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Summary  

 

Marine sponges are the most ancient metazoans and of large ecological importance as 

drivers of water and nutrient flows in benthic habitats. Furthermore marine sponges are 

well known for their association with highly abundant and diverse microbial consortia. 

Microorganisms inhabit the extracellular matrix of marine sponges where they can make 

up to 35% of the sponge’s biomass. Many microbial symbionts of marine sponges are 

highly host specific and cannot, or only in very rare abundances, be found outside of 

their host environment. Of special interest is the candidate phylum Poribacteria that was 

first discovered in marine sponges and still remains almost exclusive to their hosts. 

Phylogenetically Poribacteria were placed into the Planctomycetes, Verrucomicrobia, 

Chlamydiae superphylum and similarly to many members of this superphylum cell 

compartmentation has been proposed to occur in members of the Poribacteria. The 

status as a candidate phylum implies that no member of Poribacteria has been obtained 

in culture yet. This restricts the investigations of Poribacteria and their interactions with 

marine sponges to culture independent methods and makes functional characterisation 

a difficult task.  

 

In this PhD thesis I used the novel method of single-cell genomics to investigate the 

genomic potential of the candidate phylum Poribacteria. Single-cell genomics enables 

whole genome sequencing of uncultivated microorganisms by singularising cells from 

the environment, subsequent cell lysis and multiple displacement amplification of the 

total genomic DNA. This process yields sufficient amounts of DNA for whole genome 

sequencing and genome analysis. This technique and its relevance for symbiosis 

studies are discussed in this PhD thesis.  

 

Through the application of single-cell genomics it was possible to increase the number 

of single-amplified genomes of the candidate phylum Poribacteria from initially one to a 

total of six. Analyses of these datasets made it possible to enhance our understanding 

of the metabolism, taxonomy, and phylum diversity of Poribacteria and thus made these 

one of the best-characterised sponge symbionts today. The poribacterial genomes 

represented three phylotypes within the candidate phylum of which one appeared 
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dominant. Phylogenetic and phylogenomic analyses revealed a novel phylogenetic 

positioning of Poribacteria distinctly outside of the Planctomycete, Verrucomicorbia, 

Chlamydiae superphylum. The occurrence of cell compartmentation in Poribacteria was 

also revisited based on the obtained genome sequences and revealed evidence for 

bacterial microcompartments instead of the previously suggested nucleotide-like 

structures. An extensive genomic repertoire of glycoside hydrolases, glycotransferases, 

and other carbohydrate active enzymes was found to be the central shared feature 

between all poribacterial genomes and showed that Poribacteria are among those 

marine bacteria with the largest genomic repertoire for carbohydrate degradation. 

Detailed analysis of the carbohydrate metabolism revealed that Poribacteria have the 

genomic potential for degradation of a variety of polymers, di- and monosaccharaides 

that allow these symbionts to feed various nutrient sources accessible through the filter-

feeding activities of the sponge host. Furthermore the poribacterial glycobiome 

appeared to enable degradation of glycosaminoglycan chains, one of the main building 

blocks of extracellular matrix of marine sponges. Different lifestyles resulting from the 

poribacterial carbohydrate degradation potential are discussed including the influence of 

nutrient cycling in sponges, nutrient recycling and scavenging. The findings of this 

thesis emphasise the long overlooked importance of heterotrophic symbionts such as 

Poribacteria for the interactions with marine sponges and represent a solid basis for 

future studies of the influence heterotrophic symbionts have on their sponge hosts. 
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Zusammenfassung 

 

Marine Schwämme sind die ältesten rezenten Vertreter der Metazoen. Durch ihre 

Lebensweise als Nahrungsfiltrierer und den damit verbundenen Einfluss auf 

Nährstoffzyklen sind sie von großer ökologischer Relevanz. Des Weiteren zeichnen 

sich marine Schwämme durch das Zusammenleben mit hoch abundanten und diversen 

mikrobiellen Konsortien aus. Diese Mikroorganismen finden sich meist in der 

extrazellulären Matrix des Schwamms und können mehr als 35% der Biomasse ihres 

Wirtes ausmachen. Viele mikrobielle Symbionten mariner Schwämme sind hochgradig 

Wirts-spezifisch und können außerhalb des Schwamms, wenn überhaupt, nur in sehr 

geringer Anzahl gefunden werden. Von besonderem Interesse ist das Candidatus 

Phylum Poribacteria, dessen Vertreter erstmals in Schwämmen detektiert wurden, und 

bis heute fast ausschließlich in Schwämmen zu finden sind. Phylogenetisch wurden die 

Poribacteria dem Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) Superphylum 

zugeordnet. Einige Vertreter dieses Superphylums zeigen einen kompartimentierten 

Zellplan auf, eine Eigenschaft, die auch für Poribacteria vermutet wird. Der Status der 

Poribacteria als Candidatus Phylum zeigt das Fehlen von Vertretern dieses Phylums in 

Reinkultur an. Dies beschränkt die Untersuchung von Poribacteria auf kultivierungs-

unabhängige Methoden, was die funktionelle Charakterisierung dieser Symbionten 

erheblich erschwert. 

 

In dieser Doktorarbeit wurde das Candidatus Phylum Poribacteria mit Hilfe der 

Einzelzellgenomik untersucht. Diese Methode ermöglicht es aus vereinzelten 

mikrobiellen Zellen genomische Komplett-DNA zu gewinnen und diese, mit Hilfe der so 

genannten „multiple displacement amplification“ so hochgradig anzureichern, dass eine 

Sequenzierung und anschließende Analyse erfolgen kann. Die Anwendung dieser 

Methode im Allgemeinen und in der Symbiose Forschung wird in dieser Doktorarbeit 

diskutiert. 

 

Die Einzelzellgenomik ermöglichte die Anzahl poribakterieller Datensätze, von zunächst 

einem auf sechs Genome zu erhöhen. Die Analyse dieser Genome konnte unser 

Verständnis vom metabolischen Potential, der Taxonomie und der Diversität innerhalb 
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dieses Phylums deutlich zu verbessern. Die poribakteriellen Genome beschrieben drei 

Phylotypen, von denen einer deutlich dominierte. Die phylogenetische Position des 

Phylums Poribacteria wurde außerdem anhand von phylogenetischen und 

phylogenomischen Berechnungen neu zugeordnet, und resultierte in einer deutlichen 

Positionierung außerhalb des PVC Superphylums. Weiterhin wurden genomische 

Hinweise auf einen kompartimentierten Zellplan in Poribacteria gefunden. Diese deuten 

aber nicht, wie vorher vermutet, auf eine Zellkern-ähnliche Struktur hin, sondern auf 

bakterielle Mikrokompartimente mit noch ungeklärter Funktion. Die Analysen des 

genomischen Potentials zeigte in allen Datensätzen eine hohe Frequenz von Genen, 

die für Glycosidasen, Glycosyltransferasen und weiteren Proteinen der so-genannten 

„carbohydrate active enzymes“ kodieren, was ein ausgeprägtes Vermögen zum 

Kohlehydratabbau aufzeigt. Das genomische Potential von Poribacteria zum Abbau von 

Kohlehydratpolymeren, Di- und Monosacchariden konnte durch detaillierte Analyse des 

Kohlehydratmetabolismus genau beschrieben werden. Außerdem schienen 

Poribacteria Glycosaminoglycanketten, die zentrale Bausteine der extrazellulären 

Matrix des Schwammes sind, abbauen zu können. Die aus dem poribakteriellen 

Glycobiome resultierenden möglichen Lebensweisen als Wiederverwerter von 

Nährstoffen, Mitesser, oder auch der Einfluss von Poribacteria auf Nährstoffzyklen im 

Schwamm werden in dieser Doktorarbeit diskutiert. Die Ergebnisse dieser Doktorarbeit 

machen Poribacteria zu den genomische am besten beschriebenen 

Schwammsymbionten und zeigen die lange übersehene Relevanz heterotropher 

Symbionten in marinen Schwämmen. 
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1. General Introduction 

 

1.1. Sponges  
Sponges (phylum Porifera) are the evolutionary most ancient living metazoans with a 

fossil record proving their existence at least 580 million years ago (Li et al. 1998). The 

molecular biomarker 24-isopropylcholestance indicates the existence of sponges back 

in the Cryogenian period more than 635 million years ago (Love et al. 2008) which is 

also supported by  molecular clock estimates (Erwin et al. 2011). The evolutionary 

success of sponges is reflected in their widespread occurrence over diverse aquatic 

habitats. Sponges can be found in freshwater lakes and rivers but most species are 

found in marine habitats. These occur around the world in from shallow waters to the 

deep sea as well as from polar regions to tropical reefs (Van Soest et al. 2012). Overall 

8,500 valid species descriptions are known and more than double this number of 

species are suspected to exist (Van Soest et al. 2012). This diversity is also shown in 

the variety of physical appearances (Fig. 1). Sizes range from extremely large species 

such as Xestospongia muta, often more than one metre in height (McMurray et al. 

2008) to millimetre sized sponges encrusting on surfaces of rock or other organisms. An 

array of colours is known from plain greys to bright reds and yellow, and shapes from 

compact “ball” structures to largely extended chimney colonies. 
 

1.1.1. Sponge taxonomy 
Due to the evolutionary early emergence of sponges, the taxonomy of the Porifera is of 

large importance for the reconstruction of early metazoan evolution. Morphological 

aspects of body structure as well as spiculae and sponge embryology play a role in 

classification, while molecular markers become more and more important. The amount 

and selection of such marker genes lead to different theories of a potential para- or 

monophyletic origin of Porifera and is still controversially discussed (for review see 

Wörheide et al. 2012; Dohrmann & Wörheide 2013). Within the phylum Porifera four 

extant classes can be found: Calcarea, Demospongiae, Hexatinellida, and 

Homoscleromorpha. The latter was previously regarded as a subclass of the 

Demospongiae and was only recently revealed as a distinct class within the Porifera by 
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molecular investigations (Gazave et al. 2011). Despite this new classification the 

Demospongiae still comprise about 83% of all sponge species (Van Soest et al. 2012).  

	
  

Figure 1: Examples of different sponge species: Tethya sp. with an undefined purple encrusting 
sponge in the background. Photo: J.Kamke (A), Ancorina alta Photo: J.Kamke (B), Aplysina 
aerophoba PhotoJ. Kamke, modified with permission from Webster & Taylor (2011) (C), 
Amphimedon queenslandica Photo modified with permission from Hentschel et al. (2012) (D), 
Xestospongia muta Photo modified with permission from Hentschel et al. (2012), and Tedania 
digitata Photo modified with permission from Taylor et al. (2007) (F). 

 

1.1.2. Sponge morphology and mode of life 
Sponges are sessile animals that were first to evolve suspension feeding (Ruppert et al. 

2004) and their body plan is, although very simple, highly adapted for this process 

(Hooper & van Soest 2002) (Fig. 2). Sponges lack true tissues or organs as can be 

found in higher metazoans (Bergquist 1978). An aquiferous system branches through 

the sponge body which transfers water from small entering pores, so called ostia, 

through the sponge body into one or several main channels and releases the water 

through the osculum, the final opening. The outer cell layer (pinacoderm) that separates 

the inside of the sponge body from the outside is built by so-called pinacocytes. It can 

be found on the exterior of the sponge and along the aquiferous channels, which lead 

into chambers of flagellated cells the choanocytes that build the choanoderm. These 

cells not only drive the water flow through the sponge but also filter out micro-particles 

from seawater and release them into the mesohyl, an extracellular matrix separating 

pinacoderm and choanoderm (Fig. 2). Amoeboid, totipotent cells (termed archaeocytes) 
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in the mesohyl take up these particles by phagocytosis as a food source. The mesohyl 

is a mostly inorganic network of collagenous fibres (spongin) and siliceous or 

calcareous spiculae that build a stabilising skeleton. Next to sponge cells that produce 

these substances (collencytes, sclerocytes, and spongocytes) the mesohyl can also 

contain high densities of microorganisms permanently inhabiting this extracellular space 

(section 1.2). 

	
  

Figure 2: Schematic drawing of the sponge body plan (a) and detailed  (b). Figure changed with 
permission from Hentschel et al. (2012). 

 

During the filtration processes particles smaller than 10 µm are removed from 

surpassing water (Pile et al. 1996; Reiswig 1971), which is subsequently released 

almost sterile (Wehrl et al. 2007; Ribes et al. 1999). This efficiency is paired with an 

enormous filtering capacity, in fact, thousands of litres of water can pass through a 

sponge per day (Vogel 1977; Bell 2008) and many sponges can filter a volume of water 

equal to their own body weight within five seconds (Ruppert et al. 2004). Accordingly, 

sponges have, due to their filtering performance, a large influence on ecological 

processes in their environments, such as the bentho-pelagic coupling (Bell 2008). It has 

been shown that sponges can influence trophical interactions and nutrient cycles such 

as carbon, nitrogen, silicon, and phosphorous (de Goeij et al. 2008; Ribes et al. 2012; 

Maldonado et al. 2011; Perea-Blázquez et al. 2012; reviewed by Maldonado et al. 

2012). The ecological importance of sponges is further enhanced by their abundance in 

many benthic habitats where they are often dominant species (Hooper & van Soest 

2002). Especially in tropical reef ecosystems sponges are largely abundant and diverse 

(Diaz & Rützler 2001) and it is expected that sponges will in the future play an even 



Chapter 1 

 14 

greater role as major reef builders due to the influence of global change on tropical reef 

systems (Bell et al. 2013). 

 

The sessile lifestyle of sponges resulted in a range of different defence systems that 

sponges use against predators and pathogens or other “invading” organisms and space 

competitors. Spiculae serve not only as a stabilising substance to the sponge but are 

also used as mechanical defence. The well adapted innate immune system of sponges 

further protects against invading parasites and pathogens (Wiens et al. 2007; Müller & 

Müller 2003). Moreover, sponges are known as producers of rich sets of bioactive 

compounds which they not only use as a chemical defence (Pawlik 2011) but which 

also makes them of high interest from a biotechnological and biomedical point of view 

(Blunt et al. 2013). 

 

1.2. Sponge microbiology 
Sponges are known to be associated with highly abundant and diverse microbial 

consortia from all three domains of life (Archaea, Bacteria, and Eukarya). These include 

diatoms, dinoflagellates, macroalgae, and fungi but mostly bacteria and archaea (Taylor 

et al. 2007), on which I will focus here. The largest amounts of bacterial and archaeal 

cells can be found extracellular in the mesohyl of many sponge species but also 

intracellular and even internuclear microorganisms have been described from sponges 

(Vacelet 1975; Wilkinson 1978b; Friedrich et al. 1999). Various inter- and intraspecific 

interactions have been reported (reviewd by Taylor et al. 2007). Many microorganisms 

serve the sponge as mere food source but also commensalistic, mutualistic, and 

parasitic interactions have been described. For the purpose of this thesis the term 

“symbiosis” (and “symbiont”) is used to summarise these interactions in its broadest 

possible definition describing the close association of different phyla or species (Lewin 

1982). 

 

1.2.1. Low and high microbial abundance sponges 
In early electron microscopy studies of microbial communities in sponges it became 

apparent that there is a difference between the sponge species and the amount of 

microorganisms that can be found in their mesohyl (Vacelet & Donadey 1977; Wilkinson 

1978a; 1978c). On the one hand, some species show dense amounts of morphologically 

diverse microorganisms that can make up to 35% of the sponge’s body mass (Vacelet 
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1975). These species were called “bacteriosponges”. On the other hand, the mesohyl of 

other sponge species appears largely free of microbial cells. Later sponges were 

classified into two groups, low (LMA) and high microbial abundance (HMA) sponges 

(Hentschel et al. 2003). The mesohyl of LMA sponges harbours approximately 105-106 

microbial cells per gram sponge wet weight (Fig. 3), which is within the range of 

microbial cell density in seawater (Hentschel et al. 2006). In HMA sponges microbial 

numbers were found to be three to four orders of magnitude higher with up to 1010 cells 

per gram sponge wet weight (Fig.3) (Hentschel et al. 2006). These differences are not 

only restricted to microbial numbers but also community composition, as microbial 

communities in LMA sponges appear less diverse and more similar to the communities 

in seawater (Hentschel et al. 2006; Giles et al. 2012). This was also reflected by the 

clone libraries of the two sponges Ancorina alata (HMA) and Polymastia sp. (LMA), 

where the HMA sponge showed higher diversity and richness of phyla (Kamke et al. 

2010). A recent pyrosequencing study also revealed a stronger similarity of the microbial 

community of the LMA sponge Stylissa carteri to seawater than that of the HMA sponge 

Xestospongia testudinaria but also showed that there is an overlap of taxa between both 

sponge species and the seawater community (Moitinho-Silva et al. 2013). 

 

	
  

Figure 3: Transmission electron microscopy pictures of the mesohyl of two marine sponge 
species. The mesohyl of the HMA sponge Ancorina alata shows a dense microbial community (a) 
while in the mesohyl of the LMA sponge Polymastia sp. shows only very few microbial cells 
(indicated by arrows) (b). Picture changed with permission from Kamke et al. (2010). 

	
  
There has only been little indication as to why some sponge species contain larger 

amounts of microbes in their mesohyl. An apparent difference between HMA and LMA 

sponges is expansion of the mesohyl itself, where HMA sponges show a much more 



Chapter 1 

 16 

extracellular matrix while the aquiferous system is narrower than in LMA sponges (with 

comparably small extracellular matrix and an expansive canal system) (Wilkinson 1978a; 

Weisz et al. 2008; Vacelet & Donadey 1977). This has been connected to slower 

pumping rates and the need to acquire more dissolved organic matter in HMA sponges 

compared to LMA sponges (Reiswig 1974; Weisz et al. 2008; Maldonado et al. 2012).  

 

1.2.2. Diversity, specificity, and stability of the sponge microbiome 
The diversity of sponge-associated microorganisms is exceptionally high. Today at least 

28 bacterial phyla as well as Thaumarchaeota, Euryarchaeota and eukaryotic microbial 

caldes have been described from sponges based on cultivation and molecular cloning 

studies (Hentschel et al. 2012) (Fig. 4). With the emergence of next generation 

sequencing technologies (amplicon sequencing of the 16S rRNA gene) it also became 

possible to access rare members of the microbial communities in sponges. This further 

adds to the diversity and results in more than 30 bacterial phyla (e.g. Webster et al. 

2010; Schmitt et al. 2012; Moitinho-Silva et al. 2013; Lee et al. 2010). Among the 

dominant bacterial phyla in sponges are Proteobacteria (Alpha-, Gamma-, and 

Deltaproteobacteria), Chloroflexi, Actinobacteria, Acidobacteria, Nitrospirae and the 

candidate phylum Poribacteria (section 1.2.5) (Hentschel et al. 2012). Apart from 

Poribacteria 12 other candidate phyla have been described from sponges (BD1-5, 

BRC1, CAB-I, OD1, OP1, OP10, OP11, OP3, OS-K, SBR1093, TM6, and TM7) 

(Schmitt et al. 2012; 2011; Hentschel et al. 2012). Candidate phyla are of special 

interest because they contain exclusively uncultured and formally not described 

organisms that add not only to the phylogenetic diversity but the functional genomic 

repertoire of the sponge microbiome. 
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Figure 4: Phylogenetic 16S and 18S rRNA gene based tree showing all bacterial, archaeal and 
eukaryotic phyla associated with sponges based on Simister et al. (2011) and the degree of 
sequences falling into sponge specific clusters for each phylum. Picture changed with permission 
from Hentschel et al. (2012). 

 

The microbial community of sponges is not only extremely diverse but also shows a 

composition that appears to be specific for these associations. Hentschel et al (2002) 

originally described a uniform microbial community that was commonly represented by 

all sponge derived 16S rRNA gene sequences available at the time. This community 

was shared between different sponge species and sponges from distant geographic 

locations but was distinctly different from samples from any other environment. Using 

phylogenetic analysis of the 16S rRNA gene it was shown that many of the bacterial 

phyla found fall into so-called “sponge-specific clusters” which were defined as clusters 

of (I) at least three sponge derived sequences that are more closely related to each 

other than to any sequence from a non-sponge source, (II) contain at least three 

sequences from different sponge species or from geographically distant locations, and 

(III) cluster together independently of the treeing method used (Hentschel et al. 2002). 

Five years later Taylor et al. (2007) showed in a comprehensive review that out of 1700 

sponge derived 16S rRNA gene sequences that 32% fell in to monophyletic sponge 

specific clusters. The existence of these clusters was recently revisited with more than 
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7500 16S and 18S rRNA gene sponge- derived sequences from bacteria, archaeal and 

fungi (Simister et al. 2011). The study revealed the presence of sponge specific clusters 

in 14 bacterial phyla with the most prominent clusters in Cyanobacteria, Chloroflexi, 

Poribacteria, Betaproteobacteria, and Acidobacteria (Fig. 4).  

 

In contrast, 16S rRNA gene amplicon sequencing studies showed the occurrence of 

seemingly sponge specific microbes in low abundances in other sources such as 

seawater, sediments, or other marine invertebrates (Taylor et al. 2013; Webster et al. 

2010). Furthermore, an analysis of the microbial communities of 32 sponge species from 

eight different locations around the world showed that on a species level (97% sequence 

similarity of the 16S rRNA gene) only a very limited number of bacterial operational 

taxonomic units (OTUs) are present in the majority of all sponge species (Schmitt et al. 

2012). This so defined “core community” is seemingly small with only three OTUs 

represented in more than 70% of all sponge species. In contrast, the majority of all 

sponge derived OTUs appears specific to a certain sponge species. The authors 

however observed that the microbial communities, although sponge species, specific are 

more similar to communities from other sponges than from other environments (Schmitt 

et al. 2012). Thus, sponges show a distinct microbial community signature that is 

internally species specific and highly abundant in the host but rare in other 

environments. Species specificity has also been shown before in three sponge species 

from Australia, which showed only minimal variability between different specimens of the 

same species (Taylor et al. 2004b). Similarly, in different species of the sponge genus 

Dysidea specific cyanobacterial symbionts have been detected (Thacker & Starnes 

2003). Species-specific microbial communities of sponges have also proven stable over 

geographic distances. In five sponge species from Antarctica stable communities were 

found over a radius of ten kilometres (Webster et al. 2004). Taylor et al. (2005) could 

further show that in the sponge Cymbastela concentrica microbial communities remain 

stable over a 500 km distance. Stability of sponge associated microbial communities on 

a host specific level was also shown over varying periods of time. The microbial 

community of the Mediterranean sponge Aplysina aerophoba remained stable in 

captivity during an eleven day experiment (Friedrich et al. 2001). Also over longer 

periods of time have host specific communities proved to be stable as shown in the 

sponges Cymbastela concentrica, Callysponiga sp., and Stylinos sp. that were 

monitored over days, weeks, and lastly five seasons (Taylor et al. 2004b). Further, 

Simister et al. (2013) showed using 16S rRNA gene amplicons sequencing techniques 
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that over a two year sampling survey the two sponges Ancorina alata and Tethya 

stolonifera harboured largely stable communities and that variability was only detectable 

in low abundance OTUs. Finally, sponge associated communities appear to be largely 

stable even when challenged by differing external influences. Captivity led only to minor 

variation in the cold water sponge Geodia barretti (Hoffmann et al. 2006) and the 

microbial community of A. aerophoba remained stable even in filtered circulating 

seawater and under treatment with antibiotics (Friedrich et al. 2001). The microbial 

community of the Great Barrier Reef sponge Rhopaloeides odorabile showed to be 

stable over a period of seven days under elevated nutrient and temperature levels of up 

to 31°C (Simister et al. 2012b). However in a similar study it was shown that 

temperatures of 32°C were lethal for R. odorabile after 3 days and that the microbial 

community changed in the necrotic tissues (Simister et al. 2012a). The authors 

concluded that the host and not the microbial community was temperature sensitive, 

since microbial communities remained stable in both abundance and activity in healthy 

tissue parts of the sponge at 32°C. Further studies confirmed stable communities in R. 

odorabile at elevated but sublethal temperatures and a community shift at lethal 

temperatures (Fan et al. 2013). But it was also shown that the protein expression pattern 

of the microbial community shifted already at sublethal temperatures (Fan et al. 2013). 

Whether elevated temperatures influenced the microbial community itself or a change in 

host function caused the shift is a subject for further studies. 

 

1.2.3. Symbiont acquisition 
In the context of sponge specific microbial communities an important question is how 

these associations are initially established. Different scenarios for the acquisition of 

microbial communities have been discussed including vertical transmission of 

symbionts from the adult sponge over eggs and larval stages, environmental 

transmission through seawater and a combination of the above (Taylor et al. 2007; 

Schmitt et al. 2012; Webster & Taylor 2011). Vertical transmission is supported by 

several studies based on electron microscopy, denaturing gradient gel electrophoresis, 

(DGGE), 16S rRNA clone libraries and amplicon sequencing studies that show the 

occurrence of the same microbial taxa in adult, larval and embryonic stages (e.g. 

Schmitt et al. 2008; 2007; Webster et al. 2010; Enticknap et al. 2006; Steger et al. 2008; 

Gloeckner et al. 2012). This scenario supports the existence of “true symbionts” 

occurring only in their respective hosts and was suggested to occur for the small core 
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community detected in 32 sponge species (Schmitt et al. 2012). Coevolution might have 

occurred between sponges and their microbial symbionts in case of vertical 

transmission of symbionts over long periods of time, as shown by phylogenetic 

analyses between different sponge species and their symbionts (Thacker & Starnes 

2003; Erpenbeck et al. 2002). At the same time the occurrence of sponge associated 

microbiota in seawater supports the second possibility of environmental transmission of 

microbial symbionts. The uptake of rare microbes from seawater which then grow to 

higher abundances in the sponge mesohyl would explain the occurrence of taxa in 

seawater that were previously thought to be sponge specific. Schmitt et al (2012) also 

considered this possibility most likely for the majority of species specific microbial 

communities found in sponges and thus favours a co-occurrence of vertical and 

environmental transmission. Until further studies reveal more details about the mode of 

acquisition of sponge symbionts the combination of vertical and horizontal transmission 

is considered the most likely one (Hentschel et al. 2012).  

 

Besides research on the initial acquisition of sponge symbionts, the question how these 

associations can be maintained while located in the mesohyl, the same space where 

digestion of food bacteria takes place. How do microbial sponge symbionts avoid being 

digested by their host? It was shown that potential symbionts are not digested when 

taken up into the mesohyl, in contrast to non-symbiotic bacteria that were largely 

consumed by sponges (Wilkinson et al. 1984; Wehrl et al. 2007). The mechanisms 

behind this selective feeding of the sponges are not completely understood. One theory 

is that the sponge actively identifies the potential symbiont as “non-food” through an 

epidermal recognition mechanism, while another possibility seems that sponge 

symbionts posses protective extracellular structures such as enhanced membranes or 

slime capsules that shield against digestion (Wilkinson et al. 1984). Extended cell walls 

have indeed been reported from microbial symbionts of marine sponges (Fieseler et al. 

2004) but a connection to prevention of phagocytosis by the sponge has not been 

shown. Much recent attention has been paid to so-called eukaryote like protein domains 

in respect to symbiont recognition. Repeat domain such as ankyrins, tetratricopeptide 

repeats, leucin rich repeats, fibronectin-like domains have been found highly abundant 

and also expressed in sponges (Fan et al. 2012; Thomas et al. 2010a; Liu et al. 2012). 

These repeat domains are known to mediate protein-protein interactions and have been 

suggested to aid in the prevention of phagocytosis by the host (Hentschel et al. 2012; 

Fan et al. 2012). Indeed a recent study showed that an ankyrin gene from sponge 
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symbionts when expressed in E.coli mediate uptake and prevent digestion by amoeba 

(Nguyen et al. 2013). The exact processes in the sponge environment are still to be 

determined but are likely to be complex. There is also the possibility of cell signalling 

being involved. Quorum sensing molecules in the form of acyl homoserine lactone 

(AHLs) and autoinducer- 2 (AI-2) molecules have been detected from sponge 

associated microorganism in culture and in vivo (Taylor et al. 2004a; Mohamed et al. 

2008a; Zan et al. 2011; Gardères et al. 2012). The AHL system has been further 

investigated in the alphaproteobacterial sponge symbiont Rugeria sp. KLH11 from the 

sponge Mycale laxissima. The authors identified a regulatory system for flagellar 

biosynthesis and motility that is controlled by AHL quorum sensing molecules in this 

sponge symbiont (Zan et al. 2012; 2013). The switch between a sessile and motile 

lifestyle might be an important factor for bacteria penetrating the sponge and it is 

conceivable that also other microbe-microbe or even microbe-host communications are 

quorum sensing controlled (Hentschel et al. 2012). 

 

 1.2.4. Symbiont metabolism and function 
Much effort has been put into investigation the functional relationships between 

sponges and their microbial symbionts. Yet, we are only beginning to understand how 

the different partners of this complex system interact and what the functional roles are. 

Functional characterisation of sponge-associated microorganisms is largely restricted to 

culture independent methods, due to the fact that the majority of all sponge associated 

microbes have not been retained in pure culture yet. However, metabolic activity of 

microbial communities in sponges appears high as indicated by RNA based studies 

(Kamke et al. 2010; Moitinho-Silva et al. 2013) and several functions of the primary and 

secondary metabolism of sponge symbionts have been investigated mainly by 

functional gene and “omics” approaches and physiological examinations of the sponge 

itself.  

 

The filter feeding activities of sponges supply the animal itself with nutrients and provide 

a high nutrient environment for associated microorganisms in the mesohyl. This 

environment appears ideal for heterotrophic microbes to thrive on and the presence of 

heterotrophic microorganisms in sponges has been reported widely (Maldonado et al. 

2012; Taylor et al. 2007; Hentschel et al. 2012). It has been suggested that the uptake 

of dissolved organic carbon (DOC) by the sponge Theonella swinhoei is also mediated 
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by its bacterial symbionts (Yahel et al. 2003). Bacteria mediated carbon feeding in the 

coral reef sponge Haliscara caerulae has been reported and revealed that at least some 

of the heterotrophic bacteria in sponges deliver nutrients to their host this way (de Goeij 

et al. 2008). However, the exact processes of carbon consumption by heterotrophic 

bacteria and the connection to host carbon feeding are yet to be investigated. It is 

conceivable that microbes in sponges feed on monosaccharides and mediate digestion 

of more complex sugars from which the host might also profit. In contrast, carbon 

autotrophy of sponge-associated microbes has attracted much more attention. 

Photosynthetic sulphur bacteria, diatoms and dinoflagellates and most dominantly 

cyanobacteria have been found in sponges with the latter being associated to 90% of all 

coral reef sponges (Wilkinson 1983; Thacker & Starnes 2003; Taylor et al. 2007). The 

photosynthetic activities of these organisms can provide the sponge with more than 

50% of its required energy as estimated by photosynthesis and respiration rate 

measurements (Wilkinson 1983). The cyanobacterium Synechococcus spongiarum is 

especially prevalent in sponges and appears to be sponge specific with the largest 

sponge specific cluster reported, 245 16S rRNA gene sequences from 40 different 

sponge species (Erwin & Thacker 2007; Simister et al. 2011). These associations are 

considered truly mutualistic with nutrient exchanges between the sponge and its 

symbionts that additionally profit from shelter in the sponge body (Brümmer et al. 2008). 

Apart from phototrophic carbon fixation some sponge symbionts have shown the 

genomic potential for carbon fixation via the 3-hydroxypropionate cycle as shown for the 

archaeal symbiont Crenarchaeum symbiosum from the sponge Axinella mexicana 

(Hallam et al. 2006b). Furthermore, the microbial metagenome of the sponge 

Cymbastela concentrica contained aerobic type carbon monoxide dehydrogenase 

genes that were significantly overrepresented in sponge samples in comparison to 

seawater and thus might indicate the presence of lithoheterotrophic organisms that gain 

energy by CO oxidation (Thomas et al. 2010a). Indications for further one carbon 

metabolism in form of methane producing and methane oxidising organisms have also 

been reported from sponges. Methanotrophic bacteria have been found in the sponge 

Arenosclera brasiliensis (Trindade-Silva et al. 2012) and in a deep-sea carnivorous 

sponge (Vacelet et al. 1996; 1995). Methanogenic archaea are associated with the 

Great Barrier Reef sponge Rhopaloeides odorabile, which might indicate methane 

production in anaerobic “tissues” of the sponge (Webster et al. 2001). 
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Another important and well-investigated nutrient cycle in sponges is the nitrogen cycle. 

Nitrogen is often limiting in seawater and its supply by symbionts might therefore be 

important to the sponge. Cyanobacterial and heterotrophic bacterial symbionts of 

sponges are known to fix inorganic nitrogen in sponges (Wilkinson & Fay 1979; Shieh & 

Lin 1994; Mohamed et al. 2008b) that can ensure the nitrogen supply to the host. 

Nitrification is another process mediated by bacterial and archaeal symbionts of 

sponges in which ammonia is oxidised to nitrite and later to nitrate. Ammonia oxidising 

archaea and bacteria have been detected in sponges, as well as nitrite oxidisers and 

the relevant functional genes such as amoA encoding for ammonia monooxygenase 

(Radax et al. 2012a; Hoffmann et al. 2009; Bayer et al. 2007; 2008; Hallam et al. 2006b; 

Steger et al. 2008; Diaz & Ward 1997). Furthermore, physiological measurements of 

nitrate and ammonium release (Bayer et al. 2007; Diaz & Ward 1997; Hoffmann et al. 

2009) as well as relevant genes in metagenomic, metatranscriptomic and 

metaproteomic datasets (Thomas et al. 2010a; Liu et al. 2012; Radax et al. 2012b; Fan 

et al. 2012) support the presence of active nitrification in sponges. Ammonia is a 

potentially toxic waste product of the sponge that is detoxified by the microbial 

symbionts and these benefit from the additional nitrogen sources. Ammonia can be 

assimilated by sponge symbionts via the glutamine-synthase-glutamine oxoglutarate 

aminotransferase (GS-GOGAT) pathway (Thomas et al. 2010a) and the uptake and 

degradation of urea is also supported by genomic data (Hallam et al. 2006a).  Fan et al. 

(2012) found an overrepresentation of glutamate dehydrogenase in three out of six 

sponge metagenomes and hypothesized that sponge symbionts might also use this 

enzyme for ammonium assimilation in case of ammonium excess in the sponge.  

 

Interestingly, also anaerobic processes seem to play a role in the nitrogen cycle 

sponges. Anoxic zones can arise in sponges when the pumping activity stops 

(Hoffmann et al. 2008). Anaerobic ammonia oxidation (anammox) was measured in the 

sponge Geodia barretti and organisms known for this pathway have been detected in 

sponges by their 16S rRNA gene sequence (Hoffmann et al. 2009; Mohamed et al. 

2010). Indications for denitrifying organisms in sponges were also found (Enticknap et 

al. 2006). Later denitrification rates were measured in the cold water sponge G. baretti 

and potential denitrifying Betaproteobacteria detected by 16S rRNA and functional gene 

analysis (Hoffmann et al. 2009). Schläppy et al. (2010) further detected denitrification 

rates in both high and low microbial abundance sponges. Genes for denitrification were 

also found in the metagenome and metaproteome of C. concentrica (Liu et al. 2012). 
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Further analyses of six metagenomes from different sponge species showed that 

denitrification is a shared functional feature carried out by sponge associated microbes 

and it is encoded by different functional genes in the metagenomes of different sponges 

(Fan et al. 2012).  

 

The sulphur cycle in marine sponges is also dependent on the presence of anoxic 

zones. Sulphur reduction was measured in G. barretti (Hoffmann et al. 2005) and 

sulphur reducing and oxidising microbes have been detected in several sponge species 

(Manz et al. 2000; Webster et al. 2001; Hoffmann et al. 2005; 2006; Meyer & Kuever 

2008; Taylor et al. 2007). Furthermore, a key enzyme for sulphate reduction and 

sulphur oxidation, APS reductase (aprA) revealed sulphur-oxidising Alpha- and 

Gammaproteobacteria and a sulphate-reducing archaeon in the sponge Polymastia cf. 

corticata (Meyer & Kuever 2008). The authors suggested the existence of a sulphur 

cycle in sponges that is analogous to that occurring in marine oligochaetes (Dubilier et 

al. 2001). 

 

Apart from these major nutrient cycles some other functions have been described from 

sponge symbionts. Ahn et al. (2003) postulated that symbionts of marine sponges might 

be able to degrade halogenated chemicals in sponges. Bayer et al. (2012) showed the 

presence of novel halogenase gene clusters in the metagenomes of Aplysina 

aerophoba and confirmed their identity by single-cell screenings as of 

deltaproteobacterial, actinobacterial, and poribacterial origin. Additionally, biosynthesis 

of cofactors and vitamins have been identified as a shared feature of microbial sponge 

symbionts (Hentschel et al. 2012). The presence of gene clusters encoding for riboflavin 

(vitamin B2), cobalamin (vitamin B12), biotin (vitamin B7), and thiamine (vitamin B1) has 

been reported from several omics studies of individual sponge symbionts or microbial 

communities of sponges (Hallam et al. 2006a; Thomas et al. 2010a; Liu et al. 2010; Fan 

et al. 2012). These studies do however not reveal if and how microbial produced 

vitamins are transferred to the host and these questions therefore remain an interesting 

topic for further investigations.  

 

Marine sponges are well known as producers of highly diverse secondary metabolites. 

These substances are used as a natural defence by sponges against predators, space 

competitors, and harmful microorganisms (Taylor et al. 2007). From a biotechnological 

and pharmaceutical point of view they are of high interest as they show antimicrobial, 
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antifungal, antiviral, anti-fouling, anti-inflammatory, and even anticancer activities (Blunt 

et al. 2013). It was shown in several studies that many of the bioactive metabolites from 

sponges are actually produced by their microbial symbionts (Thomas et al. 2010b; Piel 

2004b).  This has drawn much attention to the secondary metabolism of sponge 

symbionts. The substances produced by these organisms are diverse (Thomas et al. 

2010b; Blunt et al. 2013) but in focus are often polyketides and non-ribosomal peptides. 

Polyketide synthase (PKS) gene clusters have been detected in several metagenomes 

of marine sponge associated microbial communities. Bacterial PKS genes were found 

in metagenomes of the sponges Theonella swinhoei and Psammoicinia bulbosa and 

are thought to produce the antitumor polyketides onnamide A and psymberin (Fisch et 

al. 2009; Piel 2004a). Furthermore, a sponge exclusive and ubiquitous monomodular 

PKS system (Sup-PKS) was found in metagenomic DNA of several sponge species and 

was predicted to produce methyl-branched fatty acids (Fieseler et al. 2007; Hochmuth & 

Piel 2009). It was shown that these fatty acids and the relevant PKS system occur 

exclusively in HMA sponges and also correlate with the presence of the candidate 

phylum Poribacteria (Hochmuth et al. 2010). It was thus suggested that Poribacteria 

might be the producers of this PKS system, a theory that was supported by linking sup-

PKS system genes to a single bacterial cell that was identified as poribacterial based on 

its 16S rRNA gene sequence (Siegl & Hentschel 2009). Another class of bioactive 

metabolites from sponge symbionts are non-ribosomal peptides. Non-ribosomal peptide 

synthases (NRPS) have been identified from metagenomes of sponge microbiota and 

from bacterial isolates of sponge symbionts (Pimentel-Elardo et al. 2012; Blunt et al. 

2013; Piel 2004b). These systems are found foremostly in members of the 

Actinobacteria and especially Streptomyces. Single-cell based analysis did also identify 

a sponge symbiont of the phylum Chloroflexi as a producer of non-ribosomal peptides 

(Siegl & Hentschel 2009).  

 

1.2.5. The candidate phylum Poribacteria 
In studies of sponge-microbe associations, one bacterial phylum has attracted much 

attention, namely the candidate phylum Poribacteria. Its status as candidate phylum 

indicates that as of now there are no cultured representatives, which restricts all 

characterisations to culture independent studies. Nevertheless, Poribacteria have many 

characteristics that make them sponge symbionts of special interest. Poribacteria were 

first discovered in marine sponges (Fieseler et al. 2004) and have since then been 
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described from various sponge species around the world where they are highly 

abundant (Lafi et al. 2009; Schmitt et al. 2012; Webster et al. 2010). They are with more 

than 400 different OTUs (based on 97% sequences similarity) the most diverse and 

also one of the most abundant phyla in a 16S rRNA gene amplicon sequencing study 

including 32 sponge species from around the world (Schmitt et al. 2012). Outside of 

sponges they have only been detected as part of the so-called rare biosphere (Webster 

et al. 2010; Moitinho-Silva et al. 2013; Taylor et al. 2013; Pham et al. 2008). Thus, 

Poribacteria can still be considered as being largely exclusive to marine sponges and 

they form some of the largest sponge specific clusters discovered so far (Simister et al. 

2011). It appears likely that Poribacteria are vertically transmitted between sponge 

generations, as they have been found in sponge reproductive and embryonic stages in 

several studies using molecular cloning and amplicon sequencing techniques of the 

16S rRNA gene (Schmitt et al. 2008; Webster et al. 2010). However, the potential 

presence of Poribacteria in seawater renders environmental transmission an additional 

option for these symbionts.  

 

Phylogenetically Poribacteria are regarded as part of the Planctomycete-

Verrucomicrobia-Chlamydiae (PVC) superphylum (Wagner & Horn 2006). Members of 

this phylum show features of cell compartmentalisation (Santarella-Mellwig et al. 2010; 

Fuerst 2005). This feature has also been proposed for Poribacteria based on ring-

shaped fluorescence in situ hybridisation (FISH) signals indicating a ribosome-free area 

in the poribacterial cells and the presence of compartmentalised cells in transmission 

electron microscopy images of the mesohyl of poribacteria-containing sponges (Fieseler 

et al. 2004). Furthermore, it has been shown that Poribacteria are highly active based 

on strong fluorescent signals from FISH studies and 16S rRNA transcripts (Fieseler et 

al. 2004; Kamke et al. 2010). Recent studies revealed also that outside of sponges 

Poribacteria are not only rare in abundance but also transcriptionally inactive while 

activity inside of the host was confirmed (Moitinho-Silva et al. 2013). Functional 

information about Poribacteria is still scarce. Fieseler et al. (2006) sequenced a 39 kilo-

basepair (kbp) long insert of a fosmid clone from an Aplysina aerophoba metagenome 

library that contained a 16S rRNA gene of a poribacterium. Apart from the 16S rRNA 

gene the fosmid clone sequence contained 26 open reading frames (orfs) encoding for 

several hypothetical proteins with similarities to genes from the planctomycete 

Rhodopirellula baltica, an undefined oxidoreductase, and eight orfs encoding for 

transmembrane proteins that might build a transporter (Fieseler et al. 2006). Other 
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functional information about Poribacteria was obtained by screening the amplified DNA 

of single cells for functional gene and at the same time identifying phylogenetic origin by 

16S rRNA gene analysis (Bayer et al. 2012; Siegl & Hentschel 2009). Thus a PKS 

system and potential halogenase gene were connected to Poribacteria (see section 

1.2.4). However, there are still large gaps in our knowledge about the functional 

repertoire of poribacterial and other symbionts of marine sponges. 

 

1.3. Research objectives 
While the microbial diversity of sponge-associated microorganisms is becoming 

increasingly well understood, we are only beginning to understand the functional aspects 

of these relationships. The lack of cultivated representatives of the sponge community 

restricts functional investigation for most sponge symbionts to either physiological 

investigations of metabolites in sponges or studies based on nucleic acids. Most 

functional information about the sponge microbiome was obtained by screening for 

functional genes or whole community analysis of DNA, RNA, or proteins. However, these 

analyses can give only very limited information about the phylogenetic identity behind the 

detected functions. Connecting phylogeny with function is however an important 

component to understand complex interactions of diverse microbial communities such as 

found in sponges. It allows gaining specific information about target organisms of interest 

that might get lost in the bulk of information obtained by whole community analyses. 

Connecting phylogenetic identity with function is therefore an important requirement to 

fully understand the complex interactions in the sponge microbiome and the roles of 

individual players in this system. 

 

The aim of this thesis was to investigate the specific functions of the candidate phylum 

Poribacteria using single-cell genomics (see Chapter 2). Genomic characterization on a 

single-cell level allowed for a connection of functional repertoire and phylogenetic identity 

not only to species but individual cell level. This made it possible to detect differences in 

the functional properties of organisms even with identical 16S rRNA gene that would 

usually be classified as the same organism even though they might represent different 

ecotypes. This study was focused on the candidate phylum Poribacteria, as they 

represent widespread and abundant symbionts that are almost exclusive to sponges. It 

was therefore hypothesised that Poribacteria show functional traits with importance for 

this symbiosis. I therefore aimed to investigate the common and individual functions of 
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Poribacteria by (I) obtaining several single amplified genomes (SAGs) of the candidate 

phylum Poribacteria using fluorescence activated cell sorting (FACS), multiple 

displacement amplification of the total genomic DNA, PCR based identity screening, and 

whole genome sequencing using next generation sequencing techniques with 

subsequent genome analysis (Chapter 2). To cover a large range of the functional 

potential of Poribacteria, I further intended to (II) obtain single-cells representing different 

groups of poribacterial phylogenetic range based on the 16S rRNA gene. This allowed 

me to (III) obtain a higher resolution phylogenetic placement of the candidate phylum 

Poribacteria based on sequence alignment of several marker genes compared to 16S 

rRNA gene based phylogeny. By detecting common functional features between 

poribacterial genomes I aimed to (IV) identify traits important for the role of Poribacteria 

in this symbiosis. Finally the extensive analysis of several genomes of the candidate 

phylum Poribacteria allowed me to (V) gain a first glimpse of potential novelties of the 

genomic repertoire of this candidate phylum. 
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2. Exploring symbioses by single-cell genomics 

 

This article was published in the peer-reviewed journal The Biological Bulletin. 

 

For documentation of individual contributions to this work and consent of all authors for 

publication in this thesis please refer to appendix A. 
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3. Single-cell genomics reveals the lifestyle of Poribacteria, a 

candidate phylum symbiotically associated with marine 

sponges. 

 

This article was published in the peer-reviewed journal The ISME Journal. 

The supplementary information to this article can be accessed at the journal webpage 

(http://www.nature.com/ismej) and is additionally provided with a CD attached to this 

PhD thesis. 

 

For documentation of individual contributions to this work and consent of all authors for 

publication in this thesis please refer to appendix A. 
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4. Single-cell genomics reveals complex carbohydrate 

degradation patterns in poribacterial symbionts of marine 

sponges. 
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Abstract 
 
The candidate phylum Poribacteria is one of the most dominant and widespread 

members of the microbial communities residing within marine sponges. Cell 

compartmentalization had been postulated along with their discovery about a decade 

ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, 

Chlamydiae superphylum was proposed soon thereafter. In the present study we 

revised these features based on genomic data obtained from six poribacterial single 

cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to 

the PVC superphylum together with other candidate phyla. Our genomic analyses 

supported the possibility of cell compartmentalization in form of bacterial 

microcompartments. Further analyses of eukaryote-like protein domains stressed the 

importance of such proteins with features including tetratricopeptide repeats, leucin rich 

repeats as well as low density lipoproteins receptor repeats, the latter of which are 

reported here for the first time from a sponge symbiont. Finally, examining the most 

abundant protein domain family on poribacterial genomes revealed diverse phyH family 

proteins, some of which may be related to dissolved organic posphorus uptake.  
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Introduction 
 
Single-cell genomics is a powerful tool to describe genomes of as yet uncultivated 

organisms from diverse environments [1,2]. Recently it allowed a first glimpse into the 

vast functional diversity represented by genomes of previously largely uncharacterized 

candidate phyla [3]. In this study we investigated six single amplified genomes (SAGs) 

of a symbiont of marine sponges, the candidate phylum Poribacteria. Poribacteria were 

first discovered as highly abundant symbionts of marine sponges [4] and as of now lack 

any cultivated representatives. With the advent of next generation sequencing 

technologies they were also detected in seawater albeit in low abundances [5-7]. 

Poribacteria are one of the most predominant taxa inhabiting the extracellular matrix 

(mesohyl) of sponge species around the world [8-10]. These symbionts are vertically 

transmitted over larval stages from the adult sponge to the next generation [6,11]. 

Initially, the candidate phylum Poribacteria showed a moderate phylogenetic 

relationship to Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC superphylum) 

based on monophyletic clustering in 16S rRNA gene analysis [4]. Later, Poribacteria 

were classified as members of the PVC superphylum although the exact position within 

the superphylum could not be completely resolved [12]. Similar to some members of the 

PVC superphylum Poribacteria were also suspected to have a compartmentalized cell 

plan [4]. In this study we revisited the features of phylogeny and cell 

compartmentalization based on the sequence data of six single-cell derived genomes 

from the candidate phylum Poribacteria. We further reveal a large abundance and 

diversity of eukaryote-like domain containing proteins as well as phyH-like proteins in 

Poribacteria. 

 

 

Materials and Methods 
 
Genome annotation and analysis 

Six poribacterial single-cell genome sequences were included in this study, these being 

Candidatus Poribacteria WGA 3A, 3G, 4C, 4CII, 4E and 4G with Genbank accession 

numbers ADFK02000000, ASZN01000000, APGO01000000, ASZM01000000, 

AQTV01000000, AQPC01000000, respectively. These genomes were previously 

obtained by our group from uncultivated bacteria inhabiting the marine sponge 

Aplysina aerophoba by fluorescence activated cell sorting (FACS), multiple 
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displacement amplification (MDA), and next generation sequencing [13,14]. For a 

detailed description of all steps from sample collection to genome assembly and 

annotation please refer to Kamke et al. [14]. Genome sequences were automatically 

annotated via the IMG pipeline [15] and manually curated in IMG/MER. All analyses 

were conducted using the tools in IMG/MER unless further specified.  

 

Clustering analysis of PhyH family genes 

For clustering of pfam 05721-PhyH family proteins we used the fastclust algorithm in 

usearch [16] with an identity cutoff of 60% amino acid id. 

 

Phylogenetic 16S rRNA gene analysis 

Sequences for 16S rRNA gene based phylogenetic analysis were selected from the 

SILVA 16S rRNA database version 108 [17] in the ARB software package (V5.3) [18]. 

All poribacterial 16S rRNA sequences (≥1100 bp) available in GenBank by June 2013 

and the 16S rRNA sequences of poribacterial single-cell genomes were included. 

Additional sequences for the candidate phyla Aerophobetes (CD12) and 

Hydrogenedentes (NKB19) were obtained by blast searches [19] of reference 

sequences (accession number JN675971 for CD12 and CR933119 for NKB19) against 

Genbank nr/nt database in June 2013 and selecting the 100 best hits with >75% 

sequence ID and sequence length ≥1100bp. All sequence added to the original 

database were aligned using the SINA aligner [20] and included into the ARB database 

for further manual refinement. Alignments were exported from ARB for phylogenetic 

tree construction using RAxML (v7.3.2) [21]. Maximum likelihood trees were 

constructed using sequences ≥1100bp only and 50% conservation filters. Bootstrap 

analysis was carried out with 500 resamplings. Trees were reimported into ARB and 

sequences < 1100bp were added to the tree using the parsimony interactive tool in ARB 

without changing tree topology. 

 

Phylogenetic analysis of 83 bacterial marker protein sequences 

For the calculation of the bacterial phylogenetic tree we followed the procedure 

described by Rinke et al. [3] based on a custom marker set of 83 bacteria specific 

markers (Suppl. Table S1) described in the study. Briefly, single-cell genome 

assemblies of Poribacteria were translated into all six reading frames and marker genes 

were detected and aligned with hmmsearch and hmmalign included in the HMMER3 

package [22] using HMM profiles obtained from phylosift 
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(http://phylosift.wordpress.com/). Extracted marker protein sequences were used to 

build concatenated alignments of up 83 markers per genome. Alignments were included 

into the database constructed by Rinke and coworkers [3] and reference sequences 

were selected for phylogenetic tree construction. Phylogenetic inference methods used 

were the maximum likelihood based FastTree2 [23] and a custom RAxML bootstrap 

script originally provided by Christian Goll and Alexandros Stamatakis (Scientific 

Computing Group, Heidelberg Institute for Theoretical Studies, Germany) and modified 

by Douglas Jacobsen (Bioinformatics Computing Consultant, LBNL, Berkeley, USA). 

The script requires two input files, the alignment file as PHYLIP format and a starting 

tree calculated by RAxML-Light [24]. The script workflow is briefly summarized as 

follows: First RAxML version 7.3.5 [21] creates bootstrap replicates of the multiple 

sequence alignments and stepwise addition order parsimony trees as starting points for 

the maximum likelihood search, based on user defined rate heterogeneity and 

substitution models. Next RAxML-Light [24] is run on every bootstrap replicate. After all 

RAxML-Light runs are finished the resulting replicate trees are fed into RAxML to 

calculate the bootstrap support values which are drawn upon the starting tree. The rate 

heterogeneity and amino acid evolution models used were GAMMA and LG for the 

custom RAxML bootstrap script, and CAT approximation with 20 rate categories and 

Jones-Taylor-Thorton (JJT) for FastTree2. To evaluate the robustness of the protein 

trees we used seven different out-group taxon configurations (Table 1). 

 

	
  

Results and Discussion 
 
Phylogenetic revision of Poribacteria  

Analysis of phylogenetic interferences of up to 83 marker genes (hereafter termed 

phylogenomic analyses) showed that all poribacterial SAGs clustered, with 100% 

bootstrap support in all our tree calculations, in a monophyletic group distinct to the 

PVC superphylum (Table 1, Fig. 1). Poribacteria SAGs clustered with the recently 

proposed phyla Aerophobetes (CD12) and/ or Hydrogenedentes (NKB19) [3] in most of 

our phylogenomic calculations (Table 1). This loosely affiliated clade, including other 

phyla such as Elusimicrobia, formed in some tree calculations a sister clade to the PVC 

superphylum (Fig. 1). Phylogenetic analysis of the 16S rRNA gene supported 
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monophyletic clustering of Poribacteria with strong bootstrap support (Fig. 2). However, 

phylogenetic placement based on the 16S rRNA gene did not show the direct grouping  

 
Table 1. Summary of phylogenetic inference results from all phylogenomic tree calculations.  

Inference 1 Species 2 Por 
BS3 

Sistergroup4 Clade members 
(BS)5 

Outgroup6 
 

Fasttree, 
CAT, JTT 

2311 100% Hydrogenedentes 
(NKB19) 

Poribacteria, 
Hydrogenedentes 

(NKB19), 
Aerophobetes 
(CD12) (100%) 

all bacteria 

Fasttree, 
CAT, JTT 

316 100% Aerophobetes 
(CD12) + 

Hydrogenedentes 
(NKB19) 

Poribacteria, 
Hydrogenedentes 

(NKB19), 
Aerophobetes 
(CD12) (100%) 

Spirochaetes, Alpha- 
& Betaproteobacteria, 

Firmicutes, 
Cyanobacteria, 
Elusimicrobia 

Fasttree, 
CAT, JTT 

310 (noS) 100% Chloroflexi Poribacteria, 
Chloroflexi, 

Hydrogenedentes 
(NKB19), 

Aerophobetes 
(CD12) (87%) 

Spirochaetes 

Fasttree, 
CAT, JTT 

312 (noS) 100% Hydrogenedentes 
(NKB19) 

Poribacteria, 
Hydrogenedentes 

(NKB19), 
Aerophobetes 

(CD12), 
Elusimicrobia 

(71%) 

Spirochaetes, Alpha-, 
Beta-, & 

Gammaproteobacteria 

Fasttree, 
CAT, JTT 

306 (noS) 100% Aerophobetes 
(CD12) 

Poribacteria, 
Aerophobetes 
(CD12) (100%) 

Spirochaetes 

RAxML, 
GAMMA, 

LG 

312 (noS) 100% Hydrogenedentes 
(NKB19) 

Poribacteria, 
Hydrogenedentes 

(NKB19), 
Aerophobetes 

(CD12), 
Elusimicrobia 

(45%) 

Spirochaetes, Alpha-, 
Beta-, & 

Gammaproteobacteria 

	
  
1 Inference method, rate categories, and substitution model  
2 number of species in tree. Single sequences which did not belong to any main clades were removed 
before tree calculations where indicated (noS = no Singletons).  
3 Bootstrap support for the phylum Poribacteria 
4 sistergroup to the phylum Poribacteria  
5 sistergroup to the phylum Poribacteria  
6 phyla added as outgroups for tree calculation  
 

with Aerophobetes (CD12) and/ or Hydrogenedentes (NKB19) (Fig. 2). Instead 

Poribacteria were placed (bootstrap support 91%) separately within a larger cluster of 

other phyla including the PVC superphylum as well as the candidate phylum WS3, 

recently renamed as Latescibacteria [3] and a monophyletic lineage previously 

described as “sponge associated unclassified lineage” (SAUL) [9]. 
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Figure 5: Phylogenomic tree based on a concatenated alignment of up to 83 genes illustrating the 
phylogenetic position of the candidate phylum Poribacteria. Bootstrap value (100 resamplings) 
are shown on tree nodes where support ≥ 50%. Number of genomes per group is displayed in 
group boxes. Outgroup consists of several species of Spirochaetes and Gammaproteobacteria. 
The scale bar represents 10% sequence divergence.  

 

The inconsistency between phylogenomic and the 16S rRNA gene-based phylogeny 

might be due to the relatively low resolution provided by the single marker gene (16S 

rRNA) analysis compared to multiple genes analysis as has been suggested previously 

[3,25]. On the other hand the phylogenomic analysis, limited to the relatively small 

amount of draft reference sequences available at the time of analysis, might not be able 

to properly resolve the general placement of the phylum. We expect that the position of 

the Poribacteria in the tree of life will be further refined as more genome sequences of 

Poribacteria and of other candidate phyla become available. Importantly, the 

phylogenetic analyses performed in this study (whether 16S rRNA gene or marker 

genes based) did not support a clustering of Poribacteria with the PVC superphylum, 

which is in contrast to what was suggested earlier [12].  
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Figure 6: 16S rRNA gene based maximum likelihood tree illustrating the phylogenetic position of 
the candidate phylum Poribacteria. Bootstrap values (500 resamplings) ≥ 50% are shown on tree 
nodes. Numbers of sequences included per group is shown in group boxes. Outgroup consists of 
80 sequences belonging to the Bacteroidetes. Scale bar represents 10% sequences divergence.  

 

Previous studies based on concatenated alignments of protein data [26,27], also 

showed the phylogenetic position of Poribacteria outside the PVC superphylum. 

However, these studies included only one poribacterial genome sequence available at 

that time, Candidatus Poribacteria sp. WGA A3, which was later shown to be flawed by 

contaminating DNA [14]. Besides phylogenetic analysis, Gupta and coworkers [26] 

described a conserved hypothetical protein as a potential marker for the PVC 

superphylum, which was however missing from all poribacterial SAGs analysed here. 

This lack of a PVC marker protein provides further support for the independent 

phylogenetic position of Poribacteria. 

 

Genomic evidence for microcompartments  

Cell compartmentalization is one characteristic that has been proposed for Poribacteria 

based on ring shaped fluorescence in situ hybridization (FISH) signals and the electron 
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microscopic observations of compartmentalized prokaryotic cells in the mesohyl of the 

sponge Aplysina aerophoba [4]. The observed structures appeared similar to those 

described for many members of the Planctomycetes [29] and most specifically for 

Gemmata obscuriglobus where the compartment was proposed to be a nucleus-like 

structure [30]. The existence of cell compartmentalization in members of the PVC 

superphylum was later connected to the occurrence of membrane coat like proteins 

encoded on the genome [31]. To further investigate the possibility of cell 

compartmentalization in Poribacteria, we searched poribacterial SAGs for possible 

genomic evidence of such features. We were not able to find membrane coat like 

proteins or any genomic indication of large cell compartments. This is in accordance 

with a recent study which challenged the concept of the existence of these 

compartments even in other bacteria and confutes the existence of a nucleus-like 

structure in G. obscuriglobus [32].  

 

Our analysis did reveal evidence for a possible occurrence of bacterial 

microcompartments (BMCs) in Poribacteria. Four of six poribacterial SAGs encoded for 

genes with hits to either one of two pfam domains namely, pfam00936 BMC or 

pfam03319 EutN CcmL (Table 2).  
 
 
Table 2: BMC shell protein markers on poribacterial SAGs. 

Function ID Name 3G 4CII 4E 3A 

pfam00936 BMC  1 1 2 0 

pfam03319 EutN CcmL 3 0 3 1 
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These domains are considered markers for BMC shell proteins. Specifically, we 

identified three regions with conserved genomic structure between different 

poribacterial SAGs (groups A-C) (Fig 3) that encoded for genes with these domains. A 

fourth region (group D) was identified on SAG 4E with two BMC shell proteins enclosing 

a set of 21 genes (Fig. 3).  

 

Figure 7: Schematic view of poribacterial BMC shell protein groups. For a better overview all 
genes are displayed in 5’-3’ direction of the BMC shell protein gene. The actual strand orientation 
might be different and is indicated by plus or minus signs. Genes are shown with locus taq and 
amino acid identities based on IMG/MER homology searches are shown between genes where 
applicable. BMC shell protein genes are shown in white, other genes with homologies between 
different SAGs are shown in dark grey, other genes are shown in light grey. 
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A detailed description of these groups can be found in the supplemental material Text 

S1. BMCs are proteinaceous structures that 	
  

enclose sets of enzymes of diverse functions performing a chain of reactions within the 

compartment [33]. BMC shell functions have been described as concentrating enzymes 

and substrates together to increase reaction efficiency, protection of e.g. oxygen 

sensitive enzymes, enclosure of toxic or volatile metabolites that are 

produced/consumed by enzymes in the shell, and concentrating metabolites to increase 

efficiency [33,34]. Kerfeld et al. [33] suggested that at least two (or more) pfam00936 

domain proteins and one pfam03319 domain protein might be required as building 

blocks of functional BMCs. Out of all poribacterial SAGs only 4E encoded for more than 

one pfam00936 domain and, with the exception of SAG 4CII, all poribacterial SAGs 

encoded for a higher number of pfam03319 than pfam00936 domains (Table 2). This is 

unusual when compared to most other BMC shell protein studied to date (Suppl. Table 

S2). Poribacteria, together with Planctomycetes, the candidate phylum Atribacteria 

(OP9), and some additional phyla (Suppl. Table S2), appear to be among the few 

exceptions containing more pfam03319 than pfam00936 domains.  

 

The so far best described BMC functions are the carboxysome and BMCs containing 

enzymes for ethanolamine or propanediol utilization. Bioinformatic analysis of all 

available BMC shell protein encoding genomic regions at the time by Yeates et al. [35] 

revealed that functional proteins within the BMCs are often encoded in close proximity 

of the BMC shell proteins and identified a set of functions regularly occurring with BMC 

shell proteins. However, the genes in poribacterial BMC clusters did not show direct 

similarities to any of these previously described functions but some genes in 

poribacterial BMC clusters give an indication of potential functions. It is noteworthy that 

many of the described enzymatic reactions in previously described BMCs are co-factor 

dependent (often vitamin B12), and that the co-factor biosynthesis genes were often 

found in close proximity to BMC shell protein genes [33]. In poribacterial BMC group B 

we found genes for riboflavin (vitamin B2) biosynthesis, which might indicate a riboflavin 

dependent process occurring in poribacterial BMCs. Riboflavin is a major cofactor in 

many processes of the energy metabolism. To our knowledge riboflavin biosynthesis 

genes have so far not been described from other BMC shell gene clusters. Further 

investigations will reveal, whether there are indeed BMCs with riboflavin dependent 

reactions.  Furthermore, poribacterial BMC gene clusters show similar regulatory 

systems to previously described clusters. A recent study by Jorda et al. [36] identified 
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clusters of BMCs shared between different organisms by comparing similarities of 

genes in the genomic neighborhoods of BMC shell proteins. They identified two BMC 

clusters that are characterized by a two-component regulatory system with a signal 

transduction histidine kinase and response regulator receiver [36]. Poribacterial BMC 

clusters appear to similarly regulated, since we also detected genes of a two-

component regulatory system in three out of four described poribacterial BMC groups 

(see Fig. 3, and supplemental text S1). However, none of the functional genes on 

poribacterial BMC clusters showed similarities to those on the clusters described by 

Jorda et al. [36] and therefore the true functions of poribacterial BMCs remain to be 

investigated. 

 

It is suspected that novel BMC functions will be revealed in the future [36] especially 

from genomes with a more scattered operon structure [33]. This might also be the case 

for Poribacteria where the identified genomic regions with BMC shell protein genes 

(group A-C) appear scattered across the genome. For example, the different BMC shell 

protein genes (with pfam00936 and pfam03319) are generally in different genomic 

regions on poribacterial genomes and not encoded together within one region, as it is 

the case for many so far functionally characterized BMC types [33]. Functional 

components of poribacterial BMCs might therefore also be encoded on different 

genomic regions. Alternatively, the existence of only one pfam00936 domain and the 

occurrence of transposase genes in BMC gene clusters B and D (see text S1) might 

indicate lack of function [33]. Future efforts are needed to resolve this issue for 

Poribacteria. 

 

Eukaryote-like repeat proteins  

Eukaryote-like repeat domain containing proteins have received much recent attention 

in sponge microbiology and their involvement in mediating host-microbe interactions 

has been postulated. Especially ankyrin (ANK) and tetratricopeptide repeats (TPR) 

have been in focus of such investigations [37-39]. To examine the role of these domains 

on poribacterial SAGs we searched for proteins with pfam hits to repeat and eukaryote-

like domains in the IMG/MER database and also compared these to all finished 

genomes of free-living marine bacteria available in the IMG database in July 2013 

(n=98). We detected 41 such domains on poribacterial SAGs. The majority of these 

showed a higher domain frequency per total genes on at least one poribacterial SAG 

when compared to the average frequency of this domain on genomes of free-living 
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marine bacteria (Fig. 4, Table S7). For 14 pfam domains the frequency on poribacterial 

genomes was even higher than the maximum frequency of this domain on the genome 

of any free-living marine bacterium. Many domains occurred simultaneously on the 

same genes with a total of 668 domains in all poribacterial SAGs on 490 encoded 

proteins (3A: 15 domains on 11genes, 3G: 335 domains on 240 genes, 4C: 95 domain 

on 75 genes, 4CII: 24 domains on 16 genes, 4E: 181 domains on 135 genes, and 4G: 

17 domains on 8 genes).  

 

	
  

Figure 8: Bar plot showing frequency of eukaryote-like pfam domains found on poribacterial 
SAGs in comparison to the average and maximum frequency on all finished genomes of marine 
free-living bacteria available in IMG in July 2013. 

 

Among the most abundant domains were TPRs with pfams 013414, 00515, 07719, 

13432, 13174, and 13181, which were also represented by eight other pfams (13424, 

13374, 13371, 09976, 13431, 13429, 13428, and 13176) but in lower abundances. We 

were also able to find Sel1 repeat like proteins domains encoded on poribacterial SAGs 

3G and 4E (0.02 and 0.15% of total genes, respectively) which have a similar structure 

to TPRs [40]. In total TPRs represented the highest frequency of repeat domains on 

poribacterial SAGs. Furthermore WD40 domains (pfam00400) were highly abundant on 

poribacterial SAGs, as well as two-copy leucin rich repeats (LRR) (pfam 12799), and 

the VCBS domain (pfam 13517) which is a domain found in high numbers in the genera 

Vibrio, Colwellia, Bradyrhizobium and Shewanella. Pfam domain 07593- ASPIC and 
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UNbV was also present on several poribacterial SAGs in multiple copies. ANK repeat 

domains were detected (pfam 12796, 13637, 13857, and 00023) in lower numbers on a 

total of 14 genes on SAGs 3G, 4C and 4E (Table S7). The frequency of genes with 

pfam domains representing ankyrin repeats was often higher than average compared to 

the genomes of free-living marine bacteria (Table S7).  

The occurrence of low-density lipoprotein (LDL) receptor repeat class B domains 

(pfam00058) on poribacterial genomes seemed noteworthy. We found these domains 

on one gene in each SAG 4C and 4E as well as on five genes in SAG 3G. Outside of 

Poribacteria this domain has only been found in proteins of 14 bacterial genomes but 

not in archaeal genomes publically available at the IMG/MER database in July 2013. 

Most of these bacterial hits however do not show the tandem repeats that are 

characteristic for this domain in eukaryotes. Such tandem repeats were only detected in 

the poribacterial proteins and proteins of four other bacterial genomes. Amongst these 

were free-living marine cyanobacteria (Cyanothece species, Pleurocapsa sp. PCC 

7327), the marine deep sea piezophile Mortiella sp. PE36, and the strictly anaerobic 

bacterium Paludibacter propionicigenes WB4, DSM 17365. The LDL receptor is best 

described in mammals where they transport ligands into the cell for degradation by 

lysosomes and plays a role in cholesterol homeostasis [41]. The LDL repeat domain 

class B is part of the region of the LDL receptor which is responsible for ligand release 

and receptor recycling [42]. Virtually nothing is known about such domains in bacteria 

and it remains to be investigated whether there is a real connection to eukaryotic 

domains.  

 

Although the limited data did not allow for any functional assignments of the LDL 

receptor genes, a role on the cell surface seems very likely in Poribacteria since all of 

the discovered genes with these domains had predicted transmembrane helices 

(TMHs) (~86%) with the majority of the protein located outside of the cell or signal 

peptides (SPs) (~14%). TMHs and SPs were also frequently predicted on genes 

representing other eukaryote-like proteins of Poribacteria (Suppl. Table S8 and S9). 

High abundances (≥50% of genes with this pfam) of either TMHs or SPs were found on 

genes also encoding for bacterial Ig like domain protein genes, PQQ enzyme repeat 

containing genes, fibronectin type III domain and cadherin domain genes. Also genes 

with some of the pfams domains representing LRR and TPRs showed strong 

representation of TMH and SPs. Additionally, many poribacterial eukaryote-like domain 

genes (especially WD40 repeats) encoded for a domain belonging to the Por secretion 
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system C-terminal sorting domain family (TIGR04183) (Suppl. Table S9), which is 

characteristic of proteins with outer membrane locations. Such secretion systems are 

often used by pathogens to transport virulence factors or carbohydrate degrading 

enzymes of polysaccharide degrading gut bacteria [43-45] . In Poribacteria this 

secretion system might represent an additional way to transport eukaryote-like domain 

containing proteins. 

 

Our findings support previous reports of repeat and eukaryote-like domains being highly 

abundant in symbionts of marine sponges. The identification of proteins with these 

domains from the microbial communities of the sponge Cymbastella concentrica by 

ways of metaproteogenomics [46] pointed towards an active functional role of these 

proteins. ANK domain proteins of sponge symbionts have been suspected to be 

involved in preventing phagocytosis by the sponge host as in analogy to similar 

functions of ANK domain proteins in bacterial pathogens Legoniella pneumophila or 

Coxiella burnetti [39,47]. Indeed, in a recent paper Nguyen et al. [48] were able to show 

that ANK proteins from a marine sponge symbiont that were expressed in E.coli prevent 

phagocytosis of the bacterial cells by amoeba. The authors suggested this to be a 

function of sponge symbionts to avoid digestion by their host [48]. Thus, poribacterial 

ANK proteins may also facilitate similar functions.  

 

LRRs have been found in proteins of pathogenic bacteria such as Yersinia species 

where LRRs are part of important virulence factors [49] or Listeria monocytogenes 

which encodes for LRR containing protein InlB that aids in host cell invasion [50]. Also 

TPRs were shown to be involved in different functions of pathogenesis [51] and 

fibronectin domains were shown to play a role in host-pathogen interactions as well, 

although in this case bacterial proteins bind to the fibronectin domains of the host 

protein [52,53]. It would be interesting to explore whether bacterial fibronectin domains 

might be used in a similar way. Furthermore, fibronectin III domains have been found in 

polysaccharide degrading extracellular enzymes of Clostridium thermocellum [54]. 

Hentschel et al. [47] speculated that such functions in sponge symbionts could be 

connected to interactions with molecules of the sponge host extracellular matrix and our 

recent investigations of poribacterial carbohydrate degradation potential [14] support 

this hypothesis. However, at the current stage, we are just beginning to decipher the 

real functions of eukaryote-like proteins in Poribacteria. As many of these proteins may 

not be located outside of the poribacterial cell, as indicated by the large amount of 



Chapter 5 
 

 93 

proteins detected without TMHs or SPs (Table S9), it appears likely that at least some 

may mediate intracellular protein-protein interactions.  

 

High abundance of phyH -domain containing proteins  

Among poribacterial genomes we found a remarkably high occurrence of genes 

encoding for proteins with pfam domain pfam05721-phyH (Suppl. Table S10). This 

pfam describes a protein family containing eukaryotic phytanoyl-CoA dioxygenase 

proteins, ectoine hydroxylases from eukaryotes and prokaryotes, and several bacterial 

deoxygenases of mostly unknown function (http://pfam.sanger.ac.uk/family/PF05721). 

These proteins are Fe(II) and 2-oxoglutarate dependent oxygenases that catalyze a 

wide range of oxidative reactions  Among bacterial phyH genes are some potentially 

involved in quorum sensing [55,56], synthesis of the compatible solute 5-hydroxyectoine 

[57], and utilization of phosphorous sources [58,59]. We screened for this domain in all 

genomes publically available in the IMG/MER database in July 2013. All poribacterial 

genomes showed a frequency of more than 1.9% genes with this domain per total 

number of genes (Suppl. Table S10). All other genomes available in the database at the 

time (independent of its domain Bacteria, Archaea, or Eukaryota) showed a frequency 

of less than 0.049% of genes with this domain per total genes. This large abundance of 

genes belonging to the same pfam family might indicate an importance of the related 

functions for Poribacteria.  

 

A clustering analysis of poribacterial sequences showed that there was large diversity 

amongst poribacterial phyH family genes with 305 sequences clustering in 193 clusters 

with 60% aa id threshold (Suppl. Table S11). For the majority of poribacterial genes with 

this domain a reliable functional annotation could not be made. Best homologies were 

usually between genes of poribacterial SAGs, despite the high diversity indicated by the 

clustering analysis. Some of the poribacterial phyH family genes also showed homology 

to another uncharacterized deoxygenase encoded on the first genome fragment 

sequence from a poribacterial metagenome clone 64K2 [60]. This might indicate 

Poribacteria-specific functions within the phyH family.  

 

Although the majority of poribacterial phyH genes remained without further functional 

characterization, we were still able to make functional predictions in some cases. 

Poribacterial SAGs 3G and 4E encoded for phyH genes (OID 2265144857 and 

2265139858, respectively) with homologies (40% aa id each) to a 2-
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aminoethylphosphonate (2-AEPn) utilization gene (phnY) for which function was 

experimentally proven [59]. These poribacterial genomes also encoded directly 

upstream of this gene for a protein of the HD phosphohydrolase family (phnZ) (OID 

2265144856 in 3G and 2265139857 in 4E), which is the only other gene involved in this 

2-AEPn utilization pathway [59]. Both poribacterial genomes further encoded for 

another predicted phosphohydrolase downstream of the previously described genes 

with as of yet unknown function in this pathway. 2-AEPn is assumed to be one of the 

biggest sources of dissolved organic phosphorous in the oceans [61,62] and represents 

an alternative phosphorous source to the often limited dissolved inorganic phosphorous. 

The use of dissolved organic phosphorous i.e. phosphonates by many marine bacteria 

has been described before [63,64]. Phosphonates such as 2-AEPn are found largely in 

phospholipids of marine invertebrates including sponges and are also produced by 

some marine bacteria [65-68]. Therefore organic phosphorous sources should be 

largely available in the sponge mesohyl and the ability to utilize 2-AEPn as a 

phosphorous source might therefore be a competitive advantage. The presence of both 

genes identified as essential for 2-AEPn utilization [59] indicated the presence of this 

pathway also in Poribacteria and elucidated one possible function of phyH superfamily 

genes in this candidate phylum.  

 

Concluding remarks 
 
Our study demonstrates the power of single-cell genomics to reveal features of 

candidate phyla, which could, to our knowledge, not be characterized in any other way. 

Here we show by use of phylogenetic and phylogenomic analyses that Poribacteria are 

not members of the PVC superphylum, but rather form a distinct monophyletic phylum 

in close proximity. We provide genomic evidence for bacterial microcompartments in 

Poribacteria that show very little similarity to any previously described BMCs. Further 

novel functions might be hidden in the various eukaryote-like protein domains, which 

may be involved in mediating host-microbe interactions within the sponge holobiont. 

The high abundance of diverse phyH-domain containing proteins points to important 

and potentially specific functions in Poribacteria. Most of these functions remain to be 

revealed in future studies but some show the genomic potential for organic 

phosphorous utilization. Our analyses show how genome sequences can help to revisit 

past hypotheses and at the same time open the way for new investigations by revealing 
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novel functional features. Challenges for the future will be to experimentally 

demonstrate function and to ultimately understand the implications for symbiosis. 
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6. General Discussion 

 

6.1 A retrospective of the candidate phylum Poribacteria 
In this PhD thesis I used single-cell genomics to analyse the genomic potential of the 

candidate phylum Poribacteria. These studies are an example of the power of single-

cell genomics to gain detailed information about a candidate phylum for which most 

previous information was based on the 16S rRNA gene. From their initial discovery 

(Fieseler et al. 2004) our knowledge of Poribacteria has constantly grown. The 

poribacterial single-cell genomics data have significantly improved and revised some of 

the earlier discoveries about Poribacteria and thus made this candidate phylum one of 

the best characterised sponge symbionts today. Here I review how the single-cell 

genomics studies of this PhD thesis contributed to our knowledge of Poribacteria. 

 

6.1.1. Phylogeny 
Upon discovery (Fieseler et al. 2004) Poribacteria were classified as part of the PVC 

superphylum. This was further supported by an additional phylogenetic analysis of the 

members of the PVC superphylum (Wagner and Horn, 2006). In chapter 5 of this thesis 

phylogenetic and phylogenomic analyses made it possible to re-resolve the taxonomic 

structure of Poribacteria on the phylum level and refuted the initial classification by 

showing a distinct position outside of PVC superphylum. However, it was not possible to 

place the candidate phylum Poribacteria with high confidence in context to other phyla, 

which is likely due to the fact that insufficient genomic information is currently available 

from relevant phyla that might cluster with Poribacteria. The phylogenomic tree (Fig.1 

Chapter 5) as well as the 16S rRNA gene based phylogenetic tree (Fig. 2, Chapter 5) 

indicated that the positioning of Poribacteria might be influenced by the availability of 

data from other candidate phyla such as Hydrogenedentes or SAUL. It is thus very 

likely that with more genomic data becoming available the phylogenetic positioning of 

Poribacteria will have to be revisited. 
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6.1.2. Diversity and abundance 
Poribacteria have been described as highly abundant symbionts of many marine 

sponges (Fieseler et al. 2004; Lafi et al. 2009). In addition to the high abundance a 

large intra-phylum diversity became apparent, especially with the emergence of 16S 

rRNA gene amplicon sequencing studies, which revealed more than 400 OTUs based 

on 97% 16S rRNA gene sequence similarity (Schmitt et al. 2012). Currently there is no 

analysis of the individual abundance of different poribacterial phylotypes. The findings 

of this PhD thesis indicate that not all poribacterial phylotypes are equally abundant 

within marine sponges. The six obtained poribacterial single cells were classified based 

on their 16S rRNA gene phylogeny, average nucleotide identity (ANI), and tetra 

nucleotide frequency profile (Chapter 4) into three different phylotypes. Four out of six 

SAGs grouped together into one phylotype that was termed group I. Additionally the 

16S rRNA gene obtained from a fosmid clone of an A. aerophoba metagenome bank 

(accession number AY713479) (Fieseler et al. 2006) would also fall into group I (Fig.1, 

Chapter 4). The strong representation of group I phylotypes indicates that this might be 

the dominant phylotype in A. aerophoba. Since the retrieval of single-cells from 

microbial communities is independent of PCR biases this might reflect a true difference 

in the abundances of poribacterial phylotypes, assuming cell lysis efficiency is equal 

between different poribacterial phylotypes. Further investigation will need to reveal 

abundance patterns of different poribacterial phylotypes in sponges and sponge 

species. This information would be useful to interpret how much of the genomic 

information obtained by single-cell genomics is related to what proportion of the 

poribacterial community and if it can be referred to other sponge species.  

 

6.1.3. Cell compartmentation 
Cell compartmentation in the form of a double membrane bound nucleoid-like structure 

was described from symbionts of different marine sponges (Fuerst et al. 1998). Such 

microbial cells were also found in the mesohyl of the A. aerophoba and six different 

morphotypes were described (Fieseler et al. 2004). The simultaneous occurrence of 

ring-shaped Poribacteria-specific FISH signals, which suggested a ribosome-free area 

in the cell centre, indicated the phylogenetic identity of these cells to be members of the 

candidate phylum Poribacteria (Fieseler et al. 2004). Single-cell genomics analysis did 

not reveal any indication of such a cell compartment (Chapter 5). However, the 

analyses showed the genomic evidence for the presence a different kind of cell 
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compartment in the form of bacterial microcompartments. The physical presence of 

such microcompartments remains to be revealed in symbionts of marine sponges by 

electron microscopy. Since these compartments are usually only synthesised in the 

presence of the substrates that are metabolised or degraded in the compartment  

(Kerfeld et al. 2010), an absence of such compartments in current electron microscopy 

studies does not necessarily imply a general absence of these compartments. 

Furthermore the poribacterial microcompartment most likely represents a novel type of 

these structures (see Chapter 5) and it is possible that poribacterial compartments show 

a different shape to those of other bacteria and have thus not been recognised as 

bacterial microcompartments. 

 

6.1.4. Similarity to fosmid clone 64K2 
Fieseler and colleagues (2006) sequenced the first poribacterial genome fragment from 

a fosmid library containing a 16S rRNA gene and 27 functional orfs. This fosmid 

sequence encoded for a phyH-like protein domain. Genes with this domain were found 

to be the most abundant functional genes on poribacterial SAGs (Chapter 5). The 

majority of the poribacterial phyH genes, also including the phyH gene on the fosmid 

clone, could not yet be further functionally classified. This shows that there is still a lack 

of suitable reference sequences for functional gene characterisation in the current 

databases. Especially for candidate phyla genomic information is still rare and therefore 

functional analysis can be difficult.  

 

Another similarity between the fosmid clone sequence and the poribacterial SAGs were 

the characteristics of the 16S rRNA gene. All poribacterial SAGs and the fosmid 

sequence encoded for only one 16S rRNA gene. Additionally in all sequences except 

for SAG 4E, which represents a potentially rare phylotype, the 16S rRNA gene was 

unlinked to the remaining rRNA genes. The presence of unlinked ribosomal RNA genes 

is not restricted to Poribacteria but was reported from several other phyla (Liesack and 

Stackebrandt, 1989; Bensaadi-Merchermek et al. 1995; Ruepp et al. 2000; Boyer et al. 

2001; Rurangirwa et al. 2002; Tamas et al. 2002; Glöckner et al. 2003; Henne et al. 

2004). In Poribacteria it might be indicative for specific poribacterial phylotypes 

including the dominant group I. Furthermore a single copy of the 16S rRNA has been 

related to a slower response to the availability of growth substrates and therefore a 

slower growth in general (Klappenbach et al. 2000). With the constant food supply in 
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the sponge mesohyl (Chapter 4) Poribacteria might not need to respond quickly to 

nutrient availability and therefore a potentially slow growth rate might not be a 

disadvantage. 

 

6.1.5. Secondary metabolism 
Previous studies showed the presence of a unusually small polyketide synthase (PKS) 

system in several metagenomes of marine sponges which was subsequently termed 

sponge ubiquitous PKS (Sup-PKS) and was predicted to produce methyl-branched fatty 

acids (Fieseler et al. 2007). Poribacteria were suggested to be producers of this type of 

PKS system as their presence correlated with the occurrence of the relevant genes in 

the sponge metagenomes and the detection of the relevant methyl-branched fatty acids 

in the different sponge species (Hochmuth et al. 2010). Furthermore a whole genome 

amplification product of a FACS sorted single microbial cell from the microbial 

community of A. aerophoba tested PCR positive for a poribacterial 16S rRNA gene and 

for the genes of the Sup-PKS system (Siegl and Hentschel, 2009) and thus 

strengthened the hypothesis that Sup-PKS was Poribacteria derived. This PKS system 

was also encoded together with a second, previously undescribed PKS system on the 

sequence fragments of the first poribacterial SAG WGA A3 (Chapter 3). Due to 

contamination problems that were only later detected in this dataset (Chapter 4) and the 

fragmented nature of the relevant reads it was not possible to identify the phylogenetic 

origin of these PKS systems and the association to Poribacteria in dataset WGA A3 

could not be further supported. In contrast to previous findings, none of the five newly 

obtained poribacterial SAGs encoded any PKS system. Therefore the Sup-PKS system 

cannot with certainty be regarded as of poribacterial origin and additional studies are 

needed to resolve this issue in the future.  

 

Similarly the genome fragments encoding for potential sterol biosynthesis proteins could 

also not be taxonomically assigned after the detection of contaminating reads in dataset 

WGA A3. During this PhD thesis primers based on the sterol biosynthesis gene 

fragments were designed and used to screen an A. aerophoba metagenome fosmid 

library to identify further genes related to this pathway. A fosmid clone was identified 

that contained full sequences for both sterol biosynthesis genes found in fragments on 

dataset WGA A3, the oxidosqualene cyclase and the 24-sterol C-methyltransferase 

(unpublished data). However, neither one of these genes, nor any of the other genes on 
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the fosmid clone sequence showed any homologies to genes on the other five 

poribacterial SAGs. This indicated that the sterol biosynthesis genes discovered in 

WGA A3 are not likely to be of poribacterial origin. However, the fact that these genes 

were found in both the metagenomic fosmid library and dataset WGA A3 points towards 

an origin of another sponge symbiont that might be related to Candidatus Nitrospira 

defluvii, as indicated by homologies of the contaminating DNA in WGA A3 (Chapter 4). 

Therefore the hypothesis that bacterial symbionts might be the producers of 24-

isopropyl-cholestane, a fossil biomarker used to estimate the evolutionary origin of 

Porifera (Love et al. 2008) might still be valid. 

 

6.1.6. Shared functional features within Poribacteria 
Comparative genome analysis of the six poribacterial SAGs revealed a strong potential 

for carbohydrate degradation in Poribacteria (Chapter 4). This appeared to be the main 

functional feature shared between all detected phylotypes and pointed to many potential 

nutrient sources for Poribacteria. The detailed analysis of the poribacterial SAGs also 

showed that different poribacterial phylotypes encoded for specific functional pathways 

within the carbon metabolism. For example, the genomic potential for glycolysis was 

only encoded on SAG 4E while group I genomes showed no such genomic potential but 

instead encoded for enzymes to directly transfer glucose into the Entner-Doudoroff 

pathway (Chapter 4). Similarly, all poribacterial phylotypes showed the genomic 

potential for uronic acid polymer degradation but the different phylotypes encoded for 

different variants of the metabolic capacities to achieve this. SAG 4C and group I 

genomes encoded for the pectate lyase pathway while SAG 4E encoded for 

polygalacturonase and subsequent enzymes (Chapter 4). These observations are 

similar to what was found for nitrogen metabolism in metagenomes of microbial 

communities of six different sponge species (Fan et al. 2012). Genes for pathways such 

as denitrification and ammonium oxidation were encoded on the genomic data of 

microbial communities of six different sponge species but the there was a difference in 

pathway variants between the datasets of different hosts. This led to the suggestion that 

there is a large degree of functional equivalence in the nitrogen cycle of marine 

sponges (Fan et al. 2012). Ribes et al. (2012) came to similar conclusions about the 

nitrogen cycle in two Mediterranean sponges. The authors measured similar rates for 

nitrogen cycling but also detected a large variation in the phylogenetic origin of the 

relevant functional genes between the microbial communities of the two sponges. The 
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poribacterial data indicate that there might also be a degree of functional equivalence 

for carbohydrate metabolism. This shows that functional equivalence in the sponge 

microbiome does not only occur between communities of different host species but also 

within one sponge species and between members of the same bacterial phylum.  

 

6.2. Ecological considerations 
The main functional discovery of the single-cell genomics study of Poribacteria is their 

diverse and complex genomic potential for the degradation of organic substrates, 

especially carbohydrates. The poribacterial glycobiome was revealed in Chapter 4. It 

offers several possible nutrient sources for Poribacteria as a sponge symbiont from 

inside and outside the host environment. Furthermore this PhD thesis showed that 

Poribacteria also have the capacity to use organic sulphur (Chapter 4) and phosphate 

sources (Chapter 5).  

 

Assuming that there is a degree of functional equivalence in microbial communities of 

marine sponges, as indicated by metagenomic and physiological studies (Ribes et al. 

2012; Fan et al. 2012), the functional profile of Poribacteria that was discovered during 

this PhD thesis might reflect general functional traits of heterotrophic microorganisms in 

sponges. This might especially be the case for HMA sponges to which Poribacteria are 

almost exclusive (Hochmuth et al. 2010) and where they are one of the dominant phyla 

in the microbial communities (Schmitt et al. 2012). It is conceivable that, with the 

majority of microbial symbionts in marine sponges assumed to be heterotrophs (Taylor 

et al. 2007), and with microbial symbionts taking up as much as 35% of the sponge’s 

biomass (Vacelet, 1975), the functional repertoire of these organisms largely influences 

the metabolic processes and therefore also nutrient cycling in marine sponges. If the 

microbial symbionts of marine sponges indeed have an influence on nutrient cycling in 

the host, then it might be possible to see a difference in nutrient cycling of HMA and 

LMA sponges.  

 

Sponges feed on both particulate and dissolved organic matter (POM and DOM, 

respectively) (Pile et al. 1996; Ribes et al. 1999; Yahel, 2003; de Goeij et al. 2008; 

Maldonado et al. 2012). Sponges feeding on bulk DOM was discovered in the marine 

sponge Theonella swinheoei (Yahel, 2003), which covers the majority of its carbon 

needs with dissolved organic carbon (DOC). Later De Goeij et al. (2008) showed that 
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other sponge species also feed on DOC and rely to a similar extent on it as their major 

carbon source. Feeding on DOC appeared to be the missing link between an often 

reported imbalance between particulate organic carbon (POC) ingestion and respiration 

rates where the respiration rate was often higher than could be accounted for by POC 

ingestion (Reiswig, 1974; Reiswig, 1981; Thomassen and Riisgard, 1995; Hadas et al. 

2009). For some sponge species this imbalance appeared to be larger than for others. 

In a recent review Maldonado et al. (2012) compared all metabolic measurement data 

of sponges available in literature at the time in order to account for differences in the 

carbon balance of LMA and HMA sponges. This comparison revealed that imbalances 

between POC ingestion and respiration rate, as well as DOC uptake levels, have been 

observed in representative species of both LMA and HMA sponges. However, the 

authors also found the imbalanced carbon budget in HMA sponges to be larger than in 

LMA sponges and that HMA sponges may rely more strongly on DOC uptake 

(Maldonado et al. 2012). Although this literature review hinted towards a difference in 

the carbon flows of LMA and HMA sponges it was restricted in the sense that the 

microbial abundance and the status of LMA or HMA sponge was often not resolved for 

the sponge species in the reviewed literature.  

 

Ribes et al. (2012) directly compared uptake and release rates of DOC, dissolved 

organic nitrogen (DON), as well as inorganic nitrogen (NH4
+, NO3

-, NO2), and phosphate 

from the two HMA sponges Agelas oroides and Chondrosia reniformis, and the LMA 

sponge Dysidea avara that occur simultaneously in the same habitat. The 

measurements in this study confirmed the difference between LMA and HMA sponges 

in terms of nutrient cycling. Both investigated HMA sponges showed strong and 

significant ingestion of DOC and ammonium while the LMA sponge D. avara did not 

show any significant uptake of any of the measured substances (Ribes et al. 2012). The 

results of this study support the theory that microbes inhabiting HMA sponges might be 

involved in the uptake of organic nutrients. Another study showed the ingestion of 13C 

labelled DOC by the marine sponge Halisarca caerule directly and mediated through 

bacterial symbionts as shown by the detection of bacteria-specific fatty acids in the host 

that contained the labelled carbon (de Goeij et al. 2008). This is direct evidence that 

DOC is not only ingested by the sponge itself but also its bacterial symbionts. The 

poribacterial genome sequences encode for the capacity to carry out relevant 

processes for the uptake and processing of DOC by sponge symbionts. Thus it seems 

highly likely that Poribacteria indeed have an influence at least on carbon cycling in 
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marine sponges even though direct evidence for the in situ reaction occurring in 

Poribacteria remains a subject for future studies.                                                                                                                            

  

The importance to further investigate processes in sponges that are mediated by 

heterotrophic microorganisms, such as Poribacteria, becomes apparent when 

considering the large ecological implications that are connected to these processes. 

Nutrient cycling in marine sponges is one of the most important topics in sponge 

ecology. Several studies have shown that sponges influence diverse nutrient cycles 

through their filter feeding activities and the relevance for the bentho-pelagic coupling 

(Gili and Coma, 1998; Ribes et al. 1999; reviewed by Maldonado et al. 2012). Recent 

research further stressed the importance of sponge nutrient cycling for tropical reef 

ecosystems. De Goeij and colleagues (2013) showed that sponges are mainly 

responsible for taking up DOM and making it accessible to higher trophical levels by 

reintroducing a substantial proportion back into the ecosystem as detritus. This process 

was termed the sponge loop and is supposed to be a major driver of the DOM cycling 

which is the main source of energy and nutrients in tropical reef systems (De Goeij et al. 

2013). These findings are of great significance since they explain how in the 

oligotrophic environment of tropical reef nutrients get reintroduced into higher trophical 

levels. In pelagic environments this is mediated by the microbial loop in which 

heterotrophic bacteria incorporate DOM and therefore make it again accessible for 

higher trophical levels (Azam et al. 1983; Azam et al. 1994). The microbial loop alone 

could, however, not account for DOM recycling in tropical reefs (de Goeij and van Duyl, 

2007) and only with the discovery of the sponge loop can DOM recycling be explained 

for these environments (De Goeij et al. 2013). It was suggested that the sponge loop 

exists in temperate or cold-water environments as well (De Goeij et al. 2013) and 

therefore the influence of sponges on nutrient cycles on a global scale could be even 

larger. Considering the metabolic interactions mediated by microbial symbionts in 

marine sponges that were discussed above it is conceivable that the sponge loop is at 

least partially a microbial loop within the sponge host. The high abundance of 

microorganisms in the sponge and the high concentration of ingested DOM might make 

the nutrient recycling process more effective and could explain why, in the tropical reef 

investigated by De Goeij et al. (2013), the sponge loop accounted for a much larger 

proportion of carbon transfer from DOM than the microbial loop.  
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6.3. Future directions 

6.3.1. Current potential and future directions for single-cell genomics in sponge 
microbiology 
In chapter two of this thesis, single-cell genomics was introduced and some studies 

using this technique in context to symbiosis were described. In this section I will discuss 

the potential for the application of single-cell genomics in sponge microbiology and 

possible variations for future studies. 

 

Despite many efforts the majority of the sponge microbiota is still not available in culture 

today. This explains why only a handful of genomes from sponge symbionts are 

available in the current databases and finding suitable reference genomes is a 

challenge for community-wide studies. Some studies successfully obtained genome 

sequences from metagenomic data. Binning of metagenome data from the microbial 

community of C. concentrica led to the recovery of partial genome sequences from five 

Proteobacteria (Bdellovibrionales, Phyllobacteriaceae, Sphingomonadales, 

Piscirickettsiaceae, and Gamma-proteo I) (Thomas et al. 2010). However, only little 

functional information was gained from these draft genomes and the majority of the data 

obtained in this study was not functionally assigned (Thomas et al. 2010). The draft 

genome of a deltaproteobacterial symbiont of the marine sponge C. concentrica was 

also obtained by this binning approach and thoroughly analysed (Liu et al. 2010). While 

this approach provided quality information about a sponge-associated microorganism 

the authors were restricted in the choice of organism to work with by the data becoming 

available through the binning process. Thus it is arguable how important the 

characterised organism really is for the symbiosis or if it, in the worst-case scenario, 

might represent a seawater-derived organism that is not involved in the symbiosis. 

Hallam et al. (2006; 2006) successfully obtained a composite genome of 

Crenarachaeum symbiosum, the main archaeal symbiont of the sponge A. mexicana, 

from a fosmid library. The success of these studies was based on the fact the 

C. symbiosum is the dominant organism in this host. It makes up to 65% of the 

sponge’s microbial biomass based on FISH analysis (Preston et al. 1996). Therefore 

the construction of a C. symbiosum enriched fosmid library was possible (Schleper et 

al. 1997; Schleper et al. 1998; Hallam, Mincer, et al. 2006; Hallam, Konstantinidis, et al. 

2006). In most sponge species the microbial diversity is, however, much higher (Taylor 

et al. 2007; e.g. Webster et al. 2010; Schmitt et al. 2012) and dominance of certain 
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organisms can only be found in LMA sponges (Giles et al. 2013). Thus obtaining 

enough genomic information from one organism from a metagenome of an HMA 

sponge would be much more difficult and excludes this option for most sponge 

symbionts.  

 

The single-cell genomic approach used in this PhD thesis provided the possibility to 

obtain genomic information of previously defined target organisms even from sponges 

with high microbial diversity. The candidate phylum Poribacteria as a target organism 

ensured obtaining genomic information of a widespread symbiont of HMA sponges with 

high microbial diversity. Single-cell genomics would also allow for the selection of 

organisms that are important but rare members of the microbial community. Such 

organisms would likely be overlooked in the large datasets obtained by metagenomics 

and therefore single-cell derived data would be a useful addition to metagenomics. 

Generally single-cell genomics could provide the genome sequences that are much 

needed as a reference for community-wide studies. The majority of the genomic data 

available today represents only limited amount of phyla from a limited amount of 

environments (Wu et al. 2009; Rinke et al. 2013). These datasets are therefore not 

necessarily the best references for annotation of genomic data from other environments 

such as the sponge microbiome where the microbial community is very diverse, yet 

specific for its environment and also contains several previously undescribed candidate 

phyla (Schmitt et al. 2012).  

 

A recent study by Rinke et al. (2013) showed how powerful single-cell genomics can be 

in obtaining genomic information of candidate phyla from diverse environmental 

samples. This study significantly broadened our knowledge about bacterial and 

archaeal phylogeny and metabolism by defining novel phyla and the taxonomic 

placement as well as revealing novel functional features such as archaeal sigma factors 

or new assignments of stop codons in bacterial translation. Furthermore the study 

showed that the genomic information of candidate phyla significantly improves 

phylogenetic assignments of metagenome reads (Rinke et al. 2013). Similarly 

successful was the application of single-cell genomics for the candidate phylum 

Poribacteria in this thesis. Not only was it possible to refine the phylogenetic placement 

of Poribacteria (Chapter 5) but also showed the analysis of the metabolic potential for 

the first time with detailed insights into the functions of heterotrophic microbes in marine 

sponges (Chapter 4). Obtaining more reference genomes in future studies would further 
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broaden our knowledge of the sponge microbiome and might therefore reveal novel 

functional features essential for this symbiosis. Next to the many candidate phyla that 

were found in marine sponges, members of the so-called core community i.e. 

Proteobacteria and Chloroflexi (Schmitt et al. 2012) could also be interesting target 

organisms for genome sequencing.  

 

With further development and decreasing cost of genome sequencing projects, large 

scale sequencing of several phylogenetically diverse single-cell genomes from the 

sponge microbe could provide a variety of reference genomes and at the same time 

build a strong genomic reference library for future studies. This approach was 

successfully conducted for microbial communities from the mesopelagic oceans (Swan 

et al. 2011) and in combination with metagenomics for freshwater bacterioplankton 

(Martinez-Garcia et al. 2012). In both studies, single-cell genomics revealed the 

important players for chemotrophic carbon fixation in the dark ocean and for photo-

heterotrophy as well as chemoautotrophy in freshwater lakes, respectively. Applying 

such large scale sequencing strategies to sponge microbiota could help to obtain 

phylogenetic information about the functional features discovered in community-wide 

studies of metagenomics, metatranscriptomics and metaproteomics (e.g. Thomas et al. 

2010; Radax et al. 2012; Fan et al. 2012; Liu et al. 2012) as well as refine the functional 

information obtained in these studies.  

 

The functional profile of the microbial community of C. concentrica was studied using 

metagenomics and metaproteomics (Thomas et al. 2010; Liu et al. 2012). These 

studies were mainly based on differential abundance of clusters of orthologous genes 

(COGs) between the sponge-derived and seawater-derived metagenomic data and 

between sponge-derived microbial metagenome and metaproteome data. This 

functional approach based on COGs works well finding differences between compared 

datasets but could benefit from a more in-depth analysis of the pathways and genes 

behind the broadly defined COGs. The products of many functional genes are often 

involved in several different reactions and pathways and the contigs of metagenome 

studies alone do not provide enough information and genomic context to identify the 

true function behind the detected genes, as they are often fragmented or represent 

composite assemblies and not genomic information from the same organism (Fig. 1).  
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Figure 1: Comparison of single-cell genomics (SCG) and metagenomics assemblies. Dashed lines 
indicate false assembly contiguity. While in SCG assemblies all resulting contigs originate from 
DNA that was present in an individual cell, metagenomic assemblies are often consensuses from 
a multitude of cells. Picture used with permission from Stepanauskas (2012). 

 

A comparison with genome data from abundant organisms in the environment would 

provide additional detail to the analysis. Knowing the full genomic context is essential 

for accurate prediction of genes and pathways as a functioning and active enzyme 

complex or signalling pathway is only formed by gene products that actually are in 

contact with each other within the same organism (Blainey, 2013). Metagenomics lacks 

the detailed genomics resolution and therefore would benefit from additional single-cell 

genomics data.  

 

Single-cell genomics of sponge symbionts could also complement metagenomic studies 

by adding a better connection between phylogeny and function. Fan et al. (2012) 

successfully identified shared functional features between metagenomes of the 

microbial communities of six sponge species. However, they also found that the 

functional profiles were to some degree host-specific. The possibility of connecting 

phylogeny and function would add further value to this analysis as it would allow 

identification of the taxa responsible for the shared features among the microbiota of 

different sponge species and therefore reveal taxa with special importance for the 

relationship to the sponge. However, linking phylogeny and function can be difficult in 
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metagenome studies of the sponge microbiome because of the many uncultivated 

members of these communities and very little relevant genome sequences available in 

the current databases. Radax et al. (2012) restrained from tracing the phylogenetic 

origin of the functional metatranscriptome data of G. barretti completely, since the 

genome sequences needed for the correct assignment of the obtained mRNA data 

were not available and simulation analysis of taxonomic assignments resulted in either 

false or no phylogenetic assignment for most sequences. These studies show that 

community-wide approaches of sponge microbiota could well benefit from the 

availability of genome sequences from representatives of abundant sponge symbionts. 

In order to fully understand the complex systems of sponge-microbe associations it is 

not only important to detect functional features of the microbial communities but also 

identify the individual players and how they influence each other. Here single-cell 

genomics provides a tool to achieve this level of detail.  

 

The future potential for single-cell genomics in sponge microbiology goes beyond 

supplying further reference genomes for community-wide studies. Single-cell genomics 

provides access to all DNA molecules within the analysed cell which can, next to the 

main chromosome(s), also include extra chromosomal DNA such as plasmids, DNA of 

symbionts or pathogens, and DNA from food sources or organelles (Stepanauskas, 

2012) (Fig. 1). Investigating such molecules allows an insight into genomic interactions 

of the target organism. A recent study by Yoon et al. (2011) showed, by using single-

cell genomics, the interactions of marine picobiliphytes with bacteria, viruses, and 

phages. In an environment with many diverse players, such as in marine sponges, this 

approach could gain useful information about inter-species relationships and give 

genomic information beyond microbial interactions with the primary sponge host. 

Eukaryotic microbes are abundant in sponges. Dinoflagellates, diatoms, or other 

microalgae as well as fungi have been reported (reviewed by Taylor et al. 2007). These 

organisms can serve as a food source for the sponges but also symbiotic interactions 

have been reported (Taylor et al. 2007; Weisz et al. 2010). Such organisms could be 

potential targets for future single-cell genomic studies to reveal interactions between the 

different members of the sponge microbiome in more detail.  

 

Of great interest in sponge microbiology is the influence of viruses and phages. Viruses 

and virus-like particles have been reported from marine sponges (Vacelet and 

Gallissian, 1978; Hadas et al. 2006; Claverie et al. 2009) and recently molecular cloning 



Chapter 6 
 

 114 

studies showed phage transmitted horizontal gene transfer in the microbial community 

of the marine sponge Hymeniacidon perlevis (Harrington et al. 2012). Clustered 

regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated 

proteins (CAS) represent a prokaryotic adaptive immune system against integration of 

extra-chromosomal DNA. These genomic elements have been found in high abundance 

and overrepresented in sponge metagenomes compared to seawater metagenomic 

data (Thomas et al. 2010; Fan et al. 2012). This stressed the potential influence of 

phages on the microbial community of sponges. Yet little is known about viruses and 

phages in sponges and their influence on the microbial community. Webster et al. 

(2011) identified this subject as “of fundamental importance to understanding the 

ecology and evolution of sponge symbioses” and in need of “increased research 

efforts”. Single-cell genomics can help to reveal viral interactions in the microbial 

communities of marine sponges. Individual viral particles were sequenced using a 

method called single-viral genomics where viral particles from a mixed assemblage 

were singularised by FACS and amplified using phi29 transmitted MDA (Allen et al. 

2011). The application of this method to samples with high microbial abundance and 

diversity, such as the sponge microbiome, will likely require much optimisation and is 

still restricted to DNA viruses but can be a useful method to obtain genomic information 

of viruses and phages. Sequencing single bacterial or eukaryotic microbes can also 

give access to viral and phage genomic information, when found in the host cell and at 

the same time provides information about the host itself. Targeted sorting of infected 

cells might be possible by applying specific cell stains and subsequent single-cell 

sorting as it was demonstrated for microalgae (Martínez Martínez et al. 2011). Further 

developments of this and other methods such as single-cell transcriptomics (Tang et al. 

2011; Kang et al. 2011) and metabolomics (Heinemann and Zenobi, 2011; Yanes, 

2013) that are currently being established will enlarge the possibilities for analysis of 

microbial communities in marine sponges and elsewhere. 

 

6.3.2. Further investigations of the candidate phylum Poribacteria 
The investigation of the candidate phylum Poribacteria has come a long way from their 

first discovery and studies describing abundance and diversity patterns (Fieseler et al. 

2004; Schmitt et al. 2012). This represents the first step in the cultivation-independent 

repertoire of methods used to answer the central questions in microbial ecology (Fig. 2). 

Genomic characterisation of Poribacteria by metagenomics (Fieseler et al. 2004) and 
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single-cell genomics (Siegl and Hentschel, 2009; this PhD thesis) represents the 

second step in this process. Investigating the genomic repertoire of the candidate 

phylum Poribacteria has strongly improved our understanding of the taxonomy, inter-

phylum diversity and metabolic potential of these sponge symbionts. The datasets 

obtained in this PhD thesis will serve as an important basis for future investigations of 

poribacterial metabolic activity and in situ functioning (Fig. 2). Poribacteria were shown 

to be highly abundant and active symbionts of marine sponges based on 16S rRNA 

gene and 16S rRNA data, respectively (Fieseler et al. 2004; Kamke et al. 2010; Schmitt 

et al. 2012; Moitinho-Silva et al. 2013). The newly obtained genome data of Poribacteria 

makes it now possible to investigate poribacterial gene and transcript abundance in 

metagenome and metatranscriptome data. Mapping metagenomic reads, termed 

fragment recruitment (Rusch et al. 2007), from different sponge species and non-

sponge sources to poribacterial genomes could reveal the degree of the genomic 

representation of Poribacteria in these environments beyond the 16S rRNA gene level. 

This could help to solve questions about poribacterial distribution in and outside the 

sponge and might show distribution patterns of the different poribacterial phylotypes in 

different sponge species.  

 

Figure 2: Schematic overview of the central questions in microbial ecology research and some of 
the methods used to answer them. The order and combination of approached is independent on 
the individual study and often interdependent. 
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Fragment recruitment was applied successfully before to investigate the genomic 

distribution of SAGs in the pelagic and coastal areas (Woyke et al. 2009; Swan et al. 

2013). Through this approach the importance of the organisms represented by the 

obtained SAGs was shown and correlations to abiotic factors such as temperature and 

latitude were revealed (Woyke et al. 2009; Swan et al. 2013). In addition to 

metagenomic fragments recruitment, this approach could be used in combination with 

metatranscriptomic datasets to show metabolic activity. For Poribacteria this might 

reveal which functions are truly important for living within the host matrix and might 

indicate whether feeding on matrix substances indeed takes place. The availability of 

suitable metagenome and metatranscriptome datasets is essential for the success of 

fragment recruitment analyses. So far these dataset are limited to a few species 

(Thomas et al. 2010; Radax et al. 2012; Fan et al. 2012; Liu et al. 2012; Fan et al. 2013) 

but with further development and decreasing cost of sequencing techniques new 

datasets could soon become available.  

 

Sequencing of poribacterial SAGs showed the existence of a possible dominant 

taxonomic unit that was defined as group I. Four out of six SAGs were associated to 

this group. Sequence similarity within the group was high and within the 97% 16S rRNA 

gene similarity threshold for definition of an OTU. Especially SAG 4CII and 3G showed 

very similar characteristics with 99.9% sequence id based on the 16S rRNA gene and 

tetra nucleotide frequency of 0.99. Genome comparison between these two SAGs 

showed a large degree of genome synteny (e.g. Chapter 5 microbial 

microcompartments). It would be interesting to further investigate genomic structures 

between members of group I and especially SAG 3G and 4CII. Comparison of genome 

structure might reveal important aspects of poribacterial population structure. The 

degree of polymorphism as well as the insertion and deletion of genes might give 

information about genome evolution within this symbiont. For pathogenic bacteria 

population structures can reveal important information about virulence factors and 

evolution patterns towards pathogenicity (Achtman, 2004; Wilson, 2012). Such analyses 

might therefore reveal similar features for symbiosis factors in Poribacteria. 

 

The single-cell genomics data of Poribacteria might also be helpful for the development 

of cultivation methods for these and other heterotrophic sponge symbionts. Current 

culturing methods for sponge-associated microbiota have been shown to be insufficient 

to isolate any relevant proportion of the microbial communities detected with culture-
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independent techniques. This is especially the case in HMA sponges where none of the 

taxa detected with 16S rRNA amplicons sequencing are represented in culture 

(Schippers et al. 2012). Even though culture-independent methods for characterisation 

of bacteria are constantly improved and further developed, it is still highly desirable to 

obtain organisms in culture as it would allow to study physiological processes in those 

organisms and reactions to different culture conditions (Schippers et al. 2012). SAG 

analysis indicated that Poribacteria might grow on a variety of carbon substrates. This 

could be tested by growth experiments on complex media that contain carbon sources 

specific to the poribacterial glycobiome revealed in this thesis (Chapter 4) or using 

minimal media and adding substrates separately to single out important nutrients. 

However, precise predictions for poribacterial growth media are not completely possible 

because of the large percentage of genes and especially glycoside hydrolase genes 

that could not functionally be characterised. These might have large influence on 

poribacterial growth conditions. Metatranscriptomic data of sponges hosting 

Poribacteria might be useful to identify genes actively transcribed by Poribacteria and 

might therefore narrow down potential growth substrates. A similar approach was used 

by Bomar and colleagues (2011) who identified mucin as the main nutrient for the 

dominant bacterial symbiont of the medical leech Hirudo verbena by metatranscriptome 

analysis. Adding mucin to a culture medium enabled the authors to grow this symbiont 

for the first time. A similar approach might also be possible for Poribacteria even though 

the sponge microbiome is much more diverse than the microbial community of H. 

verbena. The poribacterial SAG sequences would allow binning out relevant 

metatranscriptomic reads that could then be used to identify potential growth 

substrates. 

 

Finally the metabolic potential that was encoded on poribacterial genomes could be 

used as a starting point for functional studies to validate the hypotheses of poribacterial 

carbohydrate degradation in situ. Feeding experiments with different carbohydrate 

sources and HMA sponges with high abundance of Poribacteria might reveal which 

carbon substrates are really taken up in sponges containing Poribacteria. This could be 

compared to LMA sponges without a relevant abundance of Poribacteria or LMA 

species where metabolic inactivity of Poribacteria was shown (Moitinho-Silva et al. 

2013). Testing different carbohydrates as substrates might reveal whether there is a 

preference for specific nutrient sources and whether polymers are in fact degraded 

even in the presence of di-or monosaccharides. Such experiments could be conducted 
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under controlled conditions in aquaria or even in field experiments. Such experiments 

were already successfully applied to measure uptake and ingestion of DOC and other 

carbon substrates in sponges (e.g. Yahel et al. 2003; de Goeij et al. 2008; De Goeij et 

al. 2008) and could be modified with substrates likely to digested by Poribacteria based 

on their genomic profile. Furthermore stable isotope probing (SIP) techniques such as 

DNA and RNA-SIP would allow for detection of those bacteria that metabolised a 

labelled substrate based on the occurrence the labelled isotope in their DNA or RNA, 

respectively (Whiteley et al. 2006; Friedrich, 2006). Analyses of the 16S rRNA gene or 

transcript would then allow for phylogenetic identification. This technique could prove 

the uptake of labelled substrates by Poribacteria or other symbionts. Furthermore, a 

time series of such an experiment might reveal the fate of these substrates after initial 

ingestion and therefore offer an insight into trophic interactions in the sponge. This 

could answer the question if Poribacteria are simple food scavengers or aid in the 

digestion of food particles. Similar experiments have been successful for other 

heterotrophic bacteria. The trophic interaction between starch degrading 

microorganisms of the human colon were revealed using RNA-SIP (Kovatcheva-

Datchary et al. 2009) and the same technique was used to identify the active 

heterotrophic organisms in the pelagic redoxclines of the Baltic Sea (Berg et al. 2013). 

The application of these techniques to the sponge-microbe ecosystem would be the 

next step in answering the central questions of microbial ecology in sponges in general 

and specific for Poribacteria by following steps from microbial abundance and diversity 

(e.g. Fieseler et al. 2004; Schmitt et al. 2012) to genomic potential (Fieseler et al. 2006; 

Siegl and Hentschel, 2009), and finally revealing functional activity in situ (Fig.2).  
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