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Abstract  

 

The blood-air barrier in the lung consists of the alveolar epithelium, the underlying 

capillary endothelium, their basement membranes and the interstitial space between 

the cell layers. Little is known about the interactions between the alveolar and the 

blood compartment. The aim of the present study was to gain first insights into the 

possible interplay between these two neighboured cell layers. We established an in 

vitro Transwell model of the alveolar epithelium based on human cell line H441 and 

investigated the influence of conditioned medium obtained from human lung 

endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As 

control for tissue specificity H441 layers were exposed to conditioned medium from 

human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was 

necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased 

expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, 

whereas decreased the transepithelial electrical resistance (TEER) in a concentration 

dependent manner. Soluble factors obtained from the lung endothelial cell line 

increased the barrier significantly proven by TEER values and fluorescein 

permeability on the functional level and by the differential expression of tight 

junctional proteins on the molecular level. In contrast to this, soluble factors derived 

from brain endothelial cells weakened the barrier significantly. In conclusion, soluble 

factors from lung endothelial cells can strengthen the alveolar epithelium barrier in 

vitro, which suggests communication between endothelial and epithelial cells 

regulating the integrity of the blood-air barrier.  
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1. Introduction 

 

The blood-air interface in the lung represents one of the vital barriers in the human 

body. The alveoli of the human lung - with an area of approximately 100–140 m
2 

- are 

functionally the most important element of the lung (Gehr et al., 1978). The alveolar 

epithelial barrier plays a central role in lung diseases, like acute lung injury (ALI) and 

its most severe extreme form, the acute respiratory distress syndrome (ARDS) 

(Maniatis et al., 2008; Matthay, 1994). A key function of the epithelium is the 

formation of diffusion barriers that allow the generation and maintenance of 

compartments with different compositions, a fundamental requirement for the 

physiological organ function like in the lung (Gorin and Stewart, 1979; Balda and 

Matter, 1998). The lung alveolar epithelium in vivo consists of two epithelial cell 

types, the terminally differentiated squamous alveolar epithelial type I (ATI) cell, 

which constitutes approximately 93% of the alveolar epithelial surface area, and the 

surfactant-producing cuboidal alveolar epithelial type II (ATII) cell (Crapo et al., 

1992). The major functions of ATII cells are surfactant synthesis, transepithelial ions 

and water movement as well as regeneration of alveolar epithelium after lung injury 
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(Uhal, 1997). The main functions of ATI cells are the control of peptide growth 

factors metabolism, transcellular ion transport, alveolar fluid regulation and immune 

modulation (Williams, 2003). It is believed that ATII cells are the sole progenitor for 

ATI cells (Fehrenbach, 2001). In ATI cells the caveolin-1 synthesis and the formation 

of caveolae are discussed as a characteristic feature of an ATI-like cell phenotype in 

the alveolar epithelium in vivo and in vitro (Campbell et al., 1999; Kasper et al., 1998; 

Kunzmann et al., 2011; Matthay, 1994). The caveolae membrane system is of interest 

because of its important transport function of molecules across the blood-air barrier in 

the lung (Gumbleton et al., 2000). As a second ATI marker the receptor for advanced 

glycation end-products (RAGE) was discussed, especially as a marker of ATI cell 

injury in ALI (Uchida et al., 2006). In comparison, surfactant proteins are restricted to 

the ATII phenotype; especially surfactant protein B (SP-B) and C (SP-C) are known 

to be synthesized with a high specificity by ATII cells (Phelps and Floros, 1991a; 

Weaver et al., 1988). In addition, glucocorticoids enhance fetal lung maturation by 

increasing production of SP-B in ATII cells (Phelps and Floros, 1991b; Ladenburger 

et al., 2010). Cell-cell contacts within the alveolar epithelium are sealed by tight 

junctions. Tight junctions, located at the most apical region of lateral membranes of 

epithelial cells, create a paracellular barrier in epithelial and endothelial cell layers, 

which protect the underlying tissue from the external environment (Forster, 2008; 

Rodriguez-Boulan and Nelson, 1989). Two different classes of integral membrane 

proteins constitute the tight junction strands in epithelial cells and endothelial cells, 

occludin and members of the claudin protein family, which are responsible for 

changes in the electrolyte and solute permeability in cells layers (Forster, 2008). The 

flux of fluid, ions, macromolecules, and inflammatory cells across airway epithelium 

depends in part upon the integrity of its apico-lateral tight junctions (Godfrey, 1997).  
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Because of the complexity of the pulmonary alveolar system, little is known about the 

molecular interactions between alveolar epithelial and endothelial cells. Up to now 

only few reports were published supporting the idea of a functional unit at the blood-

air barrier consisting of alveolar epithelial and endothelial cells (Hermanns et al., 

2004, 2009, 2010). Therefore, the establishment of in vitro models of the alveolar 

epithelial barrier, which could mimic different conditions in the alveolar region, 

would be useful to analyze the role of lung endothelial cells. Ideally, the in vitro 

model would form a tight barrier and consist of cells expressing ATI and ATII cell 

markers such as caveolin-1, RAGE and SP-B. NCI H441 cells have emerged as a 

well-established model
 
system for distal pulmonary epithelial cells (Hermanns et al., 

2004; Shlyonsky et al., 2005).  

The aim of this study was to establish an alveolar cell culture model based on human 

cell line H441 and to use this model to study the influence of soluble factors derived 

from lung endothelial cells (HPMEC-ST1.6R) on the alveolar epithelium barrier. 

Human cell line HPMEC-ST1.6R was chosen as a model of the lung endothelium 

since it was reported that only HPMEC-ST1.6R exhibited the major constitutive and 

inducible endothelial cell characteristics and showed an angiogenic response on 

Matrigel similar to that of primary HPMEC in contrast to several other endothelial 

cell lines (Unger et al., 2002). Human brain endothelial cell line hCMEC/D3 

represents an established model of the human blood-brain barrier (Weksler et al., 

2005) and was used to check if possible effects of the lung endothelial cells on the 

alveolar epithelium model are tissue-specific.  
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2. Material and Methods 

 

2.1. Cell culture 

Human lung epithelial cell line H441 was purchased from ATCC. Cells were 

maintained in RPMI1640 (R8758, Sigma, Munich, Germany) supplemented with 10% 

FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mol/l Glutamax I, 1x ITS (100x 

ITS, 41400-045) (all from Gibco
®

, Life Technologies GmbH, Darmstadt, Germany) 

and 1 mol/l Na-pyruvate (L0473, Biochrom, Berlin, Germany) and were subcultured 

in a ratio 1:6 on gelatine (0.5%) coated cell culture tissue flasks (GreinerBioone, 

Frickenhausen, Germany) once a week. Human lung endothelial cell line HPMEC-

ST1.6R were a kind gift from Prof. Kirkpatrick and Dr. Unger of the University 

Hospital Mainz in Germany (Krump-Konvalinkova et al., 2001). They were cultured 

on gelatine coated flasks in M199 supplemented with 10% FCS, 100 U/ml penicillin, 

100 µg/ml streptomycin, 2 mol/l Glutamax I (all from Gibco
®

, Life Technologies 

GmbH), 25 µg/ml sodium heparin (H3149, Sigma) and 25 µg/ml ECGS (E2759, 

Sigma) and were trypsinized in a ratio of 1:8 once a week. Human brain endothelial 

cell line hCMEC/D3 were obtained from Prof. Couraud (Weksler et al., 2005) and 

were maintained in EBM-2 (C-4147, Lonza, Cologne, Germany) medium 

supplemented according to the manufacturer’s instruction with the components of the 

EGM
®

-2 bullet kit (C-3162, Lonza, FBS, VEGF, R
3
-IGF-1, hEGF, hbFGF, heparin, 

ascorbic acid, gentamycine and amphotericin B) without hydrocortisone. hCMEC/D3 

cells were splitted in a ratio of 1:3 onto gelatine coated cell culture flasks once a 

week. Growth media were renewed every 2-3 days. In order to obtain soluble factors 

secreted from HPMEC-ST1.6R and hCMEC/D3 cells growth medium supernatants 

were collected from non-confluent cell layers after 3-5 days after seeding on 75 cm
2
 



Original publication in: Neuhaus et al., Differentiation 84 (2012) 294-304.; 

http://dx.doi.org/10.1016/j.diff.2012.08.006 

 - 7 - 

tissue flasks and sterile-filtered before usage. The terms ST1, ST1-cond., D3 and D3-

cond. are used in the text for fresh or conditioned (cond.) growth medium of the 

corresponding cells (ST1=HPMEC-ST1.6R, D3=hCMEC/D3). H441 cells were used 

between passages 56-76, HPMEC-ST1.6R between passages 30-37 and hCMEC/D3 

between passages 17-34.  

 

2.2. Transwell model experiments 

For Transwell insert experiments H441 cells were seeded at a cell density of 23,000 

cells/cm
2
 onto collagen-I (0.01%, C7661, Sigma) coated 6-well inserts (353090, BD, 

Heidelberg, Germany, pore size 0,4 µm, PVDF, transparent, apical volume 2 ml, 

basolateral volume 3 ml). Medium was renewed every 2-3 days. After five days of 

culture it was started to add dexamethasone (10, 100, 300 or 1000 nmol/l) to the 

apical side with every medium change in a ratio of 1:1000 of the appropriate ethanolic 

stock solution. In order to assess the development of the barrier properties the 

transepithelial electrical resistance (TEER) was determined using a WPI device with 

chopstick electrodes (World Presicion Instruments, Berlin, Germany) as previously 

published (Neuhaus et al., 2008). In addition to the TEER measurement, transport 

studies with the paracellular marker fluorescein were undertaken. 10 µmol/l 

fluorescein was added in the apical compartment to begin the transport studies. 300 µl 

samples were taken after 15, 45, 105, 165 and 225 minutes from the basolateral side 

and were replaced after each sampling step with 300 µl fresh, prewarmed H441 

medium to maintain the same hydrostatic pressure conditions during the entire 

transport experiment. Fluorescence of samples, stock solution and supernatants of the 

apical compartment after the end of the experiment (90 µl/well in a black 96-well 

plate from GreinerBioone) were measured with a Tecan GeniosPro (excitation 
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wavelength: 485 nm; emission wavelength: 535 nm). Calculation of the permeability 

coefficients was accomplished according the clearance principle as previously 

published (Neuhaus et al., 2008) and described in the supplementary file in detail. In 

order to ease the comparison between different experiments, the permeability 

coefficient values of the control experiments were set to 100% and the other results 

within the same experiment were normalized to the 100% of the control experiment.  

 

2.3. mRNA analysis 

mRNA analysis is described in the supplementary file in detail. In brief. mRNA of 

cells grown on Transwell inserts was isolated with a Nucleospin-RNAII Kit 

(Macherey Nagel, Düren, Germany) according to the manufacturer’s instructions. 

RNA concentrations were determined by means of a Nanodrop ND 2000 

spectrophotometer (FisherScientific, Schwerte, Germany). 1 µg total RNA per sample 

were reversely transcribed to 20 µl cDNA by means of the high capacity cDNA-kit 

(with random primer and RNAse inhibitor) from Applied Biosystems (Life 

Technologies GmbH, Darmstadt, Germany) according to the manufacturer’s 

instruction. qPCR analysis were performed using either FAM-labelled probes for 

18SrRNA (endogenous control, EUK18SrRNA, 4352930-0810022, Taqman®, 

Applied Biosystems), SP-B (Hs00167036_m1 Taqman®, Applied Biosystems), 

caveolin-1 (Hs00971716_m1; Taqman®, Applied Biosystems) and RAGE 

(Hs00153957_m1, Taqman®, Applied Biosystems) or primers from MWG Eurofins 

(Ebersberg, Germany) for claudin-1, claudin-3, claudin-4, claudin-5, occludin, ZO-1, 

and 18SrRNA. Primer sequences and detailed qPCR conditions are described in the 

supplementary file. qPCR analysis were conducted by means of a 7300 Real-Time 

PCR System (Applied Biosystems). Each sample was analyzed as triplicate. Relative 
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mRNA abundances to 18S rRNA were calculated by the dCt method using following 

formula: 2
(Ct of 18S rRNA-Ct of gene of interest)

, where Ct is the threshold cycle value. For the 

qualitative proof of the presence of tight junctional proteins cDNA samples were 

amplified with a 2720 Thermal Cycler (Applied Biosystems) and amplification 

products were separated on a 2 % agarose gel in TAE-buffer with a peqGOLD 50 bp 

DNA-ladder (PEQLAB Biotechnologie GmbH, Erlangen, Germany) as marker at 90 

V for half an hour. Bands were then visualised by UV-excited ethidium bromide using 

an ImageMaster VDS (Pharmacia Biotech). 

 

2.4. Western blotting 

Western blotting analysis is described in the supplementary file in detail. In brief, 

H441 cells cultured on 6-well inserts were scraped in RIPA buffer on ice. Sample’s 

protein concentrations were determined by a Pierce BCA assay (FisherScientific). 20 

µg protein per lane for claudin-1,-3,-4 and RAGE, 30 µg protein per lane for claudin-

5, SP-B and caveolin-1 analysis were loaded onto 15% SDS-PAGE gels. After gel 

electrophoresis proteins were immunoblotted onto PVDF membranes by means of a 

semi-dry blotter. Membranes were blocked with 5% milk powder in PBS for 1 hour 

and primary antibodies were applied in 0.5% BSA/PBS solution at 4°C over night. 

Antibodies against claudin-1, claudin-3, claudin-5 (all 1:200), SP-B and caveolin-1 

(1:100) were rabbit polyclonal (519000, 341700, 341600, Zymed
®

, Life technologies; 

sc-894, sc-13978, Santa Cruz Biotechnology, Heidelberg, Germany), antibodies 

against claudin-4 (1:200, 329400, Zymed
®

, Life technologies) and β-actin (1:15000, 

A5441, Sigma) were mouse monoclonal and antibody against RAGE (1:100, sc-8230, 

Santa Cruz Biotechnoloy) was goat polyclonal. Membranes were washed with 0.1% 

Tween 20/PBS for three times for 10 minutes and were blocked a further time with 
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5% milk powder/PBS for 25 minutes at RT. Afterwards membranes were incubated 

with secondary HRP-labelled antibodies diluted 1:1000-5000 in 1% BSA/PBS at RT 

for 1 hour and was then washed for three times with 0.1% Tween 20/PBS. To 

visualize the bands western blots were incubated with ECL-solutions for 2 minutes 

and were developed using a FluorChem FC2 Multiimager II (Alpha Innotech). 

Density values of the single tight junction protein bands were calculated with the 

software Alpha View and were related to the appropriate β-actin bands.  

 

2.5. Immunofluorescence microscopy 

Immunofluorescence microscopy was carried out as published recently (Neuhaus et 

al., 2008) and is described in the supplementary file in detail.  

 

2.6. Data analysis 

Data are presented as means±SD. The statistical significance between culture 

conditions was determined by a t-test utilizing SigmaStat3.5 software. In case of test 

failure on normality or equality of variance of the used data set, a Mann-Whitney 

Rank Sum Test was carried out. A probability value less than 0.05 was considered 

statistically significant.  

 

3. Results  

 

3.1. Dexamethasone influences tightness of the barrier in a concentration 

dependent manner  

After five days of culture of H441 cells onto 6-well Transwell inserts, the surface was 

approximately 80% confluent and dexamethasone was added apically in different 
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concentrations. Figure 1A shows the time course of TEER values of H441 cell layers 

treated with dexamethasone. H441 cell layers grown in medium without 

dexamethasone started to form holes on days 8-10 until cells completely detached on 

days 13-15. TEER values were partly still measurable in these time frames, but light 

microscopic control revealed holes and detachment of the cells indicating that 

dexamethasone was necessary to stabilize the confluent layer onto the inserts after 

reaching confluence. Highest TEER values of confluent cell layers were detected on 

days 14-15. Addition of 10 nmol/l dexamethasone increased TEER from 122 ± 33 

Ohm*cm
2
 to 438 ± 9 Ohm*cm

2
 on day 15, whereas 100 nmol/l elevated TEER only 

to 322 ± 17 Ohm*cm
2
 (p<0.05, mean ± SD, n=3). This concentration dependent 

negative tendency was confirmed including data of 30 nmol/l (400 ± 16 Ohm*cm
2
), 

300 nmol/l (245 ± 13 Ohm*cm
2
) and 1 µmol/l (207 ± 11 Ohm*cm

2
) dexamethasone.  

 

3.2. Tight junction proteins claudin-1,-3,-4,-5, occludin and ZO-1 are expressed 

in the alveolar epithelium in vitro model 

In order to investigate the presence of some main tight junctional proteins in our 

model, mRNA analysis of claudin-1, claudin-3, claudin-4, claudin-5, occludin and 

ZO-1 of H441 samples of day 15 treated with 100 nmol/l dexamethasone (apical 

addition) was accomplished. PCR products separated on an agarose gel confirmed the 

presence of all analyzed tight junctional molecules, but the band of claudin-5 was 

very weak indicating low expression (figure 1B). Thus, qPCR with GAPDH as 

endogenous control was carried out in order to rank the abundances of the tight 

junctional proteins which were then related to claudin-1. Claudin-4 was the most 

abundant (7-fold) tight junctional protein, followed by occludin (4-fold), ZO-1 (1.24-

fold), claudin-1 (1-fold) and claudin-3 (0.46-fold). Confirming the agarose gel result 



Original publication in: Neuhaus et al., Differentiation 84 (2012) 294-304.; 

http://dx.doi.org/10.1016/j.diff.2012.08.006 

 - 12 - 

claudin-5 exhibited the weakest, but detectable mRNA expression (0.001-fold). In 

order to confirm the presence of tight junction proteins on the protein level, 

immunofluorescence images of H441 cells (day 15) treated with 100 nmol/l 

dexamethasone were generated. As shown in figure 1C, pictures demonstrate the 

presence of claudin-1, claudin-3, claudin-4, claudin-5, occludin and ZO-1 in H441 

cells grown on Transwell inserts for 15 days also on the protein level. In concordance 

with the low mRNA expression of claudin-5, only for claudin-5 it was not able to 

present a continuous tight junction network over the entire H441 cell layer.  

 

3.3. Dexamethasone modulates expression of ATI markers caveolin-1 and RAGE 

as well as of ATII marker SP-B 

One major aim was to generate a model consisting of cells expressing ATI as well as 

ATII markers in order to mimic both types of alveolar epithelial cells in one model. 

Therefore, the expression of mRNA for the ATI markers, caveolin-1 and RAGE, as 

well as the ATII marker, SP-B, was examined in the presence and absence of 

dexamethasone by qPCR. For this, H441 cells were grown on Transwell inserts as 

before for the TEER-experiments and were lysed for mRNA analysis on days 7 and 

15. ATI markers caveolin-1 and RAGE were regulated in a similar manner. As shown 

in figure 2A, mRNA expression of caveolin-1 as well as RAGE did not change 

significantly on day 7 after apical addition of 10 or 100 nmol/l dexamethasone on day 

5, but was significantly decreased to 0.37-fold (caveolin-1, 10 nmol/l dexamethasone, 

p<0.05) or to 0.64-fold (RAGE, 10 nmol/l dexamethasone, p<0.05) on day 15 in 

comparison to the non-treated control of day 7. Interestingly, the treatment of H441 

cells with 100 nmol/l dexamethasone revealed a statistically significant increase of 

caveolin-1 (p<0.05) and RAGE (p<0.05) mRNA expression compared to the 10 
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nmol/l dexamethasone treated cells on day 15. Untreated H441 samples of day 15 

were not obtainable since the cells started to detach at days 8-10 as mentioned above. 

In case of cell type 2 marker SP-B, dexamethasone induced SP-B expression very 

significantly in a concentration dependent manner. For example, 10 nmol/l 

dexamethasone increased SP-B expression on day 7 7.9-fold (p<0.05). which was 

further increased by 100 nmol/l to 107.8-fold (p<0.05). On day 15 SP-B mRNA 

expression of dexamethasone treated samples was still higher than on day 7 without 

dexamethasone, but decreased in comparison to day 7 dexamethasone treated 

samples. In detail, H441-cells treated with 10 nmol/l dexamethasone revealed a 2.3-

fold SP-B expression and 100 nmol/l dexamethasone application still increased SP-B 

expression 16-fold in comparison to the 7 days old untreated cell samples (p<0.05). In 

order to confirm the presence of type 1 and type 2 cell markers caveolin-1, RAGE and 

SP-B on the protein level immunofluorescence images of H441 cells (day 15) treated 

with 100 nmol/l dexamethasone were generated. As shown in figure 2B, pictures 

demonstrate the presence of caveolin-1, RAGE and SP-B in H441 cells grown on 

Transwell inserts for 15 days also on the protein level. Caveolin-1 was found at the 

cell boarders, whereas RAGE and SP-B were recognizable in the cytosol.  

 

3.4. Soluble factors derived from lung endothelial cells enhance, but from brain 

endothelial cells decrease the tightness of the alveolar epithelial barrier  

In order to study the effects of soluble factors derived from the lung endothelial cell 

line HPMEC-ST1.6R, H441 cells were seeded on the apical side of the Transwell 

inserts. In the apical compartment H441 cells were fed with H441 growth medium as 

before, whereas different growth media were added in the basolateral side during the 

entire cultivation. The effects of ST1-medium, conditioned ST1-medium, D3-medium 
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and conditioned D3-medium were studied in comparison to the original H441 

medium. Conditioned ST1-medium was obtained from lung endothelial cell line 

HPMEC-ST1.6R, conditioned D3-medium from human brain microvascular cell line 

hCMEM/D3, whereas ST1 and D3-medium represent the fresh, unconsumed growth 

media. It was decided to add 100 nmol/l dexamethasone to the apical side beginning 

on day 5 in order to obtain cell layers with a distinct barrier (ATI cell feature), but 

also a maximum of SP-B expression (ATII cell feature). Highest tightness of H441 

cell layers was achieved after 15 days of culture (figure 1A), thus data comparison 

focused on this time point.  

Figure 3 depicts the influence of the different growth media on TEER and 

permeability of the paracellular marker fluorescein across H441 cell layers. In 

comparison to the standard H441 medium (set to 100%), basolateral addition of 

conditioned ST1 medium increased TEER of H441 cell layers significantly to 127.1 ± 

6.4 % (p<0.05). In contrast to ST1 media, basolaterally added conditioned D3 

medium derived from the human blood-brain barrier cell line hCMEC/D3 decreased 

TEER to 44.1 ± 9.7 %, which was significantly different from both H441 and fresh 

D3 medium (both p<0.01).  

In order to support TEER data, additional permeability experiments with the 

paracellular marker fluorescein were carried out. Calculated permeability coefficients 

were between 0.22-3.35 µm/min. To facilitate data comparability, permeability 

coefficients obtained across cell layers grown in H441 medium in both compartments 

were set to 100 % and the others were related to them. Basolaterally added ST1 

medium decreased fluorescein permeability to 85.3 ± 4.7 %, which was further 

decreased by conditioned ST1 medium to 61.1 ± 1.5 %. These differences were 

statistically significant (ST1 vs. H441: p<0.05, ST1 cond. vs. H441: p<0.01, ST1 vs. 
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ST1 cond.: p<0.01) and confirmed TEER data that soluble factors secreted from lung 

endothelial cells maintain or even enhance the barrier in our alveolar epithelium in 

vitro model. In concordance to the TEER data, application of conditioned D3 medium 

increased the permeability of fluorescein to 279.2 ± 4.6 % in comparison to 

basolateral H441 medium. Basolateral fresh D3 medium did not change the 

permeability of fluorescein significantly.  

 

3.5. Alterations of the expression patterns of claudins accord with tightness 

changes of the alveolar barrier  

In order to investigate the functional changes of the tightness on the molecular level 

the expression of claudin-1, -3, -4 and -5 were analyzed. The changes of mRNA 

expression of claudin-1 and -3 matched well to the observed TEER values (Figure 4). 

mRNA expression of claudin-4 was interestingly increased by both conditioned media 

(ST-1 cond.: 1.28 ± 0.19 –fold; D3 cond.: 1.48 ± 0.11-fold) and were statistically 

significant in comparison to their corresponding fresh media. In the case of claudin-5 

no significant changes were detected. 

In order to confirm mRNA data and to include possible non-genomic effects on the 

tight junction molecules, the expression of the proteins was also analyzed by western 

blotting. The influence of growth media on the protein expression of claudin-1 and 

claudin-3 was similar to the effects onto the mRNA expression as well as on TEER. 

However, only the differences of samples treated with conditioned D3-medium 

(claudin-1: 46.7 ± 0.05 %; claudin-3: 68.9 ± 0.06 %) exhibited a statistically 

significant reduction in comparison to the fresh D3 medium (claudin-1: 91.1 ± 0.08 

%; claudin-3: 144 ± 29.9 %) as well as to the H441-medium (p<0.05, mean ± SD, 

n=3). In the case of claudin-4 no significant difference was detected on the protein 
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level. In contrast to mRNA data of claudin-5, analysis of protein amounts of claudin-5 

revealed significant differences. ST1 medium increased claudin-5 expression to 192.1 

± 69.1 % (p<0.05, mean ± SD, n=3), which was further elevated to 225.6 % by 

conditioned ST1 medium, whereas conditioned medium of brain endothelial cells (D3 

cond.) decreased claudin-5 expression to 48.8 ± 15.7 % (p<0.05, mean ± SD, n=3)  

 

3.6. Soluble factors of lung and brain endothelial cells modulate the expression of 

ATI markers caveolin-1 and RAGE as well as of ATII marker SP-B  

In order to assess whether the changes of the H441 barrier by soluble factors of lung 

and brain endothelial cells correlated with alterations of ATI and ATII markers, 

mRNA and protein expressions of caveolin-1, RAGE and SP-B were analyzed. On the 

mRNA level caveolin-1 was significantly upregulated 2.28-fold (p<0.05) by 

conditioned D3-medium, which was concordant with a 2.75-fold increase of the 

protein expression (not significant). In contrast to caveolin-1, mRNA of the second 

ATI marker RAGE was significantly downregulated by the conditioned ST1 medium 

(0.49-fold, p<0.05) as well as by the conditioned D3 medium (0.67-fold, p<0.05). 

This was also confirmed by the according western blot data (ST1 cond.: 0.78-fold, 

n.s.; D3 cond.: 0.82-fold, p<0.05). Similar to caveolin-1, ATII marker SP-B was 

significantly upregulated 2.51-fold by conditioned D3 medium on the mRNA level, 

which was consistent with the 2.51 fold increase of SP-B protein expression. In 

summary, the two ATI markers caveolin-1 and RAGE were differentially regulated by 

soluble factors of lung or brain endothelial cells. Furthermore, no direct correlation 

between the expression of ATI marker expression and barrier functionality was found.  
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4. Discussion  

 

The alveolar epithelial barrier function is involved in different pulmonary physiology 

processes, such as fluid homeostasis, defence mechanisms and gas exchange. Also in 

pulmonary disease the alveolar epithelial barrier has been shown to play a central role 

(Godfrey, 1997; Matthay, 1994). Clinical studies have highlighted the importance of 

this intact barrier function to clinical outcomes (Maniatis et al., 2008; Ware and 

Matthay, 2000, 2001). Since the microenvironment (neighbouring cells, basal matrix) 

of biological barriers in mammalian organisms can regulate the barrier’s functionality 

in a significant manner, we aimed at investigating the influence of the lung 

endothelium on the alveolar epithelium in an in vitro model.  

Up to now, only few in vitro models based on stable cell lines of the alveolar 

epithelium are established, which consist of cells expressing either type I or type II 

markers and form a tight barrier (Hermanns et al., 2004, 2009, 2010). Currently, only 

two promising cell lines are available to model the alveolar epithelium, namely A549 

and NCI H441. Several reports showed that cell line A549 is useful as a type II cell 

model. However, attempts to transdifferentiate them into type I cells and build up a 

sufficient barrier have failed until now (Hermanns et al., 2004). In case of H441 cells, 

recent publications showed that treatment of H441 cells with dexamethasone leads to 

the upregulation of the type-2 marker, SP-B, to dome formation, to a tight barrier and 

an increase of the expression of tight junctional molecule claudin-4 (Hermanns et al., 

2004; Ladenburger et al., 2010; Shlyonsky et al., 2005). Consequently, we decided to 

establish an alveolar cell culture model based on human cell line H441 and to use this 

model to study the influence of soluble factors derived from lung as well as from 

brain endothelial cells.  
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First, in order to validate this cell culture model the influence of dexamethasone on 

the barrier (TEER) and on the expression of caveolin-1, RAGE (type-1 markers) and 

SP-B (type-2 marker) was investigated. It was known from other studies with primary 

alveolar type II cells as well as cell lines that addition of dexamethasone or 

hydrocortisone was necessary to form a barrier (Daugherty et al., 2004; Hermanns et 

al., 2004; Hermanns et al., 2009; Steimer et al., 2007). To our best knowledge, we are 

the first to present data showing that the tightness of the H441 barrier is dependent on 

the dexamethasone concentration. This seems to be important considering the fact that 

reseachers applied dexamethasone in a rather wide concentration range (50 nmol/l – 1 

µmol/l) for their H441 studies (Hermanns et al., 2010; Shlyonsky et al., 2005). One 

major aim of the establishment of the H441-model was to generate tight cell layers 

which at the same time possess type I and type II markers. Previous studies showed 

that H441 layers treated with dexamethasone were able to exhibit several properties of 

the alveolar epithelium such as apical villi, laminar as well as multivesicular bodies, 

type-2 marker TTF-1 as well as epithelial marker E-cadherin (Hermanns et al., 2004, 

2010). Thus, we have decided to concentrate on the analysis of the markers caveolin-

1, RAGE and SP-B in order to present relevant, but also novel data of H441 cells 

concerning the presence of both cell types within the H441 Transwell model. 

Ladenburger et al. (2010) showed recently that dexamethasone was able to increase 

SP-B in H441 cells significantly. This was concordant with our results where 

dexamethasone increased SP-B in a concentration dependent manner, whereas 

caveolin-1 and RAGE expression was not altered compared to the untreated samples 

on day 7. Interestingly, immunofluoresence microscopy of double-stainings against 

caveolin-1 and SP-B showed cells expressing caveolin-1 but not SP-B at the same 

time confirming the presence of two differentially differentiated cell types in the 
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H441-layers representing type 1 and type 2 cells (see supplementary file, figure 2). So 

we were able to show that the established H441 model consists of cells expressing 

both type 1 (caveolin-1, RAGE) and type 2 (SP-B) markers on the mRNA as well as 

on the protein level and that the marker expression can be regulated by 

dexamethasone.  

With regard to the tightness of the established H441-Transwell model, TEER values 

indicated that the chosen culture conditions resulted in a distinct barrier which is 

associated on the molecular level with the presence of tight junctional proteins. For 

the alveolar epithelium the presence of claudin-1,-3,-4,-5,-7 and 18 were reported 

(Daugherty et al., 2004; Kaarteenaho et al., 2010; Koval et al., 2010; Wang et al., 

2003). Claudins are important for a stable barrier of the alveolar epithelium in health 

as well as in disease (Capaldo and Nusrat, 2009; Coyne et al., 2002; Crosby and 

Waters, 2010; Daugherty et al., 2004; Godfrey et al., 1993; Lecuona et al., 1999; 

Soini, 2011; Wray et al., 2009). We have analyzed the presence of ZO-1, occludin, 

claudin-1,-3,-4 and -5 on the mRNA as well as on the protein level in our established 

H441-model. In case of ZO-1 and occludin, their presence was already shown for 

H441 layers (Hermanns et al., 2004, 2010; Shlyonsky et al., 2005), whereas the 

analysis of claudin expression was carried out for the first time. In comparison to 

claudin-1,-3 and -4, the expression of claudin-5 was very weak in our model. Claudin-

1 is relative specific for type I cells (Daugherty et al., 2004), whereas claudin-3 and 

claudin-4 were found mainly in type II pneumocytes (Kaarteenaho-Wiik and Soini, 

2009). In human lung development claudin-5 was only weakly expressed in the lung 

epithelium during the pseudoglandular and the canalicular phase observed by 

immunofluorescence microscopy. In the later phases (saccular and alveolar) claudin-5 

was not longer detected and only found in the surrounding lung microvasculature 
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(Kaarteenaho et al., 2010), whereas claudin-3 and claudin-4 were found in the alveoli 

during all developmental stages. These facts supported our data and demonstrate that 

our model mimics several properties of the alveolar epithelium including both type I 

and type II cells of the alveolar epithelium.  

After establishment and characterisation of our H441-model the influence of 

conditioned endothelial growth media on its barrier properties was investigated. 

Recently, it was shown that co-cultures of primary type II cells as well as of H441- 

layers with either primary lung endothelial cells or the endothelial cell line ISO-HAS-

I resulted in significantly increased tightness indicated by an increase of TEER and 

ZO-1 localisation (Hermanns et al., 2009, 2010). In our case, application of 

conditioned medium of HPMEC-ST1.6R cells to the basolateral compartment 

increased the tightness of the H441-layers shown by TEER values and fluorescein 

permeability. On the contrary, conditioned medium of human brain endothelial cells 

hCMEC/D3 decreased the tightness of H441-layers significantly confirming tissue-

specific effects. To link these observations on the functional level to the molecular 

level mRNA as well as protein expression of claudin-1,-3,-4 and -5 and the alveolar 

cell type markers (caveolin-1, RAGE, SP-B) were quantified by qPCR and western 

blotting. Interestingly, almost the same results to ours were found by Fernandez et al. 

(2007), who analyzed the claudin expression patterns of rat lungs after chronic 

alcohol ingestion. Claudin-1 and -3 were reduced in lung tissue, whereas claudin-4 

was unchanged. Also concordant to our results, they found no changes of claudin-5 

mRNA, but reported changes of claudin-5 on the protein level. This confirmed our 

assumption that claudin-5 is regulated on the posttranscriptional level. Up-regulation 

of claudin-5 was reported in alveolar epithelial cell layers with increased tightness 

(Wang et al., 2003). Since the basal expression of claudin-5 in our H441-cells is quite 
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low in comparison to claudin-1,-3 and -4, a significant regulation of claudin-5 is 

maybe connected with a significant change in barrier functionality. In this context, we 

were able to observe a distinct up-regulation of the claudin-5 network of H441-layers 

fed basolaterally with fresh ST1-medium by immunofluorescence microscopy (see 

supplementary file, figure 1). With regard to the ATI and ATII markers, no direct 

correlation was found between changes of the barrier tightness and the expression of 

caveolin-1, RAGE or SP-B. Notably, caveolin-1 and SP-B were regulated in a similar 

manner, whereas RAGE expression decreased due to addition of conditioned 

endothelial medium independent from the tissue origin. These data showed that the 

two ATI markers caveolin-1 and RAGE reacted differently on the endothelial factors 

in our model suggesting differences in their usability as ATI markers. This was 

concordant to the classification of ATI markers by McElroy and Kaspar (2004). They 

added caveolin-1 to the group of ATI selective proteins, but RAGE only to the ATI 

selective/associated markers, since mRNA of RAGE was also detected in ATII cells 

(McElroy and Kaspar, 2004).  

In summary, after validation of the H441-cell culture as an alveolar epithelium model 

consisting of cells expressing either ATI or ATII markers, it was shown for the first 

time that soluble factors of lung endothelial cells (HPMEC-ST1.6R) enhance the 

barrier of the alveolar epithelium. Furthermore, this functional improvement of the 

barrier was linked with the quantitative expression of claudins on the mRNA as well 

as on the protein level. Moreover, soluble factors of brain endothelial cells 

(hCMEC/D3) disrupted the barrier’s integrity proving tissue-specific effects of 

endothelial cells. With regard to the clinical context, influencing the alveolar 

permeability by manipulation of the claudin expression may be a future target in the 

treatment of different lung diseases (Soini, 2011). 
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Figure Captions 

 

Fig. 1. Concentration dependent influence of dexamethasone on the time courses of 

TEER development of H441-cell layers (A). Presence of tight junction molecules 

claudin-1 (233 bp), claudin-3 (247 bp), claudin-4 (187 bp), claudin-5 (239 bp), 

occludin (170 bp) and ZO-1 (224 bp) is proven on mRNA level of H441-layers 

treated with 100 nmol/l dexamethasone (apical) and lysed on day 15, relative 

abundances were determined by qPCR presented in the table below the agarose gel 

image (B). Immunofluorescence microscopic images of H441-layers (day 15) treated 

with 100 nmol/l dexamethason (apical) prove the presence on the protein level and 

localisation at the plasma membrane of claudin-1, -3,-4 and -5, occludin and ZO-1 

(green=tight junction protein, red=propidium iodide stained nuclei) (C). In the case of 

claudin-5, low predicted abundance by mRNA analysis was confirmed and visualized 

by immunofluorescence microscopy. 

Fig. 2. Concentration dependent influence of dexamethasone on the mRNA 

expression of cell type-I markers caveolin-1 and RAGE and cell type-II marker SP-B 

in H441-cell layers on day 7 and day 15 determined by qPCR (A). 

Immunofluorescence microscopic images of H441-layers (day 15) treated with 100 

nmol/l dexamethason (apical) prove the presence on the protein level and the expected 

localisation of caveolin-1, RAGE and SP-B. (green=marker protein, red=propidium 

iodide stained nuclei) (B). Data are presented as means ± SD (n=3). Statistically 

significant differences are marked by * (p<0.05, t-test) in comparison to the samples 

of non-treated cells and by # (p<0.05, t-test) in comparison to 10 nmol/l 

dexamthasone treated cells on day 15. 



Original publication in: Neuhaus et al., Differentiation 84 (2012) 294-304.; 

http://dx.doi.org/10.1016/j.diff.2012.08.006 

 - 30 - 

Fig. 3. Influence of soluble factors from lung and brain endothelial cells on the barrier 

of the H441 model. H441 cells were fed basolaterally with fresh or conditioned 

growth media from human lung endothelial cell line HPMEC-ST1.6R (ST1) or from 

human brain endothelial cell line hCMEC/D3 (D3) for 15 days, 100 nmol/l 

dexamethasone was added in the apical side with every medium exchange from day 5 

on. Changes of the barrier functionality of H441 layers were measured by TEER (A) 

and by the permeability of paracellular marker fluorescein (B). H441 means 

conventional H441 growth medium, ST1 and D3 are the fresh growth media for 

HPMEC-ST1.6R and hCMEC/D3 cells, whereas ST1-cond. and D3-cond. means the 

conditioned growth media obtained from HPMEC-ST1.6R and hCMEC/D3 cells. 

Data are normalized to data obtained from H441 cell layers grown in H441-medium 

which were set to 100% and are presented as means ± SD (n=3). Statistically 

significant differences are marked by # (p<0.05, t-test) in comparison to H441-growth 

medium and by * (p<0.05, t-test) in comparison to the according fresh medium ST1 

or D3. 

Fig. 4. Influence of soluble factors from lung and brain endothelial cells on the 

mRNA expression of claudins of H441 layers. H441 cells were fed basolaterally with 

fresh or conditioned growth media from human lung endothelial cell line HPMEC-

ST1.6R (ST1) or from human brain endothelial cell line hCMEC/D3 (D3) for 15 days, 

100 nmol/l dexamethasone was added in the apical side with every medium exchange 

from day 5 on. Changes of the mRNA expression of claudin-1, claudin-3, claudin-4 

and claudin-5 of H441 cell layers were measured by qPCR. H441 means conventional 

H441 growth medium, ST1 and D3 are the fresh growth media for HPMEC-ST1.6R 

and hCMEC/D3 cells, whereas ST1-cond. and D3-cond. means the conditioned 

growth media obtained from HPMEC-ST1.6R and hCMEC/D3 cells. Data are 
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normalized to data obtained from H441 cell layers grown in H441-medium which 

were set to 1 and are presented as means ± SD (n=3). Statistically significant 

differences are marked by * (p<0.05, t-test) in comparison to the according fresh 

medium ST1 or D3. 

Fig. 5. Influence of soluble factors from lung and brain endothelial cells on the 

protein expression of claudins of H441 layers. H441 cells were fed basolaterally with 

fresh or conditioned growth media from human lung endothelial cell line HPMEC-

ST1.6R (ST1) or from human brain endothelial cell line hCMEC/D3 (D3) for 15 days, 

100 nmol/l dexamethasone was added in the apical side with every medium exchange 

from day 5 on. Changes of the protein expression of claudin-1, claudin-3, claudin-4 

and claudin-5 of H441 cell layers were measured by western blotting normalized to β-

actin. H441 means conventional H441 growth medium, ST1 and D3 are the fresh 

growth media for HPMEC-ST1.6R and hCMEC/D3 cells, whereas ST1-cond. and 

D3-cond. means the conditioned growth media obtained from HPMEC-ST1.6R and 

hCMEC/D3 cells. One representative western blot out of three with similar results is 

shown. Data are normalized to data obtained from H441 cell layers grown in H441-

medium which were set to 1 and are presented as means ± SD (n=3 per condition). 

Statistically significant differences are marked by # (p<0.05, t-test) in comparison to 

H441-growth medium and by * (p<0.05, t-test) in comparison to the according fresh 

medium ST1 or D3. 

 

Fig. 6. Influence of soluble factors from lung and brain endothelial cells on the 

mRNA as well as protein expression of cell type-I markers caveolin-1 and RAGE and 

cell type-II marker SP-B of H441 layers. H441 cells were fed basolaterally with fresh 

or conditioned growth media from human lung endothelial cell line HPMEC-ST1.6R 
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(ST1) or from human brain endothelial cell line hCMEC/D3 (D3) for 15 days, 100 

nmol/l dexamethasone was added in the apical side with every medium exchange 

from day 5 on. Changes of the expression of caveolin-1, RAGE and SP-B of H441 

cell layers were measured by qPCR (mRNA) or western blotting normalized to β-

actin (protein). H441 means conventional H441 growth medium, ST1 and D3 are the 

fresh growth media for HPMEC-ST1.6R and hCMEC/D3 cells, whereas ST1-cond. 

and D3-cond. means the conditioned growth media obtained from HPMEC-ST1.6R 

and hCMEC/D3 cells. One representative western blot out of three with similar results 

is shown. Data are normalized to data obtained from H441 cell layers grown in H441-

medium which were set to 1 and are presented as means ± SD (n=3 per condition). 

Statistically significant differences are marked by # (p<0.05, t-test) in comparison to 

H441-growth medium and by * (p<0.05, t-test) in comparison to the according fresh 

medium ST1 or D3. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 


