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Abstract

Nowadays, robotics plays an important role in increasing fields of application.
There exist many environments or situations where mobile robots instead of
human beings are used, since the tasks are too hazardous, uncomfortable, re-
petitive, or costly for humans to perform. The autonomy and the mobility of
the robot are often essential for a good solution of these problems. Thus, such
a robot should at least be able to answer the question “Where am I?”.

This thesis investigates the problem of self-localizing a robot in an indoor en-
vironment using range measurements. That is, a robot equipped with a range
sensor wakes up inside a building and has to determine its position using only
its sensor data and a map of its environment. We examine this problem from
an idealizing point of view (reducing it into a pure geometric one) and fur-
ther investigate a method of Guibas, Motwani, and Raghavan from the field
of computational geometry to solving it. Here, so-called visibility skeletons,
which can be seen as coarsened representations of visibility polygons, play a
decisive role.

In the major part of this thesis we analyze the structures and the occurring
complexities in the framework of this scheme. It turns out that the main source
of complication are so-called overlapping embeddings of skeletons into the
map polygon, for which we derive some restrictive visibility constraints. Ba-
sed on these results we are able to improve one of the occurring complexity
bounds in the sense that we can formulate it with respect to the number of re-
flex vertices instead of the total number of map vertices. This also affects the
worst-case bound on the preprocessing complexity of the method.

The second part of this thesis compares the previous idealizing assumptions
with the properties of real-world environments and discusses the occurring
problems. In order to circumvent these problems, we use the concept of di-
stance functions, which model the resemblance between the sensor data and
the map, and appropriately adapt the above method to the needs of realistic
scenarios. In particular, we introduce a distance function, namely the polar
coordinate metric, which seems to be well suited to the localization problem.
Finally, we present the ROLOPRO software where most of the discussed algo-
rithms are implemented (including the polar coordinate metric).
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Introduction

“What’s the meaning of it?

Where am I?”

she said in complete bewilderment,

as though still unable to recover herself.

Sonia in “Crime and Punishment”
F. DOSTOYEVSKY (1821-1881)

NOWADAYS, ROBOTICS PLAYS AN IMPORTANT ROLE in increasing fields of
application. Mobile robots are typically used in environments or situa-
tions where humans cannot operate or are not willing to operate, since these
tasks are too hazardous, uncomfortable, repetitive, or costly for humans to per-
form. Some exemplary applications in different fields are listed below.

Services sector Here we have in mind cleaning tasks or the guidance, assi-
stance, and entertainment of people.

For example, Siemens’ experimental ROAMER robot shown in Figure 1.1 on
the following page is used for cleaning supermarkets or offices, see [Ren94,
RFZ99, FBL94].

Another realized application in this field is the interactive museum tour-
guide robot RHINO of the University of Bonn and the Carnegie Mellon Univer-
sity (depicted in Figure 1.2 on the next page), which acts as a tour guide for
visitors of the Deutsches Museum Bonn, see [BC 199, Fox98, FBT99, Rhi].

Both examples have in common that the robots have to operate in crowded
environments full of people, trollies, etc.

Office work Possible jobs are the delivery of mail, tedious cleaning tasks, or
maintenance work.

The Mobile Post Distribution System MoOPs of the ETH Ziirich [VTG96,
TGVS99] may serve as an example of mail delivery in office environments.
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FIGURE 1.1: Siemens’ experimental cleaning robot ROAMER (photo taken
from [BEF96])

FIGURE 1.2: The interactive museum tour-guide RHINO (photo taken
from [Fox98])



FIGURE 1.3: The robot wheelchair MAID (photo taken from [PS*99])

Medical sector Problems occurring in this field of application are the trans-
portation of patients, the assistance for disabled or elderly people, or surgery
assistance tasks.

For instance, the robotic wheelchair MAID of the FAW Ulm shown in Fi-
gure 1.3 serves as a transportation aid for people with severely impaired gross
motor skills, see [PST99, PSS98].

Moreover, Yairi and Igi [YIOO] propose a moving support system in a broa-
der context, which assists aged and disabled persons not only in transportation
tasks, but also compensates for their impaired recognition, actuation, and in-
formation access.

Outer space The maintenance of space crafts or exploration of foreign planets
are two key problems in this sector.

The mobile robot SOJOURNER shown in Figure 1.4 on the next page, which
explored the vicinity of the Mars lander and took about 500 photos within the
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FIGURE 1.4: The Mars rover SOJOURNER (photo taken from [MRF])

Pathfinder mission of the NASA (see [VO97, Sto96, MRF]) may serve as an
example.

Resource industry Here, possible fields of applications of mobile ro-

bots are forestry [FM97], farming [OS97], mining, exploration and surveil-
lance [SRT00].

Underwater operations Probable applications are the usage of mobile robots
for mining, exploration, search and rescue, as well as maintenance problems.

Power plants and factories Typical jobs are operating, maintenance, and de-
commissioning work in hazardous or uncomfortable environments.

Civil security Here we have in mind dangerous operations like police work,
mines and bomb disposal [Cas00], or firefighting.

Although some of these tasks can also be accomplished by using a telecontrol-
led robot (see [DM95, p. 304ff.] for a survey on telerobotics), the autonomy
and the mobility of the robot are often essential for a good solution of the re-
spective problem. Moreover, in many applications the communication with
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remotely controlled manipulators or vehicles is long-winded and error-prone.
For instance, according to [MFS] the distance between the planet earth and a re-
motely controlled robot on Mars varies between 5.5 - 107 km and 4.0 - 108 km,
which results in a signal propagation delay between 182s and 1339s. This
means that the worst-case delay between a command to the robot and its re-
sponse is about 44 minutes, which emphasizes the benefits of an autonomously
operating vehicle.

Furthermore, there also exist applications of mobile robots, where the capa-
bility of performing low-level actions (e.g., “Follow the wall”, “Pass the door-
way”, etc.) as well as autonomous high-level actions (e.g., “Bring me to plat-
form 5 at the railway station”) is absolutely necessary. An example may be the
autonomous wheelchair for disabled persons described above.

Since an autonomous mobile robot has to navigate in its environment, it
must at least be able to answer the three following questions, summarized by
Leonard and Durrant-Whyte [LDWO91]:

“Where am 1?”,
“Where am I going?”, and
“How should I get there?”.

At first, these questions appear to be relatively simple to answer, but in fact
tinding good solutions is very hard. Concerning the first question, Borenstein
et al. [BEF96] claim that

“perhaps the most important result from surveying the vast body of
literature on mobile robot positioning is that to date there is no truly
elegant solution for the problem.”

In the following we concentrate on the first of the three questions above,
“Where am I?”, that is, on the problem of localizing a robot. Some authors also
use the term “self localization” instead of “localization” to express that the task
is performed by the robot itself, in contrast to problems where someone else
has to localize the robot from an outside point of view. In the sequel we only
use the shorter term “localization”, meaning the robot’s task of determining its
position and orientation.

1.1 Sensors Used for Localization

A typical robot vehicle may be equipped with a variety of different actuators
and sensors, depending on the tasks it has to perform, its size (usually ranging
from a few centimeters to one or two meters), and its power supply. Common
actuators are, for example, robot arms with gripping pliers, vacuum cleaners,
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specifically tailored instruments, and devices for certain tasks (confer the ex-
amples given above). In the following we describe some common types of
sensors, autonomous mobile robots are equipped with.

Odometry is a method to measure the vehicle displacement along the path
of travel. For a wheeled locomotion this can directly be accomplished
by measuring the wheel rotation and the steering orientation of the ro-
bot. This way we can record the path that the robot has travelled so far
and provide the robot with an estimate of its position and orientation.
Unfortunately, the position and orientation estimate from odometry is
corrupted by inevitable drifts if the robot travels long distances without
recalibrating.

This method of estimating the present position by advancing a previous
known position using course, speed, time, and distance to be travelled is
called dead reckoning (derived from either “deduced reckoning” or “recko-
ning a position relative to something stationary or dead in the water”
from maritime navigation) and the majority of todays land-based mobile
robots rely on it. For surveys on odometry and other dead-reckoning
methods see the books of Borenstein et al. [BEF96, p. 13{f., 130ff.] and
Everett [Eve95, p. 35ff.].

Gyroscopes and compasses measure the rotation (or orientation, respec-
tively) much more exactly than odometry does, and therefore may be
used to augment the dead-reckoning information of mobile robots. But
as well as odometry gyroscope data also drifts (with time), even if the ro-
bot does not move at all. Therefore, gyroscopes must also be periodically
recalibrated using an independent reference [BEF96, p. 30 ££.].

In contrast to gyroscopes, geomagnetic sensors (i.e., instruments that
measure the magnetic field of the earth) have no drift, but they cause
other problems, for example, if the magnetic field is distorted near power
lines [BEF96, p. 45££.].

Ultrasonic sensors determine distances to objects in front of the sensor by
emitting and receiving a ultrasonic signal. Basically, there are two dif-
ferent approaches to estimate the distance to the surrounding objects (for
details see [BEF96, p. 95ff.] and [Ada99, p. 28 {f.]).

e The time-of-flight technique uses pulses of energy, for which the
time between emission and reception is measured.

* The (amplitude modulated) phase-shift measurement technique in-
volves a continuous wave transmission. The reflected portion of the
wave is compared to a reference signal and the relative phase shift
of the two signals is used to determine the distance.
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Since ultrasonic waves are likely to be reflected at smooth surfaces, the
distance measurements are not very accurate due to multiple reflections.
Consequently, ultrasonic sensors are often used only to avoid collisions
with obstacles [FBLL94, LD97, Ren94, S0i97a, S0i97b].

Laser scanners work similar to ultrasonic sensors, but use a laser beam ins-
tead of ultrasonic waves. In particular, the two distance measuring tech-
niques for ultrasonic sensors described above also exist for laser scan-
ners: the time-of-flight technique and the phase-shift measurement tech-
nique. Furthermore, as an alternative also a frequency modulated tech-
nique exists, where the frequency of the transmitted continuous wave
linearly varies with time. The three methods are described in detail by
Adams [Ada99, p. 40 ff.].

Due to the much shorter wave lengths the distance measurements using
a laser scanner normally are much more precise than using ultrasonic
sensors. Therefore, laser scanners are extremely suitable for localization
applications, which are based on range sensing, in particular with regard
to their low price. Many authors also use synonyms for the term “la-
ser scanner”, either ladar (from “Laser Detection and Ranging”) or lidar
(from “Light Detection and Ranging”).

A typical laser scanner takes a 180°-scan of its environment with an an-
gle increment of 0.5°, that is, one scan consists of 360 individual range
measurements (or scan points, synonymously). The scan points typically
have a resolution of about 10 mm and objects are detected within a range
of about 80 m.

Cameras provide digitized pictures of the robot’s environment, from which re-
levant features (e. g., walls, doorways, etc.) can be extracted and used for
localization and navigation purposes [LBG97]. Furthermore, cameras are
commonly used for tracking moving objects and people [ASV97, DHS96].

Additionally, the robot may make use of systems that allow an absolute po-
sition measurement. This could be, for example, active beacons that usually
transmit light or radio signals, whose direction of incidence is measured by
the robot. From three or more such measurements the robot can compute its
absolute position, provided that the transmitters are located at known sites in
the environment. Similarly, artificial landmarks that are placed at known po-
sitions and which can be recognized by the robot’s sensors, can be used. For
example, reflecting stripes (for the usage with laser scanners) or signs on the
walls with special shapes on them (for vision sensors) could be placed in the
environment. Another way of performing an absolute localization is to use the
Navstar Global Positioning System (GPS), where 24 satellites, which orbit the
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earth, transmit radio signals that allow a position measurement with an error
of about 3 m; for details see [BEF96, p. 70 {f.]. But for indoor-applications (like
the ones that we have in mind) GPS is less applicable, since the GPS signals are
likely to be absorbed by the walls of buildings.

In the following we do not consider localization methods using this kind of
absolute position measurement, since often it is not possible or too expensive
to modify the environment this way. Furthermore, for the long-term objective
of an autonomous robot it is not reasonable to rely on modifications to the
environment.

Typically, an autonomous robot is equipped with odometry and gyrosco-
pes for maintaining a rough position estimate, ultrasonic sensors for colli-
sion avoidance, and laser scanners for the localization task. Of course, also
the ultrasonic sensors and possibly additional sensors can be used for loca-
lization, for example, by integrating their data using sensor fusion techni-
ques [SW99, KZK97, XvBT95]. A very common method for integrating se-
veral measurements of possibly different sensors is the Kalman filtering tech-
nique [May90, Kal60]. The Kalman filter combines several estimates of a va-
riable, for which a Gaussian distributed error is assumed, into a new estimate
(also with a Gaussian error distribution), such that the variance is minimized.

1.2 Absolute versus Relative Localization

Generally one must distinguish between two different types of localization
problems: the relative localization problem, where the robot already has
an estimate of its position and orientation (e.g., using its odometry), and
the absolute localization problem, where the robot has no knowledge about
previous configurations. For the former problem many approaches exist,
which can be classified into scan-based and feature-based approaches, tech-
niques using artificial landmarks and a few other methods, see for exam-
ple [PM95, LM97, LD97, EW95, Cox91].

The latter problem can be seen as a kind of wake-up situation (e. g., after a
power failure or maintenance works), where the robot is placed somewhere in
its environment, switched on, and then “wants” to know where it is located.
Since here the search space usually is much greater than for a relative locali-
zation query, we cannot expect to solve an absolute localization query as effi-
ciently as a relative one. The methods for answering such queries are similar
to the ones mentioned above for the relative localization and can be classified
the same way: scan-based and feature-based approaches and methods using
artificial landmarks. See [RFZ99, Klu99, BK*99, KNS00, WJvP00] for examples
of feature-based techniques.
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1.3 Thesis Outline and Summary of Results

This thesis investigates the problem of localizing a robot in an indoor environ-
ment using range measurements. We examine this problem from an idealizing
point of view and reduce it to a pure geometric one, which can then be tackled
using methods from the field of computational geometry.

The organization of this thesis is as follows: In Chapter 2 we give a short
overview of the notational framework and the basic terminology used throug-
hout this thesis.

Chapter 3 introduces a geometric version of the robot localization problem.
We specify a number of idealizing assumptions that allow us to formulate it as
the following geometric problem: For a given map polygon and a star-shaped
visibility polygon determine all points in the map whose visibility polygon
equals the given one. This problem was already investigated by Guibas et al.
and we briefly recall their scheme, since it is the basis for our own considerati-
ons in the succeeding chapters.

In Chapter 4 we further investigate a central element of the previously de-
scribed method, namely embeddings of visibility skeletons. In particular, we ex-
amine the case of so-called overlapping embeddings, that is, two embeddings of
the same skeleton that overlap. We prove some properties of their intersection
region and analyze the different types of intersecting skeleton edges. The main
contribution of this chapter describes the connection between two overlapping
embeddings and the visibility of their witnesses. We investigate this connec-
tion first for the special case where also the kernels of the embeddings overlap
and then derive the visibility constraints also for the general case of arbitrary
overlapping embeddings.

This property of overlapping embeddings (besides that it represents an in-
teresting problem by itself) also plays a crucial role in Chapter 5, where we
further investigate the complexity of a certain structure, namely the equivalence
class of a skeleton. We refine the bound on this complexity in the sense that we
formulate it with respect to the number of reflex vertices instead of the total
number of map vertices. This also affects the worst-case bound on the prepro-
cessing complexity of the above method.

The objective of Chapter 6 is to adapt the solution of the idealized problem
(described in Chapter 3) to the properties of real-world environments such that
the restrictive assumptions can be loosened. To this end, we first discuss the
problems that occur if we try to use the computational geometry solution also
for realistic scenarios. In order to circumvent these problems we introduce an
approach that uses distance functions, which model the resemblance between
the sensor data and the map. In particular, we introduce the polar coordinate
metric for star-shaped polygons and show how this polygon distance can be
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used in our setting. Finally, we present the implementation ROLOPRO where
our approach was implemented.
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Preliminaries

“In the name of heaven, sir,” cried she,

“what means all that is passing? Put an end to my doubts;
I have courage enough for any danger I can foresee,

for every misfortune which I understand.

Where am I, and why am I here?

If I am free, why these bars and these doors?

If I am a prisoner, what crime have I committed?”

Milady de Winter in “The Three Musketeers”
A. DUMAS (1802-1870)

GENERALLY WE ASSUME that the reader is acquainted with the standard no-
tations and definitions from computational geometry and related fields.
However, in the following sections we give a brief overview of the basic termi-
nology used in the succeeding sections.

2.1 List of Basic Notations

Numbering Conventions

In order not to get confused with the numbers of figures, definitions, theorems,
etc., note that each of the following groups is separately and consecutively
numbered throughout each chapter:

* Figures and algorithms;

* definitions, assumptions, and observations;
¢ theorems, lemmas, and corollaries;

* examples and comments.

Furthermore, the former three of these groups are listed on page 171 ff.

11
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Symbols, Sets, and Abbreviations

By N (Z, Q, R, respectively) we denominate the set of natural numbers (inte-
gers, rational numbers, real numbers, respectively), whereas N := {1,2,...}
and No := {0,1,...}. With an expression like A>, we denote the subset
{a € A:a > a} of the set A. For example, R>¢ stands for the nonnegative
real numbers.

The closed real interval {x € R : a < x < b} is written as [a, b]. Likewise, the
open interval |a, b[ and the half-open intervals |a,b] := {x € R : a < x < b}
and [a, b] are defined.

For two sets A and B we write A C Bif Aisasubsetof B,and A & Bif Aisa
proper subset of B. By A¥ we denote the k-fold Cartesian product A x - - - x A.
The set of subsets of A is depicted by 24 and @ stands for the empty set.

The universal quantor »>V,c4 ...< and the existence quantor >J,c4 ...<
mean >For all 2 € A it holds that .. « and >There exists at least one a € A
with .. <. Likewise, >f,c4 ...< stands for »There does not exist anya € A
with .. <.

The abbreviation »w.1. 0. g. < stands for >without loss of generality<.

Growth of Functions

To describe and compare the asymptotic behavior of two given functions
f,g: N — Rso we use the so-called Big-Oh notation: We say that f € O0(g)
if there exist constants ¢ € R~ and ng € N such that V,,>,, f(n) < c-g(n).
That is, the function g is an asymptotic upper bound for the function f.

Conversely, g is a lower bound for f, denoted by f € Q(g), if and only if
g € O(f). We say that the functions f and g are of the same order, denoted by
feB(g)if f € O(g) and f € Q(g). Moreover, we write f € 0(g) and mean
that f is of asymptotically smaller order than g if for any constant ¢ € R,
there exists a constant g € N such that V>, f(n) < c-g(n) holds (Little-Oh
notation). And finally, we say that f is of asymptotically higher order than g
and write f € w(g) if and only if ¢ € o(f).

Topology

For any set A of objects, a metric on A is a function d: A x A — R, which
satisfies the following three conditions for all x, y,z € A, cf. [Cop68, VHO1]:

i d(x,x)=0 (identity)
i dxy)=0= x=y (uniqueness)
(i)  d(x,y)+d(x,z) >d(y,z)  (triangle inequality)
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The set A with metric d is then called a metric space. From (i) and (iii) follows
the symmetry of d, that is, d(x,y) = d(y, x), by means of d(y,z) < d(z,y) +
d(z,z) =d(z,y) < d(y,z)+d(y,y) = d(y,z). If the function d only satisfies
(i) and (iii), it is called a semimetric. Note that (i) and the alternative triangle
inequality

(i)  d(x,y)+d(yz)>d(x,z) (weak triangle inequality)
do not imply symmetry, which then has to be satisfied separately:

iv)  d(x,y) =d(yx) (symmetry)

From (i), (iii"), and (iv’) follows that any (semi)metric is nonnegative:
d(x,y)+d(y,x) >d(x,x) =0, thusd(x,y) > 0.

The set E? stands for the d-dimensional Euclidean vector space, that is, R4
equipped with the Euclidean norm

d

lx=yll2 = | D _(vi—x)?

i=1

and the Euclidean metric dz(x, y) := [|x — yl|2, respectively.

For a set A C EY we denote with A° (A, 0 A, respectively) its interior (clos-
ure, boundary, respectively). See [Cop68] for an extensive survey of metric
spaces.

2.2 Computational Geometry

Geometry is a quite old branch of mathematics. In ancient times famous scien-
tists like Archimedes, Euclid, Pythagoras, and Thales already dealt with geo-
metric problems, see for example Euclid’s »Elements< [Joy96], which was the
basis for geometry for about 2000 years. Not until Descartes introduced the
(Cartesian) coordinates, could geometric problems be expressed in an alge-
braic form, which offered new ways to resolve geometric problems by solving
the associated algebraic equations. In recent times using powerful computers
it became possible not only to prove theorems about properties of geometric
objects, but also to actually compute configurations of many of such objects
in reasonable time. More and more fields of application rely on the extensive
use of computers together with geometric algorithms, for example, compu-
ter graphics, robotics, CAD/CAM applications (computer aided design and
manufacturing), and many more.
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Therefore, it was inevitable that in the late 1970s a new branch computational
geometry emerged from the fields of algorithm design and geometry, which
concentrates on

¢ developing efficient and practicable algorithms for solving geometric pro-
blems and on

* determining the inherent complexity of such problems.

Some basic textbooks on computational geometry are those of de Berg
et al. [dBvK™97], Klein [Kle97], O'Rourke [O'R98], and Preparata and Sha-
mos [PS85]. A textbook about the strongly related field of combinatorial geome-
try is that of Edelsbrunner [Ede87]. See also the survey of Yao [Yao90], which
outlines both fields.

In the following we recall some important definitions concerning planar geo-
metry, which are used in the succeeding sections and with which the reader
should be familiar.

Basic Planar Geometry

For two points p,q € E? in the Euclidean plane, the straight line segment p g is
defined as pq := {p+a(qg—p) : a € [0,1]}, the ray p g from p in direction q is
defined as pg := {p +a(q— p) : a € Rxg}, and the straight line pq through p
and ¢ is defined as pq := {p+a(g—p) : a € R}.

Every (oriented) straight line [ = p g (analogously ray or segment) induces
two half planes, the (closed) positive half plane of I, denoted by

H* (1) := { (2) € B?: x1(p2 — q2) + x2(q1 — p1) + (p1g2 — p2q1) > 0} ,

which consists of all points to the left of /, and the (closed) negative half plane
of /, denoted by

H () = { <x1> € E*: x1(p2 — q2) + x2(q1 — p1) + (p192 — p2q1) < 0}

X2

consisting of all points to the right of [. Likewise, we define the two open
half planes H*(I)” and H™(I)° by replacing the inequalities above by strong
inequalities »... > O<and »... < O<, respectively.

For two intersecting (oriented) straight lines, rays, or segments a2 and b we
denote the angle from a to b by <(a, b), with 0 < <(a,b) < 27t and counterclock-
wise counting.
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Xiji+1 it

FIGURE 2.1: The angle of rotation between e; and e;

For a given point p € E? we write >=<,< to describe the (counterclockwise)
angular order of points x, y € E?\ {p} with respect to p. Analogously, we write
x =p y if and only if the rays px and py are identical, and x <p y if and only
if either x <, y or x = y. If not stated otherwise, we use the positive axis of
abscissa as starting direction, that is, the points in {p + (5) : 4 € R} are

minimal with respect to »< <. Thus, using the shortcut p, := p + ((1)) we have

x<py:e0< 4(17;5;, ﬁ) < <I(m,ﬁ) and
X<Spy e 0<<(pprpx) <<UpprPY)-

If we are only interested in the cyclic sequence of points around p, we ignore
the starting direction and call this the cyclic angular order.

Polygons

We call a finite sequence ¢ of line segments, ¢ := pgq,qr,..., U0, 0w, a po-
lygonaigh&in (or ﬂyﬂal path, synonymously) and a closed polygonal chain
P:=pgq,qr,...,vw,wp apolygon P. The points p, g, ..., w are the vertices and
the line segments pgq,q7,...,w p the edges of P.

For two consecutive edges ¢; and e;11 of a polygonal chain ey, ..., e, we de-
note by «; ;1 the angle of rotation of the transition from e; to e;; 1. Thereby, left
rotations count positive and right rotations count negative, such that we get

e = <(ei eir1) ifein C H' (),
v —<(ejy1,e;) otherwise,

as illustrated in Figure 2.1.
Note that the angle of rotation of two collinear edges ¢; and e; 1 is zero, that
is, &ji+1 = 0. Thus, for all i < n the inequality —7 < «;;+1 < 7 holds. The
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angle of rotation of two non-consecutive edges ¢; and e, (with i < k) is defined
as

K = Kij+1 + Xip1,i42+ -+ X1 k-

Since a polygon P = ey, ..., ey is a closed polygon chain, we can define the
angle of rotation also for segments e; and e, with i > k in the obvious way by
considering the chain ey, ..., ey, e1, ..., ¢; instead of the original one. The total
sum of angles of rotation of a complete tour through P is called its total angle of
rotation and denoted by

X1 i=opt+op3+ o1+ -

The maximum angle of rotation between two different edges of a polygon is

defined as
Xmax = Maxa; ;.
i#]

A polygonal chain or a polygon is called simple if the only intersections that
occur are between endpoints of consecutive segments. A simple polygon P
divides the plane into two distinct regions, its bounded interior P and the un-
bounded exterior.! For a simple polygon it can be shown that its total angle
of rotation a1 is either —27r or 271 depending on whether the polygon’s ed-
ges are traversed clockwise or counterclockwise. In the following we always
assume that the polygons are oriented counterclockwise (i.e., ¢11 = 27). Fur-
thermore, it should always be clear from the respective context, whether we
mean with the term “polygon P” the boundary of P along with its interior or
only its boundary 0 P.

Two consecutive segments ¢; and e;11 of a simple polygon have an interior
angle of m — o ;1. A vertex of a simple polygon with an interior angle greater
than 7 (i. e, with a negative angle of rotation between the incident edges) is
called a reflex vertex.

A subset S of E? is called convex if for every two points p,q € S the set S also
contains the straight line segment p g. The convex hull CH(S) of a subset S of I
is the smallest convex set that contains S, that is,

CH(S) :==C.

CD>S
C convex

It can be shown that the interior of a simple polygon without any reflex ver-
tex is a convex set, such that we call it a convex polygon. Moreover, a convex

1 This is a non-trivial consequence of the Jordan Curve theorem, see [Mun75].
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il

FIGURE 2.2: From left to right: a non-simple polygon with six vertices, a simple
polygon with eight vertices (four of it reflex, marked by circles »o<),
and a polygon with two holes

polygon P = ey, ..., e, can also be described as the intersection of the positive
half planes that correspond to its edges, that is,

P = (n] H*(e;).
i=1

Furthermore, the convex hull of finitely many points and straight line segments
always is a convex polygon.

A simple polygon P is called monotone with respect to a line I if for any line I’
perpendicular to ! the intersection of P with I’ is connected. That is, the inter-
section is either a straight line segment, a point, or empty.

A simple polygon P together with simple polygons Hy, ..., Hy C P°, which
lie in the interior of P and do neither pairwise intersect nor contain each other
(i.e., HHiNH; = @ fori # j), is called a polygon with k holes Hy, . . ., Hy. Figure 2.2
illustrates the above definitions. Note that the role of reflex and non-reflex ver-
tices is reversed in the case of holes. For example, the right hole of the polygon
in Figure 2.2 has four reflex and two non-reflex vertices. In the following we
use the term “polygon” as a short hand for a simple polygon without holes, if
not stated otherwise.

Visibility

We say that two points p,q € P inside a polygon P see each other (or are vi-
sible to each other, synonymously) if the line segment between p and g has
no point in common with the boundary of P, except for its endpoints, that is,
pgNaP C {p,q}. Figure 2.3 (a) on the following page shows an example:
The two polygon vertices v and w see each other, whereas the line of sight
between p and w is blocked by the vertex v.
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(a) (b) (©)

FIGURE 2.3: (a) The two polygon vertices v and w see each other, but the line of
sight between p and w is blocked by v. (b) However, w is a vertex of
the visibility polygon 7. (c) A star-shaped polygon and its kernel,
drawn in gray

For every point p € P inside a polygon P it can be shown that the set of all
points that are visible to p has a polygonal shape and its boundary is called the
visibility polygon V), of p. See Figure 2.3 (b) for an example and observe that the
visibility polygon 7}, may contain points on its boundary that are not visible
to p.

A point p € P that sees the whole polygon P (i.e., 7, = P) is called a kernel
point of P and all points having this property are called the kernel of P, denoted
by ker P. If at least one kernel point exists for a polygon P (i. e., ker P # &), we
call P a star-shaped polygon. It can easily be shown that the kernel of a polygon
itself is a convex polygon, provided that it consists not only of a single point or
line segment. Moreover, the kernel of a polygon P = ey, ..., e, can be determi-
ned by intersecting all positive half planes that correspond to P’s edges, that
is .

kerP:= [\ H"(e).
i=1
These definitions are illustrated in Figure 2.3 (c), which shows a star-shaped
polygon together with its kernel polygon, drawn in gray. Note that every ker-
nel point p € ker P induces the same cyclic angular order of the vertices of P
(with respect to p).

For a given point p and a line segment st with p ¢ st the view cone of p with
respect to s t consists of all points g such that the ray from p directed to g inter-
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sects s £. That is, the view cone of a point p is an infinite triangular region with
apex p.

2.3 Robotics

The primary objective in robotics is to design autonomous robots, which are ca-
pable of performing tasks such as “Carry this container to gate 3” without any
further human interaction. For this, a robot must be able to move around in its
environment, to recognize certain objects, possibly to grab them, to plan a mo-
tion to the destination using some internal knowledge of the environment, and
finally, to control the execution of the task. Therefore, robotics can be viewed
as the union of several component disciplines, such as mechatronics, measure-
ment and control engineering, programming, and computer science. Although
each one of these fields is essential to build a working robot, many researchers
share the opinion that the term “robotics” primarily addresses the algorithmic
side of the problem, cf. [Lat94].

But even if we concentrate only on the algorithmic aspects, many sub-
problems in different fields arise, which have to be solved. Some of the core
problems are, for example, motion planning (i. e., finding a collision-free path
from a source to a destination position), assembly planning (i. e., determining,
whether and in which order several parts may be joined together), and sensing
(i. e., using sensor inputs to gain information about the environment). The state
of the art of research in these areas is presented, for example, in the workshops
“ Algorithmic Foundations of Robotics” [DLR00, AKM98, LO96, GH'94] and
“Sensor Based Intelligent Robots” [CBN99, BBN97, BKN95]. The textbook of
Zhao [Zha97] gives an overview of most of the robot’s tasks described above.
For the wide area of robot motion planning we refer the reader, besides the
literature given above, also to the survey of Schwartz and Sharir [SS90] and to
the classical textbooks of Canny [Can88] and Latombe [Lat91]. The collection
of Gupta and del Pobil [GdP98] deals with more practical aspects of motion
planning problems.

Basic Terminology of Motion Planning

In the following we introduce some basic notions from the field of motion plan-
ning to describe configurations of robots. To this end, we presume a robot that
lives in a physical world, which is modeled by an Euclidean smooth manifold
(usually the E? or E? for real-world robots) called the workspace of the robot.
The robot consists of one or more rigid bodies (or links) that are attached to
each other. A configuration of the robot in its workspace (i.e., the position
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and orientation of the robot and of all of its links) is uniquely represented by
a vector of parameters, that is, by a point in the so-called configuration space C
of the robot. Consequently, the number of degrees of freedom of the robot de-
termines the dimension of its configuration space. The subset ¥ C ( of the
configuration space that represents robot configurations not colliding with any
obstacles in the workspace is called the free space of the robot.

In our localization setting we assume a robot consisting of one rigid body?
that moves in a plane environment. That is, the configuration space of the
robot is either R? for cases where its orientation is fixed (or it has a com-
pass, respectively) or R> for a robot with one rotational and two translatio-
nal degrees of freedom. If we furthermore suppose a point-like robot, also the
robot’s free space can be expressed very easily. Simply, each obstacle of the
two-dimensional workspace transforms into an orthogonal prism in the three-
dimensional configuration space, having the shape of the original obstacle.

But note that in contrast to this straightforward free space construction,
the general motion planning problem may be much harder to solve due to a
very complicated free space: Reif [Rei79] has already shown that this gene-
ral problem (where the number f of degrees of freedom is part of the input)
is PSPACE-hard and therefore in particular NP-hard. Furthermore, the com-
plexity of the free space of the robot was shown to be in Q(n/) in the worst
case [HS94a], where n describes the complexity of the workspace, that is, the
total complexity of the robot and all obstacles. The consequence is that exact
motion planning algorithms relying on the computation of the free space can
be quite expensive, in particular for robots with many degrees of freedom. See
the literature given above for alternative methods like approximate or proba-
bilistic motion planning.

2.4 Graph Theory

We assume that the reader is familiar with the basic notions of graph theory
(like vertices, edges, directed and undirected graphs, paths and circles in gra-
phs, trees, etc.). Albeit, these terms are used only very sparsely throughout this
thesis, such that the ideas and concepts also should be understood without a
deeper knowledge of this field. As an introduction to algorithmic graph theory
see, for example, the textbooks of Diestel [Die00], Noltemeier [Nol76], or Cor-
men et al. [CLR92, Part VI].

2 The existence of links is not relevant here, since we are only interested in the robot’s posi-
tion.
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2.5 Models of Computation

To compare the running time and space requirements of different algorithms
we have to choose an appropriate model of computation, that is, an idealized
machine with a set of primitive operations [HU79, vL90a, vL90b] and their
respective costs. Although the Turing machine [G]79] is the classical model
of computation, for the practical purposes in the field of computational geo-
metry a different model is better suited, the random access machine (RAM) mo-
del [AHU74, Pap94, PS85], which we present briefly below.

A random access machine as described by Aho et al. [AHU74] primarily con-
sists of an infinite sequence of registers, each capable of containing an arbitrarily
large integer. The machine is able to perform the following primitive operati-
ons: input-output operations, memory-register transfers, the four basic arith-
metic operations (+, —, -, /), indirect addressing, comparison of numbers, and
branching.

Basically, there are two types of measuring the time (and likewise space)
complexity of a RAM program: In the unit-cost RAM model each instruction can
be executed in one time step, independently of the size of the operands, whe-
reas in the log-cost RAM model the costs of an instruction are proportional to the
encoding length of its operand, that is, to the logarithm of their size (assuming
a binary representation). Note that on a unit-cost RAM integers as large as 22"
can be computed very quickly in only O(n) time steps by iteratively multiply-
ing. Consequently, a unit-cost RAM is equivalent to a Turing machine under a
polynomial time simulation only if multiplication and division are excluded
from the set of primitive operations [AHU74]. In contrast, every program on a
log-cost RAM can be polynomially simulated on a Turing machine.

For most of the computational geometry algorithms the restriction on only in-
tegers is quite impractical. Therefore, we use an extension of the classical RAM
model, the real RAM [PS85, Kle97], where each register may hold a real number
and where in addition to the basic arithmetic operations also analytic functions
may be evaluated. As long as we restrict ourselves to calculations on bounded
numbers with a limited precision (i. e., rational numbers from a fixed interval),
the real RAM firstly is a suitable model for a realistic computer and secondly
is equivalent to the (integer) log-cost RAM described above.

But it should be noted that many computational geometry algorithms rely on
calculations with real numbers. The use of finite precision arithmetic (i. e., the
classical floating-point numbers with a bounded mantissa) in such algorithms
probably causes overflow or round-off errors, or even inconsistent results (e. g.,
non-convex convex hulls, non-planar Delaunay graphs, etc.), which may lead
programs to crash. For a discussion see the “CG impact task force report” of
Chazelle et al. [CT96, Chapt. 10] and [Cha95].
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Lower Bounds

To obtain lower bound results for the time and space complexity of the pro-
blems under consideration we use the algebraic decision tree model [PS85], which
is closely related to the RAM model in the sense that each computation exe-
cuted by a RAM can be viewed as a path in the decision tree that corresponds
to the RAM program. Each node in such a decision tree represents the eva-
luation of an algebraic function (of fixed degree) on the set of input variables,
a comparison of the outcome with zero, and a branching depending on that
comparison.

This way, the leaves of a decision tree represent the possible terminations
(i. e., the different answers) of the corresponding RAM program, and the height
of the tree gives the maximum number of operations necessary. Counting the
maximum number of different answers to a problem we can find upper bounds
on the number of operations and branches in the decision tree model. For
example, using the linear decision tree model (where only functions may be
evaluated that are linear in the input variables) it can easily be shown that
sorting n numbers requires at least Q(nlogn) comparisons.

Applying profound techniques from the field of algebraic complexity the
results for linear decision trees can be extended to decision trees of arbitra-
rily large (but fixed) degree [BO83]. Therefore, also in the algebraic decision
tree model sorting n numbers requires at least Q(n logn) operations. But note
that only slightly modifying the machine model may dramatically change the
time and space bounds even of “simple” problems like sorting. For example, a
unit-cost (integer) RAM, which additionally is able to perform bitwise boolean
operations, can sort n numbers in O(n) time [Meh84a] by exploiting the unit
cost assumption and the inherent parallelism of the bitwise boolean operati-
ons. Even if we use a more realistic RAM model, for which the register size of
the RAM is bounded to a fixed number of bits and the operations are restricted
to addition, subtraction, bitwise boolean operations, and unrestricted bit shift,
n numbers can be sorted in o(nlogn) time, as shown by Fredman and Wil-
lard [FW93] and Andersson et al. [AH98]. Of course, these results also have
impacts on other fields like, for example, computational geometry [Wil92].



A Geometric Version of the Problem

“Now tell me, Mr. Hilton,
something about what has happened.
Where am I?”

Harold in “The Man”
B. STOKER (1846-1912)

N THIS CHAPTER we consider an idealized version of the robot localization

problem and describe the method of Guibas, Motwani, and Raghavan from
the field of computational geometry to solving it. To this end, we make some ass-
umptions about the robot and its environment (e. g., that all sensors are exact).
On the one hand most of these assumptions can never be fulfilled in reality
(e.g., the signal of every realistic sensor is noisy because of the laws of phy-
sics), but on the other hand they make it easier to analyze certain structural
aspects of the problem. Moreover, if there exists an algorithm that solves an
idealized version of our problem, we can hope to modify this algorithm in a
way that some of its restrictions can be loosened or even abandoned.

3.1 An Idealized Scenario

For the rest of this chapter we expect the following about the robot’s environ-
ment and its sensors, respectively: We assume that the robot is in an envi-
ronment with flat vertical walls and a flat floor. Thus, the robot’s workspace
can be modeled by a two-dimensional simple polygon M, the map polygon.
Furthermore, we assume that the map polygon exactly represents the robot’s
workspace and that there are no free-standing obstacles (e.g., pillars) in the
environment, that is, the map polygon has no holes.

The range sensor of the robot is expected to have an infinitely high precision,
that is, each distance measurement has to be exact without any noise. Moreo-
ver, we expect the sensor to have also an infinitely high resolution (with respect
to the angle increment of consecutive scan points), that means, we assume an

23
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z? ]

FIGURE 3.1: A polygonal map M and a star-shaped visibility polygon ¥

infinite number of range measurements. Consequently, the robot’s view can be
modeled by a star-shaped visibility polygon, provided that the robot takes a full
360°-scan of its environment.

Furthermore, we assume that the robot has an exact compass, that means,
the map polygon M and the visibility polygon 7 have a common reference di-
rection (e. g., north). Therefore, the robot already knows its orientation with
respect to the map. Using the terminology of Section 2.3, we have a two-
dimensional configuration space representing the robot’s positions and (by as-
suming a point-like robot) a free space that exactly corresponds to the map

polygon M.

Example 3.1 The left side of Figure 3.1 depicts a typical example of a polygo-
nal map M describing a very simply structured environment, which consists of
a room with two small niches in the northern direction and three larger niches
in the southern direction. The right side of the figure shows a visibility poly-
gon v (with the robot’s viewpoint represented by a bullet >e<) of some point
inside M. Note that the robot may be located in more than one position, since
the map contains some self-similarities. <

In the following we assume w. 1. 0. g. that the robot’s viewpoint always lies
in the origin o of its coordinate system and that the two coordinate systems of
the map and of the robot, respectively, have identical reference directions (as
shown, for example, in Figure 3.1). We summarize the above assumptions as
follows.

Assumption 3.1 For the robot’s environment and its sensors the following
holds:

1. The environment is exactly represented by a simple polygon M without
holes, the map polygon.
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FIGURE 3.2: Three possible placements of 7 in M

2. The robot has a 360°-view, which is exactly represented by a star-shaped
visibility polygon vV, with the robot placed in the origin o of the corre-
sponding coordinate system.

3. The robot’s coordinate system and the map coordinate system are orien-
ted with respect to a common reference direction.

3.2 The Resulting Geometric Problem

Taking advantage of the assumptions made in the previous section, the original
problem of localizing a robot using a map, a compass, and a range sensor turns
into a pure geometric problem, stated as follows.

Definition 3.2 (Robot Localization Problem)

Given a simple polygon M without holes (the map polygon) and a star-shaped
polygon V (the robot’s visibility polygon), determine all the points p € M (or
at least one, respectively) such that the visibility polygon V), of p is translatio-

nally congruent to V.1

Figure 3.2 shows as an example the three possible map positions p1, p2, p3 of
a robot with visibility polygon 9. Note that the visibility polygons 7/, of all
robot placements need not be disjoint like in the figure; they can also overlap
and even share complete map edges. In the example of Figure 3.2 such an over-
lapping would occur between ¥),; and 7, if we moved the robot’s viewpoint
a little bit in the northern direction.

1 More exactly, the equality ¥’ + p = 7}, must hold. Note that the robot’s position is assumed
to be the origin o of the coordinate system of 7.
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The main difficulties that can arise are the following:

* Except for trivial cases, every visibility polygon contains edges and ver-
tices that have no counterparts in the map polygon. These edges and
vertices are called spurious, since they cannot be certified to be edges or
vertices of the map, and arise only in connection with occlusions caused
by reflex vertices (cf. Definition 3.4 on page 28).

¢ Likewise, it may happen that only an interior portion of a map edge is
visible to the robot. And in the case of collinear map edges (like in Fi-
gure 3.2), we potentially cannot even easily decide, which one of these
edges is partially visible to the robot (cf. Definition 3.5).

Remark 3.2 The existence of parallel and especially collinear map edges is the
major source of the problem’s complexity. Note that if there are neither colli-
near nor parallel edges in the map, the localization problem as described above
would be trivial: Since each map edge would have a unique slope, we just
could pick one non-spurious edge of the visibility polygon and quickly deter-
mine the corresponding map edge. <

In the following let m be the number of vertices of the robot’s visibility poly-
gon vV, n be the number of vertices of the map polygon M, and r < n be the
number of reflex vertices of the map. The number of possible robot placements
in M is denoted by A. Later on we see that this number is at most r.

Given a polygonal map and a visibility polygon, it can be shown that all
solutions to the robot localization problem can be determined in time O(mn)
by using a suitably computed trapezoidalization of the map (depending on
the spurious edges of the visibility polygon), which can be computed in
time O(mn), cf. [GMRI7] for details. This trapezoidalization then allows us
to verify each of the O(n) robot placements in time O(m) such that we get a
total time complexity of O(mn).

However, in real applications it is likely that the map does not change too
often and it seems to be useful to spend some effort in preprocessing the map
such that multiple subsequent localization queries can be answered quickly.
Therefore, we concentrate on this kind of multiple-shot query and describe in
the following sections the scheme of Guibas et al. [GMR97] for preprocessing
the map polygon so that a localization query can be answered in time O(m +
logn+ A).

An obvious observation, which directly follows from Assumption 3.1 (1) or
Definition 3.2, respectively, turns out to be our most powerful tool in the suc-
ceeding chapters such that we explicitly state it here:
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Observation 3.3 There cannot exist a closed path inside the map polygon M,
which encircles one or more map vertices.

It will turn out in the sequel that many of the claims are proved by contra-
diction, namely by constructing a circle inside the map polygon and showing
that it contains at least one vertex, which then contradicts Observation 3.3.

3.3 Solving the Geometric Problem

In the following sections we briefly recall the method of Guibas et al. [GMR97].
Their method also is the basis for our own approach described in Chapter 6,
which tries to avoid (or at least relax) some of the idealizing assumptions that
we made in the previous sections. The time and space complexity of the pre-
processing costs (see Section 3.9) is further explored in Chapter 5. For the full
details of the described scheme we refer the reader to the original work.

The definitions, lemmas, and theorems that are adopted from their work (or
only slightly modified) are marked with a star »*< in the sequel. But note
that the structure of our work differs at several points from the original one,
since we have omitted some of the less important details (e. g., the vertex chain
decomposition) such that there is no one-to-one correspondence of definitions
and claims. Instead we included some illustrative examples and comments
together with some definitions that we need in the subsequent chapters (e. g.,
the explicit definition of candidate edges or the notion of the kernel of a skeleton),
where we investigate some properties and structural aspects of the localization
problem and its solution in detail.

The described approach mainly bases on partitioning the map into finitely
many regions (so-called visibility cells) such that within each region the visi-
bility polygon of any point is roughly the same. This rough view is called a
(visibility) skeleton; an intuitive definition of the skeleton of ¥/ is that it is a con-
traction of 7V that exactly contains those vertices of 7’ on its boundary that can
be certified to be map vertices.

The main idea is then to provide a data structure that quickly reports all
regions that have the same skeleton as the query polygon V. Then, it suffices
to check only these candidate regions whether they contain points that have
exactly the same view as V.
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3.4 Basic Definitions

For the following considerations, we assume w.1. 0. g. that the map polygon M
contains at least one reflex vertex (i.e., r > 1), thus excluding the trivial case
where both polygons, the map and the visibility polygon, are convex and the-
refore identical. Furthermore, no two consecutive map edges are allowed to be
collinear. This can easily be accomplished by substituting consecutive collinear
map edges by one single edge in a preprocessing step.

Let V), be a visibility polygon of a viewpoint p € M, which w.1l.0.g. does
not lie on the boundary of M. In general, when p ¢ ker M, it is not possible
to see the complete map polygon from p and thus 4/, contains vertices and
edges, which do not coincide with vertices and edges in M. For this reason,
we introduce the notion of spurious edges and vertices that may be caused by
obstructions due to reflex vertices of the map.

Definition 3.4* An edge of a visibility polygon V), is spurious if it is collinear
with p. A vertex v of V), is called spurious if it lies on a spurious edge (u,v)
of V), such that u is closer to p than v is.

These notions are illustrated in Figure 3.3 on the facing page: Both visibility
polygons 4, and 7}, have some spurious edges (drawn as dotted lines), each of
which consists of a spurious vertex and a non-spurious reflex vertex; the non-
spurious vertices are represented by bullets >e< in the figure. Informally, the
non-spurious edges and vertices of a visibility polygon 4, are those ones that
can be certified by a robot standing at point p to be map edges and vertices.

Note that there may exist spurious edges that actually coincide with map
edges (e. g., the leftmost spurious edge of ¥}, in Figure 3.3). But this situation
can only occur if such a map edge (u, v) is collinear with the viewpoint p. Then,
that one of the two endpoints closer to p, say u, is visible from p, but blocks the
view to the other endpoint v. Hence, standing in p we cannot decide whether
(u,v) is actually an existing map edge or not.

For spurious edges and vertices the following can easily be shown.

Lemma 3.1* Let V), be a visibility polygon of a point p € M. Then, the follo-
wing holds:

1. A reflex vertex of ‘V}, can never be spurious.
2. No two spurious edges can be adjacent in V).

3. Let e be a non-spurious edge of v}, and ¢’ the supporting edge of M on
which e lies. Then, e is the only portion of ¢’ visible from p.
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4. An edge e (or a vertex v, respectively) of V), is non-spurious if and only
if for each choice of a map polygon M and a viewpoint g € M such that
Vy, = V,, the edge e (or the vertex v, respectively) lies on an edge (or on a
vertex, respectively) of M.

The non-spurious edges of a visibility polygon can be classified into three
groups:

Definition 3.5 Let e be a non-spurious edge of a visibility polygon. Then, e is
of exactly one of the following types:

e full edge: both endpoints of e are non-spurious;
e half edge: one endpoint of e is spurious, the other is non-spurious;
e partial edge: both endpoints of e are spurious vertices.

Figure 3.4 on the next page demonstrates the classification of the edges of
a visibility polygon into spurious edges and into the three groups of non-
spurious edges of the previous definition. Note that the different edge types
can occur only in certain patterns. Particularly, every spurious vertex of a half
edge must be incident with a corresponding spurious edge. We use this obser-
vation to introduce the notion of blocking vertices, which are responsible for the
occlusions in a visibility polygon (see Figure 3.4).

FIGURE 3.3: Two visibility polygons with almost identical shapes
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: ...... Ol [ p — full edge
e --- halfedge
| ~--- partial edge
(VP | .
@ spurious edge
® blocking vertex

FIGURE 3.4: Classification of the visibility polygon edges and vertices

Definition 3.6* Let (v, w) be a half edge with a spurious vertex v and let (u, v)
be the corresponding spurious edge that is adjacent to (v, w). Then, u is called
the corresponding blocking vertex to the half edge (v, w).

Analogously, a partial edge has two corresponding blocking vertices.

Note that a blocking vertex must always be a reflex vertex, that is, the total
number of blocking vertices is in O(r).

3.5 The Visibility Skeleton

Now we have all prerequisites at hand to define the visibility skeleton as a
coarsened representation of a visibility polygon. On the one hand such a ske-
leton gives only a rough view onto a visibility polygon, but on the other hand
it turns out to be fine enough to fully reconstruct the visibility polygon using
only the viewpoint as an additional information.

Definition 3.7* (Visibility Skeleton)
For a visibility polygon ), its corresponding visibility skeleton V3 is a labeled
polygon, deftined as follows:

1. the vertices of V; are exactly the non-spurious vertices of V);
2. each full edge of V), becomes an edge of V;

3. each half edge e; of V), is replaced by a labeled artificial edge a; between
the non-spurious vertex of the half edge and the corresponding blocking
vertex;

4. each partial edge e; of V), is replaced by a labeled artificial edge a; between
the two corresponding blocking vertices;
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5. the label of an artificial edge a; consists of a characterization of the line I;
on which the original half or partial edge e; lies (i. e., the coefficients of
the linear equation that defines I;);

6. all coordinates of V;,“ as well as the coeftficients of the artificial edge la-
bels I; are given with respect to a coordinate system with a canonically
chosen reflex vertex v, of ‘Vp as origin (e. g., the leftmost reflex vertex

of Vp).

The polygonal part of a skeleton V;;, that is, the skeleton without all edge labels,
is called the skeleton polygon V;} of the skeleton V.

Figure 3.5 illustrates this definition: It shows the common skeleton of the two
visibility polygons of Figure 3.3. Note that the skeletons V;; and V; are identical,
although the partial edges in the two polygons not only lie on different parts of
the same map edge, but even on completely different map edges. This property is
a consequence of the definition of the artificial edge labels in Definition 3.7 (5).
Further note that a visibility skeleton is invariant under translations of the un-
derlying visibility polygon due to Definition 3.7 (6). Consequently, the three
visibility polygons v}, V},, V), of Figure 3.2 on page 25 all have identical ske-
letons.

In the following we only differentiate between half edges and partial edges
where it is necessary, since both result in an artificial edge and can be distin-
guished through their labels: A half edge can be seen as a special kind of partial
edge with a corresponding line that goes through the non-spurious vertex of
the half edge.

Although the skeleton is only a coarse representation of a visibility polygon,
the following theorem shows that it has enough details to fully reconstruct the
visibility polygon if we also know the viewpoint.

o full edge
---------- artificial edge

---- corresponding
line

@ blocking vertex

FIGURE 3.5: The common visibility skeleton of 4/, and ¥/, of Figure 3.3
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Theorem 3.2* Let V), and v}, be two visibility polygons of points p, q € M such
that p has the same position relative to the coordinate origin v, of V,, as does q

to the origin v, of V. Then, vV, = V; if and only if V; = V.

Proof. Clearly, if p and g have the same visibility polygon, then their skeletons
are also identical. For the remaining proof, we assume that p and g have the
same skeleton and consequently show that their visibility polygons are identi-
cal. Since the non-spurious vertices remain untouched at the transition from ¥’
to V*, the non-spurious vertices as well as the full edges are identically located
in the two visibility polygons. Hence, the only difference between 7}, and ¥}
could be in different positions of the spurious vertices and edges.

Recall that any spurious vertex is an endpoint of either a half or a partial
edge. Consider now any fixed artificial edge a in the common skeleton of p
and g. Then, in the visibility polygon there are two spurious edges (or only
one, respectively, if we have the special case of a half edge) that are adjacent to
the corresponding partial edge (cf. Figure 3.4 on page 30). Each spurious edge
starts at the same blocking vertex of a in both visibility polygons, is collinear
with the viewpoint, and ends at the line [ that is defined by the label of 4. Since
the relative positions of the viewpoints p and g as well as the lines /; in the
two skeletons are identical, the location of the spurious vertex must also be
identical in both cases. This completes the proof. 0

Since we always know the robot’s position with respect to its visibility poly-
gon (cf. Assumption 3.1 (2) on page 25), Theorem 3.2 shows that for localizing
a given visibility polygon %), of a robot it suffices to consider only the corre-
sponding skeleton V;. Later on we see that for any map only a finite number
of different skeletons exist (cf. Theorem 3.3 on page 34). This means, the con-
tinuous problem? of fitting a visibility polygon into the map is discretized and
solved in a natural way by using the skeleton instead of the visibility polygon.

3.6 The Visibility Cell Decomposition

As we have seen in the examples before, several points in the map polygon
(with different visibility polygons) may result in identical skeletons. In the
following we describe a subdivision of the map polygon into convex visibility
cells such that in each cell all points have identical visibility skeletons. This
subdivision is constructed by introducing lines into the interior of M. Each
line partitions M into two regions, one where some vertex v is not visible due

2 “Continuous” in the sense that for any point p € M we cannot find an ¢ > 0 such that the
visibility polygon 4/, of a point p moving by at most ¢ does not change.
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to the obstruction created by some reflex vertex v, and another region where
the view of v is not blocked by v;.

Definition 3.8* (Visibility Cell Decomposition)
Let v be a vertex and let v, be a reflex vertex of ‘M such that v is either visible
from v, or adjacent to it in M. The visibility ray emanating from v and an-
chored at v, is the (directed) segment inside M that lies on the line through v
and vy, starts at vy, ends at the boundary of M, and is oriented as to move away
fromv. This ray is called a left or right ray according to whether the map edges
incident to the anchor v, are to the left or to the right of the ray.

The visibility cell decomposition of a map polygon M is the subdivision
that is generated by introducing all possible visibility rays into M.

Figure 3.6 shows the visibility cell decomposition of the map of Figure 3.3 to-
gether with an example of a left ray emanating from the vertex v and anchored
at the reflex vertex v,.

Since in the sequel we want all points in a visibility cell to have identical
skeletons, we have to take care of correctly assigning the points on the interior
cell boundaries (i. e., on the visibility rays) to the incident cells. To this end,
consider a ray emanating from a vertex v and anchored at a reflex vertex v;. As
already stated above, the cells incident to this ray are divided into two classes,
those which can see v and those which cannot. The visibility polygon of some
viewpoint on this ray contains v as a spurious vertex. Consequently, standing
on the visibility ray the vertex v cannot be certified to be a map vertex. There-
fore, we should assign the points on the visibility ray to those cells from which
the vertex v also cannot be certified to be a map vertex, that is, those cells that
cannot see v at all. Thus, we assign the points on a visibility ray to the cells
on that side of the ray where the obstruction determined by the anchor vertex

v
left ray

\_/7% Ur

FIGURE 3.6: The visibility cell decomposition of the map polygon M
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FIGURE 3.7: (a) When walking from p to g, vertex v is obstructed by reflex ver-
tex v; for the first time at point x. (b) The reflex vertex v, is a blocking
vertex for p and a non-blocking vertex for g

lies. Using this rule, each point of the map polygon gets assigned to a unique
visibility cell. Now we are able to show the connection between the visibility
cell decomposition and the visibility skeleton.

Theorem 3.3* Let C be any cell in the visibility cell decomposition of M.
1. The cell C is a convex polygonal region inside M.
2. For any two points p,q € C, V; = V;.

Proof. For the first part, let C be a non-convex visibility cell and let v be a
reflex vertex from the boundary of C. Then it is clear that v cannot be a vertex
from the boundary of M. Otherwise, the edges incident to v would determine
two visibility rays that subdivide C. On the other hand, all interior vertices of
the visibility cell decomposition are created by the intersection of two visibility
rays, which start and end at the map boundary, and therefore cannot be reflex.
Thus, v cannot be an interior vertex and this leads to a contradiction.

For the second part, assume that V, # V. Consider the straight line seg-

ment s = pq and recall that s is totally contained in C (even if p and g are

boundary points of C) and no interior line intersects s, because C is convex.
We consider first the case where V;; and V; do not have the same underlying

polygon, that is, V7 # V7. Without loss of generality we assume that the
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FIGURE 3.8: At least one map vertex v lies in the shaded area and induces two
additional visibility rays

difference between the two skeleton polygons is that a vertex v of M is visible
from p but is not visible from q. Let now x € I be the point at which the vertex v
is obstructed by some reflex vertex v, for the first time, when we walk from p
to g, see Figure 3.7 (a) on the facing page. Then the visibility ray emanating
from v and anchored at v, intersects s at point x, giving a contradiction.

Any difference in the two skeletons must then be either in the type of the
edges (i. e, full edge or artificial edge) or in the labels of corresponding artificial
edges in the two skeletons. It is easy to see that the type of the edges must
be identical in both skeletons. Otherwise, there must exist a reflex vertex v,
that serves as a blocking vertex in one skeleton, say V,,, and as a non-blocking
vertex in the other skeleton V7. But then, p and ¢ lie on different sides of
one of the two visibility rays that are induced by the edges incident to v,, see
Figure 3.7 (b). In particular, this ray intersects s in a point x, which again leads
to a contradiction.

The last possibility for a difference between V; and V; is then the labeling of
the artificial edges, that is, the line characterizations of the corresponding half
and partial edges of the original visibility polygons 7}, and 7. In that case,
there must exist two map edges ¢, and ¢; such that p can see some portion
of e, but cannot see ¢; at all, and g can see some portion of ¢; but cannot see e,
at all (see Figure 3.8). But then, there must exist at least one map vertex v
“between” e, and ¢, (in the shaded area in Figure 3.8), which is neither visible
from p nor from q. Thus, the vertex v induces two visibility rays that intersect s
in its interior, again giving a contradiction. O

The preceding theorem enables us to define the visibility skeleton of a cell as
follows.
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Definition 3.9* For any visibility cell C its visibility skeleton V. is the com-
mon visibility skeleton of all points in C.

In particular, it follows from Theorem 3.3 and from Definition 3.8 that for any
polygonal map only a finite number of different visibility skeletons exist. But
note that Theorem 3.3 (2) does not imply that points with identical skeletons
lie in the same visibility cell. This need not be true, since the map polygon may
contain identical parts at different positions (cf. Example 3.1 on page 24).

Using the fact that Definition 3.9 associates each visibility cell with exactly
one visibility skeleton, an equivalence relation over the cells is a straightfor-
ward result.

Definition 3.10* (Equivalence Class of a Skeleton)
Two visibility cells (1 and (, are said to be equivalent, (1 = (,, if and only
if V¢, = V(. The equivalence class of all visibility cells with skeleton V* is
denoted by ECy=.

The complexity |ECy+| of an equivalence class ‘ECy+ is defined as the total
number of vertices and edges of all visibility cells with skeleton V*.

The maximum worst-case complexity of an equivalence class £Cy+ plays a
crucial role in estimating the preprocessing costs of a localization query, see
Section 3.9 and Equation (3.2) on page 49.

3.7 Embeddings of Skeletons

Just as a star-shaped polygon 7/ can fit into the map at several positions, the
same holds for its skeleton V*. Two examples are depicted in Figure 3.9 on
the facing page: The skeleton V7 fits at exactly one position into the map poly-
gon M, whereas skeleton V5 has three different positions, where it fits into M.
But note that even in the relatively simple first case, there are two separated vi-
sibility cells with skeleton V; in M;. The concept of fitting a skeleton into the
map is now formalized in the following definition introducing the notion of an
embedding of a skeleton.

Definition 3.11* (Embedding of a Skeleton)
An embedding of a visibility skeleton V* (with origin v,) is an injective func-
tion h from the vertices of V* into the vertices of the map polygon M such that

1. for each vertex v of V* the location of h(v) relative to h(v,) in the map is
identical to the location of v relative to v, in the skeleton;

2. there is a full edge between the vertices v and w in V* if and only if there
exists an edge in M with endpoints h(v) and h(w);
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candidate edges

M,

A A‘;H;A‘
T

ha

FIGURE 3.9: Embeddings of V; and V;; the visibility cells with skeleton V7 or V7,
respectively, are drawn in gray

3. let a be an artificial edge between vertices v and w of V* and let | be the
line labeling a. Then there is an edge e of M lying on a line I’ whose
equation (with h(v,) as origin) is that of | (with v, as origin), and a point
of e is visible from h(v) and h(w).

Such an edge e from above is called a candidate edge (of the artificial edge a in
embedding h of V*).

For the sake of a more intuitive notation, let for any point p in the coordinate
system of V* (not only for the vertices of V*) the point i(p) be the correspon-
ding embedded point in the coordinate system of M. We extend this notation
also to point sets (like lines and segments) and denote, for example, the embed-
ded line !" in the previous definition by k(1). Furthermore, we use >h(V*)< as
a shortcut for the term »embedding & of the skeleton V*«. The following ex-
ample illustrates the concept of an embedding of a skeleton.
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FIGURE 3.10: An embedding of V*, where no point exists with skeleton V*

Example 3.3 Look at the embedding of V] in the left part of Figure 3.9 on the
page before. Two of the three artificial edges of V|, namely the left one and
the right one, have only one corresponding candidate edge in the embedding,
but for the middle one of the artificial edges there exist two individual candi-
date edges on the embedded line, separated by a small peak. Viewing from
the left one of the two visibility cells, we only see points of the right candidate
edge, and vice versa. Likewise, the three visibility cells in embedding 5, (V5)
in the right example correspond to the three candidate edges ey, e, e3 of the
embedded artificial edge of V. Also notice that a single map edge may serve
as a candidate edge in more than one embedding of a skeleton. For example,
the edge e; is a candidate edge in all embeddings /1, hy, h3. The relation bet-
ween the (number of) candidate edges and the (number of) visibility cells is
described in detail in Chapter 5. <

Remark 3.4 Note that even if an embedding exists for a given skeleton V*,
there need not exist any point p € M with that skeleton V*. Figure 3.10 shows
an example: Apparently, an embedding of V* into the map M exists, since
all requirements of Definition 3.11 are satisfied. But the candidate edge of the
artificial edge of V* has a smaller length than the artificial edge itself; thus,
every point in the map that sees some part of the candidate edge also sees its
endpoints and therefore cannot have V* as skeleton. Consequently, there exists
no point in M with skeleton V*. <

From the previous comment follows that the existence of an embedding for
a given skeleton is no sufficient condition for the existence of a point with that
skeleton and in the subsequent chapter we introduce the notion of valid embed-
dings to circumvent such cases. But note that using the following definition of
the kernel of a skeleton, we can easily show that for any point p € M a necessary
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FIGURE 3.11: The kernel of a skeleton V*

condition for having a given skeleton V* is that p lies in an embedding of the
kernel of V*.

Definition 3.12 (Kernel of a Skeleton)
For a given skeleton V* its kernel ker V* is defined as the kernel of the corre-
sponding skeleton polygon V°.

Figure 3.11 shows an example of the kernel of a skeleton V*. The succeeding
lemma proves the simple connection between “having a certain skeleton” and
“lying in an embedding of that skeleton”.

Lemma 3.4 For any point p € M with skeleton V, there exists an embed-
ding h(V}) such that p € h(ker V), that is, p lies in the (embedded) kernel
of the skeleton.

Proof. We first specify an embedding /(V;) and then show that the point p
lies in h(ker V). To this end, let v/, be the canonically chosen map vertex that
corresponds to the origin v, of V;, (see Definition 3.7 (6) on page 31). To define h
we map v, to v/, and the remaining vertices of V7, to the corresponding vertices
of V},. Then, the three requirements of Definition 3.11 are trivially fulfilled.

It remains to show that the point p lies in the kernel h(ker V}) of the so-
defined embedding. But this is clear, because all points of 7/, are visible from p
and each artificial edge of V; also lies in 7/,. O

In the following we use the slightly incorrect term “kernel of an embedding
(of a skeleton)” 3 as an easier-to-understand synonym for the correct term “em-
bedded kernel of a skeleton”. From the preceding lemma it particularly follows

3 Incorrect, because we have defined the kernel only for skeletons and not for embeddings of
skeletons.
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that each visibility cell with skeleton V* lies in the kernel of an embedding
of V*. See for example the right part of Figure 3.9 on page 37, which shows the
seven visibility cells of ECyy.

Furthermore, it directly follows from the succeeding lemma that a visibility
cell with skeleton V* always lies in (the kernel of) exactly one embedding of V*.

Lemma 3.5 For any point p € M with skeleton V, there exists exactly one
embedding h(V}) such that p € h(ker V).

Proof. Due to Lemma 3.4 we only have to show that there cannot be two dif-
ferent embeddings h and i’ with p € h(ker V;) NI (ker V). Assume that this
would be the case and recall that an embedding of V* is totally determined by
the position of its origin vertex v,. From h # h' it follows that h(v,) # K (v,),
which directly leads to a contradiction, because both vertices must be visible
to p, but at most one of them could be identical with the canonically chosen
reflex vertex v, of ¥}, cf. Definition 3.7 on page 30. O

Note that from the preceding lemma it does not follow that two kernels of
different embeddings h(V*) and h'(V*) of the same skeleton never intersect
(we will discover this situation in detail in Example 4.1 on page 54). The lemma
only states that no point with skeleton V* lies in such an intersection.

3.8 Localizing a Visibility Polygon

In this section we briefly describe how the concepts introduced in the prece-
ding sections can be used to efficiently localize a given visibility polygon 7/,
that is, to determine all points p € M such that 7 4 p = V. As already stated,
we assume a multiple-shot query such that it is profitable to spend some effort
in preprocessing. The basic strategy is as follows.

1. Identify the spurious vertices and edges of the visibility polygon %’ using
the robot’s viewpoint (cf. Assumption 3.1 on page 24) and compute the
corresponding visibility skeleton V*.

2. Determine the equivalence class ECy+, that is, find all visibility cells with
skeleton V* .

3. Test for each visibility cell if it contains a point p with 7/ +p = V).

In order to perform the Steps 2 and 3 efficiently, we make the following obser-
vation, which directly follows from Lemma 3.5:
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Observation 3.13 For any skeleton V* each visibility cell C with Vi = V* lies
in exactly one embedded kernel of V*.

Furthermore, using Theorem 3.2 we notice:

Observation 3.14 For each embedding h of V* there is at most one point p €
h(ker V*) with visibility polygon v, = V.

This is due to the fact that all points in a fixed embedding have different
positions relative to V* and therefore also different visibility polygons. The
consequence is, that we need not inspect each visibility cell individually, but
only have to check for each embedding / of V* whether the embedded view-
point i(0) of the robot lies in a visibility cell with skeleton V*. We state this
observation as a corollary to Theorem 3.2.

Corollary 3.6* Let V), be a visibility polygon of a point p € M and let h be an
embedding of its corresponding skeleton V. Then, Vj,,) = V) if and only if
Vi =V

h(p) P

It remains to specify how to quickly identify for each embedding the visibi-
lity cell that contains the robot’s viewpoint. To this end, we perform the follo-
wing preprocessing step for every equivalence class of visibility cells (i. e., for
every occurring skeleton): For each skeleton V* we determine all embeddings
of V*, overlay the corresponding visibility cells, and compute the arrangement
of all of these cells. Each region of the arrangement gets a label, which indicates
which of the original visibility cells include this region.

This way, we can determine all visibility cells that contain the robot’s view-
point by a single point location query into the above precomputed arrange-
ment. Then, the actual potential robot positions can be computed from these
cells by using the corresponding embeddings. To clarify this localization stra-
tegy we perform a localization query for the map introduced in Example 3.1
on page 24 in the succeeding example. The entire strategy is then presented
in Algorithm 3.13 on page 44. The respective preprocessing steps in order to
compute for each existing skeleton the point location structure are shown in
Algorithm 3.14.

Example 3.5 We assume that a robot operates in the map M shown in Fi-
gure 3.12 (d) on page 43 and sees the polygon ¥ depicted in Figure 3.12 (a).
Two edges of ¥V cannot be certified to be map edges, since they are collinear
with the robot’s viewpoint 0 and therefore spurious edges (Step 1 of Algo-
rithm 3.13). To obtain the corresponding skeleton V* (Step 2) we replace the
partial edge of ¥ by an artificial edge, which gets a label that represents the
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original partial edge, see Figure 3.12 (b). Note that all coordinates of V* are
given relative to the origin v, of the skeleton (e.g., the leftmost reflex vertex
of V).

In Step 3 of Algorithm 3.13 the skeleton V* gets encoded into a vector [V*]
of d real numbers in a canonically way (including the label of its artificial edge)
and in Step 4 the leaf of the precomputed d-dimensional search tree T, that con-
tains [V*] is retrieved. Now we have determined the equivalence class ECy+.

In order to quickly determine all visibility cells of ECy+ that contain the ro-
bot’s viewpoint 0, we use the precomputed point location structure PLy+ that is
linked to the leaf. Figure 3.12 (c) illustrates this structure by showing a magni-
fied version of the overlay arrangement of the visibility cells C € ECy+. Com-
pare this arrangement to the three embeddings of V* and the seven visibility
cells shown in Figure 3.9 on page 37. Note that the numbers, with which the re-
gions of the arrangement are labeled, stand for the embeddings corresponding
to those cells that contain the respective region. Therefore, in order to report
the possible robot placements, we perform a point location query in PLy+ (in
Step 5), which yields a region with label >1, 2<«.

Therefore, the only embeddings of V* that contain a potential robot position
are h1(V*) and hy(V*), see Figure 3.12 (d). In the remaining steps of Algo-
rithm 3.13 the actual coordinates of these positions are computed by applying
the corresponding embeddings (i.e., translations) to the robot’s viewpoint o
(relative to the skeleton origin v,). <

3.9 Time and Space Complexity

In this section we briefly investigate the time and space requirements of Algo-
rithm 3.13 and 3.14. To this end, we first have to study the structures defined
in the previous sections and give some upper and lower bounds on the com-
plexity of visibility cells, the number of embeddings and cells, etc. For more
extensive proofs of some of the following bounds we refer the reader to the
original work of Guibas et al. [GMR97]. Recall for the following investigations
that n denotes the total number of map vertices and r stands for the number of
reflex vertices of M.

Lemma 3.7¢ A skeleton V* has at most r embeddings in M and this bound is
tight up to a constant factor.

Proof. We observe that in any embedding i (V*) of the skeleton V* the relative
position of any vertex v with reference to the origin v, of the skeleton, that is,
h(v) — h(v,), is identical to the relative position v — v, in the original skeleton.
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FIGURE 3.12: A localization query illustrating Example 3.5. (a) The robot’s visibi-
lity polygon 7. (b) The corresponding skeleton V*. (c) The overlay
arrangement of V*. (d) The map polygon M
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Input: Visibility polygon ¥ with m vertices in total (and the viewpoint
lying in the origin o of its coordinate system)
Search trees T; and point location structures PLy+ computed in the
preprocessing step (Algorithm 3.14)

Detect the spurious edges (collinear with 0) and vertices of ¥
Compute the visibility skeleton V* (with origin v,)
Encode V* into a vector [V*] of dimension d € O(n)
Find the leaf in T, that contains [V*] (i. e., the equivalence class £Cy+) and
the linked point location structure PLy+
Perform a point location query in PLy+ at position 0 — v,, reporting a re-
gion R in the subdivision that corresponds to £ y+
L « label of R { L is a set of visibility cells }
POS — @ { The set of potential robot positions }
for each visibility cell C € L do

Let h be the embedding whose kernel h(ker V*) contains C
10  POS «— POSU{h(0o—1v,)} { One potential robot position }
11 end for

Q1 B~ W N =

O N3 O

Output: The set POS of potential robot positions

ALGORITHM 3.13: Localization query for a visibility polygon

This means that the position /1(v, ) of the origin in the map uniquely determines
the entire embedding /. Since v, was defined to be a reflex vertex, there cannot
be more embeddings than the number r of reflex vertices of the map.

To confirm the tightness of this bound, consider the map polygon of Exam-
ple 3.5 in Figure 3.12 on the page before, which can be looked as a corridor in
the east-western direction with large niches in the southern direction and small
niches in the northern direction. If we extend the corridor to the east or west
by inserting additional niches on both sides of the corridor, we obtain for each
niche one new embedding of the skeleton V* from Example 3.5. (Note that the
small niches in the northern direction do not play any role here. They could
also be replaced by one long edge.) Since the number of introduced reflex ver-
tices per niche is a constant, we get Q(r) niches. O

Since the location of the robot’s viewpoint is fixed with respect to the ori-
gin v, of its skeleton V*, the number of robot positions with visibility poly-
gon 7V can be at most the number of embeddings of V*. Thus, we get the
following corollary to Lemma 3.7.

Corollary 3.8* The number A of solutions to a localization query is at most r
and this bound is tight up to a constant factor.
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Input: Polygonal map M (without holes) with n vertices in total, hereof
r > 1 reflex vertices

1 Remove all vertices with an inner angle of exactly 7

{ Determine the Visibility Cell Decomposition }
Initialize S « set of edges of M
for each reflex vertex v, do
for each vertex v do
if a visibility ray x exists, emanating from v, anchored at v, then
b « the point where x hits the boundary of M
S — SU{v, b}
end if
end for
end for
Compute the arrangement VCD of the segments in S

O 0 N1 O U = W N

_ =
_ O

{ Determine the equivalence classes }
12 for each visibility cell C € VCD do
13 Compute V- { Note that the representation of V. is independent
of the actual position of C in the map }
14 Encode V. into a vector [V ] of dimension d € O(n)
15 Insert [V}] into a d-dimensional search tree Ty
16 end for { Every leaf of a tree T, represents one equivalence class }

{ Overlay the visibility cells }

17 for each equivalence class ECy+ do

18  Let v, be the origin of the skeleton V*

19 foreachcell C € ECy+ do

20 Let h be the embedding whose kernel /i(ker V*) contains C

21 Place (C — h(v,)) { That is, C is placed at the position relative

to its corresponding embedding }

22 end for

23 Compute the resulting planar subdivision together with a point location
structure PLy+

24 Link PLy- to that leaf of one of the search trees that represents £y«

25  Label each region R of PLy+ with the corresponding embeddings of the
cells whose intersection create R

26 end for

Output: Set of search trees T; and point location structures PLy

ALGORITHM 3.14: Preprocessing of a polygonal map
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Now we investigate the structure of the visibility cell decomposition, that is,
the complexity and the maximum number of visibility cells for a given map. To
this end, recall that the visibility cell decomposition is developed by an arran-
gement of Q(nr) visibility rays in the worst-case, giving a trivial upper bound
of O(n?r?) on the number of cells. However, taking advantage of the special
structure of the problem (i. e., the points that define the visibility rays are verti-
ces of a simple polygon without holes) we obtain the following tighter bound.

Theorem 3.9* The number of visibility cells (as well as their total complexity)
is in O(n?r) and this bound is tight.

Proof. We show that the number of vertices in the arrangement of the O(nr)
visibility rays is in O(n?r). Since each ray gives rise to exactly one vertex on
the boundary of M (i.e., O(nr) vertices in total), it suffices to count only the
subdivision vertices in the interior of %, in order to show the upper bound.

We now consider a single visibility ray r. Each subdivision vertex v that lies
on r rises from a change of the visibility of some other map vertex u. This
means, when we walk on r and pass the subdivision vertex v, either the map
vertex u comes into sight or disappears from our view. Now is the crucial ob-
servation, that when we walk on a straight line in a simple polygon without
holes, once a vertex disappears from view, it will never become visible again.
Thus, there can lie at most 21 subdivision vertices on the visibility ray r. Sum-
ming up over all rays gives the desired bound of O(n?r).

To prove that this bound is tight, consider the polygon M in Figure 3.15 on
the facing page, which is similar to the polygon with which we proved the
bound of Lemma 3.7. Again, there are Q(r) niches on the southern side of a
corridor, constructed using O(r) vertices in total. On the opposite side of the
corridor there is a convex chain consisting of Q(n) vertices, which are placed
(inside the shaded area) such that every vertex induces a visibility ray in each
niche. Thus, each niche is divided by Q(n) rays. By choosing the diameter D of
the corridor and the diameter d of the niches sufficiently large, we can ensure
that all intersections between visibility rays take place inside the niches. Hence,
we get Q(n?) intersections per niche, which gives a total of Q(n?r) visibility
cells. O

The following result on the complexity |ECy+| of an equivalence class of
visibility cells (that is, the total number of vertices and edges of all cells with
skeleton V*) is cited from [GMR97] without the relatively complicated proof.
Note that in Chapter 5 we further investigate this complexity in detail and give
a sharper bound, where the dependence on the number r of reflex vertices is
revealed.
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Q(n) vertices

FIGURE 3.15: A map with Q(n?r) visibility cells

Theorem 3.10* The total number of cells in any equivalence class ECy+ (as
well as their total complexity) is in O(n?).

In the following we firstly investigate the steps of Algorithm 3.14 and deter-
mine the total running time and space for preprocessing a polygonal map. To
this end, let N denote the total complexity of all visibility cells in /M and recall
from Theorem 3.9 that N € O(n?r).



48

CHAPTER 3 A GEOMETRIC VERSION OF THE PROBLEM

3.9.1 Computing the Visibility Cell Decomposition

In order to determine all visibility rays of M, we have to identify for each re-
flex vertex v, the vertices of M that are visible from v,. This can basically be
achieved by testing for each vertex v whether the ray v, v is blocked by some
portion of the map in Step 5 of Algorithm 3.14. Using standard methods of
ray shooting [CE"94], this can be accomplished in time O(logn) per ray with
preprocessing time O(nlog n) and preprocessing space O(n).

Thus, the whole computation of the O(nr) visibility rays requires O(nrlogn)
time and O(nr) space. The arrangement of all visibility rays can then
be computed in Step 11 by a sweep line algorithm [CE92, dBvK97] in
time O(nrlogn + N) and space O(N).

3.9.2 Determining the Equivalence Classes

In Steps 12 to 16 of Algorithm 3.14 for each visibility cell C the corresponding
skeleton V. has to be computed, encoded into a vector [V}] of d real numbers,
and inserted into a d-dimensional search tree T;. Since equivalent visibility
cells have identical skeletons, each leaf of one of these search trees represents
one equivalence class. The computation of the skeletons can be done in an
incremental fashion: First, the visibility polygons (and skeletons, respectively)
of the r reflex vertices are computed in time O(nr), see [GH"87, K1e97], and
then the remaining skeletons are determined incrementally by walking along
the visibility rays, starting at the reflex vertices, where they are anchored. This
gives a total of O(nN) time and space for determining and writing down all
visibility skeletons, and their encodings, respectively.

The time and space complexity to construct the search tree T; for an encoding
length d is O(d |T,| + |T;| log |T,|), see [Meh84b, Yao90]. Here, |T;| denotes the
size of the tree, that is, the number of cells, whose skeletons have an encoding
length of d. This gives a total time and space complexity of O(nN).

3.9.3 Computing the Overlay Arrangement

In order to compute for a single equivalence class £Cy+ the arrangement of
all of its visibility cells, we have to place the cells at positions such that the
origin vertices of the corresponding embedded skeletons coincide (Steps 18
to 22 of Algorithm 3.14), see Figure 3.12 on page 43. Using the notion |ECy+|
for the complexity of the equivalence class (that is, the total number of vertices
and edges of all cells in £ y+), the computation of the overlay arrangement in
Step 23 can be performed in time

o) <|£Cv*| log |ECy+| + yzcmz) —0 <|£CV*|Z> 3.1)
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and space O(|ECy+|*), again with a sweep line method [CE92, dBvK*97]. The
point location structure PLy+ can then be computed with a time and space
complexity, which is linear in the subdivision size, see [Kir83, dBvK™"97], that
is O(|ECy+[*).

It remains to describe how the labeling in Step 25 is managed, since the
straightforward idea of adjoining to each region R of PLy+ a list of the embed-
dings of the cells whose intersection create R would increase the space require-
ments by a factor of O(r). The idea described in [GMR97] avoids this problem
by using interval trees and fractional cascading without any additional blow-
up in time or space.

Summing up over all equivalence classes, the total time and space costs are

0 (Z yz:cV*F) ~0 (nzz |zcw\> ~0 <n2N> , (3.2)
V* V*

using |ECy+| € O(n?) from Theorem 3.10and N = Y .. |ECy+|.
This finishes the analysis of Algorithm 3.14 and we summarize the preceding
discussion in the following theorem.

Theorem 3.11* The preprocessing of a polygonal map M with n vertices in
total, hereof r reflex vertices, using Algorithm 3.14 has a time and space com-
plexity of O(n?>N), where N € O(n?r) describes the number of visibility cells
of M.

3.9.4 Costs of a Localization Query

In the previous sections we already have described the data structures and
algorithms for maintaining the search trees T; and the point location structu-
res PLy+. Thus, we can now easily analyze the time of a localization query.

Theorem 3.12* For a polygonal map M with n vertices in total, which is al-
ready preprocessed by Algorithm 3.14, and a visibility polygon V with m ver-
tices in total, using Algorithm 3.13 the localization problem can be answered
in time O(m + logn + A), where A € O(r) denotes the number of possible
placements of V' in M.

Proof. Clearly, Steps 1 to 3 of Algorithm 3.13, where the skeleton V* and its
encoding vector [V*] are computed, can be accomplished in O(m) time.

An exact match query to the search tree T, (Step 4), which yields the equiva-
lence class ECy+, costs O(d + log |T;|) = O(d + log n) due to [Meh84b, Ya090].
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Equally, due to [Kir83, dBvK"97] the point location query in PLy~ is logarith-
mic in the size of PLy~, that is, in O(log |ECy+|*) = O(log n), using the result
of Theorem 3.10.

The remaining steps of the algorithm, where the label of the reported region
is retrieved and for each visibility cell (of the label) a coordinate transforma-
tion is performed, can be accomplished in time O(logn + A). Summing all
up yields the desired outcome. The upper bound of O(r) on the maximum
number A of solutions is already known from Corollary 3.8. O

Combining the two theorems from above we get the main theorem of Guibas
et al.

Theorem 3.13* The localization problem can be solved with preprocessing
time and space of O(n*>N)), and a query time of O(m + logn + A).

The following results, which trade off the query time with the preprocessing
costs, we only cite from [GMR97]:

Theorem 3.14* Let1 < f(n) < n. Then, the localization problem can be solved
with preprocessing time and space of O(n*>N/f(n)), and a query time of O(m +
f(n)logn+ A).

Theorem 3.15* The localization problem can be solved with preprocessing
time and space of O(nN), and a query time of O(m +rlogn + A).

3.10 Summary

In this chapter we introduced the robot localization problem in its idealized
geometric version and described the approach of Guibas et al. to solving it,
which will be the basis for our succeeding investigations. Even though many
of the definitions, lemmas, and theorems are adopted from their work [GMR97]
with only slight modifications (the respective parts are marked with a star »<),
recall that there is no one-to-one correspondence of definitions and claims bet-
ween our work and the original one, since we modified the structure at several
points anticipating the needs of the following chapters.

In the following we briefly recall the basic ideas of the described approach:
From a given visibility polygon 9’ we derived a coarsened representation, its
visibility skeleton V*, which (at first sight) contains only the full edges and
vertices of V that can be verified to have counterparts in the map. The spu-
rious edges and their incident partial edges in the visibility polygon are cau-
sed by blocking vertices, which are responsible for the occlusions in V. In the
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corresponding skeleton V* they are replaced by artificial edges between the
blocking vertices, labeled with a characterization of the line on which the ori-
ginal partial edge lies. We proved that a skeleton V* contains enough details
to fully reconstruct the original visibility polygon ¥ if we also know the view-
point of v (Theorem 3.2).

We divided the map polygon into a number of O(n?r) convex visibility cells
such that for any two points p,q € C of a cell their visibility skeletons V,
and V; are identical (Theorem 3.3 and 3.9), although their visibility polygon Z
and 7}, may differ. As a consequence, each cell C has an uniquely defined skele-
ton V. We denoted by ECy+ the equivalence class of all cells with skeleton V*
and defined their complexity |ECy+| as the total number of vertices and edges
of all visibility cells with skeleton V*. Guibas et al. showed that this complexity
is in O(n?) and we will refine it to O(n + r?) in Chapter 5.

In order to localize a given visibility polygon %’ in the map, we used its
coarsened representation V* to determine a number of placements where the
translated V* matches into the map. Such a matching is called an embedding
of V*. In the localization process we then have to check for each embedding
whether the also translated viewpoint (that is, the origin of the visibility poly-
gon) induces the correct visibility polygon 4. By using a suitably preprocessed
map this could be performed by a single point location query.

These considerations resulted in a localization algorithm with a query time
of O(m +logn + A), where A € O(r) denotes the number of possible place-
ments of the visibility polygon (Theorem 3.12). The preprocessing costs were
shown to be in O(N |ECy+|), where N € O(n?r) describes the total number of
visibility cells of the map (Theorem 3.11).
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Overlapping Embeddings

“Where am I? Tell the truth!

Fear not to tell! Oh, spare me not!
Where? Where?

Have I fallen like a shooting star?”

Cyrano in “Cyrano de Bergerac”
E. ROSTAND (1868-1918)

HE NOTION OF AN EMBEDDING of a skeleton V* as a place in the map poly-

gon M, where V* “fits” into M, is very intuitive and easy to understand.
But in the case of embeddings, our intuition may also lead us very easily to
completely wrong implications, for example, like the conjecture

“For each embedding h(V*) there exists a point p € M such that
V; = V* holds.”,

which was already disproved in the previous chapter by Figure 3.10 on page 38.
This chapter deals with another of these misleading implications, namely with
overlapping embeddings, that is, embeddings of the same skeleton, where the
embedded skeleton polygons or even the embedded kernels overlap. Such ca-
ses, which at first sight seem to be impossible, are the major source of compli-
cation if we investigate some of the occurring complexities of the localization
problem, and consequently are our main subject of investigation in the succee-
ding sections.

In the following we first give some examples of embeddings that overlap and
show that even the (trivial) bound of at most O(r) overlapping embeddings is
tight. We then state the main result of this chapter, which describes the connec-
tion between overlapping embeddings and the visibility of their witnesses and
claims that these witnesses are not visible to each other. This property (besides
that it represents an interesting problem by itself) plays a crucial role in the
next chapter, where we further investigate the complexity of an equivalence
class, and its proof is the main topic of the following sections.

53
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4.1 Some Examples

In the sequel we give two examples, each consisting of two different embed-
dings of a skeleton V*, which contradict our intuition in the sense that the two
skeleton polygons overlap. In order not to get confused with “strange” em-
beddings (like the one of Figure 3.10), we want to consider in the following
only embeddings of a skeleton V*, for which at least one point p with skele-
ton V; = V* exists. We call such an embedding a valid embedding and define it
as follows.

Definition 4.1 (Valid Embedding and Valid Candidate Edge)
An embedding h(V*) is called a valid embedding of the skeleton V* if there
exists a point w € h(ker V*) with Vi, = V*. Such a point w is called a witness
for the embedding h(V™).

A candidate edge ¢ of an embedded artificial edge h(a) is called a valid can-
didate edge if there exists a witness w such that c is part of V.

Now recall Lemma 3.5 on page 40, which states that for any point p € M
there exists exactly one embedding 1(V;) with p € h(ker V}). One might think
that from this argument it follows that two embeddings of the same skeleton
can never overlap (or at least, their kernels can not overlap), since in that case,
there would exist such a point p, which lies in the kernels of two different
embeddings of the same skeleton, contradicting Lemma 3.5.

Another (fallacious) reason against overlapping embeddings may be that
there seems to exist no way of placing two identical skeletons V* into a map
polygon such that they overlap, without intersecting the full edges of the cor-
responding embedded skeleton polygons V°.

But both arguments ignore placements of the skeletons where all intersection
points are either vertices of the two skeleton polygons or intersections between
two artificial edges. The following examples, where this is the case and where
the skeletons as well as their kernels overlap, disprove both conjectures.

Example 4.1 (A map with overlapping embeddings and kernels)

Figure 4.1 (a) on the facing page shows a map polygon M with two view-
points p and g that have the same visibility polygon ¥ = ¥}, = ¥, depicted
in Figure 4.1 (b). Figure 4.1 (c) shows the corresponding skeleton V* and its
kernel. As we can see, there exist two (valid) embeddings of V* into the map
such that different artificial edges of the skeleton are either mapped onto the
same pair of vertices in the map (the three artificial edges of V* in the northern
direction) or share a common vertex in the map (the two remaining artificial
edges). Moreover, the two embedded kernels overlap in the shaded area, as
can be seen in the upper part of the figure. <
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(a) N /
o
V=" V* ker V* /
(b) | p/q | ©)
o

FIGURE 4.1: An example of overlapping embeddings and kernels

Example 4.2 Figure 4.2 on the next page shows a very similar example of two
(valid) embeddings with overlapping kernels. The major difference is that in
Figure 4.2 the embedded artificial edges even do strictly intersect (due to the
different construction of the niches), whereas in Figure 4.1 the embedded arti-
ficial edges always had a vertex in common. <

The following lemma shows that the actual number of overlapping embed-
dings or kernels may even be as large as the total number of embeddings of V*,
that is, in Q(r), cf. Lemma 3.7 on page 42.

Lemma 4.1 The number of embeddings of a given skeleton, which all overlap
in one point, is in O(r) and this bound is tight.

Proof. In Lemma 3.7 we have already stated that the total number of (not ne-
cessarily overlapping) embeddings of a given skeleton is in O(r), so we only
have to show the tightness of the bound.
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FIGURE 4.2: Another example of overlapping embeddings with strict intersecti-
ons

To this end, consider the map M of Figure 4.1 (a). For any given natural num-
bers x,y € N, we can extend the map in the east-western direction such that
there are x equidistant niches in the southern direction and y equidistant niches
in the northern direction, by introducing a total of O(x + y) reflex vertices. Let
z € N be any natural number. If we choose x :=2z+1,y:=2x—-1=4z+1,
and appropriately reduce the distance d», which describes how deep the view-
points stand in the southern niches, we can achieve that from each viewpoint
exactly 2z + 1 niches in the northern direction are visible. To assure that no
other vertices in any of the niches are visible from any of the viewpoints, the
width of the niches has to be chosen large enough, which could have the con-
sequence that the niches overlap each other. But this could easily be avoided
by reducing the depth d; of the niches.

To recapitulize, the skeletons of the 2z 4 1 viewpoints are identical, each
containing 2z + 1 horizontal artificial edges. Moreover, the most eastern em-
bedding and the most western embedding of this skeleton share exactly one
artificial edge in the map. Thus, these embeddings (as well as their kernels)
overlap in a triangular region to the south of that artificial edge. Of course, the
kernels of the remaining 2z — 1 embeddings also contain this triangular region.
Since the number r of reflex vertices of the thus generated map is in O(z), we
have shown that the number of overlapping embeddings is in Q(r). 0



4.2 THE CONNECTION BETWEEN EMBEDDINGS AND THEIR WITNESSES

57

4.2 The Connection between Overlapping
Embeddings and their Witnesses

If we review the examples of Figure 4.1 and 4.2, we notice that in both cases the
witnesses p and g of the two overlapping (valid) embeddings cannot see each
other. And in fact, it seems impossible to construct an example of overlapping
embeddings, so that the witnesses are visible to each other. Actually, we can
show the following main theorem of this chapter, which points out the connec-
tion between overlapping embeddings and the visibility of their witnesses.

Theorem 4.2 Let h(V*) and ' (V*) be two different valid embeddings of the
same skeleton V* with witnesses w and w'. If the embedded skeleton polyg-
ons h(V°®) and I'(V°) overlap, that is,

(W(V)YNKH (V) # 2,
the witnesses w and w' cannot see each other.

Since the proof of this theorem is quite complicated, we first prove a simi-
lar theorem with stronger prerequisites. Namely, we assume that not only the
embedded skeleton polygons overlap, but also their kernels. Then, the pro-
position can be proved much easier, since the existence of a common kernel
point of the two skeletons is a very valuable property, of which we can take
advantage in many ways. Then, we show some basic properties of overlap-
ping embeddings in general (for example, that the intersection of two arbitrary
valid embeddings always consists of a single polygonal region), which will be
helpful in the sequel. Finally, we prove in the case of overlapping embeddings
of identical skeletons that a certain structure consists, which allows us to adapt
the proof of the less general theorem in order to prove Theorem 4.2.

4.3 A Result on Overlapping Kernels

In the following we consider a special case of Theorem 4.2, where also the
kernels of the embedded skeletons overlap. Thereby, the existence of a point
that sees both skeleton polygons at the same time is very useful for the proof.

Theorem 4.3 Let h(V*) and h'(V*) be two different valid embeddings of the
same skeleton V* with witnesses w and w'. If the embedded kernels h(ker V°)
and I (ker V°) overlap, that is,

(h(ker V) NI (ker V¥))® £ &,

the witnesses w and w' cannot see each other.
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FIGURE 4.3: Two embeddings of V* with overlapping kernels

Proof. We prove this claim by contradiction. Since #(V*) and 1'(V*) are dif-
ferent embeddings of V*, there must exist a vector t # 0 that translates the
embedded origin h(v,) onto the embedded origin /'(v,), that is, h(v,) + t =
W (vo). Without loss of generality we assume that t is horizontal and directed
from left to right, see Figure 4.3.

Let x € (h(ker V*) Nk (ker V*))° be a point lying in the interior of both
embedded kernels and let | be the straight line through x and parallel to the
vector t. The line ! intersects the boundary of the skeleton polygon h(V°) at
exactly two points, p € 0h(V°) and g € 0h(V°). There cannot exist less than
two intersection points, because x lies in the interior of 1(V°), and there cannot
be more than two intersection points, since x is a kernel point of #(V°). Ana-
logously, we get intersection points p’ and ¢’ of d /' (V°) with I, see Figure 4.3.
Furthermore, it is also clear that p’ # g and that p’ lies strictly to the left of g
because of x € (h(ker V*) Nk (ker V*))°.

Obviously, the point 4" does not lie in 1(V°) due to ¢’ = g+ t. And since ¢4/
is visible from x, the point ¢ must lie on an artificial edge a = a7 a; of h(V*).
Otherwise, ' would be occluded by the full edge on which g lies (see Figure 4.4
on the next page). Since 1'(V*) = h(V*) + t, also an artificial edge ¢’ = a} d}
of ' (V*) exists. Using the same argumentation with the Imts p and p’ yields
a second pair of artificial edges in direction —t: V' = bjb, € o1 (V°) and
b= IE = km —t € 0h(V°®), see Figure 4.4. Note that the vertices a1, 4}, b1,
and b (and also the vertices ay, a5, by, and 1), respectively) need not necessarily
lie on the same straight line.

Now we first investigate the possible positions of the two witnesses w and w'.
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FIGURE 4.4: The line | intersects four artificial edges of the two embedded skele-
tons

Lemma 4.4 For the witnesses w and w' the following holds:

e The witness w either lies above the straight line ay a} (parallel to 1) or
below the straight line ay a} (parallel to 1) and

o the witness w' either lies above the straight line b1 b} (parallel to 1) or
below the straight line by b, (parallel to]).

Proof of Lemma 4.4. Due to the symmetry of the situation it suffices to prove
the claim only for the witness w. To this end, we assume that w lies between
the two described straight lines and show that this leads to a contradiction
(independent from whether w and w’ see each other). Furthermore, we assume
w. L. 0. g. that the second witness w' lies below the line I, again exploiting the
symmetry of the situation.

Since w is a witness for h(V*), it follows V;;, = V*. Thus, the artificial edge a
must be visible to w and no other vertex may lie in the view cone of w looking
through a. Particularly, neither one of the vertices a4} and 4}, may be visible to w.
Due to the placement of w this can only be accomplished in one way, namely
by a segment 51 s that lies between w and the vertices a'l and a’z. The endpoints
of 51 s, must not be visible to w, so that one endpoint must lie above the view
cone of w looking through a and the other endpoint must lie below the view

cone (see Figure 4.5 on the following page). In particular, s; lies above m
and s; lies below E .

Then, the lower endpoint s, of this segment must be somehow connected
to the upper endpoint 4} of the artificial edge 171—617; in 1'(V*) rather than to its
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FIGURE 4.5: A segment between w and 4] ) implies a contradiction

lower endpoint ), since otherwise a} would not be visible to the witness w’
of h'(V*), which we assumed to lie below [. This has the consequence that all
kernel points of h'(V*) must lie (in order to see 4} and b)) in the region W’ (sha-

ded gray in the figure), which is determined by the straight lines §2—a’1> and s b},
respectively. In particular, the kernel /'(ker V*) must lie below s;, which itself
lies below m .

Now recall that /' (V*) is a translated copy of h(V*) with a translation vector ¢
that is parallel to 212—a'2>. Thus, also the kernel h(ker V*) must lie below E,
which contradicts the placement of w. O

In the following we study the placements of the eight endpoints of the ar-
tificial edges introduced above. To this end, let ><,<« and ><,< describe the
counterclockwise angular order with respect to the point x, starting at direc-
tion t. The placement of the eight points is then restricted as follows:

* 4} <y, since 4| = a1 + t and both points lie above the line .

e 4} <, b]. As both points lie above | and are from the same embed-
ding W' (V*), at least a} <y | must hold. Furthermore, from a}] =, V)
would follow 4} = b} (and also a; = by), since x is an interior point
of I'(ker V*). Consequently, neither one of the two witnesses could lie
above the straight line through a1 /b1 and a’1/b}. Thus, we would con-

clude from Lemma 4.4 that w must lie below a, 4} and that w’ must lie
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below b, b),. This would imply that for at least one of the two witnesses
the view on its corresponding artificial edges would be blocked by ver-
tices of the other embedding (cf. Figure 4.6 (a) on the next page, which
illustrates the case >The points w and @’ lie on the same side of /<).

Thus, a] =, V) is impossible and 4} <, b] must hold.
® 11 <y by and b’1 <y b1 with the same arguments as in the two cases above.
e b1 <, by, because the two vertices lie on different sides of /.

o by <y b)), by <y ay, b <y a) and ay <, a5 again with the same arguments as
before.

Note that the angular order with respect to x of these points also describes
the order in which the vertices occur in the map polygon, that is, in which order
they are connected by map edges. This plays a crucial role in the following. As
a result of the above considerations, we must distinguish between four cases
of angular orders or four different sequences of vertices in the map polygon,
respectively:

2. a4 <y b} x @1 <y b1 <3 by <y b <y a2 <y a, where the two middle vertices
above | are swapped (or identical, respectively);

3. a4 <y a1 <y b <y b1 <1 by <y @2 <5 by <y a0, where the two middle vertices
below I are swapped (or identical, respectively);

4. a} < by Sx a1 <x b1 <y by <y a2 S5 by < a), where both pairs of middle
vertices are swapped or identical. This case immediately would con-
tradict the fact that p’ lies strictly to the left of ¢ and would result in
x & (h(ker V*) Nk (ker V*))°. Thus, this case is not possible, because
the kernels would not overlap. But note that examples exist where the
kernels only intersect in a straight line segment (i. e., they do not overlap)
and w and w' are visible to each other, see Figure 4.28 on page 93.

In the remaining part of the proof we want to study the placements of the two
witnesses w € h(ker V*) and w' € h'(ker V*) and the eight points introduced
above. To this end, we distinguish two main cases: The witnesses w and w' lie
either both on the same side of the straight line / or on different sides. For the
first case we show that w and w’ cannot see each other and the second case is
shown to be impossible, independent of the visibility between w and w'.
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(a) (b)

FIGURE 4.6: The placement of the two witnesses if they lie on the same side of I:
(a) If b, < ap, no suitable placement for w exists. (b) If a, <, b, w
and @’ cannot see each other

The points w and @’ lie on the same side of |
Without loss of generality we assume that both witnesses lie below I. From
Lemma 4.4 then particularly follows that w lies below a4} and that ' lies

—> R —

below b U),. Now we assume w. 1. 0. g. that the vertices a3 and a} lie below b, Y,
since in the other case we could use the same argumentation by interchanging
the roles of b, and a}, b}, and a5, and w and w’. Then, we get one of the situations
depicted in Figure 4.6, depending on the angular order of the vertices b, and a;:

If b’2 <y ap like in Figure 4.6 (a), the witness w, which must lie in the shaded
area, cannot be placed such that it sees both vertices a, as well as by, because
the vertex b’2 blocks the view of w on either a, or by. Thus, this case results in a
contradiction and is not possible.

In the other case, if a2 < b5, there are suitable placements for the two witnes-
ses, see Figure 4.6 (b), such that w sees a4 and by and w' sees a} and V). But in
this case, the two witnesses obviously cannot see each other, because the ver-
tex b’2 blocks the line of sight between them. This completes the first case, since
“w and w' cannot see each other” is the claim that had to be proven. Observe
that the examples shown in Figure 4.1 and 4.2 are both from this type.

The points w and w’ lie on different sides of I

In the following we show that this case leads to a contradiction, independent
from whether w and w’ see each other. Without loss of generality we assume
that w lies below [ and w’ lies above I. We again conclude from Lemma 4.4

that w lies below az(—ag and w' lies above by b}. From the above distinction of
cases of possible angular orders we conclude that at least one of the following
properties must hold: a1 <, b} or b}, <y ap. Therefore, we assume w.1. 0. g. that
b’2 <y ay, since in the other case we could use an almost identical argumentation
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(a) (b)

FIGURE 4.7: A counterexample if the two witnesses lie on different sides of I:
(a) The vertex a, must be visible to w’. (b) Vertex y occludes the
sight from w' to a,

by interchanging the roles of w and w’, a1 and b5, 4 and by, and so on.

We then conclude that the vertices b, and b, must lie below az<—a’2>, since other-
wise there is no suitable placement for the witness w. Confer the situation in
Figure 4.6 (a) and recall that w lies below the line through a; and a,. Now
we show that at least one additional vertex y, which is visible to w', must lie
between ), and b} in the map polygon. To this end, we first show that a; lies

in the view cone of w’ looking through 4 b,: Due to the construction of a; it
must lie on a straight line !’ parallel to I through a}. Since b}, < a; < a5, these
points must be connected by polygon edges in the same order, as shown in
Figure 4.7 (a).

Because w’ sees a as well as b} (since both vertices are from /') and the line of
sight between w' and b} intersects I’ (since ¥/, lies below !), the vertex a, must
lie on the shaded part of line I’ in Figure 4.7 (a). Thus, a; must be either visible
to w’ (in this case we use y = ay) or it must be occluded by some other vertices
and edges of the map polygon, see Figure 4.7 (b). In the latter case we choose y
to be one of these occluding vertices, which is visible to w’. We observe that the
so-defined vertex y always lies on or above the line I’. Furthermore, since the
vertices a), and b), are both visible to @/, y must lie between them in the map
polygon.

From this constellation follows that the kernel /' (ker V*) must lie in the up-
per gray shaded region in Figure 4.7 (b), since otherwise the vertices a, and b}
would not be visible from within the kernel. In particular, #'(ker V*) must
lie above I'. Since the kernel h(ker V*) results from a (horizontal) translation
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of ' (ker V*) by —t, also h(ker V*) lies above the line I’, which is parallel to ¢.
The placement of the kernel contradicts the fact that the witness w lies below I’
and proves that w and w’ cannot lie on different sides of /.

This completes the proof, since we have shown for all possible cases that either
w and w’ cannot see each other, or that the respective case implies a contradic-
tion. O

Remark 4.3 Most parts of the previous proof do not rely on the existence of
the common kernel point x of the two embeddings h(V*) and 1/ (V*), but in-
stead use only the most important property of valid embeddings, namely the
existence of a witness that sees the whole skeleton polygon. Basically, the only
point in the proof where we make use of the common kernel point x is the con-
struction of the two pairs of artificial edges a/a’ and b/b’, which are intersected
by a straight line [ that is parallel to the translation vector t. Also the distinc-
tion of cases of possible angular orders (with respect to x) can be accomplished
without a kernel point, since we actually are not interested in the angular order
of the points, but only in the order in which they occur on the boundary of the
map polygon. (Note that in the case of star-shaped polygons these two orders
are identical and that skeleton polygons are star-shaped.) <

Consequently, if we are able to construct the four artificial edges of the pre-
vious proof without using a common kernel point of the two embeddings, we
should be able to prove also the more general Theorem 4.2 in almost the same
way. Particularly note that it is not necessary that x actually sees the endpoints
of the four artificial edges. The only property that is required for the proof is
that a straight line / exists, which intersects artificial edges 2 and b such that
the intersection point of I with (a) lies to the right of the intersection point of /
with b’ = I/(b) = h(b) + t. Showing that these kinds of artificial edges always
exist is the aim of the subsequent sections.

4.4 Properties of Overlapping Embeddings

In the following we first investigate the overlapping of two embedded skele-
tons and prove some properties, which are useful in the remaining part of this
chapter.

Firstly, we show that in the case of overlapping embeddings an embedded
artificial edge cannot be arbitrarily often intersected by artificial edges of the
other embedding. See Figure 4.2 on page 56 for an example, where each em-
bedded artificial edge of the first embedding intersects at most one artificial
edge of the second embedding. Note that for the succeeding lemmas we do
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FIGURE 4.8: Intersecting artificial edges of two embeddings

not necessarily assume that the two skeletons, whose embeddings overlap, are
identical. The propositions remain true also for different overlapping skeletons.

Lemma 4.5 Let h(V7]) and h'(V}) be two valid embeddings. For each embed-
ded artificial edge h(a) of V; there exist at most two embedded artificial edges
of V3 that intersect h(a). Furthermore, the fraction of h(a) that possibly lies
on the boundary of the intersection of h(Vy) and h(Vy) is a single straight line
segment.

Proof. Let the embedded artificial edge h(a) of skeleton Vj intersect the
embedded artificial edges /'(b) and h'(c) of skeleton V; as depicted in Fi-
gure 4.8 (a).

Since h(V7) and ' (V5) are valid embeddings, there must exist witnesses w
and w’ such that V;, = V; and V, = V3. In particular, there must exist lines
of sight (drawn dashed in the figure) between w’ and the four endpoints of
the embedded artificial edges (drawn dotted) and, furthermore, also between
the two map vertices of each embedded artificial edge. Thus, in the shaded
area of Figure 4.8 (a) there cannot lie any further map vertex, since otherwise
Observation 3.3 on page 27 would be contradicted. Now suppose that a third
artificial edge 1'(d) of V5 intersects h(a). Then, independently of the placement
of its two endpoints, at least one vertex v of the remaining vertices would be
surrounded by a circle of lines of sight (drawn bold in the figure), which again
would lead to a contradiction. It can easily be seen that this proposition re-
mains true, even if the endpoints of the intersecting artificial edges are allowed
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(V) e (V)

FIGURE 4.9: Overlapping embeddings with two intersection regions

to coincide with the endpoints of 1i(a). Therefore, at most two artificial edges
of ' (V3) may intersect h(a).

With the same argumentation we also conclude that the part of (a) that lies
on the boundary of the intersection of h(V7) and h(V5) is a single straight line
segment. Otherwise, the intersection must obviously consist of two straight
line segments. Thus, the embedded artificial edges of V3, which intersect h(a),
must be oriented like those in Figure 4.8 (b), which again would contradict
Observation 3.3, since at least two map vertices would be surrounded by a
circle of lines of sight. O

The succeeding lemmas investigate the structure of the intersection of over-
lapping embeddings.

Lemma 4.6 Leth(Vy) and ' (V5) be two overlapping valid embeddings. Then,
their intersection consists of a single polygonal region.

Proof. We first show that the existence of more than one intersection region
leads to a contradiction. This can easily be seen looking at Figure 4.9, which
shows two overlapping embeddings with two intersection regions. Since
h(Vy) and 1/ (V}) are valid embeddings, there must exist witnesses w and w’
such that V;; = V and V;, = V3. In particular, there must exist lines of sight
between the two witnesses and the points x and y, which lie in the two intersec-
tion regions. Note that the lines of sight between a witness and its correspon-
ding skeleton polygon are not allowed to cross the boundary of the skeleton
polygon. Thus, the shaded region in Figure 4.9 is encircled by four lines of
sight and contains at least one map vertex, which contradicts Observation 3.3.

It remains to show that the intersection of the two embeddings is in fact
a polygon. But this is clear in this case, since the intersection contains at least
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one point in its interior and therefore cannot consist of a single point or a single
straight line segment. O

Lemma 4.7 Leth(V]) and h'(V3) be two overlapping valid embeddings. Then,
each edge of the intersection polygon is of one of the following types:

Type 1 A full edge in both embeddings, which is visible from both witnesses;

Type 2 A common artificial edge, that is, a pair of points, which simulta-
neously matches an artificial edge a in embedding h(V*) and also mat-
ches an artificial edge a’' in embedding h'(V*), not necessarily with iden-
tical corresponding lines;

Type 3 An artificial edge in only one of the two embeddings, which lies in the
interior of the other embedding (except for the common endpoints);

Type 4 A part of an artificial edge that intersects exactly one artificial edge of
the other embedding;

Type 5 A part of an artificial edge that intersects exactly two artificial edges of
the other embedding.

Proof. Firstly, Lemma 4.6 guarantees that there exists exactly one intersection
polygon. Recall that each point of the intersection polygon lies in both valid
embeddings and thus must be visible to both witnesses. Particularly, each ver-
tex of the intersection polygon is either a vertex in both embedded skeletons
(if it is a map vertex) or in neither of them (if it is a new vertex created by the
intersection of two artificial edges).

Then, we can basically distinguish between three cases for a given edge e of
the intersection polygon:

Both of e’s endpoints are map vertices If there is a map edge between the two
endpoints of ¢, it follows from the arguments above that this edge is vi-
sible in both embeddings (i.e., ¢ is a Type 1 edge). See, for example,
the middle one of the five collinear horizontal edges in Figure 4.1 (a) on
page 55.

If there is no map edge between the two vertices, the edge e must match
an artificial edge in at least one of the two embeddings. Depending on
whether there exist vertices “between” e’s endpoints in the other embed-
ding, the edge is either a Type 2 edge or a Type 3 edge. An example of
a Type 2 situation are the two collinear horizontal artificial edges in Fi-
gure 4.1 (a) and a Type 3 situation is depicted by the artificial edges in
Figure 4.1 (a), which connect the northern and the southern niches.
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Exactly one of e’s endpoints is a map vertex An edge of the intersection poly-
gon, where exactly one endpoint is a map vertex, can only arise in situa-
tions, where an artificial edge of one embedding is intersected by exactly
one artificial edge of the other embedding. Thus, the situation must be
similar to the example in Figure 4.2 (a) and e is a Type 4 edge.

None of e’s endpoints is a map vertex In this case, an artificial edge of the first
embedding must be intersected by at least two artificial edges of the se-
cond embedding and from Lemma 4.5 it follows that it must be exactly
two artificial edges, which intersect e. Thus, e is a Type 5 edge.

This completes the proof. O

Now we know that in the case of overlapping embeddings, their intersection
region is a single polygonal region, consisting of only a few types of edges. In
the sequel we further investigate the different types of intersections between
the artificial edges of the overlapping embeddings and show that they can oc-
cur only in certain patterns and certain quantities (e.g., we show in Corol-
lary 4.10 on page 75 that any intersection polygon contains at most four Type 5
edges). To this end, we first introduce a simple notation for classifying inter-
secting artificial edges, which allows us to visualize the types of intersections
and which is helpful in the subsequent proofs, too.

Definition 4.2 (Left-Right- and Right-Left-Edge)

Let h(Vy) and ' (V) be two overlapping valid embeddings with witnesses w
and w' and two intersecting artificial edges h(a) and ' (b). Let 1 be the left
endpoint of h(a), viewed from w, and r be the right endpoint.

If the witness w and the left endpoint | of h(a) lie on the same side of I’ (b),
we say that h(a) is a Left-Right-edge (or LR-edge for short) with respect to the
intersection with h'(b).

If w and the right endpoint r of h(a) lie on the same side of h'(b), we say
that h(a) is a Right-Left-edge (or RL-edge for short) with respect to the inter-
section with h'(b).

Figure 4.10 on the next page illustrates the previous definition and one
should keep the following mnemonic in mind:

An (intersecting) artificial edge h(a) is called a Left-Right-edge if,
sweeping a line parallel to the second intersecting edge '(b) and
starting at the corresponding witness w, we first pass its left end-
point, then /' (b), and finally its right endpoint.

The next lemma investigates the LR-/RL-property of an artificial edge that
intersects two different artificial edges.
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FIGURE 4.10: Illustration of Definition 4.2: LR- and RL-edges

Lemma 4.8 Let h(a) be an artificial edge of h(V7) that intersects two artificial
edges I'(b) and h'(c) of W'(V}). If h(a) is a LR-edge (RL-edge, respectively)
with respect to I'(b), it is also a LR-edge (RL-edge, respectively) with respect
toh'(c).

Proof. Without loss of generality we assume that (a) is a LR-edge with re-
spect to i'(b) and a RL-edge with respect to h'(c); the proof of the other case
is identical. Figure 4.11 on the following page illustrates the resulting contra-
diction: In order to accomplish that /i(a) is a LR-edge with respect to /' (b), the
endpoints of /’'(b) must lie in the light-gray areas.

Analogously, the endpoints of 4’ (c) have to lie in the dark-gray areas to gua-
rantee that h(a) is a RL-edge with respect to //'(c). But then, the artificial ed-
ges h'(b) and I/ (c) of the same embedding i’ would intersect, which is impossi-
ble. O

Therefore, for two fixed embeddings h(V;) and h'(V}) the classification of
an intersecting artificial edge as a LR-edge or RL-edge is unique, independent
of the second involved edge.

In order to concentrate only on the topological aspects of intersections between
artificial edges, we can simplify the visualization of such situations by virtually
moving the witnesses of the embeddings collinear to the respective artificial
edges. This way, the situation of a witness w, which sees a LR-edge h(a), like
in the left part of Figure 4.10, is represented by a straight line segment starting
at w, which first passes the left endpoint of /i(a), then passes the intersection
point of h(a) with the second artificial edge, and finally reaches the right end-
point of /i(a), see Figure 4.12 on the next page.
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second
endpoint
of H'(b)

FIGURE 4.11: An artificial edge h(a), which is a LR-edge with respect to I'(b) and
a RL-edge with respect to I’(c), is impossible
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FIGURE 4.12: A simplified illustration of LR-edges and RL-edges
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In other words, in the above visualization the view cone of w with respect
to h(a) is reduced to a single ray starting at w. Using this notation, we are able
to depict more complex situations by concentrating only on the topological
aspects of the scene, without getting confused by the view cones and lines
of sight. Particularly note that no other vertex can lie in the view cone of a
witness with respect to a corresponding artificial edge, since this would be a
contradiction to the definition of “artificial edge”. This means, such a view
cone may safely be shrunk to a ray without changing the relative position of
any map vertex with respect to the view cone.

We take advantage of the above considerations in the proof of the following
lemma, which investigates the number of possible intersections between the
different types of artificial edges.

Lemma 4.9 Leth(Vy) and i’ (V5) be two overlapping valid embeddings. Then,
the following holds:

* There exists at most one intersection between any two LR-edges.
 There exists at most one intersection between any two RL-edges.

e Let x be the number of intersections between a LR-edge of h(Vy) and
a RL-edge of I'(V}) and let y be the number of intersections between a
RL-edge of h(Vy) and a LR-edge of ' (V).

Then, at most one of these numbers is greater than one, that is,
min{x, y} <1.

Proof. In the following we investigate the different types of intersections bet-
ween LR- and RL-edges and count them in a canonical way, using the visuali-
zation described above. To this end, let w and w’ be the witnesses of the two
overlapping embeddings and let i(a) and /' (b) be two intersecting artificial
edges. Without loss of generality we can assume that the witness ' lies on the
right side of the view cone of w with respect to /i(a) due to the following argu-
ments: Firstly, it is clear that w’ cannot lie in the view cone of w, because then
one of the endpoints of /(a) would be visible to w’, when looking “through”
the artificial edge /' (b), which would contradict the fact that /' (b) is an artifi-
cial edge. Secondly, if w' lies on the left side of the view cone, we can simply
exchange the roles of h(V7) and h'(V}) and the roles of the numbers x and y
by exploiting the symmetry of the situation. For example, the intersection bet-
ween a LR-edge h(a) and a RL-edge h'(b) with w' lying on the left side of the
view cone of w is identical to an intersection between a RL-edge /1(a) and a
LR-edge I (b) with @’ lying on the right side of the view cone of w.

Now assume that there exists another pair of intersecting artificial edges h(c)
and K’ (d) with p being their intersection point. Using our above visualization,
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FIGURE 4.13: Possible placements for a second intersection point p

there are six topologically different possibilities, where the point p can lie (see
Figure 4.13):

¢ If neither 4 = c nor b = d, the intersection point p lies in one of the four
quadrants formed by the (shrunken) view cones of w and w’, as depicted
in the left part of Figure 4.13.

¢ In the other case, where either 4 = c or b = d, the point p lies in the view
cone of one of the two witnesses, that is, using our visualization from
above, p lies on the straight line segment that represents the respective
artificial edge (see the right part of Figure 4.13).

Note that also for the second intersection point p, lines of sight to the two
witnesses w and w’ must exist. In the remaining part of the proof these lines
of sight are the crucial instrument to decide whether a second intersection is
possible or not, and to decide which type of intersection may occur. For ex-
ample, in the right part of Figure 4.13 the placement of the second intersection
point p is not possible, since one of the endpoints of /(a) is encircled by lines
of sight, which would imply a hole in the map polygon and therefore contra-
dict Observation 3.3 on page 27. Similarly, in the left part of Figure 4.13 the
artificial edge h(c) must be a RL-edge with respect to 1/’ (d), since otherwise the
endpoint of /(c), which is placed “between” w and p, would lie to the left of
the respective view cone, which would also result in a hole.

In the following we investigate the four different types of intersections bet-
ween LR- and RL-edges (LR/LR, LR/RL, RL/LR, and RL/RL) and decide for
each one of the six possibilities of placing a second intersection point, whether
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FIGURE 4.14: The 24 cases of placing a second intersection point
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this intersection is possible and which type of intersection would result. To this
end, see Figure 4.14 on the preceding page, which depicts all 24 cases that can
occur if a second intersection point has to be placed for two artificial edges.
The four rows of the figure represent the four different types of intersection.
For each row we distinguish between the six topologically different positions
of the second intersection point. For each of the 24 cases the second intersec-
tion point p (marked with a circle »o<) is placed at its respective position in
the figure and connected with lines of sight to the witnesses w and w'. If the
placement of p implies a hole in the map polygon, the hole is drawn in gray. In
the remaining cases of legal placements of p, we have additionally introduced
the endpoints of the second pair of intersecting artificial edges into the figure,
whose positions are clearly determined by the topological situation.

For each type of intersection between h(a) and h'(b) we can then determine
the possible types of intersections for a potential second pair /(c) and /' (d) of
intersecting artificial edges (with intersection point p):

LR/LR-intersection From the first row of Figure 4.14 follows that if neither
a = cnor b = d, the point p can only be placed in the first of the four
quadrants, since a second intersection point in one of the three reminding
quadrants would cause at least one map vertex to be encircled by lines of
sight and therefore be a contradiction. If p lies in the first quadrant, we
additionally conclude that the artificial edge #’'(d) must be a RL-edge,
since otherwise its left endpoint would cause a hole in the map polygon.

With the same arguments we conclude (using the two rightmost columns
of the first row of Figure 4.14) that if a = c or b = d, either the artificial
edge h(c) or the artificial edge 1'(d) must be a RL-edge.

Summarizing, we see that for a LR/LR-intersection a potential second
intersection point either causes a RL/* or a */RL-intersection, but never
a LR/LR-intersection. Therefore, the number of LR/LR-intersections is
at most one.

LR/RL-intersection A similar argumentation as before using the second row
of Figure 4.14 gives the following results: Placing p in the second qua-
drant leads to a RL/LR-intersection and placing p onto one of the two
artificial edges results either in a LR/LR-intersection (if 2 = ¢) or in a
RL/RL-intersection (if b = d). The two remaining cases of placing the
point p into the first quadrant (or third quadrant, respectively) are sym-
metric and result in a */RL-intersection (or a LR/ *-intersection, respec-
tively).

RL/LR-intersection Analogously, it follows from the third row of Figure 4.14
that a second intersection is either of type LR/RL (if p is placed in the
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forth quadrant), of type RL/RL (if a = c¢), or of type LR/LR (if b = d).
That is, the number of RL/LR-intersections is also at most one as in the
first case.

RL/RL-intersection Using the bottom row of Figure 4.14 and exactly the
same argumentation as in the LR/LR-case, it follows that for a RL/RL-
intersection a potential second intersection point either causes a LR/ * or
a */LR-intersection, but never a RL/RL-intersection. Thus, the number
of RL/RL-intersections again is at most one.

Summing all up, we obtain that the number of LR/LR-, RL/LR-, and RL/RL-
intersections is at most one, provided that the witness w’ lies on the right side
of the view cone of w. Finally, the symmetry argument from the beginning of
the proof shows that in the other case the number of LR/LR-, LR/RL-, and
RL/RL-intersections is at most one, which completes the proof. O

In this section we studied the structure of general overlapping embeddings
and proved some properties of their intersection region, namely that it is a
single polygonal region consisting of only a few types of edges. We further
investigated the different types of intersecting skeleton edges and by using a
detailed distinction of cases we proved that certain patterns may occur only a
constant number of times.

This allows us to prove the following claim about the maximum number of
Type 5 edges:

Corollary 4.10 The intersection polygon of two overlapping valid embeddings
contains at most four Type 5 edges (cf. Lemma 4.7 on page 67), that is, edges
that are part of an artificial edge in one of the two embeddings, which intersects
exactly two artificial edges of the other embedding.

Proof. In order to create a Type 5 edge, a single artificial edge of the first em-
bedding must be intersected by exactly two artificial edges of the second em-
bedding. From Lemma 4.5 it follows that these two edges must be a LR-edge
and a RL-edge. Thus, depending on the type of the first artificial edge, eit-
her a LR/LR-intersection or a RL/RL-intersection is created. Then, it directly
follows from the preceding Lemma 4.9 that at most two such intersection situa-
tions can occur. The maximal number of four Type 5 edges is then achieved, for
example, by two intersecting pairs of LR/RL edges, as sketched in Figure 4.15
on the following page with witnesses w and w’. (The Type 5 edges are under-
layed gray in the figure.) O
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FIGURE 4.15: Two pairs of intersecting LR/RL edges, which create the maximum
number of four Type 5 edges

Figure 4.16 on the next page demonstrates that such a map actually exists. It
shows two overlapping valid embeddings h(V*) and h'(V*) (even of the same
skeleton V*), drawn in light-gray, together with their witnesses w and w’. The
two embeddings overlap in a way such that their intersection polygon (drawn
in dark-gray) consists of four Type 5 edges. In particular, this example illustra-
tes that the intersection polygon need not contain any map vertex.

In the following sections we consider overlapping embeddings h(V*)
and 1/ (V*) of the same skeleton V*, in contrast to the previous section, where
our main focus of investigation lay on overlappings of arbitrary skeletons.

4.5 Overlapping Embeddings of Identical Skeletons

The aim of the succeeding lemmas is to guarantee that (simply speaking) also
in the setting of Theorem 4.2 the four artificial edges a, @’ = a+t,b,and V' =
b +t, which we have used for the proof of Theorem 4.3 on page 57, always exist.
Recall that we denoted the translation vector that maps the origin of #(V*) onto
the origin of 1/ (V*) by t and that the key ingredient of this proof was a common
kernel point x, from which we concluded that an artificial edge a of h must exist
in direction t and an artificial edge b’ of h’ must exist in direction —¢.

That is, in order to guarantee the above artificial edges also in the setting of
Theorem 4.2, we have to prove the existence of a point x € (h(V°) N K (V°))°
such that
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FIGURE 4.16: A map with two overlapping embeddings /1 and /', which intersect
in such a way as sketched in Figure 4.15
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e x sees an artificial edge of h(V*), when looking in direction f, and
e x sees an artificial edge of I/ (V*), when looking in direction —t.

We do this step by step in the following way:

Claim 1 We first show that a point x exists that sees a (not necessarily artificial)
edge of h(V*) in direction ¢.

Claim 2 Then, we conclude that this also holds for an artificial edge of h(V*).

Claim 3 We further deduce that besides the artificial edge of #(V*) in direc-
tion ¢, x must also see an edge of #’'(V*) in direction —t.

Claim 4 Finally, we show that there must exist a point x that sees artificial
edges in both directions.

4.5.1 A Property of Intersecting Star-Shaped Polygons

At first, we consider a special case of intersecting polygons, namely the inter-
section of a star-shaped polygon P with a translated copy P + t of itself. We
show that (roughly speaking) each component of the intersection contains at
least one edge of the first polygon P, which can be seen when looking in the
translation direction t. Using this result, Claim 1 from above is a straightfor-
ward consequence.

Lemma 4.11 Let P be a star-shaped polygon and let P’ = P + t be a translated
copy of P (with t # 0). Each connected component C of the intersection P N P’
that has a non-empty interior contains an edge e such that

* ¢ belongs to P;

* ¢ can be seen from inside C, when looking in direction t. That is, there
exists a point x € C° such that the edge e is the first edge that is hit by the
ray that starts in x and emanates in direction t.

Proof. In the following we assume that no such edge exists and show that this
leads to a contradiction. To this end, we assume w.l. 0. g. that the translation
vector t is horizontal and directed from left to right. For a component C of the
intersection P N P/, let p be a rightmost intersection point (of C) between an
edge f of P and an edge f’ of P’. Note that such a point must always exist,
since otherwise one polygon would totally contain the other one, which is im-
possible in our setting. For the following recall that the polygons are traversed
counterclockwise (cf. Section 2.2).
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FIGURE 4.17: The intersection of a star-shaped polygon and a translated copy of
itself

Without loss of generality we assume that on our traversal of C we first pass
the edge f, then the vertex p, and finally the edge f’ as depicted in Figure 4.17.
(Edges of P are drawn solid, edges of P’ dashed.) If this is not the case, we
could simply mirror the whole scene at a horizontal line, reverse the direction
of the polygons, and get a situation that fits our assumption. Note that from
our main assumption (“no such edge e exists”) it follows for the angle between
the translation vector t and the edge f that <(¢, f) > 7, since otherwise a part
of f could be seen from inside C, when looking in direction t.

Due to the construction of p, the two polygons cannot have additional inter-
section points to the right of p. Furthermore, some part of P/, namely f' N P,
must lie to the left of f. Now recall that P’ is a (horizontally) translated copy
of P. This means that a copy of the polygonal chain of P to the right of p
(translated by f) must also occur in the polygon P’. Then, there are basically
two possibilities how the two parts of P’ are connected by polygonal chains,
depending on the angle of rotation et¢; ¢ of the edges f +t and f’ in the poly-
gon P'. One possibility (with afy; ¢ < 27) is depicted in Figure 4.18 on the
following page, the other one (with af,; ¢ > 27) is illustrated by Figure 4.19.

In the following we show that the kernel of the so-constructed polygon P’ is
empty, which contradicts the assumption of a star-shaped polygon P. To this
end, we distinguish between the two possibilities mentioned above and handle
them separately:

&f4t,r < 27 Consider the horizontal line I through the point p (drawn gray in
Figure 4.18). From <((t, f) > m follows that the edge f (and also f + ¢)
must be directed from somewhere above [ to a point below [. Conse-
quently, the polygonal chain P; that connects the left part of P’ with f + ¢
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FIGURE 4.18: One possibility of connecting the two polygonal chains of P

must cross | from below, resulting in at least one reflex vertex 1 above /.
Thus, the kernel of P’ must lie above ! (in the upper gray shaded area of
the figure). On the other hand, it follows with a similar argument that
there must also exist a reflex vertex r below I on the polygonal chain P,
that connects the right part of P’ with f’. Therefore, ker P’ must also lie
below [ (in the lower gray shaded area of the figure), which together re-
sults in an empty kernel of P’. This is a contradiction to our assumption
of a star-shaped polygon P.

&fyt,p > 27 In order to complete the proof we also have to consider the se-
cond possibility of connecting the two parts of P/, where the polygonal
chain P, that connects the right part of P’ with f’ takes the other way
around C. We observe that in this case the two polygons P and P’ must
have another intersection point p’ (see Figure 4.19 on the next page), and
with similar arguments as above (using p’ instead of p) it follows that the
kernel of P’ is empty. O

4.5.2 The Existence of an Artificial Edge in One Direction
In this section we prove Claim 2 from page 78 using the preceding Lemma 4.11.

Lemma 4.12 Under the assumptions of Theorem 4.2, let t = h'(v,) — h(v,) be
the translation vector that maps the embedded origin h(v,) onto the embedded
origin ' (v, ). Then, there always exists an edge of the intersection polygon that
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FIGURE 4.19: The other possibility of connecting the two polygonal chains

e belongs to an artificial edge of h(V*) and

* can be seen from inside the intersection polygon, when looking in direc-
tion t. In other words, there exists a point x € (h(V°)N K (V°))® such
that the respective edge is the first edge being hit by the ray that starts
in x and emanates in direction t.

Proof. Without loss of generality we assume that the translation vector ¢ # 0,
which maps h(v,) onto /'(v,), is horizontal and directed from left to right. That
is, h(V*) is the left one and /' (V*) the right one of the two embeddings of V*.
From Lemma 4.6 follows that the intersection of the two embedded skeleton
polygons consists of a single polygonal region I. Since a skeleton polygon
always is star-shaped, we conclude from Lemma 4.11 on page 78 that there
exists at least one edge of I that belongs to an edge e of h(V*) and fulfills all
of the above requirements, except that it is not guaranteed that e is an artificial
edge of h(V*). In the following we assume that such an edge, which belongs
to an artificial edge, does not exist and show that this leads to a contradiction.
Firstly, it follows from our assumption and Lemma 4.7 that every edge f
of I, which belongs to h(V*), either cannot be seen from inside I (i.e., <t(t, f) >
) or is a common full edge of h(V*) and /' (V*). Furthermore, Lemma 4.11
guarantees that there must exist at least one such common full edge, which we
denote by e. Now let ] be a lowermost and u be an uppermost intersection point
between h(V*) and I'(V*). Then, the edge e must be contained in a polygonal
chain of 1(V°) between I and u, as well as in a similar chain of /'(V°). Since
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FIGURE 4.20: The first possibility of connecting the polygonal chains of 1’ (V*)

the intersection of the two skeletons is a single polygonal region, both chains
must have the same direction (either from / to u or vice versa), and w.l.o. g.
we assume that both chains are directed from / to u. The resulting situation
is depicted in Figure 4.20. (Edges of h(V*) are drawn solid, edges of I'(V*)
dashed.) Note that the two polygonal chains from / to u need not, of course,
be identical. Edges of h’'(V°) may lie strictly to the left of h(V°) like those in
the upper part of the figure (between e and u), or (as in the middle part of the
figure between p; and p») even cross h(V?), as long as it is guaranteed that no
artificial edge of h(V°), which belongs to I, can be seen from the left.

The remaining part of the proof is very similar to the proof of Lemma 4.11
on page 78 in the sense that we use two identical polygons, namely h(V°)
and h'(V?), in order to show that V° must have an empty kernel, which clearly
is a contradiction. To this end, recall that a translated copy of the polygonal
chain of h(V*), which connects I and u, must also occur in #’'(V*). Then, like in
the proof of Lemma 4.11 there are several possibilities to build the polygonal
chain of 1'(V*): By construction it is clear that [, ¢, and u must be traversed in
this order and it remains to investigate the basically two different possibilities
of inserting the right chain, which contains e + ¢, into this order:
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e+t is inserted between # and I As in the proof of Lemma 4.11 we have to
distinguish between the only two reasonable possibilities of connecting
the right part of 1'(V*) to the left part, either with a right turn around I
(i.e., Xeqt = 0) or with a left turn (i. e., aet . = 271). Since for both pos-
sibilities we can use almost identical arguments, we concentrate w.1. 0. g.
on the situation shown in Figure 4.20, where the right part of /' (V*) is
connected by a right turn to the left part of 1/ (V*).

Then, h(V*) and h'(V*) must intersect in another point p. From our
assumption that / is a lowermost intersection point of the two embed-
ded skeletons follows that p must lie above the horizontal line through /.
Thus, h'(V*) must contain two reflex vertices (p3 and [ in the figure), from
which an empty kernel follows.

e+t is inserted betweenl and u If this is the case, the polygonal chain
of W'(V°) between I and u must cross the chain of h(V?) either between !
and e or between e and u. Without loss of generality we assume that
W' (V°) crosses h(V°) between [ and e as illustrated in Figure 4.21 on the
next page. Due to our main assumption this is only possible if h(V°)
contains an edge f with <((t, f) > 7, which directly implies that ' (V*)
must contain two reflex vertices r1 and r, (see the figure), from which an
empty kernel follows.

Since in all cases V° must have an empty kernel (that is, V° cannot be star-
shaped), the assumption that no artificial edge of i(V*) can be seen from inside
the intersection leads to a contradiction. O

Apparently, a straightforward consequence of the previous lemma is that in
the setting of Theorem 4.2 2 we can guarantee the existence of a ray r, which
intersects artificial edges a1 a; and “1 az 1n dlrectlon t, and the existence of a

ray 1, which intersects artificial edges by bz and b b in direction —t.

4.5.3 The Existence of Artificial Edges in Both Directions

The following two lemmas show that there also exists a straight line that fulfills
both properties at the same time. According to our strategy described above,
we first prove Claim 3.

Lemma 4.13 Under the assumptions of Theorem 4.2, lett = h'(v,) — h(v,) be
the translation vector that maps the embedded origin h(v,) onto the embedded
origin h'(v,). Then, there always exists a point x € (h(V°) N1 (V°))° such that

e x sees an artificial edge of h(V*), when looking in direction t, and
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FIGURE 4.21: The second possibility of connecting the polygonal chains of /' (V™)
e x sees an edge of ' (V*), when looking in direction —t.

Proof. Without loss of generality we assume that the translation vector t # 0,
which maps h(v,) onto 1'(v,), is horizontal and directed from left to right. We
prove the proposition by assuming that no such point x exists and showing
that this leads to a contradiction using an induction argument. The basic idea
is to repeatedly remove the concavities of V* (which V* must have if such a
point x does not exist), but preserving the property that the two embeddings
of V* overlap.

From Lemma 4.12 follows that a point x € (h(V°) N1/ (V°))° exists that sees
an edge e, which belongs to an artificial edge of #(V*), when looking in direc-
tion t. If we assume that x does not see an edge of ' (V*), when looking in the
opposite direction —¢, x must see an edge f, which belongs to an edge of h (V™).
Furthermore, it also follows from our assumption that the edge f + t of (V")
must lie to the right of e. Then, we get the situation depicted in Figure 4.22 on
the facing page: The edges e and f of h(V*) are connected by two polygonal
chains ¢, (the upper one) and c; (the lower one). Since e and f are part of the
intersection of the two embeddings, they must be surrounded by exactly one
of the respective translated chains of #'(V*), w.1. 0. g. by the lower chain ¢ + ¢,
as illustrated in the figure.
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FIGURE 4.22: The skeleton polygon V* must have a concavity, ...

Since the polygonal chain of /' (V*) that consists of e + ¢, ¢y, +t, and f + ¢
cannot intersect the skeleton polygon /(V°) at all (because this would be a
contradiction to Lemma 4.6), we may delete this chain from V* and insert a
full edge d between the two lower endpoints of e and f. This way, we obtain
a modified skeleton V}, which consists of a strictly smaller number of edges
than V*, as depicted in Figure 4.23. It is clear from the above reasoning that
the two embeddings h(V};) and h'(V},) still intersect in such a way that we
can apply the same argumentation another time. Since the skeletons consist of
only finitely many edges, this leads to a contradiction, which shows that our
original assumption must be wrong. O

FIGURE 4.23: ... which can be removed such that the embeddings still intersect
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Using the results from the previous considerations, we are now able to prove
Claim 4 from page 78, that is, the existence of a point x that sees artificial edges
in both directions.

Lemma 4.14 Under the assumptions of Theorem 4.2, let t = ' (v,) — h(v,) be
the translation vector that maps the embedded origin h(v,) onto the embedded
origin I’ (v,). Then, there always exists a point x € (h(V°®) N1 (V°))° such that

e x sees an artificial edge of h(V*), when looking in direction t, and
e x sees an artificial edge of W' (V*), when looking in direction —t.

Proof. Without loss of generality we assume that the translation vector t # 0,
which maps h(v,) onto /'(v,), is horizontal and directed from left to right. The
preceding Lemma 4.13 already guarantees a point x; € (h(V°) N} (V°))° that
sees an artificial edge e; of h(V*), when looking in direction ¢, and an edge f1
of ' (V*), when looking in the opposite direction —¢t. Exploiting the symmetry
of the setting, also a point x; € (h(V°®) N (V°))® exists that sees an artificial
edge e; of /' (V*), when looking in direction —t, and an edge f, of h(V*), when
looking in the opposite direction t. It remains to show that there is also a point x
that simultaneously has both properties, that is, x sees artificial edges in both
directions.

As in the previous proofs, we assume in the following that no such point exists
and show that this leads to a contradiction. Using a similar argumentation
as in the proof of Lemma 4.13, we may assume w. 1. 0. g. that the intersection
polygon is monotone with respect to a line perpendicular to t. Otherwise, the
skeleton V* must have a concavity, which could safely be removed, whereby
ensuring that the two embeddings of V* still overlap. In particular, exploiting
the monotony of the intersection polygon we may assume that the two artificial
edges e1 and e; (as well as the edges f1 and f;) are separated by a horizontal
line, since otherwise the intersection polygon would not be monotone as ass-
umed above. Thus, we get a situation as shown in Figure 4.24 on the facing
page. (Edges of h(V*) are drawn solid, edges of i/ (V*) dashed.)

From our main assumption follows that the edges fi and f, must be full
edges of h(V*) and ' (V*) and therefore belong to both embeddings (using
Lemma 4.7). Thus, the embedding h(V*) contains the artificial edges e;
and e; —t, as well as the full edges f1, fi —t, f2, and f» —t. In the following
we investigate the different possibilities of connecting these six edges in order
to obtain the skeleton V*. To this end, recall that neither an edge of #(V°) nor
an edge of h'(V°) is allowed to cross the intersection polygon (drawn gray in
the figure) and that additionally the intersection polygon must be contained in
both embeddings.
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FIGURE 4.24: The relevant edges of h(V*) and 1/ (V*)

First of all, we claim that in embedding /#(V*) the only possible vertex, to which
the upper endpoint of f, may be connected, is the lower endpoint of e, since
for each of the other possibilities either the intersection polygon is crossed by
an edge (a connection to f or f1 — t implies that e; is isolated), or the skeleton
polygon is caused to have an empty kernel (a connection to e —t or f, — ¢
must be accomplished by a right turn), which both results in a contradiction.
Now we distinguish between the four cases of connecting one of the remaining
edges to the upper endpoint p of f; in embedding /#(V*) and show that we
always get a contradiction:

>Edge f1 —t is connected to p< The only reasonable way of connecting the

lower endpoint of f; —t to p is a direct connection with af, 4 ¢, = 0, since
the other possibilities imply an empty kernel of the skeleton polygon.
However, this connection immediately causes a contradiction, because
the polygonal chain from the lower endpoint of f; —t to p in embed-
ding h(V*) translates to a polygonal chain from the lower endpoint of f;
to p + t in embedding /' (V*), which crosses the intersection polygon (cf.

Figure 4.24).

>Edge ea — t is connected to p< If the lower endpoint of e; — t is connected to
the upper endpoint p of f; in embedding h(V*), it follows for the angle
of rotation |a,_, A | < 7, since a right turn would imply an empty ker-
nel and a left turn around the intersection polygon would isolate edge e;.
Thus, the lower endpoint of e; — t must be connected to p as depicted
in Figure 4.25 on the next page. Note that f, — ¢t must lie to the left of
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FIGURE 4.25: The case »Edge e, — t is connected to p< in the proof of Lemma 4.14

the polygonal chain, since otherwise the respective translated chain bet-
ween e; and p + ¢ in embedding /' (V*) would cross the intersection poly-
gon. Then, it is easy to see that it is not possible to connect f, — t to the
remaining skeleton edges without creating two reflex vertices such that
the resulting kernel of #1(V?) is empty.

>Edge fa —t is connected to p< From this connection follows that the upper

endpoints of f; —t and e; must be connected in embedding i (V*) by a
polygonal chain (otherwise either e; or e, — t would be isolated) and we
get the situation depicted in Figure 4.26 on the facing page, where that
chain and its translated copy in embedding h'(V*) introduce an inter-
section point y. Then, we observe that the edge e of embedding I'(V*)
between p and y must be an artificial edge and from our main assump-
tion follows that the corresponding edge f in direction t must be a full
edge in both embeddings. Furthermore, the lower endpoint q of f must
lie below p due to our assumption (since e; is an artificial edge in ). Con-
sequently, the skeleton polygon /(V°) must have an empty kernel due to
its two (reflex) vertices p and g — ¢.

>Edge e is connected to p< Here we additionally have to distinguish bet-

ween the following three subcases of connecting one of the remaining
edges in embedding h(V*) to the lower endpoint p’ of f5:

>Edge fi — t is connected to p’< Connecting the lower endpoint of f; — ¢t
to p’ in embedding h(V*) would result in a polygonal chain bet-
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ween f1 and f; + ¢ in embedding #'(V*). Thus, the edge e, would be
isolated in embedding /' (V*) resulting in an empty kernel of 1/ (V*).

>Edge ey — t is connected to p’< In this case, we obtain the situation of
the preceding case »Edge f» — t is connected to p< (cf. Figure 4.26)
rotated by 7.

>Edge fo —t is connected to p’< If the upper endpoint of f, — t is
connected to p/, we get the situation depicted in Figure 4.27 on
the next page.

Now recall that the edge f5 is a full edge in embedding h(V*), whe-
reas the edge e1, to which f; is connected, is an artificial edge. There-
fore, a vertex g on the polygonal chain from f; to e; must exist, where
the chain of full edges changes to artificial edges. Analogously, a
vertex ¢’ exists in embedding /' (V*), where the chain of full edges
between f; and e; changes. From our our main assumption then fol-
lows that g4’ must lie below g, since otherwise a point x would exist
that sees artificial edges in both directions. Consequently, the skele-
ton polygon /1(V°) must have an empty kernel due to its two (reflex)
vertices ¢’ and g — t.

This completes the proof, since we have shown that the assumption that no
point x exists that has the described properties leads to a contradiction in all

FIGURE 4.26: The case »Edge f, — t is connected to p< in the proof of Lemma 4.14
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FIGURE 4.27: The case »Edge e; is connected to p< in the proof of Lemma 4.14
possible cases. O

4.5.4 The Main Result on Overlapping Embeddings

Using the point x from the previous lemma, we are now able to construct
the four artificial edges, which we have used in the proof of Theorem 4.3 on
page 57, without presuming the existence of overlapping kernels. This way, we
can adapt the proof of Theorem 4.3 in order to show the stronger and more
general Theorem 4.2.

Proof of Theorem 4.2. As already stated before, the proof of this theorem is
almost identical to the proof of the less general Theorem 4.3, which requires
overlapping kernels, except for the construction of the artificial edges a; a»

and ZE of embedding #(V*) and their translated counterparts m and lm
in embedding ' (V*).

Lemma 4.14 guarantees the existence of a point x in the intersection of the
two embeddings that sees an artificial edge a1 a; of h(V*), when looking in

direction t, and an artificial edge b b5 of h'(V*), when looking in the oppo-
site direction —t. Thus, we can assure that a line / through x and parallel to ¢
intersects the two artificial edges in a way such that the intersection point of /
with a7 a5 lies to the right of the intersection point of I with b} b},. Furthermore, I
also intersects the artificial edges by by = by b, —tof h(V*) and a} a) = ajap +t
of I'(V*). It should be noted that we have not proven whether x actually sees
these so-constructed artificial edges, but this plays no role in the proof, since
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for the remaining arguments only the visibility relationships with respect to
the witnesses w and w’ are of interest.

In the proof of Theorem 4.3 we have used the angular order with respect to
the kernel point x only to express in which order the eight endpoints of the
artificial edges occur on the boundary of the map polygon. Thus, if we

e let the vertex sequence of the map polygon start at the vertex a) (cf. Fi-
gure 4.4 on page 59),

* replace each occurrence of >a <, b< by the term >a is before b in the vertex
sequence of the map polygon<, and

* replace each occurrence of >a <y b< by the term »a and b are identical or
a is before b in the vertex sequence of the map polygons,

we can safely use the argumentation of the proof of Theorem 4.3 to study the
placements of the eight endpoints of the artificial edges. This way, we are able
to show that the assumption of witnesses w and w’, which can see each other,
in all cases yields a contradiction. O

The following corollaries follow from Theorem 4.2 and from the proof of
Theorem 4.3, respectively.

Corollary 4.15 Let h(V*) and h'(V*) be two different valid embeddings of the
same skeleton V* with witnesses w and w'. If the embedded skeleton polyg-
ons h(V°®) and h'(V°) overlap, their intersection region either lies totally to the
left or totally to the right of the straight line through w and w'.

Proof. Otherwise, the part of the map polygon that must lie between w and w’
and intersect the straight line segment ww (due to Theorem 4.2), would be
encircled by four lines of sight (cf. Figure 4.9 on page 66), which contradicts
Observation 3.3. Note that the whole intersection polygon must be visible to
both witnesses. O

From the previous corollary it particularly follows that no witness of the
two embeddings may lie in the intersection region, that is, w must lie outside
of W'(V°) and w’ must lie outside of h(V°).

Corollary 4.16 Let h(V*) and W' (V*) be two different overlapping valid em-
beddings of the same skeleton V* with witnesses w and w' and let t =
h'(vo) — h(vo) be the translation vector that maps the embedded origin h(v,)
onto the embedded origin h'(v,).

Then, for any straight line that is parallel to t and crosses the intersection
region of h(V*) and h'(V*) follows that both witnesses w and w' lie on the
same side of that line.
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Proof. Using the notations of the proof of Theorem 4.2/4.3 on page 57, let I
be an arbitrary straight line parallel to the translation vector t, which crosses
the intersection region. As in the previous proofs, we assume w.1.0.g. that ¢
is horizontal and directed from left to right. Furthermore, we already know
from the proof of Theorem 4.3 that the witnesses w and w’ must lie on the same
side of the straight line / (since the other case was shown to be impossible on
page 62) and w. 1. 0. g. we assume that they lie below /. Thus, it suffices to revisit
the case »>w and @' lie on the same side of /< (from page 62) and show that in
this case the witnesses also lie on the same side of /.

To this end, recall that from Lemma 4.4 follows that w lies below the straight

>

line ap @) and that w’ lies below by b, that is, we get a situation as in Fi-
gure 4.6 (b) on page 62 with a; < b5. From this situation it directly follows

that the intersection polygon of 1(V*) and h'(V*) must lie above the line b, b}.
Thus, also I’ (which crosses that polygon) must lie above by and b'z, from which
the primary claim follows. 0

4.6 Intersecting versus Overlapping Embeddings

In the preceding sections we have always investigated valid embeddings that
overlap, that is, embeddings of skeleton polygons whose intersection again is
a polygon. For those cases we have shown that the corresponding witnesses
of the embeddings cannot see each other. In the following we shortly take a
look on embeddings that only intersect but do not overlap, that is, embeddings
of (identical) skeleton polygons whose intersection consists of a single point or
a straight line segment. Here, the question arises, whether also in these cases
the witnesses cannot see each other? And indeed, one can construct valid em-
beddings that intersect in exactly one artificial edge such that the witnesses are
visible to each other. An example of such a situation is depicted in Figure 4.28
on the next page where the witnesses w and w’ for the two valid embeddings
of V;Z Jur S€€ each other, whereas the two embedded kernels (which are identi-

calto V; Jf

If we revisit the proof of Theorem 4.3 on page 57, we recognize the situation
of Figure 4.28 as a special case of >a} <y b} <x a1 <x b1 <x by <y a2 <y V) <
a)< in the distinction of cases, where the two pairs of middle vertices are iden-
tical, that is, a1 = b} and a, = b}. Apparently, the existence of a point in the
interior of the intersection of the two embeddings plays a crucial role in the

proof of Theorem 4.2/4.3.

) intersect in a straight line segment.
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V)

w/w' 5

FIGURE 4.28: A map with two valid embeddings, where the kernels intersect and
the witnesses are visible to each other

4.7 Crossing Candidate Edges

Hitherto, we have concentrated on overlapping valid embeddings and discus-
sed the implications that arise for the visibility of the corresponding witnesses.
In the following we extend these investigations to include also the correspon-
ding candidate edges into our considerations. We prove some useful properties
of candidate edges of overlapping embeddings, since they will be particularly
helpful in order to determine their total number in Section 5.3.

At first, we state the following property, which shows that candidate edges
of a single embedding cannot be arbitrarily positioned “around” the skeleton
polygon. Instead, they belong to their respective artificial edges.

Lemma 4.17 Leta and a’ be two different artificial edges of a skeleton V* with
an embedding h. Furthermore, let ¢ be a candidate edge of h(a) and ¢’ be a
candidate edge of h(a’). Then, it is not possible that a line of sight from in-
side h(V°®) to e and a line of sight from inside h(V°) to ¢ intersect outside
of h(V°).

Thus, it particularly follows that for a single embedding a given edge may
be a candidate edge of at most one artificial edge. That is, the edges e and ¢’ in
the above lemma actually must be different.

Proof. We assume that there exist (embedded) artificial edges h(a) # h(a’)
with candidate edges e and ¢/, such that the corresponding lines of sight inter-
sect outside of h(V°), and show that this leads to a contradiction by construc-
ting a circle in the map polygon that must contain at least one vertex, such that
Observation 3.3 is contradicted.
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FIGURE 4.29: Lines of sight to candidate edges that cross outside of 1(V°) are
impossible

See Figure 4.29 that depicts the assumed situation: In embedding #(V*) a
point p € h(V?) sees the candidate edge e “through” the embedded artificial
edge h(a), represented by the dotted arrow. Analogously, the point p’ sees ¢’
“through” h(a") such that the lines of sight intersect in x outside of #(V°). Then,
some vertices of h(V*) must be encircled by a closed path inside M, hence, a
contradiction to Observation 3.3. 0

The following observation compares the angular order of edges that are vi-
sible through an artificial edge with the angular order of the corresponding
region, from which these edges are visible (confer also the forthcoming defini-
tion of visibility wedges on page 108).

Observation 4.3 Let a1 and ay be two map vertices and e; possible candidate
edges for the (directed) segment a1 dap lying in the half plane H™ (M). That
is, for each e;, there is an embedding hj, and an artificial edge ay, such that e; is
a candidate edge for hj,(ay,) = a1 ap.!

Then, for any point x € aj a; the angular order of the edges e; with respect
to x (with starting direction i, a1) is identical to the order in which the edges e;
appear on the polygon boundary of the map polygon M. Furthermore, also the
angular orders of the regions in the half plane H (a1 a;), which see the edge e;
“through” a1 ay, are identical according to the illustration in Figure 4.30 on the
facing page.

1 To be precise, we additionally should require that the complete edge e; is visible to a; and a5.
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H~ X
H+

FIGURE 4.30: Candidate edges and their angular order around the corresponding
artificial edge

In Section 5.3 it turns out that for two different embeddings the most interes-
ting cases are those where the lines of sight between the embeddings and the
candidate edges cross, that is, where it seems that the candidate edges occur
“in the wrong order” on the polygon boundary. To substantiate this concept,
we first introduce the notion of crossing candidate edges in the following.

Definition 4.4 (Crossing Candidate Edges)

Let ¢ be a valid candidate edge of an artificial edge a in embedding h(V*) and
letc’ # c be another valid candidate edge of an artificial edge a’ (not necessarily
different from a) in another embedding h' # h of V*.

We say that the candidate edge c (of h) crosses the candidate edge ¢’ (of I')
if there exists a witness w € h(ker V*) that sees a point p € ¢ through h(a) and
a witness w' € I'(ker V*) that sees a point p' € ¢’ through I'(a’), such that the
lines of sight from w to p and from w' to p’ intersect.

Example 4.4 There are various situations, in which candidate edges may cross,
both with overlapping or intersecting embeddings as well as with completely
separated embeddings:

1. Consider the three (non-overlapping) embeddings of the skeleton V; in
Figure 3.9 on page 37. There, the edge ¢; is a candidate edge of the em-
bedded artificial edge in 1 (V) that crosses e1, which is a candidate edge
in embedding h, (V7).
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2. As an example of crossing candidate edges in overlapping embeddings
look at Figure 4.1 (a) on page 55. Here, the four horizontal edges in the
four northern niches are candidate edges of the two embeddings of V*,
of which the two middle ones cross each other.

3. Also in the case of the two intersecting embeddings in Figure 4.28 on
page 93 there are pairs of crossing candidate edges, for example the ones
that are visible from the two witnesses w and w'. <

In the following we concentrate on overlapping embeddings and show that
crossing candidate edges may occur only in certain patterns. To this end, the
next lemma enables us to roughly divide overlapping embeddings with cros-
sing candidate edges into two categories depending on the number of corre-
sponding artificial edges that intersect the other respective skeleton polygon.
Either

e exactly one artificial edge, h(a) or I/ (a’), intersects the other respective ske-
leton polygon, or

* both artificial edges intersect the other respective skeleton polygon, that is,
h(a) intersects h'(V°) and I (a’) intersects h(V°).

Lemma 4.18 Let ¢ and ¢’ be two crossing candidate edges. Let a and a’ be the
corresponding artificial edges and h # I’ the corresponding embeddings.

If the two embeddings h(V*) and h'(V*) overlap, at least one of the two
following conditions must hold:

* h(a) intersects h' (V°)
e }'(a') intersects h(V?)

Proof. Assume that neither h(a) intersects h'(V®) nor I'(a’) intersects h(V°).
This means, that both embedded artificial edges lie outside of the intersection
polygon. Since c crosses ¢/, there exist lines of sight from witness w (inside of
the embedding #) through h(a) to ¢ and from witness w’ (inside of the embed-
ding /) through h(a’) to ¢/, which intersect (outside of the embeddings). Thus,
we get a situation similar to the one of Figure 4.29, where some map vertices
are encircled by a closed path, which contradicts Observation 3.3. 0

In the remaining part of this section we prove the following theorem (and
a direct corollary thereof) about pairs of mutually crossing candidate edges in
overlapping embeddings. We show that for such situations there basically is
only one pattern, in which the candidate edges may occur in the map polygon.
This helps us in Section 5.3 in order to prove a tight bound on the total number
of candidate edges.
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Theorem 4.19 Let c1 and cy be valid candidate edges of an artificial edge a in
embedding h(V*) such that c; appears before ¢, on their (directed) common
line. Furthermore, let ¢’ be a valid candidate edge of an artificial edge a' in
embedding I’ # h of V* such that ¢’ crosses c1 as well as c;.

If the two embeddings h(V*) and I/ (V*) overlap, the edge ¢’ cannot lie bet-
ween c1 and cp on the boundary of the map polygon.

This theorem directly implies the following corollary about pairs of mutually
crossing candidate edges.

Corollary 4.20 Let c; and c; be valid candidate edges of an artificial edge a in
embedding h(V*) such that c1 appears before ¢, on their (directed) common
line. Analogously, let ¢} and ¢, be valid candidate edges of an artificial edge a'
in embedding ' # h of V* such that | appears before ¢/, on their (directed)
common line. Further assume that each c¢; (i = 1,2) crosses each c? (j=1,2).

If the two embeddings h(V*) and h'(V*) overlap, the order in which the
four candidate edges appear on the boundary of the map polygon is either
c1,C2,¢}, 5 orcy, ch, c1,co.

In order to clarify this claim, view the sketched example of Figure 4.31 on
the following page. It shows two overlapping embeddings & and 1’ of a skele-
ton V*, each with a pair of candidate edges (c1, c2 and c’l, c’z), which mutually
cross each other. Confer Lemma 4.18 and note that both corresponding ar-
tificial edges h(a) and K’ (a’) intersect the other respective skeleton polygon.
Further note that the corresponding witnesses w; and w; in embedding h(V*)
see each other (since they both lie in the same embedded kernel) as well as the
witnesses w) and w/), do, but that no witness w; is visible to a witness w9 accor-
ding to Theorem 4.2. These visibility relationships between the witnesses are
the key to prove Theorem 4.19 in the following. As can be further seen in the
figure, the order of the four candidate edges on the map polygon is c1, ¢z, ¢}, ¢,
as claimed by the above corollary. In particular, no candidate edge of h(a) lies
between the candidate edges of 1’ (a’) and vice versa.

Proof of Theorem 4.19. We assume that the claim of the theorem is false and
show that this leads to a contradiction (namely, as in many proofs before, a
contradiction to Observation 3.3 by constructing a hole in the map polygon).
To this end, let c; and ¢y be valid candidate edges of an artificial edge a in
embedding /(V*) such that c; appears before cp on their (directed) common
line. Furthermore, let ¢’ be a valid candidate edge of an artificial edge 4’ in
embedding h' # h of V*, which overlaps , such that

* (' lies between ¢1 and c; on the boundary of M,
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FIGURE 4.31: A sketched example of two pairs of mutually crossing candidate
edges and the situation claimed by Corollary 4.20

e (' crosses both candidate edges, c1 as well as ¢».

For the following, let w1, wy, and @' be the witnesses for the valid candidate
edges c1, ¢z, and ¢/, respectively. We first claim that w’ sees ¢’ not only through
the artificial edge h'(a’), but also through h(a).

Claim. The line of sight from w’ to ¢ intersects the embedded artificial
edge h(a), that is, w’ and ¢’ lie on different sides of h(a).

Proof. Again, we prove this claim by contradiction. To this end, let @} €
W (ker V*) and w1 € h(ker V*) be the witnesses of >¢’ crosses ¢« (cf. Defini-
tion 4.4). Analogously, let @/, and @, be the witnesses of >c’ crosses cy<. Note
that @] and @), need not be identical and that these two witnesses do not even
have to lie in the same visibility cell. Then, we get a situation as depicted in Fi-
gure 4.32 on the next page. Remember that in the “forbidden region” (drawn in
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FIGURE 4.32: >’ and ¢’ lie on the same side of /(a)< implies a contradiction

light-gray), which consists of the view cones of @; and @, through h(a), there
cannot lie any map vertices, since otherwise @ and @, could not be witnesses
of embedding #(V*). Nor may any witnesses of h’'(V*) lie in these view cones,
since otherwise we immediately get a contradiction to Theorem 4.2.

In the following we assume that w’ and ¢’ lie on the same side of h(a), as
depicted in the figure, and show that for this case the two embeddings h(V*)
and /' (V*) cannot overlap, which contradicts our prerequisites. To this end,
firstly note that if w’ lies on the right side of h(a), also the witnesses @) and @),
must lie on the right side of /(a) as depicted in Figure 4.32. This is, because
as soon as a viewpoint enters or leaves the region around /(a) drawn in dark-
gray, which consists of the intersection of the four positive half planes incident
to the endpoints of h1(a), its skeleton changes. In particular, any skeleton of a
viewpoint that lies to the left of this region is different from any skeleton of a
viewpoint that lies to the right of it. And since the region around h(a) is totally
contained in the “forbidden region” (drawn in light-gray), which consists of
the two view cones of @, and @,, the witness w’ must lie outside of it and
therefore on the right side of /1(a), as well as the witnesses @) and @),.

We further conclude that u”/l must lie below the view cone of @1, since the
respective lines of sight (from @ to ¢’ and from @; to c;) must intersect, ac-
cording to Definition 4.4. Analogously, @, must lie above the view cone of @
as depicted in the figure. Now recall that @) and @) are witnesses of the same
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embedding, that is, both witnesses must see the same non-spurious vertices
and full edges. In particular, the vertices of 1/(V*) that lie on the left side
of h(a) must lie in both view cones. But as Figure 4.32 shows, the intersection
of these view cones is totally contained in the “forbidden region” described
above. Thus, there cannot lie any vertex to the left of 1(a), which is seen from
the witnesses of h'(V*). In other words, no vertex of I'(V*) lies to the left
of h(a). Therefore, the two embeddings cannot overlap, which contradicts our

assumptions and proves the claim that @’ and ¢’ must lie on different sides
of h(a). O

From the previous claim follows that the witnesses w1, w», and @' lie on the
same side of 11(a) and using Observation 4.3 we conclude that their angular or-
der “w.r.t. h(a)” is identical to the angular order of the candidate edges c1, ¢z,
and ¢’. Thus, we get the situation depicted in Figure 4.33 on the facing page:
Without loss of generality we assume that the edges c1, ¢/, and ¢; are placed
from right to left above the horizontal artificial edge /(a). Thus, the witnes-
ses w1, w', and wy lie below h(a) from left to right. In particular, the witness w'
must lie in the triangular wedge (drawn with dotted lines) induced by the end-
points of the two candidate edges ¢; and ¢, and the two reflex vertices of h(a),
as shown in the figure.

The dashed lines in the figure indicate lines of sight between the witnesses
and their respective candidate edges. Therefore, no vertex may lie in the inte-
rior of the light-gray “forbidden region” that is created by these lines of sight.
Due to Theorem 4.2 at least one map vertex must lie between w’ and each of
the witnesses w1 and w,. As a consequence, w' must lie in the dark-gray re-
gion below the straight line through w; and w;. Otherwise, these map vertices
would lie in the “forbidden region” and cause a contradiction.

Since the line of sight from @’ to ¢’ crosses h(V°), it must enter the skeleton
polygon through an artificial edge of #(V*). Let x and y be the reflex vertices of
this embedded artificial edge. Furthermore, let x" and y’ be the reflex vertices
of the embedded artificial edge of #'(V*) that belongs to ¢’. Then we claim the
following about the position of the vertices x" and /.

Claim. At least one of the vertices x’ and y’ must either be identical to a vertex
of h(a) or lie on the opposite side of h(a) as w'.

Note that such a vertex x’ (or y/, respectively), which lies on the opposite
side of h(a) as w', must be placed “above” h(a) in the triangular region, drawn
in dark-gray in Figure 4.34 on page 102.
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FIGURE 4.33: The placement of w' in the proof of Theorem 4.19

Proof. We assume that this is not the case. Thus, both vertices x’ and 1’ must lie
on the same side of h(a) as w’, thatis, below h(a) in Figure 4.34 on the following
page. From the preceding considerations follows that neither x’ nor y’ may lie
in the “forbidden region” drawn light-gray in the figure.

In addition, they also cannot lie in the two regions to the left of the line of
sight from w; to the left vertex of h(a) and to the right of the line of sight
from wy to the right vertex of h(a), drawn dark-gray in the figure. This is,
because in such a case at least one of the vertices of (a) would be visible to w’
through the artificial edge W , which is impossible. (Remember that w’ sees ¢’
through /(a).) Therefore, both vertices must lie below x i, from which follows
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FIGURE 4.34: At least one vertex of ' (V?) lies above h(a)

that x iy and W cannot strictly intersect.

But from this fact directly follows that the two embeddings h(V*) and h'(V*)
cannot overlap at all, since otherwise a circle would exist, which encloses
at least one of the vertices {x,y, X, y’ }, that is, a contradiction to Observa-
tion 3.3. O

Let 2’ be the vertex of the artificial edge corresponding to ¢/, which we have
proved to lie on or above h(a) in the previous claim. Note that z’ is a vertex
of /(V*) and thatw’ € I'(V*) lies below x y. Thus, we conclude that the embed-
ded kernel /' (ker V*) must lie in the view cone of z’ with respect to x y. Moreo-
ver, if 2’ is different from the vertices of h(a), that is, 2’ lies strictly above h(a),
we analogously conclude that the kernel /#'(ker V*) also must lie in the view
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cone of z' with respect to h(a). Furthermore, it directly follows from the pro-
perties of wy, wp, and z’ that the witnesses w1 and w; lie outside of these view
cones (cf. Figure 4.34).

In order to complete the proof, we use the fact that & and /' are embeddings of
the same skeleton V*, that is, they have identical skeleton polygons and iden-
tical kernels. Thus, the witnesses w; and w; of h(V*) must have counterparts?
W(h=Y(w1)) =: wt and k' (h~(w,)) =: w! that must lie in the embedded kernel
of I/ (V*). Of course, the same holds for the vertices of the embedded artificial
edges h(a) and xy. In other words: The polygonal region that is bounded by
w1, X, Y, wa, and the endpoints of /i(a) must be translated in a way such that
w! and w) lie inside the kernel /’(ker V*) and no one of the visibility cons-
traints is violated. We show in the following that this leads to contradiction to
Observation 3.3.

First of all, it should be clear that w’ and the witness counterparts w! and w)
must lie on the same side of Xy, that is, w! and w} must lie below x y (cf. Fi-
gure 4.34). Otherwise the lines of sight from w’ to w! and w} would cross xy.
As a consequence, the triangle that consists of w/, wﬁ, and wt2 would encircle
at least one of the also-translated vertices x' and y', which would contradict
Observation 3.3.

Therefore, we yield a situation similar to the one sketched in Figure 4.35 on
the next page. From the argument above follows that the witnesses w} and w}
must be located in the gray shaded region such that they can see the vertex z'.
Observe further that the angular order of the points wy, w», x, y, wtl,wt2 with
respect to 2’ must be wy <, x <y wl <y wh <, y < wo, as depicted in the figure.

Now recall that the vertex z’ must either be identical to a vertex of h(a) or
it must lie “above” h(a) in the triangular region, drawn in dark-gray in Fi-
gure 4.34. In the first case, 2’ is also a vertex of embedding h(V*) and in the
second case, we conclude that both vertices of h(a) lie in the triangle that con-
sists of z/, w1, and w;. Thus, in both cases at least one vertex of h(a) lies in
this triangle and w.1.0.g. we may assume that this vertex is z’. That is, the
vertex z' is a non-spurious vertex in both embeddings and therefore must have
a translated counterpart (z')*.

Finally, observe that the translated point (z')! is encircled by the points w!,
wh, and z’ as shown in Figure 4.35 (with dashed lines of sight). As a con-
sequence, in both cases at least one map vertex is encircled by the points
w!, wh, and 2/, which see each other. This contradicts Observation 3.3 and
shows that our initial assumption (that the claim of the proof is false) must be
wrong. O

2 For points and vertices in embedding #(V*), which are translated this way, we write w' for
short instead of #'(h~!(w)) in the following.
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FIGURE 4.35: The points wtl, wa, and z’ encircle at least one map vertex

Corollary 4.20 investigates pairs of mutually crossing candidate edges and
shows that there basically is only one pattern how the candidate edges appear
on the polygon boundary, provided that the two corresponding embeddings
overlap. The following corollary also investigates pairs of candidate edges,
but relaxes the crossing prerequisites. It states that if the candidate edges ap-
pear on the polygon boundary in a certain pattern, the two embeddings cannot
overlap.

Corollary 4.21 Let c¢; and c; be valid candidate edges of an artificial edge a
in embedding h(V*) and let ¢ and ¢ be valid candidate edges of an artificial
edge 4’ in embedding ' # h of V* such that the four candidate edges are
pairwise different.

If the order in which the candidate edges appear on the boundary of the map
polygon is c1, ¢}, c2, ¢}, the two embeddings h and h' cannot overlap.

Note that from the order of the candidate edges it directly follows that at
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FIGURE 4.36: The artificial edges h(a) and I'(a") cannot intersect

least one c; crosses one c;..

Proof. We assume that the two embeddings overlap and show that this leads
to a contradiction. To this end, let wy, ws, w’l, w’2 be witnesses for the candi-
date edges c1,c2, ¢, ¢5 and note that w} (and therefore also w)) must lie on
the other side of h(a) than w1 and w,. Otherwise, the line of sight from w/
to ¢} would cross both lines of sight from w; to ¢; and from w; to c. Thus,
Theorem 4.19 would be applicable and result in a contradiction, since ¢} lies
between c; and ¢y on the boundary of the map polygon. Analogously, the wit-
nesses w1 and w, must lie on the other side of /' (a’) than w) and w). Thus, the
resulting situation is similar to the one shown in Figure 4.36: The map polygon
is divided into three regions, two of which contain the witnesses of the two
embeddings (drawn gray in the figure) and a third region (“between” them)
that contains the four candidate edges.

From this division it directly follows that the artificial edges h(a) and h'(a")
cannot intersect, which in consequence contradicts Lemma 4.18. Thus, the ass-
umption that the two embeddings overlap must be wrong. O
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4.8 Summary

In this chapter we investigated overlapping embeddings, that is, embeddings
of the same skeleton, where the embedded skeleton polygons overlap. We
introduced the notion of valid embeddings and gave worst-case examples of
Q(r) overlapping valid embeddings. Note that such overlappings are the main
source of complication when we further investigate the structure of the locali-
zation problem. In particular, most of the results of the following chapter could
be proved much easier if we may exclude the case of overlapping embeddings
from our considerations.

Towards our main result, we investigated the structure of general overlap-
ping embeddings (that is, embeddings of skeletons, which are not necessarily
identical) and proved some properties of their intersection region (Lemma 4.5
to Corollary 4.10), namely that it is a single polygonal region consisting of only
a few types of edges. Moreover, we analyzed the different types of intersec-
ting skeleton edges in detail and showed that certain patterns may occur only
a constant number of times.

The main result of this chapter (Theorem 4.2) describes the connection bet-
ween two overlapping embeddings (of the same skeleton) and the visibility
of their witnesses and states that these witnesses cannot see each other. We
proved this by first investigating the special case where also the kernels of the
embeddings overlap (Theorem 4.3), for which the claim is much easier to ve-
rify. Then, we showed that one of the key structures that we used in order to
prove Theorem 4.3 also exists in the general case, such that the proof could be
adapted to it in a straightforward way.

This result on the visibility of the witnesses plays a central role in the next
chapter and is used as a powerful tool to circumvent the complications caused
by overlapping embeddings mentioned above. It also was used in order to
prove some results on crossing candidate edges, which were the last point of
consideration in this chapter. Crossing candidate edges occur if the lines of
sight from two embeddings to two corresponding candidate edges intersect.
We showed (using Theorem 4.2) that in the case of overlapping embeddings
crossing candidate edges may occur only in certain patterns, which also is a
helpful property in the next chapter.



Revisiting the Complexity of an
Equivalence Class

‘“And shall th’ ungrateful traitor go,” she said,

“My land forsaken, and my love betray’d?

Shall we not arm? not rush from ev’ry street,

To follow, sink, and burn his perjur’d fleet?

Haste, haul my galleys out! pursue the foe!

Bring flaming brands! set sail, and swiftly row!
What have I said? Where am I? Fury turns

My brain; and my distemper’d bosom burns.

Then, when I gave my person and my throne,

This hate, this rage, had been more timely shown.”

Queen Dido in “Aeneid”
VERGIL (70-19 B.C.)

N CHAPTER 3 we stated a result of Guibas et al. that provided us with an up-

per bound of O(n?) on the worst-case complexity |ZCy+| of an equivalence
class, see Theorem 3.10 on page 47. Recall that the complexity of an equiva-
lence class ECy~ is defined as the total number of vertices and edges of all
visibility cells with skeleton V*.

In this chapter we establish a refined upper bound of O(n + r2) on |ECy+|,
where the dependence on the number r of reflex vertices becomes clearer. We
also show that this bound is worst-case optimal. The main idea of the proof is
to determine the complexity of an equivalence class ECy+ by accurately coun-
ting the vertices and edges of all visibility cells whose skeleton equals V*. The-
refore, we first study the structure of the visibility cells and classify their boun-
dary edges into two groups. As it turns out, only the edges of one type, which
are determined by the embedded candidate edges of V*, are difficult to count,
and we first give an upper bound on their number in a single embedding of V*.

Unfortunately, summing up these numbers for all embeddings of the skele-
ton V* does not yield the desired outcome. The reason is that one edge may
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serve as a candidate edge in several embeddings as already shown in Exam-
ple 3.3 on page 38. The whole setting gets even more complicated in the case
of overlapping embeddings, which we have discussed in the previous chap-
ter. Therefore, we examine such situations and show how to summarize these
numbers in a more sophisticated way.

To this end, we have to further investigate the candidate edges and distin-
guish between single and multiple candidate edges in order to determine tight
upper bounds on their total numbers. At this point, the results of the previous
chapter will be very helpful.

For the following, let V* be a fixed skeleton with s artificial edges ay, ..., as
(with corresponding lines [y, ..., I;) and t valid embeddings h;, ..., h; into the
map. For an artificial edge 4; and an embedding /1, we denote by C; ; the set of
all valid candidate edges of a; in embedding ;(V*), which lie on line /;(I;), and
by c; ; the cardinality of C; ;. For example, the sets of (valid) candidate edges of
the skeleton V; in Figure 3.9 on page 37 are C11 = {e1,e2}, C12 = {e1,e2, 3},
C1,3 = {ez, e3}, with a1 being the only artificial edge of V3.

5.1 The Structure of the Visibility Cells

For a fixed skeleton V*, we examine the visibility cells whose skeleton
equals V*. Each edge of such a visibility cell in an embedding h(V*) is either a
kernel edge or a wedge edge as defined below.

Definition 5.1 (Visibility Wedge)
For an artificial edge a; of V* and a candidate edge e of a; in embedding h;,
the corresponding visibility wedge w; j consists of all points that can see the

candidate edge e “through” the embedded artificial edge hj(a;). That is,

wi ;= HY(r))NH ().
Here, 1) is the uniquely defined ray that is anchored at a vertex of a; and ema-
nates from a vertex of e such that the remaining vertices of a; and e both lie to
the left of r1. Analogously, 1, is the uniquely defined ray that is anchored at a
vertex of a; and emanates from a vertex of e such that the remaining vertices
of a; and e both lie to the right of r;.

The notion of visibility wedges is illustrated in Figure 5.1 (a) on the facing
page, which again shows the map of Example 3.1 on page 24, concentrating
on embedding 1y (V*). In the upper part, each candidate edge e1, e, e3 of the
artificial edge a; in embedding hy induces a corresponding visibility wedge
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FIGURE 5.1: Three candidate edges with corresponding visibility wedges

wifz, w%z, w?z The visibility wedge w§ j can alternatively be regarded as the
union of view cones with respect to /;(a;) of points on e without the union of
view cones of points on [ \ e, where | denotes the straight line corresponding

to e. This reflects the intuitive definition of the set of all points that can see e
“through” hj(a;).

Definition 5.2 (Kernel and Wedge Edges)

Let C be a visibility cell with skeleton V*, which lies in embedding h;(V*).
An edge of C that lies on the boundary of the embedded kernel hj(ker V*) is
called a kernel edge of C. An edge of C that lies on the boundary of any of the
visibility wedges w; j1s called a wedge edge of C.

For an example of the definition of kernel and wedge edges, again look at
Figure 5.1, which depicts the three visibility wedges of the artificial edge a4
in embedding hy. If we intersect these wedges with the kernel of V*, see Fi-
gure 5.1 (b), we get the three visibility cells in embedding h,, see Figure 5.1 (c).
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The horizontal and vertical edges of the cells are therefore kernel edges, the
remaining ones are wedge edges.

The classification of the edges of a visibility cell C into kernel edges and
wedge edges is actually a partition of the set of edges of C, because of the
following arguments: Let e be an edge of a visibility cell C.

1. If e is part of a map edge % v, the two map vertices u and v must be visible
from every point p € C, cf. Theorem 3.3. Thus, 1 v belongs to the kernel
of V- and e must be a kernel edge.

2. In the other case, e lies on a visibility ray, anchored at some reflex vertex v,
(visible from () and emanating from a vertex u.

a) If (besides v;) also u is visible from C, v, 4 must be an edge of V*, eit-
her a full edge or an artificial edge, since any other vertex in V* “bet-
ween” v, and u would constitute an additional visibility ray, which
would divide C. Consequently, v, # induces an edge of ker V*, on
which e lies, and e is a kernel edge.

b) If u is not visible from (, it becomes visible by crossing e. There-
fore, v, is a blocking vertex of an artificial edge a2 of V* and u is a
vertex of a candidate edge of a. That is, the visibility ray anchored
at v; and emanating from u is one of the two bounding rays of the
corresponding visibility wedge. Thus, e is a wedge edge.

We summarize this consideration:

Observation 5.3 Each edge of a given visibility cell C is either a kernel edge
of C or a wedge edge of C.

The next lemma gives an upper bound on the total number of kernel edges
in ECy+. It shows that it suffices to count only the wedge edges, in order to
establish an upper bound of O(n + r?) on the complexity |ECy+|.

Lemma 5.1 For a given skeleton V* the total number of kernel edges in ECy~ is
in O(n +r2 + W), where W denotes the total number of wedge edges in ECy+.

Proof. As we have already seen in the above discussion, a kernel edge either
lies on a map edge (case 1) or on a certain kind of visibility ray (case 2a). Let K
denote the set of all such map edges and visibility rays, on which kernel edges
of ECy~ lie. Since each reflex vertex contributes at most two visibility rays to
each of the O(r) embedded kernels, it follows that |K| € O(n + 12).

If more than one kernel edge lies on an edge from K (see for example Fi-
gure 5.1 (c), where two kernel edges lie on the horizontal edge of ker V*), these
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additional edges are generated by the intersection of a visibility wedge with an
edge of K. Since each visibility wedge may intersect each edge of K only once,
producing at least one wedge edge, the number of additional kernel edges is
bounded by the number W of wedge edges (up to a constant factor). O

5.2 Counting the Wedge Edges of an Equivalence
Class

From the preceding Lemma 5.1 it follows that in order to prove our desired
upper bound of O(n + r?) on the complexity |ECy+|, it remains to count the
wedge edges of all visibility cells in an equivalence class ECy+. To this end, we
consider each embedding /; of the skeleton V* and count the number of wedge
edges of cells in /j(ker V*). Summing up over all embeddings yields the total
number of wedge edges in ECy+. The following lemma limits the number of
those edges in a single embedding ;.

Lemma 5.2 The total number of wedge edges of cells that lie in embedding I
of a given skeleton V* is in

O (” (i (cij = 1)>2 —i (cij = 1)2) : (5.1)

i=1 i=1

Proof. Recall from Definition 5.1 that a visibility wedge w; j consists of exactly
those points that can see the candidate edge e through the embedded artificial
edge hj(a;). Extending the argumentation of Observation 5.3 it follows that
each visibility cell with skeleton V* in embedding /;(V*) must lie in exactly
one visibility wedge, for each of the s artificial edges. Figure 5.2 on the follo-
wing page illustrates this situation for the embedding /;(V*) of a rectangular
skeleton with two artificial edges 41 and a,: Each one of the six visibility cells

lies either in w{';, w{;, or w{’;, and also either in w)! jor wf -
Therefore, the set of all visibility cells from ECy+ in embedding &; can be

seen as the intersection of the set
S
W := () Wi; (5.2)
i=1
with the kernel /j(ker V*) of the embedding, where

Wi,]' = U wf] (5.3)

XGC,',]'
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FIGURE 5.2: Visibility cells created by intersecting sets of visibility wedges

denotes the union of all wedges for a single artificial edge /;(a;). In particu-

lar, the complexity of W (that is, the number of vertices and edges) is up to a
constant factor an upper bound on the number of wedge edges in ;(V*), since

intersecting W; with & ;(ker V*) only decreases the number of wedge edges.
& VY j y ge edg

In order to determine the complexity of Wj, we have to carefully count those
vertices and edges of the arrangement of the sets W; ; that belong to visibility
cells of V*. To this end, examine Figure 5.3 (a) on the next page, which shows
the intersection of three sets W; j, each of which consists of ¢1j = ¢, = ¢35, =3
pairwise non-intersecting visibility wedges. Note that only a fractional amount
of all vertices of the arrangement belongs to the dark-gray visibility cells.

Further note that if the width of the interspaces between the wedges is re-
duced, the total number of intersection points does not change, although some
additional visibility cells may be introduced. If the width is reduced to zero, we
arrive at an arrangement of ) ;_,(c; ; — 1) rays, as illustrated by Figure 5.3 (b).
In other words, the complexity of the arrangement of these rays (which repre-
sent the interspaces between the wedges) and a single convex polygon (which
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c3,j wedges

c1,j — 1 rays

(b)

FIGURE 5.3: The complexity of the dark-gray visibility cells in (a) is not greater
than the complexity of the arrangement of the rays and the single
polygon in (b)



114

CHAPTER 5 REVISITING THE COMPLEXITY OF AN EQUIVALENCE CLASS

represents the intersection of the two outermost half planes corresponding to
each of the artificial edges) is up to a constant factor an upper bound on the
complexity of W;.

The total complexity of the arrangement of the s sets of rays can then be de-
termined in a straightforward manner: Each one of the ¢;; — 1 rays, which
represent the interspaces between the wedges of Wy ;, may intersect each one
of the Y i ,(c;j — 1) remaining rays. Analogously, each one of the ¢ ; — 1 rays
corresponding to the set W, ;, may intersect each one of the } ;_3(c;; — 1) re-
maining rays, and so on. This way, we get a total complexity of

(c1,j—1) (Z(Ci,j - 1)> + (c2,j— 1) (Z(Ci,j - 1))

i=2 i=3
s

_|_...—|—(Cs,2/]'—1) Z (Ci,]'—l) —|—(CS,1,]'—1)(CSI]'—1)

i=s—1

~o (i <ci,j1>)2i<cw>2

i=1 i=1

The single convex polygon, which represents the intersection of the two ou-
termost half planes corresponding to each of the s artificial edges, obviously
has at most two intersection points with each of the edges of the arrangement.
Thus, for the total complexity we only have to consider the at most 2s polygon
vertices that are introduced. Since the number s of artificial edges cannot be
larger than the number r of reflex vertices (cf. Definition 3.7), summing up the
complexities yields the desired bound of Equation (5.1). 0

Remember that our goal is to show an upper bound of O(n + r?) on the
worst-case complexity |ECy+| of an equivalence class and that to this end
(using the results of Observation 5.3 and Lemma 5.1) we have to prove an
O(n + r?) bound on the total number of wedge edges in £Cy+. Taking ad-
vantage of Lemma 3.7 and Lemma 5.2 this number is in

0 r2+j:il <i(ci/j1)>2i(ci,]’1)2 : (5:4)

such that it suffices to show an O(n + %) bound for the second term of this
sum. Note that each one of the numbers s, t, and ¢; j, if viewed on their own,
may have a worst-case bound of Q(r), cf. Lemma 3.7. This means, that if we
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perform the summation in Equation (5.4) in a naive way, we only get an unre-
asonable upper bound of O(r°) on the number of wedge edges. However, in
the following sections we show that we can summarize these numbers more
elaborately such that we actually are able to prove a worst-case upper bound
of O(r?) for this complexity.

5.3 Single and Multiple Candidate Edges

Since the numbers c; ; of (valid) candidate edges apparently play an important
role in determining the complexity |ECy+|, we study them in the following two
sections. We present some worst-case examples and also prove some upper
bounds, which are useful later. Note that even the trivial upper bound of O(n)
on the total number of candidate edges for a given skeleton V* can be shown to
be tight in the worst-case. To this end, consider a map with Q(n) niches (like in
the bottom part of Figure 3.15 on page 47) such that the skeleton of a suitably
chosen viewpoint contains Q () artificial edges (one per niche), each of them
with one corresponding candidate edge. Thus, the total number of candidate
edges of this skeleton also is in Q(n).

However, for this construction also the number r of reflex vertices is in Q(n),
that is, the total number of candidate edges actually is in O(r). But in the follo-
wing we present a worst-case example with Q(n) valid candidate edges using
only O(y/n) reflex vertices. In other words, we show that for small numbers r
of reflex vertices the total number of possible candidate edges of cells in £ y-
may be as high as Q(r?) and particularly cannot be bounded by O(r).

In contrast we show for a certain subset of candidate edges, the so-called
multiple candidate edges, an upper bound of only O(r) on their number in the
next section. It turns out that only these multiple candidate edges are re-
sponsible for large numbers of visibility cells such that a small upper bound
of only O(r) on their number is one of the key ingredients to the proof that the
complexity of Equation (5.4) actually is in O(n + 2).

To this end, firstly let C,j; be the set of all valid candidate edges for all artificial
edges in all embeddings of the skeleton V*, that is,

Call = U Ci,]'.
1<i<s
1<j<t

As already shown above, the cardinality of C,; may be as high as Q(#n) in the
worst-case. Now we distinguish between single and multiple candidate edges
and show tight upper bounds on their cardinalities in the following sections:
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Definition 5.4 (Single and Multiple Candidate Edges)

A valid candidate edge ¢ € C, is called a multiple candidate edge if there
exists indices i and j such that c € C;;j and ¢;j = |C;j| > 1. Otherwise, c is
called a single candidate edge. We denote with Cy,y; the subset of C,y that
consists of all multiple candidate edges and with Csing = Can \ Ciult the re-
maining set of single candidate edges.

Lemma 5.3 For a skeleton V* the total number ‘Csing] of single candidate ed-
ges is in O(min{n,r?}) and this bound is tight.

Proof. Each candidate edge c € C,y is contained in at least one set C; ; of can-
didate edges, which means, c is a candidate edge of the artificial edge a; in em-
bedding ;. (But note that ¢ might be contained in more than one of these sets.)
If ¢ additionally is a single candidate edge, it directly follows that C; ; = {c}.
Thus, the number of sets of candidate edges is an upper bound on the number
of single candidate edges and therefore |Cging| < s-t € O(r?), cf. Definition 3.7
and Lemma 3.7.

It remains to show the tightness of the bound. To this end, consider the ske-
leton V* that is sketched in Figure 5.4 (a) on the next page. It is similar to
the skeleton that we used for the proof of Lemma 4.1 on page 55 to show the
Q(r) bound on the number of intersecting embeddings and consists of s — 2
identical horizontal artificial edges a3, . .., a5 plus two artificial edges a1 and a,
on the left and on the right side of the skeleton. The main difference to the
skeleton of Lemma 4.1 is that the corresponding lines I3, ..., Is of the artificial
edges a3, ..., as are not identical. Instead, each line can be viewed as a tangent
to a convex niche, as depicted in Figure 5.4 (a). This way, if we overlay the ©(s)
(identical) niches, the corresponding tangent lines form a convex polygon that
consists of O(s) vertices.

Now consider the map polygon M shown in Figure 5.4 (b), which consists
of s + t — 1 identical convex polygonal niches (each one containing ©(s) non-
reflex vertices, as described above) such that the skeleton V* has t different
embeddings h1, ..., h; into M. Obviously, the total number of reflex vertices
of M is in O(s + t) and the total number |Csing| of single candidate edges is
in Q(s - t). Thus, if we choose s € ©(t), we get a total number of Q(r?) single
candidate edges. 0

5.4 The Total Number of Multiple Candidate Edges

In this section we show a tight upper bound of O(r) on the total number of
multiple candidate edges. To this end, we first introduce the notion of gaps
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FIGURE 5.4: The skeleton V* in (a) consists of s artificial edges and has t embed-
dings into the map M in (b), which consists of only O(s + t) reflex

vertices but results in a total of Q(s - t) single candidate edges

a, =

between consecutive candidate edges, as defined below, and show that their
number is of the same order of magnitude as the number of multiple candidate

edges.
The main problem in accurately and correctly counting the gaps (or candi-

date edges, respectively) is then the case where several gaps overlap or are
nested into each other. These cases will be the main subject of investigation in

the following.
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5.4.1 Gaps between Consecutive Candidate Edges

Definition 5.5 (Gap between Candidate Edges)
Lets, e € C; j be two multiple candidate edges lying on (the oriented) line h;(1;)
such that s occurs before e on h]-(li) and letssq,$1 S, ...,e,e1,¢e1¢ be the polyg-
onal chain of the map polygon from s to e.

If s and e are consecutive candidate edges (that is, no other candidate edge
of C; j lies between s and e), we call the chain g(s,e) == $182,...,e2e1 the cor-
responding gap between the consecutive candidate edges s and e.

From this definition it directly follows that the total number of gaps differs at
most by a factor of two from the total number |Cy, ;| of multiple candidate
edges:

Lemma 5.4 The total number of gaps for a skeleton V* and the total num-
ber |Cmyit| of multiple candidate edges for V* are of the same order of ma-
gnitude.

Furthermore, it is clear that each gap g(s,e) (that is, the polygonal chain
between s and e) must contain at least one reflex vertex. Thus, if we assume
that the gaps are neither nested nor interweaved (as defined below), we could
easily map each gap injectively onto a reflex vertex. This way, the resulting
injective mapping of the set of all gaps into the set of reflex vertices would
guarantee that there are at most O(r) gaps. Unfortunately, this is not always
the case, as Example 5.1 illustrates.

Definition 5.6 (Nested and Interweaved Gaps)
Two different gaps g1(s1,e1) and g2(sz, e2) are called

* nested if either si and ey are part of the polygonal chain g, (i.e., g1 is
nested into g») or sp and ey are part of the polygonal chain g1 (i.e., g2 is
nested into g1),

* interweaved if s1 or ey is part of the polygonal chain g, and s, or e is
part of the polygonal chain g1.

Example 5.1 (A map with nested and interweaved gaps)
Figure 5.5 on the facing page shows a skeleton V* with two artificial edges a
and b, which has two valid embeddings 1 and hy. Each of the five witnesses
p1,-..,ps sees a different pair of candidate edges. The artificial edge ha(a)
has three multiple candidate edges a1,42, and a3, that is, we have two gaps
g(a1,a2) and g(ap,a3). The artificial edge h1(b) has two multiple candidate
edges b1 and by, that is, there is one gap g(b1, by).

Thus, the gap g(a2,a3) is nested into the gap ¢(b1, ba), which itself is inter-
weaved with the gap g(a1,a). <
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FIGURE 5.5: An example of nested and interweaved gaps

As the previous example illustrates, we cannot guarantee the injectivity of
our mapping using the simple argument from above, although the number of
(multiple) candidate edges actually is less than the number of reflex vertices
in Example 5.1. For such cases, we have to take a closer look on nested and
interweaved gaps. Here, the main problem is that in the case of interweaved
gaps concave chains of candidate edges may occur in the map polygon without
any reflex vertex between the individual candidate edges. This is sketched in
Figure 5.6 on the next page, which shows a map with four pairs of collinear
edges (which may serve as candidate edges) and only three reflex vertices. In
such a case the idea of mapping each gap onto the reflex vertex that it must
contain fails, since this mapping need not be injective. In order to cope with
this problem, we first state some basic properties of nested and interweaved
gaps in the following.
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FIGURE 5.6: Concave chains of collinear edges, for which the injective-mapping-
idea fails

5.4.2 Basic Properties of Nested and Interweaved Gaps

At first, recall that for a given gap g(s, ¢) there may exist several sets C; ; > s, e
such that s and e are consecutive candidate edges of an artificial edge 4; in em-
bedding &; (see, for example, the right part of Figure 3.9 on page 37). But in
order to keep our considerations as simple as possible, we assume in the sub-
sequent considerations w. 1. 0. g. that there exists exactly one such embedding.
Then, we call h; the corresponding embedding and a; the corresponding artificial
edge® of the respective gap ¢(s,e). For this embedding h j We prove some pro-
perties that restrict the conditions under which i; may overlap with correspon-
ding embeddings of other gaps. Since we are investigating an upper bound on
the number of gaps (subject to the number of reflex vertices) and because ad-
ditional corresponding embeddings for the same gap would only increase the
number of required reflex vertices, this assumption surely is no oversimplifi-
cation for our following reasoning.

1 Note that it directly follows from Lemma 4.17 that more than one corresponding artificial
edge for a gap in a single embedding (i.e., C;j > s,e € Cy; with i # i’) is not possible.
Thus, each gap has an uniquely defined corresponding artificial edge in its corresponding
embedding.
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Lemma 5.5 Let g1(s1,e1) and g2(s2, e2) be two gaps that are nested or inter-
weaved and let hi and h; be the corresponding embeddings. Then, h1 # h;.
That is, two gaps of a single embedding can neither be nested nor be interwea-
ved.

Proof. Assume that i1 = hy = h. Then, it follows from Definition 5.5 that
the corresponding artificial edges a1 and 4, must be different, since s; and e;
(as well as s, and ep) are consecutive candidate edges. Thus, at least one of the
lines of sight from inside / to s1 and e; must cross one of the lines of sight from
inside h to s and ex. Then, the claim directly follows from Lemma 4.17 on
page 93. O

In the following we concentrate our investigations on interweaved gaps.
Nested gaps will be handled later on.

Lemma 5.6 Let g1(s1,e1) and g»2(s2,e2) be two interweaved gaps. Then, the
corresponding embeddings cannot overlap.

Proof. From the previous Lemma 5.5 we know that the corresponding embed-
dings are not identical. Furthermore, we conclude from Definition 5.6 that the
order in which the four candidate edges s1, e1, 52, and e; appear on the boun-
dary of the map polygon is either s1,s3,e1, €2 or s3,51,e2,e1. Then, the claim
directly follows from Corollary 4.21 on page 104. O

The next lemma shows that in the case of two interweaved gaps (with cor-
responding artificial edges a1 and a;) the corresponding embeddings cannot
have additional interweaved gaps besides those with corresponding artificial
edges a1 and a5.

Lemma 5.7 Let g1 and g, be two interweaved gaps with corresponding em-
beddings h; and hy and corresponding artificial edges a; and a. Then, for any
two interweaved gaps g and g, with corresponding embeddings h1 and hy
their corresponding artificial edges must be a1 and a;.

Proof. If we assume that such interweaved gaps g} and g5 with corresponding
artificial edges 4] and a) exist, such that a; # 4} for at least one i € {1,2}
(w.L.o.g. we assume a1 # 4} and g» = g5), we get a situation like the one
depicted in Figure 5.7 on the next page. Note that we already know from the
previous Lemma 5.6 that the two embeddings /1 and h; do not overlap.

Since g1 (through a1) as well as g (through 4)) is interweaved with a gap
belonging to hy (g2 = g5 in our setting), the lines of sight from inside the em-
beddings (drawn dashed in the figure) cross in such a way that the map must
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FIGURE 5.7: The gaps g1 and g} have different corresponding artificial edges

contain a hole (drawn gray), which contradicts Observation 3.3 on page 27.
Thus, our first assumption must be wrong.

If g # g5 (or ap # a}), the same argumentation can be applied with an even
“larger” hole in the map polygon. O

From the preceding lemmas we conclude that the notion of interweaved
gaps can be carried over to embeddings in the following straightforward man-
ner:

* Two embeddings h1 and h; are called interweaved, if there exist interweaved
gaps g1(s1,e2) and g2(s2,e2) such that h; and hy are the corresponding
embeddings of g1 and g». (That is, there exist corresponding artificial
edges a1 and ay such that s; and e; lie on line h;(l;) for i = 1,2.) We then
call g1 and g, a pair of witnesses> for the interweaved embeddings; h1 (a1)
and hy(ay) are called the interweaved artificial edges.

e If the embeddings h; and hy are interweaved, every pair (g1,42) of
witnesses must have the same pair of corresponding artificial edges.

(Lemma 5.7)

¢ Two interweaved embeddings cannot overlap. (Lemma 5.6)

2 Do not confuse these witnesses with the witnesses for an embedding defined on page 54!
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¢ For two interweaved embeddings /1 and h; there exist lines of sight from
inside h; to s; or e; (for i = 1,2) that intersect outside of the skeleton
polygons. (This follows from Lemma 5.6 and Definition 5.6.)

5.4.3 The Interweavement Graph

In order to represent only the topological structure of the interweaved em-
beddings, we define the interweavement graph, where each embedding is repre-
sented by a single node. To this end, we first inductively define for a given
embedding h the equivalence class of overlapping embeddings, which contains all
embeddings (besides / itself) that either directly overlap with & or overlap with
embeddings that are equivalent to h.

Definition 5.7 (Equivalence Class of Overlapping Embeddings)
Let hj be a valid embedding of a skeleton V*. The equivalence class of over-
lapping embeddings E°¥ (h;) of hj is inductively defined as follows:

© Iy (hj) = {hj}

* Vken TYq(hy) = BV (hj) U
{hp: Jpen hjp € BV (hj) N hj and hjn overlap }

o £%(hj) = Uken B (h))

The set E°Y consists of the equivalence classes E°¥ (h) of those embeddings h
that actually overlap with another embedding (that is, for which |E° (h)| > 1).

It should be clear from the definition that the relation h ~ I’ & h € E°V(K)
indeed is an equivalence relation. In the same way we also define for a given
embedding /; and an artificial edge a; the equivalence class of interweaved
embeddings.

Definition 5.8 (Equivalence Class of Interweaved Embeddings)
Let hj be a valid embedding of a skeleton V* and let a; be an artificial edge

of V*. The equivalence class of interweaved embeddings E™" (h j-a;) is induc-
tively defined as follows:

o iW(hj,ai) = {(hj/ai)}

o Vien T, (hj a;) = EX(hj,a;) U .
{(h]-/,ai/): H(j/,,i/,)eNz (h]'//, ai//) € Eliw(h]" 111') A
hj and hj» are interweaved with artificial edges hy(a;) and hy(ay) }

o E™(hj,a;) := Urex B (hj, a;)
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The set 'V consists of the equivalence classes E™ (h, a) of those pairs (h, a) for
which h actually is interweaved with some other embedding (that is, for which
|E™ (h,a)| > 1) with a being the corresponding interweaved artificial edge.

Now we are able to define the interweavement graph that describes the topolo-
gical relationships between overlapping and interweaved embeddings, using
the previous definitions.

Definition 5.9 (Interweavement Graph)

For a given skeleton V* with t embeddings hi,...,h; the interweavement
graph IG(V,E) is an undirected bipartite graph with vertex set V partitio-
ned into the set of embedding nodes {hy, ..., h;} and the set of special nodes
E°V U EW. The edge set E is defined as follows:

* There is an edge between an embedding node h; and a special node ‘EV €
E°V ifand only if h; € EV.

e There is an edge between an embedding node h; and a special node LW €
EW if and only if there is an a; such that (hj,a;) € .

Note that embedding nodes are only connected to special nodes and vice
versa. The following example illustrates the above definitions.

Example 5.2 Figure 5.8 on the next page sketches a polygonal map with seven
embeddings of a skeleton V*, which has three artificial edges a1, a2, and a3.
The artificial edges are drawn as dotted lines and the lines of sight from inside
the embeddings to the corresponding candidate edges are drawn as dashed
lines. Some of the embeddings are interweaved and some of them overlap, as
described below:

* Embedding h is interweaved with /i, which itself is interweaved with h3
(with the same corresponding artificial edge a1). Thus, the three embed-
dings (each one together with its artificial edge a1) belong to the same
equivalence class Zliw = {(h1,a1), (hy,a1), (h3,a1)}. (The equivalence
classes are marked gray in the figure.)

¢ Furthermore, h; is also interweaved with kg (through its artificial edge a»)
and with h7 (through its artificial edge a3). Therefore, h; is further con-
tained in the equivalence classes £ = {(hy,a3), (he,a2)} and EI¥ =
{(h2,a2), (h7,a2)}. Note that the corresponding artificial edges of inter-
weaved embeddings need not be identical as can be seen, for example,
at ‘Zziw, which represents the interweavement of /i, and hs.
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FIGURE 5.8: A map with overlapping and interweaved embeddings ...

* The last equivalence classes of interweaved embeddings contains hy
and hs, which are interweaved through the artificial edge a1, £} =

{(ha,a1), (hs,a1)}.

* Finally, the embeddings h3 and hy4 overlap, such that the only equiva-
lence class of overlapping embeddings consists of these two embeddings,
EYY = {h3,hs}. Note that the overlapping is only sketched in the figure.
(For example, there must be involved at least one artificial edge of hs3,
which is ignored in Figure 5.8).

The corresponding interweavement graph is depicted in Figure 5.9 on the
following page. The embedding nodes are represented by bullets >e< and the
special nodes by circles »o«. <
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£1iw Z:{)V Ziw

h1 h3 hy hs

[ . ® . °
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FIGURE 5.9: ... and the corresponding interweavement graph

In the following we state some properties of the interweavement graph.

Lemma 5.8 The interweavement graph does not contain any circle.

Proof. The claim follows from the properties of interweaved embeddings that
we have stated above. We use the fact that for two interweaved embeddings
there exist lines of sight from inside the embeddings to the involved candidate
edges that intersect outside of the skeleton polygons. This way, we would be
able to construct a circle of lines of sight containing at least one map vertex
(which would contradict Observation 3.3 on page 27) if the embeddings are

circularly interweaved (or overlapping, respectively).

Lemma 5.9 For an interweavement graph the following holds:

1. The degree of each special node is at least 2.

2. For each embedding node there is at most one edge to a special

node £V € EV.

3. The interweavement graph is a forest of trees with embedding nodes as

leaves.

4. The number of edges is at most two times the number of embedding no-

des.

Proof. The proof of the four propositions is straightforward:
1. The claim directly follows from Definition 5.7, 5.8, and 5.9.

2. This also directly follows from Definition 5.7.
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3. Lemma 5.8 states that an interweavement graph does not contain any
circle. Thus, it must be a forest of trees. From (proposition 1) follows
that a leaf of such a tree cannot be a special node, from which the claim
follows.

4. The claim follows by a simple inductive argument using (proposition 1):
We build up each tree of the interweavement graph starting with a sin-
gle embedding node and counting the number of edges and embedding
nodes, which initially is zero and one. Adding a new embedding node in-
creases both numbers by one. Adding a new special node requires also an
additional embedding node due to (proposition 1) such that the number
of edges increases by two and the number of embedding nodes increases
by one. O

From Lemma 5.9 (4) particularly follows that in the average case each em-
bedding contributes at least 50 percent to each of the interweavements in which
it is involved. This will be the key in the following in order to find an upper
bound on the number of candidate edges.

5.4.4 Determining the Upper Bound on Cpy

In order to count the multiple candidate edges, we may restrict ourselves to
count the edges of nested and interweaved gaps, since in the other case the
injective mapping described on page 118 already proves a bound of O(r) on
their number. Furthermore, we additionally make the following assumptions,
which will be justified later on.

Assumption 5.10 For the subsequent considerations we assume that

1. there are no overlapping embeddings (since in our case of counting the
candidate edges, the fact that two embeddings overlap can be ignored, as
we will see below), that is, E°Y = &,

2. for each interweavement LV € E the corresponding lines I; of the
interweaved artificial edges a; are pairwise non-parallel, and

3. there are no nested gaps (as already stated above, this case will be hand-
led separately).

Using our above considerations on interweaved gaps, we are now able to
cope with the problem of concave chains of candidate edges, which we have
mentioned on page 119. The following Lemma 5.11 uses some results on
the maximum complexity of m disjoint concave chains in an arrangement of



128

CHAPTER 5 REVISITING THE COMPLEXITY OF AN EQUIVALENCE CLASS

n pseudo lines by Halperin and Sharir [HS91, HS94b]. Similar bounds were
proven by Hershberger and Snoeyink [HS98] investigating the maximum com-
plexity of m faces in an erased arrangement of n lines. We cite the theorem of
Halperin and Sharir, since it plays a crucial role in the proof of Lemma 5.11:

Theorem 5.10 Let L = {{1,...,{,} be a collection of n pseudo lines, each pair
of which intersect at most once. Let 4 = A(L) be the arrangement of the
pseudo lines. A concave chain c in A4 is a connected path in the union of the
pseudo lines of L, such that as we traverse c from left to right, whenever we re-
ach a vertex of 4, we can either continue along the pseudo line we are currently
on, or make a right turn onto the other pseudo line, but we cannot make a left
turn.

Then, the maximum joint combinatorial complexity of m disjoint concave
chains in an arrangement of n pseudo lines is

C) (m2/3 23 4 n) . (5.5)

Now we state the lemma, which limits the number of candidate edges in
each single interweavement, such that our desired bound directly follows.

Lemma 5.11 Under Assumption 5.10 the following holds: For each interwea-
vement E" € E™ we can assign ry reflex vertices to B, such that

e the number of (multiple) candidate edges, which is involved in interwea-
vement Z:Iiw = {(hjl,llil), e, (h]'u,lliu)} is in O(?’k), that is, Ciy, j1 + .-+
Ciyju € O(Vk), and

e each reflex vertex is assigned to at most O(1) interweavements (that is, in
particular ), ri € O(r) holds).

Proof. We consider an interweavement " = {(hj,,a,),..., (hj,, a;,)} with
u involved embeddings (that is, the corresponding special node in the inter-
weavement graph has degree u).>

From Assumption 5.10 (2) follows that the u artificial edges must be pair-
wise different, since no two of their corresponding lines /; , ..., [;, can be iden-
tical. Furthermore, from Lemma 5.6 we know that no two of the embeddings
hj,,..., hj, overlap. Thus, each one of the u artificial edges has its own pair
of map vertices in each one of the u embeddings, therefore requiring a total of
Q(u?) reflex vertices (in the u disjoint embeddings).

3 To be correct, we should use uj for the number of involved embeddings, since this number
of course depends on the respective interweavement. But in order to avoid triple-indices,
we accept this little abuse of notation.
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From Lemma 5.9 (4) we then conclude that for the u edges incident to @iw
in the interweavement graph we can determine Q(u) embeddings (namely
u/2 embeddings), which can be exclusively assigned to . Thus, we can find
a first set of reflex vertices of size 7y € Q(u?), which fulfills the requirement
from above that each reflex vertex is assigned to at most O(1) interweave-
ments. Consequently, the number u of involved embeddings is then in O(T’i/ 2).

In the following we apply the result of Halperin and Sharir cited above
to our setting. We consider the arrangement of the u corresponding lines
hj (ly), ..., hj,(l;,), on which the multiple candidate edges lie. The part of
the map boundary that corresponds to Z¥ can then be seen as a collection of
disjoint concave chains of candidate edges (and possibly also of non-candidate
edges, but this plays no role here) in the arrangement of the u lines. Between
two consecutive chains there lies at least one reflex vertex, which also can be
exclusively assigned to Z¥. (This follows directly from the construction of the
equivalence class of interweaved embeddings, cf. Definition 5.8). Thus, we can
find a second set of reflex vertices with cardinality 7, which also fulfills the re-
quirement from above and whose cardinality is of the same order of magnitude
as the number of concave chains.

Then, due to Theorem 5.10 on the facing page the maximum number of can-
didate edges that lie on the lines kj, (I;,), ..., hj,(1;,), is in

) (?i/ 3. (?,1/ 2>2/3 + 7 2) : (5.6)
Using ry := max{7, 7} this can be rewritten as
0 <r,%/3 : r;/g' + r,i/2> = O(ry),
which completes the proof. O

As already stated above, from the previous lemma an upper bound of O(r)
on the total number of multiple candidate edges directly follows by summing
up over all interweavements Z/" and using the fact that }_ , 7, € O(r). So, in
order to prove this bound also for the general case, we only have to show that
Assumption 5.10 is not too restrictive. This is done in the following for each of
the three assumptions.

No overlapping embeddings — Assumption 5.10 (1)

In the case of overlapping embeddings in the map, let £V = {hj,..., h;}
be such an equivalence class of overlapping embeddings. We now reduce this
case to a non-overlapping situation by substituting the embeddings #,, ..., h;,
in the interweavement graph by a single virtual embedding fy, as depicted in
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FIGURE 5.10: Substituting an equivalence class of overlapping embeddings in the
interweavement graph

Figure 5.10. Note that Lemma 5.9 (2) states that all embeddings h;,,...,hj,
are connected to only one equivalence class of overlapping embeddings (i.e.,
to V). Thus, this substitution process poses no problems in the interweave-
ment graph. Furthermore, the substitution also does not influence the avera-
ging argument of Lemma 5.9 (4), since the resulting interweavement graph has
the same properties as the original one.

In other words, we regard a set of overlapping embeddings as a new object,*
which is interweaved with the same embeddings as the original ones, but count
it only as one embedding in order to determine the number of reflex vertices.
Thus, we safely underestimate the number of reflex vertices, in order to find an

upper bound on the number of candidate edges.

No parallel lines I; - Assumption 5.10 (2)

The problem of parallel corresponding lines /; for an interweavement f,iw €
EW can be circumvented in a similar way as the previous problem, namely by
a suitable transformation of the map and the interweavement graph, respec-
tively. To this end, assume an interweavement " = {(hj,, a;,), ..., (hj,, a;,)}
such that a subset hy, (I;,), ..., hj;,(I;,) of the corresponding lines is parallel.
Then we transform the map in the following way:

Let w.l. 0. g. the lines hj (I;,), ..., hj,(l;,) be horizontal such that the corre-
sponding embedded skeletons are placed below and let /5 (I;,) be the top-
most line. Then, we first shift all candidate edges, which lie on one of the
other lines hy,(I,), ..., hj,(I,) onto hy (I;;), as depicted in Figure 5.11 on the
next page. Note that this transformation does not introduce any new reflex
vertex. Furthermore, we additionally eliminate the edges between Z/" and

4 The notion virtual embedding may be a bit misleading, since this object surely is no embed-
ding of V*.
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FIGURE 5.11: Transforming the map to avoid parallel lines /;

(hy,,a1,), ..., (hy,, a1,) and assign the transformed candidate edges to embed-
ding hj,. (If hy is the only embedding that remains we could even eliminate
the whole interweavement £;"V.

In other words, in the case of parallel lines we choose one representative em-
bedding, to which we assign the corresponding candidate edges, and simply
ignore the remaining embeddings. This way, the number of candidate edges
is not changed, but the number of involved embeddings (and therefore, the
number of reflex vertices) is decreased by our transformation.
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No nested gaps — Assumption 5.10 (3)

The problem that we have with nested gaps (in contrast to interweaved gaps) is
that the corresponding embeddings could overlap (cf. Lemma 5.6 on page 121
where this property was disproved for interweaved gaps). Therefore, we have
to differentiate between nested gaps with overlapping and non-overlapping
embeddings:

Nested gaps with non-overlapping embeddings If the corresponding em-
beddings do not overlap, we get the same situation as with interweaved
gaps and can handle it in exactly the same way. In particular, lines of
sight from inside the embeddings to the corresponding candidate edges,
which cross outside of the embeddings, exist also for the case of nested
gaps. Thus, all the claims about interweaved gaps and embeddings (e. g.,
Lemma 5.7 and the subsequent ones) can be transferred and analogously
shown for nested gaps.

Nested gaps with overlapping embeddings If we assume two gaps g1(s1,€1)
and g¢2(sp, e2) with corresponding artificial edges 41 and ap and cor-
responding overlapping embeddings h; and hy such that g, is nested
into g1, the situation must be like the one shown in Figure 5.12 on the
next page.

In particular, the artificial edge hy(a2) must lie between the lines of sight
from hy to s1 and ej, since otherwise the two embeddings could not over-
lap without creating a hole in the map. Thus, we conclude that /1 (a1)
must intersect /1, (V?), since this is the only possible way of an overlap-
ping between h1 and hy (without creating a hole). From this situation it
follows that another embedding /3 that is interweaved with hy can neit-
her be interweaved with /1 nor can it overlap /. That is, all correspon-
ding gaps of h3 must be nested into g1.

Thus, we can safely ignore the nested gaps g1(s1,e1) and g2(s2, e2) and
simply regard the two embeddings h; and hy as overlapping embed-
dings, which then can be handled as described above. This way, we
do not count the nested gaps (or candidate edges, respectively) g1(s1,e1)
and g2(s2, e2), but their total number is limited by the maximum number
of embeddings, that is, it must be in O(r).

Using the above arguments, which justify Assumption 5.10, we can combine
Lemma 5.4 and Lemma 5.11 in order to get our desired bound on the number
of multiple candidate edges:

Theorem 5.12 For a skeleton V* the total number |Cyy1t| of multiple candidate
edges is in O(r).
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FIGURE 5.12: Nested gaps with overlapping corresponding embeddings

5.5 A Result on Pairs of Multiple Candidate Edges

We have already seen in the preceding sections that multiple candidate ed-
ges play a crucial role in determining the worst-case complexity |ECy+| of an
equivalence class. Moreover, in the subsequent section it will come out that in
particular we have to count the number of pairs of multiple candidate edges. To
this end, we show in this section that a given pair (e, f) of map edges may be a
pair of multiple candidate edges in at most a constant number of embeddings.

The following two lemmas first investigate pairs of candidate edges in many
embeddings and show that at least a constant fraction of these embeddings
must overlap.

Lemma 5.13 Let e and f be two map edges and let hj,, ..., hj be a number

J1/

of k > 2 embeddings such that for each hj,, 1 < u < k, the following holds:

* ¢ is a valid candidate edge of some artificial edge h;, (a;,)
* f isa valid candidate edge of some artificial edge h;, (d;,) with &, # a;,
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FIGURE 5.13: A pair of candidate edges visible from two embeddings

Then, there exist two embeddings hj, and hj, and artificial edges a; and i,
such that for allhj,, 1 <u <k,

e the lines of sight from inside h;, to e cross h,(a;), and
e the lines of sight from inside hj, to f cross h;j,(d;).

That is, all lines of sight to e (or to f, respectively) pass through the same arti-
ficial edges hj,(a;) or hj,(d,), respectively.

Proof. Without loss of generality let ¢ and f be horizontal, directed from right
to left and placed in the map such that e lies to the left of f (see Figure 5.13).
Note that for two different embeddings the lines of sight to e and f must in-
tersect as depicted in the figure, since otherwise the two embeddings would
intersect and encircle at least one map vertex (which would contradict Obser-
vation 3.3) due to Theorem 4.2.

Now let 1, be the embedding with the leftmost line of sight to e and let i,
be the embedding with the rightmost line of sight to f. Furthermore, let 4; be
the artificial edge of ;, that belongs to e and let d, be the artificial edge of &;,
that belongs to f. Then, the right vertex of /j,(a;) cannot be placed below the
line of sight from h;, to f (that is, in the light-gray region in the figure), because
otherwise also the line of sight to f would cross /j,(a;). Thus, it must be placed
above this line of sight and to the right of all others lines of sight from to e, since
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FIGURE 5.14: The one exceptional case where /1, and &, do not overlap

in the other case a hole in the map would have been created. Therefore, all lines
of sight to e pass through the artificial edge /,(a;). Analogously, we show that
all lines of sight to f pass through h; (a,). O

Lemma 5.14 Let e and f be two map edges and let hj,, ..., hj, be a number
of k > 4 embeddings such that for each hj,, 1 < u < k, the following holds:

* ¢ is a valid candidate edge of some artificial edge h;, (a;,)
e f is a valid candidate edge of some artificial edge h;, (d;,) with a;, # a;,

Then, at least [k/3] of the embeddings pairwise overlap.

Proof. Let 1, and hj, be the embeddings claimed by Lemma 5.13. We now
conclude for 1 < u < k that the right vertex of the artificial edge k;, (a;, ), that s,
the artificial edge corresponding to the left candidate edge e, and the left vertex
of hj,(@;,), that is, the artificial edge corresponding to f, must lie in the same
region R as the right vertex of &, (a,) and the left vertex of (), bounded by
the map and by the lines of sight from /1, to e and from &, to f. See Figure 5.14
where this situation is sketched (including the view cones of the witnesses);
the respective region R is drawn in light-gray.

Note that we cannot conclude where the respective other vertices of the
above artificial edges have to lie (that is, the left vertices of the 4; and the right
vertices of the 4;, ), but in all cases (except for one, see below), the two embed-
dings overlap, since 1, (d;) intersects ;,(V°) and h;, (a,) intersects j,(V°). The
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FIGURE 5.15: The case of three non-overlapping embeddings %, h;, and h;,

one exception occurs if the lef vertex of 1, (4;) and the right vertex of &;, (a,) are
identical. This is depicted in Figure 5.14, where their common vertex is deno-
ted by o.

Now we assume another embedding h]-m, 1 < m < k. Itis clear that if
hj, and h;, overlap, the embedding };,, must overlap both of them, since each
straight line into R “from below” crosses a view cone of &, as well as a view
cone of 11j,. Thus, we can restrict our considerations to the exceptional case
shown in Figure 5.14 where the two artificial edges &j,(4;) and k,(a,) have a
common vertex v. In order to achieve that also these three embeddings do not
overlap, the vertex v additionally must be the right vertex of ;, (a,) and the
left vertex of 1, (@, ). We then get the situation sketched in Figure 5.15, which
focuses on the region around vertex v. The view cones through the artificial
edges hj, (ay) and hj, () are drawn dark-gray and the three embeddings /;,,
hj,,and h;, are drawn light-gray.

The lines that are induced by the two incident edges of v are denoted by [
and I. Note that the left artificial edge hj, (a,,) must lie to the left of [ and that
the right artificial edge h;,, (4, ) must lie to the right of I. Thus, any additional
embedding, which does overlap neither /i, nor h;, must be positioned in the
same way as &, and consequently overlap /.

Therefore, any additional embedding must overlap at least one of the three
embeddings hj, hj, or hj,. By the above construction (cf. Figure 5.14) it further
follows that if such an embedding overlaps h;, (x = [, m,r), it also overlaps
all embeddings that overlap &;,. From this, the claim follows using the pigeon
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hole principle. O

We now use the result of the previous lemma in order to show that for a
given pair (e, f) of map edges the number of embeddings, for which (e, f) is a
pair of multiple candidate edges, is limited by a constant.

Theorem 5.15 Let ¢ and f be two map edges and let hj,, ..., hj be a number
of k embeddings such that for each hj,, 1 < u < k, the following holds:

* ¢ is a valid candidate edge of some artificial edge h;, (a;,)
e f is a valid multiple candidate edge of some artificial edge h;j, (d;,) with

i, # ai,

Then, k is at most six, that is, k < 6.

Proof. We assume that k > 7 and conclude from the preceding Lemma 5.14
that in this case at least three embeddings h 1 h jor and h is exist that overlap.
Since f is a multiple candidate edge in each of the three embeddings, there
must exist candidate edges fi, f2, f3 such that f, f, € C; j, for1 < u < 3,
all lying on the same line I. Without loss of generality we assume that [ is
horizontal and directed from right to left. It follows that at least two of the
candidate edges f1, f2, f3 must lie on the same side of f on [. Without loss of
generality we assume that the edges f1 and f; lie to the right of f. For the
following considerations let i := h;j; and W :=h j,- Furthermore, let w1 and w;
be the witnesses of >f and f; are valid candidate edges in h< and let let w}
and w) be the witnesses of »f and f; are valid candidate edges in #’'<. Then,
we get a situation as depicted in Figure 5.16 on the next page.

Now observe the following:

1. Since f1 and f, lie on the same side of f, a straight line s exists (as de-
picted in the figure) that separates the witness w; from w», as well as it
separates the witness w) from w),. (The gray regions in the figure denote
the visibility wedges of the candidate edges f and f1/f, with respect to
the artificial edge h;,(@,) from Lemma 5.13.)

2. From each of the four witnesses exist lines of sight to the candidate ed-
ges e and f. Moreover, w; and w; see each other, as well as w} and w)
do.

3. The lines of sight between wy and w/ (i = 1,2) must be blocked by map
vertices due to Theorem 4.2, as well as the lines of sight between w,
and w! (i = 1,2).
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FIGURE 5.16: The placement of the four witnesses w1, w,, w}, and w)

4. From (proposition 1) to (3) follows that the line of sight between w;
and w; and the line of sight between w) and w) cannot intersect, since

otherwise the map would contain a hole.

5. With the same reasoning as in (4) we conclude that no one of the triangles,
which consist of two corresponding witnesses (that is, either w; and w» or
w) and w)) and a point on e or f, could contain one of the two remaining

witnesses (cf. Figure 5.16).

6. Then, we finally conclude from (proposition 4) and (5) that the four wit-
nesses must be placed as depicted in Figure 5.16, that is, one pair of wit-
nesses lies “below” the remaining pair. Without loss of generality we

assume that w’1 and wy lie below w; and w,. Furthermore, let x and y
denote the blocking vertices between w; and w,.

Now compare the placement of the witnesses w1, wy, and w), with the si-
tuation in the proof of Theorem 4.19. Although we have no crossing candidate
edges here (since f; and f, need not be different map edges), the situation is
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absolutely identical to the one in Theorem 4.19. In particular, we could even
copy the proof (starting at page 102) almost one-to-one, in order to show, that
also the placement of the witnesses w1, w, and w’2 leads to a contradiction.
Thus, in the same way as in the proof of Theorem 4.19 we show that the
map polygon must contain a hole and conclude that our initial assumption
>k > 7< must be wrong. O

This result, that the number of pairs of multiple candidate (for a given pair
of map edges) is bounded by a constant, is profitably applied in the following
section.

5.6 Putting it Together —-The Bound on the Number
of Wedge Edges

Now we are able to use the results of the preceding sections, in order to bound
the total number of wedge edges of an equivalence class.

Theorem 5.16 For a given skeleton V* the total number of wedge edges
in ECy~ is in O(r?).

Proof. Equation (5.1) from Lemma 5.2 on page 111 describes the number of
wedge edges in a single embedding ;. Summing up (and taking advantage of
Lemma 3.7), we yield Equation (5.4) from page 114

O<r2+i ((; C,j1)>2é(ci1]~1)2)) . (5.4)

Using the following equality

S 2 S
(Z (c,',]'—l)) _Z Ci,j — _2Z Ciy,j — Clzl]'_l) ’
i=1

i=1 1<i1<ir<s

Equation (5.4) can be rewritten to

0 (r2+i > (eqj—1) (ciz,j1)) : (5.7)

j=11<i1<ir<s

For the double sum in Equation (5.7) we further conclude

t
Z Z (cir,j —1) (cinj — <Z Z Ciy i % Ciyil

11<i1<ip<s j=1 1<i1<iz<s
|Ci1rj|'|cf2rf|>1




140

CHAPTER 5 REVISITING THE COMPLEXITY OF AN EQUIVALENCE CLASS

since ¢;, j, Ci,,j = 1, and using the fact that for a single embedding h; the sets C;, j
of valid candidate edges must be pairwise disjoint (cf. Lemma 4.17) we get

t
- Z U Cil,j X Ciz,]' . (5.8)
j=1 1<i1<ip<s
|C,-1,]-|,|C1-2,]-|>1

Now observe that the union in Equation (5.8) consists of pairs of multiple candi-
date edges (because of |C;, ;| , |Cj,,j| > 1), such that we can apply Theorem 5.15

7

as follows
t
<6 U U Cilrj X Ciz,j
j=1 1<i1<ip<s
|Ci1/]'|'|ci2/j|>1
2
<6- ’Cmult| . (5-9)

Thus, plugging Equation (5.9) into Equation (5.7) and applying Theo-
rem 5.12, which bounds the total number of multiple candidate edges, we con-
clude that the total number of wedge edges is in ECy+ is in O(r?). O

Using the previous result together with Lemma 5.1 on page 110, we imme-
diately get the following claim about the total complexity of an equivalence
class ECy+.

Theorem 5.17 The total number of cells in any equivalence class ECy+ (as well
as their total complexity) is in O(n + r?).

This improves the O(1n?) bound of Theorem 3.10 on page 47 in the sense that
the quadratic term now depends only on the number of reflex vertices and not
on the total number of map vertices.

Referring to Equation (3.2) we analyze the preprocessing costs analogously to
Theorem 3.11 on page 49 and yield the succeeding corollary.

Corollary 5.18 The preprocessing of a polygonal map M with n vertices in to-
tal, hereof r reflex vertices, using Algorithm 3.14 has a time and space comple-
xity of O(N(n+r?)), where N € O(n?r) describes the number of visibility cells
of M.
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5.7 Summary

The main goal of this chapter was to establish a refined bound on the worst-
case complexity |ECy+| of an equivalence class compared to the O(n?) result
of Guibas et al. (see Theorem 3.10). To this end, we first investigated the struc-
ture of the visibility cells of £Cy+ in detail and reduced the problem of de-
termining |ECy+| to the problem of counting the wedge edges of ECy+. An
accurately upper bound on their number in a single embedding was given in
Lemma 5.2.

We further showed that the number of wedge edges heavily depends on the
number of single and multiple candidate edges. For the total number of single
candidate edges we showed that the trivial upper bound of O(min{n,r?}) is
tight and gave a worst-case example (Lemma 5.3). In order to establish also a
tight upper bound on the number of multiple candidate edges, we further in-
vestigated the gaps between the multiple candidate edges, which can be nested
or interweaved in the worst-case, such that all known simple counting strate-
gies fail.

Thus, we introduced the interweavement graph that abstracts from the geo-
metric properties of the setting and only represents the topological structure of
the interweaved (and overlapping) embeddings. We proved several properties
about interweaved, overlapping, and nested embeddings and finally establis-
hed a tight upper bound of O(r) on the total number of multiple candidate
edges.

Moreover, using the results of Chapter 4 we proved a claim about pairs of
multiple candidate edges (Lemma 5.13), which states that any two map edges
may be a pair of candidate edges in at most a constant number of embeddings.
Using this result and the previously established bound on the number of candi-
date edges, we finally proved our main theorems on the total number of wedge
edges and the total complexity of an equivalence class £Cy+ (Theorem 5.16
and 5.17).
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Realistic Scenarios

Far down the giant hallway,

almost as tiny as Danny himself,

was a dark figure. Tony.

“Where am I?” he called softly to Tony.
“Sleeping,” Tony said.

“Sleeping in your mommy and daddy’s bedroom.”
There was sadness in Tony’s voice.

Danny in “The Shining”
STEPHEN KING (x 1947)

HE PRECEDING CHAPTERS dealt with the robot localization problem by

introducing some restrictive and simplifying assumptions (cf. Assump-
tion 3.1 on page 24). This way, we obtained an idealized version of the problem,
which was analyzed and solved using methods from the field of computatio-
nal geometry. In the following we return to the original real-world problem of
localizing a robot, which is equipped with a range sensor (e. g., a laser scanner)
and which was dropped somewhere in its environment.

The objective of this chapter is to adapt the solution of the idealized problem
(shown in Chapter 3) to the properties of real-world environments such that
the restrictive assumptions can be loosened. In order to do this, we first discuss
in the subsequent section the problems that occur if we try to use the compu-
tational geometry solution of the previous chapters for realistic scenarios. We
then introduce the concept of distance functions, which model the resemblance
between the sensor data and the map, and show how we may use this concept
to circumvent some of the problems illustrated before.

Moreover, we introduce a distance function that seems to be well suited for
the localization problem, the polar coordinate metric, and show how this distance
can be used in our framework. Finally, we present our implementation ROLO-
PRO, where the idealizing scheme of Chapter 3 as well as our approach for
realistic scenarios was implemented.

143
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6.1 Problems in Realistic Scenarios

In the following we compare the idealizing assumptions of the previous chap-
ters with the characteristics of real-world scenarios and study how the compu-
tational geometry solution would behave in such scenarios and what problems
would occur, respectively.

Exact visibility polygon vs. noisy range scan Realistic range sensors do not
generate a visibility polygon vV as assumed for the idealizing method, but only
a finite sequence S of scan points (usually, measured at equidistant angles). Fur-
thermore, these scan points do not lie exactly on the robot’s visibility polygon,
but are perturbed due to sensor uncertainties. An example is depicted in Fi-
gure 6.1 on the next page, which shows a part of a polygonal map of the Com-
puter Science Department at the University of Wiirzburg. Here, Figure 6.1 (a)
depicts the exact visibility polygon ¥, of a robot standing at point p, whereas
Figure 6.1 (c) shows a real noisy laser range scan S, taken at the corresponding
position in the department hall using a SICK LMS 200 laser scanner. Even if
we connect the scan points by straight line segments as shown in Figure 6.1 (b)
in order to obtain a shape representation of the scan points, we only get an
approximation Vs, of the exact visibility polygon 9/, based on the map.

Missing compass For the localization process we assume that we already
know the exact orientation of the robot. But in practice this is often not the case.
Usually, a robot has no compass at all and gains information about its orien-
tation only from its odometry sensors, which have a large drift if the travelled
distance increases. Thus, we only have inexact knowledge or no knowledge at
all about the robot’s orientation.

Map polygon is not simple Of course, a realistic map cannot be modeled
by a simple polygon as assumed in Chapter 3, since there are almost always
pillars in the robot’s environment, which have to be modeled by holes in the

map polygon.

Unknown obstacles and incomplete map There may be obstacles in the en-
vironment that are not considered in the map and which may affect the robot’s
view. For example, furniture that is too small to be took into account for the
map generation process or even dynamic obstacles like people or other robots.
Such obstacles can also be recognized in the right part of the example scan
shown in Figure 6.1 (c).
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(b)

(a)

FIGURE 6.1: Exact visibility polygon (a) and approximated visibility polygon (b)
of a noisy scan (c)
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Limited sensing range Realistic range sensors only have a limited sensing
range (about 80m for a typical laser scanner) and obstacles that have a grea-
ter distance to the robot cannot be detected. If the robot has to operate in an
environment with greater distances between positions that are visible to each
other, the scans at such positions significantly differ from the respective visibi-
lity polygons.

The consequence of the problems described above is in all cases that the (ap-
proximated) visibility skeleton V¢ , which the robot computes from its appro-
ximated visibility polygon Vs, usually does not match any of the preprocessed
skeletons exactly. That is, Step 4 of Algorithm 3.13 on page 44 fails, as no leaf
in the d-dimensional search tree T; could be found, which contains the corre-
sponding encoding vector [V§]. Therefore, no equivalence class of visibility
cells could be determined, for which the point location query of Step 5 had to
be performed, and as a consequence the localization process completely fails.

6.2 Adaptation to Practice Using Distance Functions

In the following sections we introduce an approach to tackling the problems
described above, which at least reduces them and which allows us to apply the
ideas of Section 3.8 also to real-world scenarios. To this end, let S be a given
range scan (from the sensor). Then, we search for the preprocessed skeleton
that is most similar to S. In order to model the resemblance between a scan S
and a skeleton V*, we use an appropriate distance function d(S, V*). Then, ins-
tead of performing an exact match query as in the original Algorithm 3.13, we
carry out a nearest-neighbor query in the set of skeletons with respect to the cho-
sen distance function d(S, V*) in order to find the skeleton with the highest
resemblance to the scan.

Depending on the distance function, we then additionally have to apply a
local matching algorithm to the scan and the skeleton in order to determine
the position of the robot. The reason for this procedure is that not all methods
for determining a distance measure yield an optimal matching (i.e., a trans-
lation vector and a rotation angle) as well. Consider, for example, the Arkin
metric, see [ACT91], which compares two shapes by means of their turning
functions. The turning function can be seen as a parametrisation of the angle
of rotation of a point that traverses the boundary subject to its arc length. It is
invariant under scaling and translation and in the case of polygons it is piece-
wise constant (with discontinuities at the polygon vertices). Thus, an algorithm
that computes the Arkin metric only provides the optimal rotation angle and
no translation vector (besides the distance measure). In contrast to this, algo-
rithms for computing the minimum Hausdorff distance under rigid motions, see
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[ABB95, AG99] and Section 6.6, may provide both the distance measure and
the corresponding matching.

6.3 Requirements to the Distance Function

In order to be useful in practice, a distance function d(S, V*) should meet at
least some of the following properties, which are motivated by the intuitive
definition of similarity between geometric objects (cf. [VelO1, Sect. 3]):

Continuity So as to be robust against small distortions, the distance function
should be continuous in the sense that small changes in the scan (e. g., caused by
noisy sensors) or even in the skeleton (e. g., caused by an inexact map) should
result in only small changes of the distance. More precisely: Let d5(S1, S2) and
dy+(V7, V3) be functions that measure the resemblance between two scans Sj
and S> and between two skeletons V| and V3, respectively. Possible reference
distance measures for ds(S1, S2) are, for example, the Hausdorff distance (see
Section 6.6 and [ABB95, AG99]) or the symmetric difference [AFT98]. (In the
latter case we have to use the shape representation of the scan points, that is,
their approximated visibility polygon 7%s.)
Then, we define the continuity of the distance d(S, V*) as follows.

Definition 6.1 (Continuity of a Scan-Skeleton Distance)
For a given reference distance measure ds(S1, S) we say that the distance func-
tion d(S, V*) is continuous with respect to scans if

Ves0 3550 Vs,,5, ds(S1,52) <& = |d(51, V™) —d(S2, V') < e

holds for all skeletons V*.

Analogously, for a given reference distance measure dy-(V;,V}) between
skeletons the distance d(S, V*) is said to be continuous with respect to skele-
tons if

Ves0 550 Vvyvy dv+(Vy,Vy) <6 = [d(S, Vi) —d(S,Vy)| <e
holds for all scans S.

The requirement of continuity is also motivated by the classification of the
edges of the visibility polygon being sorted into different types (spurious ed-
ges, partially visible edges, etc.) in Step 1 of Algorithm 3.13 on page 44. This
particularly makes the original method susceptible to perturbations: Even a
small translation of a vertex can change the type of an edge, which yields a ske-
leton that does not match any equivalence class. In this sense, the exact match
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query in Step 4 can also be interpreted as a discrete distance measure between
a visibility polygon and a skeleton, which, however, strongly violates the con-
tinuity requirement, because it attains only two values (e.g., 0 — “match” and
1 - “no match”).

Similarity preservation A skeleton V* that is “similar” to a scan S should
have a small distance value d(S, V*). Otherwise, the distance would not give
any advice for finding a well-matching skeleton and therefore would be useless
for the localization algorithm. In particular, if we take a scan S, from a point p
whose skeleton equals V;, we want the distance d(Sp, V) to be zero or at least
small, depending on the amount of noise and the resolution of the scan.

Analogously, if a scan S and a skeleton V* have a small distance d(S, V*), we
should safely be able to assume that there exists a position p in the map such
that Sp is “similar” to S and V;, = V* holds.

Translational invariance As the robot has no knowledge about the relative
position of the coordinate systems of the scan and the skeleton to each other,
a translation of the scan or the skeleton in their local coordinate systems must
not influence the distance. Rather finding this position is the goal of the locali-
zation algorithm.

Rotational invariance If the robot does not have a compass, the distance
must also be invariant under rotations of the scan (or the skeleton, respec-
tively).

Fast computability It turns out in the following section that the di-
stance d(S, V*) has to be determined several times for a single localization
query (for different skeletons). Thus, the computation costs should not be too
high.

6.4 Maintaining the Skeletons

As we do not want to compare a scan with all skeletons in order to find the
skeleton with the highest resemblance (remember that their number can be
in Q(n?r) even for simple map polygons, see Theorem 3.9 on page 46), the
skeletons should be stored in an appropriate spatial data structure that we can
search through efficiently.

For this purpose we use the Monotonous Bisector Tree of Noltemeier
et al. [NVZ93], a spatial index that allows to partition the set of skeletons
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hierarchically with respect to a second distance function D(Vy, V;), which
models the resemblance between two skeletons V' and V. Using the distance
function D(V7, V), the set of skeletons is recursively divided into clusters in
a preprocessing step. Such a cluster of skeletons is characterized by its cluster
center (one of the skeletons of the respective cluster) and its cluster radius,
that is, the maximum distance between the center and any other skeleton of
the cluster. In the recursion step each cluster with sufficiently many skeletons
is divided into two preferably equally-sized subclusters. This is accomplis-
hed by means of the bisector with respect to D(V;, V5) between the two new
cluster centers, which guarantees monotonously decreasing cluster radii. The
resulting division then represents the similarities of the skeletons among each
other.

The distance function D(V7, V), which is used in order to compute the cluster
radii, should be “compatible” to the function d(S, V*), such that in the nearest-
neighbor query not all clusters have to be investigated. That is, at least the
triangle inequality

d(S,Vi)+D(V{,Vy) >d(S,Vy) (6.1)

should be satisfied. This way, we can determine lower bounds on the distance
values d(S, V*) of complete clusters, when traversing the tree. Such a cluster
can then be rejected and need not be examined at all.

The computation of the skeletons can be accomplished similar to Algo-
rithm 3.14 on page 45, except that we need not overlay the resulting visibility
cells (which is only required for the exact localization algorithm). Furthermore,
we can also withdraw the assumption of a simple map and instead allow ho-
les in the map polygon, since the notions of skeletons and the visibility cell
decomposition are also well-defined for map polygons that have holes. But
of course, most of the complexities of Chapter 3 become worse in this case;
for example, the worst-case number of visibility cells (which is in O(n?r) for
map polygons without holes, cf. Theorem 3.9) may then be in Q(n?r?). This
way, we circumvent the problems with non-simple map polygons, which was
mentioned in Section 6.1 by accepting a trade-off in the execution speed of our
modified algorithm.

6.5 Suitable Distance Functions

It is not easy to find distance functions that have all the properties described
in Section 6.3. In particular, the prerequisite of a fast computability is con-
trary to the remaining ones. Moreover, it is often not possible to simply use
existing polygon distances, because in our setting we have to cope with scans
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and skeletons instead of polygons. Therefore, a careful adaptation of the cho-
sen distance functions is almost always necessary. And of course, it is even
more difficult to find for a given scan-skeleton distance d(S, V*) a compatible
distance D(V{, V5), which we need in order to perform the nearest-neighbor
query efficiently.

In the following sections we investigate two distance functions, the Hausdorff
distance and the polar coordinate metric, and illustrate the occurring problems.

6.6 The Hausdorff Distance

For two point sets A, B C R?, their Hausdorff distance 5(A, B) is defined as the
maximum of 5(A, B) and 5(B, A),

5(A,B) .= max{5(A,B),5(B,A)}, (6.2)
where ~
5(A, B) := supinf ||a — b|| (6.3)
acA beB

is the directed Hausdorff distance from A to B. Accordingly, the term &(A, B)
stands for the maximum distance of some point from A to the set B.!

Let T be the set of all Euclidean transformations (i. e., combinations of trans-
lations and rotations). The undirected and directed minimum Hausdorff distan-
ces with respect to these transformations are defined as

Smin(A, B) := inf 6(A,t(B)) and dmin(A,B) := inf §(A,t(B)).  (6.4)
teT teT

It can easily be seen that the minimum Hausdorff distances are continuous
and by definition also are invariant under translations and rotations. Thus,
they fulfill most of the requirements described in Section 6.3. But their com-
putation is very expensive. According to [ABB95], the minimum Hausdorff
distance can be computed in time O((ms)*(m + s) log(m + s)) if m is the com-
plexity of the scan and s is the complexity of the skeleton. This is surely too
expensive in order to be used in our application.

On the other hand, the computation of the Hausdorff distance without mi-
nimization over transformation application is relatively cheap, cf. [ABB95], na-
mely in O((m + s) log(m + s)). The property of continuity is also not affected,
but we now have to choose a suitable translation vector and a rotation angle
by hand.

1 Note that in the case of closed sets (e.g., the boundary and the shape of a polygon or fi-
nite sets of scan points) there always exists a pair of points (2,b) € A x B such that their
distance ||a — b|| equals 5(A, B).
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An obvious choice for such a translation vector for a scan S and a skele-
ton V* is the vector that moves the scan origin (i. e., the position of the robot)
somewhere into one of its corresponding visibility cells C (e.g., the center of
gravity of C). This is reasonable, because according to their definition exactly
the points in the cells of |ECy+| induce the skeleton V* (for example, see Fi-
gure 3.12 on page 43). Of course, the consequence of this approach is that all
cells with the same skeleton (e. g., the six cells drawn in gray in Figure 3.12)
must be handled separately, because the distance d(S, V*) now does not only de-
pend on V*, but also on the visibility cell itself. Besides, the intersection of all
these cells of a given equivalence class ECy+ may be empty and we might not
find a common translation vector for all of them.

Note that for this new setting, where the distance d(S, V*) also depends on
a certain visibility cell, the notation d(S, V*) is a bit misleading, since there
usually exist several cells that have the same skeleton V*. To be correct, we
should use the notation d(S, C), where the dependence of the distance from
the respective cell is expressed more clearly. But in the following, we use the
more intuitive expression d(S, V*).

Of course, the bigger the cell is that the scan has to be placed into, the bigger
is the error of this approach, compared with the minimum Hausdorff distance.

Approximate Matching Strategies

A compromise for computing a good matching, which has the advantages of
the previous algorithmes, is using an approximate matching strategy, which yields
only a pseudo-optimal solution. This means, the algorithm finds a transforma-
tion t € 7 with

5(A,H(B)) < ¢+ min(A, B),

for a constant ¢ > 1.

Alt et al. [ABB95] showed that for any constant ¢ > 1 an approximate
matching with respect to Euclidean transformations can be computed in
time O(mslog(ms)log*(ms)) using so-called reference points. If we are only
interested in an approximate matching with respect to translations instead of
Euclidean transformations, the time complexity would be even better, namely
in O((m +s) log(m +s)).

Using the Hausdorff Distance in Practice

Another point that we have to consider is that a skeleton (interpreted as a point
set) in general is not bounded, because it includes a straight line [; labeled to
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each artificial edge a; in order to represent the possible positions of its candi-
date edges. The result is that the directed distances 5(V*,8) and dpin (V*, S) al-
most always return an infinite value (except for the trivial case when V* equals
the convex map polygon and thus has no artificial edges). Therefore, we eit-
her may only use the directed distances 5 (S,V*) and Smin(S, V*) in order to
define d(S, V*) or we must modify the skeleton representation that we use in
order to compute useful distance values. If we pursue the first approach, it
remains the problem of finding a suitable distance function D(V;, V5), since
then, neither one of the Hausdorff distances may be used here. But note that
in this case the distance dmin (S, V*) is also similarity preserving, provided that
the resolution of the scan is high enough such that no edge (in particular, no
artificial edge) is missed.

The second approach of modifying the skeleton representation in order to get
a bounded point set seems to be more promising, since it allows us to define
both distances d(S, V*) and D(V{, V5) in an appropriate way. One possibility
of doing so is described on the next page, as we use the same method in order
to compute the polar coordinate metric, which is described in the following
section.

6.7 The Polar Coordinate Metric

A more specialized distance function for our problem than the Hausdorff di-
stance is the polar coordinate metric (PCM for short) introduced by Wahl [Wah97,
KW99], which takes a fundamental property of the localization problem into
account: All occurring polygons are star-shaped in the following sense, and we
even know a kernel point:

 The approximate visibility polygon s (generated from the scan points)
is star-shaped by construction, with the origin as a kernel point.

* Every skeleton V* is star-shaped in the sense that from every point in its
kernel ker V* all full edges are completely visible, and for each artificial
edge a; a part of the corresponding straight line /; is visible.

In order to define the PCM between two (star-shaped) polygons P and Q
with kernel points p, and g,, we first define their polar coordinate function.

Definition 6.2 (Polar Coordinate Function)

Let P be a star-shaped polygon with a kernel point p, € ker P. For any angle ¢
let b(@) be the unique intersection point of the boundary of the polygon P with
a ray starting at p, in direction ¢. Then, the polar coordinate function (PCF
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Y pefp(e)

- P

27

FIGURE 6.2: The polar coordinate function pcf,(¢) for a star-shaped polygon P
with kernel point p,

for short) of P (with respect to p, ) is defined as
pefp: R — Roo,  pefp(e) == da(p, b(9)). (6.5)

That is, the function pcf,(¢) corresponds to a description of the polygon P in
polar coordinates (with p, as the origin) and is periodical with a period of 27.
Figure 6.2 depicts the PCF for a star-shaped polygon P as an example.

We then define the value of the PCM between the polygons P and Q as
the minimum integral norm between the functions pcf, and pcfj, in the in-
terval [0, 27t over all horizontal translations between the two graphs (i. e., ro-
tations between the corresponding polygons).

Definition 6.3 (Polar Coordinate Metric)

Let P and Q be two star-shaped polygons with kernel points p, € ker P and
gy € ker Q. Then, the value of the polar coordinate metric between P and Q is
defined as

27 2
pem(P, Q) := min \// pcf )—pcfQ((p)) de. (6.6)

te[0,27]
Figure 6.3 on the next page shows an example, where the two graphs are al-
ready translated in such a way that the integral norm is minimized.

Using the PCM as Distance d(S, V*)

If we want to use the PCM as a distance function d(S, V*), a similar problem
as with the Hausdorff distance occurs: We need corresponding star-shaped
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FIGURE 6.3: Computation of the polar coordinate metric as minimum integral

norm

polygons for S and V* that can be used as polygonal representatives for the
scan and the skeletons in order to compute their PCM value:

e For the scan, we choose the approximated visibility polygon %5, which

is star-shaped by construction. As already stated above, the coordinate
origin can be used as a kernel point.

In order to generate a polygon from a skeleton V*, we choose for each
visibility cell C € |ECvy+| a point p € C inside (e. g., the center of gravity
of C) and determine its visibility polygon ‘Vp. Then, p is a kernel point
of V), by construction. That is, for each visibility cell we simply pretend
to stand at its center of gravity in order to get a bounded polygonal re-
presentation of its corresponding skeleton.

As discussed in Section 6.6 on on page 151 there is some minor drawback
of this idea: Since the generated polygons not only depend on the ske-
letons but also on the corresponding visibility cells, we should keep in
mind that also the computed distance does. Furthermore, using this ap-
proach we produce an additional error, which (in the worst-case, where
the robot stands near the boundary of a visibility cell) increases with the
size of the visibility cells.

In the sequel we use Vs and 7, as polygonal representatives of S and V* for
determining their distance measures. Then, our goal is to find that polygon 7/,
that is most similar to the approximated visibility polygon s with respect
to pem( Vs, Vp).
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Using the PCM as Distance D(V7, V5)

It can be shown (see [Wah97]) that the function pcm(P, Q) is a polygon metric
if the computed kernel points are invariant under Euclidean transformations.
That is, if p; denotes the kernel point of a polygon P’ = t(P) for a transfor-
mation t € 7, the equality t(py) = p, must hold, for all polygons P and all
transformations t € 7. For example, the center of gravity of the kernel of the
polygon has this property.

Since the PCM has all metric properties, it particularly fulfills the trian-
gle inequality. Therefore, we can use it not only for defining the scan-
skeleton distance d(S, V*), but also for defining a compatible skeleton-skeleton
distance D(V7, V3).

For this task, we again use for each visibility cell C (with corresponding ske-
leton V*) its polygonal representative 7}, where p is the center of gravity of C.
Then, the triangle inequality (6.1) on page 149 directly follows from the trian-
gle inequality of the PCM. Thus, we are able to apply the Monotonous Bisector
Tree to the set of skeletons in order to increase the performance of the nearest-
neighbor query.

6.8 Efficient Computation of the PCM

The exact computation of the minimum in Equation (6.6) on page 153 seems
to be difficult and time consuming, since the polar coordinate functions of a
polygon with m edges consists of m pieces of functions of the form ¢;/ sin(¢ +
;). For one fixed translation ¢ (this corresponds to the case, when the robot
already knows its exact orientation), the integral

27 2
\//O (Pcfp(w—t) _PCfQ((P)> de (6.7)

can be computed straightforward in linear time O(m + n), where m and n stand
for the complexities of the two polygons. But the global minimum over all
possible values of t € [0, 277] seems to be much harder to determine.

Therefore, we use two different approximative approaches for computing a
suitable PCM value. Both approaches use a set of supporting angles (or points,
respectively) for each of the two involved polar coordinate functions. For a
given polygon its supporting angles are the angles that correspond to a vertex
of the polygon plus the angles of the local minima of the inverse sine functions,
see Figure 6.4 (a). The ideas of the two approximative approaches are then as
follows.
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FIGURE 6.4: Two approximative approaches for computing the PCM

Minimizing only over a subset of rotation angles The first approach concen-
trates on the O(m) or O(n), respectively, supporting angles, see Figure 6.4 (a).
Namely, we do not minimize over all rotation angles of the two polygons, but
only over the O(mn) rotation angles that place one supporting angle of the first
polygon on a supporting angle of the second one. Then, for each of the O(mn)
rotation angles t its integral value (6.7) is computed exactly in time O(m + n).
Summing up, we need O(mn(m + n)) time to compute this approximated va-
lue of the PCM.

But note that the resulting approximative distance function is no longer a
metric, since the triangle inequality does not hold anymore (although the iden-
tity and symmetry properties are not affected by the approximation).

Using a linear approximated PCF The second approach computes an exact
minimum over all rotation angles, but uses a modified polar coordinate func-
tion. Namely, we introduce a linear approximation of the PCM, which also
has all metric properties and which suffices for our applications. This appro-
ximation is depicted in Figure 6.4 (b): The supporting points (that correspond
to a polygon vertex or a local minimum of the PCF) are connected by straight
line segments in order to get a modified distance function. The minimum in-
tegral norm is then defined like in the non-approximated version of the PCM,
see Equation (6.6).

Following an idea of [ACT91], the actual computation of the minimum in-
tegral norm between the two piecewise linear functions can now be carried
out much faster than the computation of the original PCM: Arkin et al. com-
pute the minimum integral norm between two piecewise constant functions in
time O(mn). This idea can be generalized to compute the approximated PCM
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in time O(mn - (m 4+ n)). Of course, if we do not want to minimize over the rota-
tions, the computation time is again in O(m + n) like for the non-approximated
version.

6.9 Using the PCM in Realistic Scenarios

In order to examine the usability of the polar coordinate metric in realistic envi-
ronments, we first investigate the continuity property (cf. page 147): For a fixed
kernel point Wahl [Wah97] showed that the function pcf, is continuous in ¢
except for one special case: When we move a vertex of a polygon edge such
that the edge becomes collinear to p,, the function pcf, has a discontinuity at
the corresponding angle, the height of which represents the length of the colli-
near edge. Moreover, the PCF is also continuous in the sense of the definitions
in Section 6.3 with respect to translations of the polygon vertices or translations
of the kernel point, unless this special case occurs. But as pcf, and pcf, may
have only a finite number of such discontinuities, the integration makes them
continuous with respect to all translations of polygon vertices and translations
of the kernel points, provided that P and Q remain star-shaped with kernel
points p, and g.

It can easily be verified that the PCM fulfills the continuity requirement
of Section 6.3 in the following sense: Given two polygons P and Q with
kernel points p, and g, and an ¢ > 0, we can find a 6 > 0 such that
lpem(P, Q) — pem(P’, Q)| < ¢, for all polygons P’ that are created from P by
moving each vertex by at most §, provided that p, remains to be a kernel point
also of P'. Furthermore, if the kernel points are considered as a part of the po-
lygons (i. e., part of the input of the PCM) the above statement holds even if we
also are allowed to move the kernel points by at most 6.

Moreover, if the kernel points are not considered as part of the input of the
PCM (that is, they are computed from P and Q by the algorithm that computes
the pcm(P, Q) value), the PCM is continuous as well, provided that the kernel
points continuously depend on the polygons. For example, the center of gra-
vity of the kernel of a polygon P depends continuously on P and can be used
as a kernel point p,, whereas, for example, the leftmost kernel point does not
depend continuously on the polygon.

Revisiting the Problems in Realistic Scenarios

Since the polar coordinate metric is continuous (in the above sense), we can
hope that the first problem mentioned in Section 6.1 (the problem of noisy
scans) is resolved satisfactorily if we use the polar coordinate metric in order
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to define the distance functions d(S, V*) and D(V{, V5). The PCM also copes
with the problem of an unknown robot orientation, since it is invariant under
translations and rotations by definition. Furthermore, using the ideas of the
previous section, the linear approximated variant of the PCM can be compu-
ted relatively fast, that is, in O(mn - (m + n)). And if we additionally assume
that the robot has a compass, we are even able to compute the distance measu-
res in linear time.

Since the problems with non-simple map polygons were already circumven-
ted in Section 6.4 by accepting a trade-off in the execution speed, there remain
two unresolved problems, which we have to investigate: Unknown obstacles
in the map and a limited sensing range.

Unknown obstacles and incomplete map Unknown obstacles in the envi-
ronment do not strongly influence the PCM as long as they take up only a small
interval of the whole scanning angle. But the other case, where the obstacles
occupy a large part of the robot’s view, poses a problem to our localization
method. Here, additional (heuristic) algorithms are needed, which detect such
cases and guide the search in the correct direction.

Limited sensing range If the robot’s sensing range is smaller than the ma-
ximum sensing distance, which may occur in the environment, this problem
can be tackled in a straightforward heuristic manner: When we compute the
distances d(S, V*) and D(V7, V5 ), we simply cut off all distance values larger
than the sensing range, that is, for all occurring polygons we use a modified
PCE,

pcfp (@) := min{pcfy(¢p), sensing range} . (6.8)

But we should keep in mind that the resulting distance function is no longer a
metric.

6.10 The Implementation ROLOPRO

Using LEDA, the Library of Efficient Datatypes and Algorithms [MN99], we
have implemented two versions of the localization algorithm in C++, namely
the original method described in Section 3.8 for exact sensors as well as the
modification for realistic scenarios introduced in the current chapter. For our
implementation, the original algorithm was modified and simplified at some
points, since we did not focus our efforts on handling sophisticated but rather
complicated data structures and algorithmic ideas that were suggested by Gui-
bas et al. Rather, we wanted to have an instrument to experiment with different
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inputs for the algorithm that is reasonably stable to be used in real-life environ-
ments and that can serve as a basis for own modifications. Of course, a conse-
quence of these simplifications is that the program does not keep to all theore-
tical time and space bounds of Section 3.9 and the original paper [GMR97], as
this would have required a tremendous programming effort. Nevertheless, the
algorithm is stable and reasonably efficient for sufficiently small environments.

We implemented the two distance functions described in the previous sections,
the Hausdorff distance and the polar coordinate metric. Note that in both ca-
ses the localization algorithm only tries to find the best-matching skeleton and
does not compute an optimal matching as well (although some implemented
versions of the PCM algorithm at least compute an optimal rotation angle, but
no optimal translation vector). As already mentioned in Section 6.2, this mat-
ching has to be determined by a local matching algorithm in a postprocessing
step, which uses the result of the localization process as a first approximation.
This postprocessing step was not implemented.

6.10.1 The Hausdorff Distance

In order to define the distance d(S, V*), we implemented several versions of
the Hausdorff distance:

The directed distance 8(S, V*), which computes the maximum over all mini-
mum distances from a scan point of S to the skeleton V*;

the undirected version 6(S, V*), for which the skeleton representation was
modified as described on page 153, in order to get a polygonal repre-
sentative for V*;

the k-Hausdorff distance, another variant of the Hausdorff distance (for point
sets A and B, A finite), where the k-th smallest value

i infla —b 6.9
g g e~ )

rather than the largest value max,c4 minyep||a — b|| determines the di-
stance value, cf. [AG99]. With a carefully chosen parameter k this may
help to overcome the sensitivity of the Hausdorff distance to outliers.

In all above cases we do not compute the minimum Hausdorff distances, but
instead assume that the robot has a compass (i. e., we need not take care about
the rotation angle) and furthermore use a heuristic translation vector as des-
cribed on page 150. Moreover, we have not implemented the efficient skeleton
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management described in Section 6.4, since we could not find a suitable di-
stance D(V;, V), which is compatible to one of the Hausdorff distances above,
that is, which fulfills the triangle inequality (6.1). Therefore, in this case the
scan has to be compared with all skeletons, which is much more time consu-
ming than the PCM approach, which uses the Monotonous Bisector Tree.

6.10.2 The Polar Coordinate Metric

We have implemented both approximative approaches, which were presented
in Section 6.8, the strategy that minimizes the integral norm only over a subset
of rotation angles as well as the linear approximated PCF. Furthermore, for
both approaches two variants are implemented, one variant for robots without
a compass, which has a cubic computation time, and another variant for robots
with a compass, where no optimal rotation angle has to be computed and which
has a linear time complexity.

As described on page 153, we use polygonal representatives for the scans
as well as for the skeletons in order to compute their respective distances.
This way, we were able to use the PCM for both distances, d(S, V*) as well
as D(V{,VJ), and to ensure that the two distances are compatible. In particu-
lar, we were able to use the Monotonous Bisector Tree described in Section 6.4
for efficient nearest-neighbor queries in the set of preprocessed skeletons.

6.10.3 Some Screen Shots of ROLOPRO

The Figures 6.5 to 6.10 on the following pages show some typical situations
using ROLOPRO: Figure 6.5 depicts the three major windows of ROLOPRO,
the main window, which shows the map, the information window and the
main menu window, where all actions are displayed and can be chosen. The
four screen shots of Figure 6.6 show a map of a small room with three niches
and three obstacles in front of the niches. The visibility polygons and their
corresponding skeletons at four different positions are depicted. Note that the
skeletons of the two topmost positions are identical. The next screen shot of
Figure 6.7 is taken during the preprocessing step and depicts the visibility cell
decomposition of the room from the previous example, whereas in Figure 6.8
an exact localization query in this room is visualized: For a robot standing in
the left niche (marked by a bullet >e<) two visibility cells are detected that have
the same skeleton as the robot. Thus, in this case two possible robot placements
exist. In contrast to the exact localization query, the Figures 6.9 and 6.10 show
a localization query for a noisy scan, which is simulated by ROLOPRO, using
the polar coordinate metric. In Figure 6.9 the robot’s position is marked by a
square >mB< and the center of gravity of the best-matching visibility cell (with
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FIGURE 6.5: The three main windows of ROLOPRO

respect to the PCM) is marked by a bullet >e<. Figure 6.10 depicts the cor-
responding polygonal representatives of the scan and the skeleton as well as
their polar coordinate functions.

6.10.4 Additional Heuristic Features of ROLOPRO

We have implemented some additional features to ROLOPRO, which are mo-
tivated by practical needs rather than by theoretical investigations. Thus, we
neither proved any theoretical results on the quality of these modifications of
the localization algorithms nor could we guarantee that properties like, for ex-
ample, the triangle inequality remain true. But nevertheless we believe that
they may be useful in practice.

Noisy Compass For the polar coordinate metric, which we have described
in the previous sections, we have only two choices concerning the existence of
a compass: Either the robot has a compass, which implies a fixed orientation
of the scan with respect to the preprocessed skeletons, or the the robot has no
compass at all, such that we have to use the version of the PCM that is invariant
under rotations and has a cubic computation time (compared to a liner running
time in the other case). But with a rather simple modification concerning the
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FIGURE 6.6: Computing visibility polygons and skeletons

minimization interval in Equation (6.6) on page 153 we also can model a noisy
compass:

No compass at all This is the case in Equation (6.6) on page 153, where we
have no knowledge at all about the robot’s orientation and therefore have
to minimize the integral norm over all possible rotation angles between
the scan and the skeleton. Thus, the minimization interval is [0, 27].

Exact compass In the case of an exact compass we already know the orienta-
tion o of the scan with respect to the map, such that the “minimization
interval” consists only of the single value o, which represents the rotation
angle between the scan and the map, cf. Equation (6.7) on page 155.

Noisy compass If we know the orientation o of the robot with respect to the
map only with some uncertainty ¢ < 77, we simply use a minimization in-
terval [0 — ¢, 0 + ¢[ in Equation (6.6). Thus, we can use a possibly existing
compass, even if it is noisy, and furthermore have a reasonable trade-off
between the running time and the localization quality.
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FIGURE 6.7: The visibility cell decomposition (preprocessing step)

The main disadvantage of this idea is that the triangle inequality does not
remain true, which has the consequence that the best-matching skeleton may
be missed by the localization algorithm.

Partial range scans A typical laser scanner only has a 180° scanning angle.
Thus, in order to get a full 360° scan, either two laser scanners have to be used,
which might raise problems concerning the robot’s weight or its power con-
sumption, or the robot has to take two 180°-scans with opposite viewing direc-
tions, which might be too slow or inaccurate due to the rotation between the
two shots.

As long as we can assume that the scan direction is fixed with respect to the
map (that is, the robot has a compass and always adjusts its viewing direction
before taking a scan), we can easily model such a situation of a partial scan
by suitably adjusting the integration interval in Equation (6.6) on page 153.
The metric properties of the PCM remain untouched, but of course we have
to use this modification also for the preprocessing step and cannot change the
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FIGURE 6.8: An exact localization query: A robot standing in the left niche may
also be positioned in the right niche

robot’s viewing direction without repeating the preprocessing procedure. For
all other cases, where the robot has no compass or where the scanning interval
is different from the interval used in the preprocessing step, at least the triangle
property gets lost, with the same consequences as described above.

Additional coarsening step The complexity of the visibility cell decomposi-
tion, which is necessary for the geometrical approach described in Section 3.6
and which is the basis for our approach described in this chapter, is quite high
(especially if we allow holes in the map). But in practice, where we have noisy
sensors, many of the visibility cells need not be considered, because their ske-
letons differ only slightly from the skeletons of neighboring cells such that the
noise of the laser scan dominates possible differences between the skeletons.
Furthermore, the cells themselves are often very small such that even if the
localization algorithm determines only a visibility cell in the neighborhood of
the “correct” cell, the spatial displacement is often not very large and can be
handled by the local matching algorithm in the postprocessing step.
Therefore, we have implemented an additional coarsening step, where
neighboring cells with small distances D(V;, V) are combined into one big-
ger cell. This way, we need less space for storing the cells, less time for con-
structing the Monotonous Bisector Tree as well as less time for answering a
localization query. Of course, this coarsening procedure reduces the quality of
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the localization, since we obtain both, a fewer number of distance values and
larger visibility cells. Thus, the threshold value for the merging step must be
carefully chosen by the user.

Local queries If the robot already has a rough estimate of its position, a lo-
calization query as described in the previous sections would not be very rea-
sonable. Therefore, we also have implemented a local query, where the search
is restricted to the neighborhood of the appraised robot position. That is, only
skeletons of cells are compared to the scan that lie within a distance to the esti-
mated position.

6.11 Experimental Tests

We have evaluated our approaches using the implementation ROLOPRO on a
Sun Enterprise 250 with 512 MByte main memory, both in simulated and in
real-world environments. Thereby, we used the Hausdorff distance as well
as the polar coordinate metric as distance function. The criterion whether the
result of a localization query was counted as a “success” or as a “failure” was
quite simple: Only if the reported visibility cell contained the origin of the
respective scan, the localization was regarded as successful. Of course, also
less conservative success measures are conceivable, where, for example, also
the spatial distance between the reported visibility cell and the scan origin is
taken into account.

Simulated Environments

Figure 6.11 on the facing page depicts four representative artificial maps, which
were used in order to test our algorithms. The total number of vertices typi-
cally varied between 20 and 60 and the number of generated visibility cells
between 250 and 2000.

The Hausdorff distance As already stated in Section 6.10, we have neither
implemented the minimum Hausdorff distance nor the skeleton management
using the Monotonous Bisector Tree. The consequences were that firstly we
had to assume a robot with a compass and secondly the localization query
required a relative large amount of time (several minutes for a single query).
Beyond that, we only got success rates of approximately 60 percent, even for
the k-Hausdorff distance. Thus, the Hausdorff distance seems to be not very
well suited for the problem of robot localization.
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FIGURE 6.11: Artificial maps used for evaluating ROLOPRO

The polar coordinate metric In the same scenes, which we have used for eva-
luating the Hausdorff distance, the PCM (for a robot with a compass) behaved
much better and achieved success rates of about 80 to 90 percent. Furthermore,
the performance was much faster than in the above case (only a few seconds
for one query). This probably was caused by the faster computation of a single
distance value (linear time complexity versus an O(nlogn)-complexity) and
by the usage of the Monotonous Bisector Tree, which saves us from visiting all
skeletons.

On the other hand, when we used the variant of the PCM that minimizes
over the rotation angles (that is, we assumed a robot without a compass), the
success rates and the performance both became worse: The percentage of cor-
rectly localized positions dropped down to 50 to 70 percent, depending on the
scene and on the number of self-similarities the environment contained. Mo-
reover, due to the cubic time complexity of the distance computation the over-
all running time dramatically increased (up to fifteen minutes for one query)
such that this variant could only be used either in very small scenes or in con-
junction with one of the additional heuristic features of ROLOPRO (for exam-
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ple, a noisy compass instead of no compass at all).

Real-World Environments

On the basis of our results and experiences with the performance of the Haus-
dorff distance and the polar coordinate metric in the simulation, we decided
to evaluate only one distance function in real-world scenes, namely the variant
of the PCM that has a linear running time and requires the correct orientation
of the scan with respect to the map. Two different environments were used:
The Computer Science Department at the University of Wiirzburg and a “less
friendly” supermarket environment, where the scans were very noisy. In both
cases the scans were generated by a SICK LMS 200 laser scanner.

Figure 6.12 on the next page shows some localization examples for the first
environment: We used a partial map of the department, which consists of
76 vertices, 54 of them reflex. This led to a total number of about 4300 vi-
sibility cells, which were finally reduced to about 3300 cells by our heuristic
coarsening step (using a suitable threshold). Each of the 360°-scans consisted
of 720 range measurements.

Almost all localization queries resulted in solutions like the two topmost ex-
amples in Figure 6.12. Only about 5 to 10 percent of the localization queries
failed. For example, the reason for the bad result of the bottommost example
in Figure 6.12 probably were some scan points at a distance of about 50m in
the right part of the scan (cut off in the figure), which were produced by scan-
ning through a window. Since the PCM “tries” to minimize a kind of average
quadratic error, the scan was shifted in the opposite direction to the left.

In the supermarket environment the localization approach completely fai-
led, probably because of the very noisy range scans, which produced too much
effects like in the third example of Figure 6.12 where a number of comple-
tely non-matching scan points dominates the average quadratic error in Equa-
tion (6.6). Moreover, in this environment only 180°-scans were available such
that the localization problem was even harder.

6.12 Summary

We introduced an approach to tackling the problems that occur if we try to ap-
ply the idealizing scheme investigated in the preceding chapters to real-world
problems. To this end, we decided to use distance functions that model the re-
semblance between a range scan (i. e., the sensor data) and a skeleton (i. e., the
map). Furthermore, in order to efficiently compare a scan with all skeletons,
we store the skeletons in a spatial data structure, the Monotonous Bisector Tree
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in our case, and use a second distance functions that describes the similarity
between skeletons.

We investigated several different distance functions and presented techni-
ques to adapt them to the special requirements of the localization problem. In
particular, we introduced the polar coordinate metric (PCM) for star-shaped
polygons and showed how this polygon distance can be used in our setting.
Furthermore, we explained two possibilities to efficiently compute the PCM
and a linear approximation of it, respectively.

We presented the implementation ROLOPRO, where the idealizing scheme
of Chapter 3 as well as our approach for realistic scenarios was implemented.
Several distance functions (including the polar coordinate metric) and some
variants were included into ROLOPRO and tested in simulated environments
and in real-world scenarios. Although the results using the PCM approach
in small simulated and real environments were quite promising (compared to
other distance functions), we also discovered the limits of this method: First,
the preprocessing costs (time as well as space) are very high such that it can
be used only for small scenes. Second, without any further preprocessing of
the scan data the method fails if the noise of the range scan is too high. Even
the PCM, which “tries” to minimize a kind of average quadratic error, does
badly for very noisy scans, especially in cluttered environments. But it should
be noted that compared to the remaining distance measures that can be used
in our setting (e.g., Hausdorff distance, Arkin metric, symmetric difference)
the polar coordinate metric performs very well due to its robustness against
(small) changes of the involved polygons and its fast computability.

The localization problem seems to be one of that kind of problems where the
gap between the solution of an idealized formulation of it and the solution of
the actual real problem is particularly wide. Thus, the presented approach may
only be one way of a variety of possibilities to deal with this problem. In or-
der to find a reliable and usable solution, one surely has to combine different
strategies: For example, a partitioning of the map in variably sized “regions
of interest” (like in the method of Guibas et al.) combined with a suitable map
and scan preprocessing, which significantly reduces the complexity, and a well-
suited distance measure like, for example, the presented polar coordinate me-
tric.
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