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Introduction 3

Introduction

“α’ναλυ̃σις”, the Greek word for “analysis” means dissection. A dissection is
typically done for all types of real-world problems. The problem is divided into
sub-problems which can be handled easier and one hopes that some recombination
of the solutions will lead to a solution of the original problem.
It is the same with numerical laser simulation. There are people who model
the laser behavior, people who deal with mathematical aspects of the model, as
e.g. the approximation by finite elements, and finally, people who analyze and
implement solution methods, such as a solver for the resulting system of linear
equations.
A standing wave of a laser resonator, for instance, can be modeled by the homo-
geneous Helmholtz equation

−∆E − k2E = 0.

Much effort has been spent on analyzing the properties of a finite element ap-
proximation of the Helmholtz equation. And also much research has been done
on algorithms for solving the discrete equation as efficiently as possible. However,
combining all results leads to a relatively poor yield with respect to computing
standing waves of a laser resonator.
Similarly, the results of methods using the so-called paraxial approximation (a
Schrödinger-type equation) of the Helmholtz equation leave a lot to be desired in
many real-world examples.
We are very pleased to present a new approach for computing laser cavity eigen-
modes in this thesis covering modeling, as well as numerical and computational
aspects. Therefore, some parts of this thesis are written in a rigorous mathe-
matical manner and other parts in an informal style (from the viewpoint of a
mathematician).
The thesis is organized as follows: Chapter 1 contains a short overview on solving
the Helmholtz equation with the help of finite elements. The main part of Chap-
ter 2 is dedicated to the analysis of a one-dimensional model problem containing
the main idea of a new model for laser cavity eigenmodes which is derived in
detail in Chapter 3. Chapter 4 comprises a convergence theory for the approxi-
mate solution of quadratic eigenvalue problems. In Chapter 5, a stabilized finite
element discretization of the new model is described and its convergence is proved
by applying the theory of Chapter 4. Chapter 6 contains computational aspects
of solving the resulting system of equations and, finally, Chapter 7 presents nu-
merical results for various configurations, demonstrating the practical relevance
of our new approach.
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1 The Helmholtz Equation and Finite Element

Methods - A Survey

1.1 The Helmholtz Equation in Two Examples

Many real-world phenomena can be described by the famous wave equation

∆W (x, y, z; t) =
1

c2
∂2W (x, y, z; t)

∂t2
(1)

where the wave W (x, y, z; t) is a real-valued function depending on space coor-
dinates (x, y, z) ∈ R3 and time coordinate t ∈ R+ := {t ∈ R|t ≥ 0}. Here, ∆
denotes the Laplace operator with respect to the spatial coordinates (x, y, z) and
c is the velocity of the wave in the medium. At first, we do not specify the domain
and the exact function space for W . Later on, when a rigorous mathematical for-
mulation has to be given, this will be done.

If a time-harmonic behavior of the wave is assumed, i.e. if W is of the form

W (x, y, z; t) = W̃ (x, y, z) · eiωt (2)

with time-frequency ω, equation (1) is equivalent to the so-called Helmholtz equa-
tion or scalar wave equation for W̃

−∆W̃ (x, y, z) − ω2

c2
W̃ (x, y, z) = 0. (3)

Actually, the wave W is real-valued, such that, more precisely, one has

W (x, y, z; t) = Re
[

W̃ (x, y, z) · eiωt
]

,

where Re[·] stands for taking the real part of a complex number. But as it is usu-
ally done, we will assume the representation (2) with complex-valued W̃ (x, y, z).

Instead of representation (2), one also could use

W (x, y, z; t) = Ŵ (x, y, z) · e−iωt,

which would lead to the equation (3) for Ŵ as well. This observation shows, that
the Helmholtz equation does not incorporate information on whether the wave
W moves forward or backward in time. So, when we speak of W̃ traveling e.g. in
positive z-direction, we mean this with respect to representation (2) where the
exponent is +iωt.

Let us now consider two examples for the occurrence of the Helmholtz equation.
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1.1.1 Example: Acoustic Scattering Problem

The following presentation is based on [41]; so, we refer to this book for the
notions and the proofs of the statements in this example. As it is explained
in [41], acoustic waves can under certain conditions be described by a small
perturbation P (x, y, z; t) of a reference pressure P0. This perturbation has to
fulfill the equation

∆P − 1

c2
∂2P

∂t2
= 0. (4)

If P is time-harmonic, i.e. if it can be written as

P (x, y, z; t) = p(x, y, z) · eiωt,

equation (4) is equivalent to the equation

−∆p− k2p = 0, (5)

with wave number k := ω/c.
For scattering wave problems, additional conditions for the wave p are imposed.
One type are boundary conditions on the surface Γs ⊂ ∂Ωs of the (solid) scatterer
Ωs ⊂ R3, which we abbreviate by

Bsp = 0, (6)

where usually the operator Bs, which maps p to a function on the boundary Γs,
is chosen as Bsp := p|Γs

or Bsp := ∂np|Γs
. Here, ∂np denotes the derivative of p

in the direction of the normal of Ωs on the boundary Γs. Furthermore, in order
to avoid spurious reflections “from infinity”, the so-called Sommerfeld condition
has to be satisfied

p = O(R−1), ikp− ∂ p

∂R
= o(R−1) for R → ∞. (7)

Here, p is viewed in spherical coordinates, ∂/∂R denotes the derivative in radial
direction, and O(·) and o(·) are the well-known Landau symbols. It can be
shown, that a function that fulfills both the Helmholtz equation and the (second)
radiation condition in (7) also satisfies the (first) decay condition in (7).
Naturally, the acoustic scattering problem (5), (6), (7) is formulated on an infinite
domain Ω∞ = R3 \ Ωs, see Figure 1.
To reduce this problem to a problem on a finite domain, an artificial, e.g. spheri-
cal, boundary Γr that envelops the scatterer Ωs is introduced. If the coefficient k
is constant outside the sphere confined by Γr, by the use of a so-called Dirichlet-
to-Neumann map Br (see [43]) on this boundary, the problem (5), (6), (7) can
equivalently be formulated on the finite domain Ω as

−∆p− k2p = 0 in Ω
Bsp = 0 on Γs

Brp = ∂np on Γr,
(8)
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where ∂np stands for the derivative in the direction of the outer normal of Ω on
the boundary Γr.

Ω

Γr

Γs

Ωs

Ω∞

Figure 1: Domain for acoustic scattering problem.

It is important to remark, that the Dirichlet-to-Neumann map Br leads to ex-
act non-reflecting, but also, in general, non-local boundary conditions. So, for
an efficient numerical computation, the non-reflecting boundary conditions are
approximated by so-called absorbing boundary conditions, that depend on the
boundary data locally. An usual approximation is the Robin boundary condition
with

Brp := iαp = ∂np on Γr, (9)

where α ∈ C is chosen as α = k.
Thus, equation (8) with boundary condition (9) describes a strongly formulated
approximation of an acoustic scattering problem on a finite domain Ω.

1.1.2 Example: Laser Cavity Eigenmodes

A second example concerns the eigenmodes of a laser cavity that is filled with
a real Gaussian duct, see e.g. [64, Chap. 20.3], and that possesses two planar
end mirrors. In Chapter 3.3, we derive an Helmholtz eigenvalue problem for a
standing electrical wave Ẽ(x, y, z) in a laser resonator of length L. Formulated on
the three-dimensional domain Ω := Ψ×]0; 2L[ with simply connected and open
Ψ ⊂ R2 (see Figure 2), the wave has to satisfy the PDE eigenvalue problem

−∆Ẽ(x, y, z) − k2(x, y, z) Ẽ(x, y, z) = ξ Ẽ(x, y, z) in Ω (10)

and the periodical and absorbing boundary conditions

Ẽ(x, y, 0) = Ẽ(x, y, 2L) for (x, y) ∈ Ψ,
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∂

∂z
Ẽ(x, y, 0) =

∂

∂z
Ẽ(x, y, 2L) for (x, y) ∈ Ψ,

and BrẼ(x, y, z) = ∂nẼ(x, y, z) on (∂Ψ)×]0; 2L[

with a Robin boundary condition

BrẼ(x, y, z) := ik0Ẽ(x, y, z) = ∂nẼ(x, y, z) on (∂Ψ)×]0; 2L[, (11)

i.e. on the open part of the boundary. Furthermore, the coefficient function is of
the form

k2(x, y, z) =

(

k2
0 − k0

2π

λ

n2(z)

n0

(x2 + y2)

)

.

where λ is the wave-length in the vacuum, k0 is a reference value with k0 ≈
n02π/λ, and n0 ≈ 1 and n2(z) ¿ 1 are parameters for the refractive index
distribution of the duct.
Since in this example we deal with electrical waves in or near to the range of
visible light, we have

k2 À 1.

This property makes the numerical solution of this Helmholtz eigenvalue problem
challenging or impossible if LÀ λ, as will be reviewed in Chapter 1.3.

z

(x, y)

Ψ

Ω

2L

Ẽ

Figure 2: Domain for eigenvalue problem.

1.2 Weak Formulation and Well-Posedness of the Helm-
holtz Equation on Finite Domains

To solve an Helmholtz problem by finite elements, usually a variational formu-
lation of the problem in the context of Sobolev spaces is utilized. For detailed
definitions of the used notions, we refer to the books [3], [35] [38], [41], [73],
or [75].
Let Ω be a bounded domain with sufficiently regular boundary, say Lipschitz
boundary. By Ck(Ω), k ∈ N0, we denote the space of complex-valued k-times
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continuously differentiable functions on Ω. The space C∞(Ω) contains the func-
tions that have derivatives of all orders. C∞

0 (Ω) is the subspace of functions in
C∞(Ω) with compact support in Ω.
Let L2(Ω) be the space of complex-valued square-integrable functions on Ω and
let Hm(Ω) ⊂ L2(Ω) be the subspace of functions that posses weak derivatives up
to order m ∈ N0. Finally, by Hm

loc(Ω) we denote the functions u for which

u ∈ Hm(Ω′)

holds for all bounded Ω′ ⊂ Ω with Ω′ ⊂ Ω.
Endowed with the scalar product (·, ·) : L2(Ω) × L2(Ω) → C defined by

(u, v) :=

∫

Ω

uv d(x, y, z),

L2(Ω) is an Hilbert space. We abbreviate the induced norm by

‖u‖L := (u, u)1/2.

The natural norms on the spaces Hm(Ω) are

‖u‖m :=





m∑

|µ|=0

‖∂µu‖2
L





1/2

,

where µ = (µx, µy, µz) is a multi-index and ∂µu denotes the weak partial deriva-
tive

∂(µx,µy ,µz)u =
∂µx

∂xµx

∂µy

∂yµy

∂µz

∂zµz
u.

Furthermore, we define semi-norms on Hm(Ω) by

|u|m :=




∑

|µ|=m

‖∂µu‖2
L





1/2

.

For ease of presentation, let us assume that we have a constant coefficient k ∈ C

and that the (Lipschitz) boundary ∂Ω is composed of the two C2-boundaries Γs

and Γr = ∂Ω \Γs such that Γr and the interior of Γs with respect to ∂Ω are open
sets in ∂Ω. On Γs we prescribe the homogeneous Dirichlet condition

Bsu := u = 0 on Γs, (12)

and on Γr the Robin boundary condition

∂nu− Bru := ∂nu− iαu = 0 on Γr (13)
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with fixed α ∈ C.
Let us consider the following strong formulation of the Helmholtz equation with
boundary conditions (12) and (13): Find u ∈ H2

loc(Ω) with

−∆u− k2u = f in Ω
u = 0 on Γs

∂nu− iαu = 0 on Γr

(14)

for given right-hand side f ∈ L2(Ω).
For a weak formulation of (14), we define the sesquilinear form a(·, ·) : H 1(Ω) ×
H1(Ω) → C by

a(u, v) :=

∫

Ω

(∇u∇v − k2uv) d(x, y, z) −
∫

Γr

iαuv dσ(x, y, z).

Furthermore, let

H := H1
0,Γs

:=
{

u ∈ H1(Ω)
∣
∣
∣u|Γs

= 0
}

be the subspace of functions in H1(Ω), whose trace on Γs vanishes.
Restricting the form a(·, ·) to H, we obtain a variational formulation of (14) in
the Sobolev space H: Find u ∈ H such that

a(u, v) = (f, v) for all v ∈ H (15)

for given f ∈ L2(Ω).
Obviously, the sesquilinear form a(·, ·) is continuous (or bounded) andH-coercive,
i.e. there exist positive real numbers c and C, such that the G̊arding inequality

Re [a(u, u)] ≥ c‖u‖2
1 − C‖u‖2

L (16)

holds for all u ∈ H.
Since Ω is assumed to be bounded and sufficiently regular (we have assumed a
Lipschitz boundary), the spaceH can be embedded compactly into L2(Ω). There-
fore, the G̊arding inequality (16) implies that a(·, ·) satisfies the Fredholm alter-
native. This means that either for every f ∈ L2(Ω) the problem (15) possesses a
unique solution in H or there exists a finite-dimensional subspace of non-trivial
solutions of the homogeneous problem, i.e. of equation (15) with f ≡ 0.
In the following, two sufficient conditions for the well-posedness of problem (15)
are given. They base on considering the real and the imaginary part, Re[·] and
Im[·], of the coefficients k2 and α.

• Analogously to Theorem 3.2 in [41], i.e. using the analytical continuation
principle, it follows that for

Re[α] 6= 0 and Im[k2] = 0

the weak homogeneous problem (15), meaning with f = 0, only possesses
the trivial solution u = 0 or, equivalently, that the problem (15) is uniquely
solvable.
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• In the case where
Re[α] = 0 and Im[k2] 6= 0,

a unique solution also exists, which can easily be proved by choosing v = u
in (15), taking the imaginary part of the resulting equation, and using the
positive definiteness of the norm ‖ · ‖L on H ⊂ L2(Ω).

Although these two conditions are not a complete statement on the well-posedness
of problem (15), we can say that for some situations the weak Helmholtz equation
with absorbing boundary conditions is well posed. Particularly, that means that
only the trivial solution satisfies the homogeneous problem. This fact will be
dealt with in Chapter 3.2 where the current methods of analyzing laser cavities
are discussed.

1.3 On the Numerical Solution of the Helmholtz Equation
by Finite Elements

A standard way of solving the variational equation (15) numerically, is to apply
a Galerkin method, i.e. to choose an appropriate finite element subspace Sh ⊂ H
and to solve for uh ∈ Sh with

a(uh, vh) = (f, vh)0 ∀vh ∈ Sh. (17)

Such finite element approximations (17) of the Helmholtz equation (15) have been
studied extensively. A monograph that reviews a lot of important results is, for
instance, the book of Ihlenburg [41].
Essentially, two problems arise in solving (15) by a finite element discretization.
The first one is an approximation problem and the second one a computational
problem.
The relative approximation error ‖u− uh‖1/‖u‖1 in the H1-norm is composed of
an interpolation error and a so-called pollution error, which comes from a phase
lead or phase lag of the finite element solution uh of (17) with respect to u. It
is well known that for real k and a uniform discretization with mesh size h, the
interpolation error is of order O(kh). For some model problems a pollution error
of order O(k3h2) has been proved rigorously under the condition hk < 1, see
e.g. [41] and the references cited therein.
In one-dimensional problems, it is possible to modify the Galerkin method such
that the pollution vanishes. Then, for a satisfactory approximation the value of
kh has to be small. In higher dimensions, this generally is not possible, c.f. [11].
However, in this case the pollution error can at least be reduced.
For this purpose, many sophisticated methods have been proposed. We mention
a few of them, without claiming to present an exhaustive list: the generalized
or quasi-stabilized finite element method [11], the Galerkin least-squares stabi-
lization [39], and the residual-free bubbles finite element method [31]. In the
article [20], these methods are compared.
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Another way to overcome the pollution error, is to use a least-squares formulation
of the Helmholtz equation, see [48]. Therein an O(kh)-convergence in the least-
squares norm is stated and numerical tests are presented that indicate the same
order of convergence in the H1-norm.
This short overview shows that, in order to obtain a satisfactory finite element
approximation, a mesh size at least of order of magnitude of

h ≈ 1

k
(18)

has to be used.
Having discretized equation (15) by (17) obeying condition (18) one faces a com-
putational problem: The resulting system of linear equations is very large, indefi-
nite, non-hermitian, and ill-conditioned in general. (See, for instance, [61] for the
meaning of these properties.)
A lot of elaborate methods for solving the discrete Helmholtz equation have
been developed, ranging from adapted multigrid methods ([16], [24], [44], [48])
over domain decomposition methods ([28], [33]) to sophisticated preconditioning
techniques ([25] with [26], [34], [42], [50], [51], [54], [58]).
In [21], a completely different approach to solve an Helmholtz eigenvalue problem
is described. Therein, a non-linear multigrid eigenproblem solver is developed,
based on a Schur decomposition, and is applied to a two-dimensional eigenvalue
problem.
However, all above mentioned solution methods fail when applied to a truly three-
dimensional, discrete Helmholtz problem with large Re[k2] (as in laser simulation,
where Re[k2] ≈ 107), because they would require unrealistic storage and time
resources.
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2 A Transformation of the Helmholtz Boundary

Value Problem

The main topic of this thesis is to compute eigenmodes of a laser resonator which
are modeled by an Helmholtz eigenvalue problem, see Chapter 3. The interesting
eigenmodes u, which are very oscillatory in z, can be represented as

u(x, y, z) = ũ(x, y, z) · exp[−i κ(x, y, z)], (19)

where ũ is smooth with respect to z and κ is also a sufficiently smooth, but
real-valued function.
In this chapter, we justify – by the analysis of a one-dimensional model problem
– that such eigenmodes can be computed satisfactorily by finite elements. More
specifically, we transform a model Helmholtz boundary value problem by the use
of representation (19) and prove that the obtained finite element approximation
of u does not have a so-called pollution error, if following smoothness assumption
is fulfilled:

k‖ũ‖L > |ũ|1 + |ũ|2,
i.e. the k-fold of the L2-norm of the reduced function ũ dominates the H1- and
H2-semi-norms.

2.1 The Idea: Separating Oscillations from the Solution

Let Ω ⊂ R3 be a bounded, three-dimensional domain with C2-boundary.
To explain the idea, we consider the Helmholtz equation in strong form, at first
disregarding boundary conditions: Find u ∈ H2(Ω), such that

−∆u− k2u = f (20)

with f ∈ L2(Ω). (For some boundary conditions the solution u can be less regular;
then, the appropriate space for u is H2

loc(Ω) ⊃ H2(Ω).)
In this chapter we assume the wave number k to be a real quantity with

k À 1.

As explained in Chapter 1.3, for a discretization of (20) with large k by finite
elements a fine mesh size and, consequently, a large number of grid points is
needed in general.
Let us write the solution u as

u(x, y, z) = ũ(x, y, z) · exp[−iκ(x, y, z)] (21)

with real-valued κ ∈ C∞(Ω)∩C1(Ω). If u is oscillatory and the order of magnitude
of the oscillation is known in advance, κ can be chosen such that the expression
exp[−iκ(x, y, z)] contains the main part of the oscillation.
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A simple computation shows that the reduced function

ũ = u(x, y, z) · exp[iκ(x, y, z)] ∈ H2(Ω) (or H2
loc(Ω))

satisfies the equation

−∆ũ+ 2i〈∇κ(x, y, z),∇ũ〉 + (〈∇κ(x, y, z),∇κ(x, y, z)〉 − k2 + i∆κ(x, y, z))ũ

= f · exp[iκ(x, y, z)] =: f̃ , (22)

where 〈(a1, a2, a3), (b1, b2, b3)〉 := a1b1 + a2b2 + a3b3 and f̃ ∈ L2(Ω).
Formally, equation (22) is a singularly perturbed problem for ũ with right-hand
side f̃ , if for the norm of ∇κ holds: |∇κ(x, y, z)| À 1. In the case of real-valued
functions and real coefficients an equation like (22) is often called Diffusion-
Convection-Reaction equation. If |∇κ(x, y, z)| À 1, it is said to be convection
dominated. In [45], [53], and [59] many important results concerning theory and
numerical solution of such equations are presented.
Here, we deal with complex-valued functions and equations with complex co-
efficients. Therefore, we encounter different properties in general. Since, for
instance, the coefficient 2i∇κ of the gradient of ũ

2i〈∇κ(x, y, z),∇ũ〉

is purely imaginary, in the case of vanishing ∆κ the operator on the left-hand
side of (22) is hermitian, e.g., for homogeneous Dirichlet conditions, in contrast
to the non-symmetric operator of the Diffusion-Convection-Reaction equation.
Furthermore, our numerical experiments and the analysis of the one-dimensional
model problem in the following Section 2.2, seem to indicate that, different from
the real equation, a standard finite element discretization of equation (22) does
not lead to approximate solutions with wrong amplitudes or with unwanted oscil-
lations of order of magnitude of the exact solution. It rather seems that the main
contribution to the approximation error comes from wrong frequencies of the os-
cillating portions of the solution. However, it remains to analyze the properties
of a standard finite element solution of equation (22) more detailed, meaning
beyond the basic statements given in Chapter 2.2.
Nevertheless, the real analogy will help us to stabilize the transformed eigenvalue
equation in order to obtain an efficient numerical method for the computation of
laser cavity eigenmodes, see Chapter 5.2 and Chapter 6.
Let us now consider a boundary value problem (BVP) for equation (20) on Ω
with the boundary ∂Ω = Γs ∪ Γr, consisting of two disjoint parts Γs and Γr. We
impose the boundary conditions

u− g = 0 on Γs (23)

∂nu− iαu = 0 on Γr,
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with g ∈ H3/2(Γs) and α ∈ C. The expression ∂n denotes the derivative in the
direction of the outward normal of Ω on Γr.
By the application of relation (21), the equations (23) are transformed to following
boundary conditions for ũ:

ũ− g · exp[iκ(x, y, z)] = 0 on Γs (24)

∂nũ− i(α− ∂nκ(x, y, z))ũ = 0 on Γr.

It is obvious, that the BVP (20), (23) is equivalent to the BVP (22), (24). In
general, the transformed BVP does not have any advantages over the original
one. If, however, the term exp[−iκ(x, y, z)] contains – roughly spoken – the main
part of the oscillations of the solution u and, therefore, ũ can be expected to be
quite smooth, even a relatively coarse discretization of (22), (24) can lead to a
satisfactory numerical approximation. In the following Section 2.2, this heuristic
statement will be proved rigorously for a model problem.

2.2 Analysis of a Model Problem

In [41], a one-dimensional model problem is analyzed which reveals some of the
main difficulties of solving the Helmholtz equation by finite elements.
This BVP is formulated on the domain

Ω := (0; 1) ⊂ R

and reads

−u′′ − k2u = f in Ω

u(0) = 0 (25)

u′(1) = ik u(1)

with k À 1 and f ∈ L2(Ω). Applying the transformation in the previous Sec-
tion 2.1 with κ(x) := kx, one obtains the transformed problem for ũ ∈ H 2(Ω):

−ũ′′ + 2ikũ′ = f · eikx =: f̃ in Ω

ũ(0) = 0 (26)

ũ′(1) = 0

where f̃ ∈ L2(Ω).
Let us consider a variational formulation of problem (26). For this purpose, we
utilize the Sobolev space

H :=
{

u ∈ H1(0; 1)
∣
∣
∣ u(x)|x=0 = 0

}

.
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On H the sesquilinear forms

(u, v)1 :=

∫ 1

0

u′v̄′ dx and (u, v) :=

∫ 1

0

uv̄ dx

are inner products, inducing the norms

|u|1 := ‖u‖2
H := (u, u)1 and ‖u‖2

L := (u, u),

respectively. The standard H1-norm and the (semi-)norm | · |1 are equivalent on
H. (The proof uses the Poincaré inequality on H.)
By the sesquilinear form a(·, ·) : H ×H → C with

a(u, v) :=

∫ 1

0

u′v̄′ + 2iku′v̄ dx,

the model problem (26) can be written in a weak form as: Find ũ ∈ H such that

a(ũ, ṽ) = (f̃ , ṽ) ∀ṽ ∈ H (27)

for f̃ ∈ L2(Ω).
We remark that a(·, ·), defined on H ×H, is not hermitian, because it is

a(u, v) 6= a(v, u)

if u, v ∈ H are such that u(1) 6= 0 6= v(1).
Let Sh ⊂ H be the subspace of linear finite element functions on Ω originating
from a uniform discretization with mesh size h. (Since Sh ⊂ H, the functions in
Sh vanish at x = 0.) We approximate (27) by: Find ũh ∈ Sh such that

a(ũh, ṽh) = (f̃ , ṽh)0 ∀ṽh ∈ Sh. (28)

The aim of the analysis in this chapter is to estimate the overall error

e := u− ũh · exp[−ikx] = (ũ− ũh) exp[−ikx] =: ẽ exp[−ikx]. (29)

More precisely, we want to derive upper bounds for the relative | · |1-error
|e|1
|u|1

.

Since u(x) = ũ(x) · exp[−ikx] ∈ H implies ũ ∈ H, we obtain

|u|21 =

∫ 1

0

|(ũ exp[−ikx])′|2 dx =

∫ 1

0

|ũ′ exp[−ikx] − ikũ exp[−ikx]|2 dx

=

∫ 1

0

|ũ′ − ikũ|2 dx ≥
∫ 1

0

|k|ũ| − |ũ′| |2 dx = ‖k|ũ| − |ũ′|‖2
L

≥ (k‖ũ‖L − |ũ|1)2. (30)
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As shown in the following section, the solution ũ of (27) for f̃ ∈ L2(Ω) is in
H2(Ω). For the estimation of the relative error, we assume ũ to be smooth and
free of small-scale oscillations, i.e.

k‖ũ‖L > |ũ|1 + |ũ|2. (31)

However, even for very smooth right-hand sides f̃ in equation (27), a solution ũ
of (27) can fail to satisfy the smoothness condition (31). (This can easily be seen
by the use of the integral representation (34) for ũ with f̃ = 1.)
But as mentioned before, we actually are interested in solutions of an eigen-
value problem (see the example in Chapter 1.1.2). For these eigenmodes it is
reasonable to assume a representation u = ũ · exp[−iκ(x, y, z)] with ũ satisfying
condition (31).

2.2.1 Properties of the Transformed Problem

Essentially by the Cauchy-Schwarz inequality and by the Poincaré inequality, it
is shown that a(·, ·) is continuous (or, equivalently, bounded), i.e. there exists a
constant Cb > 0 such that

|a(u, v)| ≤ Cb‖u‖H‖v‖H ∀u, v ∈ H.

Furthermore, the sesquilinear form a(·, ·) is H-coercive:

Lemma 1 (G̊arding inequality) The sesquilinear form a(·, ·) fulfills a G̊arding
inequality, i.e. there exist constants cg, Cg > 0 such that

Re [a(ũ, ũ)] ≥ cg‖ũ‖2
H − Cg‖ũ‖2

L.

Proof: For the proof, we need the so-called generalized Young inequality for
a, b ≥ 0:

ab ≤ ε

2
a2 +

1

2ε
b2 ∀ε > 0. (32)

By this, it holds

Re [a(ũ, ũ)] ≥
∫ 1

0

|ũ′|2 − 2k|ũ′||ũ| dx ≥
∫ 1

0

|ũ′|2 − k(ε|ũ′|2 + |ũ|2/ε) dx

= (1 − kε)

∫ 1

0

|ũ′|2 dx− k/ε

∫ 1

0

|ũ|2 dx = (1 − kε)‖ũ‖2
H − k/ε‖ũ‖2

L

for arbitrary ε > 0. Choosing e.g. ε = 1
2k

, one obtains the stated inequality

Re [a(ũ, ũ)] ≥ cg‖ũ‖2
H − Cg‖ũ‖2

L

with cg = 1/2 and Cg = 2k2. ¤

Analogously to the arguments in Chapter 1.2, it can easily be seen, that equa-
tion (27) satisfies the Fredholm alternative. By this, well-posedness of prob-
lem (27), can be proved:
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Lemma 2 (Well-Posedness and Regularity) For every f̃ ∈ L2(Ω) there ex-
ists a unique ũ ∈ H2(Ω) ∩H such that equation (27) is satisfied.

Proof: Let ũ ∈ H be a solution of (27). Then, it satisfies the equation
∫ 1

0

ũ′v′ dx = −
∫ 1

0

(2ikũ′ − f̃)v dx

for all v ∈ H, and particularly, for all v ∈ C∞
0 (Ω). This implies that we have

ũ ∈ H2(Ω) ∩ H, which means that the strong and the weak form of the BVP,
(26) and (27), respectively, are equivalent.
Furthermore, by the embedding lemma of Sobolev (see, e.g. [3] or [73]), we have
the continuous embedding H2(Ω) ⊂ C1(Ω), which implies that ũ is in C1([0; 1]).
Let us consider the homogeneous problem, i.e. equation (27) with f̃ = 0. From
this equation, we obtain with v := ũ

0 =

∫ 1

0

|ũ′|2 + 2ikũ′ ¯̃u dx

=

∫ 1

0

|ũ′|2
︸︷︷︸

∈R

dx+ ik

∫ 1

0

d

dx
(u2

R) +
d

dx
(u2

I)
︸ ︷︷ ︸

∈R

dx+ 2k

∫ 1

0

−u′IuR + u′RuI
︸ ︷︷ ︸

∈R

dx,

where ũ = uR + iuI with real part uR and imaginary part uI .
Due to ũ ∈ C1([0; 1]) the following equation holds

0 =

∫ 1

0

d

dx
(u2

R) +
d

dx
(u2

I) dx = u2
R(1) − u2

R(0) + u2
I(1) − u2

I(0) = u2
R(1) + u2

I(1),

and we obtain uR(1) = uI(1) = 0.
The regularity theory for the Laplace operator (cf. [35] or [38]) and the lemma
of Sobolev imply that ũ satisfies the (classical) initial value problem

−ũ′′ + 2ikũ′ = 0 in Ω (33)

ũ(1) = ũ′(1) = 0.

By the theory of ODEs, it follows that ũ = 0 is the unique solution.
Since (27) satisfies the Fredholm alternative, this uniqueness result yields the
existence of the solution. ¤

If f̃ is continuous on [0; 1], obviously the function ũ ∈ C2([0; 1]) defined by

ũ(x) :=

∫ x

0

(∫ 1

y

f̃(t) exp[2ik(1 − t)] dt

)

exp[−2ik(1 − y)] dy (34)

is the classical solution of the boundary value problem (26). Furthermore, it is

ũ′(x) =

(∫ 1

x

f̃(t) exp[2ik(1 − t)] dt

)

exp[−2ik(1 − x)] (35)
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on the interval [0; 1].
This also holds in a weak sense for f̃ ∈ L2(0; 1). By standard arguments it can
be shown, that the function

û(x) :=

(∫ 1

x

f̃(t) exp[2ik(1 − t)] dt

)

exp[−2ik(1 − x)] (36)

is in H1(Ω) and possesses the weak derivative

d

dx
û(x) = −f̃(x) + 2ikû(x). (37)

By the lemma of Sobolev, we have û ∈ C([0; 1]).
So, the function

ũ(x) :=

∫ x

0

û(y) dy ∈ C1([0; 1]) (38)

is in H and satisfies the problem (26).
Furthermore, by standard arguments (see [4]) and from the continuity of û, it
follows that

û(x) − û(0) =

∫ x

0

d

dy
û(y) dy. (39)

Using these representations, we show:

Lemma 3 (Stability Estimates) For f̃ ∈ L2(Ω), the solution ũ of (27) satis-
fies following stability estimates:

‖ũ‖L ≤ C

k
‖f̃‖L, (40)

|ũ|1 ≤ ‖f̃‖L, (41)

|ũ|2 ≤ Ck‖f̃‖L (42)

with constants C independent of k.

Proof: By (38), (37), (39), (36), and standard estimates, we obtain

|ũ(x)| =

∣
∣
∣
∣

∫ x

0

û(y) dy

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

0

1

2ik

(
d

dy
û(y) + f̃(y)

)

dy

∣
∣
∣
∣

=
1

2k

∣
∣
∣
∣
û(x) − û(0) +

∫ x

0

f̃(y) dy

∣
∣
∣
∣

≤ 1

2k

(

|û(x)| + |û(0)| +
∫ x

0

|f̃(y)| dy
)

≤ 1

2k

(∫ 1

x

|f̃(y)| dy +

∫ 1

0

|f̃(y)| dy +

∫ x

0

|f̃(y)| dy
)

≤ C

k

∫ 1

0

|f̃(y)| dy ≤ C

k
‖f̃‖L.
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Taking the square and integration yields inequality (40).
Furthermore, we have

|ũ′(x)| = |û(x)| ≤
∫ 1

x

|f̃(t)| dt ≤
∫ 1

0

|f̃(t)| dt ≤ ‖f̃‖L,

which implies (41), again by squaring and integrating.
Finally, from

‖ũ′′‖L = ‖2ikũ′ − f̃‖L ≤ 2k‖ũ′‖L + ‖f̃‖L,

it follows
|ũ|2 ≤ (1 + 2k)‖f̃‖L ≤ Ck‖f̃‖L

with constant C independent of k. ¤

2.2.2 Asymptotic Analysis

Analogously to [41, Chaps. 4.4 and 4.5], we examine the error of the approxima-
tion ũh · e−ikx of u.
In this section, we perform an asymptotic analysis, where asymptotic means that
we assume k and h to be such that

k2h ≤ α < 1

for appropriate α.
Before examining the error, we mention some approximation properties of the
finite element space Sh ⊂ H, which will be needed for the analysis. If Ih : H → Sh

is the interpolation operator which maps v ∈ H to its piecewise linear nodal
interpolant Ihv ∈ Sh the following estimates hold for every v ∈ H2(Ω) ∩H:

‖v − Ihv‖L ≤ Ch2|v|2, (43)

‖v − Ihv‖L ≤ Ch|v − Ihv|1, (44)

|v − Ihv|1 ≤ Ch|v|2, (45)

with constants C independent of the mesh size h, see e.g. [17].
The following estimates are standard, but in deriving them we pay special atten-
tion to the question, how h and k determine the constants in the inequalities.
Following lemma states that for fixed k the finite element solution ũh is quasi-
optimal in the norm | · |1.

Lemma 4 Let the finite element error ẽ be defined as ẽ := ũ− ũh, where ũ is the
exact solution of (27) and ũh the finite element solution of (28). Let, furthermore,
k and h be such that the constant CH mentioned below in this lemma possesses a
positive denominator.
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Then, we have
|ẽ|1 ≤ CH inf

v∈Sh

|ũ− v|1, (46)

where

CH =
1

1 − (c1k2h+ c2k3h2 + c3k3h3 + c4k4h4)

with constants c1, c2, c3, c4 independent of k and h.

Proof: First, we estimate ‖ẽ‖L. For this purpose, we apply a duality argument.
Let z ∈ H be the solution of the (adjoint) problem

a(v, z) = (v, ẽ)0 ∀v ∈ H. (47)

Then, it is z ∈ H2(0; 1) ∩ H. For arbitrary w ∈ Sh, the orthogonality relation
a(ẽ, w) = 0 holds, and we obtain

‖ẽ‖2
L = (ẽ, ẽ)0 = a(ẽ, z) = a(ẽ, z − w) =

∣
∣
∣
∣

∫ 1

0

ẽ′(z − w)′ + 2ikẽ′(z − w) dx

∣
∣
∣
∣

≤ ‖(z − w)′‖L‖ẽ′‖L + 2k‖z − w‖L‖ẽ′‖L.

The choice w := Ihz and the application of the interpolation estimates (43) and
(45), and of the stability estimate (42) imply

‖ẽ‖2
L ≤ (C̃1h+ C̃2kh

2)|z|2‖ẽ′‖L ≤ (C1hk + C2k
2h2)‖ẽ‖L‖ẽ′‖L.

with C1, C2 independent of k and h. So, we obtain

‖ẽ‖L ≤ (C1hk + C2k
2h2)

︸ ︷︷ ︸

C3:=

|ẽ|1. (48)

Now, we derive an estimate for |ẽ|1. From the trivial equation

a(ẽ, ẽ) = a(ẽ, ũ− ũh) = a(ẽ, ũ− v)

for arbitrary v ∈ Sh, it follows

|ẽ|21 ≤ ‖ẽ′‖L‖(ũ− v)′‖L + 2k‖ẽ′‖L‖ẽ‖L + 2k‖ẽ′‖L‖ũ− v‖L

≤ ‖ẽ′‖L‖(ũ− v)′‖L + 2k‖ẽ′‖LC3‖ẽ′‖L + 2k‖ẽ′‖L‖ũ− v‖L.

Choosing v := Ihũ in ‖ũ − v‖L and applying the interpolation and stability
estimates, one obtains

|ẽ|21 ≤ |ẽ|1|ũ− v|1 + 2k|ẽ|1C3|ẽ|1 + 2k|ẽ|1‖ũ− v‖L

≤ |ẽ|1|ũ− v|1 + 2k|ẽ|1C3|ẽ|1 + C2kh2|ẽ|1|ũ|2
≤ |ẽ|1|ũ− v|1 + 2kC3(1 + C̃h2k)|ẽ|21
= |ẽ|1|ũ− v|1 + (c1k

2h+ c2k
3h2 + c3k

3h3 + c4k
4h4)|ẽ|21
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with constants c1, c2, c3, c4 independent of h and k. If k and h are such that

c1k
2h+ c2k

3h2 + c3k
3h3 + c4k

4h4 < 1,

this leads to the estimate

|ẽ|1 ≤
1

1 − (c1k2h+ c2k3h2 + c3k3h3 + c4k4h4)
︸ ︷︷ ︸

CH :=

|ũ− v|1, (49)

which is the inequality
|ẽ|1 ≤ CH inf

v∈Sh

|ũ− v|1, (50)

as stated in the lemma. ¤

The condition on h and k in Lemma 4 essentially depends on the expression
k2h. Thus, it is sufficient for quasi-optimality of the finite element solution,
that k2h is bounded by a constant which is small enough. In Section 2.2.4,
numerical experiments indicate that for a uniform quasi-optimality of the error
ẽ the boundedness of k2h is also necessary.
With the help of Lemma 4, we, derive an asymptotic bound for the overall er-
ror |e|1.

Lemma 5 Under the conditions of Lemma 4, we have the estimate

|e|1 ≤ cCHh(1 + kC3)|ũ|2. (51)

The expressions C3 and CH are of the form

C3 = C1hk + C2k
2h2

and

CH =
1

1 − (c1k2h+ c2k3h2 + c3k3h3 + c4k4h4)

with constants c, C1, C2, c1, c2, c3, c4 independent of h and k.

Proof: By standard estimates, it follows

|e|21 =

∫ 1

0

|(ẽ · exp[−ikx])′|2 dx =

∫ 1

0

|ẽ′ · exp[−ikx] − ikẽ · exp[−ikx]|2 dx

≤
∫ 1

0

(|ẽ′ · exp[−ikx]| + k|ẽ · exp[−ikx]|)2 dx

≤ 2

∫ 1

0

|ẽ′|2 + k2|ẽ|2 dx = 2(|ẽ|21 + k2‖ẽ‖2
L)

≤ 2(|ẽ|1 + k‖ẽ‖L)2. (52)
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Substituting (48) and (46) into (52) and using the approximation properties of
Sh in H, we obtain

|e|1 ≤
√

2CH(1 + kC3) inf
v∈Sh

|ũ− v|1 ≤ cCHh(1 + kC3)|ũ|2 (53)

with stated CH and C3, and c independent of h and k. ¤

Similar to [41, Chap. 4.4], we want to derive an estimate for the relative |·|1-error,
i.e. for |u− ũh exp[−ikx]|1/|u|1.
Let us assume that

k2h ≤ α < 1. (54)

From k À 1, it follows that h < 1 and that with sufficiently small α (e.g. such
that c1α+ (c2 + c3 + c4)α

2 < 1/2), we have that CH is bounded independently of
h and k.
Then, from the inequalities (51) and (30), and from the assumptions (31) and
(54) for large k, we obtain the estimate

|e|1
|u|1

≤ C̃
(c̃h+ c̃k2h2 + c̃k3h3)|ũ|2

|k‖ũ‖L − |ũ|1|
< C̃

(c̃h+ c̃k2h2 + c̃k3h3)

1

≤ C̃α(
c̃

k2
+
c̃α

k2
+
c̃α2

k3
) ≤ Ĉα

1

k2
(55)

with generic positive constants c̃ and C̃ independent of h and k. Obviously, Ĉ is
also independent of h and k.
Let us summarize these results:

Proposition 1 (Asymptotic Estimate) Let ũ satisfy the smoothness assump-
tion

k‖ũ‖L > |ũ|2 + |ũ|1 (56)

and let k and h be such that
k2h ≤ α < 1

for sufficiently small α.
Then, for large k the relative error satisfies the estimate

|e|1
|u|1

≤ C
1

k2
(57)

with constant C independent of h and k.

The estimate (57) is of order 1/k2 whereas the corresponding one in [41, p.
122] is of order 1/k. The smoothness assumption (56) implies in some sense
that the term exp[−ikx] contains the main oscillation of u; this is more specific
than the assumptions |u|2/|u|1 ≤ Ck and |u|2/‖u‖L ≤ Ck2, that underly the
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estimate in [41]. It remains to more carefully work out the relation between
the approximation obtained by a finite element discretization of the Helmholtz
equation (as considered in [41]) and the approximation ũh · e−ikx. This, however,
will not be done in this thesis.
In the following, we will perform an in-depth analysis of the error and show, that
under assumption (56) no so-called pollution error arises.

2.2.3 Pre-Asymptotic Analysis

In this section, we analyze the pre-asymptotic case, i.e. we examine the finite
element approximation more detailed and give an upper bound for the relative
error without a condition on h or k (except for the trivial assumption h < 1).
For this analysis, we specify the finite element discretization. Let the interval
[0; 1] be discretized by a uniform mesh with N +1 nodes xj := j ·h, j = 0, . . . , N ,
where h := 1/N is the mesh size. By Sh ⊂ H we denote the space of continuous,
piecewise linear functions which vanish at x0 = 0. Obviously, a function ũh ∈ Sh

is completely described by its values at the nodes uj := ũh(xj), j = 1, . . . , N , see
Figure 3. Furthermore, for the representation of Sh we choose the nodal basis
functions ψj, (j = 1, . . . , N), which are continuous on [0;1] and linear on each
interval [xj;xj+1], and which satisfy ψj(xl) = δjl for 0 ≤ j, l ≤ N .

0 1

x1 x2 x3 x4

Figure 3: A function in S1/4.

As already mentioned at the beginning of Chapter 2.2, the discretized variational
problem reads: Find ũh ∈ Sh such that

a(ũh, ṽh) = (f̃ , ṽh) ∀ṽh ∈ Sh, (58)

with sesquilinear forms

a(u, v) =

∫ 1

0

u′v̄′ + 2iku′v̄ dx

and

(u, v) =

∫ 1

0

uv̄ dx.
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Using the nodal basis, equation (58) can equivalently be written in a matrix-
vector formulation for the unknown vector (uj) := (u1, u2, . . . , uN ) ∈ CN

Ah · (uj) = (fj), (59)

where the stiffness matrix Ah ∈ CN×N takes the tri-diagonal form

Ah =











2 −1 + ikh

−1 − ikh
. . . . . .
. . . . . . . . .

. . . 2 −1 + ikh
−1 − ikh 1 + ikh











, (60)

and the right-hand side (fj) := (f1, f2, . . . , fN) ∈ CN is given by

fj := h · (f̃ , ψi) i = 1, . . . , N, (61)

where the ψi are the nodal basis functions.

Lemma 6 (Discrete Stability) The finite element solution ũh of (58) satisfies
following stability estimates:

‖ũh‖L ≤ CL

k
‖f̃‖L (62)

|ũh|1 ≤ C1‖f̃‖L. (63)

Proof: The proof consists of three steps. First, we introduce some notations.
Then, an explicit representation of the finite element solution ũh, or, equivalently,
of (uj) ∈ CN , is computed by applying the Z-transformation (see e.g. [68]).
Finally, this representation is used to prove the estimates.

I. Preparations.
We define the discrete norms

‖|(uj)|‖ :=

(

h ·
N∑

l=1

|ul|2
)1/2

and ‖|(uj)|‖∞ := max
l=1,...,N

|ul|.

Obviously, it holds ‖|(uj)|‖ ≤ ‖|(uj)|‖∞ and ‖ũh‖L ≤ C‖|(uj)|‖ with C indepen-
dent of h and k.
We expand (fj) ∈ CN to the infinite sequence ~f := (f0, f1, f2, . . .), where we
define f0 := 0 and fl := 0 for l > N .
Furthermore, we use the infinite sequence ~u := (u0, u1, u2, . . .) with u0 := 0.
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II. Representation of the discrete solution.
For ease of presentation, we set u1 := γ, with γ ∈ C to be determined later by
enforcing the solution (uj) to fulfill the last equation in the system (59).
Using the right-shift operator T defined by

(T~v)j :=

{
0 if j = 0
vj−1 if j > 0,

from the rows of (59) we obtain the relation

(−1 − ikh)~u+ 2T~u+ (−1 + ikh)T 2~u = T ~f. (64)

Due to h < 1, the members of the sequence ~f are bounded independently of h
and k

|fj| ≤ h|(f̃ , ψj)| ≤
2

3
h(3/2)‖f̃‖L ≤ ‖f̃‖L.

Therefore, the Z-transform F (z) := Z ~f of ~f exists, see [68, Theorem 6.4].
Furthermore, if a solution of (59) exists, then it can easily be seen that the
members uj, j > N, of the expanded infinite sequence ~u satisfying relation (64)
can be bounded as

|uj| ≤ 3j · max
l=1,...,N

|ul| for j > N.

So, in this case ~u also possesses a Z-transform U(z) := Z~u (again, see [68,
Theorem 6.4]).
The application of the Z-transformation to equation (64) and decomposition into
partial fractions yield

U(z) =
1

2ikh

(

γ(−1 + ikh)

(
1

z − 1
− β

z − β

)

+
F (z)

z − 1
− β

F (z)

z − β

)

,

where β = (−1 − ikh)/(−1 + ikh).
Applying the inverse transformation, we obtain a representation of the members
uj, namely

uj =
1

2ikh

(

γ(−1 + ikh)(1 − βj) +

j−1
∑

l=1

(1 − βl)fj−l

)

for j > 0.

The last equation in (59) imposes the condition

fN = (1 + ikh)(uN − uN−1)

by which γ is determined as

γ =
1

1 + ikh

N−1∑

l=0

βl−N+1fN−l.
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Finally, we obtain the explicit representation

uj =
1

2ikh

(

− (1 − βj)
N−1∑

l=0

βl−NfN−l +

j−1
∑

l=1

(1 − βl)fj−l

)

(65)

with β = (−1 − ikh)/(−1 + ikh).

III. Proofs of the estimates.

Substituting the right-hand side (61) into representation (65), we obtain

|uj| =
1

2k

∣
∣
∣
∣
∣
−(1 − βj)

N−1∑

l=0

βl−N(f̃ , ψN−l) +

j−1
∑

l=1

(1 − βl)(f̃ , ψj−l)

∣
∣
∣
∣
∣

=
1

2k

∣
∣
∣
∣
∣

N∑

l=1

(f̃ , α
(j)
l ψl)

∣
∣
∣
∣
∣

(66)

with

α
(j)
l =

{
(1 − βl−j) − (1 − β−j)βl for 1 ≤ l ≤ j − 1
−(1 − β−j)βl for j ≤ l ≤ N.

Since |β| = 1, it follows that

|α(j)
l | ≤ 4.

Then, representation (66) implies

|uj| =
1

2k

∣
∣
∣
∣
∣

(

f̃ ,

N∑

l=1

α
(j)
l ψl

)∣
∣
∣
∣
∣
=

1

2k

∣
∣
∣
∣
∣

∫ 1

0

f̃ ·
N∑

l=1

α
(j)
l ψl dx

∣
∣
∣
∣
∣

≤ 1

2k

∫ 1

0

|f̃ | · 4 dx ≤ C
1

k
‖f̃‖L. (67)

Thus, we have

‖ũh‖L ≤ C‖|(uj)|‖∞ ≤ CL

k
‖f̃‖L

with constant CL > 0 independent of h and k, which is inequality (62).

Furthermore, it is

|ũh|1 =

(∫ 1

0

|ũ′h|2 dx
)1/2

=

(
N∑

j=1

∫ xj

xj−h

∣
∣
∣
∣

uj − uj−1

h

∣
∣
∣
∣

2

dx

)1/2

=

(

h ·
N∑

j=1

∣
∣
∣
∣

uj − uj−1

h

∣
∣
∣
∣

2
)1/2

≤ 1

h
max

j=1,...,N
|uj − uj−1|. (68)
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Analogously to (66), we obtain

|uj − uj−1| =
1

2kh
|1 − β|

∣
∣
∣
∣
∣
−

N−1∑

l=0

βj−1+l−NfN−l +

j−1
∑

l=1

βl−1fj−l

∣
∣
∣
∣
∣

=
1

2k
|1 − β|

∣
∣
∣
∣
∣

(

f̃ ,
N∑

l=1

α
(j)
l ψl

)∣
∣
∣
∣
∣
, (69)

where

α
(j)
l =

{
βl−j+1 − βl−j+1 for 1 ≤ l ≤ j − 1
−βl−j+1 for j ≤ l ≤ N.

By

|α(j)
l | ≤ 2 and |1 − β| =

∣
∣
∣
∣

2ikh

−1 + ikh

∣
∣
∣
∣
≤ 2kh,

we obtain from (69)
|uj − uj−1| ≤ Ch‖f̃‖L. (70)

Now, inequality (63) follows by combining (68) and (70)

|ũh|1 ≤
1

h
max

j=1,...,N
|uj − uj−1| ≤

1

h
Ch‖f̃‖L =: C1‖f̃‖L

with constant C1 independent of h and k. ¤

The function z := ũh − Ihũ ∈ Sh is the solution of the equation

a(z, v) = (2ik(ũ− Ihũ)
′, v) ∀v ∈ Sh, (71)

since for all v ∈ Sh it holds

a(z, v) = a(ũh − Ihũ, v)

= a(ũh − ũ, v) + a(ũ− Ihũ, v)

= 0 + a(ũ− Ihũ, v)

=

∫ 1

0

(ũ− Ihũ)
′v̄′ + 2ik(ũ− Ihũ)

′v̄ dx

= 0 +

∫ 1

0

2ik(ũ− Ihũ)
′v̄ dx = (2ik(ũ− Ihũ)

′, v),

where we have used that
∫ 1

0

(ũ− Ihũ)
′v̄′ dx = 0 for all v ∈ Sh. (72)

(Equation (72) can be proved by element-wise integration by parts and observing
that ũ− Ihũ vanishes at the nodes.)
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Applying the triangle inequality, relation (71), and the discrete stability estimates
(62) and (63) of Lemma 6, one obtains

‖ũ− ũh‖L ≤ (Ch+ C)|ũ− Ihũ|1 (73)

and
|ũ− ũh|1 ≤ (1 + Ck)|ũ− Ihũ|1, (74)

where C shall denote a generic positive constants independent of h and k.
Using inequality (52), and the estimates (73) and (74), it follows for h < 1

|e|1 ≤ (C + Ck + Ckh+ Ck)|ũ− Ihũ|1 ≤ (Ch+ Ckh+ Ckh2 + Ckh)|ũ|2
≤ Chk|ũ|2, (75)

and we obtain by the estimate (30):

Proposition 2 (Asymptotic Estimate) Let ũ satisfy the smoothness assump-
tion

k‖ũ‖L > |ũ|2 + |ũ|1. (76)

Then, the relative error satisfies the estimate

|e|1
|u|1

≤ ckh (77)

with constant c independent of h and k.

Inequality (77) gives us a pre-asymptotic estimate where no pollution term arises,
i.e. the relative finite element error is of the order of the interpolation error.
(The corresponding estimate (4.5.15) in [41] possesses an additional term of order
O(k3h2).)
Thus, for this one-dimensional model problem the heuristic statements of Sec-
tion 2.1 hold.

2.2.4 Numerical Experiments

Now, we present some numerical experiments for solving the model problem (26)
by uniform finite elements, as specified in Section 2.2.3.
First, we examine the quasi-optimality constant CH in Lemma 4. For right-hand
side f̃ = 1, the ratio of the finite element error and of the best approximation error
(which is the error of the nodal interpolant in the H1-semi-norm) are computed
for constant kh and for constant k2h.
In Figure 4, the quotient |ũ−ũh|1/|ũ−Ihũ|1 – which is a lower bound for the quasi-
optimality constant CH – is plotted for hk ∈ {0.1, 0.05, 0.025}, whereas Figure 5
depicts the relative error |ũ − ũh|1/|ũ|1 for the same values of hk. (We suppose
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Figure 8: Comparison of exact solution, standard finite element approximation,
and stabilized finite element approximation for k = 10 and h = 0.02.

that in Figures 4 and 5 the behavior of the curves hk = 0.1 and hk = 0.05 for
large k comes from the restricted resolution of the oscillations of the solutions.)
For k2h ∈ {2.0, 1.0, 0.5}, Figures 6 and 7 depict the ratios |ũ − ũh|1/|ũ − Ihũ|1
and |ũ− ũh|1/|ũ|1, respectively.
These numerical results indicate that for quasi-optimality of the standard finite
element solution, as stated in Lemma 4, the value of k2h has to be bounded.
Furthermore, it is not sufficient to bound kh when the relative error shall be
confined by a value less that unity uniformly in h and k, as Figure 5 shows.
The question arises, if – as for the real diffusion-convection equation – a condition
on the magnitude of kh suffices to guarantee quasi-optimality of the finite element
solution of equation

∫ 1

0

ũ′hv̄
′
h + 2ikũ′hv̄h dx =

∫ 1

0

f̃ v̄h dx ∀vh ∈ Sh (78)

after some stabilization.
Let us consider the standard finite element solution of equation (78) for f̃ = 1 and
k = 10. Figure 8 shows the exact solution and the finite element solution obtained
by the standard discretization of (78) with mesh size h = 0.02 as described by
equation (59). It can be observed that the finite element solution possesses a
slightly larger wave length and that its derivative at the left boundary is estimated
wrongly. The amplitude, however, seems to be accurate.
A streamline diffusion approach, as explained in Chapter 5.2 and used for the
computation of laser cavity eigenmodes is not appropriate for the present prob-
lem since by this stabilization the amplitude of the oscillating component of the
solution is affected, which is irrelevant here.
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Our experiments led us to a modification of equation (78) which we describe
shortly in the following.
A solution of the model problem satisfies for v ∈ H ⊂ H1(Ω) the weak equation

∫ 1

0

ũ′′v̄′ + 2ikũ′v̄′ dx =

∫ 1

0

f̃ v̄′ dx. (79)

Approximating this equation in Sh, we obtain

∫ 1

0

2ikũ′hv̄
′
h dx =

∫ 1

0

f̃ v̄′h dx (80)

due to ũ′′h = 0.
Adding equation (78) multiplied by (1 + σ) and equation (80) multiplied by
σ · i/2k, we obtain the stabilized equation: Find ũh ∈ Sh such that

∫ 1

0

ũ′hv̄
′
h + (1 + σ)2ikũ′hv̄h dx = (1 + σ)

∫ 1

0

f̃ v̄h dx+ σ
i

2k

∫ 1

0

f̃ v̄′h dx ∀vh ∈ Sh,

(81)
where we choose σ = τ(hk)2 with appropriate real parameter τ .
Figure 8 also depicts the finite element solution ũh obtained from solving the
stabilized equation (81) with f̃ = 1, k = 10 and h = 0.02 using τ ≈ 0.33.
Obviously, this approximation almost coincides with the interpolate Ihũ.
We have tested the quality of the solutions of (81) for hk ∈ {0.2, 0.1, .0.05, 0.025}.
An appropriate choice of the parameter τ leads to a constant relative finite ele-
ment error for hk ≡ const. Table 1 shows that the optimal parameter τ slightly
depends on hk and that the relative error behaves like hk, which is the order of the
interpolation error. Similar results are obtained for more oscillating right-hand
sides.
Thus, the stabilization in equation (81) seems to be a promising approach for
solving equation (78) by finite elements and deserves further investigation.

hk τ |ẽ|1/|ũ|1
0.2 0.338755 0.0814
0.1 0.33467 0.0407
0.05 0.33367 0.0204
0.025 0.33342 0.0102

Table 1: Relative error of stabilized equation with parameter τ for hk ≡ const.
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3 Modeling the Eigenmodes of a Laser Resonator

In this chapter we shortly describe the physics of a laser, outline the current
methods for analyzing laser cavities, and explain how we model the eigenmodes
of a laser resonator.

3.1 An Overview of the Working Principles of a LASER
and the Governing Equation

The abbreviation ‘LASER’ stands for ‘Light Amplification by Stimulated Emis-
sion of Radiation’. This describes the main principles of a laser which we explain
very shortly below. For details, we refer, for instance, to the standard mono-
graph [64].
Appropriately supplying an active medium with energy (pumping) raises the
atoms, molecules, ions, or semiconducting crystals, depending on the type of
the laser, into a higher metastable energy level. This energy is radiated again
either in a stochastic manner (spontaneous emission), i.e. after different delays
and in different directions, or by the mechanism of stimulated emission, where
a short wave or a photon causes an excited atom (molecule, etc.) to radiate a
copy of itself which is coherent in space and time. If a feedback mechanism is
installed, for instance by two mirrors forming a main axis, the waves that travel
in the direction of this axis are kept inside the resonator cavity and a beam
traveling along the main axis can be amplified, see Figure 9, if one has a so-called
population inversion in the active medium.

pumping

emission

spontaneous emmission

stimulated

reflection

Figure 9: Absorption, spontaneous emission, feedback and stimulated emission.
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For the design of lasers, it is very important to know and to influence the phase
distribution of a laser beam and its transverse intensity distribution, where trans-
verse is meant with respect to the propagation axis, because these mainly affect
the efficiency of the laser and the propagation properties of the beam over longer
distances.
In many cases, these profiles can approximately be computed from the eigen-
modes of the laser cavity, i.e. from the electrical field distributions E 6≡ 0 (more
exactly, the phasor amplitudes E of time-harmonic electrical fields) which fulfill
the homogeneous Helmholtz equation

−∆E − k2E = 0 (82)

and which satisfy certain conditions imposed at the end mirrors of the cavity.
Roughly spoken, the existing numerical methods for analyzing laser cavities com-
pute approximations of non-trivial solutions E of equation (82).

3.2 Drawbacks of Current Methods for Analyzing Laser
Cavities

In this section, we outline the ideas and drawbacks of the present numerical
methods for analyzing laser cavities, as also done in [7] or [8].
A direct discretization of the Helmholtz equation or of the Helmholtz eigenvalue
problem as derived in Section 3.3 suffers from the difficulties mentioned in Chap-
ter 1.3. Particularly, for simulating lasers a small mesh size has to be chosen which
leads to a huge number of unknowns, making a numerical solution impossible.
Equation (82) can also be viewed as an eigenvalue problem for k and E

−∆E = k2E. (83)

So, sometimes a discretization by finite elements of (83) or of an eigenproblem
formulation of Maxwell’s equations is applied, see e.g. [69].
This approach, however, only works for small geometries (compared with the wave
length) or when a reduction to a 2D problem can be applied by certain symmetry
assumptions, since otherwise the number of discretization points would be too
large. So, this approach is applicable in a very limited number of cases.
Most of the numerical methods for the analysis of lasers base on an integral
formulation (including a so-called round-trip condition) or, equivalently spoken,
on the so-called paraxial approximation of the Helmholtz equation. Since the
important eigenmodes E(x, y, z) are waves propagating mainly in one direction,
here we choose the positive z-direction, they can be represented as

E(x, y, z) = u(x, y, z) e−iβz, (84)

where the propagation constant β ∈ R is chosen such that u varies only very
slowly in z. Substitution of (84) into the homogeneous Helmholtz equation (82)
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and division by e−iβz yield

−∆u+ 2iβ
∂

∂z
u+ (β2 − k2)u = 0. (85)

Under the assumption that

∣
∣
∣
∣

∂2u

∂z2

∣
∣
∣
∣
¿
∣
∣
∣
∣
2β
∂u

∂z

∣
∣
∣
∣

or

∣
∣
∣
∣

∂2u

∂x2

∣
∣
∣
∣

or

∣
∣
∣
∣

∂2u

∂y2

∣
∣
∣
∣
,

equation (85) can be approximated by the paraxial wave equation

− ∂2

∂x2
u− ∂2

∂y2
u+ 2iβ

∂

∂z
u+ (β2 − k2)u = 0. (86)

As explained e.g. in [64, Chap. 7, Chap. 16], equation (86) is a good approxima-
tion of equation (85) if u describes a paraxial wave, i.e. a wave that travels at a
small angle to the z-axis.

A solution of (86) can, in some sense, also be described by the so-called Fresnel
approximation of the Huygens’ integral. The principle of Huygens says that a
scattered wave is composed of spherical waves with source points on the surface
of the scattering object. Writing this out, one obtains an integral expression for
the scattered wave. Thus, the application of the Fresnel approximation leads to
following propagation rule: if u(x0, y0, z0) describes the wave at the plane z = z0,
the wave at the plane z = z0 + L can be computed by

u(x, y, z) =
i

Lλ

∫ ∫

u(x0, y0, z0) exp

[

−iβ (x− x0)
2 + (y − y0)

2

2L

]

dx0dy0. (87)

The paraxial approximation is, for instance, used in the gaussian mode analysis.
In the Chapters 16, 17, and 20 of the monograph [64], this method is explained
very detailed. In some cases, equation (86) possesses analytic solutions which are
called gaussian modes, according to their shape. A fundamental gaussian mode
has the form

u(x, y, z) =
1

q̃(z)
exp

[

−ikx
2 + y2

2q̃(z)

]

, (88)

where the z-dependent quantity

1

q̃(z)
=

1

R(z)
− i

λ

πw2(z)

is composed of the radius of curvature R(z) and the gaussian spot size w(z). In
this representation, as throughout the remainder of this chapter, it is assumed
that the propagation direction coincides with the z-axis.
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Alternatively, the fundamental gaussian mode can be written in a normalized
form as

u(x, y, z) =

(
2

π

)1/2
exp[−ikz + iψ(z)]

w(z)
exp

[

−x
2 + y2

w2(z)
− ik

x2 + y2

2R(z)

]

(89)

where ψ(z) is the so-called Guoy phase shift.
In practice, the elements in a laser configuration are approximated by parabolic
(or gaussian) elements, i.e. by elements that keep a beam gaussian meaning in
the form (88). By complex ABCD-matrices (see [64]) the effects of (parabolic)
apertures, ducts, lenses and other elements on q̃(z) are described. This is e.g.
implemented in the code LASCADTM [2].
However, in many practical situations this is no satisfactory approximation, as
for instance the numerical example in Chapter 7.6 shows.
The last type of methods for analyzing laser cavities is based on the Fox-Li-
Approach, see [30]. The idea is to choose a normalized, more or less arbitrary start
distribution u0(x, y) on a reference plane at z = z0, to compute the distribution
u1(x, y) at the same reference plane, but after one round-trip of this front, by
a Beam-Propagation-Method (BPM), and to normalize the obtained distribution
again. For the propagation, either equation (86) is discretized and the front is
propagated in positive or negative z-direction by finite difference or finite element
methods, until after one round-trip the reference plane has been reached, or a
Fourier transformation is applied to the integral representation (87) of a paraxial
wave (see e.g. [64, Chap. 14]). Iterating this procedure one hopes to obtain a
steady state, i.e. a distribution that does not change its pattern in a round-trip,
except for a reduction in amplitude and a phase shift, see again e.g. [64].
Using the integral formulation, this can be expressed as searching for distributions
unm that fulfill the eigenvalue equation

∫∫

K(x, y, x0, y0)unm(x0, y0) dx0 dy0 = γnmunm(x, y)

where γnm is a complex eigenvalue and K is the propagation kernel describing
the effect of one round-trip on the distribution at the reference plane.
The different transverse modes, essentially, are identified with the help of Fourier
analysis applied to a sample of many successive patterns. There exist two different
methods for extracting the higher-order modes: the Prony method suggested by
Siegman and Miller [65] and the approach of Feit and Fleck [29]. As explained
in [7], the method of Feit and Fleck fails for long resonators. To our knowledge,
no investigations of the accuracy of the eigenvalues and eigenmodes obtained by
these methods have been published until now.
Actually, many practitioners are unsatisfied with these BPMs, because the itera-
tion sometimes converges very slowly or does not converge at all. And until now,
this behavior is not understood very well. Furthermore, practical experience with
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BPM shows that small changes in the start pattern can strongly affect the mode
patterns.
The results on the solvability of the Helmholtz boundary value problem that
are reviewed in Section 1.2, state that in general the homogeneous BVP for the
Helmholtz equation

−∆u− k2u = f in Ω
u = 0 on Γs

∂nu− iαu = 0 on Γr

(90)

on a finite domain Ω with (approximate) absorbing boundary conditions has no
non-trivial solution. This essentially depends on the radiating boundary condi-
tions at Γr. Very roughly spoken, using approximate radiating boundary condi-
tions for an electrical wave can lead to a homogeneous boundary value problem
which only possesses the trivial solution. Or in other words: the eigenmodes are
eigensolutions of the Helmholtz operator with eigenvalue zero. Imposing approx-
imate boundary conditions at a finite radiating boundary, leads to a rejection of
the eigenmodes and only admits the trivial solution u = 0.
The approach to propagate a wave front in a window of finite width and then to
normalize it, is a way to obtain an approximation of a solution of the paraxial
wave equation (86) at one plane. Rigorously viewed, this restriction to a finite
domain imposes, if explicitly stated or not, approximate boundary conditions on
the solution. The statements in the previous paragraph indicate that in many
cases the Fox-Li approach is not appropriate for computing eigenmodes of laser
cavities.
However, it remains to analyze the beam propagation methods more detailed;
particularly, investigating well-posedness and the influence of the boundary con-
ditions will help to understand the behavior of these methods.

3.3 Derivation of a Two-Wave Eigenvalue Problem for the
Laser Resonator

Section 3.2 shows, that the existing numerical methods do not yield reliable
results or cannot be applied in many cases. Particularly, from the comments
on the beam propagation methods, it follows that a model for the eigenmodes
of a laser cavity has to be developed which is not sensitive to small changes in
the boundary conditions. For this purpose, we approximate the homogeneous
Helmholtz equation

−∆E(x, y, z) − k2(x, y, z) E(x, y, z) = 0 (91)

by an eigenvalue problem

−∆Ẽ(x, y, z) − k2(x, y, z)Ẽ(x, y, z) = ξẼ(x, y, z) (92)

as explained below.
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A nontrivial solution E(x, y, z) 6= 0 of equation (91) can be represented as

E(x, y, z) = u(x, y, z) e−i(kf−ε)z, (93)

where, at first, kf and ε are arbitrary real numbers with ε ¿ kf . Inserting
representation (93) into the homogeneous Helmholtz equation (91) and canceling
out the term e−ikf z, we obtain

−∆u(x, y, z) + 2i(kf − ε)
∂

∂z
u(x, y, z) + (k2

f − k2(x, y, z))u(x, y, z)

= ε(2kf − ε)u(x, y, z)

or, equivalently,

−∆u(x, y, z) + 2ikf
∂

∂z
u(x, y, z) + (k2

f − k2(x, y, z))u(x, y, z) (94)

= 2kfεu(x, y, z) + 2iε
∂

∂z
u(x, y, z) − ε2u(x, y, z).

In [7], the representation (93) is justified physically and u, kf , and ε are given a
concrete interpretation. Assuming that

∣
∣
∣
∣
2iε

∂

∂z
u(x, y, z) − ε2u(x, y, z)

∣
∣
∣
∣
¿ |2kfεu(x, y, z)| , (95)

as it is done in [7], we neglect the two terms of the left-hand side of (95) in the
equation (94) and obtain the approximation

−∆ũ(x, y, z) + 2ikf
∂

∂z
ũ(x, y, z) + (k2

f − k2(x, y, z))ũ(x, y, z) = ξũ(x, y, z), (96)

where ũ(x, y, z) ≈ u(x, y, z) and ξ ≈ 2kfε. The equation (96) can be seen as an
eigenvalue problem for ũ and ξ. If u, kf , and ε fulfill condition (95), equation (96)
will be a good approximation of equation (94).
Multiplication of the eigenvalue equation (96) by e−ikf z and simple manipulation
gives an Helmholtz eigenvalue problem for Ẽ(x, y, z) := ũ(x, y, z) e−ikf z

−∆Ẽ(x, y, z) − k2Ẽ(x, y, z) = ξẼ(x, y, z). (97)

We see, that Ẽ satisfies a perturbed homogeneous Helmholtz equation

[
−∆ − (k2 + ξ)

]
Ẽ(x, y, z) = 0.

The derivation shows, that we, furthermore, have the approximate relation

E ≈ Ẽeiεz. (98)
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Thus, a solution E of the homogeneous Helmholtz equation (91) can be approx-
imated well by solving the eigenvalue problem (97) for Ẽ and applying rela-
tion (98), if condition (95) holds.

Now, we explain the model, by which we compute the modes of a laser cavity.

Here, for ease of description and computation, we describe the cavity by a cuboid,
see Figure 10. The mirrors shall be located at the left and right faces. We denote
the cuboid of size W ×W ×L by Ω, and the boundaries by Γ0,Γ1, and Γr, which
stand for the left mirror, the right mirror, and the remaining open part of the
boundary, respectively.

z

x

y

W

L

WΓ0

Γr

Γ1

Ω

Figure 10: The computational domain for a laser cavity.

To represent a mode in a laser resonator cavity, we use the two-wave ansatz

Ẽ(x, y, z) = exp [−i(kf − ε)z] ũr(x, y, z)
︸ ︷︷ ︸

Ẽr(x,y,z)·exp[iεz]:=

+ exp [−i(kf − ε)(L− z)] ũl(x, y, z)
︸ ︷︷ ︸

Ẽl(x,y,z)·exp[−iεz]:=

.

(99)
with waves Ẽr and Ẽl that are eigensolutions of (97) with the same eigenvalue ξ
and that are appropriately coupled at the end mirrors, i.e. at the boundaries Γ0

and Γ1.

The ansatz (99) reflects the well-known idea (see e.g. [64]) that a mode in a
resonator can be seen as a periodic wave with periodicity 2L in z. (Ẽl is the
reflected wave for L < z < 2L.)

However, solving for the eigensolutions Ẽr and Ẽl directly, demands for a numer-
ical solution of two coupled Helmholtz eigenvalue problems (97), which leads to
the difficulties mentioned in Section 1.3.

The ansatz (99) and the derivation of the Helmholtz eigenvalue problem reveal
that ũr and ũl are the interesting quantities. These fulfill the eigenvalue equa-
tion (96), mutatis mutandis for ũl. So, we compute Ẽ by computing ũr and
ũl.

We remark, that computing for ũr and ũl instead of for Ẽr and Ẽl corresponds
to the idea of separating oscillations which is presented in Chapter 2.
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As Ẽr and Ẽl, the functions ũr and ũl must meet coupling boundary conditions
at the end mirrors Γ0 and Γ1:

ũr(x, y, 0) = φ0(x, y) · ũl(x, y, 0), (100)

ũl(x, y, L) = φ1(x, y) · ũr(x, y, L),

and

∂ũr

∂z
(x, y, 0) = −φ0(x, y) ·

∂ũl

∂z
(x, y, 0), (101)

∂ũl

∂z
(x, y, L) = −φ1(x, y) ·

∂ũr

∂z
(x, y, L),

where the functions φ0(x, y) and φ1(x, y) model the phase shifts of the waves due
to reflection and due to the curvature of the mirrors. We approximate the exact
shifts by choosing

φ0(x, y) := exp

[

ikf

(
x2 + y2

R0

)

− iπ

]

(102)

and

φ1(x, y) := exp

[

ikf

(
x2 + y2

R1

)

− iπ

]

, (103)

where R0 is the (parabolic) radius of curvature of the left mirror and R1 of
the right mirror, respectively. In the following Chapter 3.4 the modeling of the
boundary conditions is explained more detailed.
At the open part of the boundary Γr we impose Robin boundary conditions on
Ẽr and Ẽl. As explained for the example in Chapter 1.1.1, this condition is
an approximation for the exact non-reflecting boundary condition. Since the
outward normal of the domain Ω on the boundary Γr always is perpendicular to
the z-direction, the Robin boundary conditions can equivalently be applied to ũr

and ũl.
Let us now combine all considerations above. An eigenmode of a laser resonator
is modeled as an eigensolution (ũr, ũl) with complex eigenvalue ξ of following
PDE eigenvalue problem:

−∆ũr + 2ikf
∂ũr

∂z
+ (k2

f − k2)ũr = ξũr and

−∆ũl − 2ikf
∂ũl

∂z
+ (k2

f − k2)ũl = ξũl in Ω (104)

with boundary conditions

ũr − φ0ũl = 0 on Γ0,

ũr − φ̄1ũl = 0 on Γ1,
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∂ũr

∂z
+ φ0

∂ũl

∂z
= 0 on Γ0,

∂ũr

∂z
+ φ̄1

∂ũl

∂z
= 0 on Γ1, (105)

∂ũr

∂~n
− iCbũr = 0 on Γr,

∂ũl

∂~n
− iCbũl = 0 on Γr,

where Cb can be chosen as Cb = kf .
This two-wave eigenvalue problem [(104) and (105)] is our model for the deter-
mination of the eigenmodes of a laser cavity.
It is noteworthy, that ξ is not a simple eigenvalue in general. To demonstrate
this, we assume the parameters to be

φ0 ≡ φ1 ≡ −1 and ei4kf z = 1.

Then, if (ũr, ũl) is an eigensolution of the eigenvalue problem (104), (105) with
eigenvalue ξ, simple computation shows that the pair

(ûr, ûl) := (e−2ikf z · ũl, e
2ikf z · ũr)

satisfies the boundary conditions (105) and the equations

−∆ûr + 2ikf
∂ûr

∂z
+ (k2

f − k2)ûr − 4ikfe
−2ikf z ∂ũl

∂z
= ξûr and

−∆ûl − 2ikf
∂ûl

∂z
+ (k2

f − k2)ûl + 4ikfe
2ikf z ∂ũr

∂z
= ξûl in Ω. (106)

If we, furthermore, assume that ∂ũr/∂z = ∂ũl/∂z = 0, obviously (ûr, ûl) is also
an eigensolution with eigenvalue ξ. In contrast to the constant solution (ũr, ũl),
the eigensolution (ûr, ûl) is very oscillatory.

3.4 Description of Boundary Conditions and Interior
Boundary Conditions

In this section, we derive boundary and interior boundary conditions by which
we describe the effects of lenses, dielectric interfaces and mirrors in a laser con-
figuration. We model these elements by applying appropriate phase shifts to the
waves ũr and ũl. (The formulas are the results of a personal communication [6].)
However, we do not specify conditions for the first order derivatives of ũr and ũl,
which could be necessary for obtaining a well-defined strongly formulated PDE.
The variational formulation, as used for the finite element analysis, yields so-
called natural boundary conditions. For the end mirrors, these natural boundary
conditions are equivalent with the first order coupling conditions in (105), see
Chapter 5.1.
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3.4.1 Conditions for Dielectric Interfaces and Lenses

In the following, we derive the condition that has to be imposed on a wave which
is passing a dielectric interface.

E

k1

R
k2

z′
z0

Figure 11: Interior boundary condition for a dielectric interface.

Let E be a wave moving to the right with propagation constants k1 for the
domain left from the parabolic dielectric interface with apex at z = z0 and k2 for
right-hand part of the domain, as shown in Figure 11. We can represent E as

E(x, y, z) =

{
u1(x, y, z) exp ( − ik1(z − z0)) if z ≤ z0 − z′(x, y)
u2(x, y, z) exp ( − ik2(z − z0)) if z > z0 − z′(x, y),

(107)

where u1, u2 vary slowly in z and z′(x, y) = (x2 +y2)/(2R) describes the interface
with radius of curvature R. For a convex interface as in Figure 11 the radius of
curvature shall, by convention, be positive R > 0.
Since the wave E is continuous, particularly, at z = z0 − z′, following relation
must hold

u2(x, y, z0 + z′) = u1(x, y, z0 + z′) exp (i(k1 − k2)z
′). (108)

We want to approximate E by Ẽ defined by

Ẽ(x, y, z) =

{
ũ1(x, y, z) exp ( − ik1(z − z0)) if z ≤ z0

ũ2(x, y, z) exp ( − ik2(z − z0)) if z > z0.
(109)

If we assume that the interface has not a large curvature, the relation (108) can
be applied at the plane z = z0 yielding

ũ2(x, y, z0) := ũ1(x, y, z0) exp (iϕDI(x, y)). (110)

with

ϕDI(x, y) = (k1 − k2)

(
x2 + y2

2R

)

. (111)
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E

Rr

k2 k1

Rl

z0 zL z1
z′l z′r

k1

Figure 12: Interior boundary condition for a lens.

As for dielectric interfaces, we want to describe the effect of a lens (Figure 12)
by an appropriately chosen phase shift ϕL(x, y). The wave E is approximated by

Ẽ(x, y, z) =

{
ũ1(x, y, z) exp ( − ik1(z − zL)) if z ≤ zL

ũ2(x, y, z) exp ( − ik1(z − zL)) if zL < z.
(112)

Since the propagation of the wave through a lens can be seen as passing two
dielectric interfaces with radii Rl and Rr, the phase shift ϕL that a wave which
passes a lens is subjected to can be approximated by the sum of the shift ϕl

DI from
entering the lens, the shift ϕr

DI from leaving the lens, and shifts due to different
propagation constants:

ϕL(x, y) := ϕl
DI(x, y) − (k2 − k1)(zL − z0) + ϕr

DI(x, y) − (k2 − k1)(z1 − zL)

= (k2 − k1)

(
x2 + y2

−2Rl

+
x2 + y2

2Rr

+ (z0 − z1)

)

. (113)

Thus, we have the interior boundary condition

ũ2(x, y, zL) = ũ1(x, y, zL) exp (iϕL(x, y)) (114)

with ϕL as in (113).

From the phase shift (113) a condition for a thin lens can be derived. For a thin
lens we assume that z1−z0 ≈ 0 and Rl ≈ ∞. If, furthermore, the refractive index
n1 outside the lens is n1 = 1, then instead of using Rr, k1, and k2, we describe
the effect of a thin lens by its focal distance f , and obtain the phase shift

ϕTL(x, y) := k1
x2 + y2

2f
. (115)
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3.4.2 Conditions for End Mirrors

To derive the phase shift for the reflection at end mirrors, we consider the con-
figuration in Figure 13. Let El be the incoming wave traveling to the left and Er

the reflected one propagating to the right.
We describe the incoming wave El by

El(x, y, z) = ul(x, y, z) exp ( + ik(z − z0)) (116)

and the reflected wave Er by

Er(x, y, z) = ur(x, y, z) exp ( − ik(z − z0)). (117)

R

k
z0

z′

El

Er

Figure 13: Boundary condition for a reflecting mirror.

The reflection at a mirror can be described by a phase shift of −π between
incoming and reflected wave as known from textbooks of optics. That means for
the parabolic end mirror in Figure 13, that

Er(x, y, z0 + z′) = exp(−iπ)El(x, y, z0 + z′). (118)

Using (116) and (117) we obtain the relation

ũr(x, y, z0 + z′) exp ( − ikz′) = exp(−iπ)ũl(x, y, z0 + z′) exp ( + ikz′) (119)

or, equivalently,

ũr(x, y, z0 + z′) = ũl(x, y, z0 + z′) exp (iϕ0(x, y)) (120)

with

ϕ0(x, y) = 2kz′ − π = k
x2 + y2

R
− π. (121)
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As for the dielectric interface, if the radius of curvature R is large, we obtain a
good approximation when we apply this locally varying phase shift at the plane
z = z0 instead of the mirror z = z0 + z′.
In our numerical tests in Chapter 7, we restricted ourselves to configurations
which can be described without interior boundary conditions. As can be seen in
Chapter 5.1, the curvature of the end mirrors was modeled by incorporating the
phase shifts into the test and trial space of the variational formulation.

3.5 Extracting the Spot Size and the Guoy Phase Shift
from the Fundamental Eigenmode

Let (ũr, ũl) be the solution of the eigenvalue problem (104), (105) with eigen-
value ξ(= 2kfε), which describes a nearly gaussian, fundamental (or lowest-order)
eigenmode. Then, on every plane which is perpendicular to the propagation axis,
i.e. to the z-axis, ũr and ũl assume their maximal absolute values on this axis.
The spot size w(z0) (see also equation (89)) of a fundamental wave ũ at the plane
with z = z0 is defined as the radius r =

√

x2 + y2 where the squared modulus of
ũ has decreased to 1/e2 of its maximum value (which is assumed on the z-axis)
with respect to this plane, i.e. where

|ũ(x, y, z0)|2 =
1

e2
· |ũ(0, 0, z0)|2.

Thus, the z-dependent spot size of the finite element solution can easily be com-
puted by interpolation, as it has been done for the numerical tests in Chapter 7.
Furthermore, the Guoy phase shift ψ(z) can be computed from ε̃ and ũr or ũl,
respectively. As equation (89) shows, on the propagation axis the relation

ũ(0, 0, z) = exp [−i(ε̃z − ψ(z))] |ũ(0, 0, z)| (122)

holds. Since ψ(z) is only determined except for a constant, an appropriate nor-
malization has to be applied. For the numerical example in Chapter 7.2, the
Guoy phase shift computed from the finite element solution is compared with
analytical one showing very good correspondence.
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4 Abstract Convergence Proof for an Approxi-

mate Solution of a Quadratic Eigenvalue Prob-

lem

Eigenvalue problems for partial differential equations, as for instance the two-
wave eigenvalue problem in Chapter 3.3, are a very important class of problems
in mathematics and in many fields of science. A standard way of numerical
approximation of these problems is to discretize them using the finite element
method (FEM). Doing so, immediately the question of existence and convergence
of the finite element solution arises.
For the linear eigenvalue problem, the answers are well-known. For instance in
[10] or [38] a complete convergence theory is presented. Furthermore, we mention
just a few articles that contain some additional methods and ideas concerning
linear eigenvalue problems: [13], [15], [19], [40], [46], [71], and [74].
For quadratic eigenvalue problems, the situation is completely different: On the
convergence of finite element solutions of quadratic PDE eigenvalue problems
almost nothing has been proved. As far as we know, solely in [14] convergence
has been shown for a special problem and a special discretization. However, the
theory of finite-dimensional quadratic eigenvalue problems has developed to a
mature status, see e.g. [70] for an overview.
In this chapter, we present an abstract – and hence, quite general – proof of
convergence for a discretized quadratic eigenvalue problem.
In Chapter 5.3 we will apply this theory to show convergence of the (linear)
two-wave eigenvalue problem formulated in Chapter 3.3.

4.1 The Idea: An Abstract Quadratic Eigenvalue Prob-
lem in Hilbert Spaces and its Linearization

Let us, first, consider the abstract quadratic eigenvalue problem

Au = λBu+ λ2Cu, (123)

where A,B and C are bounded linear operators on a complex Hilbert Space H,
and B, C additionally are assumed to be compact. For the notions and statements
of functional analysis in this chapter, we refer e.g. to [4], [38], and [73].
Let (u, λ) ∈ H×C be the eigenpair (i.e. the eigensolution and the corresponding
eigenvalue) of interest and let w ∈ H be a fixed approximation of u. To norm u,
we additionally impose the condition

〈u,w〉 = 1

with 〈·, ·〉 being a scalar product on the space H.
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Then, (u, λ) fulfills

F (u, λ) :=

(
Au− λBu− λ2Cu

〈u,w〉 − 1

)

= 0. (124)

Using the Frechét derivative FL of F in (u, λ), we can write

F (v, µ) = F (u, λ)
︸ ︷︷ ︸

=0

+FL(v − u, µ− λ) +G(v, µ), (125)

where

FL(x, ξ) =

(
Ax− ξBu− λBx− 2λξCu− λ2Cx

〈x,w〉

)

and

G(v, µ) =

(
−(µ− λ)B(v − u) − (µ− λ)(µ+ λ)C(v − u) − (µ− λ)2Cu

0

)

.

Obviously, G(v, µ) is of order o(‖v − u‖ + |µ− λ|).
Roughly spoken, the operator FL describes the behavior of F in a small neigh-
borhood of (u, λ). Since FL is a linear operator, it is called the linearization of F
in (u, λ).
To estimate the error

e := (v − u, µ− λ),

one aims for an appropriate representation of it. Under the assumption that the
inverse operator (FL)−1 exists, from (125) the equation

e = (FL)−1(F (v, µ) −G(v, µ)) (126)

follows.
The idea behind representation (126) will help us to estimate the error and to
prove convergence in a variational context.
If the operator FL, for instance, satisfies a Fredholm alternative, the regularity
of this operator (or the existence of the inverse operator (FL)−1) is equivalent to
the statement that FL(x, ξ) = 0 implies (x, ξ) = 0, or more detailed, that the
equations

Ax− λBx− λ2Cx = ξBu+ 2λξCu (127)

〈x,w〉 = 0 (128)

imply (x, ξ) = 0. This is true, if the eigenvalue λ is of simple geometric and
algebraic multiplicity, i.e. if

dim
(
ker(A− λB − λ2C)

)
= 1 (129)
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holds and no generalized eigensolution for (u, λ) exists:

6 ∃x ∈ H : (A− λB − λ2C)x = − d

dτ
(A− τB − τ 2C)

∣
∣
∣
τ=λ

u = (B + 2λC)u, (130)

see [47] or [70] for the finite dimensional analogon.
Conditions (129) and (130) are a generalization of the well-known conditions for
linear eigenvalue problems.

4.2 A Variational Formulation of the Eigenvalue Problem
in Hilbert Spaces and its Linearization

In this section, we deal with a variational quadratic eigenvalue problem and apply
the ideas of the previous section in this context.
For this purpose, let us consider the Gelfand triple

H ⊂ L ⊂ H′,

where the embedding H ⊂ L is continuous, dense, and compact and H′ is the
dual space of H. Let ‖ · ‖L, (·, ·) and ‖ · ‖H , 〈·, ·〉 be the norms and inner products
of L and H, respectively.
We consider the following eigenvalue problem, which can be seen as a variational
formulation of the eigenvalue problem (123):
Find v ∈ H and µ ∈ C, such that

a(v, ϕ) = µ b(v, ϕ) + µ2c(v, ϕ) ∀ϕ ∈ H (131)

under the restriction

〈v, w〉 = 1. (132)

Here, a(·, ·), b(·, ·), and c(·, ·) are sesquilinear forms on H corresponding to the
operators A,B, and C, respectively, in Chapter 4.1. Let us suppose, that there
exist constants ca, cb, cc > 0 such that

|a(v, ϕ)| ≤ ca‖v‖H‖ϕ‖H , (133)

|b(v, ϕ)| ≤ cb‖v‖H‖ϕ‖L, (134)

and |c(v, ϕ)| ≤ cc‖v‖H‖ϕ‖L (135)

for all v, ϕ ∈ H. Condition (133) expresses that a(·, ·) is a continuous (or
bounded) sesquilinear form on H, whereas (134) and (135) are stronger con-
ditions which by the continuous embedding H ⊂ L, however, imply continuity of
b(·, ·) and c(·, ·).
According to the conditions (129) and (130), we suppose that (u, λ) is an eigenpair
of (131) which fulfills following condition of simplicity
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(AS): The space H can be decomposed into the direct sum

H = H⊥ ⊕ spanC {u}

such that

(i) the equation

a(v, ϕ) − λ b(v, ϕ) − λ2c(v, ϕ) = 0 ∀ϕ ∈ H

implies
v ∈ spanC {u} ,

(ii) for z ∈ H \ {0} holds: From

∃v ∈ H : b(z, ϕ) + 2λ c(z, ϕ) = a(v, ϕ)−λ b(v, ϕ)−λ2c(v, ϕ) ∀ϕ ∈ H

follows
z ∈ H⊥ \ {0} .

In the sequel, we use the product spaces H × C and L × C endowed with the
norms

‖[x, ξ]‖H×C := ‖x‖H + |ξ|
and

‖[x, ξ]‖L×C := ‖x‖L + |ξ|.
Variationally formulating the linearization indicated in Section 4.1, we obtain the
sesquilinear form

B : (H× C) × (H× C) → C

defined by

B([x, ξ], [ϕ, ζ]) := (136)

a(x, ϕ) − λ b(x, ϕ) − ξ b(u, ϕ) − 2λξ c(u, ϕ) − λ2c(x, ϕ) + ζ̄〈x,w〉.

It is standard, to prove that B also is a continuous sesquilinear form. Further-
more, a simple computation shows, that B([v − u, µ − λ], [ϕ, ζ]) can be written
as

B([v − u, µ− λ], [ϕ, ζ]) =

a(v, ϕ) − µ b(v, ϕ) − µ2c(v, ϕ) (137)

+(µ− λ) b(v − u, ϕ) + (µ− λ)(µ+ λ) c(v − u, ϕ) + (µ− λ)2c(u, ϕ)

+ζ̄〈v − u,w〉.

In the following lemma we prove a condition for the validity of the Fredholm
alternative.
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Lemma 7 (G̊arding inequality) Let a(·, ·) satisfy a G̊arding inequality on H,
i.e. let there exist constants cg, Cg > 0 such that

Re [a(v, v)] ≥ cg‖v‖2
H − Cg‖v‖2

L (138)

holds for all v ∈ H. Let, furthermore, inequalities (134) and (135) be satisfied.
Then, the sesquilinear form B defined by (136) also satisfies a G̊arding inequality
on H× C

Re [B([x, ξ], [x, ξ])] ≥ c̃g (‖x‖H + |ξ|)2 − C̃g (‖x‖L + |ξ|)2 (139)

with constants c̃g, C̃g > 0.

Proof: By simple estimates, inequalities (134) and (135), and the Cauchy-
Schwarz inequality for the inner product 〈·, ·〉 on H, one obtains

Re [B([x, ξ], [x, ξ])]

≥ Re [a(u, u)] −
∣
∣−λ b(x, x) − ξ b(u, x) − 2λξ c(u, x) − λ2c(x, x) + ξ̄〈x,w〉

∣
∣

≥ Re [a(u, u)] − (|λ| |b(x, x)| + |ξ| |b(u, x)| + 2|λ| |ξ| |c(u, x)| + |λ|2|c(x, x)|
+|ξ| |〈x,w〉|)

≥ Re [a(u, u)] − (|λ| cb ‖x‖H‖x‖L + |ξ| cb ‖u‖H‖x‖L + 2|λ| |ξ| cc ‖u‖H‖x‖L

+|λ|2cc ‖x‖H‖x‖L + |ξ| ‖x‖H‖w‖H).

Using the G̊arding inequality (138) and appropriately applying the generalized
Young inequality (32) to the products in the set of parentheses, gives

Re [B([x, ξ], [x, ξ])]

≥ cg‖x‖2
H − Cg‖x‖2

L − |λ|cb
(
ε

2
‖x‖2

H +
1

2ε
‖x‖2

L

)

− cb‖u‖H

(
1

2
|ξ|2 +

1

2
‖x‖2

L

)

−2|λ|cc‖u‖H

(
1

2
|ξ|2 +

1

2
‖x‖2

L

)

− |λ|2cc
(
ε

2
‖x‖2

H +
1

2ε
‖x‖2

L

)

−‖w‖H

(
ε

2
‖x‖2

H +
1

2ε
|ξ|2
)

= cg −
(ε

2
(|λ|cb + |λ|2cc + ‖w‖H)

)

︸ ︷︷ ︸

c1:=

‖x‖2
H

− 1

2

(

cb‖u‖H + 2|λ|cc‖u‖H +
‖w‖H

ε

)

︸ ︷︷ ︸

c2:=

|ξ|2

−
(

Cg +
1

2

( |λ|cb
ε

+ cb‖u‖H + 2|λ|cc‖u‖H +
|λ|2cc
ε

))

︸ ︷︷ ︸

c3:=

‖x‖2
L



54 SOLVING AN EIGENVALUE PROBLEM IN LASER SIMULATION

for all ε > 0. Choosing ε such that c1 = cg/2 > 0, we obtain

Re [B([x, ξ], [x, ξ])] ≥ cg
2

(
‖x‖2

H + |ξ|2
)
−
(

c2 +
cg
2

)

|ξ|2 − c3‖x‖2
L.

With c4 := max {c2 + cg/2, c3}, this implies

Re [B([x, ξ], [x, ξ])] ≥ cg
2

(
‖x‖2

H + |ξ|2
)
− c4

(
‖x‖2

L + |ξ|2
)
.

Obviously, the norms (‖x‖2
H + |ξ|2)1/2

and (‖x‖H + |ξ|) on H×C, and the norms

(‖x‖2
L + |ξ|2)1/2

and (‖x‖L + |ξ|) on L× C are equivalent. Therefore, there exist
constants c̃g, C̃g > 0 such that

Re [B([x, ξ], [x, ξ])] ≥ c̃g (‖x‖H + |ξ|)2 − C̃g (‖x‖L + |ξ|)2 ,

which proves the statement. ¤

Lemma 7 states that the sesquilinear form B(·, ·) is H × C-coercive. In the
following theorem we show that the form is also regular, if λ is a simple eigenvalue,
i.e. if assumption (AS) holds.

Theorem 1 (Regularity) Let the sesquilinear form B be H × C-coercive and
let assumption (AS) be fulfilled.
Then, B also is regular, i.e. the problem

B([x, ξ], [ϕ, ζ]) = f(ϕ) + αζ ∀[ϕ, ζ] ∈ H × C (140)

with arbitrary f ∈ H′, α ∈ C, is uniquely solvable. Furthermore, there exists a
constant mc > 0 such that

mc (‖x‖H + |ξ|) ≤ sup
‖ϕ‖H+|ζ|=1

|B([x, ξ], [ϕ, ζ])| (141)

holds for all [x, ξ] ∈ H × C.

Proof: Since B is H×C-coercive, the Fredholm alternative applies to it, see e.g.
[38] or [73]. So, the regularity of B can be shown by proving that the homogeneous
problem only possesses the trivial solution.
Let [x, ξ] be a solution of (140) with f = 0 and α = 0. It follows, that x and ξ
fulfill

a(x, ϕ) − λ b(x, ϕ) − λ2c(x, ϕ) − ξ b(u, ϕ) − 2ξλ c(u, ϕ) = 0 ∀ϕ ∈ H
ζ〈x,w〉 = 0 ∀ζ ∈ C

and, consequently,

a(x, ϕ) − λ b(x, ϕ) − λ2c(x, ϕ) = b(ξu, ϕ) + 2λ c(ξu, ϕ) ∀ϕ ∈ H (142)

〈x,w〉 = 0. (143)
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If ξ was not zero, i.e. ξu ∈ spanC {u} \ {0}, equation (142) would contradict
assumption (AS)(ii).
For ξ = 0, assumption (AS)(i) implies x = νu, with ν ∈ C. By (143), this yields
0 = 〈νu, w〉 = ν〈u,w〉 = ν, which means x = 0.
Thus, we have shown, that the homogeneous problem only possesses the trivial
solution [x, ξ] = [0, 0], and, hence, that the sesquilinear form is regular.
The stated inequality is a basic property of regular sesquilinear forms on Hilbert
spaces, cf. [38] or [73]. ¤

4.3 Regularity of the Discretized Linearization

Let Hh ⊂ H be finite-dimensional approximation spaces which depend on a
parameter h > 0. We assume

(AA): For h→ 0 the spaces Hh approximate H arbitrarily well or, more precisely,

lim
h→0

inf
vh∈Hh

‖v − vh‖H = 0 ∀v ∈ H. (144)

For a standard finite element discretization the parameter h can be thought of
as the mesh size h.
Assuming the validity of (AA), we obtain:

Theorem 2 (Regularity of Discretized Problem) Under the conditions of
Theorem 1 and assumption (AA), there exists a constant h0 > 0 such that for all
h < h0 the sesquilinear form B is Hh × C-regular, i.e. the problem

B([xh, ξh], [ϕh, ζh]) = f(ϕh) + αζh ∀[ϕh, ζH ] ∈ Hh × C (145)

with arbitrary f ∈ H′, α ∈ C, is uniquely solvable. Then, all [xh, ξh] ∈ Hh × C

satisfy
md (‖xh‖H + |ξh|) ≤ sup

‖ϕh‖H+|ζh|=1

|B([xh, ξh], [ϕh, ζh])| (146)

with a constant md > 0 independent of [xh, ξh] and h.

Proof: The statement of the theorem will be proved by contradiction in three
steps. In a preparation step, an appropriate sequence ([vj, µj])j≥0 with limit
[v, µ] is constructed. Then, it is proved that the limit is [v, µ] = [0, 0]. Finally, a
contradiction is derived.
For the statements from functional analysis in this proof, we refer to [4], [38],
or [73].
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Step I. Preparation.
Assume the contrary of the theorem. Then, there exists a sequence (hj)j≥0 with
hj → 0 for j → ∞, and corresponding sequences (vj)j≥0, vj ∈ Hhj

, and (µj)j≥0,
µj ∈ C, with ‖vj‖H + |µj| = 1, such that

sup
‖ϕhj

‖H+|ξ|=1

B([vj, µj], [ϕhj
, ξ]) −→

j→∞
0. (147)

Particularly, the estimates ‖vj‖H ≤ 1 and |µj| ≤ 1 hold.
Due to the boundedness of the µj in C, it follows, that there exists a µ ∈ C and
a subsequence of (µj)j≥0, which will be denoted identically, such that µj → µ for
j → ∞.
Furthermore, a basic lemma on bounded sequences in Hilbert spaces states that
there exists a v ∈ H and a further subsequence (vj)j≥0 such that vj converges
weakly to v in H

〈vj, ψ〉 −→
j→∞

〈v, ψ〉 ∀ψ ∈ H.

Since the embedding H ⊂ L is assumed to be compact and the sequence (vj)j≥0

is bounded, there exists a further subsequence, again denoted as (vj)j≥0, which
converges strongly in L, i.e. particularly

‖vj‖L −→
j→∞

‖v‖L.

Let us consider the last sequence ([vj, µj])j≥0. The statements

µj −→
j→∞

µ and 〈vj, ψ〉 −→
j→∞

〈v, ψ〉 ∀ψ ∈ H.

imply the weak convergence

〈vj, ψ〉 + µjη −→
j→∞

〈v, ψ〉 + µη ∀[ψ, η] ∈ H × C

in the Hilbert space H× C.

Step II.
In this step we show that the limit [v, µ] of the sequence ([vj, µj])j≥0 is equal to
zero. We prove that

B([v, µ], [ϕ, ζ]) = 0 ∀[ϕ, ζ] ∈ H × C. (148)

Then, by Theorem 1, from equation (148), it follows that [v, µ] = [0, 0].
So, let [ϕ, ζ] ∈ H × C be such that ‖ϕ‖H + |ζ| = 1. Let ε > 0 be given. For, at
first, arbitrary j ∈ N and [ϕhj

, ζj] ∈ Hhj
× C with ‖ϕhj

‖H + |ζj| = 1, we have

|B([v, µ], [ϕ, ζ])| ≤
≤ |B([v − vj, µ− µj], [ϕ, ζ])|

︸ ︷︷ ︸

(B1):=

+ |B([vj, µj], [ϕ− ϕhj
, ζ − ζj])|

︸ ︷︷ ︸

(B2):=

+ |B([vj, µj], [ϕhj
, ζj])|

︸ ︷︷ ︸

(B3):=
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Step IIa.
The limit (147) yields that there exists a j3 with

(B3) = |B([vj, µj], [ϕhj
, ζj])| < ε/3 ∀j ≥ j3

for arbitrary [ϕhj
, ζj] ∈ Hhj

× C with ‖ϕhj
‖H + |ζj| = 1.

Step IIb.
For given 0 < ε′ < 1/2, assumption (AA) implies the existence of a j ′ such that
there exists a ϕ̃hj

∈ Hhj
with

‖ϕ̃hj
− ϕ‖H ≤ ε′

for all j ≥ j ′. With νj := ‖ϕ̃hj
‖H + |ζ| ≥ 1 − ε′ we define [ϕhj

, ζj] := 1
νj

[ϕ̃hj
, ζ] ∈

Hhj
× C. Then, it is ‖ϕhj

‖H + |ζj| = 1. Trivial estimates show that

‖ϕhj
− ϕ‖H + |ζj − ζ‖ ≤ 2ε′

1 − ε′
+

ε′

1 − ε′
< 6ε′

for all j ≥ j ′. Thus, by the continuity of B and with ε′, for instance, chosen as
ε′ := min{ 1

6CB ·3
ε, 1

3
}, the existence of a j2 follows such that for j ≥ j2 there exists

a [ϕhj
, ζj] ∈ Hhj

× C with ‖ϕhj
‖H + |ζj| = 1 and

(B2) = |B([vj, µj], [ϕ− ϕhj
, ζ − ζj])| ≤ CB(‖vj‖H + |ζj|)(‖ϕhj

− ϕ‖H + |ζj − ζ|)
≤ CB6ε′ ≤ ε/3.

Step IIc.
Since

T : H× C → C, T [x, ξ] := B([x, ξ], [ϕ, ζ])

is a bounded linear functional on the Hilbert space H×C, by the representation
theorem of Riesz, the existence of a [ψT , ηT ] ∈ H × C follows which satisfies

T [x, ξ] = 〈x, ψT 〉 + ξηT

for all [x, ξ] ∈ H × C. The weak convergence of ([vj, µj])j≥0 implies

B([vj, µj], [ϕ, ζ]) = 〈vj, ψT 〉 + µjηT −→
j→∞

〈v, ψT 〉 + µηT = B([v, µ], [ϕ, ζ]).

In other words, there exists a j1 such that for all j ≥ j1 we have

(B1) = |B([v − vj, µ− µj], [ϕ, ζ])| ≤ ε/3.

Step IId.
Combining this three estimates, we obtain that for every ε > 0 there exists a j0 :=
max{j1, j2, j3} such that for all j ≥ j0 there exists a [ϕhj

, ζj] with ‖ϕhj
‖H+|ζj| = 1

and
|B([v, µ], [ϕ, ζ])| ≤ (B1) + (B2) + (B3) ≤ ε/3 + ε/3 + ε/3 = ε.
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This particularly implies, that

B([v, µ], [ϕ, ζ]) = 0 (149)

for [ϕ, ζ] ∈ H×C with ‖ϕ‖H + |ζ| = 1. From the anti-linearity of the sesquilinear
form B in the second argument [ϕ, ζ] the statement (148) follows.

Step III. Contradiction.

However, the G̊arding inequality (139)

0 < c̃g = c̃g (‖vj‖H + |µj|)2 ≤ |B([vj, µj], [vj, µj])| + C̃K (‖vj‖L + |µj|)2

and the limit ‖vj‖L + |µj| → ‖v‖L + |µ| = 0 for j → ∞ yield, that for large j

|B([vj, µj], [vj, µj])| ≥ c̃g/2 > 0.

This is a contradiction to the assumption

sup
‖ϕh‖H+|ξ|=1

B([vj, µj], [ϕh, ξ]) −→
j→∞

0.

So, the statement of the theorem is proved. ¤

4.4 A Parameter Dependent Perturbation of the Discre-
tized Eigenvalue Problem

Let us, now, consider a discretized and perturbed version of the eigenvalue prob-
lem (131), (132). We search for an eigenpair [vh, µh] ∈ Hh × C that satisfies

a(vh, ϕh) + a′ρ(vh, ϕh) = (150)

µh

(

b(vh, ϕh) + b′ρ(vh, ϕh)
)

+ µ2
h

(

c(vh, ϕh) + c′ρ(vh, ϕh)
)

∀ϕh ∈ Hh

under the restriction

〈vh, w〉 = 1, (151)

where the sesquilinear forms a′ρ(·, ·), b′ρ(·, ·), and c′ρ(·, ·), describing the perturba-
tions, depend on a parameter ρ. For these perturbations we assume that there
exist constants Ca, Cb, Cc > 0 such that

a′ρ(v1, v2) ≤ ρCa‖v1‖H‖v2‖H ,

b′ρ(v1, v2) ≤ ρCb‖v1‖H‖v2‖H , (152)

and c′ρ(v1, v2) ≤ ρCc‖v1‖H‖v2‖H .
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Corollary 1 (Fixed Point Characterization) Let the parameter h satisfy h <
h0, where h0 is the constant of Theorem 2.
Then, for every [ṽh, µ̃h] ∈ Hh × C there exists a unique [v̂h, µ̂h] ∈ Hh × C such
that

B([v̂h − u, µ̂h − λ], [ϕh, ζh]) = (153)

(µ̃h − λ) b(ṽh − u, ϕh) + (µ̃h − λ)(µ̃h + λ) c(ṽh − u, ϕh) + (µ̃h − λ)2c(u, ϕh)

−a′ρ(ṽh, ϕh) + µ̃h b
′
ρ(ṽh, ϕh) + µ̃2

h c
′
ρ(ṽh, ϕh) =: f̃ṽh,µ̃h

(ϕh)

for all [ϕh, ζh] ∈ Hh × C.
This defines a continuous (non-linear) operator R̃h : Hh × C → Hh × C via

R̃h[ṽh, µ̃h] := [v̂h, µ̂h]. (154)

Furthermore, [vh, µh] is an eigenpair of the discretized and perturbed problem
(150), (151), if and only if [vh, µh] is a fixed point of the operator R̃h, i.e. if

R̃h[vh, µh] = [vh, µh].

Proof: Obviously, it is f̃ṽh,µ̃h
∈ H′ for fixed [ṽh, µ̃h] ∈ Hh × C. Then, in

B([v̂h, µ̂h], [ϕh, ζh]) = f̃ṽh,µ̃h
(ϕh) +B([u, λ], [ϕh, ζh]) (155)

the right-hand side is an anti-linear functional on Hh × C. So, Theorem 2 yields
that the operator R̃h is well-defined.
The fixed point relation is proved by a simple computation using (137) with
[v, µ] = [vh, µh] and equations (150), (151). ¤

4.5 Existence and Convergence of a Discrete Eigensolu-
tion

The last abstract assumption is, that the eigensolution u and the approximation
spaces Hh ⊂ H are such that the following statement holds:

(AI): There exists a constant CI > 0 such that

‖u− Ihu‖H ≤ CIh,

where Ih : H → Hh denotes an appropriate interpolation (or approxima-
tion) operator.

Now, we can state
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Theorem 3 (Convergence of an Approximate Eigenpair) Let the condi-
tions of Theorem 2, inequalities (152) and assumption (AI) be satisfied. Let,
furthermore, the perturbation parameter be of the form ρ = ch.
Then, there exists a constant h1 > 0 such that for all h < h1 the problem (150),
(151) possesses a solution [uh, λh] ∈ Hh × C for which

‖u− uh‖H + |λ− λh| ≤ ceh (156)

holds with a constant ce > 0 independent of h.

Proof: Step I. An inequality for the error.
By the triangle inequality, we obtain

‖v̂h − u‖H + |µ̂h − λ| ≤ ‖v̂h − Ihu‖H + ‖Ihu− u‖H + |µ̂h − λ|.

Let ‖ϕh‖ + |ζh| = 1. Then, by the continuity of B, relation (153), and by
conditions (152), we get

|B([v̂h − Ihu, µ̂h − λ], [ϕh, ζh])|
≤ |B([u− Ihu, 0], [ϕh, ζh])| + |B([v̂h − u, µ̂h − λ], [ϕh, ζh])|
≤ C‖u− Ihu‖H + |f̃(ϕh)|
≤ C‖u− Ihu‖H + |µ̃h − λ|C‖ṽh − u‖H‖ϕh‖H

+|µ̃h − λ| |µ̃h + λ|C‖ṽh − u‖H‖ϕh‖H + |µ̃h − λ|2C‖u‖H‖ϕh‖H

+ρCa‖ṽh − u‖H‖ϕh‖H + ρCb‖ṽh − u‖H‖ϕh‖H + ρCc‖ṽh − u‖H‖ϕh‖H

+ρCa‖u‖H‖ϕh‖H + ρCb‖u‖H‖ϕh‖H + ρCc‖u‖H‖ϕh‖H

≤ C‖u− Ihu‖H + |µ̃h − λ|C‖ṽh − u‖H + |µ̃h − λ| |µ̃h + λ|C‖ṽh − u‖H

+|µ̃h − λ|2C‖u‖H + ρ(Ca + Cb + Cc)‖ṽh − u‖H + ρ(Ca + Cb + Cc)‖u‖H

with C being a positive generic constant.
Assuming that h < h0, from the Hh × C-regularity of B, particularly from in-
equality (146) in Theorem 2, we obtain

‖v̂h − Ihu‖H + |µ̂h − λ| (157)

≤ C‖u− Ihu‖H + |µ̃h − λ|C‖ṽh − u‖H + |µ̃h − λ| |µ̃h + λ|C‖ṽh − u‖H

+|µ̃h − λ|2C‖u‖H + ρC‖ṽh − u‖H + ρC‖u‖H .

Step II. Substituting the discretization parameter h.
Choosing ρ = ch, using condition (AI), and the inequalities of Step I, it follows
for ‖ṽh − u‖H + |µ̃h − λ| ≤ 2c1h that

‖v̂h − u‖H + |µ̂h − λ| (158)

≤ C1CIh+ 4C2c
2
1h

2 + 4C3 2(c1 + |λ|)c21h2 + 4C4c
2
1h

2 + C52c1h
2 + C6h.
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To derive the third term of the right-hand side of the above inequality, amongst
other things, following estimate has been used

|µ̃h + λ| ≤ |µ̃h − λ| + 2|λ| ≤ 2(c1 + |λ|).

Let c1 := C1CI + C6 and h̃1 := c1 · (4C2c
2
1 + 8C3(c1 + |λ|)c21 + 4C4c

2
1 + C52c1)

−1.
Then, for h < h1 := min{h0, h̃1}, it is

4C2c
2
1h

2 + 8C3(c1 + |λ|)c21h2 + 4C4c
2
1h

2 + C52c1h
2 ≤ c1h,

and, consequently,
‖v̂h − u‖H + |µ̂h − λ| ≤ 2c1h.

Thus, we have proved, that for h < h1 the continuous operator R̃h maps the
closed ball

B := {[vh, µh] | ‖vh − u‖H + |µh − λ| ≤ 2c1h} ⊂ Hh × C

into itself.
The application of the fixed point theorem of Brouwer (see e.g. [32]) yields the
existence of a fixed point [uh, λh] ∈ B. This fixed point is a solution of the ap-
proximated eigenvalue problem, as stated in Corollary 1, and, obviously, satisfies
the error inequality (156) with constant ce := 2c1. ¤

4.6 Uniqueness of the Discrete Eigensolution

Theorem 4 (Uniqueness of Approximate Eigenpair) Under the conditions
of Theorem 3, there exists a constant h2 > 0 such that for h < h2 the problem
(150), (151) possesses a unique solution [uh, λh] which satisfies

‖u− uh‖H + |λ− λh| ≤ ceh

with a constant ce > 0 independent of h.

Proof: Let h < h1 ≤ h0 (see proof of Theorem 3) and let [uh, µh] and [u′h, µ
′
h] be

two solutions of problem (150), (151) that satisfy inequality (156). Then, [uh, µh]
and [u′h, µ

′
h] are fixed points of the operator R̃h, and from relation (155), it follows

B([uh − u′h, µh − µ′
h], [ϕh, ζh]) = f̃uh,µh

(ϕh) − f̃u′

h
,µ′

h
(ϕh)

= (µh − λ) b(uh − u, ϕh) + (µh − λ) (µh + λ) c(uh − u, ϕh)

+(µh − λ)2c(u, ϕh)

−a′ρ(uh, ϕh) + µh b
′
ρ(uh, ϕh) + µ2

h c
′
ρ(uh, ϕh)

−(µ′
h − λ) b(u′h − u, ϕh) − (µ′

h − λ) (µ′
h + λ) c(u′h − u, ϕh)

−(µ′
h − λ)2c(u, ϕh)
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+a′ρ(u
′
h, ϕh) − µ′

h b
′
ρ(u

′
h, ϕh) − (µ′

h)
2c′ρ(u

′
h, ϕh)

= (µh − λ) b(uh − u′h, ϕh) + (µh − µ′
h) b(u

′
h − u, ϕh)

+(µh − λ) (µh + λ) c(uh − u′h, ϕh) + (µh + µ′
h) (µh − µ′

h) c(u
′
h − u, ϕh)

+(µh − µ′
h) ((µh − λ) + (µ′

h − λ)) c(u, ϕh)

+a′ρ(u
′
h − uh, ϕh)

+(µh − µ′
h) b

′
ρ(uh, ϕh) + µ′

h b
′
ρ(uh − u′h, ϕh)

+(µh − µ′
h) (µh + µ′

h) c
′
ρ(uh, ϕh) + (µ′

h)
2c′ρ(uh − u′h, ϕh).

Using inequality (156), we obtain for ‖ϕh‖ + |ζh| = 1

|B([uh − u′h, µh − µ′
h], [ϕh, ζh])|

≤ Ch‖uh − u′h‖H + Ch|µh − µ′
h| + 2(ce + |λ|)Ch‖uh − u′h‖H + 2(ce + |λ|)Ch|µh − µ′

h|
+Ch|µh − µ′

h| + Ch‖uh − u′h‖H + Ch|µh − µ′
h| + (ce + |λ|)Ch‖uh − u′h‖H

+2(ce + |λ|)Ch|µh − µ′
h| + 2(ce + |λ|)2Ch‖uh − u′h‖H

≤ Ch(‖uh − u′h‖H + |µh − µ′
h|)

with a generic constant C > 0 independent of h. By Theorem 2, this gives the
estimate

md (‖uh − u′h‖H + |µh − µ′
h|) ≤ sup

‖ϕh‖H+|ζh|=1

|B([uh − u′h, µh − µ′
h], [ϕh, ζh])|

≤ Ch(‖uh − u′h‖H + |µh − µ′
h|)

with md, C > 0 independent of h. Then, for h so small that

Ch ≤ md

2
,

we obtain

md (‖uh − u′h‖H + |µh − µ′
h|) ≤

md

2
(‖uh − u′h‖H + |µh − µ′

h|) ,

which implies

‖uh − u′h‖H + |µh − µ′
h| = 0.

Thus, we have proved that the eigenpair is unique for h < h2 := min{h1,md/(2C)}.
¤

In this chapter, we have developed a convergence theory for the discretization of
quadratic eigenvalue problems.
Existence and uniqueness of the eigensolution [uh, λh] of the discretized and per-
turbed eigenvalue problem have been proved for a sufficiently small discretization
parameter h under following conditions
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• the eigenvalue of interest λ (with eigensolution u) is algebraically and geo-
metrically simple, see assumption (AS),

• the approximation assumptions (AA) and (AI) hold,

• and the perturbation is of order h.

The convergence follows from the error bound

‖u− uh‖H + |λ− λh| ≤ ch.
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5 Discretization of the Two-Wave Eigenvalue

Problem by Finite Elements

In this chapter, we present a variational formulation of the two-wave eigenvalue
problem derived in Chapter 3.3, describe its discretization by finite elements, and
prove convergence of the finite element eigensolution using the abstract conver-
gence theory of Chapter 4.

5.1 A Variational Formulation of the Two-Wave Eigen-
value Problem

Let us recall the strongly formulated two-wave eigenvalue problem. One searches
for complex eigenvalues ξ and eigensolutions (ur, ul) in proper function spaces
such that

−∆ur + 2ikf
∂ur

∂z
+ (k2

f − k2)ur = ξur and

−∆ul − 2ikf
∂ul

∂z
+ (k2

f − k2)ul = ξul in Ω (159)

with boundary conditions

ur − φ0ul = 0 on Γ0,

ur − φ̄1ul = 0 on Γ1,
∂ur

∂z
+ φ0

∂ul

∂z
= 0 on Γ0,

∂ur

∂z
+ φ̄1

∂ul

∂z
= 0 on Γ1, (160)

∂ur

∂~n
− iCbur = 0 on Γr,

∂ul

∂~n
− iCbul = 0 on Γr,

where the domain

Ω :=] −W/2;W/2[× ] −W/2;W/2[× ]0;L[

and the boundaries

Γ0 := {(x, y, 0) ∈ R3 | max{|x|, |y|} ≤ W/2} ⊂ ∂Ω,

Γ1 := {(x, y, L) ∈ R3 | max{|x|, |y|} ≤ W/2} ⊂ ∂Ω,

Γr := ∂Ω \ (Γ0 ∪ Γ1),

are defined as in Chapter 3.3 (see Figure 10).
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For a weak formulation of (159), (160), appropriate spaces have to be chosen. For
this purpose, we utilize the standard Lebesgue and Sobolev spaces L2(Ω), L∞(Ω),
H1(Ω) , and H2(Ω), respectively, equipped with the standard norms. For details
of these spaces, see e.g. [3], [38], or [73].
Furthermore, we assume that the complex-valued coefficient functions satisfy

k2(x, y, z) ∈ L∞(Ω) and φ0(x, y, z), φ1(x, y, z) ∈ C(∂Ω).

We define the product space

H := H(Ω) := (161)
{

(vr, vl) ∈ (H1(Ω) ×H1(Ω))

∣
∣
∣
∣
vr

∣
∣
∣
Γ0

− vl

∣
∣
∣
Γ0

· φ0 = 0 and vr

∣
∣
∣
Γ1

− vl

∣
∣
∣
Γ1

· φ̄1 = 0

}

with inner product and norm

〈(vr, vl), (ϕr, ϕl)〉 :=

∫

Ω

∇vr∇ϕr + ∇vl∇ϕl + vrϕr + vlϕl d(x, y, z)

and
‖(vr, vl)‖2

H := 〈(vr, vl), (vr, vl)〉,
respectively. Furthermore, we use the space

L := L2(Ω) × L2(Ω)

with inner product

((vr, vl), (ϕr, ϕl)) :=

∫

Ω

vrϕr + vlϕl d(x, y, z)

and norm
‖(vr, vl)‖2

L := ((vr, vl), (vr, vl)).

At last, we define the sesquilinear forms

a((vr, vl), (ϕr, ϕl)) :=
∫

Ω

∇vr∇ϕr + 2ikf
∂

∂z
vrϕr + (k2

f − k2)vrϕr d(x, y, z) − iCb

∫

Γr

vrϕr dσ(x, y, z)

+

∫

Ω

∇vl∇ϕl − 2ikf
∂

∂z
vlϕl + (k2

f − k2)vlϕl d(x, y, z) − iCb

∫

Γr

vlϕl dσ(x, y, z)

and

b((vr, vl), (ϕr, ϕl)) := ((vr, vl), (ϕr, ϕl)) =

∫

Ω

vrϕr d(x, y, z) +

∫

Ω

vlϕl d(x, y, z).
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Then, a variational formulation of (159), (160) reads: Find (ur, ul) ∈ H and
ξ ∈ C such that

a((ur, ul), (ϕr, ϕl)) = ξ b((ur, ul), (ϕr, ϕl)) ∀ (ϕr, ϕl) ∈ H. (162)

In the formulation (162), the first order coupling conditions in (160) on the bound-
aries Γ0 and Γ1 have been incorporated in a weak sense. They coincide with the
so-called natural boundary conditions (see e.g. [38]) for problem (162).
Since we want to apply the convergence theory of Chapter 4 to the linear two-
wave eigenvalue problem, we choose the sesquilinear forms c(v, ϕ) and c′ρ(v, ϕ) to
vanish for all v, ϕ ∈ H.

5.2 Stabilized Finite Element Discretization

The aim is, to solve the eigenvalue problem (162) by a finite element method.
More precisely, we want to use trilinear finite elements, see e.g. [37] or [63].
So, let Sh′,h be the space of trilinear finite element functions on a partition of
the domain Ω into cuboids with length h′ in (x, y)-direction and h in z-direction,
see Figure 14. Here, h and h′ have to be such that there exist m,m′ ∈ N with
L = m · h and W = m′ · h′, respectively.

L

h′h

z

(x, y)

Γ0 Γ1 W

Figure 14: Decomposition.

We approximate H by

Hh′,h :=

{

(Vr, Vl) ∈ Sh′,h × Sh′,h

∣
∣
∣
∣
Vr − φ0 · Vl

∣
∣
∣
Γ0,h′

= 0 and Vr − φ̄1 · Vl

∣
∣
∣
Γ1,h′

= 0

}

,

(163)
where the expressions

Vr − φ0 · Vl

∣
∣
∣
Γ0,h′

= 0 and Vr − φ̄1 · Vl

∣
∣
∣
Γ1,h′

= 0

are to be understood in the sense that the equations are satisfied on the nodes of
the corresponding boundaries.
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For general φ0, φ1 ∈ C(∂Ω), this defines a non-conform approximation, in the
sense that Hh′,h 6⊂ H.
Using the space Hh′,h, we obtain a discretization of (162): Find (Ur, Ul) ∈ Hh′,h

and ξ ∈ C such that

a((Ur, Ul), (ϕr, ϕl)) = ξ b((Ur, Ul), (ϕr, ϕl)) ∀ (ϕr, ϕl) ∈ Hh′,h. (164)

As it has been remarked in Chapter 2.1, in the case of real valued functions and
real coefficients, equations of the form (159) are called convection-dominated if
kf is large. It is well known for these equations, that a standard finite element
discretization suffers from stability problems. That means that a standard dis-
cretization of the large first order terms can lead to solutions which exhibit strange
oscillations. To avoid this, a very fine mesh has to be used or a stabilization has
to be applied, see e.g. [45], [53], and [59].
For equation (159) it is not known, whether the same problem arises (see remarks
in Chapter 2.1). But there are several reason, why a stabilization of (159) – sim-
ilar to the real case – should be applied nevertheless. We mention them, without
giving detailed arguments. As the remark on the multiplicity of eigenvalues of
the two-wave problem at the end of Chapter 3.3 shows, there can be a smooth
and a very oscillatory eigensolution with nearly the same or the same eigenvalue.
By penalizing the oscillatory solution one can extract the smooth eigensolution.
Second, the applied stabilization, as derived below, improves the so-called con-
dition of the discrete equation; this is explained in [9]. Furthermore, due to the
large first order terms +2ikf

∂
∂z
ur and −2ikf

∂
∂z
ul a solver which is based on local

relaxation for a standard finite element discretization of problem (162) can suffer
from stability problems, which we encountered in our numerical computations.
Therefore, we stabilize equation (162) by applying a technique similar to the
streamline diffusion approach (which is also called streamline upwind Petrov
Galerkin discretization). For more details of the application of this approach to
convection-dominated equations, see the references cited above or reference [37].
We explain the idea by considering the example

−∆u+ β
∂

∂z
u+ γu = f (165)

with β, γ ∈ L∞ and f ∈ L2. Weakly formulated, we search for u ∈ H1, such that
∫

Ω

∇u∇ϕ+ β
∂

∂z
uϕ+ γuϕ d(x, y, z) =

∫

Ω

fϕ d(x, y, z) ∀ϕ ∈ H1. (166)

Let P be a partition of Ω into cuboids, see for instance Figure 14. If we assume
that a solution u of (166) exists and is even in H2(Ω), then on every cuboid C of
the partition P the function u satisfies

−∆u+ β
∂

∂z
u+ γu

∣
∣
∣
C

= f
∣
∣
∣
C

(167)
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almost everywhere.

Multiplication by τ β̃ ∂
∂z
ϕ, where β̃ ∈ C and ϕ ∈ H1(Ω), and integration on C

leads to

τ

∫

C

−∆u β̃
∂

∂z
ϕ+ β

∂

∂z
u β̃

∂

∂z
ϕ+ γu β̃

∂

∂z
ϕ d(x, y, z) = τ

∫

C

f β̃
∂

∂z
ϕ d(x, y, z).

(168)
The real quantity τ ≥ 0 is called stabilization parameter.
Thus, adding equation (168) with integration domain C replaced by Ω to the
weak problem (166), is a consistent transformation.
If we approximate u by a continuous function U which is trilinear on every cuboid
C ∈ P , the first term of the integrand on the left-hand side in equation (168)
vanishes. Thus, it has not to be considered in the discretization, and it, therefore,
suffices to add the equation

τ β̃

∫

Ω

β
∂

∂z
U
∂

∂z
ϕ+ γU

∂

∂z
ϕ d(x, y, z) = τ β̃

∫

Ω

f
∂

∂z
ϕ d(x, y, z) (169)

to equation (164).
This modification is applied singly to the two waves ur and ul choosing β̃ = 2kf

for ur and β̃ = −2kf for ul. Thus, the problem (164) is “consistently” transformed
into

a((Ur, Ul), (ϕr, ϕl)) + a′τ ((Ur, Ul), (ϕr, ϕl)) = (170)

ξ
(

b((Ur, Ul), (ϕr, ϕl)) + b′τ ((Ur, Ul), (ϕr, ϕl))
)

∀ (ϕr, ϕl) ∈ Hh′,h.

with

a′τ ((Ur, Ul), (ϕr, ϕl)) :=

τ 2kf

∫

Ω

2ikf
∂

∂z
Ur

∂

∂z
ϕ̄r + (k2

f − k2)Ur
∂

∂z
ϕ̄r d(x, y, z)

−τ 2kf

∫

Ω

−2ikf
∂

∂z
Ul

∂

∂z
ϕ̄l + (k2

f − k2)Ul
∂

∂z
ϕ̄l d(x, y, z)

and with

b′τ ((Ur, Ul), (ϕr, ϕl)) := τ 2kf

∫

Ω

Ur
∂

∂z
ϕ̄r − Ul

∂

∂z
ϕ̄l d(x, y, z).

In our computations, the stabilization parameter takes the form

τ =
cs
kf

h, (171)

where h is the mesh size in z-direction and cs ≥ 0 is an appropriately chosen
constant.
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5.3 Convergence Proof for the Finite Element Solution

To analyze the eigenvalue problem in the framework of Chapter 4, we use the
trilinear finite element space Sh based on the decomposition of Ω depicted in
Figure 15, where for ease of description the widthW and the length L are assumed
to satisfy W/L ∈ Q+. For h with 0 < h < min{L,W} and W/h,L/h ∈ N we
define

Hh :=

{

(Vr, Vl) ∈ Sh × Sh

∣
∣
∣
∣
Vr − φ0Vl

∣
∣
∣
Γ0,h

= 0 and Vr − φ̄1Vl

∣
∣
∣
Γ1,h

= 0

}

, (172)

where the expressions

Vr − φ0Vl

∣
∣
∣
Γ0,h

= 0 and Vr − φ̄1Vl

∣
∣
∣
Γ1,h

= 0

mean that the equations are satisfied at the nodes lying on the corresponding
boundaries; see also definition (163).

W

h

L

z

(x, y)Γ1Γ0

Figure 15: Decomposition for Convergence Proof.

For ease of presentation, we additionally assume that

φ0 ≡ φ1 ≡ −1. (173)

The choice (173) guarantees, amongst other things, that the inclusion Hh ⊂ H
holds.

First, we prove the G̊arding inequality for a(·, ·) in H.

Lemma 8 (G̊arding inequality) There exist constants cg, Cg > 0 such that

Re [a((vr, vl), (vr, vl))] ≥ cg‖(vr, vl)‖2
H − Cg‖(vr, vl)‖2

L for all (vr, vl) ∈ H.
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Proof: We have

Re [a((vr, vl), (vr, vl))]

=

∫

Ω

|∇vr|2 + |∇vl|2 + Re
[
k2

f − k2
] (

|vr|2 + |vl|2
)

+ Re

[

2ikf
∂

∂z
vrvr

]

−Re

[

2ikf
∂

∂z
vlvl

]

d(x, y, z)

≥
∫

Ω

|∇vr|2 + |∇vl|2 −
∣
∣k2

f − k2
∣
∣
(
|vr|2 + |vl|2

)
− 2kf

∣
∣
∣
∣

∂

∂z
vr

∣
∣
∣
∣
|vr|

−2kf

∣
∣
∣
∣

∂

∂z
vl

∣
∣
∣
∣
|vl| d(x, y, z).

Using the generalized Young inequality (32), the expression 2kf

∫

Ω

∣
∣ ∂
∂z
vr

∣
∣ |vr| d(x, y, z)

can be estimated from above as follows:

2kf

∫

Ω

∣
∣
∣
∣

∂

∂z
vr

∣
∣
∣
∣
|vr| d(x, y, z) ≤ 2kf‖

∂

∂z
vr‖L2

‖vr‖L2

≤ εkf‖
∂

∂z
vr‖2

L2
+
kf

ε
‖vr‖2

L2

≤ εkf‖∇vr‖2
L2

+
kf

ε
‖vr‖2

L2

for arbitrary ε > 0. An analogous estimate holds for vl.
Choosing ε properly, i.e. such that 1 − kfε = 1/2 =: cg, we obtain the desired
inequality

Re [a((vr, vl), (vr, vl))]

≥ (1 − kfε)

∫

Ω

|∇vr|2 + |∇vl|2 d(x, y, z) − ‖k2
f − k2‖∞

∫

Ω

|vr|2 + |vl|2 d(x, y, z)

−kf

ε
(‖vr‖2

L2
+ ‖vl‖2

L2
)

= cg‖(vr, vl)‖2
H −

(

cg + ‖k2
f − k2‖∞ +

kf

ε

)

‖(vr, vl)‖2
L

= cg‖(vr, vl)‖2
H − Cg‖(vr, vl)‖2

L

with Cg := cg + ‖k2
f − k2‖∞ + kf/ε > 0 and cg > 0. ¤

In order to prove convergence of the finite element solution, we assume H2-
regularity of the eigensolution (ur, ul). In Chapter 5.4 an outline for a proof of
this property on a slightly different domain Ω′ is given.

Theorem 5 (Convergence of the Discrete Two-Wave Eigensolution)
Let (ur, ul) ∈ H be an eigensolution of (162) with simple eigenvalue λ, i.e. let
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the eigenpair [(ur, ul), λ] fulfill assumption (AS) in Chapter 4. Furthermore, let
(ur, ul) be in H2(Ω) ×H2(Ω).
Then, for sufficiently small mesh sizes h a unique finite element eigenpair

[(Ur, Ul), λh] ∈ Hh × C

of the discretized and stabilized equation (170) exists and converges to [(ur, ul), λ].

Proof: The statement of the theorem follows directly from Theorem 4 in Chap-
ter 4, if the conditions of Theorem 4 hold. Here, different from the convergence
theory in Chapter 4, we have a discrete sequence of approximation spaces Hh.
But reviewing the proofs, it can easily be seen that the results also hold if the
discrete versions of (AA) and (AI) are assumed.
Since for our situation the proofs of the conditions of Theorem 4 are standard,
we verify them shortly by pointing to the main ideas or giving references.

I. Continuous, compact and dense embedding H ⊂ L.
It is well known, that the embedding H1(Ω) ⊂ L2(Ω) is continuous and dense.
Since the domain Ω is bounded and possesses the cone property, this embedding
also is compact, see for instance [3] or [38].
By basic arguments, it can be shown that the continuity, density, and compactness
also holds for the embedding H ⊂ L.

II. Approximation property (AA) of Hh with respect to H. Assumption (AI).
Discrete Versions.
The Scott-Zhang approximation operator Ih : H1(Ω) → Sh (see e.g. [17] or
[22]) can be defined such that the approximation (Ihur, Ihul) ∈ Sh × Sh of
(ur, ul) ∈ H satisfies the discrete coupling conditions at the boundaries Γ0 and
Γ1, i.e. (ur, ul) ∈ H is approximated by (Ihur, Ihul) ∈ Hh. Since the eigenso-
lution (ur, ul) of (162) is assumed to be H2-regular, standard estimates of the
approximation error imply condition (AI)

‖(ur, ul) − Ih(ur, ul)‖H ≤ c̃h(|ur|H2 + |ul|H2) =: CIh, (174)

where | · |H2 is the H2-semi norm, see e.g. [17] or [38].
By standard arguments, it can be proved that (C∞(Ω) × C∞(Ω)) ∩ H is dense
in H (see e.g. the proof in [52]). Combining this with estimate (174), we obtain
assumption (AA)

lim
h→0

(

inf
vh∈Hh

‖v − vh‖H

)

= 0 ∀v ∈ H. (175)

III. Properties of sesquilinear forms a(·, ·), b(·, ·) and perturbations a′τ (·, ·), b′τ (·, ·).
The G̊arding inequality for a(·, ·) has been proved in Lemma 8.
By simple estimates, it follows that the sesquilinear forms a(·, ·) and b(·, ·) satisfy
(133) and (134), respectively.
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Similarly, it can be shown that the perturbations satisfy (152) with ρ = τ = ch.
¤

5.4 Outline for a Proof of H2-Regularity of the Eigenso-
lution

In this section, we present the main ideas for proving that an eigensolution (ur, ul)
of problem (162) is two times weakly differentiable, if the domain Ω′ can be
described as a Cartesian product

Ω′ = Ψ×]0;L[,Ψ ⊂ R2,

where Ψ is a two-dimensional domain with sufficiently regular boundary (e.g.,
C2,1-boundary; see [38] or [73]), and if

φ0 ≡ φ1 ≡ −1.

Some of the used concepts have already been applied in [55] and [56].
First, we transform (162) into a problem on a torus T ⊂ R3, which we, for ease
of presentation, describe by

T := Ψ × [−L;L],

where the points (x, y, L) and (x, y,−L) are identified for (x, y) ∈ Ψ.
The Sobolev spaces on T or, more specifically, on the differentiable three-dimensio-
nal manifold T , are denoted as L2(T ), H1(T ), and H2(T ), see [73]. Let them be
equipped with the natural inner products and norms, denoted by the additional
index T as, for instance, in ‖ · ‖L2,T . The functions in these Sobolev spaces can
be seen as 2L-periodic functions with respect to z on the infinite domain Ψ×R.
We introduce the mapping F : L2(Ω

′) × L2(Ω
′) → L2(T ) defined by

F(vr, vl)(x, y, z) =

{
vr(x, y, z) if z > 0
−vl(x, y,−z) if z < 0.

Obviously, F is bijective and the equation ‖(vr, vl)‖L = ‖F(vr, vl)‖L2,T holds
for (vr, vl) ∈ L. The following lemma implies, that we also have ‖(vr, vl)‖H =
‖F(vr, vl)‖H1,T for (vr, vl) ∈ H(Ω′), with H(Ω′) as defined in (161).

Lemma 9 F is a bijective mapping from H(Ω′) to H1(T ).

Outline of Proof: Let us define

T+ := Ψ×]0;L[, T− := Ψ×] − L; 0[, and Tz,ε := Ψ×]z − ε; z + ε[
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for z ∈ [−L;L], where the points (x, y,−L) and (x, y, L), (x, y) ∈ Ψ, shall be
identified.
We consider ∫

T

F(vr, vl) ∂αϕ d(x, y, z)

for (vr, vl) ∈ H(Ω′), ϕ ∈ C∞
0 (T ), and multi-index α with |α| = 1.

For test functions ϕ ∈ C∞
0 (T+) ∪ C∞

0 (T−), we obtain the relation

∫

T

F(vr, vl) ∂αϕ d(x, y, z) =

∫

T+

vr∂αϕ d(x, y, z) −
∫

T−

vl∂αϕ d(x, y, z)

= −
∫

T+

∂αvr ϕ d(x, y, z) +

∫

T−

∂αvl ϕ d(x, y, z),

where we have used that (vr, vl) is in H1(Ω′) ×H1(Ω′).
For ϕ ∈ C∞

0 (T \ TL,ε), where 0 < ε < L, the slice of T , which corresponds to
the boundary Γ0, has to be taken into account. Since Γ0 is lying in a plane that
is perpendicular to the z-axis, a boundary term in the integration by parts only
arises for the z-derivative, i.e. for the case α = (0, 0, 1). Then, we have

∫

T

F(vr, vl)
∂

∂z
ϕ d(x, y, z) =

∫

T+

vr
∂

∂z
ϕ d(x, y, z) −

∫

T−

vl
∂

∂z
ϕ d(x, y, z)

= −
∫

T+

∂

∂z
vrϕ d(x, y, z) +

∫

Γ0

vrϕ dσ(x, y, z) (176)

+

∫

T−

∂

∂z
vlϕ d(x, y, z) +

∫

Γ0

vlϕ dσ(x, y, z)

= −
∫

T+

∂

∂z
vrϕ d(x, y, z) +

∫

T−

∂

∂z
vlϕ d(x, y, z) +

∫

Γ0

(vr + vl)ϕ dσ(x, y, z).

However, due to the coupling condition on Γ0 for (vr, vl) ∈ H(Ω′), the last integral
vanishes, and we get
∫

T

F(vr, vl)
∂

∂z
ϕ d(x, y, z) = −

∫

T+

∂

∂z
vrϕ d(x, y, z) +

∫

T−

∂

∂z
vlϕ d(x, y, z).

For the case ϕ ∈ C∞
0 (T \T0,ε), one obtains the same relation by using the coupling

condition on Γ1.
Thus, we have shown that for (vr, vl) ∈ H(Ω′) the image F(vr, vl) ∈ L2(T )
possesses the weak derivative F(∂αvr, ∂

αvl) ∈ L2(T ) and, therefore, is in H1(T ).
So, (vr, vl) ∈ H(Ω′) is mapped into H1(T ).
Obviously, every V ∈ H1(T ) has the pre-image (vr, vl) ∈ H1(Ω′) ×H1(Ω′), with
vr(x, y, z) := V (x, y, z) and vl(x, y, z) := −V (x, y,−z) for (x, y, z) ∈ Ω′. Using
equation (176) and standard arguments, one obtains that the pair (vr, vl), addi-
tionally, satisfies the coupling boundary conditions and, therefore, is in H(Ω′).
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Obviously, the mapping F is also injective on H(Ω′). ¤

Observing the definitions of the sesquilinear forms a(·, ·) and b(·, ·) in Chapter 5.1
and the G̊arding inequality for a(·, ·) stated in Lemma 8, we define the sesquilinear
forms A(·, ·) on H1(T ) and B(·, ·) on L2(T ) by

A(V,Φ) :=

∫

T

∇V∇Φ + 2ikf
∂

∂z
V Φ + (k2

f − k2)V Φ d(x, y, z) + Cg(V,Φ)L2,T

+iCb

∫

∂T

V Φ dσ(x, y, z)

and

B(V,Φ) := (V,Φ)L2,T =

∫

T

V Φ d(x, y, z),

where Cg > 0 is the constant in the G̊arding inequality for a(·, ·). Obviously, the
form A(·, ·) is H1(T )-elliptic.
If (ur, ul) is a solution of the eigenvalue problem (162), then it satisfies

A(F(ur, ul),F(ϕr, ϕl))

= ξB(F(ur, ul),F(ϕr, ϕl)) + Cg(F(ur, ul),F(ϕr, ϕl))L2,T

= (ξ + Cg)(F(ur, ul),F(ϕr, ϕl))L2,T ∀(ϕr, ϕl) ∈ H(Ω′).

Let us consider the following equation for V ∈ H1(T ):

A(V,Φ) = (F,Φ)L2,T ∀Φ ∈ H1(T ) (177)

with right-hand side F ∈ L2(T ).

Lemma 10 (H2-Regularity on Torus) If F ∈ L2(T ) holds, then the unique
solution V ∈ H1(T ) of (177) is in H2(T ) and satisfies

‖V ‖H2,T ≤ C‖F‖L2,T .

Outline of Proof: For the H2-regularity with respect to the z-direction it
has to be used that T is a torus. For the other derivatives the proof of interior
regularity is standard (see e.g. [73]).
The proof of H2-regularity on the sufficiently regular boundary (∂Ψ)×] − L;L[,
perpendicular to z, is standard and follows, e.g. for a C2,1-boundary ∂Ψ, from
general results in [73]. ¤

Corollary 2 (H2-Regularity of Eigensolution) An eigensolution (ur, ul) ∈
H of equation (162) satisfies

(ur, ul) ∈ H2(Ω′) ×H2(Ω′).
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Outline of Proof: Due to the bijectivity of F stated in Lemma 9, F(ur, ul)
is the solution of (177) with right-hand side F = (ξ + Cg)F(ur, ul) ∈ L2(T ).
By Lemma 10, U := F(ur, ul) is even H2(T )-regular and (ur, ul) is in H2(Ω′) ×
H2(Ω′). ¤
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6 Solving the Discretized Two-Wave Eigenvalue

Problem Applying A Shift-and-Invert Tech-

nique with Preconditioned GMRES

In this chapter, we describe, how we solve the two-wave eigenvalue problem nu-
merically.
As explained in Chapter 5, this PDE eigenvalue problem is discretized by finite
elements which leads to sparse matrices. To solve the discrete problem we, there-
fore, use an appropriate iterative method, which essentially consists of a Krylov
subspace method (see e.g. [61]).
Let us review the discrete problem. The aim is to find a discrete eigensolution
(Ur, Ul) ∈ Hh′,h with eigenvalue ξh ∈ C, such that

atw((Ur, Ul), (ϕr, ϕl)) = ξh btw((Ur, Ul), (ϕr, ϕl)) ∀(ϕr, ϕl) ∈ Hh′,h. (178)

with sesquilinear forms

atw((Ur, Ul), (ϕr, ϕl)) := a((Ur, Ul), (ϕr, ϕl)) + a′τ ((Ur, Ul), (ϕr, ϕl))

and

btw((Ur, Ul), (ϕr, ϕl)) := b((Ur, Ul), (ϕr, ϕl)) + b′τ ((Ur, Ul), (ϕr, ϕl)),

where

a((Ur, Ul), (ϕr, ϕl)) :=
∫

Ω

∇Ur∇ϕr + 2ikf
∂

∂z
Urϕr + (k2

f − k2)Urϕr d(x, y, z) − iCb

∫

Γr

Urϕr dσ(x, y, z)

+

∫

Ω

∇Ul∇ϕl − 2ikf
∂

∂z
Ulϕl + (k2

f − k2)Ulϕl d(x, y, z) − iCb

∫

Γr

Ulϕl dσ(x, y, z),

and

b((Ur, Ul), (ϕr, ϕl)) :=

∫

Ω

Urϕr d(x, y, z) +

∫

Ω

Ulϕl d(x, y, z),

describe the weak form of the original equation and

a′τ ((Ur, Ul), (ϕr, ϕl)) :=

τ2kf

∫

Ω

2ikf
∂

∂z
Ur

∂

∂z
ϕ̄r + (k2

f − k2)Ur
∂

∂z
ϕ̄r d(x, y, z)

−τ2kf

∫

Ω

−2ikf
∂

∂z
Ul

∂

∂z
ϕ̄l + (k2

f − k2)Ul
∂

∂z
ϕ̄l d(x, y, z),

and

b′τ ((Ur, Ul), (ϕr, ϕl)) := τ2kf

∫

Ω

Ur
∂

∂z
ϕ̄r − Ul

∂

∂z
ϕ̄l d(x, y, z)

represent the stabilization, see Chapter 5.2.
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6.1 A Matrix-Vector Representation of the Two-Wave Ei-
genvalue Problem

As mentioned in Chapter 5.2, we use the finite element space Sh′,h of continuous,
piecewise trilinear functions on a partition of the cuboid Ω into sub-cuboids of
size h′ × h′ × h. Let the, say N , vertices be enumerated and let (xj, yj, zj) be
the coordinates of the j-th node. Then, the corresponding trilinear nodal basis
function ψj : Ω → R is given by

ψj(x, y, z) :=







(
1 −

∣
∣x−xj

h′

∣
∣
) (

1 −
∣
∣y−yj

h′

∣
∣
) (

1 −
∣
∣ z−zj

h

∣
∣
)

if |x− xj|, |y − yj| ≤ h′

and |z − zj| ≤ h,
0 else.

(179)
A function Vr ∈ Sh′,h can uniquely be written as a linear combination of these
nodal basis functions:

Vr(x, y, z) =
N∑

j=1

ν
(r)
j ψj(x, y, z) (180)

with a coefficient vector (ν
(r)
j ) ∈ CN . Obviously, it is

ν
(r)
j = Vr(xj, yj, zj) for j = 1, . . . , N. (181)

The nodes can be enumerated as follows: Using numbers Nir, N0, N1 > 0, with
Nir +N0 +N1 = N , we partition the nodes into the sets

Nir := {1, . . . , Nir}

corresponding to the interior of Ω and the radiating boundary Γr,

N0 := {Nir + 1, . . . , Nir +N0}

corresponding to the boundary Γ0, and

N1 := {Nir +N0 + 1, . . . , Nir +N0 +N1}

corresponding to the boundary Γ1.
The finite element space Sh′,h – as described in Chapter 5.2 – is used to construct
the test and trial space for the eigenvalue problem (178). We define

Hh′,h :=

{

(Vr, Vl) ∈ Sh′,h × Sh′,h

∣
∣
∣
∣
Vr − φ0Vl

∣
∣
∣
Γ0,h′

= 0 and Vr − φ̄1Vl

∣
∣
∣
Γ1,h′

= 0

}

.

The pair (Vr, Vl) ∈ Hh′,h can be represented by the vector

ν := (ν
(r)
1 , . . . , ν

(r)
N , ν

(l)
1 , . . . , ν

(l)
N ) ∈ Hd ⊂ C2N (182)
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with Hd defined as the subspace of C2N , where the relations

ν
(r)
j = φ0(xj, yj, zj) · ν(l)

j for Nir + 1 ≤ j ≤ Nir +N0 (183)

and
ν

(r)
j = φ1(xj, yj, zj) · ν(l)

j for Nir +N0 + 1 ≤ j ≤ N (184)

hold. Relations (183) and (184) reflect the the coupling conditions in the finite
element space Hh′,h on the boundaries Γ0 and Γ1.
It is obvious, that the subset

B := Br ∪ Bl ∪ B0 ∪ B1 (185)

of Hh′,h with

Br := {(ψk, 0) | k ∈ Nir}
Bl := {(0, ψk) | k ∈ Nir}
B0 :=

{

(ψk, φ0(xk, yk, zk) · ψk) | k ∈ N0

}

B1 := {(ψk, φ1(xk, yk, zk) · ψk) | k ∈ N1}

forms a basis of Hh′,h.
In the following, we show how the weak equation (178) can be written as a
matrix-vector eigenvalue problem

Aν = ξBν, (186)

where ν ∈ C2N is the wanted coefficient vector, A ∈ C2N×2N the stiffness matrix,
and B ∈ C2N×2N the mass matrix.
For this purpose, we first consider the expressions depending on the wave Ur in the
sesquilinear form atw((Ur, Ul), (ϕr, ϕl)). This gives the sparse matrix A(r) ∈ CN

computed by

(A(r))k,l := atw((ψl, 0), (ψk, 0)) for 1 ≤ k, l ≤ N

with a structure as depicted in Figure 16.
The blocks of A(r) reflect the partition of the nodes and are obtained by following
choices of k and l:

A
(r)
1 for k, l ∈ Nir

A
(r)
2 for k ∈ Nir, l ∈ N0

A
(r)
3 for k ∈ Nir, l ∈ N1

A
(r)
4 for k ∈ N0, l ∈ Nir

A
(r)
5 for k ∈ N0, l ∈ N0

A
(r)
6 for k ∈ N1, l ∈ Nir

A
(r)
7 for k ∈ N1, l ∈ N1.
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A
(r)
1 A

(r)
2 A

(r)
3

A
(r)
5

A
(r)
6

A
(r)
4

A
(r)
70

0

A(r) =

Figure 16: Part of the stiffness matrix.

Analogously to A(r), we define

(A(l))k,l := atw((0, ψl), (0, ψk)) for 1 ≤ k, l ≤ N.

Due to the coupling boundary conditions (or, equivalently, due to the restric-
tions (183) and (184)), the functions in Hh′,h only possess N + Nir = 2Nir +
N0 + N1 degrees of freedom. A usage of the basis B in (185) transforms the
variational problem (178) into an equivalent matrix eigenvalue problem of order
(N +Nir) × (N +Nir).
If, however, a standard finite element program or library shall be used in the
computations, as e.g. the C++-library EXPDE [1], [57], which was our choice,
the functions Ur and Ul normally have to be stored separately and the restric-
tions (183) and (184) have to be enforced additionally.
For this purpose, we blow up the problem (178) to a (2N × 2N)-system of rank
N +Nir. Figure 17 shows the structure of the resulting stiffness matrix A. The
new mass matrix B has the same structure and is computed analogously to the
stiffness matrix, the structure of which is explained more detailed in the following.
For an easier description of A, we first define the diagonal matrices

Φ0 = diag(φ0(xj, yj, zj)), j = Nir + 1, . . . , Nir +N0, (187)

and
Φ1 = diag(φ1(xj, yj, zj)), j = Nir +N0 + 1, . . . , N, (188)

which incorporate the coupling (183) and (184) at the boundaries Γ0 and Γ1. The
additional sub-matrices of A in Figure 17 are defined by

[

Ã
(l)
4 Ã

(l)
5

]

:= Φ0

[

A
(l)
4 A

(l)
5

]

, (189)
[

Ã
(l)
6 Ã

(l)
7

]

:= Φ1

[

A
(l)
6 A

(l)
7

]

, (190)
[

Â
(r)
4 Â

(r)
5 Â

(l)
4 Â

(l)
5

]

:= Φ0

[

A
(r)
4 A

(r)
5 Ã

(l)
4 Ã

(l)
5

]

, (191)

and
[

Â
(r)
6 Â

(r)
7 Â

(l)
6 Â

(l)
7

]

:= Φ1

[

A
(r)
6 A

(r)
7 Ã

(l)
6 Ã

(l)
7

]

. (192)
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A
(r)
1 A

(r)
2 A

(r)
3

A
(r)
5

A
(r)
6 Ã

(l)
6

Â
(r)
6

Â
(l)
5

A
(r)
4

A
(r)
7

A
(l)
1 A

(l)
2 A

(l)
3

Ã
(l)
4 Ã

(l)
5

Ã
(l)
7

Â
(l)
7

Â
(l)
4

Â
(l)
6Â

(r)
7

Â
(r)
5Â

(r)
4

Figure 17: Stiffness matrix A.

Constructing A and B this way, we obtain

Lemma 11 (Properties of Matrix Eigenvalue Problem) The eigenvalue
problem (178) is equivalent to the problem: Find ν ∈ Hd ⊂ C2N and ξh ∈ C with

Aν = ξh Bν. (193)

Furthermore, for all ν̃ ∈ C2N , it is

Aν̃ ∈ Hd and Bν̃ ∈ Hd. (194)

Proof: The statements (194) follow directly from the definitions (187) and (188)
of the diagonal matrices Φ0 and Φ1, respectively, and from relations (191) and
(192) for A and B.
Due to (194) for n ∈ {Nir + 1, . . . , N} the row n and the row n + N of the
system (193) agree with each other except for multiplication by a scalar. For
the proof of the equivalence of the eigenvalue problems, it therefore suffices to
consider the rows 1 to 2Nir +N0 +N1.
We recall that a function (Ur, Ul) ∈ Hh′,h can – with respect to the basis B –
equivalently be described as a vector ν ∈ Hd, see relation (182) in conjunction
with (181), and relation (180).
Since the basis B is a disjoint union of the sets Br,Bl,B0, and B1, we distinguish
four types of “test functions” (ϕr, ϕl):



82 SOLVING AN EIGENVALUE PROBLEM IN LASER SIMULATION

Br: Let (ϕr, ϕl) ∈ Br, i.e. (ϕr, ϕl) = (ψk, 0) with appropriate k ∈ Nir. Since
Ur and ϕl, and Ul and ϕr, respectively, are not coupled in the sesquilinear
form atw((Ur, Ul), (ϕr, ϕl)), we obtain

atw((Ur, Ul), (ϕr, ϕl)) = atw((Ur, Ul), (ψk, 0)) = atw((Ur, 0), (ψk, 0))

= atw((
N∑

j=1

ν
(r)
j ψj, 0), (ψk, 0)) =

N∑

j=1

ν
(r)
j atw((ψj, 0), (ψk, 0)).

The last term, however, is exactly the k-th entry of the vector Aν ∈ C2N ,
i.e.

atw((Ur, Ul), (ϕr, ϕl)) = (Aν)k .

Analogously, for the right-hand side we obtain

btw((Ur, Ul), (ϕr, ϕl)) = (Bν)k

for k ∈ Nir.

Bl: As for the previous case, for (ϕr, ϕl) ∈ Bl, it follows that

atw((Ur, Ul), (ϕr, ϕl)) = (Aν)N+k and btw((Ur, Ul), (ϕr, ϕl)) = (Bν)N+k

holds for the k ∈ Nir with (0, ψk) = (ϕr, ϕl).

B0: With (ϕr, ϕl) = (ψk, φ0(xk, yk, zk) · ψk) for k ∈ N0, we have

atw((Ur, Ul), (ϕr, ϕl)) = atw((Ur, 0), (ψk, 0)) + φ0(xk, yk, zk) · atw((0, Ul), (0, ψk))

= (Aν)k

and also
btw((Ur, Ul), (ϕr, ϕl)) = (Bν)k .

B1: Finally, the choice (ϕr, ϕl) = (ψk, φ1(xk, yk, zk) · ψk), k ∈ N1 gives

atw((Ur, Ul), (ϕr, ϕl)) = atw((Ur, 0), (ψk, 0)) + φ1(xk, yk, zk) · atw((0, Ul), (0, ψk))

= (Aν)k

and
btw((Ur, Ul), (ϕr, ϕl)) = (Bν)k .

Since B is a basis consisting of N + Nir functions, (Ur, Ul) ∈ Hh′,h solves prob-
lem (178) if and only if the corresponding coefficient vector ν ∈ Hd satisfies the
first N +Nir rows of the matrix eigenvalue problem (193). Thus, the equivalence
of both eigenvalue problems is proved. ¤
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We shortly remark, that the nodal basis functions in B0∪B1 ⊂ B, corresponding to
the boundaries Γ0 and Γ1, are a natural choice if we have the coefficient functions
φ0 ≡ φ1 ≡ −1. In this case, as e.g. explained in Chapter 3.3 or Chapter 5.4, the
two-wave eigenvalue problem can be viewed as a problem on a torus with respect
to the z-direction (or as a problem for 2L-periodic functions in z). From this
point of view, the reflecting boundaries Γ0 and Γ1 are interior boundaries, and
the rows Nir + 1, . . . , N0 and Nir +N0, . . . , N exactly describe the integration on
a sub-domain of the torus including the reflecting boundaries, as e.g. Figure 18
shows for a node (xk, yk, zk) on the boundary Γ0.
So, for planar end mirrors (φ0 ≡ φ1 ≡ −1), the described matrix-vector repre-
sentation of the system (178) is the natural continuation onto the torus.

z

(x, y)Ur(x, y, z)−Ul(x, y,−z)

(xk, yk, zk)

Γ0 h

h′

Figure 18: Torus interpretation of integration for a node on the boundary Γ0.

A further important property of A (and B) is, that for ν̃ ∈ C2N we have Aν̃ ∈ Hd

(and Bν̃ ∈ Hd). Since in Krylov-type iterative methods the search space is
spanned by a repeated application of the system matrix A, this property will
keep the intermediate approximate vectors in the space Hd and guarantee that
the final discrete solution satisfies the coupling boundary conditions (183) and
(184).

6.2 Shift-and-Invert

In this section, we describe an iterative algorithm for solving the large and sparse
matrix eigenvalue problem (193).
For details on matrix eigenvalue problems, we refer to the monographs [18] and
[72], and to the books [23], [60], and [67], which rather focus on numerical and
practical issues of matrix eigenvalue problems.
Furthermore, we point out three state-of-the-art iterative methods that are able
to compute even several eigenvalues at a time or that can be modified to do so,
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namely, the implicitly restarted Arnoldi methods (IRA) [49], the adaptive block
Lanczos method ABLE [12], and the Jacobi-Davidson methods [66].

In this thesis, however, we focus on the computation of one eigenvalue and use
a Wieland iteration (an inverse power method with shift) for generalized matrix
eigenvalue problems.

Let us assume, that ξ is a simple eigenvalue of (178) with eigensolution (Ur, Ul)
and that for σ ∈ C with σ 6= λ in a small neighborhood of σ no other eigenvalue
except for ξ is present.

Instead of using atw(·, ·), a shifted eigenvalue problem with sesquilinear form

ash((Vr, Vl), (ϕr, ϕl)) := atw((Vr, Vl), (ϕr, ϕl)) − σb((Vr, Vl), (ϕr, ϕl)), (195)

and resulting stiffness matrix Ash, can be solved.

Then, (Ur, Ul) is the eigensolution related to the eigenvalue of smallest modulus
of the shifted eigenvalue problem (195).

To compute this eigenvalue and the corresponding eigensolution, we apply an
inverse power method (see e.g. [67]) to (195). The complete solution method can
be outlined as follows:

Shift-and-Invert:

1. Choose σ and generate matrices Ash, B ∈ C2N×2N.

2. Choose start vector ν(0) with ‖ν(0)‖ = 1.
3. For n = 1, . . . until convergence do

4. Solve Ash ν̃ = Bν(n) for ν̃ ∈ Hd by preconditioned GMRES

5. compute approximate eigenvalue µ(n) from ν̃ and ν(n)

6. and assign ν(n+1) := ν̃/‖ν̃‖.
7. Compute approximate (un-shifted) eigenvalue ξh = σ + µ(n).

Obviously, in the case of convergence of this algorithm, we have

Aν = ξhBν. (196)

The solution of the equation

Ash ν̃ = Bν(n) (197)

in line 4 is the part of this method with the largest time and storage requirements.
The solver (preconditioned GMRES) is explained in the following Sections 6.3 and
6.4.

The computation of the approximate eigenvalue µ(n) in line 5 can be performed
with the help of an appropriately chosen linear functional L : C2N → C by
µ(n) := L(ν(n))/L(ν̃).
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6.3 Preconditioned GMRES

The generalized minimal residual method (GMRES), was for the first time pre-
sented in [62]. It is designed for the solution of a linear system of equations

Ax = b (198)

with general regular matrix A ∈ Cm×m, unknown vector x ∈ Cm and right-hand
side b ∈ Cm.
When applied as an iterative method for large, sparse matrices, the method
computes an approximate

y0 ∈ x0 + Kd(r0, A),

where x0 ∈ Cm is a start approximation, r0 := Ax0 − b is the start residual and
Kd(r0, A) := spanC{r0, Ar0, . . . , Ad−1r0} is the Krylov subspace of order d with
respect to r0 and A. The approximate y0 is chosen such that it minimizes the
l2-residual in the affine search space x0 + Kd(r0, A):

‖Ay0 − b‖2 = min
y∈x0+Kd(r0,A)

‖Ay − b‖2

with l2-norm ‖x‖2 := (
∑m

j=1 xj · xj)
1/2. For large problems, the dimension d is

chosen much smaller than the dimension of the original system m. For details of
the algorithm, see e.g. [61].
Since the basic algorithm does not exploit any structure of the matrix A, the
convergence is very poor in general, see [27], [36], or [61], and the references cited
therein. For matrices A that are diagonalizable, a bound for the convergence rate
can be proved that depends on the distribution of the eigenvalues of the system
matrix and on the condition number of the transformation matrix (see e.g. [61]).
Particularly, this result shows that GMRES converges fast, if all eigenvalues of
the diagonalizable system matrix are, for instance, lying near to 1 ∈ C in the
complex plane and if the normed eigenvectors are pairwise nearly orthogonal.
Due to this observation, one preconditions the system meaning that one per-
forms an equivalent transformation of the original equation (198) into a system
which (better) satisfies the properties mentioned in the previous sentence, and,
therefore, exhibits a better convergence behavior.
For our problem, we use the so called right preconditioning, where instead of (198)
the system

AM−1u = b, x = M−1u (199)

is solved. The preconditioner M ∈ Cm×m is chosen such that it approximates the
system matrix A, but – in contrast to it – can be inverted easily.
The choice of the preconditioner is the crucial step in applying GMRES to a
concrete problem. In our case, the preconditioner has been constructed according
to the underlying physics of the problem, as we will describe below.
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For the preconditioned GMRES algorithm we, again, refer to [61].
In our eigenvalue problem (196), the system matrix A ∈ C2N×2N is of rank
N + Nir < 2N , i.e. it is singular. But due to the construction of A and B, the
GMRES method solves equation (197) in the (N + Nir)-dimensional subspace
Hd ⊂ C2N (or, in other words, GMRES applied to (197) essentially computes the
solution of an (N +Nir) × (N +Nir)-system of linear equations).

6.4 The Preconditioner

Before explaining the preconditioner, we prove a lemma.

Lemma 12 Under the condition

φ0 ≡ φ1 ≡ −1,

the space H defined in (161) can be represented as a direct sum

H(Ω) = H(c) ⊕H(n) (200)

with

H(c) :=
{

(vr(x, y, z), vl(x, y, z)) ∈ H
∣
∣
∣
∂

∂z
vr(x, y, z) =

∂

∂z
vl(x, y, z) = 0

}

and

H(n) :=
{

(vr(x, y, z), vl(x, y, z)) ∈ H
∣
∣
∣

∫ L

0
vr(x, y, z) − vl(x, y, z) dz = 0

for (x, y) ∈] −W/2;W/2[× ] −W/2;W/2[
}

,

where the equations in the definition of the spaces are to be understood in a weak
sense.

Proof: Let (vr, vl) ∈ H(Ω) be chosen arbitrarily. We define

c(x, y, z) :=
1

2

∫ L

0

vr(x, y, t) − vl(x, y, t) dt.

Using the boundedness of the domain Ω and standard arguments, one can prove
that

c ∈ H1(Ω) with (weak) derivative
∂

∂z
c = 0.

Obviously, it is (c,−c) ∈ H(c) ⊂ H. Since in the equation

(vr, vl) = (vr − c, vl + c) + (c,−c)

the pair (v
(n)
r , v

(n)
l ) := (vr−c, vl +c) is in H(n), we have the stated decomposition.
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Furthermore, it is clear that the intersection of H(c) and H(n) only contains the
zero:

H(c) ∩H(n) = {(0, 0)} ⊂ H.
Thus, the decomposition (200) is proved. ¤

In other words, a pair (vr, vl) ∈ H(Ω) is the sum of a pair of functions (v
(c)
r , v

(c)
l ) ∈

H(Ω), where both v
(c)
r and v

(c)
l are constant in z-direction, and a pair (u

(n)
r , u

(n)
l ) ∈

H(Ω), where u
(n)
r and u

(n)
l are not constant in z-direction and are normed such

that
∫ L

0
u

(n)
r − u

(n)
l dz=0.

Viewing the two-wave eigenvalue problem from a physical perspective yields the
idea for the construction of the preconditioner. The two-wave ansatz (99) in
Chapter 3.3 reflects, that an eigenmode of a laser cavity can be seen as a su-
perposition of two waves traveling in opposite directions. Bearing in mind the
remarks on the time-harmonic representation (2) in Chapter 1.1 and the deriva-
tion in Chapter 3.3, we can say that in the BVP (159), (160), ur is the wave
moving in positive z-direction and ul the wave moving in negative z-direction.
This interpretation of an eigenmode suggests to precondition the matrix eigen-
value problem (193) by an appropriate block Gauss-Seidel iteration (see for in-
stance [61] or [67]) in the direction of the waves. We remark that by the stabi-
lization described in Chapter 5.2 we obtain a corresponding (nearly upwind or
downwind) discretization of the first order terms, see also [9].
However, in the governing equations (159), the first oder derivatives +2ikf ∂/∂z
and −2ikf ∂/∂z dominate, if kf is very large. It is clear, that the portion of
(ur, ul) that is constant in z-direction (see the decomposition in Lemma 12) is
smoothed very slowly by relaxation with the Gauss-Seidel method.
So, we use a preconditioner which consists of a relaxation M−1

c of the constant
portion of the residual in the subspaces H(c) and a relaxation M−1

GS of the residual
in the whole space H by the Gauss-Seidel method.
The relaxation M−1

GS is composed of four steps (as also depicted in Figure 19):

1. relaxation for ur and ul on boundary Γ0,

2. plane-wise relaxation for ur in the interior and on the radiating boundary
from left to right,

3. relaxation for ur and ul on boundary Γ1

4. and plane-wise relaxation for ul in the interior and on the radiating bound-
ary from right to left.

So, the preconditioner can be described by the matrix product

M−1 = (M−1
GS)l2 (M−1

c )l1 ,
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z
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Figure 19: Part of the preconditioner for the two-wave eigenvalue problem.

where l1 ∈ {0, 1} and l2 ∈ N determine how often the single relaxations are
repeated.
With the help of this preconditioner the discrete equation could be solved satis-
factorily with acceptable time and memory requirements.
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7 Numerical Results for Different Cavity Con-

figurations

In this chapter, we present numerical tests of our new approach, some of which
have also been published in [7] or [9]. As it has been shown in Chapter 3,
for a wide range of different configurations eigenmodes can be described using
the two-wave eigenvalue model (104), (105) at the end of Chapter 3.3. The
configurations are specified by the phase shifts at the reflecting end mirrors or
at the interior interfaces, as explained in Chapter 3.4, and by the coefficient
function k(x, y, z) (see, e.g., (104), (105)). Furthermore, a transformation of the
the cuboidal domain Ω can be applied, such that e.g. for curved end mirrors the
eigenvalue problem actually is solved on a domain with curved faces.
The accuracy of the two-wave eigensolutions is shown by comparing them with
the (analytical) gaussian modes (as mentioned in Chapter 3.2) in configurations
where these are appropriate. Particularly, we have chosen configurations that
in the majority of cases cannot be computed satisfactorily by the other current
numerical methods as discussed in Chapter 3.2 or in the article [7].
Furthermore, in Section 7.6 we present numerical results for a problem which
cannot be computed well by the gaussian mode algorithm and which show that
the FEM result deviates from the gaussian results as expected.
Altogether, these numerical examples show the correctness and the capability of
our new approach.
For all tests, we have chosen a carrier wave length λ with λ = 2.0 µm; that means
that the considered eigenmodes are in the infrared spectrum. The length L of
the cavity lies between 0.1 mm and 22.0 mm.

7.1 Cavity with Planar End Mirrors and Parabolic Re-
fractive Index Distribution

The first example concerns a cavity consisting of a real gaussian duct (see e.g.
[64], Chap. 20) between planar end mirrors, i.e. a distribution of refractive index
showing a parabolic profile perpendicular to the propagation direction z, but
being independent of z. In detail, we used the following dimensions: distance
between end mirrors L = 0.1 mm, width of computational domain W = 0.2 mm,
and refractive index n(x, y, z) = n0− (n2 · r2)/2, where we choose n0 = 1.0. From
a physical point of view, a refractive index 0 < n(x, y, z) < 1 does not make
sense. However, since the mode shapes do not depend on the absolute value of
the refractive index n in Ω but on its variation, we used n0 = 1.0 throughout all
examples .
Using the two-wave ansatz, we performed the FEM computations on a domain
discretized by 40 × 40 × 5 elements (≈ 10 000 grid points). For comparison,
Table 2 shows the spot sizes wFEM computed for three different values of n2 by
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the use of our FEM method and wG computed by the gaussian mode algorithm,
respectively.

Since the refractive index is independent of z in this configuration, the ansatz (99)
shows that the phase shift is contained in the quantity ε for waves ũr and ũl

that are constant in z. As for instance explained in [64], Chap. 16.6, for the
lowest-order gaussian mode εG is given by εG = (n2)

1/2. Table 2 shows the good
correspondence of (the analytical shift) εG with εFEM deduced from the computed
eigenvalue ξh(= 2 εFEM kf ).

n2 wFEM [µm] wG [µm] εFEM εG =
√
n2

0.24 36.220 36.049 0.497 0.490
0.48 30.376 30.313 0.708 0.693
0.72 27.714 27.391 0.871 0.849

Table 2: Comparison between FEM and gaussian results for a gaussian duct with
real refractive index.

7.2 Empty Cavity with Concave Mirror: Spot Size and
Guoy Phase Shift

Here, we apply our method to an empty cavity of length L = 1.0 mm, whose
left end mirror is concave with a (parabolic) radius of curvature R0 = 5.0 mm,
whereas the right mirror is planar. Figure 20 shows the spot size, as a function
of z, of the lowest-order mode as obtained by our FEM code in comparison with
the result of the gaussian algorithm. The width of the computational domain
was W = 0.2 mm; in the computation 41× 41× 61 (≈ 102 000) nodes have been
involved.

As mentioned in Chapter 3.5, the Guoy phase shift ψ(z) can be computed by the
use of the relation

ũ(0, 0, z) = exp [−i(εz − ψ(z))] |ũ(0, 0, z)|,

where ũ(0, 0, z) and ε are calculated from the numerically obtained eigenmode
ũ and eigenvalue ξ(= 2kfε), respectively. Since ψ(z) only is determined except
for a constant, we set ψ(L) = 0 for this example. In Figure 21, the numerically
computed phase shift ψFEM(z) and the gaussian phase shift ψ(z) = arctan(z/zR)
with Rayleigh range zR (see for instance [64], Chap. 19.3) are plotted. The
excellent agreement between both results shows that our method is able to predict
even fine details exactly.
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Figure 20: Empty cavity with one concave (R0 = 5.0 mm) and one planar end
mirror, FEM (solid curve) and gaussian mode shape (dashed curve).
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Figure 21: Guoy phase shift for an empty cavity with one concave (R0 = 5.0 mm)
and one planar end mirror, FEM (solid curve) and gaussian mode result (dashed
curve).
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7.3 Long Resonator Cavity with Focusing Element Near
One End Mirror

To demonstrate that our method can reliably take into account focusing effects
in longer cavities, we analyze in this example a cavity with planar end mirrors
having a distance of L = 10.0 mm. Only a short section extending from the left
mirror over a length of 1.0 mm is filled with a Gaussian duct. That means, more
specifically, that the refractive index is defined by n(x, y, z) = 1 − (n2(z) · r2)/2
with

n2(z) =

{
0.06 if z ≤ 1.0
0.0 else.

Figure 22 shows that the z-dependent spot sizes of the lowest-order mode obtained
by the use of FEM and by the gaussian code LASCADTM [2, 5], respectively,
nearly coincide. The FEM computations have been carried through on a domain
with width W = 0.4 mm. The grid was made up by 20 × 20 × 150 elements,
which corresponds to approximately 70 000 points.
Figures 23 and 24 display the normalized intensity of the lowest-order and of one
higher-order mode, respectively.

7.4 Gain Guiding Effect and A Geometrically Instable
Configuration

By the following examples, we show that our new approach models gain guiding
effects correctly. At first, we consider a cavity with planar end mirrors, length L =
0.1 mm and width W = 1.2 mm with the computational domain being discretized
by 96 × 96 × 5 elements. We choose a constant refractive index distribution
n(x, y, z) ≡ 1 and a parabolic gain/loss distribution with α = α2 · r2. (The
notation corresponds to [64, Chap. 20.3].) In other words, we use the coefficient
function

k2 = k2
0(1 − n2 · r2) − i α2 · k0r

2 (201)

with n2 = 0 and k0 := kf .
For different values of α2, Table 3 shows the spot sizes wFEM as obtained by the
finite element calculations in comparison to the gaussian mode results wG. As in
the example in Section 7.1, the values nearly coincide.
Additionally, we compute two configurations where the left mirror is curved and
the length of the domain is L = 1.0 mm.
In Figure 25, for a cavity with concave left end mirror (R0 = 100 mm) and width
W = 0.4 mm the spot size is plotted against the z-coordinate. The result, which
was obtained on a grid of approximately 85 000 nodes, also agrees very well with
the gaussian mode spot size.
A configuration with planar right and convex left end mirror with radius of cur-
vature R0 = −100.0 mm, is known to be geometrically instable, as for instance
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Figure 22: Comparison between FEM (solid curve) and gaussian results (dashed
curve) for a long resonator with a short gaussian duct attached to the left mirror.

Figure 23: Lowest-order or TEM00-mode in a long resonator.
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Figure 24: TEM22-mode in a long resonator.



7. Numerical Results for Different Cavity Configurations 95

α2 wG [µm] wFEM [µm]
1. 224.64 224.72
10. 126.32 126.63
40. 89.32 89.85

Table 3: Comparison between FEM and gaussian results for a gaussian duct with
planar end mirrors taking into account gain.

explained in [64], Chapters 19, 21, and 22. In practice, such lasers are quite
sensitive because the eigenmodes heavily depend on the gain distribution. Fig-
ure 26 depicts the spot size of the fundamental mode for a gain distribution with
α2 = 10. Again, the accuracy of our FEM approach is demonstrated by the
comparison to the corresponding gaussian mode. Here, the computations were
performed on a domain of width W = 0.8 mm, which has been discretized by
80 × 80 × 50 elements (≈ 335 000 grid points).

7.5 Splitting of Round-Trip Mode Shape in an Instable
Cavity due to Gain

Since in our approach an eigenmode is represented by two waves, configurations
can be dealt with where a so-called splitting occurs, i.e. the wave ũr propagating
to the right and the wave ũl propagating to the left in the resonator (see the
ansatz (99)) have different mode shapes.

To demonstrate this, we consider a cavity of length L = 10.0 mm with planar end
mirrors and with a short gaussian duct attached to the left mirror. The refractive
index and gain distribution is given by the coefficient function (201) with n2(z)
and α2(z) defined as:

n2(z) :=

{
−0.005 if 0 ≤ z ≤ 2
0.0 if 2 < z ≤ 10

and

α2(z) :=

{
40.0 if 0 ≤ z ≤ 2
0.0 if 2 < z ≤ 10.

Due to the negative refractive index parameter n2, this configuration is instable
if no gain is taken into account.

We performed the computation on a domain of width W = 1.0 mm, discretized
by 50 × 50 × 100 elements, which is approximately 260 000 grid points. In the
Figures 27 and 28 the gaussian mode spot size and the spot size of the finite ele-
ment solution are compared, namely for ũr and ũl, respectively, whereas Figure 29
depicts the spot sizes of the finite element solution in one graph.
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Figure 25: Comparison between FEM (solid curve) and gaussian results (dashed
curve) for a cavity with concave left and planar right end mirror with gain.
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Figure 26: Comparison between FEM (solid curve) and gaussian results (dashed
curve) for a geometrically instable resonator with convex left and planar right
end mirror with gain.
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Figure 27: Comparison between FEM (solid curve) and gaussian spot size (dashed
curve) of the wave traveling to the right in a configuration with gain where a
splitting occurs.
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Figure 28: Comparison between FEM (solid curve) and gaussian spot size (dashed
curve) of the wave traveling to the left in a configuration with gain where a
splitting occurs.
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Figure 29: Spot sizes of split eigenmode obtained by the finite element approach.

7.6 Thermal Effects in a Monolithic Laser

In this example we use our method to model a monolithic diode-pumped solid
state laser consisting of an end pumped crystal (with material parameters of a
Nd:YAG crystal except for the refractive index parameter n0, see comment on
that in Section 7.1), whose deformed end faces represent the end mirrors of the
cavity. To take into account thermal lensing due to the temperature dependence
of the refractive index and due to thermal distortion a thermal and structural
finite element analysis has been carried through by the use of LASCADTM [2].
The data obtained in this way for the temperature distribution and deformation
of the crystal have been imported into our program. We used a rectangular
slab of equal height and width W = 0.8 mm and length L = 8.0 mm cooled
from top and bottom, but not from left and right. The obtained temperature
distribution therefore deviates strongly from rotational symmetry. Figure 30
shows the thermally induced refractive index distribution on the whole slab and
Figure 31 shows the distribution along x- and y-axis immediately behind the
entrance plane of the pump beam (at z = 0) as obtained with LASCADTM [2].
To compute the mode shape by the use of a gaussian approximation as imple-
mented in LASCADTM [2], the refractive index distribution is fitted parabolically
for a series of cross sections along the z-axis as also shown in Figure 31 for a cross
section close to z = 0. The obtained parabolic coefficients are used in a round
trip ABCD matrix to compute the mode shape. Figures 32 and 33 show the
spot sizes along the z-axis obtained in this way in comparison with the spot sizes
obtained by our new approach, that uses the full 3D data of the thermal and
structural finite element analysis without parabolic fit. For our computations we
used 80 × 80 × 32 elements which equates to approximately 250 000 grid points.
As one can see, the results are very close to each other in the y-z-plane, whereas
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Figure 30: Slice and isosurfaces of a refractive index distribution based on nu-
merical data imported from LASCADTM.

in x-z-plane the spot size obtained by our new approach is considerably larger.
This is expected from the fact that the parabolic fit shown in Fig. 31 is good
along the y-axis, but very poor along the x-axis for which the plot shows a bell
shaped distribution.
Accordingly, for the transverse mode profile the deviation between the gaussian
profile and the result of the 3D approach also is much stronger along the x-axis
than along the y-axis as shown in Figures 34 and 35.

7.7 Oscillating Beam in a Gaussian Duct

The last numerical example concerns a resonator of length L = 22.0 mm with
planar right end mirror and concave left end mirror (R0 = 3.0 mm). The cavity
is filled with a long complex gaussian duct of length 20.0 mm attached to the
right end mirror. That means we have following parameters for the refractive
index and gain distribution:

n2(z) =

{
0.0 if 0 ≤ z ≤ 2
0.0885 if 2 < z ≤ 22

and

α2(z) =

{
0.0 if 0 ≤ z ≤ 2
40.0 if 2 < z ≤ 10.
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Figure 31: Comparison of numerical (dots) and parabolically fitted (triangles)
refractive index. Screen shot of LASCADTM.

Due to the concavity of the left mirror and due to the gain eigenmodes occur
which are oscillating in the long duct and exhibit a splitting as in the example in
Section 7.5. To our knowledge, until now these oscillating eigenmodes could not
be computed by the existing full numerical methods presented in Chapter 3.2.
For the computations on the domain with width W = 0.4 mm a grid of 61×61×
353 (≈ 1 300 000) nodes was used. Figure 36 depicts the spot sizes of the finite
element and gaussian mode result, respectively, for the wave moving to the right
and Figure 37 for the wave moving to the left. The spot sizes of the two-wave
solution are plotted in Figure 38.
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Figure 32: Comparison of FEM (solid curve) and gaussian x-axis spot size (dashed
curve) along cavity axis for a monolithic laser with thermal effects taken into
account.
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Figure 33: Comparison of FEM (solid curve) and gaussian y-axis spot size (dashed
curve) along cavity axis for a monolithic laser with thermal effects taken into
account.
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Figure 34: Transverse mode profile along x-axis for a monolithic laser with ther-
mal effects taken into account, FEM (solid curve) and gaussian mode result
(dashed curve).
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Figure 35: Coinciding transverse mode profiles along y-axis for a monolithic laser
with thermal effects taken into account, FEM (solid curve) and gaussian mode
result (dashed curve).
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Figure 36: Comparison between FEM (solid curve) and gaussian spot size (dashed
curve) of the oscillating wave traveling to the right in a long duct.
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Figure 37: Comparison between FEM (solid curve) and gaussian spot size (dashed
curve) of the oscillating wave traveling to the left in a long duct.
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Figure 38: Spot sizes of oscillating eigenmode obtained by the finite element
approach.
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Conclusions

The numerical results in Chapter 7 demonstrate very clearly the accuracy of
the numerical eigenmodes obtained by our two-wave model. Since this model is
based on a partial differential equation eigenvalue problem, it can be applied to
a wide range of laser cavity configurations as the examples show. By appropriate
modifications of the model, it should therefore also be possible to solve more
complicated configurations.
From a mathematical point of view the convergence proof in Chapter 4 can con-
ceivably be extended to show convergence for finite element solutions of equations
with a more complex nonlinearity. However, that was not the scope of this dis-
sertation.
Since some of the results in this thesis are a first step toward answering problems
in mathematics and physics that have not been investigated in detail until now,
there remain many open questions concerning mathematical and computational
aspects of our new approach and of the existing numerical methods for analyzing
laser cavities. We mention just a few of them:

• Which further properties do the solutions and the finite element approxi-
mations of the transformed equation in Chapter 2.1 have?

• In what cases can the beam propagation methods be proved to fail? Which
influence do the boundary conditions have (Chapter 3.2)?

• What does the spectrum of the two-wave eigenvalue problem look like
(Chapters 3.3 and 5.1)?

• In what sense do the stabilizations in Chapter 5.2 and Chapter 2.2.4 change
the character of the original equations?

This short overview contains a lot of interesting questions the answers of which
can improve our finite element analysis and can lead to a deeper understanding
of the existing methods for analyzing laser cavities.
In conclusion, it may be hoped that the success of the two-wave finite element
analysis of laser cavities developed in this thesis will be an impetus for researchers
and laser designers to rely on numerical simulation more than they have in the
past.
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