulting cell lysate was centrifuged at 34000 x g and 4 °C for 1 h to separate soluble 

proteins from insoluble proteins and cell debris (Rotor JA 25.50, Beckmann Coulter Avanti Centrifuge 

J-26 XP). The resulting supernatant was used for further protein purification steps.  
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2.6 Protein Purification 

2.6.1 Affinity Chromatography 

All purified proteins were subjected to affinity chromatography as the first purification step. 

Depending on the respective vector different affinity tags were introduced either N or C terminal of 

the target protein. In short, lysates of glutathione S-transferase (GST) -tagged (pGex-Vectors) and 

His-tagged (pETM and pET Vectors) proteins were incubated with the corresponding affinity resin 

and, after rigorous washing with the appropriate buffer, the respective competing ligand was applied 

to elute the tagged proteins. GST- and His-Tags were removed by the appropriate proteases 

recognizing specific cleave-sites between the tag and protein; thrombin and Factor Xa in case of the 

pGEX-vectors and TEV in case of pET and pETM-vectors. Intein-tagged proteins were cleaved and 

eluted in a single reaction step which was either based on a pH-shift (pTwin-Vector) or a nucleophilic 

attack of thiolates (pTYB-vectors). Incubation times and buffer compositions were based on the 

instructions of the manufacturer of the respective affinity resin (Table 17.  

Table 17. Affinity chromatography. 

Protein-Tag Vector Resin 
Incubation and wash 

buffer 
Elution buffer 

 

GST 

pGex 

(GE Healthcare) 

Agarose GST-Beads 

(Novagen) 

50   mM Tris pH 8 

500 mM NaCl 

5     mM BME 

10   mM Tris pH 8 

250 mM NaCl 

20   mM red. glutathione 

 

His6 

 

pETM-11 

(EMBL), 

pET-28a 

(Novagen) 

Ni Sepharose 6 Fast 

Flow (GE Healthcare), Ni-

NTA (Quiagen), Ni-TED 

(Protino) 

50   mM Hepes pH 7 

500 mM NaCl 

5     mM Imidazole pH 7 

10       mM Hepes pH 7 

250     mM NaCl 

5-500 mM Imidazole pH 7 

 

Intein 

IMPACT- 

pTYB 

(NEB) 

Chitin Beads 

(NEB) 

50   mM Tris pH 8 

500 mM NaCl 

50   mM Tris pH 8 

100 mM NaCl 

50   mM DTT 

 

Intein 

IMPACT- 

pTWIN 

(NEB) 

Chitin Beads 

(NEB) 

50   mM Tris pH 8 

500 mM NaCl 

10    mM BME 

50   mM Hepes pH 7 

100 mM NaCl 

1     mM BME 

 

Abbrevations: GST: Glutathione S-transferase; His6: Hexa-Histidine; DTT: Dithiothreitol; BME: β-Mercaptoethanol; 

Tris:Trishydroxymethylaminoethane; Hepes: 4-2-hydroxyethyl-1-piperazineethanesulfonic acid. 

 

2.6.2 Size Exclusion Chromatography 

Size exclusion chromatography (SEC) separates proteins by size and form and was used as final 

purification step in all protein purifications. In all cases a Superdex 200 26/60 column was used which 

consists of dextran covalently linked to a highly cross-linked agarose-matrix. The column volume of 

the Superdex 200 26/60 is ~330 ml and proteins between 10 kDa and 600 kDa can be separated. In 

contrast to small proteins large proteins cannot enter the particles and therefore elute earlier. 

Proteins were applied at a flow of 1 ml/min for 1.2 CV with sample loops of 1 to 10 ml size to the 

column which had been equilibrated with SEC buffer (10 mM Tris pH 8, 250 mM NaCl, 1 mM BME). 

The UV-detector was adjusted to wavelengths according to the nature of the sample, most 

commonly 270 nm (tyrosine) and 280 nm (tryptophan).  
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2.7 Protein Characterization   

2.7.1 Protein Electrophoresis 

The sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS PAGE) [166] separates 

proteins according to their molecular weight under denaturing conditions. Optionally, reducing 

agents are used to disrupt possible disulfide bonds. SDS is an anionic detergent that binds the 

peptide-backbone of proteins yielding SDS-protein complexes which are charged proportional to 

their molecular weight. The resulting complexes can subsequently be separated by gel 

electrophoresis according to their size, independently of their native charge and conformation. 

In short, samples were incubated with 5x protein sample buffer and heated for 30 sec. at 90° C. 

The protein-SDS-samples and a molecular weight marker (PageRuler protein ladder, Fermentas) were 

loaded on 0.75 cm thin gels and the electrophoresis was performed for 30 min at 200 V. 

Subsequently the gels were stained in Coomassie staining solution and, after removing excess dye by 

heating in water, the gels were digitized using a Scanjet G2710  (HP, USA) scanner. 

2.7.2 UV/Vis Spectrophotometry 

Protein concentrations were determined via absorption measurements with a nanodrop UV/Vis 

spectrophotometer (Peqlab). Concentrations were calculated using the protein specific extinction 

coefficient ε at the measured absorbance, the thickness of the cuvette d and the relative absorbance 

compared to the buffer background using the Lambert-Beer law [167]: 

� = �
� · � 

Extinction coefficients were estimated by addition of the tryptophan-, tyrosine- and cysteine-

residue absorption of the respective protein: 

ε280 = (nTrp·5690+nTyr·1280+nCys·120) 

2.7.3 Thermofluor 

The thermofluor method was used to monitor the thermal unfolding of proteins by making use of 

a fluorescent dye that interacts specifically with denatured proteins. SYPRO Orange (Sigma-Aldrich) 

binds in aqueous solution to hydrophobic regions exposed by unfolding. The resulting environmental 

change increases the absorption at 492 nm and emission at 610 nm and hence can be used to 

estimate the relative amount of unfolded protein in the solution [168]. 

Table 18. Thermofluor reaction mix.  

Additive Stock concentration Final concentration Amounts for 10 µl reaction 
    
Protein 1 mg/ml 0.1 mg/ml 1 µl 
SYPRO Orange dye x10 x1 1 µl 
Buffer x1 x1 9 µl 
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Prior to the thermal unfolding assay samples were prepared with the appropriate buffer and the 

SYPRO Orange dye (Sigma-Aldrich) as described in Table 18 in a 96 PP-PCR-plate (Greiner Bio-One 

International AG). The experiment was performed in a Real-Time PCR system (Stratagene Mx3005P) 

and consisted of a step-wise temperature increase followed by an absorption measurement. Starting 

at 25 °C 70 steps were conducted with each step increasing the temperature by 1 °C, thus the 

experiment ended at 95 °C. The resulting data were analyzed with an Excel sheet provided by the 

Structural Genomics Consortium (SGC) in Oxford. 
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2.8 Analysis of Protein Complexes  

2.8.1 Analytical Size Exclusion Chromatography 

Analytical size exclusion chromatography (SEC) of protein complexes can be used to visualize 

changes in protein conformation as well as complex stoichiometry and stability. Depending on 

protein size analytical Superdex 200 10/300 (24 ml volume, separation range 70-600 kDa) or 

Superdex 75 10/300 (24 ml volume, separation range 3-70 kDa) columns were used. The sensitivity of 

this method is restricted to Kd values of approx. 1/10th of the injection concentration due to dilution 

on the column. Additionally complexes with small dissociation rate constants (koff) cannot be 

analyzed, while large association rate constants (kon) can be compensated for by complex incubation 

prior to the experiment. 

In short, equilibrated protein complex solutions were applied with a sample loop of 100 µl to the 

respective column equilibrated with SEC buffer (10 mM Tris pH 8, 250 mM NaCl, 1 mM BME) with a 

flow of 0.5 ml/min for 1.2 CV. The UV-detector was adjusted to wavelengths of 270 nm (tyrosine) and 

280 nm (tryptophan) according to the nature of the sample. 

2.8.2 Analytical Ultracentrifugation 

Analytical ultracentrifugation (AUC) allows examination of the hydrodynamic shape of proteins as 

well as estimation of their oligomeric state by measuring sedimentation velocity (SV) in a centrifugal 

field. Proteins subjected to this method are used in solution under native conditions. 

Protein samples adjusted to concentrations yielding a molar extinction coefficient of 0.1 at 280 

nm were dialyzed with AUC-buffer (10 mM Tris-HCl pH 8.0, 250 mM NaCl, 1 mM BME) and subjected 

to a centrifugal field (40.000 rpm) using a Beckman-Coulter XL-I centrifuge. The 

ORIGIN data analysis software (OriginLab Corporation) allowed the calculation of sedimentation 

coefficients, molecular weights and frictional ratios based on the measured sedimentation velocity. 

2.8.3 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) was used to monitor protein unfolding by measuring the 

change in heat capacity upon thermal denaturation. Folding and stability of native proteins is 

determined by the magnitude of hydrophobic interactions, hydrogen bonds, conformational entropy 

and the physical environment such as pH and ionic strength. A biomolecule in aqueous solution is in 

equilibrium between its native and its denatured conformation which can be described by the Gibbs 

free energy equation. 

Gibbs free energy of the binding event: �� = �	 − 	��
 

Upon heating the conformational entropy eventually overcomes stabilizing forces, thus allowing 

the protein to unfold. DSC measures the enthalpy of unfolding (ΔH ) due to heat denaturation.  The 

transition midpoint Tm is the temperature where 50% of the protein is in its native conformation and 

the other 50% is denatured. During the same experiment DSC also measures the change in heat 

capacity (ΔCp) for denaturation. Heat capacity changes associated with protein unfolding are 
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primarily due to changes in the hydration of side chains that are buried in the native state, but 

become solvent exposed in the denatured state.  

In DSC the amount of heat required to increase the temperature of a sample and reference is 

measured as a function of temperature. Both the sample and reference are maintained at nearly the 

same temperature throughout the experiment. In a DSC analysis the sample temperature increases 

linearly as a function of time. The result of a DSC experiment is a curve of heat flux versus 

temperature. This curve can be used to calculate enthalpies of transitions. This is done by integrating 

the peak corresponding to a given transition.  

Enthalpy of transition:  �	 = �	� 

where ΔH is the enthalpy of the transition, K the calorimetric constant and A the area under the 

curve. The calorimetric constant will vary from instrument to instrument, and can be determined by 

analyzing a well-characterized sample with known enthalpies of transition.  

Prior to all DSC experiments, protein samples were extensively dialyzed against DSC-Buffer (10 

mM Tris-HCl pH 8.0, 250 mM NaCl, 1 mM BME) at 4°C overnight, followed by filtration and degassing. 

All experiments were performed using a VP-DSC instrument (MicroCal, Northampton, MA, USA). The 

Buffer was measured simultaneously so that aqueous buffer effects could be subtracted from the 

sample measurement. The enthalpy of the transition was directly measured, while the Tm and van t’ 

Hoff enthalpy was obtained by data analysis using the ORIGIN software. 

2.8.4 Dynamic Light Scattering 

Dynamic light scattering (DLS) is a spectroscopic method to determine the size distribution of 

particles in solution. First, particle movement speed profiles are calculated based on the scattering of 

monochromatic light. Next, molecular weights can be estimated under the assumption that each 

particle has a spherical shape.  

In short, a quartz cuvette is filled with freshly filtered and centrifuged protein sample (80 µl, 0.5 

mg/ml) and measured several times using the DynaPro Titan DLS photometer (Wyatt Technology). A 

single experiment consists of a series of measurements with the following parameters: 

Table 19. DLS parameters.  

Parameter Setting  Parameter Setting 

Acquisition time 10 sec  Solvent Model PBS 

Number of Acquisitions  20  Refraction Index* 1.333 

Laser Power 100%  Viscosity* 1.019 cp 

Temperature 10 °C  Cauchy Coefficient* 3119 nm2 

* Solvent model ‘PBS’ 

The data is automatically evaluated by the Dynamics V6 software supplied with the equipment 

and presented as a distribution of molecular radii and molecular weights. 
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2.8.5 Isothermal Titration Calorimetry 

Isothermal titration calorimetry (ITC) provides a complete thermodynamic profile of a bimolecular 

interaction in a single experiment. While it directly measures the change in enthalpy (∆H) during a 

binding event, it additionally allows the accurate determination of binding constants (KB), reaction 

stoichiometry (N), and entropy (ΔS) as given by: 

Gibbs free energy of the binding event: �� = �	 − 	��
 

Additionally ITC assays can be modified to reveal synergistic, competitive or sequential binding 

events. ITC-measurements are usually conducted at a c-value of 5 or higher:  

c-value: 	� = ��
[�] > 5 

with Kd describing the affinity of the interaction to be analyzed and [M] the concentration of the 

macromolecule in the cell. Measurements at c-values below 5 are so-called “low c” measurements, 

which yield good estimates of the Kd, but due to the incomplete complex formation they only poorly 

describe the enthalpy and stoichiometry. 

Prior to all ITC experiments, protein samples were extensively dialyzed against ITC-Buffer (10 mM 

Tris-HCl pH 8.0, 250 mM NaCl, 1 mM BME) at 4°C overnight, followed by filtration and degassing. 

Experiments were performed at 25°C using either the VP-ITC or ITC200 Instrument (MicroCal, 

Northampton, MA, USA). Buffer-to-buffer titrations were carried out, so that the heat produced by 

injection, mixing and dilution could be subtracted prior to curve fitting. The binding enthalpy was 

directly measured, while the dissociation constant (Kd) and stoichiometry (N) were obtained by data 

analysis using the ORIGIN software. Measurements were conducted several times and are given as 

mean values with the resulting standard derivation. 

2.8.6 Native Agarose Gel Electrophoresis 

Prior to native agarose gel electrophoresis (NAGE) protein samples were mixed with OrangeG dye 

(Carl Roth) and 10% glycerol. 5 μl samples containing 5-100 μM of the respective protein were 

applied to 0.8% NEE0 ultra quality agarose (Carl Roth) gels containing 50 mM Tris/glycine pH 8.4 

buffer. Electrophoresis was conducted at 4 °C and a current of 10 mA and terminated when the dye 

front was leaving the gel. Gels were stained for 10 minutes in 5% acetic acid, 10% ethanol and 

0.005% Coomassie Briliant Blue R250 (Carl Roth), and de-stained at least one day in 5% acetic acid 

and 10% ethanol at room temperature. 

2.8.7 Pulldown Assay 

N-terminally biotinylated peptides (Table 4) were coupled to streptavidin beads and incubated 

with protein in pulldown-buffer (10 mM Tris pH 8.0, 250 mM NaCl, and 1 mM BME) for 1 h. After 

three washing steps with the same buffer the beads were boiled with Laemmli buffer containing 10% 

SDS and the supernatant was applied to an SDS-PAGE.  
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2.9 X-Ray Crystallography 

Until now, 88% of the approx. 83.000 protein and protein-ligand structures archived in the protein 

data bank (PDB) have been solved using X-ray crystallography 

(http://www.rcsb.org/pdb/statistics/holdings.do), underscoring the wide applicability of this method. 

Here I describe how I obtained crystal structures of either FERM-ligand complexes or gephyrin-ligand 

complexes which will be discussed in the results and discussion section. 

2.9.1 Protein Crystallization 

To determine the structure of a protein by X-ray diffraction, a well-ordered single protein crystal 

is required. In this work protein crystallization was achieved by vapor diffusion methods. First, 

proteins were mixed with precipitants and equilibrated against a larger reservoir of the precipitant 

solution with higher concentration. Diffusion slowly increases the precipitant and protein 

concentration in the protein drop until the nucleation barrier is reached and crystal nuclei can form. 

Ideally, crystal growth at the nuclei and solvent diffusion together allow the protein concentration to 

stabilize in a condition where protein crystallization can occur. This technique was performed either 

by placing the drop on a shelf that is surrounded by the reservoir solution (sitting drop) or by hanging 

the drop from a cover slide towards the reservoir solution (hanging drop).  

The sitting drop method was used for initial screening for suitable conditions with the HoneyBee 

963 crystallization robot (Genomic Solutions). The drop contained 0.3 µL protein solution and 0.3 µL 

crystallization solution and was equilibrated against 40 µL reservoir solution in a 96-well 

crystallization plate (Greiner Bio-One International AG). Using the Lissy liquid handling robot (Zinsser 

Analytik) customized fine screens were generated. The hanging drop method was used for follow-up 

screens where drops of differing composition (1-3 µL protein solution and 1-3 µL crystallization 

solution) were equilibrated against 0.5-1 mL reservoir solution.  

2.9.2 Data Collection 

X-rays are scattered by the crystal lattice. The 

scattered radiation satisfues Bragg’s law (Figure 

13), thus yielding constructive interference 

which can be visualized using an X-ray sensitive 

detector system.  

Bragg’s law:   �	� = 2	� ��� � 

The intensity and the position of the 

reflections are collected together with the 

relative crystal position. 

For data collection, single crystals were transferred into cryo-protectand or, if possible, directly 

flash cooled in liquid nitrogen. Diffraction data were collected with a MicroMax-HF 007 generator 

(Rigaku) at a wavelength of 1.5418 Å and an R-AXIS HTC imaging plate detector. Using the crystal 

clear software (Rigaku) the following settings were used for an initial estimation of crystal quality:  

Figure 13. Scheme of X-ray diffraction. Following Bragg’s 
law, X-rays scattered from adjacent planes combine 
constructively when the angle θ between the plane and the 
X-ray results in a path-length difference that is an integer 
multiple n of the X-ray wavelength λ. © Public domain 
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Table 20. Parameters for in-house crystal diffraction evaluation. 

Parameter Setting 

Detector distance 250 mm 

Number of Images 2 

φ angle 0.5° 

Interval angle 90° 

Exposure 5 min 

 

Complete data sets were recorded using the European synchrotron beam lines BESSY (Berlin, 

Germany) and ESRF (Grenoble, France). Data collection statistics are summarized in the respective 

results sections. 

2.9.3 Data Processing and Molecular Replacement 

Diffraction images resulting from data collection were indexed and integrated, depending on the 

detector system, using either Mosflm [158] or XDS [164]. For scaling and all other subsequent steps 

the CCP4 software package was used [156]. Data processing was accomplished in five steps: 

� Indexing: Selection of a preliminary space group and determination of unit cell parameters 

that describe the crystal lattice. 

 

� Integrating: Correction for background and determination of spot intensities. 

 

� Merging: Correction for relative strengths of the spots in different images (Scaling), as well as 

calculating a single averaged intensity for each structure factor. 

 

� Evaluation: Rsym is calculated from the agreement between the separate observations of a 

reflection and its symmetry mates.  

 

� Calculation of the structure factor amplitudes from the scaled and merged intensities. The 

electron density map is related to the diffracted waves as follows:  

���,  , !" = 1
$%&'()

'()
*+,-.�'/0(10)2" 

The measured intensity I(hkl) of a reflection is proportional to the square of the structure factor 

amplitude |F(hkl)|:    I(hkl) ≈ |F(hkl)|2 

To calculate the structure factor F(hkl) from the intensity, the phase φ of the wave is needed:

     F(hkl) = |F(hkl)ei·φ(hkl)| 

The phase information cannot be determined during data collection and is lost (phase problem of 

crystallography). To solve the phase problem molecular replacement (MR) was applied. MR uses an 

already available structure of high homology. Correct positioning in the unit cell of the unknown 

structure is achieved by calculating the phase independent Patterson function of the measured data 

and the search model:  
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���,  , !" = %|&'()|,
'()

*+,-.�'/0(10)2" 

The number of molecules in the asymmetric unit can be estimated with the method of Matthews: 

     VM = VEZ / Mr·z·n  

With Mr the molecular weight, VEZ the volume of the unit cell, z the number of symmetry 

operators in the space group, n the number of molecules in the asymmetric unit, VM the packing 

parameter describes the crystal volume per protein mass. The solvent content of the protein crystal 

is typically between 30% and 70%. After molecular replacement with the appropriate apo-structures 

(Protein Data Bank) the resulting initial model was refined as described in the next section.  

2.9.4 Model Refinement 

Structure models were built using Coot [157], which allows real space fitting of amino acids and 

ligand addition to the calculated electron density. Optimized models were refined with Refmac [162] 

or Phenix [161]. Alternating rounds of model building and automated refinement were carried out to 

successively improve the atomic model. The ratio of available data per model parameter can be 

optimized by introducing several restraints and constraints. 

Restraints: 

� Bond lengths and angles. 

� Planarity of peptide bonds and aromatic groups. 

� Atomic distances. 

� Non-crystallographic symmetry (NCS) restraints. If more than one molecule is present in the 

asymmetric unit, they can be restrained to be similar 

� Translation, rotation, screw-rotation (TLS) refinement, in which the protein is subdivided in a 

set of rigid bodies that are allowed to show displacement. 

 

Constraints: 

 

� Atom occupancy 

� Hydrogen bond lengths and bond angles 

� Non-crystallographic symmetry (NCS) constraints. If more than one molecule is present in the 

asymmetric unit, their conformation can be forced to be identical. 

The success of refinement was evaluated by the R-factor and the Rfree-factor. The R-factor is an 

indicator of the precision of the derived model in comparison to the measured data:  

Calculation of the R-factor:                                     4 = 	∑ 6|78�'()"|+|79�'()"|6:;<
∑ |78�'()"|:;<

 

The R-factor is derived from data used during refinement and therefore biased towards the 

model. Therefore, additionally the free R-factor (Rfree) [169, 170] is calculated. Here, 5% of the data 

are randomly chosen and not used in the refinement process. After each refinement cycle, the Rfree is 

calculated from these un-biased data. Rfree reflects the accuracy of the model. Refinement was 
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considered as complete when difference density features could be explained by additional ligands 

and when the R-factors converged towards reasonable values.  

To further evaluate the quality of the final model additional parameters are compared to average 

values of structures of similar resolution: 

� Deviations of the bond lengths and angels from ideal values. 

� Ramachandran plot. Here, the dihedral angles φ and ψ of the amino acid residues in a protein 

structure are plotted against each other to identify amino acids which adopt unusual 

conformations.  
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3 Results and Discussion 

3.1 Radixin-Mediated GABAAR α5 Clustering 

The lab of Matthias Kneussel (ZMNH, University of Hamburg) demonstrated that activated radixin 

is essential for anchoring and clustering of GABAARs containing the α5 subunit at extrasynaptic sites 

[26]. In particular, residues 89-185 within the FERM domain of radixin were shown to interact with 

residues 342-357 at the N-terminal end of the TM 3-4 loop of the GABAARs α5 subunit. Here, I 

describe the molecular details of this interaction, using biophysical and X-ray crystallographic 

methods and recombinantly purified FERM domain and the α5-loop. 

3.1.1 GABAAR α5 and Radixin FERM Purification 

 Both, the radixin FERM domain (residues 1-310) and the intracellular loop of the GABAAR α5 

subunit (residues 342-429) were expressed in E. coli using the pETM-11 (His-tag), pETM-30 (GST-tag), 

pETM-60 (NusA-tag) and pGEX (GST-tag) vector systems and purified by affinity and size exclusion 

chromatography (SEC) as described in the methods section.  

Radixin FERM was purified using the fused His-

tag (pETM-Vectors) or GST-tag (pGEX-Vector) 

resulting in similar yields. Incubation with TEV-

protease (pETM-Vectors) or thrombin (pGEX-

Vector) generated tag-free radixin FERM domain 

which displayed in each case a single peak 

corresponding to a molecular weight of 38 kDa, 

very close to the theoretical mass of 34 kDa for a 

single FERM monomer (Figure 14A and Table 20). 

The intracellular loop of the GABAAR α5 

subunit residues 342-429 (α5-loop) was handled 

similarly but precipitated after cleavage of the 

GST, NusA or His tag. Therefore, for all 

subsequent experiments the N-terminally His-

tagged variant without cleavage was used, which 

could be purified to homogeneity (Figure 14B). In 

line with the idea that the α5-loop adopts an 

unstructured and hence elongated conformation, 

SEC over-estimates the molecular mass of this 

protein, and this effect is dependent on the ionic 

strength. Accordingly, its apparent mass in SEC 

varies between 16 kDa and 35 kDa depending on 

the NaCl concentration, while the theoretical 

mass of the monomeric peptide is 14 kDa (Table 

21).  
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Figure 14. SEC and PAGE confirm the homogeneity of radixin 

FERM and the GABAAR α5 TM3-4. Representative elution 

profiles and SDS-PAGE of (A) radixin FERM (1-310) and (B) 

His-tagged GABA
A
R α5 (342-429). © 2012 HM Maric 
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Figure 15. Thermofluor defines the optimal pH and ionic strength of the radixin FERM domain. A-D, Thermal unfolding of 
the FERM domain in different buffers. Buffers with pH values below 6 show a strong destabilizing effect and the 
corresponding unfolding curves are highlighted with colors. E, FERM domain unfolding as a function of ionic strength. 
Sodium chloride concentrations higher than 60 mM significantly increase the tolerance of the FERM domain towards 
thermal denaturation. F, No unfolding can be visualized in the thermofluor-analysis of the TM3-4 intracellular loop of the 
GABAAR α5 subunit, suggesting the absence of secondary structure. © 2012 HM Maric 

Table 21. Molecular weights of the radixin FERM domain and the GABAAR α5 loop. Elution volumes determined in 

analytical SEC experiments and resulting calculated molecular weights. (SEC-buffer: 10 mM Tris pH 8; 1 mM BME; 0.15-2 M 

NaCl)  

Next, buffer conditions were optimized using the thermofluor method. Here, the thermal 

unfolding was monitored in the presence or absence of critical additives, such as H+ (pH) and sodium 

chloride (ionic strength) (Figure 15). In summary, the radixin FERM domain showed a maximal 

stability in buffers at pH values between 6 and 10 (Figure 15 A-D) and a preference for high sodium 

chloride concentrations (Figure 15E). In line with the elongated conformation in SEC, the purified 

receptor loop showed no melting curve in thermofluor (Figure 15F), and I therefore propose that the 

intracellular loop does not adopt any secondary structure in solution. 

Taken together, the chromatography and thermofluor results verify the suitability of the 

recombinant purification of radixin FERM and the α5-loop to yield soluble and homogenous protein 

samples. Furthermore, the thermofluor experiments suggest enhanced stability of the radixin FERM 

domain in buffers containing more than 100 mM sodium chloride at pH values between 6 and 10. In 

contrast, SEC and thermofluor suggest that the α5-loop adopts an elongated conformation without 

any secondary structure.   

Protein 
Mw 

Sdx 200 26/60 

(kDa) 

Mw 

Sdx 200 10/300 

(kDa) 

Mw 

Sdx 75 10/300 

(kDa) 

MW 

ØSEC 

(kDa) 

MW 

theoretical 

(kDa) 

FERM (0.25 M NaCl) 36 37 42 38 34 
α5       (0.15 M NaCl)   35   
α5       (0.25 M NaCl) 22 15 22 20 14 
α5       (0.5   M NaCl)   19   
α5       (2      M NaCl)   16   

Citrate pH 4.5 
Bis-Tris pH 7.0 
Imidazole pH6.5 
Hepes pH 8.0 
Tris pH 8.5 
Acetate pH 4.6 
ADA pH 6.5 
Imidazole pH 8.0 
HEPES pH8.5 
Tris pH 9 

Bis-Tris pH 5.5 
PIPES pH 7.0 
HEPES pH 7.0 
Tris pH 7.5 
CHES pH 9.5 
 Bis-Tris pH 6.5 
PIPES pH 7.5 
HEPES pH 7.5 
Tris pH 8.0 
CAPS pH 9.8 

30-60 mM NaCl 
100 mM NaCl 
150 mM NaCl 
300 mM NaCl 
500 mM NaCl 
1000 mM NaCl 

MOPS pH 7.0 
BICINE pH 9.0 
Glycylglycine pH 8.5  
PIPES pH 6.5 
MOPS pH 7.5 
Tris pH 7.0 
CHES pH 9.0  

MES pH 5.5 
ADA pH 7.0 
Na/K PO4 pH 6.8 
BICINE pH 8.0 
TAPS pH 8.0 
MES pH 6.5 
Bis-Tris-  
propane pH 6 
Na/K-PO4 pH 
7.55 
BICINE pH 8.5  

Cacodylate pH 6.0 
Bis-Tris- 
propane pH 7 
MOPS pH 7.0 
BICINE pH 9.0 
Glycylglycine pH 8.5  
Cacodylate pH 6.5 
PIPES pH 6.5 
MOPS pH 7.5 
Tris pH 7.0 
CHES pH 9.0  

A B C 

D E F 
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3.1.2 Characterization of the FERM Domain α5-Loop Complex 

 After purification of the radixin FERM domain 

and the α5-loop I used the intrinsic fluorescence of 

tryptophan residues within the FERM domain and 

the α5-loop to verify the proposed complex 

formation in vitro. Upon titration of the FERM 

domain with the α5-loop the fluorescence emission 

spectrum indeed displays a strong red shift from 

350 to 375 nm, which indicates complex formation 

of both proteins in solution and additionally suggest 

close proximity of the tryptophan residues to the 

binding site (Figure 16). Due to the addition of 

several tryptophan emission-spectra and the 

dilution of the FERM domain upon addition of the 

α5-loop a precise quantitative analysis was not 

possible, but based on the saturation of the 

emission shift at a 4-5 fold molar excess of the α5-

loop the Kd of complex formation can be estimated 

to be in the low micromolar range. Due to the 

existence of several tryptophan residues in both 

proteins (six in the FERM domain and two in the α5-

loop), the binding site could not be defined in this 

experiment. 

Next, the stoichiometry of the 

FERM-α5-loop complex was 

determined via analytical SEC. 

Equimolar amounts of the α5-

loop and the FERM domain result 

in an elution profile which shows 

a significant shift towards higher 

masses. Excess of the α5-loop 

over FERM did not further reduce 

the elution volume indicating a 

stoichiometric binding event 

(Figure 17). In line with the 

fluorescence assay the full shift of 

FERM by applying a 

stoichiometric excess of the α5-

loop (1:3) suggest a Kd in the low 

µM range. Finally, the elution 

volumes of the complex matches 

a 1:1 complex of one FERM domain binding specifically one α5-loop (Table 22). This ratio is also 

mirrored in the SDS-PAGE analysis of the corresponding fractions of the complex (Figure 17). 

Figure 17. Analytical SEC of the radixin FERM domain GABAAR α5 complex. 
Comparison of three independent experiments conducted under identical 
conditions. The complex (red) elutes earlier than radixin FERM (black), while 
the receptor loop alone elutes the latest (blue). The complex elutes at 
volumes corresponding to a stoichiometric 1:1 complex. © 2012 HM Maric 
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Figure 16. Steady-state fluorescence analysis of the 
FERM domain α5-loop complex. Superposition of ten 
independent experiments, in which Increasing 
amounts of the α5-loop were added to the FERM 
domain and subsequently the intrinsic tryptophan 
fluorescence was measured. For clarity only the first 
spectrum (blue) and the last (green) is labeled. Upon 
addition of the α5-loop, a significant red-shift of the 
emission profile can be visualized, indicated as Δλ, 
suggesting a binding event in close proximity of 
tryptophan residues. © 2012 Maric HM. 
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Table 22. Molecular weights of the FERM domain, α5 loop and their complex. Molecular weights determined by 

analytical SEC and DLS. (Buffer: 10 mM Tris pH 8, 250 mM NaCl, 1 mM BME.)  

Taken together, the fluorescence measurements and the analytical SEC confirm the proposed 

direct interaction with recombinant proteins and additionally point towards a low micromolar affinity 

of both proteins in solution resulting in a soluble complex exhibiting a 1:1 stoichiometry. These 

results were further confirmed using the DLS method as summarized in table 22.  

 Encouraged by these results, my next 

target was the quantification of the FERM α5-

loop binding event (Figure 18 and Table 23). 

ITC defined the binding stoichiometry to be 

roughly 1:1, thus verifying the results of the 

analytical SEC. Additionally, the thermally 

monitored titration reveals a binding affinity of 

8 µM and therefore again confirms the SEC 

and fluorescence experiments which 

suggested a low micromolar interaction 

strength. Finally, the thermal profile of the 

interaction together with the calculated 

affinity suggest a favourable enthalpic 

contribution that compensates an entropic 

penalty, thus indicating a large contribution of 

H-bridges and/or ionic interactions to the 

overall binding strength (Table 23).  
 

Table 23. Binding parameters of the radixin FERM domain α5-loop complex. Binding parameters determined by 

ITC (Figure 18). 

 

  

  

Protein 
Mw (Sdx 200 

26/60) 

(kDa) 

Mw (Sdx 200 

10/300) 

(kDa) 

Mw (Sdx 75 

10/300) 

(kDa) 

MWØ 

SEC 

(kDa) 

MwØ 

DLS 

(kDa) 

MW(calculated) 

(kDa 

Radixin FERM 36 37 42 38±3 67±9 34 
GABAAR α5 22 15 22 20±4 58±1 14 
FERM + α5 50 50 57 52±4 82±1 48 

ΔH) (kcal/mol) (-TΔS) (kcal/mol) Kd (µM) Stoichiometry 

-13.8 ± 0.4 +6.9 7.6 ± 0.3 0.75 ± 0.02 

Figure 18. ITC of the radixin FERM domain GABAAR 

α5 complex. Representative isothermal plot of the 
titration of the FERM domain with His-tagged-α5-
loop. Binding quantification was conducted in ITC-
buffer (10 mM Tris pH 8.0, 250 mM NaCl, 1 mM BME) 
at 298K. © 2012 HM Maric 
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3.1.3 Fine-Mapping of the FERM-α5 Binding Site 

After biochemical and biophysical analysis of the FERM-α5 interaction my major goal was the 

crystallization of the protein complex. To facilitate the crystallization process I further narrowed 

down the interaction site on the α5-loop deduced from earlier Y2H studies. The reduced molecular 

weight of the resulting minimum peptide would allow a higher molar ligand excess in FERM domain 

crystallisation conditions, which should facilitate the saturation of the FERM binding site. 

Based on earlier Y2H studies [26] I used biotinylated 

peptides in pull-down assays (Figure 19) and truncated 

recombinant proteins in ITC to determine α5-loop residues 

critical for the FERM interaction. The results from both 

experiments are summarized in Table 23. Together they 

define 13 residues within the α5 loop as major contributors 

of the interaction. Notably, the first 16 residues of the α5-

loop were sufficient for a positive signal in Y2H [26] but did 

not display full binding strength in my pull-down assays 

(Figure 19). As expected, the next larger fragment (23 

residues) as well as the 33 residue fragment, displayed full 

binding strength towards the FERM domain (Figure 19). 

Additionally, deletion of the first 14 residues of the α5-loop 

did not abolish FERM binding but instead yielded only a 

moderate 5-fold reduction of binding strength, which again 

argues in favour of additional critical contributions of 

residues between positions 14 and 23 (Table 24).  

 
Table 24. Identification of the GABAAR α5 residues crucial for radixin FERM binding. 

GABAAR α5 TM3-4 loop Radixin FERM binding motif KD(µM) 

16 AA N-Term (342-357) NYFTKRGWAWDGKKAL----------------- n.d. in PD 

23 AA N-Term (342-364) NYFTKRGWAWDGKKALEAAKIKK---------- full binding in PD 

33 AA N-Term (342-374) NYFTKRGWAWDGKKALEAAKIKKKERELIL... full binding in PD 

WT                    (342-429) NYFTKRGWAWDGKKALEAAKIKKKERELIL... 8 ± 0.3 in ITC 

Δ6   N-Term     (348-429) ------GWAWDGKKALEAAKIKKKERELIL... 12 ± 1 in ITC 

Δ10 N-Term     (352-429) ----------DGKKALEAAKIKKKERELIL... 18 ± 2 in ITC 

Δ14 N-Term     (356-429) --------------ALEAAKIKKKERELIL... 52 ± 6 in ITC 

Minimum ----------DGKKALEAAKIKK-------...  

Abbrevations: n.d.: binding could not be detected; PD: Pull-down assay; ITC: Isothermal titration calorimetry 

  

Figure 19. FERM domain pull-down 

with GABAAR α5 derived peptides. 

Strep-tag beads loaded with either 
no bait, α5-loop residues 342-357, 
α5-loop residues 342-364 or α5-loop 
residues 342-374 were incubated 
with the radixin FERM domain. After 
washing the bound proteins were 
eluted with SDS and subjected to 
SDS-PAGE. Only the elongated α5-
loop fragments (342-364 and 342-
374) were sufficient to bind 
significant amounts of the FERM 
domain. © 2012 HM Maric 
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Comparison of the corresponding sequences in all α subunits of the GABAARs reveals only 4 

unique residues within the identified minimum motif, two hydrophobic residues (Leu357 and Ile362) 

as well as two alanine residues (Ala256 and Ala 260) (Table 25 marked in red and boxed). Based on 

the exclusive binding of the α5-loop over the other subunits shown earlier [26] it can therefore be 

concluded that all of these residues or a subset are critical mediators of the FERM domain 

interaction.  

Table 25. Comparison of the N terminal TM3-4 sequences of GABAAR α1-6 subunits. Residues marked in blue are 
unique to the respective subunit compared to α5. The minimum motif identified here is boxed and residues unique to α5 
compared to α1-4 and α6 are marked in red.  

GABAAR subunit TM3-4 loop Radixin FERM binding motif 

α1  NYFTKRGYAWDGKSVVPEKPKKVKDPLI...  

α2  NYFTKRGWAWDGKSVVNDKKKEKGSVMI...  

α3  NYFTKRSWAWEGKKVPEALEMKKKTPAA...  

α4  NYFTNIQMQKAKKKISKPPPEVPAAPVL...  

α5  NYFTKRGWAWDGKKALEAAKI KKKEREL...  

α6  NYFTNLQSQKAERQAQTAATPPVAKSKA...  
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3.1.4 Structural Basis of FERM Domain Self-Masking  

For the cocrystallization of the FERM 

domain with the α5-loop I used both the full-

length intracellular loop and an elongated 

minimum peptide compromising the first 26 

residues of the α5 loop. Crystals could be 

obtained using 40 mg/ml FERM domain and the 

full length α5-loop at a 2-fold stoichiometric 

excess and a data set was acquired at our 

home source (Table 26). Molecular 

replacement with an apo FERM domain 

structure (PDB ID: 1GC7) allowed us to solve 

and refine the structure to 3.1 Å. While there 

was no electron density that could be 

attributed to the α5-loop, we found the FERM 

domain to engage in an inter-molecular FERM-

FERM head to tail interaction. Interestingly, the 

FERM interaction interface specifically occupies 

a peptide-binding site in subdomain F3 

identified earlier (Figure 20A), which was 

described in section 1.5.2 and Figure 11. To test 

the hypothesis that the FERM interaction 

interferes with α5-loop binding, I made use of 

an exposed trypsin cleavage site at the very C 

terminus of the FERM domain (Figure 20B), 

which is located directly N terminal to the 

possibly interfering C terminal motif. 

Table 26. Radixin FERM (1-310) crystallization, X-ray data collection and refinement statistics. 
 

 

a Numbers in parentheses refer to the respective highest resolution data shell in the data set. 
b indicates the average of the intensity divided by its S.D. value. 
c Rsym = ∑ ∑ |=. − 〈=〉|.'() /∑ ∑ 〈=〉.'() , where =.  is the �th measurement and 〈=〉is the weighted mean of all measurements of =. 
d Rcryst = ∑6|&A| − |&B|6/∑|&A|, where &A and &B are the observed and calculated structure factor amplitudes. Rfree, same as Rcryst for 5% of 
the data randomly omitted from the refinement. 

Data Collection statistics Refinement statistics Crystallization Condition 

Wavelength (Å)  1.54178 Resolution (Å) 3.2-20.0 0.1 M Tris pH 7.5 

Resolution (Å)a 3-50 (3.0-3.1) No. of reflections 19929 15 % PEG 6000 

Space group P 31 2 1 Rcryst (Rfree)d 0.26 (0.35) 40 mg/ml radixin FERM 

Cell dimensions  Root mean square deviations   

a=b, c (Å) 97.7, 79.7 Bond lengths (Å) 0.0124  

α=β, γ (°) 90, 120 Bond angles (°) 1.366  

Unique reflections 20602 Average B-factors (Å2)   

〈I/σ�I"	〉a, b 5.0 (3.2) Protein 71.8  

Completeness (%)a 99.9 (99.9) Solvent -  

Redundancya, c 4.9 (3.4)    

  

HELYMRRRKPDTIEVQQMKAQAR 

A 

B 

Figure 20. Structural basis of FERM domain self-masking. A, 

Cocrystallization of the FERM domain (1-310) and the α5-loop 

yielded the structure of a FERM head-to-tail oligomer. 

Specifically, residues 298-310 of one FERM domain engage in 

direct contacts with subdomain F3 of an adjacent FERM 

domain. The identical binding site is implicated in a pleitropy of 

FERM ligand interactions and therefore the C terminus could 

possibly interfere with FERM ligand binding. B, By incident the 

exposed C terminal region, displays a trypsin cleavage site, 

which allows truncation of FERM by 17 residues marked red. © 

2012 HM Maric 
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Incubation of a C-terminally His-

tagged FERM domain in complex with 

the α5-loop with trypsin and 

subsequent SEC, SDS-PAGE and anti-His 

Western blot revealed that the C-

terminal part of FERM is neither critical 

for protein stabilization nor complex 

formation with the α5-loop (Figure 21). 

The trypsin-mediated truncation by 17 

residues could be verified by the slight 

shift in molecular size in SDS-PAGE 

(Figure 21) as well as by the 

abolishment of the His-tag signal in the 

Anti-His Western-Blot (Figure 21). 

Interestingly, the digested complex had 

a slightly lower elution volume despite 

its lower molecular weight, proposing 

either an enhanced complex stability in 

case of the C-terminally truncated 

FERM or a conformational change 

following trypsinization (Figure 21).  

Taken together, both the derived crystal structure as well as the analysis of the trypsinized FERM-

α5-loop complex, suggest a possible interference of the C terminus of the FERM domain with α5 loop 

cocrystallization and furthermore verify the practicability of using a C terminally truncated FERM 

domain instead. Following this idea I cloned a C terminally truncated FERM domain and analyzed its 

respective α5-loop complex formation which is described in the next section.  

  

Figure 21. SEC, SDS-PAGE and anti-His-blot of the trypsinized 

FERM-α5-loop complex. SEC of FERM-α5-loop mixed with Trypsin 

(100:1) after 10´(orange) and 40´(red) as well as untreated FERM 

domain (black). The decreased elution volume as well as SDS 

PAGE verify complex formation for all trypsin incubation times. 

The slight shift in the molecular weight visualized by SDS PAGE 

result from the tryptic digestion of the very C-terminal part as 

verified by anti His-blotting: after 40 minutes the signal of the C-

terminal His-tag is completely removed. © 2012 HM Maric 
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3.1.5 FERM Mediates GABAAR-Clustering via a Universal Ligand Binding Site 

Prompted by the finding of a possibly 

masked peptide-binding site I cloned a C-

terminally truncated FERM domain (1-295). 

As expected from the trypsin cleavage 

experiments described in the previous 

section, expression and purification yielded a 

similarly pure and stable protein, as verified 

by SDS-PAGE (Figure 22A), which additionally 

visualizes the 15 residue truncation (Figure 

22B). To test for a possible interference of 

the 15 C-terminal residues with the binding 

of the α5-loop, both the elongated and the 

truncated FERM domain were titrated with 

α5-loop under comparable conditions using 

ITC (Figure 22C). Surprisingly, both proteins 

displayed similar thermal signatures. 

Therefore it can be concluded that the FERM 

head-to-tail dimerization involves an 

unrelated binding site as compared to the 

GABAAR  α5 subunit loop. Alternatively, the 

FERM-FERM association could have been 

induced by the crystallization condition, 

especially the high concentration in the mM 

range, or the crystallization process (e.g. 

preferable crystal contacts) and hence could 

not compete with the GABAAR α5 subunit 

binding under the conditions of the ITC 

experiment. 

  

Figure 22. Comparison of the α5-loop binding of 

radixin FERM (1-310) and FERM (1-295). A, SDS 

PAGE of the FERM domain constructs 1-310 and 1-

295 confirms the purity and size of both variants. B, 

Alignment of the C-terminal parts of both FERM 

variants. Residues critically interacting with a 

known peptide-binding site as observed in the 

initial crystal structure are marked in red and were 

deleted. C, ITC data of both FERM variants verify 

similar binding parameters towards the α5-loop. © 

2012 HM Maric 
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Nonetheless, by making use of this construct I ruled out a possible interference of the FERM-

FERM association upon crystallization. Following this idea, the truncated FERM domain was again 

subjected to crystallization trials, and crystals could be obtained with both the full-length α5-loop as 

well as with different minimum peptides. I solved the structure by molecular replacement using an 

apo radixin FERM domain (PDB-ID: 1GC7) and refined it to 2.1 Å resolution. Interestingly, the 

electron density map revealed additional density at the ligand binding site in subdomain F3 which 

was so far occupied by the C terminal peptide of the FERM domain in the structure described in the 

previous section. As expected, the electron density could not be attributed to the C terminus of 

FERM as found earlier. The resolution was high enough to allow unbiased modeling of the ligand 

residues which, very surprisingly, turned out to be a fragment of the purification process, namely the 

TEV cleaved His-tag of the FERM domain (Figure 23). Apparently, not only the C terminal FERM motif 

but also the TEV-cleavage site of the His-Tag could engage in specific interactions with the binding 

pocket on the F3 subdomain in the FERM domain. Comparison of my structures as well as earlier 

solved structures clearly point towards a highly promiscuous binding pocket recognizing a large 

variety of only moderately conserved substrates (Figure 23).  

Table 27. Radixin FERM (1-295) crystallization, X-ray data collection and refinement statistics. 

 

a Numbers in parentheses refer to the respective highest resolution data shell in the data set. 
b indicates the average of the intensity divided by its S.D. value. 
c Rsym = ∑ ∑ |=. − 〈=〉|.'() /∑ ∑ 〈=〉.'() , where =.  is the �th measurement and 〈=〉is the weighted mean of all measurements of =. 
d Rcryst = ∑6|&A| − |&B|6/∑|&A|, where &A and &B are the observed and calculated structure factor amplitudes. Rfree, same as Rcryst for 5% of 
the data randomly omitted from the refinement. 
e Ramachandran statistics indicate the fraction of residues in the favored (98%), allowed (˃99.8%), and disallowed regions of the 
Ramachandran diagram, as defined by MolProbity [159]. 

 

Data Collection statistics Refinement statistics Crystallization Conditions 

Wavelength (Å)  0.84371 Resolution (Å) 2.3-20 0.1 M MES pH 6.5 

Resolution (Å)a 2-36 No. of reflections 16131 15% PEG 550 MME 

Space group I 1 2 1 No. of protein/solvent atoms 2631/168 40 mg/ml radixin FERM 

Cell dimensions  Rcryst (Rfree)d 0.21 (0.29)  

a, b, c (Å) 51.32, 51.55, 138.76 Root mean square deviations   

α=γ, β (°) 90, 92.2 Bond lengths (Å) 0.009  

Unique reflections 25358 Bond angles (°) 1.176  

〈I/σ(I)	〉a, b 11.0 (5.8) Average B-factors (Å2)   

Completeness (%)a 98.8 (99.7) Protein 24.0  

Redundancya, c 3.1 (3.1) Solvent 25.0  

Rsym
a 0.092 (0.40) Ramachandran statistics (%)e   

  Favored 93.9  

  Allowed 4.2  

  Outliers 1.9  
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Prompted by this finding I compared ligand motifs that were shown to directly bind to this 

universal binding site on FERM subdomain F3. Strikingly, the α5-loop minimum FERM binding motif 

identified in this study fits very well to the ICAM2-binding motif (Table 28), and I therefore suggest 

that α5 occupies the same binding site. Interestingly, the conserved key residues of the FERM-ICAM1 

complex are identical to the earlier described (Section 3.1.3) α5-subunit distinct residues (Table 25). 

Furthermore, this binding interaction would change the environment of Trp242 in the FERM domain 

as well as Trp349 and Trp351 of the α5-loop, thus explaining the red-shift in the intrinsic Trp-

fluorescence upon complex formation described in section 3.1.2 and shown in figure 16. Additionally, 

the structurally resolved FERM beta-strand (residues 246-252) peptide backbone interaction would 

perfectly match the dominant contribution of enthalpy in the binding reaction as described by the 

ITC experiments presented in section 3.1.2. Finally, this hypothesis could explain the lack of bound 

α5-loop in the solved structures. Possibly, both the C-terminal FERM motif as well as the TEV-linker 

peptide were competing with the α5-loop for an identical binding site on the FERM domain. Earlier 

studies verified the α5-loop to be ubiquitinated in vivo. Comparison of the fine-mapped FERM 

binding region of the α5 subunit with the ICAM2-binding motif suggest that the ubiquitinated Lys355 

engages in close spatial apposition to the FERM domain and hence suggests a severe negative 

Figure 23. Comparison of FERM domain cocrystal structures. Different ligands engage in similar interactions with a 

promiscuous binding site in the F3 subdomain of the radixin FERM domain. ICAM1 (PDB ID: 1J19), NEP (PDB ID: 2YVC), CD-

43 (PDB ID: 2EMS), TSLC1 (PDB ID: 3BIN), PSGL1 (PDB-ID: 2EMT), C-term (presented here) and TEV (presented here). FERM 

domain residues Leu281, Cys284, Met285, His288, Trp242, Ile245, Ile248 and Phe250, of the α-helix marked in blue, 

together form a large hydrophobic pocket which accepts a variety of different hydrophobic ligand residues, marked in red, 

adopting different conformations. Additionally, FERM residues 246-252 form a β-strand, marked in yellow, that engages in 

peptide backbone interactions independent of the respective side chains of the ligand. © 2012 HM Maric 

TEV – TENLYF C-Term – PDTIEVQQ PSGL1 – KTHMYPVRN TSLC1 – GTYFTHE 
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regulatory effect of this posttranslational modification on radixin-mediated GABAAR clustering (Table 

28). 

Table 28. Comparison of ligand motifs binding to an identical binding site in the FERM domain. Alignment of 
sequences that were found earlier to interact with the universal binding site of FERM on subdomain F3 and their respective 
binding affinities. Additionally, I aligned the peptides that occupied the respective FERM binding site in the derived crystal 
structures to the moderately conserved motifs. Compared to common binding partners the α5-loop has the lowest overall 
affinity. The α5-loop minimum motif (boxed), which is crucial for FERM binding, shows a high homology to the mICAM-
polyA mutant. Conserved basic residues are marked in blue, conserved small residues in green and conserved hydrophobic 
residues in red. Remarkably, earlier studies verified that the identified α5-loop minimum motif forms a glycyl-lysine 
isopeptide interchain with C-terminal Gly of ubiquitin in vivo [171] at Lys355 (marked with “a”). Remarkably, this residue 
occupies a critical position within the FERM binding minimal motif of the α5-loop.  

FERM binding Binding motif      Kd (nM) 
His-link-TEV (X-ray) T T E N La F Q G - - - -    -  
FERM-C-term (X-ray) K P D T I a E V Q Q M K A    -  
mICAM-2 (X-ray) R T G T Ya G V L A A W R  830  
CD 43 (X-ray) R T G A La T L S G G G K  104  
GABA

A
R α5 W D G K K a A L E A A  K I  7000  

mICAM (PolyA) A T G A A a G V L A A  A R   830  
PSGL 1 (X-ray) K T H M Ya P V R N Y S P   600  
NEP (X-ray) Q M D I Ta D I N A P K P  2300  
CD 44 Q K K K La V I  N G G N G    74  
VCAM-1 M K G S Ya S L V E A Q K  150  
ICAM-3 R S G S Ya H V R E E S T   760  
SDC-1 D E G S Ya S L E E P  K Q   830  
NRX-1 D E G S Ya D L G K K  P I  3800  
NCAM-L1 K G G K Ya S V K S K E D    61  
TSLC 1 (X-ray) H K G T Ya F T H E A - -  1000  

 

Based on the finding that the His-tag-peptide 

specifically interacts with a known universal binding site 

on FERM subdomain F3, I wanted to test whether the α5-

loop also targets this binding site. Hence I performed ITC 

with both His-tagged and untagged FERM to control for a 

possible competition between the α5-loop and the His-

tag. Indeed, the His-tagged FERM domain showed a 

strongly reduced α5-loop binding capacity in ITC, thus 

suggesting that despite the only moderate sequence 

homology the same or an overlapping binding site on the 

radixin FERM domain is directly involved in α5 binding 

(Figure 24). Therefore future crystallization trials, utilizing 

constructs that circumvent both unwanted binding 

events, may allow to determine the cocrystal structure of 

radixin in complex with the α5-loop.  

  Figure 24. Comparison of the α5-loop binding of His-tagged and un-tagged radixin FERM domain. A, SDS-PAGE of the N-
terminal His-tagged and the TEV-cleaved radixin FERM domain confirms their purity and expected size. B, Alignment of both 
variants. Residues removed by TEV cleavage and engaging in specific interactions with the F3 subdomain of the FERM domain 
are marked in red. C, ITC data of both FERM variants verify the interference of the His-tag with α5-loop binding. Both the 
overall heat release and the resulting binding affinity are significantly decreased, indicating that both the His-tag-peptide and 
the α5-loop compete for the identical binding site on the F3 subdomain of the FERM domain. © 2012 HM Maric 
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3.2 Gephyrin-Mediated GABAAR and GlyR Clustering 

For around two decades gephyrin has been implicated in the clustering of GABAARs, however, the 

underlying direct interactions were only recently discovered [27]. In addition, these interactions have 

neither been quantified nor characterized at the molecular level. Following up on published and 

unpublished initial data of Dr. Jayhanta Mukherjee and Dr. Verena Tretter from the group of Steven J. 

Moss (Tufts University, Boston, USA) I studied different gephyrin receptor complexes with various 

biochemical and biophysical methods to provide the following insights into gephyrin-mediated 

GABAAR clustering, which are described in the next paragraphs: 

� In vitro verification of a direct interaction. 

 

� Mapping of the respective binding sites and determination of minimal receptor motifs. 

 

� Deciphering gephyrin`s subunit preference. 

 

� Revealing possible competition or synergistic effects in receptor subunit binding.  

 

� Crystallization of the GABAAR-gephyrin complex and comparison to the GlyR-gephyrin 

structure. 

 

� Structure guided identification of key residues and estimation of their relative contribution to 

the overall binding strength of the interaction. 

 

� Attenuation of receptor clustering in living neuron by the introduction of point mutations 

(Experiments conducted by Jayhanta Mukherjee). 

 

� Regulation of receptor clustering by phosphorylation (in close collaboration with the Moss 

and Harvey (UCL, London, UK) groups). 

The majority of these studies, described in section 3.2, are presented in a more condensed form 

compared to the remainder of the Results. They are described detailed in three recently published 

manuscripts: 

1. Maric H.M., Mukherjee J., Tretter V., Moss S.J., Schindelin H.; Gephyrin-mediated γ-aminobutyric 

acid type A and glycine receptor clustering relies on a common binding site. J  Biol Chem. 2011 Dec 

9; 286(49): 42105-14. Epub 2011 Oct 17. 

2. Tretter V., Kerschner B., Milenkovic I., Ramsden S.L., Ramerstorfer J., Saiepour L., Maric H.M., 

Moss S.J., Schindelin H., Harvey R.J., Sieghart W., Harvey K.; Molecular basis of the γ-aminobutyric 

acid A receptor α3 subunit interaction with the clustering protein gephyrin. J  Biol Chem. 2011 Oct 

28; 286(43): 37702-11. Epub 2011 Aug 31. 

3. Mukherjee J., Kretschmannova K.*, Gouzer G.*, Maric H.M.*, Ramsden S., Tretter V., Harvey K., 

Davies P.A., Triller A., Schindelin H., Moss S.J.; The residence time of GABA(A)Rs at inhibitory synapses 

is determined by direct binding of the receptor α1 subunit to gephyrin. J Neurosci. 2011 Oct 

12;31(41):14677-87. *Authors contributed equally. 
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3.2.1 Mapping the GABAAR Gephyrin Interaction  

Following a proposed direct interaction of gephyrin with GABAAR α1 (J. Mukherjee, personal 

communication), α2 [27] and α3 (V. Tretter, personal communication), I cloned, expressed and 

purified the corresponding intracellular loops from E. coli and investigated their interaction with 

gephyrin by ITC.  

For a first localization of the GABAAR binding site in gephyrin full-length gephyrin and the isolated 

E domain (GephE) were titrated with the α1-loop (Table 29A). These binding assays yielded similar 

parameters hence mapping the binding site to E domain, a result that is comparable to what we 

found earlier for the interaction between the GlyR β subunit and gephyrin [58]. Conversely, titration 

with GephG and the largest part of the linker region showed no detectable interaction, thus 

confirming that the GABAAR binding site resides in the E domain (Table 29A), which was therefore 

used for all subsequent experiments. 

To determine the residues crucial for the interactions I cloned, based on initial biochemical assays 

of V. Tretter and J. Mukherjee, selected deletion and chimeric variants, purified them from E. coli and 

verified or falsified their GephE binding in ITC. Subsequently, I tested whether the identified 

minimum peptides are sufficient to specifically interact with GephE in pull-down assays by using the 

respective motifs as biotinylated variants. As a control, I employed the GlyR minimum motif 

identified earlier in a comparable manner for GephE binding in either the ITC or pull-down assays. 

The intracellular loops were purified and handled similarly as described in section 3.1.1 for the α5 

subunit, with the exclusion that aggregated fractions of the α2 and α3 subunits were de-aggregated 

using guanidinium-chloride to optimize the overall yield. These experiments are summarized in Table 

26 and together they define that α1 residues 361-375 (Table 29B) and α3 residues 392-406 (Table 

29D) are necessary for GephE complex formation. In contrast, the α2-loop GephE affinity was too low 

to be measured in ITC under comparable conditions, and, due to the high hydrophobicity of this 

peptide, the experiments could not be scaled up to allow verification of a possible weak interaction. 

Therefore the interaction was verified using native agarose gel electrophoresis (NAGE) assays (Table 

29C and Figure 25B and C). 

Table 29. GABAAR α1, α2, α3 and GlyR ββββ loop gephyrin binding site mapping. Summary of ITC, NAGE and pull-

down assay data. (+++) KD = 0.1-1 µM; (++) KD = 1-20 µM; (+) no interaction detectable in ITC but verified via native PAGE or 

pull-down assays; (-) no interaction detectable via ITC, native PAGE or pull-down assays. 

No. Gephyrin Receptor subnunit Affinity 

A 1-734 (full-length gephyrin) GABAAR α1 334-420 (TM3-TM4) (++) 

 1-303 (GephG + Linker) GABAAR α1 334-420 (TM3-TM4) (-) 

 318-734 (GephE) GABAAR α1 334-420 (TM3-TM4) (++) 

B GephE GABAAR α1 334-420 (TM3-TM4) (++) 

 GephE GABAAR α1 Δ360-375 (-) 

 GephE GABAAR α1 361-375 (+) 

C GephE GABAAR α2 335-419 (TM3-TM4) (+) 

D GephE GABAAR α3 360-457 (TM3-TM4) (++) 

 GephE GABAAR α3 Δ397-406 (-) 

 GephE GABAAR α3 392-406 (+) 

E GephE GlyR β 398-411  (++) 

 GephE GlyR β 387-426  (+++) / (++) 
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Figure 25. ITC reveals gephyrin`s receptor subunit preference.  

A, ITC derived binding isotherms of GephE titrated with GABAAR 

α1 334-420 (TM3-TM4), GABAAR α2 335-419 (TM3-TM4), 

GABAAR α3 360-457 (TM3-TM4), GlyR β 398-411 and GlyR β 

387-426. Measured binding enthalpies are plotted as a function 

of the molar ratio of the respective receptor loop to gephyrin. 

Data of the titration of GABAAR α2 to GephE could not be 

analyzed due to very weak binding. B, NAGE of GABAAR α1, α2 

and α3 subunits applied in a 3-fold stoichiometric excess over 

GephE. Whereas GABAAR α1 and GABAAR α3 retain GephE in 

the gel pocket, incomplete GephE GABAAR α2 complex 

formation allows GephE (arrowhead) to enter the gel. C, NAGE 

of GABAAR α1-3 at a 10-fold stoichiometric excess over GephE. 

This molar ratio does not allow any GephE (arrowhead) to enter 

the gel and migrate towards the anode. © 2012 HM Maric 

3.2.2 Deciphering Gephyrin`s Receptor Subunit Preference 

After verification of the respective receptor complexes my next aim was to elucidate gephyrin`s 

subunit specific affinities. Hence, I determined the binding parameters for all analyzed receptor 

subunits under similar experimental conditions by ITC (Figure 25A), and, in case of the low affinity 

subunit α2, I used NAGE to estimate the relative binding strength (Figure 25 B and C).  

As expected the GlyR β intracellular 

loop displayed the strongest GephE 

interaction with two binding sites 

displaying Kd-values of 0.1 µM and 8 µM, 

respectively, for the elongated 49 

residue construct, while the 

corresponding GlyR β minimal peptide 

consisting of 12 residues showed a 

significant lower affinity of only 4.3 ± 0.4 

µM (Figure 25A). The full-length GABAAR 

α3-loop displayed the strongest 

interaction among the analyzed GABAAR 

subunits with a Kd of 5.3 ± 1.5 μM (Figure 

25A), followed by the full-length GABAAR 

α1-loop with a Kd of 17 ± 11 μM (Figure 

25A). Under the same experimental 

conditions an interaction between the 

α2 subunit of GABAAR and gephyrin 

could not be detected by ITC (Figure 

25A), however, NAGE experiments 

verified that the GABAAR α2 loop and 

gephyrin do form a complex, albeit with 

low affinity. Unlike the GABAAR α1 and 

α3 loops, which fully shifted GephE 

already at a molar ratio of 3 to 1 (Figure 

25B), a 10-fold stoichiometric excess of 

GABAAR α2 was required to complex all 

GephE under the experimental 

conditions (Figure 25C), thus suggesting 

a significantly lower affinity of α2 for 

gephyrin compared to α1 and α3 while 

verifying at the same time a weak direct 

interaction.   
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Interestingly, similar to the GlyR β loop, shortening of the GABAAR α1 and α3 loops lowered their 

affinity significantly, up to a lever where the α1 and α3 derived minimum peptides could not be 

studied by ITC.  

Instead, I performed pull-down 

experiments with the corresponding 

peptides coupled to streptavidin 

beads via covalently attached biotin 

(Figure 26). The pull-down data 

demonstrate that the residues 

contained within these peptides are 

sufficient to mediate a specific 

interaction with GephE with their 

relative binding strengths mirroring 

the full-length loops (Figure 26 and 

Table 29). 

 

  

GephE 

GABA
A
R α1 

334-348 

GlyR β 
 398-411 

GABA
A
R α3 

364-378 
Control 

Figure 26. Minimum peptides are sufficient to mediate a 

specific gephyrin pull-down. Pull-down experiments of GephE 

with biotinylated GlyR β residues 398-411, GABAAR residues 

α3 392-406 and GABAAR α1 residues 361-375 coupled to 

streptavidin beads. Under the same experimental conditions 

GephE does not bind to the streptavidin beads alone (control). 

© 2012 HM Maric 
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3.2.3 Gephyrin Binds Different Receptors in a Mutually Exclusive Fashion 

So far, I described the identification of 

the core motifs in the GABAAR α1-3 and 

GlyR β subunits and how gephyrin`s E 

domain directly interacts with these motifs, 

albeit displaying a wide range of affinities. 

Alignment of the identified sequences 

(Table 30) reveals a moderate overall 

sequence homology and therefore may 

suggest distinct binding mechanisms. A 

notable exception to this finding are the N-

terminal parts of the GABAAR α3 and GlyR β 

motifs (Table 30, marked in red), as well as 

the C terminal parts of the GABAARs (Table 

30, marked in green) which share high 

levels of conservation, respectively.  

Prompted by these findings I investigated 

the possibility of a universal gephyrin 

binding site mediating all analyzed receptor 

interactions. 

To address this issue I conducted ITC 

competition experiments between GABAAR 

α1 and GlyR β (Figure 27) which exhibit the 

lowest overall identity in their gephyrin-

interacting region (Table 30). Should 

GABAAR α1, α2, α3 and GlyR β share a 

single binding site on gephyrin, I expected 

receptor binding to gephyrin to occur in a 

mutually exclusive fashion. Strikingly, my 

experiments revealed that pre-equilibration 

of gephyrin with a GlyR β derived peptide 

containing only the 15-residue core motif is 

sufficient to significantly weaken and 

ultimately abolish the GABAAR α1 gephyrin 

interaction depending on the molar ratio of 

both loops (Figure 27). Vice versa GABAAR 

α1 also interferes with GlyR β binding to 

GephE (data not shown), and taken 

together this indicates that GABAAR α1, and 

GlyR β compete for a single binding site 

located in gephyrin’s E domain. 

 

Figure 27. ITC competition assays. Heat signature of 
GephE [10 µM] titrated with GABAAR α1 loop [200 µM] 
A, in the absence, and in the presence of B, 3 µM GlyR β, 
C, 6 µM GlyR β and D, 30 µM GlyR β peptide. Increasing 
amounts of GlyR β significantly reduce the heat being 
released which should still be measurable if GABAAR α1 
binds to a different site in GephE. © 2012 HM Maric 
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Table 30. Comparison of the identified minimal peptides 

sufficient for gephyrin binding. GABAAR α3 and GlyR β 

share a similar N-terminal region (boxed and residues marked 

in red), while GABAARs share high homology in their C 

terminal regions (boxed and residues marked in green). In 

contrast, GABAAR α1 and GlyR β display the lowest overall 
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3.2.4 Molecular Basis of Gephyrin-Mediated GlyR and GABAAR Clustering  

Prompted by my biochemical findings 

I attempted to cocrystallize GephE with 

the GABAAR α1 and α3 loops by applying 

the identical gephyrin construct that was 

used for solving the GephE-GlyR β crystal 

structure earlier in our group. Employing 

a stoichiometric excess of the identified 

GABAAR α3 minimum motif over GephE I 

obtained crystals of the respective 

GephE complex and solved the 

corresponding crystal structure (Figure 

28 and Table 31). The crystal contains an 

E domain dimer in the asymmetric unit, 

however, apparently caused by crystal 

contacts only a single binding site of the 

GephE-dimer was occupied with the 

GABAAR derived peptide. The structure 

of the GephE-GABAAR α3 complex 

indeed reveals that the GABAAR α3 

residues occupy the same binding site as 

the respective GlyR β residues in the 

gephyrin GlyR β complex.  

 

Table 31. X-ray data collection and refinement statistics of the GephE-GABAAR α3 complex. 

 

 

a Numbers in parentheses refer to the respective highest resolution data shell in the data set. 
b indicates the average of the intensity divided by its S.D. value. 
c Rsym = ∑ ∑ |=. − 〈=〉|.'() /∑ ∑ 〈=〉.'() , where =.  is the �th measurement and 〈=〉is the weighted mean of all measurements of =. 
d Rcryst = ∑6|&A| − |&B|6/∑|&A|, where &A and &B are the observed and calculated structure factor amplitudes. Rfree, same as Rcryst for 5% of 

the data randomly omitted from the refinement. 
e Ramachandran statistics indicate the fraction of residues in the favored (98%), allowed (˃99.8%), and disallowed regions of the 
Ramachandran diagram, as defined by MolProbity [159]. 

 

Data Collection statistics Refinement statistics Crystallization Conditions 

Wavelength (Å)  1.5418 Resolution (Å) 3.9-20 0.1 M Tris pH 8.5 

Resolution (Å)a 3.9-40 (3.9-4.1) No. of reflections 9958 30% PEG 400 

Space group P21212 No. of protein/solvent atoms 6191/0 0.2 M MgCl2 

Cell dimensions  Rcryst (Rfree)d 0.23 (0.34)  

a, b, c (Å) 51.2, 109.2, 160.0 Root mean square deviations   

α=β=γ (°) 90 Bond lengths (Å) 0.011  

Unique reflections 11589 Bond angles (°) 1.463  

〈I/σ�I"	〉a, b 5.34 (1.9) Average B-factors (Å2)   

Completeness (%)a 96.4 (95.4) Protein 23.3  

Redundancya, c 2.2 (2.1) Solvent -  

Rsym
a 0.29 (0.92) Ramachandran statistics (%)e   

  Favored 82.0  

  Allowed 13.2  

  Outliners 4.8  

Figure 28. Gephyrin binds different receptors with a universal 

binding site. Superposition of the crystal structure of the GephE-
GABAAR α3 loop solved in my thesis, and an earlier GlyR β complex 
structure. A, Ribbon diagram of GephE colored according to its 
subdomain architecture with the GABAAR α3 (solved here and 
marked in salmon) and GlyR β peptide  (PDB-ID: 2FTS and marked in 
orange) as stick models. Both receptors occupy an overlapping 
binding site on gephyrin. Close up view of the additional electron 
density corresponding to the GlyR β peptide (B) in orange and the 
GABAAR α3 peptide (C) in salmon. © 2012 HM Maric 
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α1 TYAPTATSYTPNL 

α2 AYAVAVANYAPNL 

α3 TFNIV GTTYPINL 

β DFSIV GSLPRDFE 
GlyR

 
β 

Na Sb   c  d P 

Table 32. Receptor regions 
recognized by gephyrin share 
common features. Elements a 
and b are conserved among all 
receptor subunits, element c, a 
tyrosine residue is conserved 
among GABAAR subunits but not 
in the GlyR β subunit. Elements a 
and b form a hydrophobic motif 
that occupies an identical binding 
site on GephE, which mediates 
similar gephyrin interactions. 

Comparison of my GephE-GABAAR α3 structure with the GephE-GlyR β structure determined 

earlier reveals that identical residues derived from two gephyrin subdomains (III and IV) engage in 

direct interaction with similar GlyR β and GABAAR α3 residues (Figure 29 and Table 32). In particular, 

Phe398 of the GlyR β subunit, which is of major importance for the interaction with gephyrin and the 

corresponding residue Phe397 in GABAAR α3 are engaged in hydrophobic interactions with GephE 

Phe330. Interestingly, the corresponding residues Tyr367 in GABAAR α1 and α2 also appear to be 

strongly conserved aromatic residues highlighted as “a” in Table 32, thus suggesting a similar role for 

the respective residues. Adjacent to this type-conserved aromatic residue the GephE-GlyR β and 

GephE-GABAAR α3 cocrystal structures display both a hydrogen bond donating residue followed by 

two hydrophobic residues which tightly fit into the hydrophobic pocket formed by subdomains III and 

IV of GephE (Ser399, Ile400 and Val401 in GlyR β, and Asn398, Ile399 

and Val400 in GABAAR α3). Again the corresponding residues are type-

conserved in both GABAAR α1 and α2 (Table 32 “b”). The ensuing 

residues, Gly402 in the GlyR β loop and Gly401 in the GABAAR α3 loop, 

both point towards subdomain IV of gephyrin’s E domain, and 

interestingly the corresponding residue in GABAAR α1 is also small 

(Ala371, Table 32, “c”), whereas GABAAR α2 has a significantly bulkier 

residue at this position (Val371). The GABAAR α1, α2 and α3 subunits 

share a conserved tyrosine positioned eight residues C-terminal of the 

first conserved aromatic residue (Table 32, “d”), yet the corresponding 

residue in GlyR β is a proline, thus suggesting that the C-terminal half 

of the GABAAR α1, α2 are recognized in the same way as GABAAR α3 

which is different from the interaction with the GlyR β subunit. 

  

Figure 29.  Gephyrin engages in receptor subunit specific and conserved interactions. A, Close up view of the 
GephE-GABAAR α3 complex. B, Binding interactions in the GephE-GlyR β loop complex crystal structure solved 
earlier in our group. GephE is colored according to its subdomain architecture and represented as a ribbon 
diagram with residues central for the GlyR β loop binding shown as stick model. Receptor residues are also shown 
in stick representation with GlyR β in orange and GABAAR α3 in violet. Notably, the receptor subunit binding 
motifs engage in similar gephyrin interactions with their N-terminus, while their C-terminus engages in subunit 
distinct interactions. © 2012 HM Maric and 2006 EY Kim, H Schindelin. 
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Based on the crystal structures we predicted that not only Phe397 of GABAAR α3 but also Tyr367 

of GABAAR α1 is positioned in an analogous fashion as Phe398 of GlyR β (Table 32 "a"). In line with 

the over 100-fold reduction in binding strength for GlyR β F398A [55], binding was no longer 

detectable by ITC for the GABAAR α3 F397A and GABAAR α1 Y367A variants (Figure 30). In an 

analogous fashion we proposed a similar role for GABAAR α3 Ile399 as compared to GlyR β Ile400 

(Table 32 "b") which critically weakened the gephyrin interaction upon alanine mutation. Not 

surprisingly GABAAR α3 Ile399Ala was also significantly impaired in interacting with GephE (Figure 

30). 

  

Table 33. Similar receptor residues are critical for GephE binding. Summary of the GABAAR α1-3 and GlyR β affinities 
for GephE determined by ITC (see Figures 25 and 30). Mutated residues are underlined and marked in red.  
 

Receptor Sequence Kd (µM)  Receptor Sequence Kd (µM) 

GlyR β (long) 
398FAIVGSLP405  2.0±0.2  GABAAR α1 

340AAPTATSY347  n.d. 

GABAAR α1 340YAPTATSY347  17±11  GABAAR α3 
368ANIVGTTY375  n.d. 

GABAAR α2 339YAVAVANY346  n.d.  GlyR β (long) 
398ASIVGSLP405  13±0.1 

GABAAR α3 
368FNIVVTTY375  n.d.  GABAAR α3 

368FNAVGTTY375  n.d. 

GABAAR α3 368FNIVGTTY375  5.3±1.5  GlyR β (long) 
398FSAVGSLP405  2.7±0.7 

GABAAR α1 
340YSITATSY347 

17±8.7  GABAAR α1 
340YAPTATSA347  n.d. 

GlyR β (short)1 
398FSIVGSLP405  4.9±0.4  GABAAR α3 

368FNIVGTTA375  n.d. 

GlyR β (long)2 
398FSIVGSLP405  

0.14±0.1 
7.7±0.1 

    
1Residues 398-411 (FSIVGSLPRDFELS) 
2Residues 378-426 (VGETRCKKVCTSKSDLRSNDFSIVGSLPRDFELSNYDCYGKPIEVNNGL) 

Figure 30. Identification of GABAAR α1 and α3 loop residues critical for gephyrin binding. Residues that are conserved 
among GlyR β and GABAAR α1, α2 and α3 appear to be critical for GephE complex formation. Overlaid binding isotherms of 
GephE titrated with (A), different GABAAR α1 loop and (B), GABAAR α3 loop variants (mutated residues are underlined and 
marked in red). Binding isotherms are plotted as a function of the molar ratio of receptor loop to GephE. © 2012 HM Maric 
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The two crystal structures suggest that moderately conserved key residues within the N-terminal 

region of both, GABAARs and GlyRs, interact with critical gephyrin residues. To test this and to expand 

our findings to the α1 subunit, I analyzed the effects on GABAAR α1/3 binding of two critical gephyrin 

point mutants identified earlier [55]. The mutation P713E in gephyrin was shown to completely 

abolish the tight GlyR β binding, possibly by introducing its bulky and negatively charged side chain 

into the receptor binding pocket formed by subdomains III, IV and IV` (Figure 29 and Table 32). A less 

severe change is represented by the gephyrin mutant F330A, which nevertheless significantly 

weakens GlyR β binding, most likely by diminishing the contribution of the hydrophobic interactions 

mediated by the hydrophobic core of the GlyR β loop and subdomain III of GephE. The binding of 

both mutants was analyzed by ITC for the GABAAR α1 and α3 subunits, and interestingly both 

impaired binding so strongly that it could no longer be assessed by ITC (Figure 31). The effect of the 

P713E variant supports the hypothesis that the binding site for the GlyR β subunit overlaps with that 

of the GABAAR α1 and α3 subunits in the vicinity of Pro713. The impaired binding of the F330A 

variant likewise demonstrates overlap of the different binding site in the vicinity of this residue but 

also argues that interactions with the GABAAR α1 and α3 subunits is driven by a similar contribution 

of the hydrophobic core region (Table 32, “a” and “b”).  

 

Figure 31.  Identification of GephE residues crucial for GABAAR α1 and α3 binding. Gephyrin point mutations critically 
reduce GABAAR α1 and α3 affinity in a comparable manner. Overlaid binding isotherms of different GephE variants titrated 
with A, the α1-loop and B, the α3-loop. Binding isotherms are plotted as a function of the molar ratio of receptor loop to 
GephE. © 2012 HM Maric 
 
Table 34. Identification of key residues in GephE required for GABAAR and GlyR binding. Summary of the GABAAR 
α1-3 and GlyR β affinities for different GephE mutation variants as determined by ITC (Figure 31). 
 

Receptor GephE wt Kd (µM) GephE F330A Kd (µM) GephE P713E Kd (µM) 

GABAAR α1 17±11 n.d. n.d. 

GABAAR α3 5.3±1.5 n.d. n.d. 

GlyR β (long) 
0.14±0.1 
7.7±0.1 

9.2±0.7 n.d. 
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Puzzled by our finding of a very weak GABAAR α2 affinity for GephE despite the high homology to 

the GABAAR α1 and α3 subunits, we carefully compared the identified binding regions, also in light of 

the GephE-GlyR complex. This analysis focused our attention on Gly374, which points towards 

subdomain IV of GephE in the GlyR-GephE complex structure and is strictly conserved in GABAAR α3 

(Gly373) and type-conserved in GABAAR α1 (Ala344) but not conserved in GABAAR α2, where it is 

replaced by a bulkier residue (Val343) (Table 32, element "c"). In line with our suggestion of similar 

binding modes, we proposed this residue to repel the receptor loop by sterically clashing with 

subdomain IV of GephE (Figure 29), thus possibly explaining our observation of a rather weak GephE 

affinity as compared with GABAAR α1 and α3.  

I replaced the corresponding 

residue in GABAAR α3 with valine 

(G373V), and subsequent ITC analysis 

(Table 33) revealed a significantly 

reduced affinity. Although I could not 

reconstitute binding to the level of 

the GABAAR α1 or α3 subunit, NAGE 

of the corresponding GABAAR α2 

mutant (V343G) visualizes an 

increased gephyrin affinity (Figure 

32). Taken together this indicates 

that this residue could at least be 

partially responsible for the observed 

weak GephE GABAAR α2 affinity.  

Expanding on the idea of similar binding mechanisms mediated by only moderately conserved 

residues I hypothesized that different receptor residues mediate similar interactions with gephyrin. 

To test this assumption I exchanged selected residues within the N-terminal part of the GlyR β and 

GABAAR α1 motif, which appeared to be involved in the interaction with Phe330 of gephyrin. 

Compared to GABAAR α2/3, the GlyR β and the GABAAR α1 subunits show the lowest overall identity 

in this motif. According to our hypothesis Ala368 and Pro369 of the GABAAR α1 subunit would 

mediate similar interactions with GephE as do residues Ser399 and Ile400 of the GlyR β subunit 

which were both shown to be critical contributors to the overall binding strength. I generated an 

A368S/P369I double mutant of the GABAAR α1 subunit and analyzed its binding by ITC. Although I 

severely altered the GABAAR α1 core binding site, identified earlier to be crucial for binding, the 

determined binding parameters were very similar to the wild-type (Table 33), thus lending further 

support to our hypothesis. 

  

Figure 32. NAGE verifies an increased GephE affinity for GABAAR α2 

V343G. NAGE of GABAAR α2 loop variants applied in a 6-fold and 8-fold 
stoichiometric excess over GephE. Mutation of Val343 to glycine allows 
less GephE to enter the gel (box), indicating a strengthening of the 
GephE-GABAAR α2 loop complex which, at a 1:8 ratio, retains the 
majority of GephE in the pocket. © 2012 HM Maric 
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Following my ITC-based mutational analysis I wanted to dissect the relative contributions to the 

overall binding strength of aromatic residues in the N and C terminal parts of the respective GABAAR 

α1 and α3 motifs. The N-terminal region of the GABAAR α1, α2 and α3 subunits contains either a 

phenylalanine or tyrosine residue which is homologous to Phe398 of the GlyR β subunit and, based 

on the GephE-GlyR β complex, would be positioned in close proximity to Phe330 of gephyrin (Figure 

29). In contrast, the C-terminal part of the GABAAR subunits differs from the GlyR β subunit; a strictly 

conserved tyrosine residue in the GABAAR does not coincide with Phe408 of the GlyR β subunit which 

was also identified as a critical residue for gephyrin binding (Table 32, 33 and Figure 29).  

Given that ITC is not sensitive enough to 

display any residual binding for the respective 

mutants I instead used NAGE. As expected, the gel 

electrophoresis experiments verified a major 

impact on binding strength for all of the analyzed 

mutants (Figure 33). In line with my ITC 

experiments no residual binding could be 

detected for the F330A variant of GephE when 

incubated with GABAAR α3. The Y376A variant of 

the GABAAR α3 subunit was also significantly 

impaired, however, it allowed for some residual 

binding to GephE. The corresponding 

substitutions in the GABAAR α1 subunit both 

displayed a weakened receptor binding. A 

simultaneous substitution of both residues in the 

GABAAR α1 subunit synergistically weakened the 

interaction, yet some residual binding could still 

be detected. Taken together these results 

underscore the major contribution of the 

conserved aromatic residues for GABAAR α1 and 

α3 but also suggest additional distinct 

contributions to the binding strength, which are 

unique to the GABAAR α1 subunit. 

  

Figure 33. NAGE reveals a differential contribution of 

conserved GABAAR key residues. A, NAGE of GephE wt 

which, when complexed with wt receptor loops, does 

not enter the gel. Under the same experimental 

conditions GephE interacting with the altered subunits 

partially enters the gel indicating a weakening of the 

complex formation. B, Analogous experiment with the 

F330A variant of GephE. The presence of the GABAAR 

intracellular loops of the α3 subunit (wild-type and 

Y376A variant) does not alter GephE F330A migration 

towards the anode, indicating a completely abolished 

complex formation. In contrast the α1 and α1 Y347A 

subunit show residual binding to GephE F330A, partially 

retaining it in the gel pocket. © 2012 HM Maric 
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My in vitro studies described in this section, identified two conserved aromatic residues in the α1 

and α3 subunits of GABAARs and GlyR β subunit as major determinants for the direct and exclusive 

binding to gephyrin. Following this result, J. Mukherjee in the Moss group tested whether the 

respective aromatic residues are also crucial for GABAAR clustering in hippocampal neurons and 

hence provide evidence for a gephyrin-mediated clustering mechanism relying on a direct subunit 

interaction. Therefore GABAAR α2 constructs were generated in which both aromatic residues, 

Tyr339 and Tyr346 (Table 32 marked red and green, respectively), were exchanged to alanine to 

abolish the direct gephyrin interaction in vivo.  

J. Mukherjee analyzed the synaptic 

accumulation of GABAARs containing either 

wild-type α2 or the respective double 

mutant subunits using an N-terminal 

coupled pHluorin reporter (pHα2 WT and 
pHα2 DM). Confocal imaging was performed 

on hippocampal neurons at 21 DIV (days in 

vitro) expressing either pHα2 WT or pHα2 

DM. The cells were lightly fixed with 

paraformaldehyde and stained with the 

respective antibodies. Surface staining with 

a GFP antibody revealed a significant loss of 

GABAARs clusters per 30 μm segment (11.7 

± 0.6 vs. 4.6 ± 0.4, n = 30 neurons, pHα2 WT 

and pHα2 DM, respectively) (Figure 34A and 

B). These clusters are primarily synaptic as 

they are either colocalized or opposed to 

VIAAT positive puncta. Moreover, cells 

expressing mutant pHα2 subunits are 

positive for VIAAT puncta, suggesting that 

they are innervated by inhibitory 

presynaptic terminals. To control for 

possible negative effects of mutations on 

receptor assembly or surface trafficking, 

the ability of the pHα2 WT and pHα2 DM 

subunit to gain access to the plasma 

membrane on coexpression with the β3 

subunit in HEK 293 cells was examined by 

anti-GFP surface labeling (without 

permeabilization) (Figure 34C). Indeed, in 

the presence of the β3 subunit, both pHα2 

WT and pHα2 DM subunits gain access to 

the surface membrane at similar levels. This 

process seems specific as he observed 

minimal surface trafficking, when 

expressing the pHα2 subunit alone.  

  

Figure 34. Tyrosine-mutations attenuate α2-mediated GABAAR 

clustering at postsynaptic sites. Hippocampal neurons expressing 
pHα2-WT and pHα2-DM (Tyr339Ala/Tyr346Ala) were lightly fixed 
(~21 Div), stained with GFP antibody against the extracellular 
“pHluorin” tag (red) and the presynaptic marker VIAAT (blue). A, 
Single plane confocal images showing the clustering pattern of 
pHα2-WT (upper panel) and pHα2-DM (lower panel). Note that the 
ability to form clusters is greatly attenuated for pHα2-DM since 
both cluster number and intensity are strongly reduced. For each 
panel, a higher magnification image of the boxed area is shown on 
the right, with arrows pointing to clusters (scale bar = 15 μm), 
showing that clusters are opposed to VIAAT and hence 
postsynaptic. B, Quantification of the average number of clusters 
formed by pHα2-WT and pHα2-DM at postsynaptic sites along 
dendrites per 30 μm (n=30 cells each, unpaired t test, P<0.001). C, 

HEK 293 cells expressing  pHα2 and pHα2-DM along with the β3 
subunit. Cells were lightly fixed and surface labeled with an anti-
GFP antibody against extracellular “pHluorin” tag (red). Confocal 
images show that both pHα2-WT (left panel) and pHα2-DM (right 
panel) can access the surface membrane to a similar extent (scale 
bar = 15 μm). © 2011 J Mukherjee, K Kretschmannova, G Gouzer, 
HM Maric, S Ramsden, V Tretter, K Harvey, PA Davies, A Triller, H 
Schindelin, SJ Moss 
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Collectively these experiments suggest that both tyrosine residues are critical for regulating the 

accumulation of GABAAR α2 subunits at inhibitory postsynaptic sites via a direct interaction with 

gephyrin. Additionally, the corresponding α1 double mutant (Y340A, Y347A) showed a similar effect 

(data not shown) and taken together it can therefore be inferred that conserved aromatic residues 

within the intracellular loops of the GABAARs and GlyRs are major contributors to the direct gephyrin 

interaction, which mediates the clustering of these receptors at postsynaptic sites. 
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3.2.5 Regulation of Gephyrin-Mediated GABAAR Clustering 

So far, my results suggest that gephyrin 

mediates the clustering of GABAARs 

containing the α1, α2, α3 and GlyRs 

containing the β subunit via a universal 

binding site. Interestingly, Y2H studies, 

conducted in parallel by the Harvey lab, 

apparently excluded the GABAAR α1 subunit 

as a gephyrin interaction partner (Figure 

35A). J. Mukherjee hypothesized that 

phosphorylation of the GABAAR fragment in 

yeast reduces the direct gephyrin interaction 

and indeed succeeded in demonstrating that 

the introduction of an acidic residue that 

mimics phosphorylation of Thr348 

attenuates receptor clustering at 

postsynaptic sites (Figure 35B) in 

hippocampal neurons. Following this result 

Sarah Ramsden from the Harvey lab showed 

that the corresponding alanine mutation 

indeed reconstitutes a direct gephyrin 

interaction of this subunit in Y2H assays 

(Figure 35A). Based on these findings we 

concluded that Thr348 can be 

phosphorylated in both, hippocampal 

neurons derived from mice and in yeast. To 

verify the suggested reduced affinity of the 

phospho-mimetic point mutation I 

quantified the direct interaction strength 

between gephyrin and the corresponding 

GABAAR α1 mutants by ITC (Figure 35C). 

Strikingly, introduction of a phosphomimetic 

glutamate indeed reduced the overall 

gephyrin binding strength approximately 10-

fold, hence lending further support to the 

idea that phosphorylation within the 

GABAAR α1 binding motif reduces GABAAR 

clustering by reducing its direct gephyrin 

interaction strength.   

Notably, the in vitro and in vivo experiments described in the previous section identified Tyr347 in 

the α1 subunit as a major contributor to the respective overall gephyrin binding strength. 

Introduction of a negative charge at the adjacent residue apparently interferes with the critical 

hydrophobic interactions mediated by the tyrosine residue which is conserved among the GABAAR 

α1, α2 and α3 subunits.  

Figure 35. GABAAR α1 Thr348 regulates receptor clustering by 

modulating GephE affinity. A, Y2H experiments conducted by K. 
Kretschmannova. Only GABAAR α1 Thr348A, but not the wildtype 
or the phosphomimetic variant interact with gephyrin in Y2H 
assays. B, J. Mukherjee nucelofected neurons (18-21 DIV) 
expressing GABAARs incorporating either WT-α1 or T348E-α1 
subunits were fixed, permeabilized, and stained with antibodies 
against gephyrin (red) and VIAAT (blue). Introduction of glutamate 
for Thr348 attenuates clustering of GABAARs in hippocampal 
neurons. C, ITC-plots of either α1-WT, α1-T348A and α1-T348E. 
Notably T348E shows a reduced exothermic signal together with 
an approximately 10-fold reduced gephyrin affinity as compared 
to the wildtype. Exchange of the threonine by alanine has only a 
slight effect on both the affinity and the enthalpy. © 2011 J 
Mukherjee, K Kretschmannova, G Gouzer, HM Maric, S Ramsden, 
V Tretter, K Harvey, PA Davies, A Triller, H  Schindelin, SJ Moss 
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Finally, my results described here, offer a possible molecular explanation for findings of an earlier 

functional study [172] that addressed the phosphorylation of GABAAR α1 by the extracellular-signal 

regulated kinase (ERK), a key effector of the mitogen-activated protein kinase (MAPK) pathway. This 

signal transduction pathway propagates and amplifies extracellular signals into a biological response. 

It involves the sequential activation of a small GTPase (Ras), followed by a serine/threonine kinase 

(Raf), then mitogen-activated ERK-activating kinase (MEK), a dual specificity kinase that subsequently 

phosphorylates its immediate downstream target, the MAPK [173]. This pathway is involved in the 

regulation of cell viability and the regulation of synaptic plasticity and memory [174, 175]. 

 C.L. Bell-Horner et al. observed altered GABA-gated 

currents upon ERK inhibition through pharmacological 

inhibition of its upstream kinase (MEK) with the inhibitor 

U0126 (Figure 36). Interestingly the same GABAAR α1 point-

mutation (T348A) was introduced [172] as in the work 

presented here. As expected the removal of the ERK 

phosphorylation site prevented the U0126-induced 

enhancement of GABA-gated currents. Based on my own 

studies I now suggest the MAPK pathway to be a negative 

modulator of gephyrin-mediated GABAAR clustering at 

postsynaptic sites. Hence my future studies will investigate the 

effect of U0126 on GABAAR clustering in living neurons. 

Interestingly, all GABAAR α subunits with the exception of the 

extrasynaptic α5 subunit harbor an ERK phosphorylation site 

(P-x-[S/T]-P or [S/T]-P). 

Prompted by this finding I investigated the possibility that earlier large-scale studies already 

verified phosphorylation within the linear gephyrin binding motifs identified in this work. Strikingly, 

at least seven known phosphorylation sites have already been verified. Among those, only one was 

addressed functionally (Table 35), namely the PKC mediated GlyR β phosphorylation which directly 

interferes with gephyrin binding [65] in a similar fashion as shown in my work for the GABAAR α1 

subunit.  

 
Table 35. GABAARs and GlyRs are phosphorylated within 
their   gephyrin-binding regions. Critical mediators of the 
direct interaction are boxed. Residues that were found to be 
phosphorylated in vivo are marked in red and the respective 
reference given in the footnote: 1[176]; 2[177]; 3[178]; 4[179]; 
5[180]; 6[172]; 7[65]. 

 
 
 

  

Figure 36. U0126, a highly potent MEK1 

inhibitor (IC50 = 14 nM). MEK inhibition 
by U0126 is thought to inhibit ERK which 
phosphorylates Thr348 in the GABAAR 
α1 subunit. My results demonstrate this 
phosphorylation weakens the direct 
interaction with gephyrin, possibly 
explaining the finding of increased 
GABAAR function upon U0126-induced 
MEK inhibition. © Public domain 

Receptor Sequence 

GABAAR α1 339 T1Y2APTAT1SY3T4,5,6 PNL350  

GABAAR α2 338A1Y2AVAVA1NY4A6,7,8 PNL349  

GABAAR α3 369 T1F2NIVGT1TY4P6,7,8 INL 380   

GlyR β 
397D1F2SIVGS7LP4R6,7, DFE409  
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3.3 Development of Bivalent Receptor Peptides that 

Specifically Target Gephyrin’s Receptor-Binding Capacities 

So far, biophysical and biochemical studies of gephyrin-receptor interactions, including my own 

studies described in the previous sections, involved only monomeric receptor-derived peptides and 

the obtained range of affinities (0.1-20 µM) most likely does not mirror the actual binding strength in 

vivo. These binary systems constitute an obvious oversimplification disregarding the possibility of an 

enhanced affinity due to plurivalent interactions mediated by the complex assembly of the receptors 

and the multimeric nature of gephyrin. To overcome this shortcoming I have developed dimeric 

forms of gephyrin-binding, receptor-derived minimum peptides that mimic the multivalent binding 

sites presented by a pentameric receptor containing at least two gephyrin-binding subunits. In this 

section I will present: 

 

� The structure-based identification of minimum peptides with optimized gephyrin-binding 

affinity. 

 

� A quantitative and irreversible one-step peptide dimerization and purification. 

 

� An analysis of bivalent peptide binding specificity via DSC. 

 

� A quantification of the avidity effect via thermofluor and ITC. 

 

� A demonstration of the inhibition of gephyrin’s receptor-binding capacities. 

 

� The characterization of a low affinity gephyrin ligand using the dimerization approach. 

 

� A comparison of the total enthalpy change of different gephyrin ligands which reveals a 

universal receptor binding mechanism.  

 

� The Impact of the E domain architecture on avidity. 
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3.3.1 Identification of a Gephyrin-Binding Minimum Sequence with 

Maximized Affinity 

Crystal structures described in the previous paragraphs verified that residues 398–411 of the GlyR 

β loop, as well as residues 368-379 of the GABAAR α3 loop, readily occupy a major groove formed by 

subdomains III and IV of GephE. Subsequent biochemical analyses additionally suggest that GABAAR 

α1 and α2 engage in similar interactions despite exhibiting only moderate sequence homology. We 

defined two hotspots of the receptor-gephyrin interaction, one at the N-terminal end and the other 

towards the C-terminal end. The N-terminal part is conserved among GlyRs and GABAARs and 

engages in critical interactions with Phe330 and Asp327 of gephyrin, thereby forming the basis of the 

mutually exclusive receptor binding. In contrast, the C-terminal part shows distinct conservation of 

critical aromatic residues within GABAAR and GlyR subunits and therefore point towards different 

gephyrin-binding mechanisms.  

Based on these findings we 

hypothesized that the conserved N-

terminal part of the receptor-derived 

peptides should be exchangeable among 

the different subunits, and in order to 

decipher the actual binding contribution 

of each part, I generated chimeric 

receptor variants (Figure 37A) and 

analyzed their GephE-binding via ITC 

(Figure 37B). Taken together, peptides 

containing the N-terminal part of GlyR β 

display a maximized affinity towards 

GephE. Vice versa, chimeric GABAAR 

constructs which included the C-terminal 

part of GlyR β, showed no detectable 

binding. Specifically, an exchange of 

three GABAAR-α3 residues by type 

conserved GlyR β residues (D368T; 

N370S; T374S) already results in a strong 

amplification of the overall binding 

strength. Combined, this indicates that 

the N-terminal region of the receptor-

binding motifs is the major determinant 

of the overall binding strength, and that 

GlyR β offers the N terminal region with 

the highest gephyrin affinity. In contrast, 

the C-terminal part, which shows no 

sequence conservation between GlyRs 

and GABAARs, adjusts the overall affinity 

on a smaller scale, yet is still necessary. 

Quantitatively (Figure 37), the affinity of 

the seven N-terminal GlyR β residues is 

Figure 37. Seven residues of the GlyR β peptide display a 
maximized gephyrin affinity. A, Sequence alignment of the 
GlyR β, GABAAR α1 and GABAAR α3 derived peptides and their 
chimeric variants together with their gephyrin affinities as 
determined via ITC (n.d. = not detectable in ITC). Residues 
resolved in the crystal structures of GephE in complex with 
GlyR β-49 and GABAAR α3 are underlined. B, Measured 
binding enthalpies plotted as a function of the molar ratio of 
ligand to gephyrin. The N-terminal motif of GlyR β acts as a 
universal mediator of gephyrin-binding strength in all motifs. 
Notably, the β/α3 chimeric variant can also be considered as 
an α3 mutant with 3 residues exchanged by type-conserved 
side chains D368T, N370S and T374S. Despite the minor 
exchanges the affinity of the α3 peptide is potentiated by 
several orders of magnitude. © 2012 HM Maric 

GephE titrated with: 
  

β-20 
β/α1 
β/α3 
α3/β 

Receptor          Sequence                                     K
d
[µM] 

GABA
A
R α1-14   AYAPTATSYTPNLARGDPGL   n.d.  

GABA
A
R α3-14   TFNIVGTTYPINLAKDTEFS   n.d.  

GlyR    β-20     DFSIVGSLPRDFELSNYDCY     2  
Mixed  β/ α1    DFSIVGSSYTPNLARGDPGL   170  
Mixed  β/ α3    DFSIVGSTYPINLAKDTEFS    20 
Mixed   α3/ β    TFNIVGT LPRDFELSNYDCY   n.d.  
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modified to 1 µM after addition of thirteen GlyR β residues, to 20 µM by addition of thirteen GABAAR 

α3 residues and to 170 µM when thirteen GABAAR α1 are following (Figure 37). In line with our idea 

that the N-terminal parts are exchangeable among the different receptor subunits, the chimeric 

variants mirror the relative binding strengths of their full-length counterparts, albeit potentiated by 

the introduction of seven GlyR β residues. These findings are also in strong agreement with our 

earlier studies [55] and results presented in previous paragraphs of this work, which demonstrated 

that mutations of either gephyrin Pro713 (to glutamate) or Phe330 (to alanine), which are both in 

close proximity to the N-terminal part of the receptor motif, yielded the most significant weakening 

of the overall receptor-binding strength.  

Next, the length dependence of gephyrin affinity was analyzed with peptide fragments displaying 

the highest gephyrin affinity, namely GlyR β fragments. Using the same 49 residue GlyR β peptide (β-

49) containing residues 378-425, the gephyrin interaction was analyzed extensively with different 

biophysical methods and, based on a biphasic binding behavior in ITC, two binding sites were 

proposed with Kd values in the low nanomolar and low micromolar range [55, 58, 61, 65]. In 

particular, the high affinity binding site of the elongated GlyR β was described to be in the nanomolar 

range with values varying between 22-30 nM [61, 65] and 140-400 nM [55, 58] depending on the 

stoichiometry values which were estimated at 0.28-0.29 [61, 65] and 0.7-1.0 [55, 58], respectively. 

The low affinity site displayed affinities of 3-6 μM [61, 65] and 16-30 μM [55, 58] with a 

stoichiometry of 0.6 [61, 65] and 0.6-0.8 [55, 58], respectively. This deviation may be explained by 

lab-specific systematic differences in protein activity; depending on the purification protocol the 

discrepancy between active molecules and apparent concentration may vary. A low active fraction of 

macromolecules in the cell will yield overestimated affinities and underestimated stoichiometry 

values. In contrast, the discrepancy of a single binding site in the crystal structure versus two binding 

sites in ITC remains to be explained on the molecular level.  
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To resolve the apparent 

discrepancy of a single binding 

site in the crystal structure and 

two different binding sites in 

ITC I analyzed truncated 

fragments, containing either 

the 15 residues resolved in the 

crystal structure (β-15), or a 

longer fragment that is 

extended by 5 residues at the 

C terminus (β-20) (Figure 38). 

Strikingly, titration of β-15 to 

GephE, indeed revealed a 

single binding site displaying a 

moderate affinity of 5 µM. 

While, the affinity increased 

slightly to a Kd of 3 µM for the 

C terminally elongated peptide 

(β-20), neither the biphasic 

binding behavior nor the 

apparently extremely high 

affinity of ~0.1 µM for β-49 

could be reconstituted (Figure 

38 and Table 36). 

 

Table 36. Gephyrin E domain binding parameters determined by ITC. 

Titrant Stoichiometry [N] Affinity [µM] Enthalpy [kcal/mol] 
GlyR β-49 0.65±0.01/0.6±0.2 0.14±0.1/7.7±0.1 -16.1±1.1/-7.2±2.3 
GlyR β-20 0.70±0.01 2.8±0.2 -10.8±0.2 
GlyR β-15 0.75±0.02 4.9±0.4 -8.4±0.3 
    

 

  

Figure 38. ITC reveals a peptide length dependent GephE affinity of GlyR β 
derived peptides. A, Sequence alignment of the β-49, β-20 and β-15 peptides 
together with their gephyrin affinities as determined by ITC. Residues resolved 
in the crystal structures of GephE in complex with β-49 are underlined. B, 
Measured binding enthalpies plotted as a function of the molar ratio of ligand 
to gephyrin. The core motif of GlyR β identified in the crystal structure shows a 
reduced overall affinity. Titration of both, β-15 and β-20 was fitted using a one 
binding site model, while titration with β-49 necessitated the use of a two site 
binding model, yielding two GephE affinities. © 2012 HM Maric 

GlyR β                        Sequence                                              x                                               
49  VGETRCKKVCTSKSDLRSNDFSIVGSLPRDFELSNYDCYGKPIEVNNGL  
20            DFSIVGSLPRDFELSNYDCY                   
14            DFSIVGSLPRDFELS              
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 To understand this differential binding 

behavior at the molecular level I 

determined the crystal structures of GephE 

in complex with the 15 and the 20 residue 

fragments. The structures could be refined 

at 2.0 (β-15) and 2.8 Å (β-20) resolution, 

and were compared to the earlier 

structure refined at 2.4 Å (β-49) [55] 

(Figure 39 and Table 37). The most 

significant difference, possibly explaining 

the difference in binding strength, is the 

absence of electron density for four 

residues located at the C-terminus of the 

shortest peptide, despite being present in 

all peptides. Remarkably, the missing C 

terminal part of the receptor loop adopts 

an α-helical conformation in the elongated 

fragment which allows GlyR residue Phe 

408 to fit into a hydrophobic pocket 

formed by residues Val727 and Pro685 of 

gephyrin. Indeed, this C-terminal aromatic 

residue was shown earlier to be a critical 

contributor to the overall binding strength 

[55]. Apparently, the formation of this 

helix requires additional C terminal 

residues, not resolved in the crystal-

structures and therefore not present in the 

15 residue peptide. 

This result offers a possible explanation for earlier puzzling findings that changes within the GlyR β 

motif by both, alanine point mutations and phosphomimetic substitutions, result in monophasic 

binding curves describing only a single binding site of low micromolar affinity [55, 65]. I propose that 

alterations among GlyR β key residues disrupts the secondary structure in a similar manner as the 

truncations investigated here and that both alterations are mirrored by the differential mono- and bi-

phasic binding in ITC and the electron density in the structures. I hypothesize that the N-terminal 

motif “FSIV” and the C-terminal motif “FELS” together exhibit an avidity-potentiated gephyrin 

affinity. 

Additionally, only the shortest GlyR β fragment has its very N-terminal residue, an aspartate, 

resolved in the crystal structure, despite being present in all peptides. Interestingly the 

corresponding residue in GABAAR α3, a threonine, could also be resolved in the crystal structure and 

both residues appear to interact in a conserved manner with His682 of gephyrin. The contribution of 

this very N-terminal interaction was not analyzed, given the low affinity of the respective peptides, 

and it seems unlikely that this interaction is a major contributor to the overall binding strength.   

 

Figure 39. GephE-β-loop cocrystal structures reveal structural 

rearrangements within the GlyR. Analyses of crystal structures 

of different GlyR β derived peptides in complex with GephE. A, 

Electron density and the assigned stick models of the GephE-

GlyR β complex cocrystallized with the 49, 20 or 15 residue 

fragments. B, Sequence alignment of the peptides with 

residues resolved in the resulting X-ray structures marked in 

orange. The 15 residue fragment lacks C terminal residues, 

which could be resolved with the 49 residue fragment. The 20 

residue fragment shows additional electron density as 

compared to the shorter variant, albeit less well defined as in 

the 49 residue complex structure. © 2012 HM Maric 

  
  

  

  

β-49 (2.4 Å) β-15 (2.0 Å) β-20 (2.8) Å) 

GlyR β                         Sequence                                 K
d
 (µM) 

β-49   VGETRCKKVCTSKSDLRSNDFSIVGSLPRDFELSNYDCYGKPIEVNNGL 0.1/8  
β-20            D FSIVGSLPRDFELSNYDCY        3          
β-14            DFSIVGSLPRDFELS             5  

A 
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Table 37. Crystallization, X-ray data collection and refinement tables for the GephE-β complexes. 

 
a Numbers in parentheses refer to the respective highest resolution data shell in the data set. 
b indicates the average of the intensity divided by its S.D. value. 
c Rsym = ∑ ∑ |=. − 〈=〉|.'() /∑ ∑ 〈=〉.'() , where =.  is the �th measurement and 〈=〉is the weighted mean of all measurements of =. 
d Rcryst = ∑6|&A| − |&B|6/∑|&A|, where &A and &B are the observed and calculated structure factor amplitudes. Rfree, same as Rcryst for 5% of 

the data randomly omitted from the refinement. 
e Ramachandran statistics indicate the fraction of residues in the favored (98%), allowed (˃99.8%), and disallowed regions of the 
Ramachandran diagram, as defined by MolProbity [159]. 
 

Combined, the crystal structures proof that a short fifteen residue fragment (GlyR β 397-411) is 

sufficient to occupy gephyrin’s N terminal core binding site also implicated in GABAAR binding which 

is responsible for the observation of the mutually exclusive binding of the receptors described in the 

previous chapter. Based on the comparison of three different cocrystal structures of GephE in 

complex with GlyR β peptides of different length, I suggest that secondary structure elements in the 

elongated peptides allow for an avidity-based potentiation of gephyrin affinity, and that elongation 

towards the C-terminus of the β-20 peptide but not N-terminus is necessary for this effect. Based on 

these results I decided to use the 20 residue peptide for subsequent dimerization approaches. While 

it does not offer the maximal possible affinity, it is sufficient for crystallization and occupies the 

largest part of gephyrin’s universal receptor binding site. Additionally, it provides a single naturally 

occurring cysteine residue at its very C terminal part, which enables thiol-based one-step 

dimerization, as described in the next paragraph.   

Data collection statistics 
 GephE-β-14 GephE-β-20 GephE-β-49 

Wavelength (Å)  1.54178 1.54178 1.10 
Resolution (Å)a 2.0-40.5 (2.0-2.1) 2.8-32.0 2.4-50.0 
Space group I222 I222  C2221 
Cell dimensions    

a, b, c (Å) 87.4, 99.5, 117.4 87.9, 100.2, 113.7 51.3, 123.5, 155.0 
α=β=γ (deg) 90 90 90 

Unique reflections 34136 9716 18251 
〈I/σ(I)	〉a, b 13.0 (3.3) 6.9 (1.3) 21.5 (2.7) 
Completeness (%)a 100 (100) 77.6 (82.2) 93.5 (77.0) 
Redundancya, c 14.9 (15) 3.3 (3.1) 5.0 ( - ) 
Rsym

a 0.19 (1.0) 0.19 (1.14) 0.09 (0.56) 
 

Refinement statistics 

 GephE-β-14 GephE-β-20 GephE-β-49 

Resolution (Å) 2.0-40.5 2.8-28.0 2.4-20.0 
No. of reflections 33870 9227 17248 
No. of protein/solvent atoms 3290/150 3127/- 3298/150 
Rcryst (Rfree)d 0.17 (0.20) 0.22 (0.29) 0.19 (0.27) 
Root mean square deviations    

Bond lengths (Å) 0.009 0.016 0.019 
Bond angles (°) 1.11 1.79 1.59 

Average B-factors (Å2)    
Protein 41.6 37.0 40.5 
Solvent 42.0 ( - ) ( - ) 

Ramachandran statistics(%)    
Favored 99.3 89.2 91.0 
Allowed 0.5 7.0 8.6 
Outliners 0.2 3.8 0.3 
    

Crystallization conditions 
 GephE-β-14 GephE-β-20 GephE-β-49 

Buffer 0.1 M NaAc pH 4.5 0.1 Cacodylate pH 6.5 0.1 M Tris 7.5-8.5 
Additive 0.01 M CoCl2 0.2 M MgCl2 0.1-0.2 M NaAc 
Precipitance 1 M 1,6-Hexanediol 10% PEG 3000 25-30% PEG 4000 
GephE-β concentration 12-14 mg/ml 12-14 mg/ml 1-2 mg/ml 
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3.3.2 Peptide Dimerization 

Bivalent peptides are commonly generated by 

solid-phase synthesis and subsequent N-terminal 

dimerization with activated bidentate linkers 

before they are finally released from the 

respective resin. Based on the crystal structures 

described in the previous paragraph I decided to 

instead link the C-terminal ends of the receptor 

fragments which, when bound to the GephE 

dimer, approach each other at a minimum 

distance of ~15 Å (Figure 40A). In addition, by 

using the nucleophilicity of the naturally occurring 

cysteine residue at the very C-terminal end of the 

peptides (Figure 40B) side group protection or 

activation as well as the introduction of lysine 

residues could be omitted. 

Different sulfhydryl specific crosslinkers 

enabled me to dimerize native and unmodified 

receptor derived peptides via their C-terminally 

localized cysteine (Table 38). This was 

accomplished by relying either on a bimolecular 

nucleophilic substitution (SN2) using a bidentate 

haloalkyl crosslinker as electrophile (Figure 41A), 

or a Michael-addition that converts reactive 

maleimide groups to succinimide groups (Figure 

41B). Although the succinimides eventually 

hydrolyze to yield carboxylates, the peptide 

linkage remains intact and therefore both 

dimerization strategies can be considered 

irreversible. 

  

Figure 40. Design of receptor-derived, gephyrin-
targeting bivalent peptides. A, Schematic 
representations of the GephE-GlyR β-loop complex 
crystal structure viewed from above and in side-view. 
The gephyrin E domain dimer is shown in surface 
representation with the monomers shown in light or dark 
grey, respectively. The β-loops are shown in cartoon 
representation in red. B, Sequence of the intracellular 
loop of the GlyR β subunit. Residues used for subsequent 
bivalent peptides are underlined, residues resolved in the 
X-ray structure are marked in red and the naturally 
occurring cysteine used for dimerization is marked in 
blue which forms the very C-terminal part of the bivalent 
peptides. © 2012 HM Maric 

Table 38. Crosslinkers used for the cysteine-specific peptide dimerization. 

Crosslinker Reactive Group Structure Linker Length 

   
Bromomethyl-2,6-dimethyl-pyrazolo 1,2a-pyrazole-1,7-dione 

(Dibromobimane) 
(bbBr) 

Haloalkyl 

 

 
6 Å 

1,2-Bismaleidoethane 
(BMOE) 

Maleimide 
 

8 Å 

1,4-Bismaleidobutane 
(BMB) 

Maleimide 
 

11 Å 

1,6-Bismaleidohexane 
(BMH) 

Maleimide 
 

13 Å 

1,8-Bismaleidodiethylenglycol 
(BM(PEG)2) 

Maleimide 
 

15 Å 

15Å 

GlyR β TM3-4: 
NNPKRVEAEKARIAKAEQADGKGGNVAKKNTVNGTGTPVH
ISTLQVGETRCKKVCTSKSDLRSNDFSIVGSLPRDFELSNYDCY
GKPIEVNNGLGKSQAKNNKKPPPAKPVIPTAAKRIDLYAR 

C` 

B 

A 
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A major possible shortcoming of this approach was the inaccurate concentration determination 

due to the low extinction coefficients of some of the reactants (Bismaleimide ε302 = 1240 M-1cm-1, β-

20 ε280 = 1480 M-1cm-1) which could result in an excess of either the crosslinker or the peptide and 

hence mono-substitution or residual monomeric peptide, respectively. To overcome this problem I 

used the VP-ITC as a reaction vessel which allowed for the automated addition of crosslinker in one 

microliter portions to 1.5 ml of peptide solution. Advantageous for optimizing critical reaction 

parameters is the real-time control of temperature, stirring speed, incubation time and final 

stoichiometry (Figure 41). Upon titration of the sulfhydryl-reactive crosslinker into the cysteine-

containing peptide, stoichiometric conversion to the bivalent peptide is indicated by the complete 

abolishment of the heat signature at a final molar ratio of 0.5. Both, the extreme heat signature and 

the abrupt termination of the exothermic reaction, verify the great driving force for the reactions 

that both involve the rearrangement of covalent bonds (Figure 41). 

  

Figure 41. The VP-ITC allows stoichiometric one-step peptide dimerization. A, Schematic representation of the 
conversion of the haloalkyl molecule bbBr which acts as an electrophile towards the bimolecular substitution with thiol-
containing peptides indicated as HS-R. bbBr acts as a dimerization hub and allows fluorescence detection of the derived 
bivalent peptide. The heat signature of the conversion indicates full conversion of all thiols upon a molar stoichiometric 
excess of bivalent corsslinker of 0.5, indicating that, as expected, two peptides react with one cross linker molecule. B, 
Schematic representation of the conversion of the maleimide groups within the crosslinkers to scuccinimide groups by a 
thiol-specific Michael addition. The heat signature of the reaction verifies a stoichiometric conversion of all monomeric 
peptides with the maleimides to form succimide linked dimers. As expected, the endpoint of the conversion is found at 
0.5 molar excess of the bivalent crosslinkers over the peptide. © 2012 HM Maric 
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After crosslinker-mediated dimerization, the 

solution containing the bivalent peptide was 

subjected to SEC to estimate reaction efficiency 

and to separate residual monomeric peptides 

that may result from partially hydrolyzed [181] 

bismaleimide crosslinkers (Figure 42). Molecular 

masses were estimated based on the elution 

volume of standard proteins under similar 

experimental conditions. Presumably the 

peptides exhibit no secondary structure and 

adopt elongated conformations resulting in 

systematically overestimated sizes compared to 

compact folded reference proteins. The lowest 

yield of dimerized peptides was obtained for the 

hexyl-linked (approx. 8%), followed by the butyl-

linked (approx. 15%) and the ethane-linked 

maleimide crosslinkers (approx. 30%) (Figure 

42A). In contrast, analytical size-exclusion 

confirmed nearly quantitative dimerization of 

the peptide in case of the diethyleneglycol-

linked maleimide crosslinker (approx. 80%; 

Figure 42B). Interestingly, the order of the yields 

mirrors the overall solubility of the respective 

crosslinkers in water, suggesting that improving 

the crosslinker solubility by adding either DMSO 

or DMF to the reaction solution might increase 

the yield for the alkyl-crosslinkers to be 

comparable with the highly water soluble PEG-

linked-crosslinker (Figure 42B). Nonetheless, 

analytical SEC permitted the elimination of 

impurities for all analyzed dimeric peptides and 

ruled out fragmentation or aggregation 

processes. 

All subsequent experiments with bivalent 

GlyR β derived peptides were conducted with 

BMPEG2(β-20)2, and therefore this molecule will 

be abbreviated with (β-20)2 in the following 

paragraphs. 

  

Figure 42. Analytical SEC of different peptides dimerized 
with various maleimide crosslinkers. Elution profiles of 
peptide-crosslinker mixtures subjected to a Sdx 75 10/300 
column. A, Elution profile of the α3-20 peptide mixed with 
1,6-bismaleidohexane (BMH, red), 1,2-bismaleidoethane 
(BMOE, blue) or 1,4-bismaleidobutane (BMB, green). 
Dimerized peptides elute approx. 1 ml earlier due to their 
doubled size. Alkyl-linked maleimide crosslinkers show a 
low dimerization yield. The longer the alkyl linker the 
lower the overall yield of dimerized peptide. B, Sdx-elution 
profile of the β-20 peptide mixed with 1,8-
bismaleidodiethyleneglycol (BM(PEG)2, red). The highly 
water soluble PEG linked maleimide crosslinker allowed 
stoichiometric conversion of the β-20 peptide to mainly 
yield the corresponding dimer (β-20)2. © 2012 HM Maric 
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3.3.3 Bivalent Peptides Target Gephyrin`s Receptor Binding Site with an 

Unmatched Affinity 

Very recently it was demonstrated that 

binding of the 49 residue GlyR β peptide (β-49) 

stabilizes gephyrin’s E but not G domain as 

measured by differential scanning calorimetry 

(DSC) [61]. To test whether binding of a bivalent 

ligand by trimeric full-length gephyrin results in 

structural rearrangements and to control for 

GephE specificity of the bivalent receptor 

peptide, I analyzed the thermal denaturation of 

full-length gephyrin (P2 splice variant) in the 

presence and absence of bivalent peptide by DSC 

in a similar manner (Figure 43).  

In line with a GephE-specific binding, the 

bivalent peptide yielded a significant stabilization 

of the E but not the G domain of gephyrin (Figure 

43). In contrast to the former study [61], which 

applied a 10-fold excess of β-49, a ratio of 1:1 

was enough for BMPEG2(β-20)2, (abbrev.: β2), to 

yield a significant stabilization of gephyrin’s E 

domain. Specifically, DSC defines a shift from 66 

to 68° C for the E domain, while the melting 

temperature of the G domain remained nearly 

unaltered at 81° C (Figure 43). 

  

Figure 43. DSC demonstrates that the dimeric 

peptides specifically target GephE. 

Thermograms of full-length gephyrin in the 

presence and absence of β2 at a molar ratio of 

1:1. While the G domain shows an unaltered 

melting temperature (Tm) with and without the 

bivalent peptide, the E domain undergoes a 

significant shift towards a higher Tm from 66° to 

68° C. © 2012 HM Maric 
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To further explore the stabilizing effect of mono- versus bivalent receptor fragments on GephE I 

used the thermofluor method, which, similar to DSC, allows to monitor thermal protein unfolding. 

While thermofluor results in less accurate Tm determination, it enables the analysis of several 

different conditions in a single experiment. 

To verify a potentiated stabilization of 

GephE for the bivalent peptide over the 

monovalent peptide I compared GephE 

unfolding by thermofluor at different molar 

ratios of mono- and bivalent ligands. In 

particular, I used 0.25-, 0.5-, 1-, 2- and 4-fold 

excesses of the respective ligands over GephE 

(Figure 44). Thermofluor of the E domain 

alone confirms the Tm for the E domain in the 

full-length protein as determined by DSC 

(Figure 43), and, in line with the DSC 

experiments, increasing ligand concentrations 

raise the melting temperature of GephE. 

Notably, the bivalent peptide displays a more 

pronounced shift of the melting temperature. 

Even more importantly, for the bivalent 

peptide, the shift reaches its maximum at 

lower stoichiometric excess. In numbers, 

thermofluor revealed a 5° C shift for the 

bivalent peptide which was already reached 

at a 2-fold excess, while the monovalent 

peptide exhibited only a moderate 2.5° C shift 

even at a 4-fold molar excess. Taken together 

the thermofluor results confirmed the DSC 

measurements and additionally indicate a 

stronger affinity for the bivalent over the 

monovalent peptide to GephE. 

  

Figure 44. Thermofluor uncovers a potentiated 

affinity of GephE for the bivalent peptide. 

Thermofluor visualizes the thermal unfolding of 

GephE in the presence of monovalent (β) and 

bivalent (β2) peptides. Varying ratios of (A) 

monovalent and (B) bivalent ligands to GephE 

demonstrate a potentiated stability for the 

multivalent complex over the GephE complex with 

the monomeric ligand. In case of the bivalent 

peptide, not only is the overall shift more distinct, 

but the shift reaches its maximum of approximately 

5° C already at a molar ratio of 1:2. © 2012 HM Maric 
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Encouraged by the thermofluor results I 

next performed ITC. As discussed earlier 

we designed the linker to exactly match 

the binding site distance in the E domain 

dimer and hence expected the resulting 

bivalent peptide to exhibit an avidity-based 

potentiation of the binding strength. Using 

ITC, I titrated GephE with the mono- and 

bivalent peptides under comparable 

conditions (Figure 45). Remarkably, the 

sharp transition of the heat signature 

verifies that dimerization resulted in an at 

least 10-fold increased E domain affinity. In 

line with the idea that both binding sites 

can be occupied by a single bivalent 

peptide at once, the increase in binding 

strength is accompanied by an enhanced 

enthalpic contribution and a reduced 

stoichiometry (Table 39). 

 

Table 39. Gephyrin E domain binding parameters determined by ITC. 

Titrant Gephyrin Stoichiometry [N] Affinity [µM] Enthalpy [kcal/mol] 
  β-20 0.70±0.01 2.83±0.15 -10.8±0.2 
 (β-20)2 0.40±0,01 0.29±0.03 -44.4±0.5 
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Figure 45. ITC based analysis of multivalent receptor binding to 

gephyrin. Measured binding enthalpies are plotted as a function of 

the molar ratio of ligand to gephyrin. Comparison of GephE binding 

to monovalent (β) and bivalent (β2) peptides. The isothermal binding 

curves display a 10-fold potentiation of affinity, accompanied by a 

sharp increase in the molar enthalpy contribution and a reduction of 

the stoichiometry by two. © 2012 HM Maric 
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To test whether the elongated peptide relies 

on additional binding contributions not covered 

by the shorter bivalent peptide I performed ITC 

competition assays (Figure 46). Specifically, I pre-

equilibrated gephyrin with the bivalent 20 residue 

peptide (β-20)2) at a molar ratio of 1:1 and 

subsequently used the resulting complex for a 

titration with the elongated 49 residue peptide. 

In case of the small bidentate and the elongated 

monodentate peptides both relying on identical 

interactions with GephE, they might, depending 

on the ratio, eventually exchange on the surface 

of GephE, but since the characteristics of the 

broken and newly formed interactions would 

remain similar there would be no measurable 

heat signature in ITC. Strikingly, the bidentate 

peptide indeed completely prevents any trace of 

GephE interaction with the elongated 

monovalent fragment (Figure 46), thus ruling out 

that the larger peptide occupies a second binding 

site on gephyrin. This finding is in line with my 

structural analyses discussed earlier, which 

proposed structural rearrangement instead of 

additional binding sites to result in an apparently 

enhanced and biphasic binding in ITC.  

Furthermore, we conclude that the bivalent peptide displays the highest possible affinity among 

all identified fragments that target gephyrin. Due to its short linker it might compete out the 

naturally occurring receptors in a similar manner and therefore could act as a specific inhibitor on 

gephyrin’s receptor binding activity in vivo. Because of its high potency and selectivity we suggest a 

potential role of this compound as a tool to study synapse formation in neuronal cell culture.  
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Figure 46. ITC competition assay between mono- 

and bivalent gephyrin ligands. Shown are the 

binding isotherms of three independent 

titrations: (i) GephE interacting with the 20 

residues bivalent fragment (β-20)2), (ii) GephE 

with an elongated monovalent fragment (β-49), 

and (iii) a competition experiment between both. 

The lack of any thermal signature rules out any 

additional binding contributions in case of the 

elongated peptide. Hence, the bivalent peptide is 

sufficient to occupy the entire gephyrin-binding 

site and thus fully inhibits GephE receptor binding 

activity. © 2012 HM Maric 
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3.3.4 Analysis of a Low Affinity Gephyrin Ligand after Dimerization 

Based on the results obtained with dimerized 

peptides derived from the GlyR β-subunit we 

hypothesized that introduction of similar linkers to 

other, lower affinity, gephyrin binding receptor 

subunits might enable their characterization via 

ITC and X-ray crystallography by potentiating their 

interaction strength. To test this, we applied the 

same approach to the minimum motif of GABAAR 

α3 which shows no heat signature in ITC when 

titrated as a monomeric peptide to GephE. 

Accordingly, I designed a GABAAR α3 minimum 

peptide which encompasses residues 364-378, 

corresponding to the GlyR β fragment. To enable 

cysteine-mediated dimerization I introduced a 

cysteine instead of a serine at the very C terminus 

of the GABAAR derived peptides (Table 40, marked 

in blue). Using linkers of different length, I 

analyzed their binding via ITC under comparable 

conditions. As expected, the binding strength was 

strikingly potentiated, thus allowing analysis of the 

affinity via ITC which was not possible for the 

monovalent peptide (Figure 47 and Table 40). As a consequence of dimerization dissociation 

constants in the low micromolar range could be observed. Specifically, introduction of the 6 Å bbBr 

linker yielded a potentiation towards 170 ± 50 µM, while the 18 Å linker BMPEG2 resulted in an 

affinity of 12 ± 1 µM. Interestingly the intermediate length (10 Å) linker BMOE allowed for the 

highest affinity (4 ± 1 µM). In summary, it can therefore be concluded that the bbBR linker is already 

too short, while the BM(PEG)2 linker allows for too much flexibility. As expected, the bivalent 

minimum peptides (Table 40, III) mirror the relative binding strengths of their monovalent 

counterparts (Table 40, II) as well as their full-length monovalent counterparts (Table 40, I). 

Table 40. GephE affinities of receptor derived peptides determined by ITC. (I) Monomeric, full-length GABAAR 

intracellular loops and the elongated GlyR peptide. (II) Monomeric minimum peptides. (III) Bivalent minimum peptides.  

 Receptor Subtype        Sequence    K
d
[µM] x    

I   β-49    -VGETRCKKVCTSKSDLRSNDFSIVGSLPRDFELSNYDCYGKPIEVNNGL-  0.1±0.1/8±0.1  

    α1-87   …SVVPEKPKKVKDPLIKKNNTYAPTATSYTPNLARGDPGLATIAKSATIEP…     17±11  

    α2-84   …KSVVNDKKKEKGSVMIQNNAYAVAVANYAPNLSKDPVLSTISKSATTPEP…      n.d.  

    α3-97   …EALEMKKKTPAAPTKKTSTTFNIVGTTYPINLAKDTEFSTISKAAAAPSA…      5±2 x  

II  β-20  --------------------DFSIVGSLPRDFELSNYDCY--------- --      2.8±0.2  

    α1-20  --------------------TYAPTATSYTPNLARGDPGL--------- --      n.d.  

    α2-20  --------------------AYAVAVANYAPNLSKDPVLS--------- --      n.d.  

    α3-20  --------------------TFNIVGTTYPINLAKDTEFS-----------       n.d. x 

III BMPEG2(β-20)2 --------------------DFSIVGSLPRDFELSNYD CY-----------       0.3±0.1 

    BMPEG2(α3-20)2 --------------------TFNIVGTTYPINLAKDTEF C-----------      12±1 

    BMOE(α3-20)2 --------------------TFNIVGTTYPINLAKDTEF C-----------       4±1 

    bbBr(α3-20)2 --------------------TFNIVGTTYPINLAKDTEF C-----------     170±50 

 

Figure 47. ITC reveals an affinity potentiation for a 
GABAAR derived peptide upon dimerization. ITC based 
analysis of multivalent receptor binding to gephyrin. 
Measured binding enthalpies are plotted as a function 
of the molar ratio of ligand to gephyrin. Comparison of 
GephE binding to bivalent peptides differing in their 
linker length. While the monovalent peptide shows no 
isothermal binding curve (data not shown), 
dimerization enhances the affinity into the low 
micormolar range, accompanied by a sharp increase in 
the molar enthalpy contribution. In particular, the 
intermediate linker (BMOE) displays an optimized 
affinity compared to the shorter (bbBr) and longer 
linker variants (BMPEG2). © 2012 HM Maric 
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The ITC experiments presented and cited here involved the titration of gephyrin with different 

ligands. Comparison of the released enthalpy per gephyrin binding site is therefore not 

straightforward for the following reasons. First of all, low affinity ligands such as GABAAR α3 are 

characterized by so-called “low c” titration spectra which yield poorly defined enthalpy values 

because of a low binding site saturation. Second, the resulting enthalpy values are related to the 

molar concentration of the ligands, not the involved number of binding sites offered by the 

macromolecule. Third, depending on concentration accuracy, purity and activity of the ligands, the 

determined enthalpies can vary systematically among different variants.  

To overcome these shortcomings I performed 

the single injection method (SIM) with the ligands 

at an eight-fold molar excess over GephE. This 

allowed me to monitor the maximal possible heat 

release upon saturation of all gephyrin binding 

sites, independent of ligand concentration, activity, 

purity, number of binding sites and even affinity, 

under the assumption that all gephyrin binding 

sites are saturated at an 8-fold ligand excess. As 

expected the comparative single injection titration 

total enthalpy (cSITE) experiments reveal roughly 

identical enthalpic contribution for all analyzed 

ligands (Figure 48). In line with earlier studies [182-

184], and discussed detailed in the conclusion, this 

suggests that the observed difference in affinity, 

for monomeric versus bidentate gephyrin ligands, 

is solely based on entropy effects resulting from 

avidity. Therefore, it can be concluded that the 

GABAAR and GlyR derived peptides occupy a 

common binding site on GephE resulting in 

comparable van der Waals interactions and H-

bridges which are monitored as heat signatures in ITC.  

Encouraged by the ITC assays we asked whether the bivalent peptide now fully covers the 

receptor-binding site on gephyrin. To address this question and to rule out favorable artificial 

contributions of the linker I crystallized GephE with the bidentate GlyR β derived peptide 

(BM(PEG)2(β-20)2). The resulting preliminary 2.9 Å resolution structure verified that the binding site 

was occupied in the same way (data not shown) as in the monovalent elongated peptide complex 

described earlier, including formation of the short C-terminal helix. Intriguingly, no electron density 

could be assigned to the linker, thus indicating a high flexibility of this region despite the otherwise 

tight binding. In line with my ITC results, which already suggested an optimized α3 affinity for the 

BMOE-linker (10 Å) over the BMPEG2 (18 Å) and bbBR (8 Å) linkers, it can therefore be inferred that a 

shorter or less flexible linker has the potential to amplify the β affinity even further by increasing the 

effective concentration of the interacting parts of the bivalent peptide [183, 185].   
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Figure 48. CSITE reveals similar enthalpic 
contributions of different GephE ligands. 
Comparative single injection titrations of 
different gephyrin ligands to estimate the 
absolute binding enthalpy. Overlay of at 
least two independent experiments for each 
ligand. Single injection of an 8-fold molar 
excess of either the GABAAR α3 derived 
bivalent peptide ((α3)2), the elongated 
monovalent GlyR β loop (β-49) and the 
bivalent GlyR β derived minimum peptide 
((β-20)2) to GephE. Strikingly, the total heat 
release measured in µcal/sec is nearly 
identical despite an over 100-fold difference 
in affinity.  © 2012 HM Maric 



Molecular Basis of GlyR and GABAAR Clustering - Chapter 3 Results and Discussion 

 

92 
 

3.3.5 Bivalent Peptides Reveal Different Modes of Gephyrin`s Domain 

Architecture 

Prompted by the increased affinity of the E domain dimer for the bidentate peptides we asked 

whether full-length gephyrin would show a similar effect. Earlier analyses proposed the complete 

protein to form a trimer in solution [55, 152], and NAGE analysis additionally proposed higher 

oligomers such as hexamers [60]. Trimerization was proposed to occur via the G domain at the 

expense of the E domain dimer interface and, following this idea, titration with a dimerized peptide 

should not yield a potentiated affinity, unless there is flexibility in the trimeric arrangement allowing 

at least two E domains to approach each other sufficiently close to allow the bivalent peptide to 

occupy two binding sites at once. 

Strikingly, ITC measurements revealed 

that full-length gephyrin (Fl-Geph) binds to 

bivalent peptides with a potentiated 

affinity and additionally reveals distinct 

features of the multimeric full-length 

protein receptor peptide complex when 

compared to the corresponding E domain 

complex (Figure 49). While FL-Geph and 

GephE show identical binding parameters 

for monomeric β-peptides [55], the 

bivalent peptide, evaluated here, displays a 

different behavior. Similar to the E domain 

alone, FL-Geph displays a sharp increase in 

the enthalpy contribution and affinity for 

the bivalent over the monovalent peptide 

(Table 41). Interestingly, the bivalent 

peptide affinity of FL-Geph is 

approximately 2-fold lower than GephE, 

even more importantly, the resulting 

stoichiometry is significantly larger, 

indicating that more than one bivalent 

peptide binds to one gephyrin trimer 

molecule simultaneously (Table 41).  

 

Table 41. Comparison of β-20 and (β-20)2 binding parameters of GephE and Fl-Geph. 

Titrant GephE [N] FL-Geph [N] GephE-ΔH 

[kcal/mol] 

FL-Geph-ΔH 

[kcal/mol] 

GephE-Kd 

[µM] 

FL-Geph-Kd 

[µM] 

  β-20 0.70±0.01 0.73±0.01 -11±1 -11±1 3±0.2 3±0.3 
 (β-20)2 0.40±0.01 0.57±0.01 -45±1 -45±1 0.29±0.03 0.50±0.03 
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Figure 49. ITC-based comparison of Fl-Geph and GephE binding to 

bivalent peptides. Shown are the binding isotherms of three 

independent titrations: (i) GephE interacting with the 20 residue 

bivalent fragment (β2) described here, (ii) full-length gephyrin 

titrated with the same bivalent fragment, and (iii) full-length 

gephyrin titrated with the corresponding monovalent fragment. 

Full-length gephyrin displays an increased enthalpic contribution 

and a potentiated affinity when binding the bivalent compared to 

the monovalent peptide. Notably, the significantly shifted 

saturation point proposes that a fraction of the bivalent peptides 

occupies only a single binding site, possibly due to the architecture 

of the full-length protein. © 2012 HM Maric 
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One possible scenario would be, that FL-Geph forms a trimer on the basis of the G domain 

trimerization, but allows two E domains to approach each other close enough to offer a receptor 

binding interface similar to what we resolved in our X-ray studies of the E domain alone. Following 

this idea, one third of the offered receptor binding sites would be monovalent, and two thirds would 

be bivalent. This hypothesis would offer a possible explanation for (i) the reduced stoichiometry and 

enhanced affinity of FL-Geph for bivalent peptides, which is mediated by the fraction of bivalent 

receptor binding sites. And additionally it could explain  (ii) the increased stoichiometry and lowered 

affinity of FL-Geph for the bivalent peptides when compared to GephE, mediated by fraction of 

monovalent peptide binding sites. To understand the different binding behavior of GephE and FL-

Geph to bivalent peptides but not monovalent peptides I next examined the possibility of structural 

rearrangements or a modulation of oligomeric state within FL-Geph upon binding of bivalent 

peptides. Therefore, I analyzed the resulting multivalent complex via analytical SEC and NAGE (Figure 

50).  

The size-exclusion method resolves three 

major gephyrin fractions: (i) A fraction 

corresponding to oligomers larger than 

hexamers, (ii) a fraction of roughly the size 

of a possible hexameric gephyrin, and (iii) 

the largest fraction corresponding to 

trimeric gephyrin (Figure 50A). As expected, 

pre-incubation of gephyrin with the bivalent 

peptide significantly alters the elution 

profile despite an only minor overall change 

in the actual molecular weight (gephyrin 

monomer: 93 kDa, β2: 4 kDa). Interestingly, 

the equilibrium of gephyrin is shifted 

towards the trimeric gephyrin fraction 

(Figure 50A). In agreement with the 

analytical SEC experiments, the multivalent 

complex also shows a different behavior in 

NAGE assays (Figure 50B). Only when full-

length gephyrin is applied together with the 

bidentate peptide, an additional band 

appears which is migrating faster towards 

the anode. Under the assumption that there 

is no free gephyrin present this would 

indicate an altered migration behavior of 

the gephyrin-β2-complex which could either 

be based on an altered charge or architecture. Together, these experiments verify a severe impact of 

the bidentate peptide on the properties of gephyrin. Especially the SEC experiments propose that 

either the oligomeric state or the domain arrangement of full-length gephyrin can be modulated by 

the addition of multivalent high-affinity peptides. Future analysis with more sophisticated biophysical 

techniques such as atomic force microscopy (AFM), analytical ultracentrifugation (AUC) and small-

angle X-ray scattering  (SAXS), which have been considered to be beyond the scope of this work, may 

help to decipher the role of gephyrin`s architecture in the multivalent process of receptor clustering. 

Figure 50. Bivalent peptides alter gephyrin’s hydrodynamic 

radius. A, Analytical SEC of gephyrin either alone or in complex 

with bivalent peptide (β2). Despite a slightly increased 

molecular size of the gephyrin-β2 complex, the elution profile 

displays a shift towards smaller oligomeric states. B, NAGE of 

either gephyrin alone, in complex with monovalent peptide (β) 

or in complex with a bivalent peptide (β2). Only in the presence 

of the bivalent peptide an additional band, which migrates 

faster towards the anode, is observable. © 2012 HM Maric 
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3.4 Characterization of the Collybistin SH3 GABAAR Complex 

Collybistin (CB) has been consistently implicated in gephyrin-mediated GABAAR clustering and a 

recent yeast-two-hybrid (Y2H) study found that GABAARs not only interact with gephyrin but also 

with the SH3 domain of CB [84], and that this interaction acts synergistically to the GABAAR-gephyrin 

interaction. To decipher the role of CB’s SH3 domain in GABAAR clustering, on the molecular level, I 

purified this domain using a construct kindly provided by Dr. Tolga Soykan from the lab of Nils Brose 

(MPI, Göttingen) and analyzed its suggested GABAAR and gephyrin interactions via various 

biochemical and biophysical methods. Specifically, I present: 

� The purification of CB`s SH3 domain and the identification of its direct divalent cation binding, 

which induces major structural rearrangements within this protein. 

 

� The characterization and quantification of the SH3-GABAAR α1, α2 and α3 binding affinities which 

suggest a reciprocal receptor subunit preference compared to gephyrin. 

 

� The verification of an overlapping gephyrin and CB receptor binding site and the exclusion of 

synergistic binding. 

 

3.4.1 Purification of Collybistin`s SH3 Domain 

The DNA construct provided by T. Soykan corresponds to residues 4-72 of murine CB 1 (CB1) and 

hence encompasses the complete SH3 domain (residues 8-67) of this protein which is identical to the 

SH3 domain (residues 8-67) of hPEM-2, the only known human CB isoform. 

The protein was expressed in 

E. coli using the pGEX-4T-2 

Vector and purified via an N 

terminal GST-tag. The high 

expression level and 

solubility allowed high yields 

and purity. After in situ 

thrombin cleavage the GST-

SH3 mixture was separated 

via SEC and analyzed by SDS-

PAGE. Two separate peaks 

could be resolved, one 

containing both the cleaved 

and un-cleaved GST and GST-

SH3, respectively, and the 

other containing pure SH3 

domain (Figure 51). 
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Figure 51. SEC and SDS-PAGE confirm the homogeneity of CB SH3 (4-

72).  Representative elution profile of the CB SH3 domain after affinity 
chromatography and in situ thrombin cleavage. © 2012 HM Maric 
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3.4.2 Divalent Cations Induce Structural Rearrangements within the SH3 

Domain 

In this section I present the characterization of the SH3 domain (residues 4-72) with respect to its 

cation-dependent change in hydrodynamic radius.  

After purification of the SH3 domain, I aimed to 

determine its apparent molecular weight via 

analytical SEC. Remarkably, CB SH3 displays an 

elution profile that is strongly dependent on 

divalent cations. Addition of CaCl2 shifts the 

elution profile towards higher molecular weights 

(Figure 52, blue curve). In contrast, addition of the 

chelating agent EDTA, which complexes bivalent 

cations, vice versa shifts the elution volume 

towards smaller molecular weights (Figure 52, 

black curve). Interestingly, addition of ZnCl2 

yielded a non-uniform elution profile, indicating 

the presence of two SH3 species differing in their 

respective hydrodynamic radii (Figure 52, red 

curve). Comparison with reference proteins 

suggests that the SH3 domain adopts a compact 

fold and that its elution profile is strongly 

depedent on additives, promoting either major 

structural rearrangements or inducing 

dimerization of CB`s SH3 domain. Accordingly, the 

calculated molecular weights range between 5 and 

10 kDa (Table 42). 

Table 42. Molecular weights of CB SH3 in SEC in the presence of different additives. 

 

  

Additive Elution Volume  Sdx 75 10/300 (ml) MW calculated (kDa) 

CaCl2 (0.1 mM) 19 10 
ZnCl2 (0.1 mM) 19.5 8 
EDTA (10 mM) 20.5 5 
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Figure 52. Analytical SEC of CB SH3 in the 

presence of bivalent cations or a chelator.  
Representative elution profile of CB SH3 in 
different buffers containing either CaCl2 (blue), 
ZnCl2 (red) or EDTA (black). © 2012 HM Maric 
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Encouraged by the analytical SEC experiments that verified a major dependence of CB`s SH3 

domain hydrodynamic volume on divalent cations, I further investigated the role of these ions. 

Earlier X-ray crystallographic analysis revealed homologous SH3 domains to form dimers [185-190]. 

Namely, the C-terminal SH3 domain of the adaptor protein GADS [190] and the Src-type tyrosine 

kinase (Lck) SH3 domain [189] display a Zinc-induced homo-dimerization as well as additional cation 

binding sites. To test the possibility of an analogous direct and stoichiometric interaction of specific 

bivalent cations with CB`s SH3 we used ITC as described in the following paragraph.  

To eliminate cation contaminations resulting 

from the expression in E. coli and the purification 

process, the SH3-containing solution was 

subjected overnight to a 100-fold molar excess of 

Chelex-100, a water insoluble and recyclable 

chelating resin. Using EDTA the absence of 

bivalent cations could be verified in ITC. In 

contrast to the reference buffer, the chelex-

treated buffer showed no heat release upon 

titration with EDTA (Figure 53 A).  

The resulting cation-free SH3 domain was 

titrated with calcium-, magnesium- and zinc-

chloride in ITC experiments. As expected, at least 

for zinc (Figure 53 B) and magnesium (Figure 53 

C) a direct interaction could be verified. Similar to 

homologous SH3 domains, CB’s SH3 domain 

displays a preference for Zn2+ (Kd = 600 µM) over 

Ca2+ (Kd = 3 mM) (Table 43). 

 

Table 43. Binding parameters of the cation-SH3 

interactions determined in ITC.  

Cation ΔH (kcal/mol) -ΔTS (kcal/mol°C) K
d
 (mM) 

Ca
2+

  n.d.  n.d.  n.d. 
Mg

2+    
3 ± 1    - 6  3.3 ± 0.8 

Zn
2+ 

31 ± 1  - 35  0.6 ± 0.1 
 

  
Figure 53. The SH3 domain directly interacts with Zn

2+
 

and Mg
2+

 ions. A, EDTA control titration. The 
conventional buffer yields a significant heat release 
upon EDTA titration, indicating a significant amount of 
free bivalent cationic contaminants. Buffer prepared 
with Chelex-100 shows no trace of heat release, thus 
verifying removal of all cations. B, Titration of the SH3 
domain with ZnCl2 reveals an entropy-driven binding 
interaction. C, Titration with MgCl2 suggests a very weak 
direct binding between the cation and the protein. © 
2012 HM Maric 
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Prompted by the ITC results I compared 

the SH3 domain of CB with homologous SH3 

domains which form Zn-induced homo-

dimers. Namely, GADS SH3 and Lck SH3 

were characterized earlier via X-ray 

crystallography and four distinct cation 

binding sites were identified (Figure 54 A). In 

particular, zinc, calcium and cadmium could 

be resolved, critically mediating SH3 

dimerization (Figure 54A, marked in yellow) 

or mediating structural rearrangements 

(Figure 54 A, marked in red and cyan). 

Superposition of both structures with CB`s 

SH3 domain structure derived by NMR 

revealed that the overlapping cation binding 

sites are moderately conserved among the  

SH3 domains of Lck, GADS and CB. Based on 

the superposition (Figure 54, residues 

engaging in specific cation interactions with 

their side-chains are marked in cyan, yellow 

or red) we decided to exchange two 

residues possibly mediating CB SH3 cation 

binding, namely CB  Asp 33 and Asp 51 with 

their respective amide homologs (Asn) 

(Figure 54B, yellow underlined residues). 

With the moderate Asp/Asn exchange we 

aimed to impair analogous cation 

interactions of CB’s SH3 domain in a pH-

dependent manner without altering the 

secondary structure. 

  

Figure 54. Structural basis of SH3 bivalent cation binding. A, 
Superposition of the crystal structures of GADS-SH3 (PDB-ID: 
1OEB) and LCK-SH3 (PDB-ID: 2IIM) and CB SH3 (PDB-ID: 
2YSQ). Possible cation interfaces are highlighted in the 
cartoon representation of CB SH3 (blue) as stick models. 
GADS exhibits a cadmium and zinc binding site (yellow) that 
mediates SH3 dimerization. LCK SH3 directly engages in 
interactions with calcium (red) and zinc (cyan). B, Alignment 
of the SH3 domains of CB, GADS and LCK. In this work the 
cadmium and zinc binding aspartate residues were mutated 
to asparagine (yellow and underlined). © 2012 HM Maric 

CB-SH3     15AVWDHVTMANRELAFKAG VIKV37 

GADS-SH3  16ALYDFEALEEDELGFRSG VVEV28 

LCK-SH3   68ALHSYEPSHDGDLGFEKG QLR90  

CB-SH3    38LDASNKDWWWGQI DEEGW-F-PASF61 

GADS-SH3  29LDSSNPSWWTGRL NKLGL-F-PANY52 

LCK-SH3   91LEQSGE-WWKAQS TTGQEGFIPFNF115 

           

A 

B 



Molecular Basis of GlyR and GABAAR Clustering - Chapter 3 Results and Discussion 

 

98 
 

To elucidate the role of Asp 33 and Asp 51 in the cation-dependend structural rearrangements, 

we determined the elution profile of the respective D33N/D55N double mutant (DM) in analytical 

SEC and compared it with the wildtype (WT) in the presence and absence of chelating agents.  

Strikingly, the DM displays a significantly 

reduced hydrodynamic radius resulting in 

an increased elution volume under all 

tested conditions (Figure 55). As expected, 

the WT and the DM protein both show a 

correlated effect of the chelating agents 

suggesting that the introduced carboxyl to 

amide mutations have a moderate effect on 

cation binding. This finding is in line with 

the idea that either Asp 33 or 51 or both are 

directly involved in cation-mediated intra- 

and/or inter-molecular rearrangement/s. 

Given that EDTA has a higher preference for 

magnesium over calcium as compared to 

EGTA, the pronounced effect of EDTA 

suggests, in line with ITC results, a major 

role of magnesium in this process.  

 

 

  

Figure 55. SEC analysis of cation-SH3 domain 

interactions. Superposition of six independent 
analytical SEC experiments of CB`s wildtype SH3 domain 
(SH3-WT) or the double mutant D33N/D51N (SH3-DM) 
in (A) SEC-buffer, (B) SEC-buffer with 10 mM EGTA and 
(C) SEC-buffer with 10 mM EDTA. SH3-DM shows a 
higher elution volume under all conditions, and 
additionally displays a correlated effect on the elution 
profile. © 2012 HM Maric 
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 To decipher whether the altered elution profiles, induced by the presence or absence of bivalent 

cations, represent a dimer to monomer transition or a conformational change I conducted analytical 

ultra-centrifugation (AUC) experiments of CB`s SH3 domain and its double mutant in the presence 

and absence of CaCl2 and EDTA. I applied the method of sedimentation velocity, which allows the 

examination of the hydrodynamic shape (frictional ratio) of proteins as well as an estimation of their 

oligomeric state by calculation of their apparent molecular weights.  

As expected, AUC revealed a difference 

in the sedimentation behavior of SH3 in 

dependence of both the bivalent cation-

chelating agent EDTA and the introduced 

mutations. Additionally, in line with the 

analytical SEC, EDTA mimics the effect of the 

introduced mutations for all determined 

parameters. AUC defined a minor difference 

in the mean sedimentation coefficient for 

each measured sample. Accordingly, the 

molecular weights were defined to 8.6 kDa 

for the WT protein, while the DM protein 

and the EDTA treated WT protein had a 

mean molecular weight of 9.7 kDa and 9.8  

kDa, respectively (Table 44). The same trend 

was mirrored by the determined frictional 

ratios, which visualized a pronounced 

asymmetrical shape in case of both the 

EDTA-treated WT and the double-mutated 

protein (Table 44). Finally, the strongest 

effect is displayed by the sedimentation 

coefficient distribution. In contrast to the 

wildtype protein, the EDTA-treated sample 

and, in particular, the double mutant 

protein, shows a very mono-disperse 

distribution of sedimentation coefficients 

(Figure 56).  

Based on the analytical SEC and especially the AUC experiments we propose that the SH3 domain 

does not change its oligomeric state but instead undergoes a conformational change upon directly 

engaging in interactions with bivalent cations. In detail, AUC describes the double mutant as mono 

disperse and elongated, while the wildtype protein is described as more poly-disperse, symmetric 

and slightly more compact. The role of the cation-binding site and the induced intra-molecular 

rearrangement remains to be elucidated in vivo. Additionally, future in vitro studies of the CB SH3 

domain-mediated self-masking and the SH3 domain-mediated GABAAR α2 binding, described in the 

next section, may provide an appropriate context for further investigations of cation-induced effects. 

Finally, future crystallization attempts may be facilitated by the mono-dispersity introduced by the 

described mutations and EDTA, or vice versa by saturation of the cation-binding sites of CB`s SH3 

domain.   

Analyte rmsd Molecular 
weight 

Frictional Ratio 

SH3-WT 0.007 8.6 1.25 
SH3-WT+EDTA 0.006 9.7 1.37 
SH3-DM 0.007 9.8 1.36 

Table 44. AUC reveals bivalent cation-dependent 
rearrangements within the SH3 domain. 

 

Figure 56. AUC reveals structural rearrangements within 

the SH3 domain. Velocity sedimentation experiment of the 
SH3 domain in the presence and absence of CaCl2  or in the 
presence of EDTA. Note the differences in the distributions 
of the sedimentation coefficients. © 2012 HM Maric 
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3.4.3 Characterization of the Subunit Specific GABAAR-SH3 Domain 

Interaction  

Next, I wanted to analyse the 

GABAAR-SH3 domain complex, recently 

proposed on the basis of Y2H-assays 

[84].  

Therefore, I tested mixtures of CB`s 

SH3 domain and the intracellular loops of 

GABAAR α1, α2 and α3 in NAGE 

experiments. This technique allows the 

identification of low affinity interactions. 

Strikingly, the gel shift assays 

demonstrate that the GABAAR α1 and α2 

loop but not the α3 loop readily form a 

complex with the SH3 domain of CB. 

While the SH3-GABAAR α1/2 loop 

complexes are retained in the pocket, 

the GABAAR α3 subunit allows SH3 to 

enter the gel and migrate towards the 

anode (Figure 57). This receptor subunit 

preference is reciprocal to that displayed 

by gephyrin.  

  

Figure 57. NAGE of the SH3 domain GABAAR α1-3 subunit 

complex. A, At a pH of 8 only the SH3 domain readily enters 
the gel towards the anode, while the GABA

A
R intracellular 

loops slowly migrate towards the cathode. B, The different 
receptor loops are applied at a 3-fold molar excess over the 
SH3 domain. The GABAAR α3 subunit but not the α1 and α2 
subunits allow the SH3 domain to enter the gel and migrate 
towards the anode. The formation of SH3-GABAAR α1/2 loop 
complexes retains the majority of the SH3 domain in the 
pocket. In contrast, the GABAAR α3 subunit allows nearly all of 
the SH3 domain protein (indicated by the right arrow head) to 
enter the gel. © 2012 HM Maric 
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 To estimate the stoichiometry and stability of the GABAAR-SH3 complexes I characterized them 

by analytical SEC. Specifically, I subjected either the single proteins or equi-molar mixtures of the SH3 

domain and the GABAAR α1, α2 and α3 loops to a Superdex 10/300 75a column and analyzed the 

resulting fractions by SDS-PAGE.  

Although my NAGE-assay 

identified an interaction between 

the SH3 domain and the α1-loop, 

the SEC analysis revealed a low 

stability of this complex. This results 

in a slight shoulder (Figure 58B blue 

arrow head) of the SH3 domain 

peak towards higher molecular 

weights as compared to the SH3 

domain applied alone to the column 

(Figure 58A). In line with my NAGE 

experiments, the α3-loop did not 

alter the elution profile of the SH3 

domain (Figure 58D), excluding a 

possible interaction. Finally, 

analytical SEC demonstrates a tight 

SH3-α2-loop complex, resulting in 

an extreme 10 ml shift of the SH3 

domain towards higher molecular 

weights and correspondingly lower 

elution volumes (Figure 58C). The 

subsequent analysis of the 

corresponding fractions via SDS-

PAGE verified the presence of the 

SH3 domain and additionally 

suggests a dissociation of the 

complex resulting in a molar excess 

of α2-loop in the fractions with the 

lowest elution volumes (Figure 

58C). Taken together the SEC 

results are in good agreement with 

NAGE and furthermore define a 

loose SH3-α1-loop complex and a 

tight SH3-α2-loop complex with an 

affinity in the micromolar range.  

  

Figure 58. Analytical SEC reveals the GABAAR subunit preference of the 
SH3 domain. SEC experiments of (A) the SH3 domain alone (black curve) or 
as equimolar mixture with (B) the α1-loop (blue curve), (C) the α2-loop (red 
curve) and (D) the α3-loop (green curve). Only the α2-loop significantly 
alters the elution profile of the SH3 domain. SDS-PAGE (inlets) reveals that 
only the low elution volume fractions of the α2-loop-SH3 run contain the 
SH3 domain (indicated by arrow heads). © 2012 HM Maric 
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Encouraged by the analytical SEC 

experiments, which demonstrated a 

moderately tight and stoichiometric 

SH3-GABAAR α2 interaction, and the 

NAGE experiments that also 

suggested a weak SH3-domain-

GABAAR α1 interaction I next 

quantified the interactions using ITC 

(Figure 59). In line with the SEC and 

NAGE experiments, ITC revealed that 

the α2-loop forms a tight (Kd = 1 µM) 

and the α1-loop a rather weak 

complex (Kd = 0.5 mM) (Table 45). 

This is surprising, given that the 

GABAAR α1-loop harbors several 

PXXP motifs, while the GABAAR α2 

loop lacks this canonical SH3 binding 

motif.  

 

Table 45. Summary of the SH3-GABAAR binding parameters as determined by ITC. 

 

  

Receptor 
Stoichiometry  

(N) 

Kd  

(µµµµM) 

ΔH  

(kcal/mol) 

-TΔS  

(kcal/mol) 

GABA
A
R α1 WT n.d. 500±400 -3±0.8 2.1 

GABA
A
R α2 WT 0.62±0.03 1.3±0.8 -6.8±0.4 0.4 
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Figure 59. Quantification of GABAAR-SH3 interactions via ITC. The 
measured binding enthalpies are plotted as a function of the molar ratio 
of the SH3 domain to the GABAAR α1 and  α2 loops. The binding 
isotherms display a 100-fold difference in affinity between both loops, 
and verify the formation of a 1:1 SH3 domain-GABAAR α2-loop complex. 
© 2012 HM Maric 
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Up to date there are 771 SH3 domain structures listed in the PDB, among them an NMR structure 

of CB`s SH3 domain (PDB ID: 2YSQ). Within this set a large number of SH3 domain structures are 

complexed with ligands containing the canonical PxxP motif. Additionally, there are at least 16 

structures that define 12 different modes of SH3-mediated ligand recognition (Table 46). All of these 

involve a conserved peptide-binding surface on the SH3 domain but deviate substantially from the 

canonical docking of consensus motif-containing SH3 ligands. Apart from these non-consensus 

ligands, there are less common atypical ligands that engage in fundamentally different interactions 

and involve an entirely different surface on the SH3 domain [186or even tertiary contacts , 191, 192]. 

Remarkably, comparison of the suggested GABAAR α2 subunit motif [84] with the structurally 

resolved canonical and non-canonical SH3 binding motifs (Table 46) reveals no obvious similarities. 

The unique high affinity of the SH3 α2-loop complex makes this, presumably atypical, SH3 interaction 

therefore an interesting target for a detailed structural characterization.  

Table 46. Summary of different SH3 ligand binding modes. Summary of structurally resolved SH3 consensus and non-

consensus ligands as well as GABAAR α2. The letters N and C shown in parentheses after the name of proteins containing 

two SH3 domains indicate which SH3 domain is meant. The letter Φ refers to hydrophobic residues, x is any amino acid. 

Underlined sequences interact with conserved xP pockets on the surface of the SH3 domain, while blue residues interact 

with another conserved area on the SH3 domains, called specificity zone. In case of collybistin SH3 the underlined residues 

indicate crucial residues, while the shown motif was shown to be sufficient to mediate SH3 binding when inserted in the 

GABAAR α1 subunit. Notably, the GABAAR motif displays no obvious similarity to common SH3 binding motifs. 

 

SH3 Domain Ligand Ligand Motif PDB Entry 

e.g. Src Class I or II xΦPxxP or xPxΦPx 1RLQ, 1SEM 
Crk(N) C3G PPPALPPKKR 1CKA 
abI p41 APSYSPPPPP 1BBZ 
Csk PEP PPPLPERTPESFIV 1JEG 
P67phox(C) P47phox PQPAVPPRPSADLILNRCSESTKRKLA 1K4U 
GADS HPK1 PPVLPPRKEK 1UTI 
GADS SLP-1 APSIDRSTKP 1OEB, 1H3H 
Nck(N) CD3ε PPPVPNPDYEPIR 2JXB, 2JW4 
Eps8L1 CD3ε PPPVPNPDYEPIR 2ROL 
βPIX PAK PPPVIAPRPEHTKS 1ZSG, 2G6F 
βPIX AIP4 PSRPPRPSRPPPPTP 2P4R 
IRTKS EspFU IPPAPNWPAPTPP 2KXC 
Collybistin / hPEM2 GABAAR α2 GSVMIQNNAYAVAVANYA   - 
    

 

Based on this investigation, Maurizio Amato generated GABAAR-α2 fragments and an SH3 variant 

to study this interaction in more detail. To narrow down the GABAAR α2 binding site, the TM3-4 α2-

loop construct (residues 334-420) was shortened to 334-362 and 334-379 residues, respectively. To 

test whether the SH3 domain mediates receptor binding via its universal peptide-binding site a 

critical tryptophan residue (Trp45) was exchanged to alanine, a mutation that was shown earlier to 

impair SH3 substrate binding without disturbing the secondary structure.  
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3.4.4 The SH3 Domain and Gephyrin Share a Reciprocal GABAAR Subunit 

Preference  

Comparing the GABAAR subunit preference of the SH3 domain described in the previous 

paragraph with the respective preference of gephyrin described earlier in this work, a striking 

reciprocal relationship in the respective affinities is obvious (Table 47). Specifically, the α2 subunit is 

binding the strongest to the SH3 domain, yet its interaction with gephyrin cannot be detected by ITC. 

In contrast no α3-SH3 domain interaction is detectable, yet α3 has the tightest interaction with 

gephyrin. The α1 subunit has an intermediate affinity in both systems. Due to the reciprocal 

specificity of gephyrin and CB, the gephyrin-CB complex has the potential to interact with all three 

mentioned receptor subunits, thus explaining recent video microscopy findings of CB colocalizing 

with the GABAAR α1, α2 and α3 subunits [97], and also the observation that gephyrin is strongly 

colocalizing with the α2-subunit [74], although the corresponding affinity of the direct interaction in 

our in vitro assays is very low. Therefore our results indicate that the molecular basis of gephyrin-

mediated GABAAR and possibly also GlyR clustering lies in the architecture of the CB-gephyrin 

complex. We propose that the GABAAR and GlyR subunit preference depends on details of the CB-

gephyrin complex and its spatial and sequential interplay with binding partners such as PI3P, NL2 and 

the GABAAR α2-subunit. 

As described earlier we identified the residue corresponding to Gly374 of the GlyR β subunit as a 

critical determinant for the strength of the GABAAR-gephyrin complex. This residue is conserved in 

the GABAAR α3 subunit, replaced by Ala in GABAAR α1 and by Val in GABAAR α2. Binding studies with 

the GABAAR α3 (G373V) and GABAAR α2 (V343G) mutants indeed could verify a strengthening of the 

α2 interaction and a weakening of the α3 interaction. As described earlier in this work, we propose 

this residue to repel the receptor loop by sterically clashing with subdomain IV of GephE, thus 

possibly explaining our observation of a rather weak GephE affinity of the α2 subunit compared to 

the GABAAR α1 and α3 subunits. These results were presented earlier in this work and are 

summarized in Table 47 for clarity. A recent study suggested that gephyrin and CB both recognize an 

identical binding site on the GABAAR α2 subunit. Based on this finding we therefore tested weather 

the valine/glycine exchange has a similar severe effect on the interaction between the GABAARs and 

the SH3 domain. Strikingly, the GABAAR α2 V343G mutant indeed no longer interacts with the SH3 

domain of CB (Table 47). This finding is in line with the idea that identical receptor residues mediate 

critical CB SH3 and GephE interactions, and hence the identified 15 residue motifs mediate distinct 

targeting processes. 

Table 47. Alignment of the different motifs recognized by gephyrin and presumably CB. GlyR β Gly374 (boxed and 
red) points towards subdomain IV of GephE in the GlyR-GephE complex structure. The corresponding residue in the GABAAR 
subunits (boxed and marked in red) is identical in GABAAR α3 (Gly373) and type-conserved in α1 (Ala344) but different in α2 

(Val343) marked in blue. (n.d. = no binding detectable; (-) = experiment not yet conducted.  

Receptor 
Gephyrin and CB 

receptor binding motif 
  GephE-Kd   SH3-Kd 

GABA
A
R α1 WT LIKKNNTYAPTATSYT 17±11 500±400 

GABA
A
R α2 WT VMIQNNAYAVAVANYA n.d. 1±1 

GABA
A
R α3 WT AKKTSTTFNIVGTTYP 5±2 n.d. 

GlyR
 
β WT NDLRSNDFSIVGSLPR  0.1/8   - 

GABA
A
R α3 G374V AKKTSTTFNIVVTTYP n.d.   - 

GABA
A
R α2 V343G VMIQNNAYAVAGANYA   - n.d. 
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To further explore the possible differential role of the CB-gephyrin complex in GABAAR clustering 

in vivo the group of our collaboration partner Steve J. Moss generated mice which express chimeric 

α1/2 subunits. Specifically the 15 residues harboring the gephyrin-interacting region, which was 

extensively characterized in my in vitro studies and described in the previous sections, was swapped 

between both receptor subunits (Table 48). Preliminary results indicate a severe phenotype in mice 

expressing these chimeric receptors, which is in line with my assumption that these residues encode 

a differential subunit-specific localization which is mediated by either gephyrin or CB.  

Table 48. Alignment of the large intracellular loops of the GABAAR α1 and α2 subunits. The group of Steven J Moss 

generated mice with swapped gephyrin/CB binding sites (α1/2 Chim and α2/1 Chim). GABAAR α2 residues are shown in blue 

and α2 residues in black. 

GABA
A
R α1: NYFTKRGYAWDGKSVVPEKPKKVKDPLIKKNNTYAPTATSYTPNLARGDPGLATIAKSATIEPKEVKPETKPPEPKKTFNSVSKIDR 

GABA
A
R α2: NYFTKRGWAWDGKSVVNDKPKKEKGSVMIQNNAYAVAVANYAPNLSKDPVLSTISKSATTPEPNKKPENKPAEAKKTFNSVSKIDR 

α1/2 Chim: NYFTKRGYAWDGKSVVPEKPKKVKDPVMIQNNAYAVAVANYAPNLARGDPGLATIAKSATIEPKEVKPETKPPEPKKTFNSVSKIDR  

α2/1 Chim: NYFTKRGWAWDGKSVVNDKPKKEKGSLIKKNNTYAPTATSYTPNLSKDPVLSTISKSATTPEPNKKPENKPAEAKKTFNSVSKIDR  
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3.4.5 GephE and the SH3 Domain Compete for the GABAAR α2 Subunit 

 Prompted by the finding that a single point mutation within the GABAAR α2 loop has an impact 

on the binding affinity to both, GephE and CB SH3, I wanted to explore the possibility of tripartite 

complex between the aforementioned proteins and test for synergistic or competitive binding.  

First, I tested whether the SH3 domain of CB and GephE interact using NAGE. While earlier studies 

[43, 94] suggested that the DH and PH domains of CB directly interact with gephyrin, its SH3 domain 

does not interact with gephyrin (Figure 60A). NAGE assays described in earlier paragraphs describe 

the nearly complete saturation of GephE with the GABAAR α2 subunit upon incubation with an 8-fold 

excess of the receptor loop. To test for a possible synergistic or competitive binding behavior I 

generated the gephyrin-GABAAR α2 complex using a moderate 5-fold molar excess of the receptor 

loop, resulting in roughly 50% of GephE being complexed and hereby retained in the pocket and 50% 

entering the gel towards the anode (Figure 60B, lane 1). To this mixture I added increasing amounts 

of the SH3 domain, which displays a GABAAR α2 affinity that is several magnitudes larger than the 

stability of the gephyrin-GABAAR α2 complex. Strikingly, decreasing amounts of the SH3 domain bind 

to the GABAAR α2 loop and therefore cannot enter the gel. Accordingly, gephyrin is competed out, 

resulting in increasing amounts of gephyrin entering the gel (Figure 60B, lanes 2-6). 

  

GephE : α2 
(1:5) 

 

 

GephE : α2 
(1:5) 

+ 
SH3 

(1:0.08) 

GephE : α2 
(1:5) 

+ 
SH3 

(1:0.15) 

GephE : α2 
(1:5) 

+ 
SH3 

(1:0.3) 

GephE : α2 
(1:5) 

+ 
SH3 

(1:0.6) 

GephE : α2 
(1:5) 

+ 
SH3 

(1:1.2) 

GephE 
 
 

 

GephE 
 

+ 
SH3 
(1:5) 

Figure 60. NAGE visualizes that gephyrin and the SH3 domain compete for the α2-loop. A, The SH3 domain and gephyrin 
do not interact on NAGE. B, GephE applied at a five-fold molar excess over the GABAAR α2 subunit is partly kept to the 
pocket and partly enters the gel towards the anode (lane 1). Addition of increasing amounts of the SH3 domain to the 
GephE-GABAAR α2 complex allows more gephyrin to enter the gel and migrate towards the anode (lane 2-6).© 2012 HM 
Maric 
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SH3 SH3 
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3.4.6 The GABAAR α2 Subunit Activates Collybistin for Gephyrin Binding   

After verification of an overlapping GABAAR α2-loop binding site of GephE and the SH3 domain of 

CB I tested whether GephE directly modulates the binding strength of the SH3-α2-loop-complex. I 

therefore titrated the α2-loop in the presence or absence of GephE with the SH3 domain (Figure 61). 

As expected, gephyrin had no effect on the interaction between the SH3 domain and the α2-loop, 

irrespective of the molar ratios. While the heat signatures were altered by the differing 

concentration of the α2 subunit, curve fitting with origin revealed that the interaction strength 

remained unaltered (Figure 61).  

My earlier results demonstrated that full-length gephyrin displays only a weak α2-loop affinity and 

similarly full-length CB shows only a moderate GABAAR α2 affinity (Daniela Schneeberger and B. 

Sander, personal communication). In contrast to these findings, earlier Y2H-studies [84] 

demonstrated that full-length CB and gephyrin together exhibit a strong GABAAR α2 affinity. As 

described in section 1.4.1 structural studies of ASEF, a close homologue of CB, revealed that its N-

terminal SH3 domain engages in direct and tight intra-molecular interactions with its PH and its DH 

domain, thus forming an inactivated complex. Not surprisingly the intra-molecular interaction 

interface is conserved among ASEF and CB and, even more importantly, gephyrin was shown to 

indeed associate with CB`s PH and DH domain. My own work excluded a possible gephyrin-SH3 

domain interaction (Figure 60), and a synergistic binding of the SH3 domain to the GABAAR α2 

subunit in the presence of gephyrin (Figure 61). Therefore it can be concluded that the Y2H-assays, 

which demonstrated gephyrin to amplify CB`s receptor binding [84] uncovered the gephyrin-

mediated un-masking of the SH3 domain of CB, rather than the proposed synergistic binding event. 

Accordingly, I suggest that the free SH3 domain of CB mimics the maximal possible affinity displayed 

by CB after full activation by PIP2 and/or gephyrin. On the molecular level this activation would be 

based on the competition of the intra-molecular SH3 domain-DH/PH domain binding (Section 1.4.1) 

on the one hand, and the inter-molecular SH3 domain-GABAAR α2 subunit (Figure 59) as well as the 

gephyrin-CB PH and DH domain [43, 94] and PH-PIP2 binding [43, 91] on the other hand. 

  

Figure 61. ITC excludes a possible modulation 
of the SH3-α2 complex by gephyrin. Titration of 
the α2-loop with the SH3 domain in the absence 
of GephE, at a 1:1 ratio of GephE and α2 and at 
a 1:4 ratio of α2 and GephE. The thermal 
profiles are altered by concentration changes. 
Nevertheless, neither the difference in 
concentration nor the presence of gephyrin 
does modulate the affinity of the SH3 domain to 
the GABAAR α2 subunit (given in parentheses). 
© 2012 HM Maric 
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4 Concluding Discussion 

Until now, a multitude of neurobiological studies (reviewed in [92, 193-195]) addressed the 

structural determinants of synaptic transmission, and it was found that excitatory as well as 

inhibitory neurotransmitter receptors are precisely localized and accumulated by scaffolding proteins 

which are located beneath the neuronal surface membrane, and that this process is crucial for 

synaptic function. My thesis presented here aimed to decipher the molecular details of the 

underlying interactions that accumulate the major mediators of fast synaptic inhibition, namely the 

GABAARs and GlyRs, at post- and extrasynaptic sites. Synapses containing the GABAARs and GlyRs 

comprise 5–15% of the total synapse number in the human brain, nevertheless, their importance is 

highlighted in a pleitropy of studies of human brain disorders such as epilepsy [196, 197], anxiety 

disorders [198], mood disorders [199], and neurodevelopmental disorders such as autism [200], 

Fragile X syndrome [201] and schizophrenia [202]. Modulation of GABAergic transmission allows to 

shift the balance between excitatory and inhibitory activity and accordingly GABAARs are the 

principle sites of action for clinically relevant drugs such as anxiolytics, anticonvulsants, and sedative 

hypnotic agents including benzodiazepines, barbiturates, alcohol, anesthetics and neurosteroids.  
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4.1 Radixin-Mediated GABAAR Clustering 

 Following initial findings by the Kneussel lab, which 

demonstrated that activated radixin mediates clustering of 

α5 subunit containing GABAARs at extrasynaptic sites [26], I 

analyzed the respective direct interaction applying various 

biochemical and biophysical methods to the recombinantly 

prepared proteins. Combined, my study suggests that 

subdomain F3 of the FERM domain of radixin indeed 

engages in a direct interaction with the N-terminal region of 

the large intracellular loop of the GABAAR α5 subunit which 

is characterized by a low micromolar affinity (Kd = 8 µM). In 

particular, residues 352 to 364 of the GABAAR α5 subunit 

form hydrophobic interactions via their side-chains as well 

as peptide backbone interactions with a universal substrate-

binding site within subdomain F3 of the radixin FERM 

domain. This binding site is formed by an α-helix that offers 

a large hydrophobic pocket (residues 273 to 295 marked in 

blue in Figure 62) and a β-strand that readily engages in 

peptide backbone interactions (residues 242 to 252 marked 

in yellow in Figure 62). This binding site on the radixin FERM 

domain has been implicated in a large variety of different 

scaffold interactions, and it recognizes moderately 

conserved motifs. It can therefore be concluded that this 

interaction is regulated by spatially and temporally 

controlled inactivation of either radixin, the receptor subunit 

or the competing ligands. Following this idea, my study 

underscores the importance of the initial finding that 

activation of radixin is essential for the clustering process 

[26].  

Additionally, posttranslational modifications within the GABAAR α5 and radixin binding sites, that 

have been mapped in detail in the context of this thesis, could allow further regulation of this 

interaction in vivo. Notably, the 13 residues minimum motif identified here indeed encompasses a 

lysine residue that was shown to be ubiquitinated in vivo [171](Figure 62), suggesting a new pathway 

for a negative regulation of extrasynaptic GABAAR clustering. Combined biochemical and cell 

biological studies will have to address the possibility of an ubiquitin-mediated radixin-GABAAR α5 

uncoupling and the potentially resulting reduced cluster size and number at extrasynaptic sites.  

  

Figure 62. Structural Basis of radixin-
mediated GABAAR α5 clustering. A, Fine-
mapped radixin FERM binding region within 
the GABAAR α5 subunit. Major contributors 
to the overall interaction strength are 
indicated with increased font size. 
Ubiquitination of the lysine residue (marked 
in red) within the binding motif offers a 
possible pathway for negative regulation of 
extrasynaptic clustering. B, X-ray 
crystallographic derived structure of radixin 
FERM solved in this thesis and earlier in 
cartoon representation and colored grey. 
The color coded universal binding site is 
implicated in binding of a variety of only 
moderately conserved motifs as well as 
GABAAR α5. Residues 273-295 colored blue 
adopt an α-helical structure, and together 
with the β-strand formed by residues 242-
252 colored yellow they shape a universal 
ligand binding site within the FERM domain 
of radixin. © 2012 HM Maric 

 GABA
A
R α5 binding motif          K

d
 (µM) 

NYFTKRGWAWDGKKALEAAKIKKKERELI…     8 

A 

B 



Molecular Basis of GlyR and GABAAR Clustering - Chapter 4 Concluding Discussion 

 

110 
 

4.2 Gephyrin-Mediated GABAAR Clustering 

Next, I contributed to a collaborative study with the Moss lab, which explored gephyrin-mediated 

GABAAR clustering at postsynaptic sites and resulted in four recent publications [195, 203-205]. My 

experiments demonstrate that gephyrin binds to moderately conserved motifs within the large 

intracellular loops of the GABAAR α1, α2 and α3 subunits in a similar manner [204, 205] as found for 

the GlyR β subunit, which had been characterized earlier in great detail [21, 55]. Gephyrin`s subunit 

preference varies greatly from 0.1 µM for the GlyR β subunit, 5 µM for the GABAAR α3 subunits, 17 

µM for the GABAAR α1 subunit and approximately 500 µM for the GABAAR α2 subunit. Nevertheless, 

my binding assays and crystallographic studies revealed that gephyrin mediates all receptor 

interactions via a universal binding site located in its C-terminal E domain with key residues acting as 

major contributors to the overall binding strength (Figure 63). Accordingly, the moderately conserved 

receptor loop residues that engage in direct gephyrin interactions show a correlated contribution to 

the overall binding strength [203]. In particular, hydrophobic interactions and H-bridges mediated by 

the seven N-terminal receptor residues within the 15 residues minimum motif act as a major 

contributor to the overall binding strength (Figure 63). The relevance of these in vitro results was 

confirmed in the Moss lab by means of transfecting primary hippocampal cells with selected point 

mutated receptor subunits and investigation of their gephyrin colocalization as well as quantification 

of their synaptic cluster number and 

size. An exchange of two conserved 

tyrosine residues (Figure 63, 

marked in red and green) within the 

gephyrin-binding motif was 

sufficient to significantly decrease 

clustering at postsynaptic sites in 

case of the GABAAR α1 and α2 

subunits [203].  Hence, it can be 

concluded that gephyrin mediates 

clustering of GlyRs and GABAARs via 

a universal binding site. Notably, 

the minimum motifs identified here 

were shown earlier to be 

phosphorylated in vivo, suggesting 

several novel pathways for negative 

regulation of fast inhibitory synaptic 

transmission, which have to be 

addressed in future studies.  

  

A B 
Subunit                                motif                       K

d
 (µM) 

GABA
A
R α1 T YAPTATSYTPNL   17  

GABA
A
R α2 A YAVAVANYAPNL ~500  

GABA
A
R α3 T FNIVGTTYPINL    5  

GlyR β    D FSIVGSLPRDFE 0.1/8  

Figure 63. Structural basis of gephyrin-mediated GABAAR clustering. A, 
Fine-mapped gephyrin binding motifs within the GlyRs and GABAARs. 
Major contributors to the overall interaction strength are indicated with 
an increased font size and are colored in red, orange and green, while 
residues that are phosphorylated in vivo are underlined. B, Minimum 
scheme of the receptor gephyrin interaction based on my X-ray 
crystallographic and binding studies. These studies suggest a major 
contribution of the N-terminal receptor motif which displays the highest 
overall conservation among all gephyrin-binding subunits. Representative 
for all receptor subunits the N-terminal GlyR β peptide is shown as a stick 
model, colored orange and red. All subunits engage in conserved 
hydrophobic interactions and H-bridges with gephyrin residues, marked 
in light blue. © 2012 HM Maric 
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 In vivo, gephyrin presumably forms a multivalent scaffold 

by self-association of its G and E domain, while GABAARs are 

assembled from five receptor subunits. Given the multivalent 

nature of these proteins, I addressed the possibility of avidity 

in the clustering of inhibitory neurotransmitter receptors. 

Based on cocrystallization of selected minimum peptides with 

GephE, I designed bivalent peptides that bind gephyrin with 

an unmatched high affinity due to avidity potentiation. 

Notably, I could extend the dimerization approach to low 

affinity gephyrin ligands, resulting in an extreme potentiation 

of affinity into the low micromolar range. This approach 

might enable the future analysis of GABAAR subunit β2 and 

γ2, which both contain regions similar to the gephyrin-binding 

motifs identified in the α1-3 subunits analyzed in this thesis 

(Table 49). Notably the proposed gephyrin-interacting region 

of GABAAR γ2 contains two residues that were shown earlier 

to be phosphorylated in vivo (Table 49, underlined residues) 

[179, 180]. In addition, the dimerization might allow the X-ray 

crystallographic characterization of the low affinity gephyrin-

binding GABAAR α1 and α2 subunit that could not be studied 

in this thesis using the conventional monomeric ligands.  

Receptor Gephyrin binding motif 

GlyR β 
397DFSIVGSLPRDFEL410  

GABAAR γ2 379MFSFKAPTIDIRPR 392  

GABAAR β2  
392DFSLYTMDPHENI L405  

GABAAR α3 
396TFNIVGTTYPI NLA409  

GABAAR α2 
364AYAVAVANYAPNLS377  

GABAAR α1 
339TYAPTATSYTPNLA351  

 
Table 49. Relationship between verified 

and putative gephyrin-binding GABAAR 

subunits. Alignment of GABAAR subunit 

sequences, verified to mediate gephyrin 

binding (α1-3), as well as subunits 

potentially binding to gephyrin (β2 and γ2). 

Residues known to be phosphorylated in 

vivo are underlined. The β2 and γ2 motifs 

show a high similarity to the GlyR β subunit 

(red) and seem to be distinct from the 

GABAAR α1 and α2 subunits (blue). Notably, 

the putative gephyrin-interacting region of 

GABAAR γ2 contains two residues 

(underlined) that were shown to be 

phosphorylated in vivo. 
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4.3 Collybistin`s Role in GABAAR Clustering 

During the course of my work, the Harvey group proposed that CB plays a major role in gephyrin-

mediated GABAAR clustering by amplifying the gephyrin GABAAR α2 subunit interaction. My results 

deny this hypothesis and instead argue in favor of the model suggested by T. Papadopoulos and 

Tolga Soykan [193]: CB-mediated GABAAR clustering relies on CB`s self-association, which competes 

with gephyrin and GABAAR α2 binding. Expanding this model, I propose that the free SH3 domain of 

CB exhibits the maximal possible receptor affinity of CB, while vice versa CB missing its N-terminal 

SH3 domain displays a maximized gephyrin binding strength. My experiments verified that the SH3 

domain engages in a direct and tight interaction with the GABAAR α2 subunit independent of 

gephyrin. I conclude that the free SH3 domain used here, mimics full-length CB`s α2-loop affinity 

after gephyrin/PIP2-mediated activation. Whether in vivo gephyrin/PIP2 activates CB for receptor 

binding or, vice versa, GABAAR α2 receptors activate CB for gephyrin/PIP2 binding remains to be 

elucidated. While this mechanism for GABAAR clustering (Figure 64A) differs from the described 

gephyrin mediated mechanism described earlier in this thesis (Figure 64B), nevertheless, both rely on 

gephyrin.  

My comparison of CB`s and 

gephyrin`s receptor subunit 

preference revealed a 

reciprocal relationship. GABAAR 

α3 forms a tight gephyrin 

complex (Kd = 5 µM) but does 

not interact with CB. GABAAR α2 

binds tightly to CB (Kd = 1 µM) 

but not gephyrin and GABAAR 

α1 displays a moderate binding 

affinity to both proteins (Kd = 20 

and 400 µM). Selected point 

mutants as well as competition 

assays indicate that gephyrin 

and CB bind to an overlapping 

site on the receptor subunits. 

The idea that homologous 

motifs within the receptor loops 

mediate receptor targeting 

differentially is supported by 

preliminary results from the 

Moss group which exchanged 

the gephyrin/CB binding motifs 

between the GABAAR α1 and α2 

subunits and found a severe 

phenotype in transgenic mice 

which is currently being 

investigated in detail. 

Figure 64. Minimum scheme of GABAAR and GlyR clustering at postsynaptic sites. 
My study suggests that (A) CB mediates the clustering of GABAAR containing the α2 
subunit and (B) that gephyrin directly triggers GlyR clustering and clustering of 
GABAARs containing α1 and α3 subunits. Notably both mechanisms rely on 
gephyrin which either (A) activates CB or (B) directly mediates receptor clustering 
via a common binding site. Additionally, the GABAAR α1 (excluded in the scheme 
for clarity) and α2 subunits are involved in both pathways, due to interacting with 
(A) collybistin and (B) gephyrin. Dotted arrows indicate interactions verified by 
non-quantitative methods. Interactions quantified in this work are represented by 
solid arrows with their respective affinity given in [µM]. © 2012 HM Maric 
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4.4 Targeting Receptor-Scaffold Interactions  

4.4.1 Receptor-Scaffold Interaction Share Common Features 

Despite the involvement of unrelated protein binding modules, such as PDZs in case of GluRs and 

SH3, FERM and GephE in case of GABAARs and GlyRs, the neurotransmitter receptor-scaffold 

interactions share common key characteristics: 

� Short, linear and intrinsically unfolded regions within intracellular receptor domains engage in 

moderately specific and direct interactions.  

 

� Small interaction surfaces result in medium interaction strengths, typically in the low micromolar 

range. 

 

� The scaffold proteins recognize moderately conserved motifs and display a wide range of 

affinities. 

 

These findings are in line with the unique framework of these interactions [206, 207]. Assuming 

that scaffold proteins form a two dimensional lattice beneath the neuronal membrane and that the 

targeted receptors enter the membrane before interacting with the scaffold-lattice, in can be 

concluded that the interactions analyzed here are characterized by a great kinetic advantage, in vivo, 

which is based on a reduced diffusion dimensionality of both binding partners as well as local 

enrichment effects. Due to limitations of my experimental setup I could not address these 

mechanisms of affinity-potentiation. Instead, I analyzed two additional possible determinants of the 

actual, in vivo, receptor-scaffold interaction strength: 

� Avidity effects resulting from the oligomerized nature of the protein scaffolds and the oligomeric 

assembly of the receptors might potentiate the binding strength. This was verified earlier for the 

PDZ-mediated receptor interactions [208], and I demonstrated the importance of this effect for 

gephyrin-mediated receptor binding. 

� Recent studies revealed the in vivo modulation of the direct receptor scaffold interactions 

analyzed here by phosphorylation, either by PKC in case of the GlyR β subunit [205] or by MAPK 

in case of the GABAARs containing the ubiquitously expressed α1 subunit [65], or alternatively by 

ubiquitination, as revealed for the α5 subunit which could modulate its interaction with radixin 

[171]. 
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4.4.2 Receptor-Scaffold Interactions Are Promising Drug Targets 

Notably, the key properties mentioned in the previous section and additional neurobiological 

findings predestine these protein-protein-interactions to be targeted by effector molecules: 

� Synaptically-released neurotransmitters were shown to saturate their receptors [209], therefore 

it can be inferred that receptor clustering is not only crucial for synaptic function but also for 

regulating the functional strength of the synapse [101, 210, 211].  

 

� Given that phosphorylation events negatively regulate synaptic inhibition by reducing the 

gephyrin-receptor affinity, it can be concluded that (i) regulation of the receptor scaffold 

interaction fulfills a specific role within synaptic transmission, and (ii) that this interaction can be 

targeted, either by inhibiting the kinases or by interfering with the direct interaction. 

 

� The lack of secondary structure within the peptides and the small interaction surfaces allow the 

usage of (i) very short minimal fragments [212-215] or (ii) even small molecule inhibitors [216] 

that mimic these interactions. 

 

� For all scaffold proteins that have been analyzed in the context of this thesis there are 

corresponding ligands which display a maximized affinity. In case of the radixin FERM domain 

earlier studies suggested ICAM-2 as a high affinity interactor. In case of the SH3 domain of CB1 I 

identified a segment within the GABAAR α2 subunits which is surprisingly devoid of conventional 

PxxP motifs, and in case of the E domain of gephyrin it is the N-terminal part of the minimum 

peptide derived from the GlyR β subunit. The resulting affinities in the low micromolar to high 

nanomolar range provide compound specificity and enable structure based drug design and 

therefore provide good starting molecules for further development. 

 

� The oligomeric nature of scaffold proteins at postsynaptic sites allows multivalent compounds 

with optimized linker lengths to provide an artificially high affinity. The major determinant of 

avidity-based affinity potentiation is the length of the linker [183, 184] and section 4.4.4. In case 

of the naturally occurring receptors, linker length is determined by their subunit assembly and 

the overall length of their large intracellular loops. In contrast, the linker length of artificial 

receptor derived compounds can be optimized towards a maximized avidity to effectively 

compete, already at low in vivo concentrations, with naturally receptors for gephyrin [212-215]. 
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4.4.3 Architecture of a Hypothetical Gephyrin Inhibitor 

By specifically targeting the receptor binding site formed by the dimer interface of gephyrin`s E 

domain, the bidentate peptide presented here acts as an inhibitor of gephyrin`s receptor binding 

capacity. Further development of this compound may offer the possibility to analyze the effect of 

uncoupling of the gephyrin receptor interaction in cell culture-based assays. Specifically, I propose 

the introduction of a TAT-peptide [215] (Figure 64) to the linker to (i) enable its transport across the 

intact neuronal membrane and to (ii) allow immunofluorescence labeling in the course of video-

microscopy studies [212, 215].  

Given the central role of gephyrin in the architecture of the inhibitory synapse numerous studies 

addressed the effect of gephyrin deficiency in either knock-out mice [33, 71, 72] or by application of 

antisense oligonucleotides [31]. Additionally, the gephyrin protein was targeted my Antibodies [217]. 

While these studies indeed provided new insights into the function of inhibitory synaptic 

transmission, they were hampered by (i) the early postnatal death of the knock-out mice, (ii) the 

complete disruption of the relevant receptor clusters or (iii) the artificially altered protein functions 

and expression levels. Therefore it seems advantageous for future studies of gephyrin to enable the 

direct targeting of its receptor clustering function in living neurons. The here described compound 

would allow the modulation of gephyrin`s receptor anchoring function, without altering gephyrin`s 

enzymatic function or its relative abundance.  

Finally, in theory such a molecule could be used as lead compound for the development of a novel 

class of drugs that uncouple the receptor scaffold interaction and thereby modulate synaptic 

inhibition in vivo.  

  

Figure 65. Structure of a gephyrin-targeting, bivalent and membrane-permeable peptide. Structure of a hypothetical 
receptor-derived bidentate peptide that specifically acts on gephyrin´s receptor clustering activity. Notably, shortening of 
the gephyrin binding peptide (marked in orange and red) and the linker (marked in black) as well as introduction of a TAT-
peptide (marked in blue) could render the peptide membrane permeable, less prone to degradation and would enable 
immunofluorescence labeling and therefore imaging studies of the effector molecule. © 2012 HM Maric 

   Membrane Transport Linker Receptor minimum motif 
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4.4.4 Theory of Avidity-Enhanced Binding 

My experiments that involved multivalent interactions shared common features: 

� A potentiated affinity. 

 

� Unaltered molar enthalpic signatures per binding site. 

 

� A major impact of linker length on the overall affinity. 

 

Here I shortly describe the theory of free energy of non-covalent and multivalent interactions 

reviewed in [218] to (i) compare my findings to the theoretical expectation, to (ii) estimate the 

potential of avidity mediated binding enhancement, and (iii) identifiy the major determinants of 

avidity.  

 

In this work I used the dissociation constant �E  to describe the affinity of protein-protein 

interactions. Its inverse, the association constant�F , is defined as the ratio between the 

concentration of two binding partners A and B and their respective complex C: 

		� + H	 → J,				�F =
(JK)LM

(JN)LM(JO)LM 

In case of the bivalent peptide-gephyrin-dimer interaction, the second binding event can be 

described by the intra-molecular binding constant �., where	JK  and JN now describe, respectively, 

the concentrations of the gephyrin-receptor-complexes with one or both binding site occupied by 

the bivalent ligand. 

(JK)LM
(JN)LM =	�. 

Notably, their ratio is solely determined by the probability of each conformation and therefore 

unaffected by the total concentration of the bivalent peptide. This is an important difference to the 

inter-molecular binding, where the concentration ratio of bound and free receptors depends on the 

concentration of the ligand. Comparison between �F and �. results in: 

�. = �FJO,LPP  

A formal derivation [183] shows that the effective concentration JO,LPP is given by the probability 

density, �Q(R), of the end-to-end vector r of the linker, where RО is the end-to-end vector when the 

ligand is bound to the receptor: 

�. = �F	�Q(RО) 
For flexible linkers the values of the effective concentration mainly depend on linker length and 

the distance of both binding sites. For linkers extending over the minimal necessary binding site 

distance, the effective concentration of the intra-molecular binding partner is typically found in the 

mM range [184]. Therefore, tethering the minimum peptides together achieves a similar effect as 

having the second ligand present at a fixed concentration of roughly 1 mM. Notably, the affinity 
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potentiation effect, as well as the high relevance of linker length could be verified for the multivalent 

receptor gephyrin complex in this thesis.  

Using ITC I determined the total possible enthalpy release upon gephyrin-binding of bivalent 

peptides (GABAAR α3 and GlyR β derived) and monovalent peptides (GlyR β derived). Despite their 

widely differing thermal profiles and Kd`s in conventional titration experiments I verified a roughly 

identical enthalpic contribution to the overall binding strength. This argues in favor of entropic 

effects resulting from the multivalent binding of the bidentate peptides: 

 Neglecting the fact that concentration varies with temperature, the standard binding entropy 

under constant pressure can be defined as: 

�
TО = UO	V�WJО�FX + UO�, YZ ln�FZ� ]
^

 

Where UOis the Boltzmann`s constant,	�	the absolute temperature, �F the association constant of  

the binding reaction and JО the standard concentration. In contrast, the binding enthalpy has no 

dependence on concentration: 

�	T = UO�, YZ ln�FZ� ]
^

 

Thus, changing the arbitrarily selected value of the standard concentration JО shifts both the 

standard free energy and the standard entropy of binding, but does not affect the enthalpy change. 

Therefore, avidity-potentiated binding strength is solely based on a more favorable entropic 

contribution to the free energy. This effect relies on the enhanced local concentration of the second 

binding ligand which is described by an altered effective concentration, where $О describes the 

accessible volume for second binding step when tethered to gephyrin by the introduced linker:  

�
. = �
TО + UO	V� _$О�Q(RО)` 

This equation mirrors (i) the here identified affinity-potentiation for bivalent peptides, (ii) the 

finding that this effect is solely mediated by entropy but not enthalpy and (iii) the importance of the 

length of linkage between both peptides. In case of the gephyrin-receptor complex this theory 

suggests that due to the low minimal binding site distance RО = 15 Å, gephyrin offers a great potential 

for avidity-mediated binding enhancement. Additionally, it suggests that further optimization of 

linker length and, if possible, flexibility should result in an affinity enhancement for bivalent gephyrin 

ligands by several magnitudes. 
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4.4.5 Gephyrin-Mediated GlyR and GABAAR binding Is a Multivalent Process 

In comparison to GABAAR-derived peptides, the GlyR β-derived peptide displays a remarkably high 

gephyrin affinity, and I found that the high-affinity binding depends critically on the presence of 

residues C-terminal to the defined minimum motif. My binding assays and X-ray crystallographic 

studies verified a unique contribution of this C-terminal region to the stability of the α-helix formed 

by these residues. This short α-helical region which is built up by residues 408-411 (Phe, Glu, Leu, 

Ser) enables Phe408 and Leu410 to engage in critical hydrophobic interactions with gephyrin Val727 

and Pro685. While elongated receptor loop fragments of GABAARs show a similar potentiated affinity 

towards gephyrin compared to their minimal fragments, the second binding site of GABAARs could 

not be defined on the molecular level. Nevertheless, an aromatic residue, conserved among all 

gephyrin-binding GABAARs was identified in this region to be essential for the binding event (GABAAR 

α1 Tyr347, α2 Tyr346, α3 Tyr377). Based on these findings I propose that the GlyR and GABAAR 

gephyrin binding interaction relies on two hotspots as major contributors to the overall binding 

strength. The first hotspot universally mediates binding of all receptor subunits and is formed by 

conserved hydrophobic residues engaging gephyrin Phe330. The second hotspot is different between 

GlyRs and GABAARs and involves distinct receptor binding sites on the gephyrin surface. Following 

the presence of two independent binding hotspots I assume that already monomeric GlyR and 

GABAAR subunits bind gephyrin with an avidity-potentiated affinity. This hypothesis would explain 

my finding that the 15 residues GABAAR and GlyR peptides show a magnitudes lower gephyrin 

affinity then their corresponding elongated fragments. The fact that gephyrin binds GABAARs with an 

approximately 100-fold lower affinity than GlyRs can be is at least partially based on a weakened 

contribution of the N-terminal hotspot. My binding assays with chimeric receptor minimum peptides 

verified a severe reduction of gephyrin binding upon exchange of the N-terminal GlyR hotspot with 

the corresponding GABAAR hotspots. Namely, introduction of seven GABAAR α1 residues resulted in a 

85-fold reduction, whereas introduction of seven GABAAR α3 residues resulted in a 10-fold reduction. 

The described theory would provide a molecular explanation for the following previous findings:  

� Gephyrin is copurified with GlyRs but not GABAARs [28] and video-microscopy analyses revealed 

that GlyRs [65] have enhanced residence times over GABAARs [205] at the postsynaptic gephyrin 

scaffold. 

 

� Colocalization of GlyRs and gephyrin is only fully abolished upon alanine mutation of all 

hydrophobic residues between GlyR 398 to 410 [21]. 

 

� Introduction of phosphomimetic acidic or alanine residues into one of the hotspots decreases the 

overall affinity into the micromolar range and abolishes the biphasic binding behavior observed 

in ITC studies with 49 residue peptide [55, 65].  

 

� Gephyrin shows no residual heat release upon titration with the elongated monovalent 49 

residue GlyR β peptide after pre-equilibration with the bivalent peptides designed here, despite 

displaying an apparently higher affinity. 

 

� Determination of the maximal possible enthalpic contributions verified that the extreme 

difference in binding strength between the GABAAR α3 subunit, the GlyR β subunit and the 

bivalent peptide is mediated by entropic effects such as avidity.  
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� Among the different gephyrin mutants only P713E completely abolishes binding to all receptor 

subunits. I suggest that this unique feature relies on the ability of this mutant to simultaneously 

target both binding hotspots by introduction of an acidic residue in between both. 

 

� C-terminally truncated GlyR β peptides show a monophasic binding in the micromolar range and 

X-ray crystallographic analyses identified the disruption of the C terminal helix upon deletion of 

GlyR residues that do not directly engage in interactions with gephyrin. 

Taken together, I assume that naturally occurring GlyRs and GABAARs display at least two 

independent avidity effects. Firstly, an avidity-potentiated affinity by simultaneously occupying two 

hotspots centered around gephyrin Phe330 and, at least in case of GlyRs, gephyrin Val727. The 

second avidity effect is based on the presence of two GABAAR α subunits or three GlyR β subunits 

[14] within a single functional pentameric receptor in combination with the oligomeric nature of 

gephyrin. Remarkably, both avidity-effects rely on gephyrin`s architecture:  

� Two subunits naturally occupy two gephyrin binding sites and therefore require two gephyrin 

E domains in close proximity. 

 

� Remarkably, receptor subunit binding occurs at the dimer-interface of gephyrin`s E domain 

and, even more importantly, each hot spot is solely established by a single gephyrin 

monomer. Therefore, only a dimerized gephyrin E domain offers two binding hotspots. 

Following this idea, only full length gephyrin that allows all of its constituting E domains to 

dimerize will offer the maximal possible receptor binding affinity. Under the assumption that 

the extraordinary strong trimerization interface of the G domain remains intact it can be 

concluded that only an hexagonal scaffold offers full receptor binding capacity. 

Furthermore I conclude that the here described artificial GlyR-derived dimeric minimum peptides 

relies only on one of the here described avidity effects, since it targets two binding sites but only the 

N-terminal hotspots within these binding sites. I therefore assume that it will compete out functional 

GlyRs less efficient than GABAARs which have an intrinsically lower gephyrin affinity. Hence, targeting 

of the receptor binding site within gephyrin, may indeed provide a new pathway to interfere with 

synaptic inhibition in vivo without altering receptor function, but should mainly affect GABAergic 

transmission.  
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5 Tables 

5.1 Abbreviations 

  
AA Acrylamide 
Amp Ampicillin 
APS Ammonium peroxydisulfate 
BAA Bisacrylamide 
bbBr Dibromobimane 
BSA Bovine serum albumin 
BMB 1,4-Bismaleidobutane 
BMH 1,6-Bismaleidohexane 
BMOE 1,2-Bismaleidoethane 
BM(PEG)2 1,8-Bismaleidodiethlylenglycol 
Cam Chloramphenicol 
CV Column volume 
Da Dalton 
DTT Dithiothreitol 
DNA Deoxyribonucleic acid 
DNase  desoxyribonuclease 
E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetate 
h Hour 
IPTG Isopropyl-β-thiogalactoside 
ITC Isothermal titration calorimetry 
LB Lysogen broth 
M Molar 
min Minute 
mL Milliliter 
MPD 2-Methyl-2,4-pentanediol 
MR Molecular Replacement 
MWCO Molecular weight cut off 
NAGE Native agarose gel electrophorese 
nm Nanometer 
nM Nanomolar 
OD Optical density 
PAGE Polyacrylamide gel electophoresis 
PCR Polymerase chain reaction 
PEG Polyethyleneglycol 
RT Room temperature 
SDS Sodium dodecyl sulfate 
SEC Size-exclusion chromatography 
TEMED Tetramethylethylenediamine 
µL Microliter 
µM Micromolar 
UV Ultraviolet 
WT Wild type 
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5.2 Aminoacids 
  

Ala/A Alanine 

Arg/R Arginine 

Asn/N Asparagine 

Asp/D Asparatic acid 

Cys/C Cysteine 

Glu/E Glutamic acid 

Gln/Q Glutamine 

Gly/G Glycine 

His/H Histidine 

Ile/I Isoleucine 

Leu/L Leucine 

Lys/K Lysine 

Met/M Methionine 

Phe/F Phenylalanine 

Pro/P Proline 

Ser/S Serine 

Thr/T Threonine 

Trp/W Tryptophan 

Tyr/Y Tyrosine 

Val/V Valine 
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