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1. Introduction

Streaming of videos has become the major traffic generator in today’s Internet and
the video traffic share is still increasing. According to Cisco’s annual Visual Network-
ing Index report [4], in 2012, 60 % of the global Internet IP traffic was generated by
video streaming services. Furthermore, the study predicts further increase to 73 %
by 2017. At the same time, advances in the fields of mobile communications and
embedded devices lead to a widespread adoption of Internet video enabled mobile
and wireless devices (e.g. Smartphones). The report predicts that by 2017, the
traffic originating from mobile and wireless devices will exceed the traffic from wired
devices and states that mobile video traffic was the source of roughly half of the
mobile IP traffic at the end of 2012.

With the increasing importance of Internet video streaming in today’s world, video
content provider find themselves in a highly competitive market where user expec-
tations are high and customer loyalty depends strongly on the user’s satisfaction
with the provided service. In particular paying customers expect their viewing ex-
perience to be the same across all their viewing devices and independently of their
currently utilized Internet access technology. However, providing video streaming
services is costly in terms of storage space, required bandwidth and generated traffic.
Therefore, content providers face a trade-off between the user perceived Quality of
Experience (QoE) [51] and the costs for providing the service.

Today, a variety of transport and application protocols exist for providing video
streaming services, but the one utilized depends on the scenario in mind. Video
streaming services can be divided up in three categories: Video conferencing, IPTV
and Video-on-Demand services. IPTV and video-conferencing have severe real-time
constraints and thus utilize mostly datagram-based protocols like the RTP/UDP
protocol for the video transmission. Video-on-Demand services in contrast can profit
from pre-encoded content, buffers at the end user’s device, and mostly utilize TCP-
based protocols in combination with progressive streaming for the media delivery.

In recent years, the HT'TP protocol on top of the TCP protocol gained widespread
popularity as a cost-efficient way to distribute pre-encoded video content to cus-
tomers via progressive streaming. This is due to the fact that HTTP-based video
streaming profits from a well-established infrastructure which was originally im-
plemented to efficiently satisfy the increasing demand for web browsing and file
downloads. Large Content Delivery Networks (CDN) are the key components of
that distribution infrastructure. CDNs prevent expensive long-haul data traffic and
delays by distributing HT'TP content to world-wide locations close to the customers.
As of 2012, already 53 % of the global video traffic in the Internet originates from
Content Delivery Networks and that percentage is expected to increase to 65 % by
the year 2017. Furthermore, HTTP media streaming profits from existing HTTP
caching infrastructure, ease of NAT and proxy traversal and firewall friendliness.
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Video delivery through heterogeneous wired and wireless communications net-
works is prone to distortions due to insufficient network resources. This is especially
true in wireless scenarios, where user mobility and insufficient signal strength can
result in a very poor transport service performance (e.g. high packet loss, delays
and low and varying bandwidth). A poor performance of the transport in turn may
degrade the Quality of Experience as perceived by the user, either due to buffer
underruns (i.e. playback interruptions) for TCP-based delivery [36] or image distor-
tions for datagram-based real-time video delivery.

In order to overcome QoE degradations due to insufficient network resources,
content provider have to consider adaptive video streaming. One possibility to im-
plement this for HTTP/TCP streaming is by partitioning the content into small
segments, encode the segments into different quality levels and provide access to the
segments and the quality level details (e.g. resolution, average bitrate). During the
streaming session, a client-centric adaptation algorithm can use the supplied details
to adapt the playback to the current environment. However, a lack of a common
HTTP adaptive streaming standard led to multiple proprietary solutions developed
by major Internet companies like Microsoft (Smooth Streaming), Apple (HTTP Live
Streaming) and Adobe (HTTP Dynamic Streaming) loosely based on the aforemen-
tioned principle. In 2012, the ISO/IEC published the Dynamic Adaptive Stream-
ing over HTTP (MPEG-DASH) standard. As of today, DASH is becoming widely
accepted with major companies announcing their support or having already imple-
mented the standard into their products. MPEG-DASH is typically used with single
layer codecs like H.264/AVC, but recent publications [55] show that scalable video
coding can use the existing HT'TP infrastructure more efficiently. Furthermore, the
layered approach of scalable video coding extends the adaptation options for the
client, since already downloaded segments can be enhanced at a later time.

The influence of distortions on the perceived QoE for non-adaptive video stream-
ing are well reviewed and published. For HTTP streaming, the QoE of the user is
influenced by the initial delay (i.e. the time the client pre-buffers video data) and
the length and frequency of playback interruptions due to a depleted video play-
back buffer. Studies highlight that even low stalling times and frequencies have a
negative impact on the QoE of the user and should therefore be avoided. The first
contribution of this thesis is the identification of QoFE influence factors of adaptive
video streaming by the means of crowd-sourcing and a laboratory study.

MPEG-DASH does not specify how to adapt the playback to the available band-
width and therefore the design of a download/adaptation algorithm is left to the
developer of the client logic. The second contribution of this thesis is the design of
a novel user-centric adaption logic for DASH with SVC. Other download algorithms
for segmented HTTP streaming with single layer and scalable video coding have
been published lately. However, there is little information about the behavior of
these algorithms regarding the identified QoE-influence factors. The third contribu-
tion is a user-centric performance evaluation of three existing adaptation algorithms
and a comparison to the proposed algorithm. In the performance evaluation we also
evaluate the fairness of the algorithms. In one fairness scenario, two clients deploy
the same adaptation algorithm and share one Internet connection. For a fair adapta-
tion algorithm, we expect the behavior of the two clients to be identical. In a second
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fairness scenario, one client shares the Internet connection with a large HT'TP file
download and we expect an even bandwidth distribution between the video stream-
ing and the file download. The forth contribution of this thesis is an evaluation of
the behavior of the algorithms in a two-client and HTTP cross traffic scenario.

The remainder of this thesis is structured as follows. Chapter II gives a brief
introduction to video coding with H.264, the HT'TP adaptive streaming standard
MPEG-DASH, the investigated adaptation algorithms and metrics of Quality of
Experience (QoE) for video streaming. Chapter III presents the methodology and
results of the subjective studies conducted in the course of this thesis to identify the
QoE influence factors of adaptive video streaming. In Chapter IV, we introduce the
proposed adaptation algorithm and the methodology of the performance evaluation.
Chapter V highlights the results of the performance evaluation and compares the
investigated adaptation algorithms. Section VI summarizes the main findings and
gives an outlook towards QoE-centric management of DASH with SVC.
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2. Background and Related Work

In the following, we give a brief introduction of the relevant technologies used in
this thesis and related work published on the specific areas of research. First, we ex-
plain the theory of video coding with H.264 and its scalable video coding extension.
Second, we introduce the progressive media streaming standard MPEG-DASH and
proceed by differentiating progressive HI'TP streaming to datagram-based stream-
ing such as RTP/UDP live streaming. Afterwards, we introduce three published
DASH adaptation algorithms, two for single layer coded video content and one for
scalable video coded content. Next, we point out how progressive video streaming
can benefit from the use of scalable video coding compared to single layer coding. In
the last section of this chapter we discuss the Quality of Experience as perceived by a
user for video streaming in general and in particular for progressive video streaming
utilizing scalable video coding. To do so, we first identify the factors which influ-
ence the user’s perceived quality during a video streaming session and afterwards
introduce objective and subjective methods for assessing and quantifying the user’s
QoE. Next, we start with discussing video coding in general and video coding with
the compression technology H.264 in greater detail.

2.1. Video Coding with H.264

Video coding is the technique of efficiently compressing a sequence of pictures (or
frames) for storage or transmission. Videos are typically recorded as a sequence
of individual pictures with a rate of 24 pictures per second. Depending on the
amount of change (e.g. motion, color variations) during the recorded scene, each of
the captured pictures is likely to differ only slightly from the previous or subsequent
pictures. Block-based compression algorithms like H.264 subdivide each picture into
small blocks and try to identify how the individual blocks move between neighboring
pictures. The identified dependencies within an individual picture and between
subsequent pictures (intra and inter frame coding) allow for efficient coding of the
video. The change (or motion) is described through motion vectors which require
less storage than pixel data and allow to predict the subsequent picture with mostly
blocks encoded in neighboring pictures. Periodical reference pictures are used as
basis for the motion vectors. Several standards for video coding exist, in the following

subsections we introduce the today’s most popular video codec H.264 / Advanced
Video Coding (AVC) and its scalable extension, Scalable Video Coding (SVC).

2.1.1. Advanced Video Coding

H.264/MPEG-4 AVC [7] is a video coding standard developed by the Joint Video
Team (JVT) [9], a cooperation between the ITU-T Video Coding Experts Group
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(VCEG) [8] and the ISO/IEC JTC1 Moving Picture Experts Group (MPEG) [13],
and released as final draft in May 2003. High coding and compression efficiency lead
to a wide-spread adaptation of the standard in today’s Internet. In the following we
give a brief introduction to the prediction hierarchy employed by H.264.

H.264 defines three types of picture frames for the encoded picture stream, I, B
and P frames. I, or inter frames are reference frames, i.e. they can be encoded
independently of other pictures and do not rely on motion vectors. P, or forward-
predicted, frames depend on a preceding I-frame for decoding and consist of motion
vectors and, if necessary, additional encoded pixel data. The encoded pixel data
is required in cases were it is not sufficient or uneconomical to use only motion
vectors for the description of the picture. P-frames can also use other preceding
P-frames as reference. B (bidirectional prediction) frames are similar to P-frames,
but in addition to the reference options available to P-frames, they can reference
to preceding and subsequent P and B frames. A series of a specific number of I, P
and B-frames, with at least one reference frame (i.e. I-frame), is called Group-Of-
Pictures (GOP). A GOP is self-contained and includes all data to decode the time
slice the GOP represents. The number, size and structure of a GOP is not fixed
and can be configured during the encoding process. For adaptive streaming of video
content encoded with H.264, the GOP size dictates the smallest possible unit for
segmentation.

GOP GOP
Figure 2.1.: Example AVC GOP structure

Figure 2.1 illustrates a possible simple GOP structure. The GOP is made of one I
frame, one P frame referencing the I frame and four B frames referencing each other
and the P and I frame. The GOP structure and size can have a significant effect on
the resulting bitrate of the compressed video content [21].

2.1.2. Scalable Video Coding

Scalable Video Coding (SVC) was developed and specified as Annex.G of the H.264 /
AVC video compression standard by the Joint Video Team (ITU-T VCEG, ISO/IEC
MPEG) [56]. SVC encodes the content into a bitstrearn with multiple substreams
where the different substreams can be accessed by dropping parts of the bitstream.
SVC provides three scalability options. Spatial scalability allows for switching to a
different resolution, temporal scalability enables the adaptation of the frame rate and
quality scalability increases and decreases the fidelity of the content. The provided
scalability options allow for the on-the-fly adaptation of the stream to different
network conditions and device capabilities.

In SVC, valid substreams are also called layers. A valid substreams contains
at least the base-layer, a AVC-compatible substream which represents the lowest
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temporal, spatial and quality level of the stream and zero or more enhancement
layers. An enhancement layer always depends on the previous enhancement layer(s)
of that particular scalability dimension. Figure 2.2 illustrates the different scalability
options by example in a three dimensional space using "subcubes".

. YA A, 4
Spatial
Y 4
Scalability ( { ¢
HD15Hz HD 30 Hz HD 60 Hz 1
HD| o Qo Qo »
lsp SD15Hz SD30Hz SD30Hz |
Qo Qo Qo Y \\\73
ANMSPN
9 \)0 \’bv
o/ O o(b,
lcIF CIF15Hz CIF30Hz CIF60 Hz o’\ %
Qo Qo Qo Q
S
15 Hz 30 Hz 60 Hz ‘Temporal
Scalability

Figure 2.2.: Possible Scalability Options for SVC ([66])

The example shows a SVC bitstream with two enhancement layers for each SVC
scalability dimension. The resulting bitstream contains three quality (Q0, Q1, Q2),
spatial (CIF, SD, HD) and temporal (15Hz, 30 Hz, 60 Hz) layers. The base-layer
subcube is located closest to the origin of the coordinate systems and represents the
content in CIF resolution, 15 frames per seconds and a quality level of 0. Increasing
the resolution to HD and the frame-rate to 60 frames per seconds would require all
labeled subcubes in the front, a total of 9 subcubes. Further increasing the quality
by using quality level 3 instead of 0 would require all 27 subcubes.

The supported scalability options come with a cost of coding efficiency compared
to single layer coding. Coding efficiency depends highly on the used encoder config-
uration and the type of content and can not be compared reliable in general. Studies
predict a coding efficiency penalty of approximately 10% - 20 % on average for each
added spatial layer [58, 63, 57| compared to single layer coding.

2.2. MPEG-DASH for Video Streaming

In the following, we introduce Dynamic Adaptive Streaming over HTTP (MPEG-
DASH), a standard for streaming media content over the Internet using the HTTP
protocol. First, we discuss progressive download for HT'TP, the underlying principle
of video streaming over HTTP. With the success of video portals like YouTube,
progressive download over HT'TP has become the most dominant technique for media
content delivery over today’s Internet. Next, we give a brief introduction to DASH,
which extends the progressive download principle to allow for adaptation to the
current network and viewing environment. Third, we compare DASH to datagram-
based streaming techniques. In the last subsection, we introduce three investigated
DASH adaptation algorithms taken from the literature.
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2.2.1. HTTP Progressive Download

Progressive downloading describes the process of continuously transferring data from
a server to a client, typically through the HT'TP protocol. In the context of media
delivery, progressive download is the approach of making the media bitstream avail-
able on a HTTP server for clients to request. The client issues a standard HTTP
request and the server sends the bitstream data to the client. Next, the media
player on the client side buffers a specific amount of data to compensate for short
bandwidth fluctuations and subsequently begins to present the content to the con-
sumer. However, an ordinary HTTP server is content unaware and treats the media
bitstream equal to other files (e.g. text, images, compressed files). Accordingly, the
media content is delivered using best-effort with respect to the available resources
and the client and server are unable to adapt the transfer to the actual media bi-
trate. Hence, a sending rate lower then the media bitrate leads to buffer starvation
(i.e. stalling), a sending rate exceeding the bitrate requires artificial traffic shap-
ing through the TCP congestion control algorithm or large buffers. The impact of
stalling and ineffective use of resources on the Quality of Experience as perceived by
a human viewer and on the Quality of Service are discussed in Section 2.4. In the
subsequent subsection, we describe how DASH extends the progressive downloading
concept for media delivery to allow for adaptive media streaming.

2.2.2. MPEG - Dynamic Adaptive Streaming over HTTP

In recent years, the lack of a common standard for adaptive video streaming over
HTTP lead to the development of commercial and proprietary streaming solutions
like Adobe HTTP Dynamic Streaming [20], Apple HT'TP Live Streaming [22]| and
Microsoft Smooth Streaming [45]. As a result of this development, video streaming
devices have to support multiple protocols to access different streaming services and
users are often limited to the streaming client supplied by the streaming provider.
A common standard for HTTP video streaming would allow standard-compliant
client devices to access any standard-compliant video streaming service. Therefore,
MPEG-DASH is intended to provide a common standard for HT'TP video streaming
over the Internet. The work on Dynamic Streaming over HTTP (DASH) started in
April 2009 when the Moving Picture Experts Group (MPEG [13]) announced a Call
for Proposal to create a HT'TP streaming standard. Three years later, in April 2012,
the standard was published as ISO/IEC 23009-1 [5].

Dynamic Streaming over HI'TP (DASH) defines a control protocol for content
which is a) split into short segments, each representing a none overlapping time
slice of the content; b) where each segment is encoded in different alternatives (e.g.
different resolutions); and c) stored on a HTTP server. The client can choose for
each time slice of the content which alternative to download and display. The DASH
standard is not limited to using different resolutions for the segments, but also differ-
ent audio tracks, subtitles, encoding parameters and further options are supported.
Which video codec to choose and how the client should adapt the playback based
on the options offered, is out of scope of the DASH standard and therefore left to
content providers and client implementations to decide.
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Media Presentation File (MPD)

f Period 1 >< Period 2 > O O O Period n \
C Adaptation Set 1 )< Representation 1 >

< Adaptation Set 2 >
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b C

Figure 2.3.: Media Description File (MPD)
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A Media Presentation Description (MPD) file is specified to describe the properties
and URLs of the content and its segments. Based on the information supplied
by the MPD file the client is able to adapt the playback to the current viewing
environment (e.g. display size, available network bandwidth). The MPD file is
structured as illustrated in Figure 2.3. On the highest level in the hierarchy, the
media is segmented in Periods. A period represents a time period where the set of
adaptation options does not change. For instance, a period could contain the main
movie with several adaptation options, but a second period comprised of out-takes
is only available with a reduced set of options. An Adaptation Set is a logical group
of adaptation options. Typically, there are three adaptation sets defined for a full-
length movie, one for the video, one for the audio and one for the subtitle adaptation
options. An adaptation set in turn contains different representations of the specified
option. For instance, in terms of a video adaptation set, representations can equal
specific content resolutions. The end of the hierarchy marks the Media Segments,
which contain the location (i.e. URL) of the described media content segments in
chronological order.

2.2.3. Comparison to Datagram-based Streaming

In the following, we compare TCP-based video streaming (e.g. HTTP /DASH stream-
ing) with datagram-based streaming (e.g. RTP over UDP). Relevant factors for the
comparison are summarized in Table 2.1 for a typical use case. As transport proto-
col, datagram-based streaming services typically utilize the UDP protocol, whereas
HTTP streaming is based on the stream-orientated TCP transport protocol. UDP is
a connectionless and unreliable transport protocol were delivery and delivery order
of the packets is not guaranteed. TCP in turn offers reliable and in-order delivery
of the data. The UDP transport protocol allows RTP to support multicast traffic,
where a group of nodes in a network can be reached simultaneously and more effi-
ciently by one server. HTTP streaming in turn is limited to unicast traffic, where
each client has to open a separate connection to the streaming server. However,
with streaming over HT'TP the session is managed by the client and does not face
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| Property | RTP/UDP streaming | HTTP/TCP streaming |
Transport Protocol UDP TCP
Supported Topologies Unicast, Multicast Unicast
Content Source Live, pre-encoded Live, pre-encoded
Overhead Low Medium
Consequence of insuffi- || Image distortions, | Stalling
cient bandwidth Stalling
Delay Low Medium to High
Session management Server, Client Client
Firewall/NAT friendly No Yes
Congestion control No Yes

Table 2.1.: Comparison of DASH/HTTP and RTP/UDP

the scalability issues server-side session management, as generally employed by RTP
streaming, implies [30, 54|. Both streaming techniques support live and pre-encoded
content. Regarding protocol overhead, RTP can use the available bandwidth more
efficiently than TCP due to the low overhead of the UDP protocol compared to TCP.
This overhead and longer delay is due to the reliable transport ability of TCP, where
guarantee of data delivery, packet reordering and congestion avoidance is built into
the protocol. In scenarios with multiple clients sharing one Internet connection, the
congestion avoidance feature may lead to a fair bandwidth sharing between two video
streaming sessions, whereas with UDP streaming, the behavior between two clients
is undefined. However, studies show, that with UDP-streaming, a fair bandwidth
sharing is also possible [28]. As consequence of insufficient bandwidth, HTTP/TCP
streaming suffers from buffer underruns (i.e. stallings), if the receiving bandwidth
drops underneath the bitrate of the video and the playback buffer is depleted. RT-
P/UDP in turn exhibits image distortions due to packet loss in addition to possible
stalling events. HTTP/TCP data transfers are well supported in today’s Internet
infrastructure and therefore HTTP /TCP streaming is possible in most environments
were firewall and NAT devices are present.

2.2.4. Investigated Adaptation Algorithms

The MPEG-DASH standard does not specify how a DASH client implementation
should adapt the playback to the available bandwidth. As a consequence, the choice
of the adaptation algorithm is left to the implementation. However, we show in this
thesis that the selection of the adaptation algorithm dictates the resulting playback
behavior and therefore also the Quality of Experience of the viewer. Thus, to maxi-
mize the QoE of the viewer, the choice of the adaptation algorithm is of significance.
In this thesis we implement and evaluate three published adaptation algorithms and
compare them to the algorithm proposed by the author of this thesis. The following
sections give a brief introduction to the three algorithms taken from publications.

10
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2.24.1. TRDA

The AVC-based adaptation algorithm proposed and evaluated in [46], henceforth
referred to as TRDA (TUB Receiver Driven Adaptation, as named by the author of
this thesis), uses an estimation of the current bandwidth, the current buffer level,
and the average bitrate of the different representations to decide which quality level
to select at a given time. The decision process is accompanied by a set of constants
which have to be tuned for proper operation of the algorithm. A set of suggested
default values are proposed by the authors of the publication.

0< Bmin < Blow < Bhigh> 0 S Bcurr (21)

In the following we describe the behavior of the algorithm dependent on the cur-
rent buffer level B.,,, and the adjustable buffer limits B,,;,,, Biow and Bpigy, with the
constrains specified in Equation 2.1.

Bcurr € [07 Bmzn]
A buffer level lower than B,,;, is considered critical for the playback regardless
of the currently available bandwidth. In such a case, the algorithm instantly
switches to the lowest representation to avoid buffer starvation and thus play-
back stalling.

Bcurr € [Bmzna Blow]
Depending on the available bandwidth, the algorithm either stays on the cur-
rent quality level or decreases the quality level by one. If the currently available
bandwidth is not enough for the average bitrate of the currently selected rep-
resentation, the algorithm decreases the quality level. Otherwise the current
quality level is kept. This is done to prevent unnecessary quality switches in
cases where the buffer level is low, but is likely to increase again soon.

Bcurr € [Bloun Bhigh]
To avoid undesired quality switches, the algorithm does not switch the repre-
sentation for this buffer level interval. Additionally, if the currently estimated
bandwidth is not enough for the next higher representation, the algorithm
adds an artificial delay to the download queue to inhibit buffer growths.

Bcurr > Bhigh
If the currently estimated bandwidth is higher then the bitrate of the next
higher representation, the algorithm switches to the next higher representation.
If the bandwidth is not sufficient the algorithm introduces an artificial delay
to the download queue.

In addition to the mentioned normal mode of operation, the authors introduced
a more aggressive fast start-phase to speed up the adaptation process at the start
of the playback. For a description of the fast start phase refer to the publication.

11



2.2. MPEG-DASH for Video Streaming

2.2.4.2. KLUDCP

In [47], the authors propose and evaluate a DASH-AVC adaptation algorithm, in
the following referred to as KLUDCP, in a vehicular mobility scenario. From the
description of the algorithm follows that the algorithm’s decision depends on the
average available bandwidth measured during the download of the latest segment,
the average bitrate of the different quality levels and the current buffer level. The
algorithm takes one configuration parameter, the desired buffer level.

Next, we give a brief description of the algorithms method for choosing the quality
level for a segment @ after segment ¢ — 1 has finished downloading. The throughput
is continuously monitored during the download of segment ¢ — 1 and the average
throughput is used as an estimation of the currently available bandwidth for the
download of segment i. Additionally, the current buffer level is used to adjust this
estimation by decreasing the estimation by a constant factor if the buffer level is
less then 35% and increasing it if the buffer level is higher or equal to 50% with the
goal to keep the buffer at half of the maximum capacity. The resulting estimated
available bandwidth is compared to the average bitrates of the available quality
levels and the quality level with an average bitrate less or equal to the available
bandwidth estimation is chosen for segment 7.

2.2.4.3. Tribler

In [50] the authors propose a SVC-based adaptation strategy for distributing scalable
video content in P2P systems, henceforth referred to as Tribler. We adopted the
algorithm for DASH by defining a fixed segment downloading order and allowing
only one simultaneous segment download.

T

tourr High Priority t Low Priority Umax

Figure 2.4.: Tribler Download Strategy

We implemented the algorithm as shown in Figure 2.4. The algorithm takes two
configuration parameters. t; is the size in seconds of the high priority set and t,,,,
the size of the low priority set including t;. The high priority set is a list of time
segments starting from the current playback position for which only the base layer
segments are downloaded. If all segments from the current high priority set are
already downloaded and buffered, the algorithm starts to download the segments
from all qualities levels between ¢; and t,,,, in vertical order. During start-up, the
algorithm starts the playback when all segments from the high priority set are locally
available for playback. If all segments from both priority sets are already buffered,
the algorithm idles until new segments are added to the low priority set (i.e. when
the current playback position moves forward).

12
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2.3. Scalable Video Coding with DASH

In what follows, we discuss the advantages and drawbacks of using scalable video
coding for DASH as opposed to using single layer coding. Utilizing scalable video
coding for encoding DASH content a) increases the cache-hit-ratio for HT'TP caching
servers and reduces the required storage space for DASH video content; and b) al-
lows for greater flexibility during segment selection compared to single layer coding.
Caching servers are introduced by providers to store frequently requested HTTP
content closer to the user and this way prevent expensive long-haul traffic. How-
ever, caching servers have a limited capacity and can only store a subset of the
requested data. Hence, caching servers have to discard uneconomically (e.g. infre-
quently requested) content. In terms of DASH video streaming, with single layer
coding, caching servers can store the most popular quality levels of a specific video
content. However, with scalable video coding, the caching server is able to take
advantage of the layered coding schema where quality levels are additive to each
other. Accordingly, between single layer and scalable encoded content with equiva-
lent quality levels, scalable video coding can store a higher number of quality levels
using an equal amount of storage capacity [55].

In terms of adaptation options, scalable video coding increases the flexibility for
the segment selection process during the streaming session. With single layer coding,
the decision which quality level to download next is effectively limited to the time
slice subsequent to the current buffer position and the decision can not be changed
afterwards without discarding the already downloaded segment. Whereas with scal-
able video coding, the algorithm can first download base layer segments and later
upgrade specific time slices with additional enhancement layers.

In context of DASH, scalable video coding faces two drawbacks compared to single
layer coding. a) A coding efficiency penalty and b) a higher number of segments.
The penalty on coding efficiency observed for scalable video coding increases for
every additional quality level. However, there are two feasible best practices to
limit the coding penalty of scalable video coding for adaptive HTTP streaming.
First, only make use of encoding parameters known to produce output with a high
coding efficiency (e.g. dyadic resolutions). Second, instead of offering one bitstream
with many scalability options, content provider can offer assorted bitstreams with
a reduced set of quality levels. For example, the provider could provide device-
type-specific bitstreams for each of the three categories smartphones, tables and
HD-TV. Both approaches reduce the flexibility of scalable video coding, but in turn
reduce the impact of the coding efficiency penalty. For an equal number of quality
levels, scalable video coded content is split into a greater number of segments than
with single layer coding, because each quality level requires all the lower quality
levels up to the selected quality level. Accordingly, this increases the number of
required HT'TP requests and therefore the percentage of HI'TP overhead in relation
to the content size. However, in our experiments and the considered scenarios the
amount of HTTP overhead was not more than 1% ' for the lowest quality layer.
Furthermore, the overhead may be further reduced by compression and/or use of

For an average GET request overhead of 700Bytes [6] and an average segment size of
599 Kilobytes
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the new HTTP 2.0 standard [18|, which is designed to reduce the HTTP overhead
for multiple subsequent HTTP requests.

2.4. QoE of Video Streaming

The Quality of Experience (QoE) of video playback as perceived by a human viewer
depends on multiple factors. The encoding of the content and type of the delivery
(e.g. live or VoD [27]), the viewing environment (e.g. HD-TV at home or mobile
device in public transport) and the individual user expectations [25] dictate the
satisfaction of the user with the service. In the following, we first discuss how to
classify video content by its temporal and spatial information and how different
temporal and spatial information influences the QoE. Next, we identify three signifi-
cant quality influence factors of adaptive HI'TP video streaming. Namely, temporal
impairments (i.e. stallings), video quality and quality flicker effects due to the adap-
tation process. We conclude the section by discussing established approaches for
quantifying the QoE of a viewer based on the identified factors.

2.4.1. Temporal / Spatial Information

Spatial Information describes the level of detail (or fidelity) of a single image. Tem-
poral information describes the degree of similarity between two subsequent images
of a given image sequence. The spatial and temporal information index can be used
to characterize video content. A high degree of fidelity is found in complex scenes
with fine details, sharp edges and multiple objects, whereas low spatial information
indicates large areas of similar colors, few objects and smooth transitions between
surfaces. A high amount of temporal information in an image sequence indicates
fast and frequent motions and scene changes.

ITU-T Recommendation P.910 Subjective video quality assessment methods for
multimedia applications [40] defines the temporal and spatial information index as
follows. The luminance plane of an image n in a sequence of images is denoted as
F,, and the Sobel [17] operator is an edge-detection algorithm.

Spatial Information (SI) = max{std[Sobel(F,)]}
Mn(laj) = Fﬂ(zuj) - Fn—l(i7j>

Temporal Information (T1) = max{std|M,(i,j)|}

The content type plays an important role in the human perception of video play-
back and therefore can not be neglected in the design of QoE evaluation studies.
However, the implications of the different content types on the perceived QoE are not
fully understood. Nevertheless, some effects of different temporal and spatial prop-
erties were identified by user studies to have an impact on specific quality influence
factors. For example, the fidelity of a video sequence correlates to the perception
of video quality where a high level of detail requires high level of video quality to
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please a human viewer [31]. In the following subsections, we introduce three quality
influence factors of adaptive HTTP video streaming and highlight known effects of
different content types on the described factors.

2.4.2. Influence Factors of SVC-based Video Streaming

The quality of video streaming content as perceived by the user depends on many
factors. In the following, we discuss the influence of the temporal and spatial in-
formation index, video quality as perceived by a viewer, playback interruptions and
time-varying quality of the content on the user’s Quality of Experience.

2.4.2.1. Temporal Impairments

Temporal Impairments (or stalling) effects are distinguished by their time of oc-
currence. Stalling at the beginning of the playback is called initial delay, whereas
stalling during the video playback session is called playback interruption or just
stalling. Initial delay is due to pre-buffering part of the content to compensate for
bandwidth fluctuations during the playback. In the context of HTTP/TCP-based
video streaming, playback interruptions occur in situations where the available band-
width is not sufficient for the current content bit rate. Playback interruptions have
a significant effect on the user’s perceived QoE, whereas initial delay is more likely
to be accepted by the user [36, 34, 37|. Stalling can be quantified by the lengths of
the stalling events and their frequency during the playback session.

2.4.2.2. Video Quality

Scalable video coding allows for on-the-fly adaptation of image resolution, frame
rate and image quality of a video sequence to the current network and viewing
environment. Next, we discuss the influence of the three scalability dimensions on
the video quality (i.e. Quality of Experience (QoE)) as perceived by a human viewer.
It is obvious that the user is less likely to accept the provided video quality if the
resolution, image quality and frame rate is low and he is more likely to accept it if
all three dimensions offer a high quality. The influence of different quality levels of
the different dimensions is more complex and less obvious.

Figure 2.5 gives a schematic of this issue. There exists a 3-tuple which represents
the minimum quality for each dimension the user is likely to accept. Decreasing the
quality along any dimension results in a QoE the user does not accept. However, a
very high quality along one dimension may compensate for a very low quality on one
of the other dimensions. The implications of differing quality levels for the different
dimensions on the perceived QoE are not fully understood. In the following, we
highlight relevant results from this research area. [29] shows, that QoE decreases
non-monotonically with the video bitrate (i.e. image fidelity or resolution) and the
preference of which scalability dimension to choose for the adaptation is content-
dependent. The effects of adapting image quality and frame rate for different content
types are discussed in [44]. The study shows that sport-coverage with a high amount
of motion does not necessary require a high frame rate, but in turn can require a
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Figure 2.5.: SVC scalability options and acceptable QoE [66]

high image quality, especially on small screens. [43] performs a comprehensive user
study to evaluate scalable video coding with regard to five dimensions, namely codec,
content, spatial resolution, temporal resolution and image quality.

2.4.2.3. Flicker Effects

Adaptive streaming can adapt the image quality and the frames per second of the
content to current network conditions. The subjective impression of the varying
content quality (i.e. flicker effects) is not taken into account by popular metrics like
PSNR and MSE. Intuitively, the frequency and amplitude of the quality adaptations
are influencing the perceived QoE, where the amplitude has a greater influence than
the frequency of the switches and both should be kept low [49, 48|. In addition to
the frequency and amplitude, different quality switching patterns where identified
to impact the QoE differently [65]. It has also be noted, that the content plays an
important role in the perception of quality changes [53]. Frequent scene changes can
mask quality changes ([33]), whereas slow pan shots expose the quality changes.

2.4.3. QoE Assessment

There exist multiple methods for assessing the Quality of Experience of a video se-
quence as perceived by a user. Subjective assessments with a group of human test
subjects give the best results, but are expensive and costly in terms of time. Objec-
tive algorithms try to estimate the QoE of an impaired video. The accuracy of the
results compared to the subjective assessments and the computational complexity is
highly dependent on the choice of the algorithm and content. The following sections
take a closer look on current objective and subjective assessment methods.

2.4.3.1. Video Quality

There exist several metrics for quantifying the video quality as perceived by a human
viewer. Classical objective metrics like Peak Signal-To-Noise Ratio (PSNR) [14] aim
to quantify degradations due to the encoding process or distortions by comparing the
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individual images the video is composed of with unaltered reference pictures pixel by
pixel. Evaluations show that the results of the classical error-based objective metrics
perform poorly in describing the human perception of video quality [64, 60, 38]. More
advanced quality metrics, like the Structural Similarity (SSIM) [60] index, focus
on the structural similarity between the distorted and the reference pictures and
show better results in reflecting the human perception [61]. So far motion between
subsequent pictures was not taken into account. Video Quality Model (VQM) [41]
is a state-of-the-art quality metric offering temporal, spatial and SNR, scalability
support. Temporal similarities are taken into account by processing motion vectors
between subsequent images. The objective methods described here belong to the
category of full-reference (FR) metrics. FR metrics compare an unimpaired reference
sequence with the distorted sequence to measure the quality degradation and are
generally used in laboratory studies where both, the reference and distorted sequence
are easily available.

PSNR

Peak Signal to Noise Ratio (PSNR) describes the impairment of a signal by
calculating the ratio between the maximal signal output and the recorded
noise responsible for the impairment. In the case of image compression, PSNR
compares the luminance of a reference picture with the distorted image pixel-
by-pixel. The PSNR of a sequence of images is the mean of all PSNR values
of all images in the sequence. Because of its ease of use and low compu-
tational complexity, PSNR is the most commonly used objective image and
video quality metric. However, evaluation show a low correlation to the human
perception [64, 60, 38|.

SSIM

The Structural Similarity Index Metric (SSIM) is designed to reflect the prop-
erties of the human visual system by taking the structure of the image in ac-
count. Like PSNR, the SSIM metric is calculated for each picture of a sequence
individually. The index is derived from the combination of luminance, contrast
and structure measurements. Accordingly, both images are compared by these
three aspects and the results are combined to one index between one (being the
best possibly similarity) and zero (no similarity). Relatively low computational
complexity allows for real-time implementations [26]. Two extensions exist to
the presented (simple) SSIM, Speed-SSIM and Multiscale SSIM (MS-SSIM).
Speed SSIM extends the SSIM concept with statistical models of human visual
motion perception. MS-SSIM proposed in [62] utilizes multiple weighted scales
of the image to take different viewing conditions in account.

VQM
The Video Quality Model (VQM) [41] metric offers full scalability support and
high correlation to the human perception with the cost of high computational
complexity. In contrast to SSIM and PSNR, VQM is designed to include the
spatial, temporal and signal-to-noise ratio (SNR) scalability, which is found
in the Scalable Video Coding annex of AVC. The algorithm implements these
aspects by considering the frame rate, SNR and motion vectors of the image
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sequence. The result is a value between zero (no perceptible impairments) and
one (maximal perceptible impairments).

In [59], comprehensive user studies were conducted to evaluate the performance of
the presented quality metrics in regard of their accurateness to the human perception
of video quality. Next, we highlight relevant results of this study. First of all,
existing assumptions of the bad performance of PSNR are validated. Out of the
investigated quality metrics, the outputs of PSNR show by far the lowest correlation
to human perception. The study also points out the advantage of algorithms which
take motion between pictures of the sequence in account. For example, Speed SSIM
can considerably improve the results of SSIM through statistical motion models.
VQM shows the highest correlation to human perception out of the three given
metrics. However, in this thesis we utilize (simple) SSIM for quantifying different
quality levels of video sequences because of its low computational complexity. Next,
we discuss subjective methods for quantifying the QoE of a video sequence.

2.4.3.2. Subjective Methods

Subjective quality assessment methods generally consist of viewing sessions where a
group of human evaluators watch and rate video sequences based on their individual
subjective judgment. Different recommendations exist how to prepare the viewing
environment, how to structure the test sessions and how to evaluate the collected
data. ITU-T Recommendations P.910 Subjective video quality assessment methods
for multimedia applications [40] and BT.500-11 Methodology for the subjective as-
sessment of the quality of television pictures [24] are two of the most complied with
specifications for subjective quality assessments. In the following, we introduce the
Absolute Category Rating (ACR), also called Single Stimulus Method, which we use
for the design of our user studies in this thesis. Afterwards, we compare the ACR
method to other quality assessment methods.

Absolute Category Rating describes a mode of operation for user studies where
test participants are presented with individual and independent stimuli (i.e. video
sequences) in random order. Each stimulus is followed by a period of voting where
the subjects judge the perceived quality during the stimulus on a predefined scale.
Figure 2.6 gives an example for an ACR test session. The excerpt shows a session
with four test sequences (b, ¢, d, e) in random order. Each sequence has a length
of 15 seconds and is followed by voting period. Note that the ITU Rec. P.910
recommends to limit the voting time period to ten seconds. However, limited voting
periods are not supported by the user study framework used in our evaluations and
therefore we omitted the time limit in the crowdsourcing campaigns.

b e c d

Stimulus

Voting - 15s 15s 15s 15s b

Figure 2.6.: Example excerpt from an ACR test session
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The I'TU recommendation introduces different predefined quality rating scales. In
our evaluations, we utilize the five-point rating scale presented in Table 2.2 ranging
from 5 (excellent, respectively imperceptible for impairments) to 1 (bad and Very
annoying). This scale is equal to the Mean-Opinion-Score (MOS) [39], a popular
metric to describe the satisfaction of a group of human elevators with a service.

MOS | Quality | Impairment
Excellent | Imperceptible
Good Perceptible but not annoying
Fair Slightly annoying
Poor Annoying
Bad Very annoying

— N W e Ot

Table 2.2.: Five-point rating scale

Next, we give a brief introduction to other popular assessment methods suggested
in the P.910 and BT.500 recommendations. With Degradation Category Rating
(DCR) suggested in Rec. P.910, a reference video sequence is presented in con-
junction with impaired sequences. Viewers rate the amount of impairment. Pair
Comparison (PC), also presented in Rec. P.910, is a method where pairs of video
sequences with the same content, but different impairments, are presented and view-
ers rate which one they prefer. With Single stimulus continuous quality evaluation
(SSCQE) described in BT.500, viewers are presented with a continuous playback of
a video sequence with time-varying impairments. With the means of a slider, the
test subjects are asked to continuously rate their viewing experience. No reference
sequence is provided. Also suggested in BT.500, Double-stimulus continuous quality-
scale (DSCQS) describes a method where short sequences consisting of reference and
impaired content sequences are presented in random order. The human evaluators
are asked to rate each sequence individually.

2.4.3.3. Crowdsourcing for QoE Assessment

Evaluating the Quality of Experience of video content is costly in terms of money,
time and facilities. Crowdsourcing can help to reduce the cost compared to labora-
tory studies. In essence, crowdsourcing for QoE uses the Internet to utilize anony-
mous test subjects for online-based studies. The studies can be completed at home,
are usually browser-based and do not require any special equipment or competencies.
Furthermore, online platforms like Amazon’s Mechanical Turk [1] and Microwork-
ers.com [12] help the researcher to make QoE studies available to a larger crowd. To
create a study and make it publicly available the researcher has to specify the URL
of the study, add a brief description, specify the time requirement and the monetary
compensation. Interested workers sign up to receive a list of currently available and
suitable studies, from which they can choose their next task. In contrast to studies
in controlled environments with selected participants, crowdsourcing can not guar-
antee the reliability of the anonymous test subjects and is more prone to cheaters.
Special measures have to be taken to filter out invalid results [35].
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In the following, we discuss the subjective studies conducted in the course of this
thesis. We first interrelate the studies to the objective performance evaluation. In
the objective performance evaluation, we introduce metrics to assess and compare
the different adaptation algorithms from a user-centric and resource-centric point of
view. Most of the user-centric metrics like playback quality, initial delay and stallings
are related to common non-adaptive media-streaming techniques and therefore the
influence of these metrics on the user’s perceived QoE is well understood. However,
little information exists about the correlation between the quality switches found
in adaptive video streaming scenarios and their influence on the actual perceived
QoE of the user. The conducted subjective studies are designed to gain a deeper
understanding of the influence of the quality switches on the user’s QoE.

Figure 3.1 gives an overview of the conducted subjective studies and also illustrates
the structure of this chapter. We first formulate the problem at hand through a
set of research and control questions, each question dealing with a specific aspect
of the quality switches (e.g. influence of switching amplitude) and accompanied
by a hypothesis (e.g. the amplitude greatly influences the QoE). Based on the
formulated questions, we implemented a pilot study in a laboratory as preparation
for the crowd-sourcing campaigns. In the pilot study, we asked a group of experts to
assess 20 test scenes with different number of quality switches, switching amplitudes
and varying amount of motion and image detail. The findings of the pilot study
helped to select test scenes and reasonable starting values for parameters (e.g. the
amplitude for the switches). Based on the formulated questions and the pilot study,
we designed and implemented five crowd-sourcing campaigns. The design of each
campaign was guided by one or more of the formulated research questions. Through
a crowd-sourcing provider we made the campaigns available to a large international
crowd and each campaign was completed by about 100 participants. After filtering
unreliable submissions 35|, we identified the relevant QoE influence factors through
statistical analysis by utilizing, among others, main effect plots.

The contribution of the subjective studies to the understanding of the influence
of quality switches on the perceived QoE is threefold. First, we present findings
concerning the perception of quality switches. In particular, we take a look at the
question if the participants were able to accurately guess the number of quality
switches in a test scene. Next, we highlight the observed impact of quality switches
on the user’'s QoE in terms of a Mean Opinion Score (MOS) in the range of 0 to
1000 (continuous quality scale). Third, we discuss the acceptance of quality switches
in the evaluated test scenes. Afterwards, we summarize the identified Quality of
Experience influence factors and discuss how the findings help to assess the objective
performance results and how to design a user-centric DASH adaption algorithm. In
the subsequent section we introduce the research and control questions.



3.1. Problem Formulation
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Figure 3.1.: Subjective studies overview with different research questions examined
through different crowdsourcing campaigns (C1 - C5).

3.1. Problem Formulation

As we will see later in Chapter 4, the switching frequency, the amplitude of the
switches and average playback quality is highly dependent on the choice of the
adaptation algorithm. In order to evaluate the algorithms from the point of view
of the user, it is therefore necessary to gain insight of the aforementioned metrics
regarding their effect on the user’s perceived Quality of Experience. The effect of
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the presented playback quality is well understood, but there are open questions
regarding the influence of quality switches. In particular, for a specific switching
amplitude, how many quality switches are tolerated by a user during a specific
time period of the playback session before he judges the video playback quality as
unacceptable. Furthermore, if the algorithm has to choose between presenting a
continuous low playback quality or fluctuating between the low playback quality
and a higher quality, which alternative is more likely to be accepted by the user. To
evaluate the problem regarding these questions, we ask the user about two different
aspects, overall quality and acceptance. In particular we ask How would you rate
the overall viewing experience? and Would you use a website offering this service
quality?. The acceptance rate gives the percentage of user’s who would accept the
provided quality. The overall viewing experience rating is explained in Subsection
3.3.1, where we describe the web-based user interface, in greater detail.

In the following, we first discuss the research questions the user studies are based
on. Afterwards, we discuss control questions which were, in addition to the research
question, also considered for the design of the studies.

3.1.1. Research Questions

The user studies are designed to answer the following research questions. First,
we want to know if the content influences the perception of the quality switches.
We hypothesize that the perception, and therefore also the QoE of the user for
scenes with quality switches, depends on the temporal and spatial information of
the content. We address this question by the pilot study and the campaign CI,
where we use scenes with different SI/TT values, but the same number of quality
switches. Next, we ask if the amplitude influences the QoE of the user. We surmise,
that quality switches with a higher amplitude have a greater impact on the user’s
QoE than switches with a low amplitude. To test this hypothesis, we include quality
switches with a low amplitude into the campaigns C1 and C2, whereas the switches
in the campaigns C3 - C5 have a high amplitude. The last research question asks
how many quality switches per 30 seconds are acceptable for a user. Our hypothesis
is, that the user does not tolerate more than four quality switches per 30 seconds.
We consider this question in all five user studies and in the pilot study by using
switching patterns with multiple different number of quality switches.

3.1.2. Control Questions

The following control questions are considered by the design of the crowdsourcing
user study. First, are the study participants able to estimate how many quality
switches occurred during playback of a test sequence? We hypothesize that the
users are able to tell whether there have been any quality switches in the sequence
but can not accurately estimate the number of switches. To test the hypothesis,
we ask the user after each test sequence to guess how many quality switches have
occurred during playback. Second, we want to know, if there are two test sequence
which differ only in the average playback quality, whether the one with the higher
average quality gets rated differently. We assume, that the sequence with a higher
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Question Cl1|C2|C3|C4|Ch|Pilot
Does the content influence the perception of the | X X
quality switches?
Does the amplitude of the quality switches in- || X | X | X | X | X X
fluences the QoE of the user?
How many quality switches per 30 seconds are | X | X | X | X | X X
acceptable for a user?
Are the study participants able to estimate how | X | X | X | X
many quality switches occurred during playback
of a test sequence?

If there are two test sequence which differonly | X | X | X | X | X
in the average playback quality, does the one
with the higher average quality gets rated dif-
ferently?

Table 3.1.: Research questions implemented per campaign

average playback quality is rated better. To test this hypothesis, we vary the distri-
bution of the quality switches between the test sequences to create sequences with
differing percentage of time spent on the highest quality level.

Table 3.1 summarizes the research and control questions and gives an overview
of the questions considered for each of the crowdsourcing campaigns and the pilot
study. Scenes with different SI/TI values were only used in C1 and the pilot study.
In the pilot study, the user were not asked to guess the number of quality switches
and no variations in average playback quality very assessed. In C5, the users were
not asked to guess the number of quality switches.

3.2. Pilot Study in a Laboratory

We conducted a user study in a laboratory at the Alpen-Adria University in Kla-
genfurt, Austria to answer the following two questions as preparation for the crowd-
sourcing campaigns. First, is the temporal and spatial information index sufficient
to characterize video sequences regarding their influence on the perception of quality
switches? In particular, does a low amount of motion and image fidelity in a scene
increase the assumed negative effect of quality switches on the QoE compared to a
scene with a high amount of motion and image fidelity? And second, does the am-
plitude of the quality switches influence the perception of the switches? Specifically,
are the amplitudes provided by our test content distinguishable by a human viewer
in a typical viewing environment? And, for that matter, are quality switches with
these amplitudes perceived by the test participants when watching video sequences
with different SITI values? In the following we first explain how we designed the
pilot study and afterwards present the results.
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Segment || Time Period (Min.) | Switches | Amplitude | Special Property
1 00:00 - 00:30 0 0 no switches
2 00:30 - 01:00 4 1

3 01:00 - 01:30 4 2 low SITI

4 01:30 - 02:00 2 2 low SITI

5 02:00 - 02:30 6 2 low SITI

6 02:30 - 03:00 1 1

7 03:00 - 03:30 2 2

8 03:30 - 04:00 1 2

9 04:00 - 04:30 1 2

10 04:30 - 05:00 0 0 no switches
11 05:00 - 05:30 5 2

12 05:30 - 06:00 2 1

13 06:00 - 07:30 5 2

14 07:30 - 08:00 3 1

15 08:00 - 08:30 4 2

16 08:30 - 09:00 4 2 high SITI
17 09:00 - 09:30 2 2 high SITI
18 10:30 - 10:00 5 1

19 10:00 - 10:30 3 2

20 10:30 - 11:00 6 2 high SITI

Table 3.2.: Pilot Study: Segmented Tears Of Steel Movie

3.2.1. Methodology and Lab Setup

Three different test dimensions are included in the study. The frequency of quality
switches, the amplitude of the quality switches and the temporal and spatial informa-
tion index value. The pilot study is designed to mimic a realistic Video-on-demand
viewing session. Accordingly, we do not use a small set of repeating test-scenes with
different properties, but instead show the test participants a complete short-movie.
To do so and still be able to test different properties, we segment the short-movie
into non-overlapping time intervals of fixed lengths and assign each time interval an
individual switching frequency and switching amplitude. We also identify segments
with low and high spatial and temporal information (referred to as low/high SITI)
and assign a specific set of properties to both low and high SITI segments.

As test content, we use the short-movie Tears Of Steel with different spatial res-
olutions and a segment length of 30 seconds, 20 segments in total. The properties
assigned to the individual segments are presented in Table 3.2. The number of qual-
ity switches per segment ranges from zero to six. The amplitude is given in spatial
resolution changes, with one referring to a change from 1280x720 (QL2) to 640x360
(QL1) and two referring to a change from 1280x720 to 320x180 (QLO0). The Seg-
ment 1 and Segment 10 where presented without quality switches and in the highest
quality. Compared to the other segments, Segment 3, 4 and 5 exhibit a low SITI
value and the segments 16, 17 and 20 a high SITT value.

24



3.2.  Pilot Study in a Laboratory

100 : 100 : :
B High SITI BEoL2 - QLo
80l , [CILow SITI|| 80 oLz - QL1
S) S} J[ «}
o o
‘T' 60r ] ‘T' 60 {’ ‘}
e =3
0 40r 1 n 40 1
©)] O
= =
20¢ W ] 20¢ ]
o 4 6 % T 2 3 4 5
Number of switches in 30 seconds Number of switches in 30 seconds
(a) SITT effect (b) Amplitude effect

Figure 3.2.: Perception of quality switches with different SITI values and amplitudes

In the following, we briefly describe the procedure of a test session, the test en-
vironment and the demographic. First, the user is presented with an introduction
explaining the test procedure and within the introduction asked to complete a short
questionnaire composed of demographic questions. After the subject submitted the
questionnaire, Segment 1 is presented. Next the screen displays a 0 to 100 (0 la-
beled as Very low, 100 labeled as Very high) rating scale slider with a default slider
position of 50. The subject is given 5 seconds to change the position of the slider
position if he desires. The five seconds are indicated by a visible counter. After five
seconds, the rating scale disappears, the current slider position is saved as the user’s
rating for the presented segment and the next segment is displayed to the subject.
After the rating period of Segment 20, the user study session is completed. The pilot
study was conducted in a special laboratory at the University of Klagenfurt. The
room was soundproofed and darkened to avoid any external influences. A standard
24 inch display was placed on an office desk and the subject seated in front of the
desk. A computer mouse and keyboard was placed in front of the display to allow
the subject to complete the questionnaire and to control the rating slider. Overall
eleven people participated in the pilot study. All participants were recruited from
the Computer And Mathematical Science department of the University of Klagen-
furt, Austria and were of Austrian nationality. The average age of the participants
was 29 and all were at the time of the study members of the postgraduate program
in computer and mathematical science at the University of Klagenfurt. All users
were male. In the following subsection, we present the results from the pilot study.

3.2.2. Results of the Pilot Study

The results of the segments with steady quality (i.e. Segment 1 and 10) show a
reference Mean-Opinion-Score (MOS) value of 60 with a 95% confidence interval
of [51.6,68.4] for the high quality level. Next, we highlight the results of the pilot
study based on the questions specified. At the end of the subsection we present the
contribution of the study to the design of the crowd-sourcing studies.

Figure 3.2a addresses the question of how the temporal and spatial properties of
the content influence the perceived Quality of Experience of the user. The axis on
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the bottom shows the number of high amplitude switches during the playback of
a segment (i.e. 30 seconds). The axis on the left shows the MOS on a scale of 0
to 100 with a 95 % confidence interval. We see, that for content with low spatial
and temporal information, i.e. for content with a low amount of motion and details,
a number of high amplitude switches greater or equal than one negatively impact
the MOS, independently of the number of switches. Accordingly, even two quality
switches are perceived as low quality and the rating results for four or six quality
switches do not significantly differ from the two quality switches rating. In contrast,
scenes with a high amount of motion and image details reduce the negative effect of
the quality switches on the QoE. Two quality switches in the scene with a high SITI
value do not significantly decrease the MOS compared to the reference MOS. Four
quality switches show a high uncertainty for the absolute rating, but relative to the
four switches in the low SITT scene, the MOS is still higher. Six quality switches in
the high and low SITI scenes are rated with an equally low MOS score. Figure 3.2b
addresses the effect of the amplitude of the quality switches on the MOS. The axis
are the same as for Figure 3.2a. The figure shows that one to five low amplitude
switches (QL2 to QL1) do not significantly decrease the MOS. Whereas even one
high amplitude switch (QL2 to QLO) decreases the MOS to an unacceptable level.
Two or more high amplitude switches do not decrease the MOS further.

The contribution of the pilot study to the design of the subjective crowdsourcing
studies is twofold. First, for the selection of the test scenes for the crowdsourcing
studies we focus on scenes with a low SITI value. High SITT scenes exhibit a masking
effect on quality switches and thus are unfit for the evaluation of the negative effect
of quality switches on the QoE. Second, the pilot study shows that low amplitude
switches, as specified in regard to the quality levels of our test content, are not
perceived by a user for the tested number of quality switches. We therefore use high
amplitude switches for the crowd-sourcing studies. In the crowdsourcing campaign
Q1 we confirmed the difference between low and high amplitude switches as well as
the influence of different SITI values. In the subsequent section we introduce the
methodology of the crowdsourcing-based subjective studies.

3.3. Methodology for Crowdsourcing QoE
Assessments

In the following, we discuss the methodology of the conducted crowdsourcing user
studies. First, we give a general overview of the user studies and the utilized crowd-
sourcing approach. Next, we describe the web-based user interface used in the studies
to present the test sequences, to ask the demographic questions and to gather the
results. Afterwards, we introduce the test scenes. Two test scenes, one with a high
amount of motion and one with a low amount of motion, are presented. Further-
more, three quality levels are specified to allow for different switching amplitudes.
Next, we describe the process of filtering unreliable test subjects. At the end of
this section we introduce the design of each of the five crowdsourcing campaigns
conducted in the course of this thesis related to the research questions in Table 3.1.

For the user studies, we utilized crowdsourcing to reach a large and international
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test crowd. Crowdsourcing is the idea of distributing short tasks (e.g. surveys, qual-
ity assessment of different compression codecs) to an anonymous online crowd for
processing. A popular method to do so is through a crowdsourcing provider which
supports the task creator in reaching a larger group of potential employees. For our
subjective studies we used the crowdsourcing platform microworkers.com [12] for
task distribution and handling of the monetary compensation of the participants.
To create a task and make it available to the potential employees, three steps are
sufficient. First, make the task available online and accessible by a URL. Second,
specify a monetary compensation for a completed task and third, specify the max-
imum number of people allowed to process the task. See A.6 for details on the
microworkers task description. To make the task available online, we implemented a
browser-based questionnaire to present the test sequences and collect demographic
information and rating results. In the following, we give a detailed description of
the web-based questionnaire.

3.3.1. Web-based User Interface

The web-based interface of the studies was implemented using the QualityCrowd2
framework proposed by Keimal at al. [42|. The framework is designed for crowd-
sourcing based quality assessments through common web servers, respectively on
the client-side, common web browsers. It provides a text-based scripting language
to design the desired user study, incorporates anti-cheating measures and handles
the generation of the payment token for finished test subjects. Next, we describe
the procedure of the user study from the point of view of the test subjects.

After the test subject accepted our quality assessment task on the website of the
crowd-sourcing provider, the user is presented with a custom URL which directs
him to our assessment website. On the website the participant is first directed
to an introduction explaining the test procedure. For example, the introduction
explains how to start the playback of the test sequence and how to use the rating
slider. See A.7 for details of the introduction. Next, the user is presented with a
series of demographic questions about his age, education, occupation and country
of residence. A detailed listing of the questions is available in A.1. Afterwards, the
download of the first test sequence is started. When the download has finished,
the user is able to start the playback by the push of a button. A screenshot of
the video playback and rating page is available in the appendix of this thesis (A.4).
After the playback of the whole test sequence, the subject uses the slider to rate
the overall viewing experience. The slider is continues, but visually split in five
equally sized segments, Fxcellent, Good, Fair, Poor and Bad. After positioning the
overall viewing experience slider, the subject is asked if he/she noticed any change
in quality during playback and if yes, if he/she felt annoyed by the switches. The
level of annoyance is, as with the viewing experience, rated by the means of a slider
visually segmented in five segments. The segments are labeled Imperceptible (did
not notice any), Perceptible but not annoying (did notice, but did not care), Slightly
annoying, Annoying and Very annoying. Afterwards, the subject is asked to guess
how many quality switches he/she noticed during the playback of the test sequence
in a range of 0 to 14. The questions to this test sequence is concluded by the
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(a) Scene L (b) Scene H
low amount of motion and details fast motions and high image fidelity

Figure 3.3.: Low and high SITT scenes used in the user studies

question, if the subject would accept a website offering this service quality. After all
test sequences of the campaign are presented, the payment token is displayed to the
participant, which the user can enter on the website of the crowd-sourcing provider
to receive his monetary compensation of $0.30.

3.3.2. Test Scenes and Quality Levels

Now, we introduce the two test scenes and the three quality levels used in the
subjective studies. We selected two scenes from the short-movie Tears Of Steel for
the user study. Scene L, depicted in Figure 3.3a, is characterized by a low amount
motion with an average SI of 8.50 and average T1 of 5.38. The scene shows a couple
arguing on small bridge surrounded by houses and trees. The background is blurred.
The sequence is exactly 360 frames long, i.e. 15 seconds for a playback with 24 frames
per second, and the start of the scene corresponds to the timestamp 00:00:25 of the
full short-movie. Scene H, introduced by Figure 3.3b, exhibits fast motions and
multiple scene changes with an average SI of 5.41 and average TI of 24.48. The
sequence has the same length as Scene L. and shows a soldier fighting against fast
moving robots. As with Scene L, Scene H is taken from the short-movie, starting
from the timestamp 00:08:08. We chose a length of 15 seconds for each scene based
on the findings in [52], which indicate that the human memory effect for quality
assessments is limited to roughly 15 seconds.

Figure 3.4 introduces the three quality levels used in the subjective crowdsourc-
ing studies. The picture quality is here quantified by the SSIM metric. L2 is used
as reference sequence and is derived from the original sequence by downscaling the
sequence from a resolution of 1280x534 to 640x360. Black bars are added at the
top and bottom to allow for a 4:3 aspect ratio. LO and L1 are also based on down-
scaled versions of the original sequence. L1 was created by downscaling the original
sequence to 320x180 and L0 by downscaling to 160x90.

3.3.3. Filtering Unreliable Test Subjects

In the following section, we discuss the measures taken to identify and filter out
unreliable participants during the crowd-sourcing campaigns. The measures taken
aim to inhibit the two common causes of unreliable results. First, the user does
not understand the questions and second, the user tries to cheat to receive the
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(a) Low Quality (LO) (b) Middle Quality (L1) (c) High Quality (L2)
SSIM = 0.8310 SSIM = 0.9535 SSIM =1.0

Figure 3.4.: Different quality levels used in QoE evaluation

monetary compensation without earnestly participating in the study. The former
we counteract by providing a detailed and pictorial introduction to each study (see
A.7). Additionally, we use simplified English for the questions and the labeling
of the rating scales. Multiple measures are taken to prevent cheating during the
crowd-sourcing campaigns. First, we only provide the code required to receive the
monetary compensation after the questionnaire has been completed and all questions
have been answered. Second, the utilized user study framework prevents the user
from skipping or fast-forwarding the presented video clips. Additionally, each rating
scale has to be clicked at least once to be allowed to continue to the subsequent clip.
Next, we implement easy content questions to identify unobservant test subjects.
In Subsection 3.3.2, we introduce the two scenes used during the QoE evaluation
in Figure 3.3. Scene L shows a human couple arguing on a small bridge. We ask
the participant Where did the protagonists stand on? and let him choose between
A Building, A large field, A small bridge and Riding on an elephant. For scene H,
where a soldier is fighting large robots, we ask The protagonist was fighting against
. and offer Elephants, Humans, Ducks, Robots as possible answers.

To conclude this section, we implemented reasonable measures to prevent abuse of
the user study for selfish monetary goals of individual users and designed the study
easily accessible to reduce misunderstandings concerning the questions and the rating
scales. However, it is not possible to give a success rate of each action taken due to
the lack of information about the anonymous remote user. For the content questions
we observed that about 11 % of the participants were giving wrong answers and were
therefore excluded from the evaluation. Figure 3.5 gives a detailed overview of the
excluded users for each campaign. C1 contained two content questions, both had
to be answered correctly. For the campaigns C1 - C5, 6, 16, 14, 8 and 4 users were
excluded based on their answers given for the content question, respectively.

3.3.4. Crowdsourcing Campaigns

In the following, we discuss the design of the five user study campaigns conducted
during the course of this thesis. Table A.5 gives an overview of the five campaigns.
A more detailed overview is available in the appendix of this thesis (Appendix A.3).
The individual campaigns are numbered consecutive, prefixed by the letter C. The
column labeled Switches shows the number of switches in order as presented to
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Figure 3.5.: Number of users filtered by content question

Campaign || Switches (in order of presentation) | Amplitude | Begin | Scene(s)

CT (L) 0 (L2), 1 (LI-L2), 0 (L1), 1 (L2-L1) | L2- L1 _ L
C1 (H) 0 (L2), 1 (L1-L2), 0 (L1), 1 (L2-L1) | L2-1L1 _ H
C2 2.1,8,0(L2), 3,6, 4 L2-L1 | L2 L
C3 2,1, 14, 0 (L2), 0 (L0), 3, 8, 4 L2-L0 | L2 L
C4 2,0 (L0), 1, 7, 0 (L2), 8, 3, 5, 4 LO-L2 | Lo L
C5 2,8, 1,7, 0(L2), 3,0 (L0), 5, 4 L2-L0 | L2 L

Table 3.3.: Crowd-sourcing campaigns

the study participants. Campaign C1 is conducted for both test sequences. For
the other campaigns, we only present test sequence L. The campaigns C1 and C2
use low amplitude switches (L2 - L1), whereas the campaigns C3 to C5 use high
amplitude quality switches (1.2 - L0). For sequences with zero quality switches, we
give the used quality level in brackets. It has to be noted, that for the campaigns C1
to C4 the quality switches are distributed uniform over the 15 seconds. From this
it follows that for an odd number of quality switches, the cumulative time spend on
the individual quality levels differs (see A.3). Campaign C5 adjusts the distribution
of the quality switches to achieve an equal amount of time for both quality levels.

3.4. Results of the statistical analysis of the
subjective studies

Now, we present and discuss the results from the conducted user studies. First, we
highlight the specific user studies used to gain the subsequent results and give the
relevant properties and differences of each study. Second, we present the observed
demographic of the study participants. Third, we highlight the findings regarding
the perception of quality switches. Along these lines we answer the question if the
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participants were able to accurately guess the number of quality switches in a test
sequence. Afterwards, we show the impact of quality switches and of the time spent
on the highest quality layer on the perceived QoFE of the users in terms of quality
rating. Next, we discuss how the quality switches and time on high influence the
acceptance rate of the users with the provided service. At the end of the section, we
summarize the findings and highlight the identified QoE influence factors.

Next, we give the relevant differences between the four user studies (C2, C3, C4
and C5) used for this evaluation. C1 was only used to verify the results from the
pilot study regarding the effect of different SITT values and amplitudes and did
not include a test sequence with more than one quality switch. In contrast to C2,
the quality switches in campaigns C3 to C5 have high amplitudes. All campaigns,
expect C4, start the test sequence on the high quality level. Campaign 2 is the
only campaign were no reference (i.e. zero quality switches) sequence is included
for the lower quality level. For the campaigns C2 to C4, the quality switches are
distributed uniform and therefore the cumulative time spent on the individual quality
level differs for an even number of quality switches. For C5, all sequences have the
same amount of time spent on high quality level. In the subsequent subsection, we
present the results regarding the observed demographic of the test-crowd.

3.4.1. Demographic of the Crowd

The crowdsourcing campaigns were accompanied by a mandatory demographic ques-
tionnaire. Next, we present the demographic results from the first campaign. 150
users participated in the campaign. Out of the 150 participants, 17 gave wrong
answers to the simple control questions and were excluded from the evaluation. The
majority of the users (70 %) accessed the campaign’s web-site from Asia, 26 % from
Europe. 42 % of the participants are of age 22 - 25. The age-groups 18 - 21 and 26
- 30 were represented with 18 % each. 47 % specified Student as their occupation,
followed by 32% working in employment. 40% of the users completed a 4-Year
College, 17% a 2-Year College and 17 % High School as their highest education.
64 % use the Internet primarily at work, whereas 36 % stated they use it primarily
at home. Fixed line dominated as Internet Access technology (85 % fixed line, 15 %
mobile Internet access). 97 % of the participants use the Internet on a daily basis
(more then one hour per day) and 61% visit video websites several times a day.
About 31 % of the users were wearing prescription glasses. More details about the
demographic of the campaign is available in the appendix (A.1).

3.4.2. Perception of Quality Switches

In order to judge how noticeable the quality switches are, after each presented 15s
clip, we asked the user to guess how often the video quality has changed during
the playback in a range from 0 to 14 times. We implemented this question into the
questionnaire of Campaign 2 and Campaign 3 to gain results for the two switching
amplitudes (one quality level, two quality levels) used during the user studies.
Figure 3.6a and Figure 3.6b show the correlation between the users’ guesses and
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Figure 3.6.: Actual Quality Switches and User Guesses

the actual number of quality switches. The former one for the amplitude of one
quality level per switch and the later one for two quality levels per switch. The
dashed lines in both figures indicate where the guesses of the participants equal the
actual number of quality switches for a particular test sequence. The color intensity
of the square areas indicate how many users in percent guessed a certain number of
switches for a particular actual number of switches.

From both figures it follows that for test sequences with no quality switches, half
of the participants claimed to have noticed more than zero switches. Furthermore,
25 % (Figure 3.6a) and 29 % (Figure 3.6b) of the participants guessed that there have
been greater or equal than five quality switches in the sequence. There is a general
low, but significant (p < 0.05, i.e. a low probability to get the same result by random
chance), correlation between the guesses of the participants and the actual number
of switches. For the low amplitude sequences, the Pearson correlation coefficient is
0.271 and for the high amplitude sequences the coefficient is 0.247.

In summary, it can be stated that the participants were not able to accurately
guess the number of quality switches. Furthermore, even in test sequences with-
out any quality switches, the participants claimed to have noticed quality switches.
However, there is a low correlation between the participant’s guesses and actual the
number of quality switches. This control question, asking the users to guess the
number of quality switches, was removed for the campaigns C4 and C5.

3.4.3. Impact of Quality Switches on Perceived Video Quality

In the following, we discuss how the perceived QoE of the study participants in a
test sequence is influenced by the number of quality switches and the amount of time
spent on the best quality level. The results were obtained utilizing the continuous
Absolute Category Rating (ACR) rating schema in a range of 0 to 1000. The sub-
sequent figures give the results as the average quality rating. Confidence intervals
are omitted for the sake of readability. On average, we observed a 95 % confidence
interval length of 96 with a standard deviation of 23. The average confidence interval
is indicated in the subsequent figures, labeled as Avg. Conf. Interval..
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Figure 3.7.: Switches vs. Quality Rating for Campaigns 2 - 5

Figure 3.7 illustrates the influence of the number of switches on the quality rating
of the participants. The two test sequences without quality switches mark the lowest
(about 330 for steady low quality) and the highest observed rating (about 760 for
steady high quality). For the low amplitude switches (campaign C2), there is no
significant influence on the rating identifiable for a number of switches greater than
two. However, the sequence with two quality switches was rated higher than the
other sequences with quality switches. This can be attributed to the fact, that the
two switches sequence of campaign 2 (and also of campaign 3) has a high time on
high compared to the other sequences (cf. subsequent paragraph). For the high
amplitude switches, a similar effect is observable. All sequences, excluding the zero
and two switches sequence, do not differ in rating. However, the sequence with two
switches exhibits a higher quality rating, the sequence without quality switches and
steady low quality a worse rating. From the figure we conclude, that the quality
rating in this study was influenced by the amplitude of the switches (a low amplitude
results in better quality rating) and by the time spent on the better quality level.
The results also show, that the participants preferred the sequences with quality
switches instead of the sequences without quality switches but steady low quality.

Figure 3.8 highlights the influence of the time on high on the quality rating. The
conclusions drawn for Figure 3.7 also apply to the figure at hand. The sequence with
steady, but low quality, received the lowest average rating (about 330), the sequence
with a steady high quality the highest (about 760). Furthermore, the sequences
with low amplitude switches exhibit a higher quality rating than the ones with high
amplitude switches. In addition to the prior conclusions, Figure 3.8 highlights the
correlation between the time on high and the quality rating hinted in the previous
paragraph. Based on the average quality rating, the correlation coefficient between
the time on high and the quality rating is 0.82.

In the subsequent subsection, we investigate the QoE influence factors of adaptive
streaming based on the acceptance rate of the different test sequences.
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Figure 3.8.: Time On High vs. Quality Rating for Campaigns 2 - 5

3.4.4. Acceptance of Quality Switches

Next, we discuss how the number of quality switches in test sequence and the amount
of time spent on the best quality level influences the perceived QoE of the user in
terms of the acceptance rate. First, we give the acceptance rate for different number
of quality switches ranging from 0 to 14. Second, we present the acceptance rate
dependent on the time spent on the best quality level.
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Figure 3.9.: Switches vs. Acceptance Rate for Campaigns 2 - 5

Figure 3.9 illustrates the relationship between the number of quality switches
and the acceptance rate observed during the four user studies. For zero quality
switches, two markers are shown for the user studies C3, C4 and C5. One for the test
sequence with a steady low quality and one for the test sequence with a steady high
quality. From the results presented in the figure follows, that there is no significant
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correlation between the number of quality switches and the acceptance rate. For
the user studies C3, C4 and C5 the acceptance rate stays low for all investigated
number of quality switches and does not differ significantly from the acceptance rate
of the test sequence with a steady low quality. The user study conducted with a
lower amplitude (i.e. C2) also shows no influence of the number of quality switches.
However, the lower amplitude results in a general higher acceptance rate equivalent
to the test sequence with a steady high quality.
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Figure 3.10.: Time On High vs. Acceptance Rate for Campaigns 2 - 5

Figure 3.10 illustrates the relationship between the time spent on the highest
quality level and the acceptance rate. From the presented data follows that there is
only a low correlation between the time spent on the highest quality level and the
acceptance rate for the investigated range (i.e. 33% to 66% of time showing the best
video quality). User study C4 does not show any significant influence regarding the
time on the highest quality level. All sequences of C4 show an equally low acceptance
rating. An equivalent effect is observed for C5 where the test sequences all spend
half of the time on the highest quality level and the other half on the lowest. The
acceptance rating is equally low for 0% and 50% time spent on the highest quality
level. For a time spent on high lower than 56% of the time, C3 and C2 confirm
the previous observations. However, there is an increase in the acceptance rating
starting from 56% time spent on the highest quality level for C2 and C3.

In this section, we investigated how the acceptance rate is influenced by the num-
ber of quality switches and the time spent on the highest quality level. From the
evaluation follows, that the number of quality switches does not influence the ac-
ceptance rate. Furthermore, we see that all sequences with more than one high
amplitude switch exhibit an equally low acceptance rate equivalent to the low qual-
ity sequence without quality switches. The low amplitude switches on the other
hand result in the same high acceptance rate as the test sequence with constant
high quality. Regarding the percentage of time on the high quality level, all test se-
quences with a lower time spent on high of 56% exhibit no change in the acceptance
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3.4. Results of the statistical analysis of the subjective studies

rate. A percentage of time spent on the higher quality equal or greater than 56%
shows an increase in the acceptance rate.

3.4.5. ldentified QoE Influence Factors

Next, we discuss and summarize the findings from the previous subsections, present
the identified QoFE influence factors of adaptive video streaming and the contribution
to the user-centric performance evaluation of the adaptation algorithms.
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Figure 3.11.: Main effects plot for the quality rating

In the previous subsections, we investigated the influence of the number of switches,
the time spent on the best quality level and the switching amplitude on the user’s
perceived QoE in terms of the quality rating in the range of 0 to 1000 and the accep-
tance rate. The results are summarized by main effect plots in displayed Figure 3.11.
The findings indicate that the user’s QoE is not influenced by the number of quality
switches in a test sequence, for the investigated number of the quality switches of
1 to 14 per 15s sequence and considering the displayed confidence intervals, but
whether there are any quality switches in the test sequence. For both metrics, the
time on high and the acceptance rate, we could not observe any correlation between
a number of quality switches greater than one and the ratings of the users for the
observed confidence intervals. However, the sequences containing quality switches,
regardless of the number of switches, were rated slightly better than the sequence
with steady low quality on average and significant worse than the sequence with
steady high quality. From this it follows that from the users’ perspective, quality
switches result in a significant lower QoE regardless of the number of switches.
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The results regarding the switching amplitude confirm common assumptions. A
lower switching amplitude impacts the user’s QoE less than a larger amplitude.
In our configuration, the lower amplitude switches showed only a slightly lower
quality rating and acceptance rate than the sequence without quality switches and
steady high quality. From this it follows that an adaption algorithm should keep the
amplitude of the quality switches as low as possible.

The conducted studies show a correlation between the time spent on the highest
quality layer and the quality rating and acceptance rate of the users. For a percentage
equal or greater than 56 %, the quality rating increases with a increasing time on high
percentage. For the range between 33 % and 56 % we observe a higher rating than
for the 0% time on high (steady low) sequence, but no correlation to an increasing
time on high percentage. Both statements are valid for low and high amplitude
switches. From the observed acceptance rates, two conclusions can be drawn. First,
we observe the same increase starting from 56 % time on high percentage as for the
quality rating. Second, for the user’s QoE, a sequence with less than 56 % of high
quality, is as acceptable as the sequence with steady low quality.

For the design of an adaptation algorithm, the following conclusions can be drawn
from the crowdsourcing user studies. First, quality switches should be avoided.
Second, the amplitude of the quality switches should be kept as low as possible and
third, if a quality switch does not lead to a phase of higher quality longer than a
previous or following low quality phase, there is no increase in the QoE of the user
to expect for the investigated sequence length of 15 seconds.
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4. An Adaptation Algorithm and
Methodology for Objective
Evaluation

In this chapter, we describe the proposed adaptation algorithm in detail and present
the methodology used for the evaluation of the adaptation algorithms. Figure 4.1
illustrates the evaluation approach. Realistic network scenarios derived from real-
world traffic traces, encoded test content and the adaptation algorithms are input
parameters for an evaluation process in a test bed environment. The test-bed per-
forms traffic shaping to simulate the network scenarios, provides the test content
over HTTP and executes the DASH client and monitors the adaptation algorithms
during playback. Objective metrics are deduced based on the recorded playback
behavior. Afterwards, the results from the user studies are used to compare the
adaptation algorithms from a user-centric point of view.

-
Realistic Network Scenarios
3 based on network traces
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Evaluation in test bed
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Figure 4.1.: Objective evaluation methodology overview

This chapter is structured as follows. First, we present the proposed adaptation
algorithm. Second, we introduce the user- and resource-centric evaluation metrics we
derive from the recorded playback behavior. Third, we highlight the characteristics
of the used test content. Forth, we present the structure of the testbed used in
the process of this evaluation. Afterwards, we discuss different evaluation scenarios.
Evaluation scenarios allow us to answer further questions about the performance
of the algorithms in real-world situations. For example, one evaluation scenario
investigates the performance of the algorithms in the presence of a large file download
in addition to a fluctuation network access characteristic. The section after the
evaluation scenarios takes a closer look at the evaluation framework developed as
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part of this thesis. We conclude this chapter by giving an overview of the evaluations
performed for this thesis and their objectives. The subsequent section introduces
the proposed DASH-SVC adaptation algorithm.

4.1. Bandwidth Independent Efficient Buffering
(BIEB) Algorithm

The DASH/SVC algorithm Bandwidth Independent Efficient Buffering (BIEB) pro-
posed by the author of this thesis is designed to offer a high image quality while
also avoiding stalling and frequent quality switches. The algorithm does not rely
on bandwidth estimations based on the current throughput and does not make as-
sumptions about the content bitrate based on the average bitrate specified in the
MPD file. It does, however, make an assumption about the relative size of segments
of different representations to each other. The assumption is based on observations
of encoded SVC-content and is illustrated in the following example.

20
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10

Bitrate ratio to the base layer
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0 2 4 6 8 10 12

Playback Time (minutes)

Figure 4.2.: Tears Of Steel representation bit-rates relative to the base layer

Section 4.3 introduces the open-source movie Tears Of Steel SVC-encoded with
three spatial resolutions. Figure 4.5 in Section 4.3 illustrates the bit rate of the
encoded bitstream separated into the three layers. Bitrate variations as shown in the
example are typical for H.264-encoded content with time-varying amount of spatial
and temporal information. We conclude that the average bitrate of a layer is not a
reliable approximation of the bitrate for a given point in time during the playback.
But, as shown in Figure 4.2, the ratio of the segment sizes of the representations
relative to the base-layer stays fairly constant.

The average bitrates for each representation given by the MPD file can be used
to calculate the segment size ratios used for the proposed adaptation algorithm. In
detail, the following definitions are used to describe the algorithm. 74,,(7) is defined
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4.1.  Bandwidth Independent Efficient Buffering (BIEB) Algorithm

as the average bitrate of representation ¢ without the preceding dependent quality
layers, br(i) is ratio of representation ¢ and the base layer (br(i) = %), Geurr 18
the highest currently selected representation (with 4., = 0 being the base layer,
also referred to as imin), imar 1S the highest selectable representation, pey. is the
segment number of the current playback position, v gives the minimum buffer level
in segments per each selected representation and §(7) returns the current buffer level
in segments for representation 7. A representation is called selected if at least one
segment of this representation is already buffered.

The desired buffer level beta(i) per each selected representation depends on the

number of currently selected representations and the ratio of the segment sizes.

B( ) Y br(icurr - Z) if ¢ S Z.maw )
1) =
v (Z - Z.maac 2) : br@maz) if o > Z.maa: .

The aim of the algorithm is to divide the currently available bandwidth evenly
between the selected representations starting from the most important (i.e. the base-
layer). Evenly is here defined by the ratio of the segment sizes as given by br(i).
The output of br(i) can also be interpreted as the cost of representation i where the
cost of the base-layer is always 1. In the cost-model the base-layer is 'cheap’ and
with a growing number of selected higher, more ’expensive’, representations, we also
have to ’buy’ more base-layer segments for the current time frame.

Figure 4.3 gives a simple example for this model. The figure shows the current
buffer level in Megabytes and in number of segments per representation. In this
example the segments of the representation with the resolution 1280 x 720 have
each a size of six Megabytes, the segments from the next lower representation (i.e.
640 x 360) have a size of three Megabytes and the segments from the base layer have
a size of one MB each. Note that all segments contain the same amount of playback
time. From Figure 4.3a it follows that we have to download six segments from the
base-layer, two segments from the first enhancement layer and one from the second
enhancement layer to reach the desired buffer level. The resulting buffer level in
number of segments is shown in Figure 4.3b. In case of one second of playback time
per segment this is equivalent to the number of playback seconds buffered.

1280 720| 6 MB |
640 x 360 | 3MB | 3 M8 |
320x180| 1MB | 1MB | 1MB | 1MB | 1MB 1MB |

(a) In Megabytes (MB)

1280 x 720

640 x 360 | 3 |
320x 180 | 6

(b) In number of segments

Figure 4.3.: Example buffer levels

40
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The algorithm can be in one of three phases during the playback depending on
the current buffer level. The steady, growing and quality increase phase. During
the steady phase the algorithm tries to reach the desired buffer level for each se-
lected representation. The growing phase begins when the algorithm has reached
the desired buffer level. During the growing phase the buffer level requirements for
each selected representation are increased to prepare to select the next higher rep-
resentation. Note that the buffer level requirements are increased past the amount
required for the next representation. This is done to inhibit any short-term through-
put fluctuations from casing unwanted quality switches. The growing phase ends
when the new desired buffer levels are reached. Afterwards, in the quality increase
phase the algorithm selects a specific segment from the next higher representation
as next segment to download and implicitly enters the steady phase again. The
algorithm is called after a segment finished downloading to determine the next seg-
ment to download. Algorithm 1 defines the proposed algorithm in detail. First, the
algorithm determines the number of currently selected representations by iterating
through the list of representations in reverse order and stopping when the first rep-
resentation with buffered segments is found. Next, the algorithm iterates through
the representation starting from the base-layer and checks if all segments belonging
to the steady phase are available. If one segment is missing, the algorithm stops and
the segment is selected to be downloaded next. If all segments for the steady phase
are available, the process is repeated with the segment requirements for the growing
phase. If the segments of both phases are already available, the algorithm selects
the next higher representation.

(a) Quality Level 0: Steady Phase

\> Playback time relative to the current playback position >

(b) Quality Level 0: Growing Phase

H | | | | | |
Playback time relative to the current playback position >

(¢) Quality Level 1: Increase and new Steady Phase

> Playback time relative to the current playback position >

Figure 4.4.: Example Switch from QO to Q1
Figure 4.4 outlines the transition between two steady phases by example. At first,

quality level 0 (i.e. base-layer) is selected and the minimum buffer level is available
and in addition two segments. In Figure 4.4b, the algorithm enters the growing
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L= Tmins
ourr = Z.max;
while (i) == 0 do

‘ Leurr = leurr — 17
end
i =0; // Steady Phase
while i <., do
if delta(i) < (i) then

request next segment of representation 7;

exit;
end
=1+ 1;

end
i =0; // Growing Phase
while ¢ < i, do
if delta(i) < B(i + 2) then
request next segment of representation ¢;

exit;
end
=1+ 1;

end
// Quality Increase
if i #£ 4,4, then
ewrr = teurr + 15
request segment p...- + 7y of representation ¢
else
| // idle until peyrr increases

end
Algorithm 1: BIEB Adaptation Algorithm

phase, were four base-layer segments are added to the buffer. At the end of the
growing phase, six base-layer segments are buffered in addition to the minimum
buffer level. In Figure 4.4c, the algorithm increased the quality level by one and
enters the new steady phase with two quality levels.

It has to be noted that the algorithm’s desired buffer level strategy can be im-
proved further to reach a theoretical optimum. E.g. as illustrated in Figure 4.2,
the relative size ratios stay fairly constant for a long duration of the movie. How-
ever, the last two minutes exhibit a different behavior. The relative sizes of the
representations to each other increase. Future work could include an estimation
function of the size ratios to improve the algorithm’s effectiveness in such situations.
Additionally, the evaluation showed that in some situations the algorithm exhibits
a risky segment picking behavior where the algorithm tries to download segments
which are too close to the current playback position. A decrease in bandwidth (or
equivalently an unexpected increase in the content bit rate) can lead to situations
where the playback position already moved past the currently downloading segment
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when the segment finished downloading and the segment can no longer be used and
has to be discarded (referred to as wasted bandwidth in the evaluation). Further
constrains for the segment picking can be put in place to prevent or decrease the
amount of wasted bandwidth. In order to evaluate our proposed algorithm in com-
parison to other DASH adaptation algorithms, we also introduce a set of objective
and subjective metrics in the subsequent section.

4.2. Utilized Evaluation Metrics

In this section, we introduce the evaluation metrics we derive from the playback
behavior of the adaptation algorithms during a streaming session. We differentiate
the evaluation metrics in resource-centric and user-centric metrics. Resource-centric
metrics describe the behavior of an adaptation algorithm from a technical perspective
(e.g. memory use, bandwidth utilization), whereas user-centric metrics characterize
the algorithms by the resulting output (e.g. video quality, switching frequency).

4.2.1. Resource-centric Metrics

The resource-centric metrics describe how well and fair the algorithms use the
available bandwidth and memory resources. Computational complexity is highly
implementation-specific and is therefore not considered here.

Memory Use
The memory use of an adaptation algorithm is characterized by the mean
memory use and peak memory use during a session. Memory use is here
defined as the amount of content data buffered, not including implementation
specific data structures. Peak memory is the maximum memory use of the
algorithm over all conducted evaluation runs of a particular scenario.

Bandwidth Utilization

Bandwidth utilization is here quantified by the ratio of the amount of down-
loaded data to a theoretical optimum and the amount of data downloaded but
not used (referred to as bandwidth wasted). The theoretical optimum is cal-
culated from the values used by the traffic shaping process and because of its
theoretical nature may not be reachable by any algorithm. Bandwidth wasted
refers to situations where the adaptation algorithm downloads a segment but
does not use it during the encoding process.

Bandwidth Fairness
Bandwidth Fairness is defined as the absolute and relative difference in average
playback quality between two concurrent clients using the same adaptation
algorithm and sharing the same Internet connection. Concurrent means that
the playback session of both clients overlap during the same scenario. The
start time for the second client is chosen by random between 0 and 60 seconds.
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4.2.2. User-centric Metrics

The user-centric metrics describe the behavior of the playback during a streaming
session from the perspective of an imaginary viewer.

Quality Switches
The quality switches are quantified by the absolute number, the amplitude and
the distribution of the switches over the length of the session. The distribution
of the switches is given by the inter-switching times, i.e. the length of the time
intervals between two switches.

Playback Quality
The playback quality is characterized through the downloaded number of seg-
ments per representation. Derived from that, you can calculate the mean
quality level, the standard deviation and objective image quality metrics like

PSNR [14] and SSIM [60].

Stallings

Playback stalling describes the situation where the algorithm does not output
any content to the video encoder. Initial delay/stalling describes the time
interval between the download of the MPD file and the output of the first
segment (i.e. the waiting time before the playback starts). Initial delay is
the result of algorithms pre-buffering a specific amount of data before starting
the playback. Stalling time is the sum of the time intervals and the number
of occurrences where no content is decoded during the session, not including
the initial delay. From a technical perspective, stalling during the playback is
caused by buffer starvation as result of insufficient bandwidth.

4.3. Content Characteristics

Tears of Steel [23] is a short movie by the Blender Foundation [2| published as open-
source movie with a playback length of about 12 minutes (17620 individual frames).
It is freely available (Creative Commons Attribution license [16]) and features high
image quality (i.e. two high resolution versions with 1080p and 720p), real actors
and sophisticated visual effects in a Science-Fiction scenario.

Resolution | Average bitrate | Maximal bitrate | SSIM
320 x 180 0.294 Mbps 1.279 Mbps 0.922
640 x 360 0.949 Mbps 3.368 Mbps 0.978
1280 x 720 2.671 Mbps 10.46 Mbps 1.0

Table 4.1.: Tears Of Steel with spatial scalability
Based on the 720p version, we encoded the movie into H.2.64/SVC with spatial

scalability using the (Joint Scalable Video Model) JSVM [19] reference software
(version 9.19.15). A Group of Pictures (GOP) size of 8 frames, an IDR and Intra
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period of 24 frames and QP factor of 24 was used. The encoding configuration file
used for the encoding process is available in the appendix of this thesis (A.2). Table
4.1 shows the resulting average and maximal bitrates of the encoded movie with
the three spatial resolutions and also the SSIM value with the highest resolution
as reference quality. Doubling the resolution (i.e. 4 times the number of pixels)
increases the required bitrate by approximately factor 3.
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— 320x 180
7~ |— 640 x 360 7
1280 x 720

Mbps
=
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Playback time in seconds (24 frames/s)

Figure 4.5.: Tears Of Steel with spatial scalability

The bitrate of the encoded movie over time is depicted by Figure 4.5. For increased
readability, the bitrate is smoothed using a moving average with a window size of 10
seconds. The moving average is the reason why the maximal bitrates given in Table
4.1 differ from the bitrates illustrated by the figure. The bitrate spike at the end of
the movie is due to the complex end credits. The lower spikes during the movie are
caused by fast action scenes with a high amount of motion and explosions.

4.4. Testbed Environment

The testbed used for the experiments is illustrated in Figure 4.6. A plain HTTP
server (apache2) running on a Linux host is serving the DASH content (i.e. Tears
of Steel in segments, each 2s long). The traffic shaping device is running Debian
Linux 6 (Squeeze) and traffic shaping is done using the Linux Advanced Routing &
Traffic Control [11] framework (i.e. NetEm). We implemented two traffic shaping
options, transmission delay and bandwidth. It has to note, that the traffic shaping
in our testbed is only applied to traffic from the HT'TP server, not for data from the
clients to the HT'TP server. The traffic shaping process is started by uploading a
script file to the shaping device which contains for each second of the evaluation run
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a bandwidth and delay value. Once the evaluation process is started, the shaping
device uses the supplied values to shape the traffic. After reaching the end of the
script file, the shaping is started from the beginning again.

Traffic Shaper HTTP Server

‘ ; \ Tears Of Steel
Delay,'Bandwidth

DASH Client 2

Figure 4.6.: Testbed schematic

Two DASH clients (running Kubuntu Linux 12.10) are connected to the HTTP
server through the traffic shaping device by Ethernet cables and a Gbit-enabled
switch. TCP Cubic [32] is used as congestion avoidance algorithm on both clients
and the HTTP server. Next, we describe the different network access characteristics
we utilize to shape the traffic for the evaluations.

4.5. Network Access Characteristics

In this thesis, network access characteristics describe the downstream transmission
path between the content server and the DASH client(s) and can be either artificial
(e.g. set to a constant value) or deduced from recorded network traces. Two metrics
describe a network access characteristic, transmission delay and available bandwidth,
both as a function of time. In the following, we first describe transmission paths
with artificial constant limitations. Afterwards, we discuss the characteristics of a
transmission path observed in a vehicular mobility scenario.

4.5.1. Constant Bandwidth Limitation

Constant bandwidth limitation is a primitive artificial network access characteristic
where a specific bandwidth and delay do not change during a playback session.
We define nine different constant bandwidth limitations for use in the evaluation.
The limitations are derived from the test content and are multiples of the average
bitrate of the base-layer ranging from two times the base-layer to ten times the
base-layer. Accordingly, the different limitations are ranging from 589 Kilobits/s to
2944 Kilobits/s. The transmission delay is set to 70 ms for all limitations.
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Figure 4.7.: Vehicular mobility pattern

4.5.2. Vehicular Mobility

The vehicular mobility network access characteristic is derived from a real-world
recording. Figure 4.7 shows the measured bandwidth during a short drive on the free-
way around Klagenfurt, Austria recorded by the Institute of Information Technology
of the Alpen-Adria Universitaet Klagenfurt [47] using an UTMS stick. Transmission
path delays were not recorded. We define a fixed transmission delay of 70 ms in the
performance evaluation. The average measured throughput is 2.88 Megabits/s and
the available bandwidth fluctuates rapidly in a range of about 0.8 Mbps and 5 Mbps.

4.6. Investigated Scenarios

The following sections describe the evaluation scenarios implemented in the objective
evaluation framework. FEach of the implemented scenarios is designed to mimic
a specific real-world situation from an end-user’s point of view. This is done by
shaping the available bandwidth on the transmission path according to artificial
and recorded traffic patterns and allowing event-based interferences (e.g. start of a
second transmission over the same link).

4.6.1. Vehicular Mobility

In this scenario, we evaluate the adaptation algorithms in situation were the available
bandwidth of the Internet link and the transmission delay is changing rapidly and
unpredictably. The scenario is modeled with vehicular mobility in mind, where the
Internet link is heavily influenced by external factors like the speed and direction
of the moving vehicle or the distance to the closest base station. As network access
characteristic, we utilize the recorded vehicular mobility pattern illustrated in Figure
4.7 and described in Subsection 4.5.2. The traffic pattern is played in a loop and
the starting point inside the loop is randomized prior to each evaluation run. In this
scenario, we only use one DASH client.
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4.6.2. Scalability to Bandwidth

The constant bandwidth scenario is designed to evaluate how well the the algorithms’
performance scale to the available bandwidth. For a constant transmission delay,
the available bandwidth on the transmission path is increased by steps of 100 % of
the average base-layer bitrate for each run up to the average bitrate of the high-
est representation (i.e. the network access characteristics described in Subsection
4.5.1). We selected the user-centric performance metrics average playback quality
and switching frequency to assess the algorithms. We are interested in, whether the
algorithm offer a higher playback quality for an increased bandwidth and whether
the switching frequency stays on roughly the same level for different bandwidth
limitations. In this scenario, we only use one DASH client.

4.6.3. Fairness for Two Clients

In shared living environments and households, one Internet link is generally shared
among multiple client devices, where each client is constantly competing for a fair
share of the bandwidth. In this scenario we evaluate the fairness between two com-
peting DASH-clients sharing one Internet link. We assume the network to be un-
managed (i.e. best-effort delivery) and congestion avoidance is employed by the
TCP implementation on the clients. Both clients are using the same adaptation
algorithm and viewing the same content. For each run, the clients start the trans-
mission time-displaced by a random amount of time between zero seconds and 60 s.
As network access characteristic, we use the vehicular mobility traffic pattern.

4.6.4. Fairness for Cross-Traffic

In this scenario, we evaluate how the adaptation algorithms react to a competing
HTTP download request on a shared Internet link. Each algorithm is evaluated
twice, first with a constant available bandwidth of b and constant delay and without
a competing download request and second with a available bandwidth of b/2, the
same constant delay as before and a competing unlimited HT'TP download request.
The download request starts simultaneously with the video transmission and does
not end until the video transmission has finished.

The table in Figure 4.8 summarizes the introduced evaluation scenarios by their
utilized network access characteristic and the number of clients. We use the vehic-
ular mobility traffic pattern for the fairness study and for the vehicular mobility
scenario. The scenario where we evaluate how the algorithm react to different con-
stant bandwidth limitations (i.e. Scalability to Bandwidth) and the fairness for
cross-traffic scenario utilize only constant bandwidth limitations. The fairness for
two-clients scenario is the only scenario where two DASH clients share the Internet
connection. In the fairness for cross-traffic scenario a competing HT'TP download is
started concurrent to the DASH client.
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Evaluation Scenario Network Access Number of Clients
Vehicular Mobility Vehicular Mobility 1

Scalability to Bandwidth Constant Bandwidth 1

Fairness for Two Clients Vehicular Mobility 2

Fairness for Cross-Traffic Constant Bandwidth 1 + competing HTTP download

Figure 4.8.: Evaluation Scenarios Summary

4.7. Evaluation Framework for HTTP DASH
Measurements

In this section, we briefly discuss the DASH client implementation used in the per-
formance evaluation of the adaptation algorithms. Since the DASH standardization
was completed relatively recently, not many freely available DASH implementations
exist as of today suitable for a comprehensive performance evaluation. Existing im-
plementations were developed with different use cases in mind and therefore would
have required a substantial amount of work to add additional adaptation algorithms
and monitoring capabilities. As a consequence, we developed our own DASH client
implementation based on freely available open-source components and included com-
prehensive monitoring capabilities. The following subsection gives a short introduc-
tion to the developed DASH client implementation.

Implementation Details

The client implementation is written in C++ and utilizes the libcURL [10] library to
handle HTTP requests, the pugixml [15] XML library to parse the MPD document
tree and the Boost [3| libraries to increase general programming efficiency. The
evaluation utilizes Matlab 2007. For a particular scenario and algorithm, three steps
are performed for the evaluation. First, the framework is configured. Second, the
playback is started and its behavior monitored and third, the algorithm is evaluated
based on the monitored performance.

Configuration

The DASH evaluation client is configured through command line options and
JSON-based configuration files. Taken together, four input parameters are
supported. a) The traffic pattern for the scenario, b) the adaptation algorithm
to use, ¢) the URL of the MPD content file and if requested, d) any non-default
parameter values for the adaptation algorithm.

Playback & Monitoring

The behavior of the playback is exclusively dictated by the selected adap-
tation algorithm. The evaluation framework provides all information about
the current application state (ce.g. buffer levels, current throughput) to the
adaptation algorithm and the algorithm decides which segment to download
next and which to send to the video decoder. This approach allows us to
add new algorithms or make changes to existing without having to implement

49



4.7.  Fvaluation Framework for HTTP DASH Measurements

changes to other parts of the framework. Monitoring is done by recording all
information send to and send from the algorithm.

Evaluation

The evaluation is based on the information recorded during the playback. All
data objects recorded during one playback session are referred to as the data
of one run in the terminology of the implementation. All runs with the same
configuration are aggregated and referred to as a statistics set. In order to
increase the confidence of the results, each configuration is repeated a defined
number of times and therefore each statistics set contains at least two or more
runs in our evaluation.
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5. Performance Evaluation of
DASH Adaptation Algorithms

In the following, we discuss the findings regarding the objective performance evalu-
ation of the investigated adaptation algorithms. First, we present the results from
the vehicular mobility scenario, a realistic scenario where the available bandwidth
rapidly fluctuates during the playback. For the evaluation of this scenario we con-
sider five metrics. This includes two QoE influence factors (switching frequency, av-
erage playback quality), as discussed in Chapter 3, as well as three resource-centric
metrics, namely memory consumption, resource utilization and the amount of band-
width wasted. Second, we take a look at how well the algorithms adapt to different
bandwidth limitations in terms of the two user-centric metrics playback quality and
switching frequency. To do so, we evaluate the investigated algorithms with a set of
constant bandwidth limitations and compare the behavior for the different limitation
settings. Afterwards, we present a fairness study where two clients using the same
adaptation algorithm share a vehicular mobility Internet connection. We assess the
fairness between the two clients using the metrics difference in playback quality and
difference in switching frequency for both clients. Next, we discuss the behavior of
the investigated algorithms for a scenario with competing cross-traffic. Specifically,
we answer the question if the choice of the adaptation algorithm may influence the
partition of the available bandwidth between the streaming client and a large file
download. At the end of this chapter, we summarize the findings and compare the
investigated adaptation algorithms.

5.1. Evaluation in the Vehicular Mobility Scenario

In this section, we discuss the results of the evaluation of the adaptation algorithms
in the vehicular mobility scenario. We first present the findings concerning the QoE
influence factors initial delay, stalling, quality switching and playback quality. Next,
we show results from the resource-centric perspective, namely bandwidth utilization
and memory usage. All measurements are conducted 30 times for each algorithm
to get statistical significant results and in each measurement run, a random entry
point was chosen for the looping traffic pattern. The results are presented with a
95% confidence interval indicated by error-bars.

5.1.1. Qoe Influence Factors

Playback interruptions, especially stalling during playback, but also at the begin-
ning of a video session (i.e. initial delay) have a strong impact on the user’s QoE
[34]. Therefore, adaptation algorithms should be designed to minimize both, the
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initial delay due to content pre-buffering, and buffer underruns due to insufficient
available network bandwidth. Our findings show, that all four evaluated adaptation
algorithms prevent playback stalling. Furthermore, for the initial delay, a maximum
value of 2.5s was observed, which is known to have no impact on the user’'s QoE
[34].

In an adaptive video streaming scenario, the Quality of Experience of the stream-
ing session as perceived by the user is influenced by two factors. The image quality
and flicker effects [65]. Flicker effects are caused by the adaptation and describe
multiple changes in quality over a short period of time. We specify flicker effects
by their frequency in terms of switches per minute and by the length of time peri-
ods without quality switches. Image quality is here specified by time in percent of
the whole playback session spend on a specific quality level. The influence of both
factors on the QoE is discussed Chapter 3.
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Figure 5.1.: Playback quality in time spend on the different quality levels

Figure 5.1 shows the average quality of a playback session in this scenario for the
four evaluated adaptation algorithms. The figure depicts that Tribler and BIEB
are able to play back more than half of the time the best quality (73 %, 67 %),
whereas KLUDCP and TRDA show 37% and 19% of the time the best quality
level, respectively. Furthermore, when comparing BIEB with Tribler, BIEB exhibits
a higher percentage of the second quality level (25 % to 10%). Accordingly, BIEB
and Tribler both outperform KLUDCP and TRDA in terms of playback quality.
When comparing BIEB with Tribler, BIEB offers an increased average quality (1.63
to 1.56, for base layer equal to 0).

Figure 5.2 and Figure 5.3 depict the quality switching behavior of the algorithms.
The former one as mean and maximum quality switches per minute and the latter
one as time periods of steady quality. Figure 5.2 indicates that BIEB and TRDA
have a similar average quality switching frequency of 0.98 switches/min and 0.63
switches/min, respectively. The switching frequency of KLUDCP and Tribler is
about 10 times higher than for BIEB and TRDA, namely 11.7 switches/min and
8.8 switches/min. Mapping this to average inter-switching times, BIEB and TRDA
adapt the playback quality on average every 61.33s and 92s, respectively, whereas
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Figure 5.3.: Switching CDF

KLUDCP changes the quality every 5.15s and 6.81s, respectively. Figure 5.3 il-
lustrates the switching behavior of the algorithms by the cumulative distribution
function (CDF) of continuous segments with the same quality level. It can be seen
that Tribler and KLUDCP show a similar behavior as well as BIEB and TRDA.
This corresponds to the observed quality switching frequency. BIEB and TRDA can
keep a quality level for a long time before they have to switch, whereas Tribler and
KLUDCP have a high probability of switching the quality level after only a small
number of segments. In numbers, after 10 segments (i.e. 20 seconds of playback
time) of continuous playback keeping one quality level, TRDA and BIEB have a
probability of about 35 % for a quality switch. Whereas it is about three times more
likely to switch after 10 segments of playback with KLUDCP and Tribler (95 %).

In summary, it can be stated that Tribler and KLUDCP adapt the playback
quality aggressively to the currently available bandwidth. This results in a high
switching frequency. TRDA shows a conservative switching behavior with a very
low switching frequency, but in turn can not offer a high playback quality. BIEB
also shows a low switching frequency, but also offers a high playback quality. We
conclude that in this scenario BIEB provides the best performance from a user-
centric point of view.
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5.1.2. Efficiency and Usage of Resources

In wireless scenarios, network and hardware resources are limited and thus an ef-
ficient usage of the available resources is important. In the following, we present
the results from the resource-centric evaluation of the adaptation algorithms. Three
metrics are used for the evaluation. First, the bandwidth utilization. Second, the
amount of wasted bandwidth and third, the memory consumption during the play-
back in terms of buffered segment data.
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Figure 5.5.: Bandwidth wasted in percentage of movie file size on highest quality

Figure 5.4 illustrates the bandwidth utilization of the four adaptation algorithms
on ascale of 0 to 1 (i.e. 0% to 100 % of the theoretical maximum). On average, BIEB
provides the highest utilization with 70 %, closely followed by Tribler with 67 %.
KLUDCP and TRDA offer a lower network resource utilization, with KLUDCP
using 53 % and TRDA 40 % of the available resources.

Adaptation algorithms may choose to download segments which are not used
during the encoding process. Therefore, bandwidth utilization alone does not reflect
the overall network efficiency. The average amount of data wasted by the algorithms
is presented in Figure 5.5, given as the percentage of the file size of the content
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including all higher layer segments. In 30 runs, the adaptation strategy of Tribler and
TRDA did not result in any discarded segments during the encoding process. The
amount of data discarded by KLUDCP is considered insignificant. BIEB discards
segments in 66 % of the runs, with an average wasted data of 0.8 Mbyte per run.
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Figure 5.6.: Memory usage

Figure 5.6 illustrates the average and mean peak memory use of the algorithms.
The peak memory consumption is the maximal amount of segment data the algo-
rithm buffers at a point in time during one run. It can be interpreted as the minimum
memory requirement for a mobile viewing device to support the playback of the test
content in this scenario. The figure also indicates that none of the four adapta-
tion algorithms uses an extensive amount of memory. BIEB has the highest peak
memory consumption of 15.1 MBytes (i.e. 6.6% of the whole test content), which
is an insignificant amount of data compared to today’s mobile device’s memory re-
sources. BIEB is followed by Tribler with a memory consumption of 12.7 MBytes
and KLUDCP with 12 MBytes. TRDA has the lowest peak memory consumption
(9.9 MBytes) of the four investigated adaptation algorithms.

In summary, it can be said that BIEB and Tribler manage to utilize a higher
percentage of the available network resources in contrast to TRDA and KLUDCP.
BIEB has to discard some of the downloaded data, but additional segment picking
constrains may decrease the amount of wasted data. None of the algorithms exhibits
an extensive use of memory for the investigated scenario and test content.

5.2. Playback Quality and Switching Scalability

In this chapter, we evaluate how well the adaptation algorithms scale to the available
bandwidth in terms of playback quality and if the switching frequency behavior is
the same for different limitations. To do so, we choose a number of bandwidth
limitations evenly distributed between two times and ten times the average bit-rate
of the base layer and perform ten evaluation runs for each algorithm and bandwidth
limitation. Confidence intervals were observed to be small for constant bandwidth
limitations and therefore omitted here for the sake of readability. The following
figures show the results for two selected performance metrics for each algorithm and
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limitation as the mean of the results gathered from the ten runs. First, we present
the average playback quality for the different limitations. Afterwards, we display
the results regarding the average switching frequency.
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Figure 5.7.: Average playback quality

Figure 5.7 indicates the average playback quality for different bandwidth limita-
tions. The playback quality is here defined in a range of zero to two, with zero being
the quality level 0 (i.e. the base layer) and 2 being the second enhancement layer
of the test content. The figure highlights that for BIEB and Tribler, an increase
in bandwidth always leads to an increase in playback quality and both can offer
approximately the same average playback quality. KLUDCP and TRDA however
show a different behavior. TRDA only shows the base layer up to a bandwidth
limitation of five times the bitrate of the base layer. For five and six times the base
bitrate, the average playback quality increases and remains roughly constant for all
higher evaluated limitations. KLUDCP increases the average playback quality for
three, four, five and ten times the base bitrate. For six to nine, the playback quality
remains roughly constant. We can conclude, that BIEB and Tribler always increase
the average playback quality for the the evaluated limitations. Whereas TRDA and
KLUDCP exhibit limitations where the average playback quality does not improve
with increasing available bandwidth.

Figure 5.8 shows the average switching frequency for the different evaluated band-
width limitations. The figures shows that BIEB and TRDA keep the switching fre-
quency low for all evaluated limitations, whereas KLUDCP and Tribler exhibit an
unstable behavior. Tribler only provides a low switching frequency for six times
the base bitrate and KLUDCP for two, seven, eight and nine times. To put it in a
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Figure 5.8.: Average switching frequency

nutshell, BIEB and TRDA outperform KLUDCP and Tribler in terms of stability
of the switching frequency for the evaluated limitations. We come to the conclusion
that the oscillation of the KLUDCP algorithm is due to the utilized bandwidth es-
timator. Hence, it may cause an increase in the switching frequency if the available
bandwidth is close to the average bitrate of a quality level.

The evaluation indicates, that the proposed algorithm BIEB outperforms the other
three adaptation algorithms in terms of stability of playback quality and switching
frequency for the evaluated bandwidth limitations. For BIEB and Tribler, the av-
erage playback quality scales well to the available bandwidth. However, Tribler
exhibits an unstable behavior for the switching frequency. TRDA offers a stable
switching frequency, but provides a low average playback quality which is also does
not scale well to the available bandwidth.

5.3. Playback Quality and Switching Fairness

In the following, we discuss the results of the concurrent clients experiment where
we evaluate the fairness of the adaptation algorithms in a competitive setting for
the two user-centric metrics playback quality and switching frequency. In this sce-
nario two clients share one Internet connection and concurrently watch the same
content utilizing the same adaptation algorithm. As network characteristic for the
Internet connection we use the vehicular mobility traffic pattern (average bandwidth
2.88 Megabits/s). During each run, the two clients start the video playback time-
displaced by a random number of seconds between 0s and 60s. As evaluation metrics
in each run, we use the difference in number of quality switches and difference of the
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Figure 5.9.: Difference between two concurrent clients

average playback quality of the two clients.

Figure 5.9a shows the cumulative distribution function (CDF) of the absolute
differences of the average playback qualities between the two clients for all runs. The
difference in average playback quality shown on the bottom axis can range between
0 (i.e. no difference in playback quality) and 2 (i.e. one client only shows the base
layer, the other client only the second enhancement layer). The figure depicts that
BIEB and KLUDCP exhibit a similar fairness between the two clients. The difference
in average playback quality is 0.12 or less (6 % of the maximal possible difference)
and 0.16 or less (8 %) when using BIEB and KLUDCP, respectively. Tribler exhibits
a similar fairness as BIEB and KLUDCP in 70 % of the evaluation runs, but the
maximal difference can be as high as 1.55 (78 %). For TRDA the maximal observed
difference is 0.31 (15.5%). In summary, it can be stated that BIEB and KLUDCP
exhibit a high fairness compared to TRDA and Tribler in this scenario in terms
of average playback quality. On average, Tribler shows a similar fairness but we
observe runs with highly unfair behavior. TRDA exhibits a more unfair behavior
than the other three investigated adaptation algorithms.

Figure 5.9b shows the CDF of the absolute differences of the number of quality
switches per run. In this scenario, for BIEB and TRDA, the number of quality
switches between the concurrent clients does not differ by more than eight and nine
switches (i.e. a difference of 0.66 and 0.74 switches per minute), respectively. For
KLUDCP and Tribler, the probability to observe a difference of eight or less is
7.7% and 4.7% and the difference is always 35 and 104 or less (i.e. a difference of
2.87 and 8.52 per minute), respectively. From this it follows, that the adaptation
algorithms BIEB and TRDA show a high fairness between two concurrent clients in
terms of number of quality switches. Whereas, when using the adaptation algorithms
KLUDCP and Tribler, the probability of one client exhibiting a significant larger
number of quality switches than the other, is high.

We can conclude that BIEB is the only evaluated adaptation algorithm offering
a high fairness in terms of both metrics, playback quality and number of quality
switches. KLUDCP shows a high fairness regarding the average playback quality,
but performs poorly in terms of difference in number of quality switches. TRDA
offers a high fairness regarding the quality switches, but exhibits a low fairness for
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Figure 5.10.: Difference in playback quality for competing download traffic

the average playback quality. Tribler depicts highly unfair behavior in terms of
number of quality switches. However, the fairness regarding the average playback
quality is high in about 80 % of the observed runs.

5.4. Bandwidth Fairness for Cross-Traffic

In this scenario, we answer the question if the choice of the algorithm effects the
distribution of the available bandwidth between a concurrent file download and
a video playback session. In order to do so, we deploy each algorithm twice per
experiment. First, we set the available bandwidth to a fixed amount of 2.7 Megabit /s
and start a concurrent large file download simultaneously to the playback session.
For the second run, we cut the available bandwidth in half and start the playback
session without a concurrent HT'TP file download. We repeat the experiment 30
times for each algorithm to gain statistically significant results. We use the metrics
playback quality per run, the number of quality switches and the distribution of the
bandwidth to assess the effect of the concurrent download on the playback session.

Figure 5.10 shows the observed playback quality for (a) the 2.7 Megabit/s band-
width limitation with the concurrent download and (b) the 1.35Megabit/s band-
width limitation without the concurrent download. The figures show that in both
cases BIEB and Tribler offer a similar playback quality, whereas KLUDCP and
TRDA exhibit a higher playback quality for (a). For TRDA the difference in play-
back quality between (a) and (b) is the largest of all four algorithms. In (a), TRDA
is able to download more segments from the first enhancement layer than from the
base layer, whereas in (b), TRDA only downloads the base layer for the whole play-
back session. From this it follows, that in terms of playback quality, BIEB and
Tribler are not effected by a simultaneous large file download, whereas KLUDCP
and TRDA exhibit a significantly different playback behavior.

The evaluation regarding the change in switching frequency shows that the switch-
ing behavior of the algorithms is not considerably effected by the file download in
this scenario. Tribler exhibits the most significant effect of the four algorithms
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with an absolute change of the switching frequency from 23.2 switches per minute
for the 1.35 Megabit/s bandwidth limitation to 21.4 switches per minute for the
2.7 Megabit /s bandwidth limitation with the concurrent download. BIEB displays
the least significant effect with a change from 1.3 to 1.1 switches per minute. In terms
of bandwidth distribution as the ratio between download traffic and video playback
traffic, the algorithms can be divided up in two groups. BIEB and Tribler provide
a fair bandwidth distribution of 1.04 and 0.99, respectively, whereas KLUDCP and
TRDA get suppressed by the file download (1.77 and 1.92, respectively).

In summary, it can be stated that BIEB is the least effected adaptation algorithms
of the four investigated algorithms in this scenario. For all three evaluated metrics,
change in playback quality, change in switching frequency and bandwidth distribu-
tion, the algorithm does not show a significant difference between the two deployed
bandwidth limitations. Tribler also displays no significant change in playback qual-
ity and bandwidth distribution, but the algorithm exhibits the largest difference
for the switching frequency. However, compared to the absolute number of quality
switches, that change can also be considered as negligible. KLUDCP and TRDA
show a significant change for the observed playback quality. Regarding the band-
width distribution, these algorithms are not able to share the available bandwidth
evenly with the cross-traffic. They only utilize less than half of the available network
resources. Future work on this topic should include additional bandwidth limitation
patterns to allow for a more general evaluation of the behavior of the algorithms in
the concurrent download traffic scenario.

5.5. Comparison of the Investigated Algorithms

Next, we summarize the findings of the objective performance evaluation and com-
pare the four investigated adaptation algorithms. The findings are qualitatively
summarized in Table 5.1. The grading scale high, medium and low refers to the
measured values for each evaluated metric.

In the vehicular mobility scenario, we evaluated the four adaptation algorithms in
a challenging scenario where the available bandwidth heavily fluctuates. The results
show, that the SVC-based adaptation algorithms BIEB and Tribler can offer a high
playback quality and are able to utilize most of the available bandwidth in this diffi-
cult scenario. However, the use of Tribler results in a high number quality switches
during the playback. In contrast to Tribler, the conservative approach of TRDA can
keep the number of quality switches very low, but to do so, it does not utilizes the
available bandwidth well and hardly switches to the next higher playback quality.
This results in a low bandwidth utilization and a lower playback quality. KLUDCP
shows a similar low playback quality and bandwidth utilization, but in contrast to
TRDA, the switching frequency is high. In terms of memory requirements, all four
evaluated algorithms show a low consumption. It has to be noted that BIEB dis-
cards some segments during the playback (referred to as bandwidth wasted), but
compared to the size of the content, the amount of discarded data is neglectable.
From this follows, that BIEB outperforms the other three algorithm in this scenario.

In addition to the vehicular mobility scenario, we run the algorithms in three
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[ BIEB [ KLUDCP | Tribler | TRDA |

Using SVC or AVC ‘ SVC ‘ AVC ‘ SVC ‘ AVC
Vehicular Mobility Scenario

Playback quality high med high med

(avg. quality, base=0) 1.63 1.22 1.56 1.07

Quality switching frequency low high high low

(avg. switches per minute) 0.98 11.7 8.79 0.63

Bandwidth utilization high med. high low

(avg. bandwidth utilization) 70% 53% 67% 40%

Wasted data med low low low

(avg. wasted data) 0.33% | 0.02% 0% 0%

Memory consumption low low low low

(avg. memory consumption, MBytes) | 6.9 4.46 5.38 4.33

Artificial Scenarios

Switching Consistency high med. low high

Quality Scalability high med. high low

Fairness Playback quality high high high/med. | med.

Fairness Nr. of quality switches | high low low high

Bandwidth Fairness high low high low

(ratio Download/DASH) 1.04 1.77 0.99 1.93

Table 5.1.: Comparison of the investigated algorithms

additional testbed configurations to assess the scalability and fairness of the algo-
rithms. We first evaluated how consistent the behavior of the algorithms is for
different constant bandwidth limitations in terms of switching frequency. We also
assessed, how the resulting playback quality correlates to the deployed bandwidth
limitations. Next, we evaluated the fairness of the algorithms in experiments where
two concurrent clients were competing for the available bandwidth. As metrics we
used the difference in playback quality and number of quality switches between the
two clients. Following, we assessed how the algorithms react to a competing large file
download request. Again, using the metrics playback quality and quality switches.
The results show, that BIEB and TRDA manage to keep the switching frequency
low for all tested constant bandwidth limitations, whereas the switching behavior
of KLUDCP and Tribler is dependent on the available bandwidth. From this it
follows, that the two algorithms BIEB and TRDA show a highly consistent behav-
ior across the series of tested bandwidth limitations in contrast to KLUDCP and
Tribler. For the playback quality scalability, we observe that for BIEB and Tribler
an increase of available bandwidth is equivalent to an increase in average playback
quality for the evaluated limitations. Whereas for KLUDCP and TRDA, the play-
back quality remains roughly constant across most limitations. In terms of fairness
between two clients sharing the same Internet connection and deploying the same
adaptation algorithm, BIEB is the only algorithm which can offer a high fairness for
the quality of the playback and number of quality switches. KLUDCP and Tribler
also offer a high fairness for the playback quality, but both exhibit an unfairness
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regarding the number of quality switches. TRDA, as does BIEB, also exhibits a fair
behavior for the number of quality switches, but only shows a medium fairness for
the playback quality. In the fourth scenario, we evaluated if the algorithms show a
different behavior when confronted with a simultaneous large file download request
and how well the available bandwidth is distributed between the video playback
and the file download. The results show, that the two adaptation algorithms which
base their adaptation decisions on estimations of the available bandwidth, KLUDCP
and TRDA, exhibit a different behavior for the experiments with the concurrent file
download enabled compared to experiments without the file download. BIEB and
Tribler do not show any influence of the file download on the used metrics in the
experiments. In terms of bandwidth distribution, BIEB and Tribler are not sup-
pressed by the large file download. The video playback and the download request
share the available bandwidth evenly. The use of KLUDCP and TRDA results in
a highly unfair distribution of the bandwidth where the file download uses a larger
percentage of the available bandwidth than the video playback.

In summary, it can be stated that the proposed BIEB algorithm outperforms the
other adaptation algorithms in the vehicular mobility scenario and in terms of scala-
bility and fairness. TRDA shows a very conservative behavior which results in a low
switching frequency, but also low playback quality. Tribler is very aggressive and can
offer a high playback quality, but at the cost of a high switching frequency. KLUDCP
can not show a satisfying behavior for the evaluated metrics and configurations.
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6. Conclusion and Outlook

In 2012, 60 % of the global Internet IP traffic was generated by video streaming and
predictions show an increase of its traffic share to 73% by 2017 [4]. Additionally,
more and more traffic originates from mobile devices, with studies predicting mobile
traffic to overtake wired traffic by 2017. Of the mobile data traffic in 2012, already
roughly half of the traffic was generated by video streaming. This is due to the
world-wide adaption of mobile devices like smartphones and tablets which create a
demand for content to be available on all of the user’s Internet video-enabled devices.

But video streaming is costly for content providers in terms of bandwidth, storage
and traffic. In recent years, the HI'TP protocol on top of the TCP transport protocol
gained popularity among video content providers as an efficient way to deliver none
real-time content (i.e. pre-encoded Video-on-demand content) to their customers.
With the increasing use of wireless and mobile devices for video streaming, content
providers have to offer robust solutions which can adapt the video playback to the
viewing environment. Dynamic Adaptive Streaming over HTTP (MPEG-DASH)
was standardized 2012 on top of HTTP/TCP to allow for client-side adaptation of
the video playback. However, the adaptation process is out of scope of the MPEG-
DASH standard and the design or choice of an adaptation strategy is left to the
client implementation. But there is little knowledge about the relationship between
adaptation strategy and resulting playback behavior. Additionally, it is uncertain
how the perceived Quality of Experience (QoE) of the user is influenced by the
adaptation process. Furthermore, this thesis shows that none of the investigated
MPEG-DASH adaptation algorithms taken from the literature can offer satisfying
results for all of the evaluated metrics.

The first contribution of this thesis is the identification of influence factors of
adaptive video streaming on the user’s QoE. We conducted a laboratory study and
multiple crowdsourcing campaigns to gain a better understanding of the influence
of the adaptation process on the user’s perceived quality. The second contribution
of this thesis is the design of a user-centric adaptation algorithm (BIEB). The de-
sign of the algorithm aims for a high average playback quality while also avoiding
the identified negative influence factors of the user’s QoE. The third contribution is
the user- and resource-centric comparison of the proposed algorithm to three exist-
ing algorithms (TRDA, KLUDCP, Tribler) based on the identified influence factors.
In order to do this, we designed and implemented a test bed environment where
the algorithms were evaluated utilizing realistic network scenarios. Additionally, we
evaluated the fairness of the algorithms regarding two scenarios where a competing
DASH client and HTTP cross-traffic share the Internet connection with the video
streaming. We also assessed in another scenario how the performance of the algo-
rithms changes for different constant bandwidth limitations. The results of these
additional scenarios comprise the forth contribution of this thesis.



Conclusion and Outlook

Our findings regarding the influence factors of adaptive video streaming indicate,
that the occurrence of quality switches, the amplitude of the switches and the time
spend on the different quality levels have a significant influence on the perceived QoE
and the acceptance rate of the service. For the design of an adaptation algorithm,
the following conclusions can be drawn from the findings. First, quality switches
should be avoided. Second, the amplitude of the quality switches should be kept as
low as possible. Third, for the investigated sequence length of 15 seconds, switching
the quality has only a positive influence on the QoE if there is a subsequent phase
of higher quality longer than half of the sequence length.

The performance evaluation of the four investigated algorithms shows that the
playback behavior of the streaming session is highly dependent on the utilized adap-
tation algorithm. In the vehicular mobility scenario with rapidly varying bandwidth,
only BIEB and TRDA can offer a low switching frequency. However, TRDA’s con-
servative switching behavior leads to a medium average playback quality, whereas
BIEB presents a high average quality. Tribler and KLUDCP in turn exhibit a high
switching frequency, but of those two, only Tribler can offer a high average quality.
In terms of bandwidth utilization, BIEB and Tribler can utilize a high percentage
(70%) of the available bandwidth, whereas KLUDCP can only use roughly half
(563%) and TRDA 40 % of the available resources. BIEB inhibits a risky segment
picking behavior and on average, discards 0.33 % of the test content in full quality.
Constrains for the segment picking may reduce or avoid this behavior. Regarding
the performance of the algorithms for different constant bandwidth limitations, we
found that only BIEB and TRDA offer a low switching frequency for all investigated
limitations, whereas KLUDCP and Tribler show a inconsistent behavior. The same
applies for the average playback quality, where BIEB and TRDA always exhibit an
increase of average quality for an increase in available bandwidth. For the fairness
study, we observe that only BIEB can offer a high fairness for the two metrics play-
back quality and number of quality switches between two concurrent clients. From
the objective performance evaluations follows, that BIEB outperforms the other
three investigated algorithms for the tested configurations.

This thesis represents a first step towards Quality of Experience (QoE) manage-
ment of adaptive video streaming in wired and mobile scenarios. The knowledge
about the influence of the adaptation process on the user’s perceived Quality of
Experience and the comparison of the algorithms can help video content provider
to assess and improve their service performance. Future work on this topic should
investigate additional test content, scenarios with more than two clients sharing one
Internet connection and the fairness between different adaptation algorithms.
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A. Appendix

The appendix of this thesis contains the relevant information about the user studies.
Additionally, the section A.2 gives a list of the files and image sequences stored on
the data medium of this thesis. Next, we present the demographics of the first
crowdsourcing user study campaign.

A.1. Crowd-sourcing Demographic Campaign C1

In the following, we present the demographic results of the first crowdsourcing cam-
paign. The questionnaire utilized to gain the results is available in A.5. Table A.1
and Table A.2 summarize the results of the questionnaire.

Crowdsourcing Demographic (Part T)

Sox Male 86 %
Female 14 %
Africa 3%
Asia 69.2 %

Continent Australia 0.75 %
Europe 25.6 %
North America 1.5%
South America 0%
Less than 1 hour/day 3%

Average Internet Usage é i ? Egﬁi?gg ggggz

per day 7 - 10 hours/day 20.3 %
more than 10 hours/day | 17.3%
Working 32.3%
Unemployed 13.5%

Occupation Student 46.6 %
Apprenticeship 3.8%
Pensioner 0.7 %
Home-keeper 3%
18 - 21 18 %
22 -25 42.1%

Age 26 - 30 18%
31 - 40 16.5 %
41 - 50 4.5%
51 - 60 0.75%
61+ 0%

Table A.1.: Crowdsourcing Campaign C1 demographics (Part 1)



A.2. File Listing

Crowdsourcing Demographic (Part 2)

Education

< High School 3.0%
High School/GED 17.3%
Some College 8.3%
2-Year College 17.3%
4-Year College 39.8%
Masters Degree 12.8%
Doctoral Degree 0%

Professional Degree 1.5%

Video Website Usage

Several times a day 60.9 %
Once a day 14.3%
Several times a week | 18 %
Several times a month | 4.5 %
Less often 1.5%
Never 0.75%

A.2. File Listing

Table A.2.: Crowdsourcing Campaign C1 demographics (Part 2)

Next, we give a summary of the data attached to the thesis on the data medium.
This includes on the one hand the source code of the implemented application and
evaluation scripts, on the other hand the framework and video sequences used for
the subjective evaluation.

Thesis File Listing

Folder

Description

sources/cpp/dasvch

Implemented DASH client

sources/cpp/dasvch,,onitor

DASH Client GUI (optional, not required)

sources/evaluation /scripts

Scripts used in the testbed environment

sources/evaluation/traffic,atterns | Utilized traffic patterns

sources/evaluation /matlab

Matlab evaluation scripts

sources/ thesis Latex source code of this thesis
userstudies/C1 Campaign 1 patterns
userstudies/C2 Campaign 2 patterns
userstudies/C3 Campaign 3 patterns
userstudies/C4 Campaign 4 patterns
userstudies/C5 Campaign 5 patterns

Table A.3.: Thesis Appendix File Listing
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A.3. Campaigns

Campaign | Reward | #User | Users filtered
C1 0.30% 139 6
C2 0.30% 149 16
C3 0.30% 98 14
C4 0.30% 98 8
C5 0.30% 97 4

Table A.4.: Crowdsourcing campaigns number of users and money compensation

A.3. Campaigns

Next, we present details about the conducted crowdsourcing campaigns. Table A.4
shows the number of user’s who participated, the number of users filtered due to the
content questions and the monetary compensation for the campaigns 1 to 5.

Table A.5 gives an overview over the used switching patterns in the campaigns.
The quality levels high and low are relative to the quality levels used for the specified
amplitude. Figure A.1, A.2, A.3, A4 and A.5 illustrate the utilized patterns.

(a) Steady high (b) Steady middle (c) Decreasing quality
Q2 Q2 Q2
Q1 Q1 Q1
Qo Qo Qo
0 , 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)

(d) Increasing quality

Q2

Q1

Qo

0 5_ 10 15
Time (s)

Figure A.1.: Campaign 1: Patterns a to d

A.4. Web-based Crowdsourcing Interface

Next, we present the web-based crowdsourcing interface by example. Figure A.6
gives a screenshot of the page where the video sequence is shown and the user is
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A.4. Web-based Crowdsourcing Interface

Campaign || Pattern | Switches | Amplitude | Begin | End | Scene(s)
a 0 1 high | high L,H
b 0 1 low | low L.H
o1 ¢ 1 1 high | low L.H
d 1 1 low | high L,H
e 2 1 high | high L,H
f 2 1 low | low L,H
a 0 1 high | high L
b 1 1 high | low L
¢ 2 1 high | high L
C2 d 3 1 high | low L
e 4 1 high | high L
f 6 1 high | high L
g 8 1 high | high L
a 0 2 high | high L
b 1 2 high | low L
¢ 2 2 high | high L
C3 d 3 2 high | low L
e 4 2 high | high L
f 8 2 high | high L
g 14 2 high | high L
h 0 2 low | low L
a 0 2 high | high L
b 1 2 low | high L
c 2 2 low | low L
C4 d 3 2 low | high L
e 4 2 low | low L
f 5 2 low | high L
g 7 2 low | high L
h 8 2 low | low L
i 0 2 low | low L
a 0 2 high | high L
b 1 2 high | low L
¢ 2 2 high | high L
s d 3 2 high | low L
e 4 2 high | high L
f 5 2 high | low L
g 6 2 high | high L
h 8 2 high | high L
i 0 2 low | low L

Table A.5.: Crowd-sourcing campaigns
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A.4. Web-based Crowdsourcing Interface

(a) Steady high (b) Decreasing Quality (c) 2 Switches
Q2 Q2 Q2
Qt Qt Qf
Qo Qo Qo
0 5 10 15 0 5 10 15 0 5 10 15
Time (s) Time (s) Time (s)
(d) 3 Switches (e) 4 Switches (f) 6 Switches
Q1 Q1 Q1
Qo Qo Qo
0 5_ 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)

(g) 8 Switches

Q2_|—|_|—|_|—|_|—|—
Q1

Qo

0 5_ 10 15
Time (s)

Figure A.2.: Campaign 2: Patterns a to g

asked to rate his viewing experience. The video sequence is shown in a resolution
of 640 width to 480 height in the middle of the screen. The controls to start the
playback and the indicating bar for the current playback position and the pre-buffer
status is located underneath the video sequence. Below the playback controls, we
show the rating slider to the user. After the video sequence finished the playback
and the user rated his viewing experience, the user is able to press the next button
to continue to the other questions (e.g. acceptance question).
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A.4. Web-based Crowdsourcing Interface

(a) Steady high (b) Quality Drop (c) 2 Switches
Q2 Q2 Q2
Q Q1 Q1
Qo Qo Qo
0 . 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)
(d) 3 Switches (e) 4 Switches (f) 8 Switches
Q2 Q2 Q2
Q1 Q1 Q1
Qo Qo Qo
0 , 10 15 0 5_ 10 15 0 , 10 15
Time (s) Time (s) Time (s)
(g) 14 Switches (h) Low Quality
Q2 Q2
Q1 Q1
Qo Qo
0 . 10 15 0 , 10 15
Time (s) Time (s)

Figure A.3.: Campaign 3: Patterns a to h
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A.4. Web-based Crowdsourcing Interface

(a) Steady high (b) Quality Rise (c) 2 Switches
Q2 Q2 Q2
Q Q1 Q1
Qo Qo Qo
0 5_ 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)
(d) 3 Switches (e) 4 Switches (f) 5 Switches
Q2 Q2 Q2 —
Q1 Q1 Q1
Qo Qo Qo
0 5_ 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)
(g) 7 Switches (h) 8 Switches (i) Low Quality
Q2 Q2 Q2
Qi Q1 Qi
Qo Qo Qo
0 5_ 10 15 0 5_ 10 15 0 5_ 10 15
Time (s) Time (s) Time (s)

Figure A.4.: Campaign 4: Patterns a to i
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A.4. Web-based Crowdsourcing Interface

(a) Steady high (b) Quality Rise (c) 2 Switches
Q2 Q2 Q2
Q1 Q1 Q1
Qo Qo0 Qo0
0 5 10 5 0 5 10 15 0 5 10 15
Time (s) Time (s) Time (s)
(d) 3 Switches (e) 4 Switches (f) 5 Switches
Q2 Q2 Q2
Q1 Q1 Q1
QO Qo Qo0
0 5 10 15 0 5 10 15 0 5 10 15
Time (s) Time (s) Time (s)
(g) 7 Switches (h) 8 Switches (i) Low Quality
Q2 Q2 Q2
Q1 Q1 Q1
Qo Q0 Qo
0 _ 10 15 0 5 10 15 0 5 10 15
Time (s) Time (s) Time (s)

Figure A.5.: Campaign 5: Patterns a to @
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A.4. Web-based Crowdsourcing Interface

Step 5 of 34 PREVIEW MODE, all data will be deleted

Viewing Experience

----- How would you rate the overall viewing experience?

Excellent

@@ Good

Fair

Poor

Bad

Figure A.6.: Web-based Crowdsourcing Interface

73



A.5. Crowdsourcing Questionnaire

A.5. Crowdsourcing Questionnaire

Crowdsourcing Questionnaire (Part 1)

Are you Male or Female? Male
Female
18- 21
22 - 25
26 - 30

What is your age? 31 -40
41 - 50
51 - 60
61+

What is the highest level of education
you have completed?

Less Than High School

High School/GED

Some College

2-Year College Degree (Associates)
4-Year College Degree (BA, BS)
Master’s Degree

Doctoral Degree

Professional Degree (MD, JD)

Not Listed

What is your current occupation?

Working
Unemployed
Student
Apprenticeship
Pensioner
Home-keeper
Not Listed

Are you wearing prescription glasses
or contact lenses?

Yes
No

On average, how long do you use the
Internet per day?

Less than 1 hour/day

1 - 5 hours/day

5 - 7 hours/day

7 - 10 hours/day

more than 10 hours/day

What is your main reason for using
the Internet?

Professional (at work)
For fun at home

Are you currently using a fixed or

Fixed access line

mobile Internet connection? Mobile
Africa
Asia
. . . A t . 1-
Which continent do you live on? ustralia
Europe

North American
South America
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A.6. Microworkers.com Campaign Description

Crowdsourcing Questionnaire (Part 2)
Several times a day
Once a day

Several times a week
Several times a month
Less often

Never

How often have you watched videos on
web-sites like YouTube or Netflix
during the last month?

A.6. Microworkers.com Campaign Description

In this task you will participate in a research survey about video
quality . To participate your Internet download speed should be at
least 1 Mbps (125 Kilobytes/s). The tasks takes quite long (up to
15 minutes), but we guarantee that everyome who finishes the task
will be able to submit it at Microworkers.

Go to http://132.187.12.59/Q1/{{MW_ID}}

Complete the survey

Watch the videos carefully and answer the questions
Submit you payment token here

=W N =

A.7. Crowdsourcing Campaign Introduction

The listing below gives the text displayed to the participants on the landing page of
the online questionnaire.

Video Quality Assessment

Welcome to the video quality assessment of the Department of
Communication Systems at the University of Wuerzburg, Germany. The
survey will require you to watch and rate movie sequences streamed
from the Internet. Your Internet download speed should be at least
1 Mbps (125 Kilobytes/s) to be able to participate in the survey.
Adobe’s FlashPlayer has to be installed to do the survey.

We will first ask you a few demographic questions before we will
explain the survey procedure. Click next to continue.

After the landing page, the user is presented with the demographic questionnaire
which is followed by the subsequent text.

How does it work?

Thank you for participating in the demographic survey!

The following survey is comprised of a sequence of 8 short movie clips
in random order. Each clip is pre—loaded to avoid any unintendend

stallings during the playback. The pre—loading is indicated by a
green /white bar.
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A. 7. Crowdsourcing Campaign Introduction

After the pre—loading phase has finished a play button will replace the
pre—loading bar. Click the play button to watch the video clip.
After each clip you will be asked to answer 5 questions about the
visual movie quality and sometimes also a question about the
content. Please watch the movie clips carefully.

After the aforementioned text, the user is presented with three steps illustrating
the procedure of the test. Step 1 (shown in Figure A.7) describes the pre-loading
phase where a green bar is shown and the user has to wait for the pre-loading
to finish. Step 2 (Figure A.8a) illustrates how to start the playback of the video
sequence. Step 3 (Figure A.8b) describes how to use the rating slider.

1. Step

Wait for the green/white pre-loading bar to disappear. The pre-loading phase also includes the gray bar.

Figure A.7.: Crowdsourcing campaign introduction (Part 1)

3. Step:

Drag to slider to rate to answer the question.

-~ Please rate the visual video guality -

Excellent
3 Good
. Fair
2. Step: .
Press the play button underneath the video sequence and watch the video carefully. ; Poor
: Bad
@:

Click next to continue to the video quality survey.

(a) Crowdsourcing campaign introduction(b) Crowdsourcing campaign introduction
(Part 2) (Part 3)

Figure A.8.: Low and high SITT scenes used in the user studies
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