Bis[3,4,5,6-tetrabrom-1,2-benzoldiolato(2 –)]-(pyrrolidiniomethyl)silicat-Acetonitril-Solvat $[(C_6Br_4O_2)_2SiCH_2(H)NC_4H_8 \cdot CH_3CN]$: Synthese sowie Kristall- und Molekülstruktur eines zwitterionischen λ^5 -Spirosilicats

Reinhold Tacke*, Jörg Sperlich, Carsten Strohmann, Brigitta Frank

Institut für Anorganische Chemie der Universität Karlsruhe, Engesserstraße, Geb. 30.45, W-7500 Karlsruhe 1, Bundesrepublik Deutschland

und Günter Mattern

Institut für Kristallographie der Universität Karlsruhe, Engesserstraße, Geb. 30.45, W-7500 Karlsruhe 1, Bundesrepublik Deutschland

Professor Hans Wondratschek anläßlich seiner Emeritierung gewidmet

Eingegangen am 14. Januar 1991; in endgültiger Form: 12. April 1991

Crystal structure | Zwitterionic spirosilicate | (C₆Br₄O₂)₂SiCH₂(H)NC₄H₈ · CH₃CN

Abstract. Single crystal X-ray studies on bis[3,4,5,6-tetrabromo-1,2-benzenediolato(2-)](pyrrolidiniomethyl)silicate acetonitrile solvate $[(C_6Br_4O_2)_2SiCH_2(H)NC_4H_8 \cdot CH_3CN; monoclinic, P2_1/c, a = 808.5(4), b = 1533.0(8), c = 2212.6(1) pm, \beta = 97.67(2)^\circ, Z = 4]$ revealed a zwitterionic structure with a pentacoordinate, formally negatively charged silicon atom and a positively charged ammonium moiety. The silicon atom is surrounded by four oxygen atoms and one carbon atom in a trigonalbipyramidal fashion, with the carbon atom in an equatorial position. The structure is displaced by 7.0% from the trigonal bipyramid towards the square pyramid. The zwitterion and the CH₃CN molecule form intermolecular N-H…N hydrogen bonds.

* Korrespondenzautor.

Einleitung

Während *ionisch* aufgebaute λ^5 -Spirosilicate strukturell bereits recht gut untersucht sind (Übersichtsarbeiten: Corriu und Young, 1989; Lukevics, Pudova und Sturkovich, 1989; Sheldrick, 1989; Tandura, Voronkov und Alekseev, 1986), ist über *zwitterionische* λ^5 -Spirosilicate bisher nur sehr wenig bekannt (Strohmann, Tacke, Mattern und Kuhs, 1991; Tacke, Sperlich, Strohmann und Mattern, 1991; und dort zitierte Literatur). Nachdem wir in vorangegangenen Mitteilungen über die Synthese und strukturelle Charakterisierung der spirocyclischen λ^5 -Silicate $1 \cdot CH_3CN$ (Tacke et al., 1991) und $2 \cdot CH_3CN$ (Strohmann et al., 1991) berichtet haben, wird hier nun die Kristall- und Molekülstruktur eines weiteren Vertreters dieser Stoffklasse vorgestellt. Wir berichten über die Ergebnisse einer Einkristallröntgenstrukturanalyse eines Acetonitril-Solvats des Bis[3,4,5,6-tetrabrom-1,2benzoldiolato(2-)](pyrrolidiniomethyl)silicats [3 $\cdot CH_4CN$].

Experimentelles

Synthese: 3 wurde in Analogie zur Synthese von 1 (Tacke et al., 1991) durch Umsetzung von Trimethoxy(pyrrolidinomethyl)silan [(CH₃O)₃ SiCH₂NC₄H₈] mit Tetrabrombrenzkatechin [C₆Br₄(OH)₂] in Acetonitril bei Raumtemperatur dargestellt und als Acetonitril-Solvat $3 \cdot CH_3CN$ isoliert [Ausb. 88%, Schmp. 254°C (Zers.)]. – C₁₉H₁₄Br₈N₂O₄Si (1001.65). – ¹³C-NMR ([D₆]DMSO): $\delta = 1.6$ (CH₃CN), 23.0 (CCH₂C), 51.2 (SiCH₂N), 57.0 (CCH₂N), 106.5, 113.6 und 149.2 (C₆Br₄O₂), CH₃CN nicht lokalisiert. – ²⁹Si-NMR ([D₆]DMSO): $\delta = -72.7$. – FAB-MS (negativ): m/z = 952 ($M_{Zwitterion} - H^+$). – FAB-MS (positiv): m/z = 954($M_{Zwitterion} + H^+$). – Die Messung der angegebenen NMR- sowie FAB-MS-Daten (bezogen auf ¹H, ¹²C, ¹⁴N, ¹⁶O, ²⁸Si und ⁷⁹Br) erfolgte unter

Br(1) - C(3)	1 869(4)	Br(2) - C(4)	1 885(5)
Br(3) - C(5)	1.891(5)	Br(4) - C(6)	1.889(5)
Br(5) - C(9)	1.876(5)	Br(6) - C(10)	1.884(5)
Br(7) - C(11)	1.889(5)	Br(8) - C(12)	1.873(5)
Si = O(1)	1.009(3)	Si = O(2)	1.075(3)
Si = O(3)	1.700(3) 1.702(4)	Si = O(4)	1.700(3)
Si = O(3)	1.888(6)	O(1) = C(2)	1 263(5)
O(2) = C(1)	1.338(5)	O(1) = C(2) O(3) = C(7)	1.303(3)
O(2) = O(1)	1.336(3)	N(1) - C(13)	1.301(3) 1.480(7)
N(1) = C(14)	1.344(0) 1.404(7)	N(1) = C(13)	1.402(7)
N(2) = C(18)	1.494(7) 1.114(8)	C(1) = C(1)	1.492(7)
C(1) = C(6)	1 379(6)	C(1) = C(2) C(2) = C(3)	1.373(6)
C(3) = C(4)	1 306(7)	C(2) = C(3)	1.372(0) 1 306(7)
C(5) = C(4)	1.390(7)	C(4) = C(3)	1.390(7) 1.281(7)
C(3) = C(0)	1.309(7) 1.377(7)	C(7) = C(8)	1.301(7)
C(1) = C(12)	1.377(7)	C(0) - C(0)	1.380(0) 1.202(7)
C(11) = C(12)	1.402(7)	C(10) - C(11)	1.595(7)
C(11) = C(12) C(15) = C(16)	1.400(7)	C(14) = C(15)	1.320(9)
C(13) = C(10)	1.326(10)	C(10) - C(17)	1.4/4(10)
C(18)-C(19)	1.430(9)		
O(1) = Si = O(2)	88 7(1)	O(1) Si $O(2)$	121 2(2)
$O(1) = S_1 = O(2)$	88 0(2)	O(1) = SI = O(3)	121.3(2)
O(2) = Si = O(3)	1760(2)	O(1) = S1 = O(4)	00.0(<i>2</i>)
O(2) = SI = O(4)	170.0(2)	O(3) - 51 - O(4)	09.7(2)
O(1) = S1 = C(13)	120.0(2)	O(2) - SI - C(13)	93.7(2)
$S_{1}^{(3)} = S_{1}^{(3)} = C(13)$	117.9(2)	O(4) - SI - O(13)	90.3(2)
$S_1 = O(1) = C(2)$ $S_1 = O(2) = C(7)$	113.0(3)	SI = O(2) = C(1) Si = O(4) = C(9)	111.9(3)
C(13) = V(3) = C(7)	112.0(5)	SI = O(4) = O(6)	110.9(3)
C(13) = N(1) = C(14)	110.3(4)	C(13) = N(1) = C(17)	114.0(4)
C(14) - N(1) - C(17)	105.9(4)	C(2) = C(1) = C(2)	112.9(4)
O(2) = C(1) = C(0)	127.0(4)	C(2) - C(1) - C(0)	120.0(4)
C(1) - C(2) - C(1)	112.8(4)	O(1) - C(2) - C(3)	120.0(4)
C(1) - C(2) - C(3)	121.2(4)	Br(1) = C(3) = C(2)	119.2(3)
Br(1) = C(3) = C(4)	121.7(3)	C(2) - C(3) - C(4)	119.1(4)
Br(2) = C(4) = C(3)	119.3(3)	Br(2) - C(4) - C(5)	120.8(4)
C(3) = C(4) = C(5)	119.8(4)	Br(3) - C(5) - C(4)	120.2(3)
Br(3) = C(3) = C(6)	119.3(3)	C(4) - C(5) - C(6)	120.5(4)
BI(4) = C(0) = C(1)	117.0(3)	Br(4) - C(6) - C(5)	123.0(4)
C(1) = C(0) = C(3) C(2) = C(7) = C(12)	119.4(4)	O(3) - C(7) - C(8)	112.9(4)
O(3) - C(7) - C(12)	125.0(4)	C(8) - C(7) - C(12)	122.1(4)
C(4) = C(8) = C(7)	113.0(4)	U(4) - U(8) - U(9)	120.3(4)
C(7) = C(8) = C(9)	120.1(4)	Br(3) - C(9) - C(8)	118.5(4)
Br(5) = C(9) = C(10)	122.9(3)	C(8) - C(9) - C(10)	118.7(4)
C(0) = C(10) = C(9)	119.3(4)	Br(0) - C(10) - C(11)	120.1(4)
C(9) - C(10) - C(11)	120.7(4)	BI(7) - C(11) - C(10)	121.3(4)
$D_{1}(7) = C(11) = C(12)$ $D_{2}(9) = C(12) = C(7)$	110.4(4)	C(10) - C(11) - C(12)	120.0(5)
DI(0) - C(12) - C(7)	118.3(4)	Br(8) - C(12) - C(11)	123.1(4)
V(1) - C(12) - C(11)	118.4(5)	$S_1 - C(13) - N(1)$	117.0(4)
P(1) = C(14) = C(15)	103.0(5)	C(14) - C(15) - C(16)	105.0(5)
U(13) - U(10) - U(17)	100.9(0)	N(1) - C(1/) - C(16)	105.6(5)
N(2) - C(18) - C(19)	1/7.5(8)		

Tabelle 1. Bindungsabstände (Å) und -winkel (°) von 3 · CH₃CN.

Atom	x	у	Z	$U_{eq}{}^{a}$
Br(1)	4163(1)	1300(1)	8032(1)	57(1)
Br(2)	4567(1)	-841(1)	7959(1)	55(1)
Br(3)	2584(1)	-1903(1)	6773(1)	66(1)
Br(4)	211(1)	-780(1)	5688(1)	50(1)
Br(5)	878(1)	5385(1)	6829(1)	54(1)
Br(6)	2344(1)	6395(1)	5672(1)	58(1)
Br(7)	3062(1)	5238(1)	4464(1)	54(1)
Br(8)	2390(1)	3099(1)	4461(1)	62(1)
Si	298(2)	2291(1)	6313(1)	34(1)
O(1)	1589(4)	1964(2)	6947(1)	39(1)
O(2)	146(4)	1178(2)	6069(1)	36(1)
O(3)	1062(4)	2547(2)	5654(1)	38(1)
O(4)	603(4)	3384(2)	6560(1)	41(1)
N(1)	- 3117(5)	1734(3)	5991(2)	36(1)
N(2)	6934(8)	4977(4)	1555(3)	81(2)
C(1)	1071(6)	649(3)	6460(2)	32(1)
C(2)	1912(6)	1091(3)	6960(2)	34(1)
C(3)	2965(6)	661(3)	7399(2)	35(2)
C(4)	3162(6)	-240(3)	7348(2)	38(2)
C(5)	2325(6)	-684(3)	6847(2)	40(2)
C(6)	1294(6)	-236(3)	6399(2)	36(2)
C(7)	1422(6)	3410(3)	5613(2)	33(1)
C(8)	1149(6)	3876(3)	6124(2)	35(2)
C(9)	1394(6)	4771(3)	6145(2)	35(1)
C(10)	1991(6)	5180(3)	5650(2)	39(2)
C(11)	2292(6)	4700(3)	5142(2)	39(2)
C(12)	2008(6)	3799(3)	5122(2)	38(2)
C(13)	-2021(7)	2404(4)	6328(3)	46(2)
C(14)	-4926(7)	1774(4)	6066(3)	56(2)
C(15)	- 5757(7)	1198(4)	5554(3)	66(2)
C(16)	-4593(9)	1229(5)	5063(3)	76(3)
C(17)	- 3118(8)	1740(5)	5317(3)	59(2)
C(18)	7289(8)	5637(4)	1738(3)	59(2)
C(19)	7821(11)	6492(4)	1969(3)	77(3)

Tabelle 2. Atomkoordinaten (\cdot 10⁴) und äquivalente isotrope Temperaturfaktoren (Å² \cdot 10³) der Nichtwasserstoff-Atome von 3 \cdot CH₃CN.

^a Äquivalenter isotroper Temperaturfaktor, definiert als $^{1}/_{3}$ der Spur des orthogonalisierten U_{ij} -Tensors.

den gleichen Bedingungen wie für $1 \cdot CH_3CN$ beschrieben (Tacke et al., 1991).

Kristalldaten: Ein weißer Kristall der Dimension $0.24 \times 0.29 \times 0.34$ mm³ wurde durch Umkristallisation aus Acetonitril gezüchtet und bei Raumtemperatur einer Einkristallröntgenstrukturanalyse unterworfen. Die Gitter-

Parameter wurden zwischen $6^{\circ} \le 2\Theta \le 28^{\circ}$ mit 42 Reflexen auf einem Picker-Diffraktometer bestimmt.

Datensammlung: Im ω -2 Θ -Scan-Modus wurden unter Verwendung von Mo- K_{α} -Strahlung (Graphit-Monochromator) 16167 Intensitäten (-10 $\leq h \leq 9$; -18 $\leq k \leq 18$; -27 $\leq l \leq 27$) zwischen 4° $\leq 2\Theta \leq 53°$ bestimmt. Die Meßgeschwindigkeit betrug 0.5 – 1 s/Schritt. Drei nach jeweils 150 min gemessene Referenz-Reflexe zeigten keine deutlichen Intensitätsveränderungen. Alle Berechnungen wurden mit dem Programmsystem SHELXTL (Revision 4.1; Program for Crystal Structure Determination, University of Cambridge, 1983) auf einem Nova-3-Rechner durchgeführt. Die Meßdaten wurden einer Lorentz-, Polarisations- und einer empirischen Absorptionskorrektur unterzogen [μ (Mo- K_{α}) = 117.6 cm⁻¹]. Nach Mitteln über symmetrieäquivalente Reflexe ($R_{Merge} = 0.03$) verblieben 3748 mit einer Intensität $I \geq 3\sigma(I)$.

Strukturlösung und Verfeinerung: Die Struktur wurde mit direkten Methoden gelöst und durch Differenz-Fourier-Synthesen in der Raumgruppe $P2_1/c$ verfeinert. Alle Nichtwasserstoff-Atome wurden mit anisotropen Temperaturfaktoren verfeinert. Das N(1)H-Wasserstoff-Atom und die beiden C(13)H-Wasserstoff-Atome wurden in Differenz-Fourier-Synthesen gefunden und isotrop verfeinert [die beiden C(13)H-Wasserstoff-Atome mit einem gemeinsamen Temperaturfaktor]. Alle anderen Wasserstoff-Atome mit einbezogen (C-H-Abstand 0.96 Å). R = 0.0325, $R_w = 0.0351$ (mit Wichtung W = $1/[\sigma^2(F) + 0.0006 \cdot |F|^2]$). Es wurde eine Extinktionskorrektur durchgeführt ($F_{corr} = F/(1 + 0.0002 \ E \cdot F^2/\sin 2\Theta)^{1/4}$ mit E = 8(2) $\cdot 10^{-5}$). Restelektronendichte 0.67 e \cdot Å⁻³; nahe Br(3).

Ergebnisse und Diskussion

Das λ^5 -Spirosilicat 3 kristallisiert aus Acetonitril mit einem CH₃CN-Molekül als Kristallsolvens in der Zusammensetzung 3 · CH₃CN (Raumgruppe $P2_1/c$). Die Ergebnisse der Röntgenstrukturanalyse dieser Verbindung sind in den Tabellen 1 und 2 sowie in den Abbildungen 1 und 2 zusammengefaßt.*

Das zentrale Silicium-Atom von $3 \cdot CH_3CN$ wird von den fünf Atomen [O(1), O(2), O(3), O(4), C(13)] seiner drei Liganden in Form einer leicht

^{*} Weitere Einzelheiten können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 55209, der Autoren und des Zeitschriftenzitats angefordert werden.

Abb. 2. Intermolekulare $N-H\cdots N$ -Wasserstoff-Brückenbindung zwischen dem Zwitterion und dem Acetonitril-Molekül im Kristall von $3 \cdot CH_3CN$.

verzerrten trigonalen Bipyramide umgeben – mit dem Kohlenstoff-Atom C(13) in einer äquatorialen Position. Der von den axialen Sauerstoff-Atomen O(2) und O(4) mit dem Silicium-Atom eingeschlossene Winkel beträgt 176.0° [O(2) – Si – O(4)], die von den äquatorialen Liganden mit dem Silici-

um-Atom eingeschlossenen Winkel betragen 121.3° [O(1) – Si – O(3)], 120.8° [O(1) – Si – C(13)] und 117.9° [O(3) – Si – C(13)]. Die übrigen von dem Silicium-Atom und seinen Liganden gebildeten Winkel liegen in der Nähe von 90° {88.7° [O(1) – Si – O(2)], 88.9° [O(2) – Si – O(3)], 88.8° [O(1) – Si – O(4)], 89.7° [O(3) – Si – O(4)], 93.7° [O(2) – Si – C(13)], 90.3° [O(4) – Si – C(13)]}. Der Abstand des Silicium-Atoms von der von O(1), O(3) und C(13) gebildeten Ebene beträgt 0.013 Å. Die beiden axialen Si – O-Abstände [Si – O(2) 1.788 Å, Si – O(4) 1.770 Å] sind deutlich länger als die beiden äquatorialen Si – O-Bindungslängen [Si – O(1) 1.708 Å, Si – O(3) 1.702 Å]. Die vier Si – O-Abstände sowie die Si – C-Bindungslänge [Si – C(13) 1.888 Å] liegen in den üblicherweise für Verbindungen des pentakoordinierten Siliciums gefundenen Bereichen. Die übrigen Bindungsabstände und -winkel in **3 · CH₃CN** weisen – abgesehen von dem N(1)…N(2')-Abstand (siehe unten) – keine Besonderheiten auf und bedürfen deshalb keiner weiteren Diskussion.

Der Verzerrungsgrad des trigonal-bipyramidalen Koordinationspolyeders von $3 \cdot CH_3CN$ beträgt 7.0%, bezogen auf den Übergang von der idealen trigonalen Bipyramide zur idealen quadratischen Pyramide entlang der Reaktionskoordinate der *Berry*-Pseudorotation (berechnet gemäß Sheldrick, 1989; vgl. hierzu auch: Holmes und Deiters, 1977; Muetterties und Guggenberger, 1974). Für die strukturverwandten Verbindungen $1 \cdot CH_3CN$ und $2 \cdot CH_3CN$ wurden dagegen wesentlich größere Verzerrungsgrade (20.5% bzw. 89.6%) gefunden (Tacke et al., 1991); im Falle von $2 \cdot CH_3CN$ liegt sogar in erster Näherung eine quadratisch-pyramidale Anordnung vor. Unseres Wissens repräsentiert das Koordinationspolyeder von $3 \cdot CH_3CN$ die bisher beste Annäherung an die ideale trigonale Bipyramide, die für ionische und zwitterionische λ^5 -Spirosilicate des Bis[arendiolato(2-)]organyl- und Bis[alkandiolato(2-)]organyl-Typs im Kristall beobachtet wurde.

Der vergleichsweise kurze Abstand zwischen N(1) und dem zu einem Acetonitril-Molekül gehörenden Stickstoff-Atom N(2') sowie die durch Differenz-Fourier-Synthesen gefundene Lage des N(1)H-Wasserstoff-Atoms und die sich daraus ableitenden geometrischen Verhältnisse weisen auf eine intermolekulare N-H···N-Wasserstoff-Brückenbindung hin [N(1)···N(2') 2.902 Å, N(1)H···N(2') 2.112 Å, N(1)-H···N(2') 145.2°; Abb. 2]. In den Verbindungen $1 \cdot CH_3CN$ (Tacke et al., 1991) und $2 \cdot CH_3CN$ (Strohmann et al., 1991) liegen derartige Wasserstoff-Brückenbindungen nicht vor; es wurden vielmehr intermolekulare N-H···O-Wasserstoff-Brückenbindungen zwischen den NH-Funktionen und den O-Atomen der Zwitterionen beobachtet, wodurch es zum Aufbau zentrosymmetrischer dimerer Einheiten $(1 \cdot CH_3CN)$ bzw. unendlicher Ketten $(2 \cdot CH_3CN)$ im Kristallverband kommt. Eine befriedigende Erklärung für die unterschiedliche Natur der Wechselwirkungen zwischen den Zwitterionen untereinander sowie zwischen den Zwitterionen und dem Kristallsolvens in den Festkörpern von $1 \cdot CH_3CN$, $2 \cdot CH_3CN$ und $3 \cdot CH_3CN$ kann bei dem derzeitigen Stand des Wissens nicht gegeben werden.

Danksagung: Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt. Herrn Dr. W. F. Kuhs (Karlsruhe) sei für wertvolle Diskussionen gedankt.

Literatur

- Corriu, R. J. P., Young, J. C.: Hypervalent Silicon Compounds. In: The Chemistry of Organic Silicon Compounds, Part 2 (Hrsg. S. Patai, Z. Rappoport), S. 1241-1288, Chichester: John Wiley & Sons 1989.
- Holmes, R. R., Deiters, J. A.: Structural Distortions of Cyclic Phosphoranes and Berry Exchange Coordinate. A Quantitative Description. J. Am. Chem. Soc. 99 (1977) 3318-3326.
- Lukevics, E., Pudova, O., Sturkovich, R.: Molecular Structure of Organosilicon Compounds, Chichester: Ellis Horwood Ltd. 1989.
- Muetterties, E. L., Guggenberger L. J.: Idealized Polytopal Forms. Description of Real Molecules Referenced to Idealized Polygons or Polyhedra in Geometric Reaction Path Form. J. Am. Chem. Soc. 96 (1974) 1748-1756.
- Sheldrick, W. S.: Structural Chemistry of Organic Silicon Compounds. In: The Chemistry of Organic Silicon Compounds, Part 1 (Hrsg. S. Patai, Z. Rappoport), S. 227-303, Chichester: John Wiley & Sons 1989.
- Strohmann, C., Tacke, R., Mattern, G., Kuhs, W. F.: Bis(2,3-naphthalindiolato)[2-(pyrrolidinio)ethyl]silicat: Synthese und strukturelle Charakterisierung eines zwitterionischen λ⁵-Spirosilicates. J. Organomet. Chem. 403 (1991) 63-71.
- Tacke, R., Sperlich, J., Strohmann, C., Mattern, G.: Bis[2,3-naphthalindiolato(2–)]-(pyrrolidiniomethyl)silicat-Acetonitril-Solvat: Synthese sowie Kristall- und Molekülstruktur eines zwitterionischen λ^5 -Spirosilicats. Chem. Ber. **124** (1991) 1491–1496.
- Tandura, S. N., Voronkov, M. G., Alekseev, N. V.: Molecular and Electronic Structure of Penta- and Hexacoordinate Silicon Compounds. Topics Curr. Chem. 131 (1986) 99-189.