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1. Introduction

Streaming of videos has become the major tra�c generator in today's Internet and
the video tra�c share is still increasing. According to Cisco's annual Visual Network-
ing Index report [4], in 2012, 60% of the global Internet IP tra�c was generated by
video streaming services. Furthermore, the study predicts further increase to 73%
by 2017. At the same time, advances in the �elds of mobile communications and
embedded devices lead to a widespread adoption of Internet video enabled mobile
and wireless devices (e.g. Smartphones). The report predicts that by 2017, the
tra�c originating from mobile and wireless devices will exceed the tra�c from wired
devices and states that mobile video tra�c was the source of roughly half of the
mobile IP tra�c at the end of 2012.
With the increasing importance of Internet video streaming in today's world, video

content provider �nd themselves in a highly competitive market where user expec-
tations are high and customer loyalty depends strongly on the user's satisfaction
with the provided service. In particular paying customers expect their viewing ex-
perience to be the same across all their viewing devices and independently of their
currently utilized Internet access technology. However, providing video streaming
services is costly in terms of storage space, required bandwidth and generated tra�c.
Therefore, content providers face a trade-o� between the user perceived Quality of
Experience (QoE) [51] and the costs for providing the service.
Today, a variety of transport and application protocols exist for providing video

streaming services, but the one utilized depends on the scenario in mind. Video
streaming services can be divided up in three categories: Video conferencing, IPTV
and Video-on-Demand services. IPTV and video-conferencing have severe real-time
constraints and thus utilize mostly datagram-based protocols like the RTP/UDP
protocol for the video transmission. Video-on-Demand services in contrast can pro�t
from pre-encoded content, bu�ers at the end user's device, and mostly utilize TCP-
based protocols in combination with progressive streaming for the media delivery.
In recent years, the HTTP protocol on top of the TCP protocol gained widespread

popularity as a cost-e�cient way to distribute pre-encoded video content to cus-
tomers via progressive streaming. This is due to the fact that HTTP-based video
streaming pro�ts from a well-established infrastructure which was originally im-
plemented to e�ciently satisfy the increasing demand for web browsing and �le
downloads. Large Content Delivery Networks (CDN) are the key components of
that distribution infrastructure. CDNs prevent expensive long-haul data tra�c and
delays by distributing HTTP content to world-wide locations close to the customers.
As of 2012, already 53% of the global video tra�c in the Internet originates from
Content Delivery Networks and that percentage is expected to increase to 65% by
the year 2017. Furthermore, HTTP media streaming pro�ts from existing HTTP
caching infrastructure, ease of NAT and proxy traversal and �rewall friendliness.
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Video delivery through heterogeneous wired and wireless communications net-
works is prone to distortions due to insu�cient network resources. This is especially
true in wireless scenarios, where user mobility and insu�cient signal strength can
result in a very poor transport service performance (e.g. high packet loss, delays
and low and varying bandwidth). A poor performance of the transport in turn may
degrade the Quality of Experience as perceived by the user, either due to bu�er
underruns (i.e. playback interruptions) for TCP-based delivery [36] or image distor-
tions for datagram-based real-time video delivery.
In order to overcome QoE degradations due to insu�cient network resources,

content provider have to consider adaptive video streaming. One possibility to im-
plement this for HTTP/TCP streaming is by partitioning the content into small
segments, encode the segments into di�erent quality levels and provide access to the
segments and the quality level details (e.g. resolution, average bitrate). During the
streaming session, a client-centric adaptation algorithm can use the supplied details
to adapt the playback to the current environment. However, a lack of a common
HTTP adaptive streaming standard led to multiple proprietary solutions developed
by major Internet companies like Microsoft (Smooth Streaming), Apple (HTTP Live
Streaming) and Adobe (HTTP Dynamic Streaming) loosely based on the aforemen-
tioned principle. In 2012, the ISO/IEC published the Dynamic Adaptive Stream-
ing over HTTP (MPEG-DASH) standard. As of today, DASH is becoming widely
accepted with major companies announcing their support or having already imple-
mented the standard into their products. MPEG-DASH is typically used with single
layer codecs like H.264/AVC, but recent publications [55] show that scalable video
coding can use the existing HTTP infrastructure more e�ciently. Furthermore, the
layered approach of scalable video coding extends the adaptation options for the
client, since already downloaded segments can be enhanced at a later time.
The in�uence of distortions on the perceived QoE for non-adaptive video stream-

ing are well reviewed and published. For HTTP streaming, the QoE of the user is
in�uenced by the initial delay (i.e. the time the client pre-bu�ers video data) and
the length and frequency of playback interruptions due to a depleted video play-
back bu�er. Studies highlight that even low stalling times and frequencies have a
negative impact on the QoE of the user and should therefore be avoided. The �rst
contribution of this thesis is the identi�cation of QoE in�uence factors of adaptive
video streaming by the means of crowd-sourcing and a laboratory study.
MPEG-DASH does not specify how to adapt the playback to the available band-

width and therefore the design of a download/adaptation algorithm is left to the
developer of the client logic. The second contribution of this thesis is the design of
a novel user-centric adaption logic for DASH with SVC. Other download algorithms
for segmented HTTP streaming with single layer and scalable video coding have
been published lately. However, there is little information about the behavior of
these algorithms regarding the identi�ed QoE-in�uence factors. The third contribu-
tion is a user-centric performance evaluation of three existing adaptation algorithms
and a comparison to the proposed algorithm. In the performance evaluation we also
evaluate the fairness of the algorithms. In one fairness scenario, two clients deploy
the same adaptation algorithm and share one Internet connection. For a fair adapta-
tion algorithm, we expect the behavior of the two clients to be identical. In a second

2
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fairness scenario, one client shares the Internet connection with a large HTTP �le
download and we expect an even bandwidth distribution between the video stream-
ing and the �le download. The forth contribution of this thesis is an evaluation of
the behavior of the algorithms in a two-client and HTTP cross tra�c scenario.
The remainder of this thesis is structured as follows. Chapter II gives a brief

introduction to video coding with H.264, the HTTP adaptive streaming standard
MPEG-DASH, the investigated adaptation algorithms and metrics of Quality of
Experience (QoE) for video streaming. Chapter III presents the methodology and
results of the subjective studies conducted in the course of this thesis to identify the
QoE in�uence factors of adaptive video streaming. In Chapter IV, we introduce the
proposed adaptation algorithm and the methodology of the performance evaluation.
Chapter V highlights the results of the performance evaluation and compares the
investigated adaptation algorithms. Section VI summarizes the main �ndings and
gives an outlook towards QoE-centric management of DASH with SVC.

3
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Organization and contribution of this thesis
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2. Background and Related Work

In the following, we give a brief introduction of the relevant technologies used in
this thesis and related work published on the speci�c areas of research. First, we ex-
plain the theory of video coding with H.264 and its scalable video coding extension.
Second, we introduce the progressive media streaming standard MPEG-DASH and
proceed by di�erentiating progressive HTTP streaming to datagram-based stream-
ing such as RTP/UDP live streaming. Afterwards, we introduce three published
DASH adaptation algorithms, two for single layer coded video content and one for
scalable video coded content. Next, we point out how progressive video streaming
can bene�t from the use of scalable video coding compared to single layer coding. In
the last section of this chapter we discuss the Quality of Experience as perceived by a
user for video streaming in general and in particular for progressive video streaming
utilizing scalable video coding. To do so, we �rst identify the factors which in�u-
ence the user's perceived quality during a video streaming session and afterwards
introduce objective and subjective methods for assessing and quantifying the user's
QoE. Next, we start with discussing video coding in general and video coding with
the compression technology H.264 in greater detail.

2.1. Video Coding with H.264

Video coding is the technique of e�ciently compressing a sequence of pictures (or
frames) for storage or transmission. Videos are typically recorded as a sequence
of individual pictures with a rate of 24 pictures per second. Depending on the
amount of change (e.g. motion, color variations) during the recorded scene, each of
the captured pictures is likely to di�er only slightly from the previous or subsequent
pictures. Block-based compression algorithms like H.264 subdivide each picture into
small blocks and try to identify how the individual blocks move between neighboring
pictures. The identi�ed dependencies within an individual picture and between
subsequent pictures (intra and inter frame coding) allow for e�cient coding of the
video. The change (or motion) is described through motion vectors which require
less storage than pixel data and allow to predict the subsequent picture with mostly
blocks encoded in neighboring pictures. Periodical reference pictures are used as
basis for the motion vectors. Several standards for video coding exist, in the following
subsections we introduce the today's most popular video codec H.264 / Advanced
Video Coding (AVC) and its scalable extension, Scalable Video Coding (SVC).

2.1.1. Advanced Video Coding

H.264/MPEG-4 AVC [7] is a video coding standard developed by the Joint Video
Team (JVT) [9], a cooperation between the ITU-T Video Coding Experts Group



2.1. Video Coding with H.264

(VCEG) [8] and the ISO/IEC JTC1 Moving Picture Experts Group (MPEG) [13],
and released as �nal draft in May 2003. High coding and compression e�ciency lead
to a wide-spread adaptation of the standard in today's Internet. In the following we
give a brief introduction to the prediction hierarchy employed by H.264.
H.264 de�nes three types of picture frames for the encoded picture stream, I, B

and P frames. I, or inter frames are reference frames, i.e. they can be encoded
independently of other pictures and do not rely on motion vectors. P, or forward-
predicted, frames depend on a preceding I-frame for decoding and consist of motion
vectors and, if necessary, additional encoded pixel data. The encoded pixel data
is required in cases were it is not su�cient or uneconomical to use only motion
vectors for the description of the picture. P-frames can also use other preceding
P-frames as reference. B (bidirectional prediction) frames are similar to P-frames,
but in addition to the reference options available to P-frames, they can reference
to preceding and subsequent P and B frames. A series of a speci�c number of I, P
and B-frames, with at least one reference frame (i.e. I-frame), is called Group-Of-
Pictures (GOP). A GOP is self-contained and includes all data to decode the time
slice the GOP represents. The number, size and structure of a GOP is not �xed
and can be con�gured during the encoding process. For adaptive streaming of video
content encoded with H.264, the GOP size dictates the smallest possible unit for
segmentation.

I B B P B B

GOP

I B B P B B

GOP

... ...

Figure 2.1.: Example AVC GOP structure

Figure 2.1 illustrates a possible simple GOP structure. The GOP is made of one I
frame, one P frame referencing the I frame and four B frames referencing each other
and the P and I frame. The GOP structure and size can have a signi�cant e�ect on
the resulting bitrate of the compressed video content [21].

2.1.2. Scalable Video Coding

Scalable Video Coding (SVC) was developed and speci�ed as Annex.G of the H.264 /
AVC video compression standard by the Joint Video Team (ITU-T VCEG, ISO/IEC
MPEG) [56]. SVC encodes the content into a bitstream with multiple substreams
where the di�erent substreams can be accessed by dropping parts of the bitstream.
SVC provides three scalability options. Spatial scalability allows for switching to a
di�erent resolution, temporal scalability enables the adaptation of the frame rate and
quality scalability increases and decreases the �delity of the content. The provided
scalability options allow for the on-the-�y adaptation of the stream to di�erent
network conditions and device capabilities.
In SVC, valid substreams are also called layers. A valid substreams contains

at least the base-layer, a AVC-compatible substream which represents the lowest

6
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temporal, spatial and quality level of the stream and zero or more enhancement
layers. An enhancement layer always depends on the previous enhancement layer(s)
of that particular scalability dimension. Figure 2.2 illustrates the di�erent scalability
options by example in a three dimensional space using "subcubes".

CIF 15 Hz 

Q0

CIF 30 Hz 

Q0

CIF 60 Hz 

Q0

SD 15 Hz 

Q0

SD 30 Hz 

Q0

SD 30 Hz 

Q0

HD 15 Hz 

Q0

HD 30 Hz 

Q0

HD 60 Hz 

Q0

15 Hz 30 Hz 60 Hz Temporal 

Scalability

Spatial

Scalability

CIF

SD

HD

Figure 2.2.: Possible Scalability Options for SVC ([66])

The example shows a SVC bitstream with two enhancement layers for each SVC
scalability dimension. The resulting bitstream contains three quality (Q0, Q1, Q2),
spatial (CIF, SD, HD) and temporal (15Hz, 30Hz, 60Hz) layers. The base-layer
subcube is located closest to the origin of the coordinate systems and represents the
content in CIF resolution, 15 frames per seconds and a quality level of 0. Increasing
the resolution to HD and the frame-rate to 60 frames per seconds would require all
labeled subcubes in the front, a total of 9 subcubes. Further increasing the quality
by using quality level 3 instead of 0 would require all 27 subcubes.
The supported scalability options come with a cost of coding e�ciency compared

to single layer coding. Coding e�ciency depends highly on the used encoder con�g-
uration and the type of content and can not be compared reliable in general. Studies
predict a coding e�ciency penalty of approximately 10% - 20 % on average for each
added spatial layer [58, 63, 57] compared to single layer coding.

2.2. MPEG-DASH for Video Streaming

In the following, we introduce Dynamic Adaptive Streaming over HTTP (MPEG-
DASH), a standard for streaming media content over the Internet using the HTTP
protocol. First, we discuss progressive download for HTTP, the underlying principle
of video streaming over HTTP. With the success of video portals like YouTube,
progressive download over HTTP has become the most dominant technique for media
content delivery over today's Internet. Next, we give a brief introduction to DASH,
which extends the progressive download principle to allow for adaptation to the
current network and viewing environment. Third, we compare DASH to datagram-
based streaming techniques. In the last subsection, we introduce three investigated
DASH adaptation algorithms taken from the literature.

7
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2.2.1. HTTP Progressive Download

Progressive downloading describes the process of continuously transferring data from
a server to a client, typically through the HTTP protocol. In the context of media
delivery, progressive download is the approach of making the media bitstream avail-
able on a HTTP server for clients to request. The client issues a standard HTTP
request and the server sends the bitstream data to the client. Next, the media
player on the client side bu�ers a speci�c amount of data to compensate for short
bandwidth �uctuations and subsequently begins to present the content to the con-
sumer. However, an ordinary HTTP server is content unaware and treats the media
bitstream equal to other �les (e.g. text, images, compressed �les). Accordingly, the
media content is delivered using best-e�ort with respect to the available resources
and the client and server are unable to adapt the transfer to the actual media bi-
trate. Hence, a sending rate lower then the media bitrate leads to bu�er starvation
(i.e. stalling), a sending rate exceeding the bitrate requires arti�cial tra�c shap-
ing through the TCP congestion control algorithm or large bu�ers. The impact of
stalling and ine�ective use of resources on the Quality of Experience as perceived by
a human viewer and on the Quality of Service are discussed in Section 2.4. In the
subsequent subsection, we describe how DASH extends the progressive downloading
concept for media delivery to allow for adaptive media streaming.

2.2.2. MPEG - Dynamic Adaptive Streaming over HTTP

In recent years, the lack of a common standard for adaptive video streaming over
HTTP lead to the development of commercial and proprietary streaming solutions
like Adobe HTTP Dynamic Streaming [20], Apple HTTP Live Streaming [22] and
Microsoft Smooth Streaming [45]. As a result of this development, video streaming
devices have to support multiple protocols to access di�erent streaming services and
users are often limited to the streaming client supplied by the streaming provider.
A common standard for HTTP video streaming would allow standard-compliant
client devices to access any standard-compliant video streaming service. Therefore,
MPEG-DASH is intended to provide a common standard for HTTP video streaming
over the Internet. The work on Dynamic Streaming over HTTP (DASH) started in
April 2009 when the Moving Picture Experts Group (MPEG [13]) announced a Call
for Proposal to create a HTTP streaming standard. Three years later, in April 2012,
the standard was published as ISO/IEC 23009-1 [5].
Dynamic Streaming over HTTP (DASH) de�nes a control protocol for content

which is a) split into short segments, each representing a none overlapping time
slice of the content; b) where each segment is encoded in di�erent alternatives (e.g.
di�erent resolutions); and c) stored on a HTTP server. The client can choose for
each time slice of the content which alternative to download and display. The DASH
standard is not limited to using di�erent resolutions for the segments, but also di�er-
ent audio tracks, subtitles, encoding parameters and further options are supported.
Which video codec to choose and how the client should adapt the playback based
on the options o�ered, is out of scope of the DASH standard and therefore left to
content providers and client implementations to decide.

8
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Figure 2.3.: Media Description File (MPD)

AMedia Presentation Description (MPD) �le is speci�ed to describe the properties
and URLs of the content and its segments. Based on the information supplied
by the MPD �le the client is able to adapt the playback to the current viewing
environment (e.g. display size, available network bandwidth). The MPD �le is
structured as illustrated in Figure 2.3. On the highest level in the hierarchy, the
media is segmented in Periods. A period represents a time period where the set of
adaptation options does not change. For instance, a period could contain the main
movie with several adaptation options, but a second period comprised of out-takes
is only available with a reduced set of options. An Adaptation Set is a logical group
of adaptation options. Typically, there are three adaptation sets de�ned for a full-
length movie, one for the video, one for the audio and one for the subtitle adaptation
options. An adaptation set in turn contains di�erent representations of the speci�ed
option. For instance, in terms of a video adaptation set, representations can equal
speci�c content resolutions. The end of the hierarchy marks the Media Segments,
which contain the location (i.e. URL) of the described media content segments in
chronological order.

2.2.3. Comparison to Datagram-based Streaming

In the following, we compare TCP-based video streaming (e.g. HTTP/DASH stream-
ing) with datagram-based streaming (e.g. RTP over UDP). Relevant factors for the
comparison are summarized in Table 2.1 for a typical use case. As transport proto-
col, datagram-based streaming services typically utilize the UDP protocol, whereas
HTTP streaming is based on the stream-orientated TCP transport protocol. UDP is
a connectionless and unreliable transport protocol were delivery and delivery order
of the packets is not guaranteed. TCP in turn o�ers reliable and in-order delivery
of the data. The UDP transport protocol allows RTP to support multicast tra�c,
where a group of nodes in a network can be reached simultaneously and more e�-
ciently by one server. HTTP streaming in turn is limited to unicast tra�c, where
each client has to open a separate connection to the streaming server. However,
with streaming over HTTP the session is managed by the client and does not face

9
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Property RTP/UDP streaming HTTP/TCP streaming

Transport Protocol UDP TCP
Supported Topologies Unicast, Multicast Unicast
Content Source Live, pre-encoded Live, pre-encoded
Overhead Low Medium
Consequence of insu�-
cient bandwidth

Image distortions,
Stalling

Stalling

Delay Low Medium to High
Session management Server, Client Client
Firewall/NAT friendly No Yes
Congestion control No Yes

Table 2.1.: Comparison of DASH/HTTP and RTP/UDP

the scalability issues server-side session management, as generally employed by RTP
streaming, implies [30, 54]. Both streaming techniques support live and pre-encoded
content. Regarding protocol overhead, RTP can use the available bandwidth more
e�ciently than TCP due to the low overhead of the UDP protocol compared to TCP.
This overhead and longer delay is due to the reliable transport ability of TCP, where
guarantee of data delivery, packet reordering and congestion avoidance is built into
the protocol. In scenarios with multiple clients sharing one Internet connection, the
congestion avoidance feature may lead to a fair bandwidth sharing between two video
streaming sessions, whereas with UDP streaming, the behavior between two clients
is unde�ned. However, studies show, that with UDP-streaming, a fair bandwidth
sharing is also possible [28]. As consequence of insu�cient bandwidth, HTTP/TCP
streaming su�ers from bu�er underruns (i.e. stallings), if the receiving bandwidth
drops underneath the bitrate of the video and the playback bu�er is depleted. RT-
P/UDP in turn exhibits image distortions due to packet loss in addition to possible
stalling events. HTTP/TCP data transfers are well supported in today's Internet
infrastructure and therefore HTTP/TCP streaming is possible in most environments
were �rewall and NAT devices are present.

2.2.4. Investigated Adaptation Algorithms

The MPEG-DASH standard does not specify how a DASH client implementation
should adapt the playback to the available bandwidth. As a consequence, the choice
of the adaptation algorithm is left to the implementation. However, we show in this
thesis that the selection of the adaptation algorithm dictates the resulting playback
behavior and therefore also the Quality of Experience of the viewer. Thus, to maxi-
mize the QoE of the viewer, the choice of the adaptation algorithm is of signi�cance.
In this thesis we implement and evaluate three published adaptation algorithms and
compare them to the algorithm proposed by the author of this thesis. The following
sections give a brief introduction to the three algorithms taken from publications.
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2.2.4.1. TRDA

The AVC-based adaptation algorithm proposed and evaluated in [46], henceforth
referred to as TRDA (TUB Receiver Driven Adaptation, as named by the author of
this thesis), uses an estimation of the current bandwidth, the current bu�er level,
and the average bitrate of the di�erent representations to decide which quality level
to select at a given time. The decision process is accompanied by a set of constants
which have to be tuned for proper operation of the algorithm. A set of suggested
default values are proposed by the authors of the publication.

0 < Bmin < Blow < Bhigh, 0 ≤ Bcurr (2.1)

In the following we describe the behavior of the algorithm dependent on the cur-
rent bu�er level Bcurr and the adjustable bu�er limits Bmin, Blow and Bhigh with the
constrains speci�ed in Equation 2.1.

Bcurr ∈ [0, Bmin]
A bu�er level lower than Bmin is considered critical for the playback regardless
of the currently available bandwidth. In such a case, the algorithm instantly
switches to the lowest representation to avoid bu�er starvation and thus play-
back stalling.

Bcurr ∈ [Bmin, Blow]
Depending on the available bandwidth, the algorithm either stays on the cur-
rent quality level or decreases the quality level by one. If the currently available
bandwidth is not enough for the average bitrate of the currently selected rep-
resentation, the algorithm decreases the quality level. Otherwise the current
quality level is kept. This is done to prevent unnecessary quality switches in
cases where the bu�er level is low, but is likely to increase again soon.

Bcurr ∈ [Blow, Bhigh]
To avoid undesired quality switches, the algorithm does not switch the repre-
sentation for this bu�er level interval. Additionally, if the currently estimated
bandwidth is not enough for the next higher representation, the algorithm
adds an arti�cial delay to the download queue to inhibit bu�er growths.

Bcurr > Bhigh

If the currently estimated bandwidth is higher then the bitrate of the next
higher representation, the algorithm switches to the next higher representation.
If the bandwidth is not su�cient the algorithm introduces an arti�cial delay
to the download queue.

In addition to the mentioned normal mode of operation, the authors introduced
a more aggressive fast start-phase to speed up the adaptation process at the start
of the playback. For a description of the fast start phase refer to the publication.
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2.2.4.2. KLUDCP

In [47], the authors propose and evaluate a DASH-AVC adaptation algorithm, in
the following referred to as KLUDCP, in a vehicular mobility scenario. From the
description of the algorithm follows that the algorithm's decision depends on the
average available bandwidth measured during the download of the latest segment,
the average bitrate of the di�erent quality levels and the current bu�er level. The
algorithm takes one con�guration parameter, the desired bu�er level.
Next, we give a brief description of the algorithms method for choosing the quality

level for a segment i after segment i− 1 has �nished downloading. The throughput
is continuously monitored during the download of segment i − 1 and the average
throughput is used as an estimation of the currently available bandwidth for the
download of segment i. Additionally, the current bu�er level is used to adjust this
estimation by decreasing the estimation by a constant factor if the bu�er level is
less then 35% and increasing it if the bu�er level is higher or equal to 50% with the
goal to keep the bu�er at half of the maximum capacity. The resulting estimated
available bandwidth is compared to the average bitrates of the available quality
levels and the quality level with an average bitrate less or equal to the available
bandwidth estimation is chosen for segment i.

2.2.4.3. Tribler

In [50] the authors propose a SVC-based adaptation strategy for distributing scalable
video content in P2P systems, henceforth referred to as Tribler. We adopted the
algorithm for DASH by de�ning a �xed segment downloading order and allowing
only one simultaneous segment download.

Figure 2.4.: Tribler Download Strategy

We implemented the algorithm as shown in Figure 2.4. The algorithm takes two
con�guration parameters. t1 is the size in seconds of the high priority set and tmax

the size of the low priority set including t1. The high priority set is a list of time
segments starting from the current playback position for which only the base layer
segments are downloaded. If all segments from the current high priority set are
already downloaded and bu�ered, the algorithm starts to download the segments
from all qualities levels between t1 and tmax in vertical order. During start-up, the
algorithm starts the playback when all segments from the high priority set are locally
available for playback. If all segments from both priority sets are already bu�ered,
the algorithm idles until new segments are added to the low priority set (i.e. when
the current playback position moves forward).
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2.3. Scalable Video Coding with DASH

In what follows, we discuss the advantages and drawbacks of using scalable video
coding for DASH as opposed to using single layer coding. Utilizing scalable video
coding for encoding DASH content a) increases the cache-hit-ratio for HTTP caching
servers and reduces the required storage space for DASH video content; and b) al-
lows for greater �exibility during segment selection compared to single layer coding.
Caching servers are introduced by providers to store frequently requested HTTP
content closer to the user and this way prevent expensive long-haul tra�c. How-
ever, caching servers have a limited capacity and can only store a subset of the
requested data. Hence, caching servers have to discard uneconomically (e.g. infre-
quently requested) content. In terms of DASH video streaming, with single layer
coding, caching servers can store the most popular quality levels of a speci�c video
content. However, with scalable video coding, the caching server is able to take
advantage of the layered coding schema where quality levels are additive to each
other. Accordingly, between single layer and scalable encoded content with equiva-
lent quality levels, scalable video coding can store a higher number of quality levels
using an equal amount of storage capacity [55].
In terms of adaptation options, scalable video coding increases the �exibility for

the segment selection process during the streaming session. With single layer coding,
the decision which quality level to download next is e�ectively limited to the time
slice subsequent to the current bu�er position and the decision can not be changed
afterwards without discarding the already downloaded segment. Whereas with scal-
able video coding, the algorithm can �rst download base layer segments and later
upgrade speci�c time slices with additional enhancement layers.
In context of DASH, scalable video coding faces two drawbacks compared to single

layer coding. a) A coding e�ciency penalty and b) a higher number of segments.
The penalty on coding e�ciency observed for scalable video coding increases for
every additional quality level. However, there are two feasible best practices to
limit the coding penalty of scalable video coding for adaptive HTTP streaming.
First, only make use of encoding parameters known to produce output with a high
coding e�ciency (e.g. dyadic resolutions). Second, instead of o�ering one bitstream
with many scalability options, content provider can o�er assorted bitstreams with
a reduced set of quality levels. For example, the provider could provide device-
type-speci�c bitstreams for each of the three categories smartphones, tables and
HD-TV. Both approaches reduce the �exibility of scalable video coding, but in turn
reduce the impact of the coding e�ciency penalty. For an equal number of quality
levels, scalable video coded content is split into a greater number of segments than
with single layer coding, because each quality level requires all the lower quality
levels up to the selected quality level. Accordingly, this increases the number of
required HTTP requests and therefore the percentage of HTTP overhead in relation
to the content size. However, in our experiments and the considered scenarios the
amount of HTTP overhead was not more than 1% 1 for the lowest quality layer.
Furthermore, the overhead may be further reduced by compression and/or use of

1For an average GET request overhead of 700Bytes [6] and an average segment size of
599Kilobytes
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the new HTTP 2.0 standard [18], which is designed to reduce the HTTP overhead
for multiple subsequent HTTP requests.

2.4. QoE of Video Streaming

The Quality of Experience (QoE) of video playback as perceived by a human viewer
depends on multiple factors. The encoding of the content and type of the delivery
(e.g. live or VoD [27]), the viewing environment (e.g. HD-TV at home or mobile
device in public transport) and the individual user expectations [25] dictate the
satisfaction of the user with the service. In the following, we �rst discuss how to
classify video content by its temporal and spatial information and how di�erent
temporal and spatial information in�uences the QoE. Next, we identify three signi�-
cant quality in�uence factors of adaptive HTTP video streaming. Namely, temporal
impairments (i.e. stallings), video quality and quality �icker e�ects due to the adap-
tation process. We conclude the section by discussing established approaches for
quantifying the QoE of a viewer based on the identi�ed factors.

2.4.1. Temporal / Spatial Information

Spatial Information describes the level of detail (or �delity) of a single image. Tem-
poral information describes the degree of similarity between two subsequent images
of a given image sequence. The spatial and temporal information index can be used
to characterize video content. A high degree of �delity is found in complex scenes
with �ne details, sharp edges and multiple objects, whereas low spatial information
indicates large areas of similar colors, few objects and smooth transitions between
surfaces. A high amount of temporal information in an image sequence indicates
fast and frequent motions and scene changes.
ITU-T Recommendation P.910 Subjective video quality assessment methods for

multimedia applications [40] de�nes the temporal and spatial information index as
follows. The luminance plane of an image n in a sequence of images is denoted as
Fn and the Sobel [17] operator is an edge-detection algorithm.

Spatial Information (SI) = max{std[Sobel(Fn)]}

Mn(i, j) = Fn(i, j)− Fn−1(i, j)

Temporal Information (TI) = max{std[Mn(i, j)]}

The content type plays an important role in the human perception of video play-
back and therefore can not be neglected in the design of QoE evaluation studies.
However, the implications of the di�erent content types on the perceived QoE are not
fully understood. Nevertheless, some e�ects of di�erent temporal and spatial prop-
erties were identi�ed by user studies to have an impact on speci�c quality in�uence
factors. For example, the �delity of a video sequence correlates to the perception
of video quality where a high level of detail requires high level of video quality to
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please a human viewer [31]. In the following subsections, we introduce three quality
in�uence factors of adaptive HTTP video streaming and highlight known e�ects of
di�erent content types on the described factors.

2.4.2. In�uence Factors of SVC-based Video Streaming

The quality of video streaming content as perceived by the user depends on many
factors. In the following, we discuss the in�uence of the temporal and spatial in-
formation index, video quality as perceived by a viewer, playback interruptions and
time-varying quality of the content on the user's Quality of Experience.

2.4.2.1. Temporal Impairments

Temporal Impairments (or stalling) e�ects are distinguished by their time of oc-
currence. Stalling at the beginning of the playback is called initial delay, whereas
stalling during the video playback session is called playback interruption or just
stalling. Initial delay is due to pre-bu�ering part of the content to compensate for
bandwidth �uctuations during the playback. In the context of HTTP/TCP-based
video streaming, playback interruptions occur in situations where the available band-
width is not su�cient for the current content bit rate. Playback interruptions have
a signi�cant e�ect on the user's perceived QoE, whereas initial delay is more likely
to be accepted by the user [36, 34, 37]. Stalling can be quanti�ed by the lengths of
the stalling events and their frequency during the playback session.

2.4.2.2. Video Quality

Scalable video coding allows for on-the-�y adaptation of image resolution, frame
rate and image quality of a video sequence to the current network and viewing
environment. Next, we discuss the in�uence of the three scalability dimensions on
the video quality (i.e. Quality of Experience (QoE)) as perceived by a human viewer.
It is obvious that the user is less likely to accept the provided video quality if the
resolution, image quality and frame rate is low and he is more likely to accept it if
all three dimensions o�er a high quality. The in�uence of di�erent quality levels of
the di�erent dimensions is more complex and less obvious.
Figure 2.5 gives a schematic of this issue. There exists a 3-tuple which represents

the minimum quality for each dimension the user is likely to accept. Decreasing the
quality along any dimension results in a QoE the user does not accept. However, a
very high quality along one dimension may compensate for a very low quality on one
of the other dimensions. The implications of di�ering quality levels for the di�erent
dimensions on the perceived QoE are not fully understood. In the following, we
highlight relevant results from this research area. [29] shows, that QoE decreases
non-monotonically with the video bitrate (i.e. image �delity or resolution) and the
preference of which scalability dimension to choose for the adaptation is content-
dependent. The e�ects of adapting image quality and frame rate for di�erent content
types are discussed in [44]. The study shows that sport-coverage with a high amount
of motion does not necessary require a high frame rate, but in turn can require a

15



2.4. QoE of Video Streaming

Figure 2.5.: SVC scalability options and acceptable QoE [66]

high image quality, especially on small screens. [43] performs a comprehensive user
study to evaluate scalable video coding with regard to �ve dimensions, namely codec,
content, spatial resolution, temporal resolution and image quality.

2.4.2.3. Flicker E�ects

Adaptive streaming can adapt the image quality and the frames per second of the
content to current network conditions. The subjective impression of the varying
content quality (i.e. �icker e�ects) is not taken into account by popular metrics like
PSNR and MSE. Intuitively, the frequency and amplitude of the quality adaptations
are in�uencing the perceived QoE, where the amplitude has a greater in�uence than
the frequency of the switches and both should be kept low [49, 48]. In addition to
the frequency and amplitude, di�erent quality switching patterns where identi�ed
to impact the QoE di�erently [65]. It has also be noted, that the content plays an
important role in the perception of quality changes [53]. Frequent scene changes can
mask quality changes ([33]), whereas slow pan shots expose the quality changes.

2.4.3. QoE Assessment

There exist multiple methods for assessing the Quality of Experience of a video se-
quence as perceived by a user. Subjective assessments with a group of human test
subjects give the best results, but are expensive and costly in terms of time. Objec-
tive algorithms try to estimate the QoE of an impaired video. The accuracy of the
results compared to the subjective assessments and the computational complexity is
highly dependent on the choice of the algorithm and content. The following sections
take a closer look on current objective and subjective assessment methods.

2.4.3.1. Video Quality

There exist several metrics for quantifying the video quality as perceived by a human
viewer. Classical objective metrics like Peak Signal-To-Noise Ratio (PSNR) [14] aim
to quantify degradations due to the encoding process or distortions by comparing the
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individual images the video is composed of with unaltered reference pictures pixel by
pixel. Evaluations show that the results of the classical error-based objective metrics
perform poorly in describing the human perception of video quality [64, 60, 38]. More
advanced quality metrics, like the Structural Similarity (SSIM) [60] index, focus
on the structural similarity between the distorted and the reference pictures and
show better results in re�ecting the human perception [61]. So far motion between
subsequent pictures was not taken into account. Video Quality Model (VQM) [41]
is a state-of-the-art quality metric o�ering temporal, spatial and SNR scalability
support. Temporal similarities are taken into account by processing motion vectors
between subsequent images. The objective methods described here belong to the
category of full-reference (FR) metrics. FR metrics compare an unimpaired reference
sequence with the distorted sequence to measure the quality degradation and are
generally used in laboratory studies where both, the reference and distorted sequence
are easily available.

PSNR

Peak Signal to Noise Ratio (PSNR) describes the impairment of a signal by
calculating the ratio between the maximal signal output and the recorded
noise responsible for the impairment. In the case of image compression, PSNR
compares the luminance of a reference picture with the distorted image pixel-
by-pixel. The PSNR of a sequence of images is the mean of all PSNR values
of all images in the sequence. Because of its ease of use and low compu-
tational complexity, PSNR is the most commonly used objective image and
video quality metric. However, evaluation show a low correlation to the human
perception [64, 60, 38].

SSIM

The Structural Similarity Index Metric (SSIM) is designed to re�ect the prop-
erties of the human visual system by taking the structure of the image in ac-
count. Like PSNR, the SSIM metric is calculated for each picture of a sequence
individually. The index is derived from the combination of luminance, contrast
and structure measurements. Accordingly, both images are compared by these
three aspects and the results are combined to one index between one (being the
best possibly similarity) and zero (no similarity). Relatively low computational
complexity allows for real-time implementations [26]. Two extensions exist to
the presented (simple) SSIM, Speed-SSIM and Multiscale SSIM (MS-SSIM).
Speed SSIM extends the SSIM concept with statistical models of human visual
motion perception. MS-SSIM proposed in [62] utilizes multiple weighted scales
of the image to take di�erent viewing conditions in account.

VQM

The Video Quality Model (VQM) [41] metric o�ers full scalability support and
high correlation to the human perception with the cost of high computational
complexity. In contrast to SSIM and PSNR, VQM is designed to include the
spatial, temporal and signal-to-noise ratio (SNR) scalability, which is found
in the Scalable Video Coding annex of AVC. The algorithm implements these
aspects by considering the frame rate, SNR and motion vectors of the image
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sequence. The result is a value between zero (no perceptible impairments) and
one (maximal perceptible impairments).

In [59], comprehensive user studies were conducted to evaluate the performance of
the presented quality metrics in regard of their accurateness to the human perception
of video quality. Next, we highlight relevant results of this study. First of all,
existing assumptions of the bad performance of PSNR are validated. Out of the
investigated quality metrics, the outputs of PSNR show by far the lowest correlation
to human perception. The study also points out the advantage of algorithms which
take motion between pictures of the sequence in account. For example, Speed SSIM
can considerably improve the results of SSIM through statistical motion models.
VQM shows the highest correlation to human perception out of the three given
metrics. However, in this thesis we utilize (simple) SSIM for quantifying di�erent
quality levels of video sequences because of its low computational complexity. Next,
we discuss subjective methods for quantifying the QoE of a video sequence.

2.4.3.2. Subjective Methods

Subjective quality assessment methods generally consist of viewing sessions where a
group of human evaluators watch and rate video sequences based on their individual
subjective judgment. Di�erent recommendations exist how to prepare the viewing
environment, how to structure the test sessions and how to evaluate the collected
data. ITU-T Recommendations P.910 Subjective video quality assessment methods
for multimedia applications [40] and BT.500-11 Methodology for the subjective as-
sessment of the quality of television pictures [24] are two of the most complied with
speci�cations for subjective quality assessments. In the following, we introduce the
Absolute Category Rating (ACR), also called Single Stimulus Method, which we use
for the design of our user studies in this thesis. Afterwards, we compare the ACR
method to other quality assessment methods.
Absolute Category Rating describes a mode of operation for user studies where

test participants are presented with individual and independent stimuli (i.e. video
sequences) in random order. Each stimulus is followed by a period of voting where
the subjects judge the perceived quality during the stimulus on a prede�ned scale.
Figure 2.6 gives an example for an ACR test session. The excerpt shows a session
with four test sequences (b, c, d, e) in random order. Each sequence has a length
of 15 seconds and is followed by voting period. Note that the ITU Rec. P.910
recommends to limit the voting time period to ten seconds. However, limited voting
periods are not supported by the user study framework used in our evaluations and
therefore we omitted the time limit in the crowdsourcing campaigns.

15 s 15 s 15 s 15 s

Stimulus

Voting

b e c d

Figure 2.6.: Example excerpt from an ACR test session
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The ITU recommendation introduces di�erent prede�ned quality rating scales. In
our evaluations, we utilize the �ve-point rating scale presented in Table 2.2 ranging
from 5 (excellent, respectively imperceptible for impairments) to 1 (bad and Very
annoying). This scale is equal to the Mean-Opinion-Score (MOS) [39], a popular
metric to describe the satisfaction of a group of human elevators with a service.

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 2.2.: Five-point rating scale

Next, we give a brief introduction to other popular assessment methods suggested
in the P.910 and BT.500 recommendations. With Degradation Category Rating
(DCR) suggested in Rec. P.910, a reference video sequence is presented in con-
junction with impaired sequences. Viewers rate the amount of impairment. Pair
Comparison (PC), also presented in Rec. P.910, is a method where pairs of video
sequences with the same content, but di�erent impairments, are presented and view-
ers rate which one they prefer. With Single stimulus continuous quality evaluation
(SSCQE) described in BT.500, viewers are presented with a continuous playback of
a video sequence with time-varying impairments. With the means of a slider, the
test subjects are asked to continuously rate their viewing experience. No reference
sequence is provided. Also suggested in BT.500, Double-stimulus continuous quality-
scale (DSCQS) describes a method where short sequences consisting of reference and
impaired content sequences are presented in random order. The human evaluators
are asked to rate each sequence individually.

2.4.3.3. Crowdsourcing for QoE Assessment

Evaluating the Quality of Experience of video content is costly in terms of money,
time and facilities. Crowdsourcing can help to reduce the cost compared to labora-
tory studies. In essence, crowdsourcing for QoE uses the Internet to utilize anony-
mous test subjects for online-based studies. The studies can be completed at home,
are usually browser-based and do not require any special equipment or competencies.
Furthermore, online platforms like Amazon's Mechanical Turk [1] and Microwork-
ers.com [12] help the researcher to make QoE studies available to a larger crowd. To
create a study and make it publicly available the researcher has to specify the URL
of the study, add a brief description, specify the time requirement and the monetary
compensation. Interested workers sign up to receive a list of currently available and
suitable studies, from which they can choose their next task. In contrast to studies
in controlled environments with selected participants, crowdsourcing can not guar-
antee the reliability of the anonymous test subjects and is more prone to cheaters.
Special measures have to be taken to �lter out invalid results [35].
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In the following, we discuss the subjective studies conducted in the course of this
thesis. We �rst interrelate the studies to the objective performance evaluation. In
the objective performance evaluation, we introduce metrics to assess and compare
the di�erent adaptation algorithms from a user-centric and resource-centric point of
view. Most of the user-centric metrics like playback quality, initial delay and stallings
are related to common non-adaptive media-streaming techniques and therefore the
in�uence of these metrics on the user's perceived QoE is well understood. However,
little information exists about the correlation between the quality switches found
in adaptive video streaming scenarios and their in�uence on the actual perceived
QoE of the user. The conducted subjective studies are designed to gain a deeper
understanding of the in�uence of the quality switches on the user's QoE.
Figure 3.1 gives an overview of the conducted subjective studies and also illustrates

the structure of this chapter. We �rst formulate the problem at hand through a
set of research and control questions, each question dealing with a speci�c aspect
of the quality switches (e.g. in�uence of switching amplitude) and accompanied
by a hypothesis (e.g. the amplitude greatly in�uences the QoE). Based on the
formulated questions, we implemented a pilot study in a laboratory as preparation
for the crowd-sourcing campaigns. In the pilot study, we asked a group of experts to
assess 20 test scenes with di�erent number of quality switches, switching amplitudes
and varying amount of motion and image detail. The �ndings of the pilot study
helped to select test scenes and reasonable starting values for parameters (e.g. the
amplitude for the switches). Based on the formulated questions and the pilot study,
we designed and implemented �ve crowd-sourcing campaigns. The design of each
campaign was guided by one or more of the formulated research questions. Through
a crowd-sourcing provider we made the campaigns available to a large international
crowd and each campaign was completed by about 100 participants. After �ltering
unreliable submissions [35], we identi�ed the relevant QoE in�uence factors through
statistical analysis by utilizing, among others, main e�ect plots.
The contribution of the subjective studies to the understanding of the in�uence

of quality switches on the perceived QoE is threefold. First, we present �ndings
concerning the perception of quality switches. In particular, we take a look at the
question if the participants were able to accurately guess the number of quality
switches in a test scene. Next, we highlight the observed impact of quality switches
on the user's QoE in terms of a Mean Opinion Score (MOS) in the range of 0 to
1000 (continuous quality scale). Third, we discuss the acceptance of quality switches
in the evaluated test scenes. Afterwards, we summarize the identi�ed Quality of
Experience in�uence factors and discuss how the �ndings help to assess the objective
performance results and how to design a user-centric DASH adaption algorithm. In
the subsequent section we introduce the research and control questions.



3.1. Problem Formulation

Figure 3.1.: Subjective studies overview with di�erent research questions examined
through di�erent crowdsourcing campaigns (C1 - C5).

3.1. Problem Formulation

As we will see later in Chapter 4, the switching frequency, the amplitude of the
switches and average playback quality is highly dependent on the choice of the
adaptation algorithm. In order to evaluate the algorithms from the point of view
of the user, it is therefore necessary to gain insight of the aforementioned metrics
regarding their e�ect on the user's perceived Quality of Experience. The e�ect of
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the presented playback quality is well understood, but there are open questions
regarding the in�uence of quality switches. In particular, for a speci�c switching
amplitude, how many quality switches are tolerated by a user during a speci�c
time period of the playback session before he judges the video playback quality as
unacceptable. Furthermore, if the algorithm has to choose between presenting a
continuous low playback quality or �uctuating between the low playback quality
and a higher quality, which alternative is more likely to be accepted by the user. To
evaluate the problem regarding these questions, we ask the user about two di�erent
aspects, overall quality and acceptance. In particular we ask How would you rate
the overall viewing experience? and Would you use a website o�ering this service
quality?. The acceptance rate gives the percentage of user's who would accept the
provided quality. The overall viewing experience rating is explained in Subsection
3.3.1, where we describe the web-based user interface, in greater detail.
In the following, we �rst discuss the research questions the user studies are based

on. Afterwards, we discuss control questions which were, in addition to the research
question, also considered for the design of the studies.

3.1.1. Research Questions

The user studies are designed to answer the following research questions. First,
we want to know if the content in�uences the perception of the quality switches.
We hypothesize that the perception, and therefore also the QoE of the user for
scenes with quality switches, depends on the temporal and spatial information of
the content. We address this question by the pilot study and the campaign C1,
where we use scenes with di�erent SI/TI values, but the same number of quality
switches. Next, we ask if the amplitude in�uences the QoE of the user. We surmise,
that quality switches with a higher amplitude have a greater impact on the user's
QoE than switches with a low amplitude. To test this hypothesis, we include quality
switches with a low amplitude into the campaigns C1 and C2, whereas the switches
in the campaigns C3 - C5 have a high amplitude. The last research question asks
how many quality switches per 30 seconds are acceptable for a user. Our hypothesis
is, that the user does not tolerate more than four quality switches per 30 seconds.
We consider this question in all �ve user studies and in the pilot study by using
switching patterns with multiple di�erent number of quality switches.

3.1.2. Control Questions

The following control questions are considered by the design of the crowdsourcing
user study. First, are the study participants able to estimate how many quality
switches occurred during playback of a test sequence? We hypothesize that the
users are able to tell whether there have been any quality switches in the sequence
but can not accurately estimate the number of switches. To test the hypothesis,
we ask the user after each test sequence to guess how many quality switches have
occurred during playback. Second, we want to know, if there are two test sequence
which di�er only in the average playback quality, whether the one with the higher
average quality gets rated di�erently. We assume, that the sequence with a higher
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3.2. Pilot Study in a Laboratory

Question C1 C2 C3 C4 C5 Pilot
Does the content in�uence the perception of the
quality switches?

X X

Does the amplitude of the quality switches in-
�uences the QoE of the user?

X X X X X X

How many quality switches per 30 seconds are
acceptable for a user?

X X X X X X

Are the study participants able to estimate how
many quality switches occurred during playback
of a test sequence?

X X X X

If there are two test sequence which di�er only
in the average playback quality, does the one
with the higher average quality gets rated dif-
ferently?

X X X X X

Table 3.1.: Research questions implemented per campaign

average playback quality is rated better. To test this hypothesis, we vary the distri-
bution of the quality switches between the test sequences to create sequences with
di�ering percentage of time spent on the highest quality level.

Table 3.1 summarizes the research and control questions and gives an overview
of the questions considered for each of the crowdsourcing campaigns and the pilot
study. Scenes with di�erent SI/TI values were only used in C1 and the pilot study.
In the pilot study, the user were not asked to guess the number of quality switches
and no variations in average playback quality very assessed. In C5, the users were
not asked to guess the number of quality switches.

3.2. Pilot Study in a Laboratory

We conducted a user study in a laboratory at the Alpen-Adria University in Kla-
genfurt, Austria to answer the following two questions as preparation for the crowd-
sourcing campaigns. First, is the temporal and spatial information index su�cient
to characterize video sequences regarding their in�uence on the perception of quality
switches? In particular, does a low amount of motion and image �delity in a scene
increase the assumed negative e�ect of quality switches on the QoE compared to a
scene with a high amount of motion and image �delity? And second, does the am-
plitude of the quality switches in�uence the perception of the switches? Speci�cally,
are the amplitudes provided by our test content distinguishable by a human viewer
in a typical viewing environment? And, for that matter, are quality switches with
these amplitudes perceived by the test participants when watching video sequences
with di�erent SITI values? In the following we �rst explain how we designed the
pilot study and afterwards present the results.
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3.2. Pilot Study in a Laboratory

Segment Time Period (Min.) Switches Amplitude Special Property
1 00:00 - 00:30 0 0 no switches
2 00:30 - 01:00 4 1
3 01:00 - 01:30 4 2 low SITI
4 01:30 - 02:00 2 2 low SITI
5 02:00 - 02:30 6 2 low SITI
6 02:30 - 03:00 1 1
7 03:00 - 03:30 2 2
8 03:30 - 04:00 1 2
9 04:00 - 04:30 1 2
10 04:30 - 05:00 0 0 no switches
11 05:00 - 05:30 5 2
12 05:30 - 06:00 2 1
13 06:00 - 07:30 5 2
14 07:30 - 08:00 3 1
15 08:00 - 08:30 4 2
16 08:30 - 09:00 4 2 high SITI
17 09:00 - 09:30 2 2 high SITI
18 10:30 - 10:00 5 1
19 10:00 - 10:30 3 2
20 10:30 - 11:00 6 2 high SITI

Table 3.2.: Pilot Study: Segmented Tears Of Steel Movie

3.2.1. Methodology and Lab Setup

Three di�erent test dimensions are included in the study. The frequency of quality
switches, the amplitude of the quality switches and the temporal and spatial informa-
tion index value. The pilot study is designed to mimic a realistic Video-on-demand
viewing session. Accordingly, we do not use a small set of repeating test-scenes with
di�erent properties, but instead show the test participants a complete short-movie.
To do so and still be able to test di�erent properties, we segment the short-movie
into non-overlapping time intervals of �xed lengths and assign each time interval an
individual switching frequency and switching amplitude. We also identify segments
with low and high spatial and temporal information (referred to as low/high SITI)
and assign a speci�c set of properties to both low and high SITI segments.
As test content, we use the short-movie Tears Of Steel with di�erent spatial res-

olutions and a segment length of 30 seconds, 20 segments in total. The properties
assigned to the individual segments are presented in Table 3.2. The number of qual-
ity switches per segment ranges from zero to six. The amplitude is given in spatial
resolution changes, with one referring to a change from 1280x720 (QL2) to 640x360
(QL1) and two referring to a change from 1280x720 to 320x180 (QL0). The Seg-
ment 1 and Segment 10 where presented without quality switches and in the highest
quality. Compared to the other segments, Segment 3, 4 and 5 exhibit a low SITI
value and the segments 16, 17 and 20 a high SITI value.
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Figure 3.2.: Perception of quality switches with di�erent SITI values and amplitudes

In the following, we brie�y describe the procedure of a test session, the test en-
vironment and the demographic. First, the user is presented with an introduction
explaining the test procedure and within the introduction asked to complete a short
questionnaire composed of demographic questions. After the subject submitted the
questionnaire, Segment 1 is presented. Next the screen displays a 0 to 100 (0 la-
beled as Very low, 100 labeled as Very high) rating scale slider with a default slider
position of 50. The subject is given 5 seconds to change the position of the slider
position if he desires. The �ve seconds are indicated by a visible counter. After �ve
seconds, the rating scale disappears, the current slider position is saved as the user's
rating for the presented segment and the next segment is displayed to the subject.
After the rating period of Segment 20, the user study session is completed. The pilot
study was conducted in a special laboratory at the University of Klagenfurt. The
room was soundproofed and darkened to avoid any external in�uences. A standard
24 inch display was placed on an o�ce desk and the subject seated in front of the
desk. A computer mouse and keyboard was placed in front of the display to allow
the subject to complete the questionnaire and to control the rating slider. Overall
eleven people participated in the pilot study. All participants were recruited from
the Computer And Mathematical Science department of the University of Klagen-
furt, Austria and were of Austrian nationality. The average age of the participants
was 29 and all were at the time of the study members of the postgraduate program
in computer and mathematical science at the University of Klagenfurt. All users
were male. In the following subsection, we present the results from the pilot study.

3.2.2. Results of the Pilot Study

The results of the segments with steady quality (i.e. Segment 1 and 10) show a
reference Mean-Opinion-Score (MOS) value of 60 with a 95% con�dence interval
of [51.6, 68.4] for the high quality level. Next, we highlight the results of the pilot
study based on the questions speci�ed. At the end of the subsection we present the
contribution of the study to the design of the crowd-sourcing studies.
Figure 3.2a addresses the question of how the temporal and spatial properties of

the content in�uence the perceived Quality of Experience of the user. The axis on
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3.3. Methodology for Crowdsourcing QoE Assessments

the bottom shows the number of high amplitude switches during the playback of
a segment (i.e. 30 seconds). The axis on the left shows the MOS on a scale of 0
to 100 with a 95% con�dence interval. We see, that for content with low spatial
and temporal information, i.e. for content with a low amount of motion and details,
a number of high amplitude switches greater or equal than one negatively impact
the MOS, independently of the number of switches. Accordingly, even two quality
switches are perceived as low quality and the rating results for four or six quality
switches do not signi�cantly di�er from the two quality switches rating. In contrast,
scenes with a high amount of motion and image details reduce the negative e�ect of
the quality switches on the QoE. Two quality switches in the scene with a high SITI
value do not signi�cantly decrease the MOS compared to the reference MOS. Four
quality switches show a high uncertainty for the absolute rating, but relative to the
four switches in the low SITI scene, the MOS is still higher. Six quality switches in
the high and low SITI scenes are rated with an equally low MOS score. Figure 3.2b
addresses the e�ect of the amplitude of the quality switches on the MOS. The axis
are the same as for Figure 3.2a. The �gure shows that one to �ve low amplitude
switches (QL2 to QL1) do not signi�cantly decrease the MOS. Whereas even one
high amplitude switch (QL2 to QL0) decreases the MOS to an unacceptable level.
Two or more high amplitude switches do not decrease the MOS further.
The contribution of the pilot study to the design of the subjective crowdsourcing

studies is twofold. First, for the selection of the test scenes for the crowdsourcing
studies we focus on scenes with a low SITI value. High SITI scenes exhibit a masking
e�ect on quality switches and thus are un�t for the evaluation of the negative e�ect
of quality switches on the QoE. Second, the pilot study shows that low amplitude
switches, as speci�ed in regard to the quality levels of our test content, are not
perceived by a user for the tested number of quality switches. We therefore use high
amplitude switches for the crowd-sourcing studies. In the crowdsourcing campaign
Q1 we con�rmed the di�erence between low and high amplitude switches as well as
the in�uence of di�erent SITI values. In the subsequent section we introduce the
methodology of the crowdsourcing-based subjective studies.

3.3. Methodology for Crowdsourcing QoE

Assessments

In the following, we discuss the methodology of the conducted crowdsourcing user
studies. First, we give a general overview of the user studies and the utilized crowd-
sourcing approach. Next, we describe the web-based user interface used in the studies
to present the test sequences, to ask the demographic questions and to gather the
results. Afterwards, we introduce the test scenes. Two test scenes, one with a high
amount of motion and one with a low amount of motion, are presented. Further-
more, three quality levels are speci�ed to allow for di�erent switching amplitudes.
Next, we describe the process of �ltering unreliable test subjects. At the end of
this section we introduce the design of each of the �ve crowdsourcing campaigns
conducted in the course of this thesis related to the research questions in Table 3.1.
For the user studies, we utilized crowdsourcing to reach a large and international
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3.3. Methodology for Crowdsourcing QoE Assessments

test crowd. Crowdsourcing is the idea of distributing short tasks (e.g. surveys, qual-
ity assessment of di�erent compression codecs) to an anonymous online crowd for
processing. A popular method to do so is through a crowdsourcing provider which
supports the task creator in reaching a larger group of potential employees. For our
subjective studies we used the crowdsourcing platform microworkers.com [12] for
task distribution and handling of the monetary compensation of the participants.
To create a task and make it available to the potential employees, three steps are
su�cient. First, make the task available online and accessible by a URL. Second,
specify a monetary compensation for a completed task and third, specify the max-
imum number of people allowed to process the task. See A.6 for details on the
microworkers task description. To make the task available online, we implemented a
browser-based questionnaire to present the test sequences and collect demographic
information and rating results. In the following, we give a detailed description of
the web-based questionnaire.

3.3.1. Web-based User Interface

The web-based interface of the studies was implemented using the QualityCrowd2
framework proposed by Keimal at al. [42]. The framework is designed for crowd-
sourcing based quality assessments through common web servers, respectively on
the client-side, common web browsers. It provides a text-based scripting language
to design the desired user study, incorporates anti-cheating measures and handles
the generation of the payment token for �nished test subjects. Next, we describe
the procedure of the user study from the point of view of the test subjects.
After the test subject accepted our quality assessment task on the website of the

crowd-sourcing provider, the user is presented with a custom URL which directs
him to our assessment website. On the website the participant is �rst directed
to an introduction explaining the test procedure. For example, the introduction
explains how to start the playback of the test sequence and how to use the rating
slider. See A.7 for details of the introduction. Next, the user is presented with a
series of demographic questions about his age, education, occupation and country
of residence. A detailed listing of the questions is available in A.1. Afterwards, the
download of the �rst test sequence is started. When the download has �nished,
the user is able to start the playback by the push of a button. A screenshot of
the video playback and rating page is available in the appendix of this thesis (A.4).
After the playback of the whole test sequence, the subject uses the slider to rate
the overall viewing experience. The slider is continues, but visually split in �ve
equally sized segments, Excellent, Good, Fair, Poor and Bad. After positioning the
overall viewing experience slider, the subject is asked if he/she noticed any change
in quality during playback and if yes, if he/she felt annoyed by the switches. The
level of annoyance is, as with the viewing experience, rated by the means of a slider
visually segmented in �ve segments. The segments are labeled Imperceptible (did
not notice any), Perceptible but not annoying (did notice, but did not care), Slightly
annoying, Annoying and Very annoying. Afterwards, the subject is asked to guess
how many quality switches he/she noticed during the playback of the test sequence
in a range of 0 to 14. The questions to this test sequence is concluded by the
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(a) Scene L

low amount of motion and details
(b) Scene H

fast motions and high image �delity

Figure 3.3.: Low and high SITI scenes used in the user studies

question, if the subject would accept a website o�ering this service quality. After all
test sequences of the campaign are presented, the payment token is displayed to the
participant, which the user can enter on the website of the crowd-sourcing provider
to receive his monetary compensation of $0.30.

3.3.2. Test Scenes and Quality Levels

Now, we introduce the two test scenes and the three quality levels used in the
subjective studies. We selected two scenes from the short-movie Tears Of Steel for
the user study. Scene L, depicted in Figure 3.3a, is characterized by a low amount
motion with an average SI of 8.50 and average TI of 5.38. The scene shows a couple
arguing on small bridge surrounded by houses and trees. The background is blurred.
The sequence is exactly 360 frames long, i.e. 15 seconds for a playback with 24 frames
per second, and the start of the scene corresponds to the timestamp 00:00:25 of the
full short-movie. Scene H, introduced by Figure 3.3b, exhibits fast motions and
multiple scene changes with an average SI of 5.41 and average TI of 24.48. The
sequence has the same length as Scene L and shows a soldier �ghting against fast
moving robots. As with Scene L, Scene H is taken from the short-movie, starting
from the timestamp 00:08:08. We chose a length of 15 seconds for each scene based
on the �ndings in [52], which indicate that the human memory e�ect for quality
assessments is limited to roughly 15 seconds.
Figure 3.4 introduces the three quality levels used in the subjective crowdsourc-

ing studies. The picture quality is here quanti�ed by the SSIM metric. L2 is used
as reference sequence and is derived from the original sequence by downscaling the
sequence from a resolution of 1280x534 to 640x360. Black bars are added at the
top and bottom to allow for a 4:3 aspect ratio. L0 and L1 are also based on down-
scaled versions of the original sequence. L1 was created by downscaling the original
sequence to 320x180 and L0 by downscaling to 160x90.

3.3.3. Filtering Unreliable Test Subjects

In the following section, we discuss the measures taken to identify and �lter out
unreliable participants during the crowd-sourcing campaigns. The measures taken
aim to inhibit the two common causes of unreliable results. First, the user does
not understand the questions and second, the user tries to cheat to receive the

28



3.3. Methodology for Crowdsourcing QoE Assessments

(a) Low Quality (L0)
SSIM = 0.8310

(b) Middle Quality (L1)
SSIM = 0.9535

(c) High Quality (L2)
SSIM = 1.0

Figure 3.4.: Di�erent quality levels used in QoE evaluation

monetary compensation without earnestly participating in the study. The former
we counteract by providing a detailed and pictorial introduction to each study (see
A.7). Additionally, we use simpli�ed English for the questions and the labeling
of the rating scales. Multiple measures are taken to prevent cheating during the
crowd-sourcing campaigns. First, we only provide the code required to receive the
monetary compensation after the questionnaire has been completed and all questions
have been answered. Second, the utilized user study framework prevents the user
from skipping or fast-forwarding the presented video clips. Additionally, each rating
scale has to be clicked at least once to be allowed to continue to the subsequent clip.
Next, we implement easy content questions to identify unobservant test subjects.
In Subsection 3.3.2, we introduce the two scenes used during the QoE evaluation
in Figure 3.3. Scene L shows a human couple arguing on a small bridge. We ask
the participant Where did the protagonists stand on? and let him choose between
A Building, A large �eld, A small bridge and Riding on an elephant. For scene H,
where a soldier is �ghting large robots, we ask The protagonist was �ghting against
... and o�er Elephants, Humans, Ducks, Robots as possible answers.
To conclude this section, we implemented reasonable measures to prevent abuse of

the user study for sel�sh monetary goals of individual users and designed the study
easily accessible to reduce misunderstandings concerning the questions and the rating
scales. However, it is not possible to give a success rate of each action taken due to
the lack of information about the anonymous remote user. For the content questions
we observed that about 11% of the participants were giving wrong answers and were
therefore excluded from the evaluation. Figure 3.5 gives a detailed overview of the
excluded users for each campaign. C1 contained two content questions, both had
to be answered correctly. For the campaigns C1 - C5, 6, 16, 14, 8 and 4 users were
excluded based on their answers given for the content question, respectively.

3.3.4. Crowdsourcing Campaigns

In the following, we discuss the design of the �ve user study campaigns conducted
during the course of this thesis. Table A.5 gives an overview of the �ve campaigns.
A more detailed overview is available in the appendix of this thesis (Appendix A.3).
The individual campaigns are numbered consecutive, pre�xed by the letter C. The
column labeled Switches shows the number of switches in order as presented to
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Figure 3.5.: Number of users �ltered by content question

Campaign Switches (in order of presentation) Amplitude Begin Scene(s)
C1 (L) 0 (L2), 1 (L1-L2), 0 (L1), 1 (L2-L1) L2 - L1 - L
C1 (H) 0 (L2), 1 (L1-L2), 0 (L1), 1 (L2-L1) L2 - L1 - H
C2 2, 1, 8, 0 (L2), 3, 6, 4 L2 - L1 L2 L
C3 2, 1, 14, 0 (L2), 0 (L0), 3, 8, 4 L2 - L0 L2 L
C4 2, 0 (L0), 1, 7, 0 (L2), 8, 3, 5, 4 L0 - L2 L0 L
C5 2, 8, 1, 7, 0 (L2), 3, 0 (L0), 5, 4 L2 - L0 L2 L

Table 3.3.: Crowd-sourcing campaigns

the study participants. Campaign C1 is conducted for both test sequences. For
the other campaigns, we only present test sequence L. The campaigns C1 and C2
use low amplitude switches (L2 - L1), whereas the campaigns C3 to C5 use high
amplitude quality switches (L2 - L0). For sequences with zero quality switches, we
give the used quality level in brackets. It has to be noted, that for the campaigns C1
to C4 the quality switches are distributed uniform over the 15 seconds. From this
it follows that for an odd number of quality switches, the cumulative time spend on
the individual quality levels di�ers (see A.3). Campaign C5 adjusts the distribution
of the quality switches to achieve an equal amount of time for both quality levels.

3.4. Results of the statistical analysis of the

subjective studies

Now, we present and discuss the results from the conducted user studies. First, we
highlight the speci�c user studies used to gain the subsequent results and give the
relevant properties and di�erences of each study. Second, we present the observed
demographic of the study participants. Third, we highlight the �ndings regarding
the perception of quality switches. Along these lines we answer the question if the
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participants were able to accurately guess the number of quality switches in a test
sequence. Afterwards, we show the impact of quality switches and of the time spent
on the highest quality layer on the perceived QoE of the users in terms of quality
rating. Next, we discuss how the quality switches and time on high in�uence the
acceptance rate of the users with the provided service. At the end of the section, we
summarize the �ndings and highlight the identi�ed QoE in�uence factors.
Next, we give the relevant di�erences between the four user studies (C2, C3, C4

and C5) used for this evaluation. C1 was only used to verify the results from the
pilot study regarding the e�ect of di�erent SITI values and amplitudes and did
not include a test sequence with more than one quality switch. In contrast to C2,
the quality switches in campaigns C3 to C5 have high amplitudes. All campaigns,
expect C4, start the test sequence on the high quality level. Campaign 2 is the
only campaign were no reference (i.e. zero quality switches) sequence is included
for the lower quality level. For the campaigns C2 to C4, the quality switches are
distributed uniform and therefore the cumulative time spent on the individual quality
level di�ers for an even number of quality switches. For C5, all sequences have the
same amount of time spent on high quality level. In the subsequent subsection, we
present the results regarding the observed demographic of the test-crowd.

3.4.1. Demographic of the Crowd

The crowdsourcing campaigns were accompanied by a mandatory demographic ques-
tionnaire. Next, we present the demographic results from the �rst campaign. 150
users participated in the campaign. Out of the 150 participants, 17 gave wrong
answers to the simple control questions and were excluded from the evaluation. The
majority of the users (70%) accessed the campaign's web-site from Asia, 26% from
Europe. 42% of the participants are of age 22 - 25. The age-groups 18 - 21 and 26
- 30 were represented with 18% each. 47% speci�ed Student as their occupation,
followed by 32% working in employment. 40% of the users completed a 4-Year
College, 17% a 2-Year College and 17% High School as their highest education.
64% use the Internet primarily at work, whereas 36% stated they use it primarily
at home. Fixed line dominated as Internet Access technology (85% �xed line, 15%
mobile Internet access). 97% of the participants use the Internet on a daily basis
(more then one hour per day) and 61% visit video websites several times a day.
About 31% of the users were wearing prescription glasses. More details about the
demographic of the campaign is available in the appendix (A.1).

3.4.2. Perception of Quality Switches

In order to judge how noticeable the quality switches are, after each presented 15 s
clip, we asked the user to guess how often the video quality has changed during
the playback in a range from 0 to 14 times. We implemented this question into the
questionnaire of Campaign 2 and Campaign 3 to gain results for the two switching
amplitudes (one quality level, two quality levels) used during the user studies.
Figure 3.6a and Figure 3.6b show the correlation between the users' guesses and
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(a) Campaign 2 (Amplitude 1) (b) Campaign 3 (Amplitude 2)

Figure 3.6.: Actual Quality Switches and User Guesses

the actual number of quality switches. The former one for the amplitude of one
quality level per switch and the later one for two quality levels per switch. The
dashed lines in both �gures indicate where the guesses of the participants equal the
actual number of quality switches for a particular test sequence. The color intensity
of the square areas indicate how many users in percent guessed a certain number of
switches for a particular actual number of switches.
From both �gures it follows that for test sequences with no quality switches, half

of the participants claimed to have noticed more than zero switches. Furthermore,
25% (Figure 3.6a) and 29% (Figure 3.6b) of the participants guessed that there have
been greater or equal than �ve quality switches in the sequence. There is a general
low, but signi�cant (p� 0.05, i.e. a low probability to get the same result by random
chance), correlation between the guesses of the participants and the actual number
of switches. For the low amplitude sequences, the Pearson correlation coe�cient is
0.271 and for the high amplitude sequences the coe�cient is 0.247.
In summary, it can be stated that the participants were not able to accurately

guess the number of quality switches. Furthermore, even in test sequences with-
out any quality switches, the participants claimed to have noticed quality switches.
However, there is a low correlation between the participant's guesses and actual the
number of quality switches. This control question, asking the users to guess the
number of quality switches, was removed for the campaigns C4 and C5.

3.4.3. Impact of Quality Switches on Perceived Video Quality

In the following, we discuss how the perceived QoE of the study participants in a
test sequence is in�uenced by the number of quality switches and the amount of time
spent on the best quality level. The results were obtained utilizing the continuous
Absolute Category Rating (ACR) rating schema in a range of 0 to 1000. The sub-
sequent �gures give the results as the average quality rating. Con�dence intervals
are omitted for the sake of readability. On average, we observed a 95% con�dence
interval length of 96 with a standard deviation of 23. The average con�dence interval
is indicated in the subsequent �gures, labeled as Avg. Conf. Interval..
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Figure 3.7.: Switches vs. Quality Rating for Campaigns 2 - 5

Figure 3.7 illustrates the in�uence of the number of switches on the quality rating
of the participants. The two test sequences without quality switches mark the lowest
(about 330 for steady low quality) and the highest observed rating (about 760 for
steady high quality). For the low amplitude switches (campaign C2), there is no
signi�cant in�uence on the rating identi�able for a number of switches greater than
two. However, the sequence with two quality switches was rated higher than the
other sequences with quality switches. This can be attributed to the fact, that the
two switches sequence of campaign 2 (and also of campaign 3) has a high time on
high compared to the other sequences (cf. subsequent paragraph). For the high
amplitude switches, a similar e�ect is observable. All sequences, excluding the zero
and two switches sequence, do not di�er in rating. However, the sequence with two
switches exhibits a higher quality rating, the sequence without quality switches and
steady low quality a worse rating. From the �gure we conclude, that the quality
rating in this study was in�uenced by the amplitude of the switches (a low amplitude
results in better quality rating) and by the time spent on the better quality level.
The results also show, that the participants preferred the sequences with quality
switches instead of the sequences without quality switches but steady low quality.
Figure 3.8 highlights the in�uence of the time on high on the quality rating. The

conclusions drawn for Figure 3.7 also apply to the �gure at hand. The sequence with
steady, but low quality, received the lowest average rating (about 330), the sequence
with a steady high quality the highest (about 760). Furthermore, the sequences
with low amplitude switches exhibit a higher quality rating than the ones with high
amplitude switches. In addition to the prior conclusions, Figure 3.8 highlights the
correlation between the time on high and the quality rating hinted in the previous
paragraph. Based on the average quality rating, the correlation coe�cient between
the time on high and the quality rating is 0.82.
In the subsequent subsection, we investigate the QoE in�uence factors of adaptive

streaming based on the acceptance rate of the di�erent test sequences.
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Figure 3.8.: Time On High vs. Quality Rating for Campaigns 2 - 5

3.4.4. Acceptance of Quality Switches

Next, we discuss how the number of quality switches in test sequence and the amount
of time spent on the best quality level in�uences the perceived QoE of the user in
terms of the acceptance rate. First, we give the acceptance rate for di�erent number
of quality switches ranging from 0 to 14. Second, we present the acceptance rate
dependent on the time spent on the best quality level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

#Switches

A
cc

ep
ta

nc
e 

R
at

e 
(%

)

 

 

C2
C3
C4
C5

Steady high

Steady low

Low Amplitude

Figure 3.9.: Switches vs. Acceptance Rate for Campaigns 2 - 5

Figure 3.9 illustrates the relationship between the number of quality switches
and the acceptance rate observed during the four user studies. For zero quality
switches, two markers are shown for the user studies C3, C4 and C5. One for the test
sequence with a steady low quality and one for the test sequence with a steady high
quality. From the results presented in the �gure follows, that there is no signi�cant
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3.4. Results of the statistical analysis of the subjective studies

correlation between the number of quality switches and the acceptance rate. For
the user studies C3, C4 and C5 the acceptance rate stays low for all investigated
number of quality switches and does not di�er signi�cantly from the acceptance rate
of the test sequence with a steady low quality. The user study conducted with a
lower amplitude (i.e. C2) also shows no in�uence of the number of quality switches.
However, the lower amplitude results in a general higher acceptance rate equivalent
to the test sequence with a steady high quality.
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Figure 3.10.: Time On High vs. Acceptance Rate for Campaigns 2 - 5

Figure 3.10 illustrates the relationship between the time spent on the highest
quality level and the acceptance rate. From the presented data follows that there is
only a low correlation between the time spent on the highest quality level and the
acceptance rate for the investigated range (i.e. 33% to 66% of time showing the best
video quality). User study C4 does not show any signi�cant in�uence regarding the
time on the highest quality level. All sequences of C4 show an equally low acceptance
rating. An equivalent e�ect is observed for C5 where the test sequences all spend
half of the time on the highest quality level and the other half on the lowest. The
acceptance rating is equally low for 0% and 50% time spent on the highest quality
level. For a time spent on high lower than 56% of the time, C3 and C2 con�rm
the previous observations. However, there is an increase in the acceptance rating
starting from 56% time spent on the highest quality level for C2 and C3.
In this section, we investigated how the acceptance rate is in�uenced by the num-

ber of quality switches and the time spent on the highest quality level. From the
evaluation follows, that the number of quality switches does not in�uence the ac-
ceptance rate. Furthermore, we see that all sequences with more than one high
amplitude switch exhibit an equally low acceptance rate equivalent to the low qual-
ity sequence without quality switches. The low amplitude switches on the other
hand result in the same high acceptance rate as the test sequence with constant
high quality. Regarding the percentage of time on the high quality level, all test se-
quences with a lower time spent on high of 56% exhibit no change in the acceptance
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3.4. Results of the statistical analysis of the subjective studies

rate. A percentage of time spent on the higher quality equal or greater than 56%
shows an increase in the acceptance rate.

3.4.5. Identi�ed QoE In�uence Factors

Next, we discuss and summarize the �ndings from the previous subsections, present
the identi�ed QoE in�uence factors of adaptive video streaming and the contribution
to the user-centric performance evaluation of the adaptation algorithms.
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Figure 3.11.: Main e�ects plot for the quality rating

In the previous subsections, we investigated the in�uence of the number of switches,
the time spent on the best quality level and the switching amplitude on the user's
perceived QoE in terms of the quality rating in the range of 0 to 1000 and the accep-
tance rate. The results are summarized by main e�ect plots in displayed Figure 3.11.
The �ndings indicate that the user's QoE is not in�uenced by the number of quality
switches in a test sequence, for the investigated number of the quality switches of
1 to 14 per 15 s sequence and considering the displayed con�dence intervals, but
whether there are any quality switches in the test sequence. For both metrics, the
time on high and the acceptance rate, we could not observe any correlation between
a number of quality switches greater than one and the ratings of the users for the
observed con�dence intervals. However, the sequences containing quality switches,
regardless of the number of switches, were rated slightly better than the sequence
with steady low quality on average and signi�cant worse than the sequence with
steady high quality. From this it follows that from the users' perspective, quality
switches result in a signi�cant lower QoE regardless of the number of switches.
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The results regarding the switching amplitude con�rm common assumptions. A
lower switching amplitude impacts the user's QoE less than a larger amplitude.
In our con�guration, the lower amplitude switches showed only a slightly lower
quality rating and acceptance rate than the sequence without quality switches and
steady high quality. From this it follows that an adaption algorithm should keep the
amplitude of the quality switches as low as possible.
The conducted studies show a correlation between the time spent on the highest

quality layer and the quality rating and acceptance rate of the users. For a percentage
equal or greater than 56%, the quality rating increases with a increasing time on high
percentage. For the range between 33% and 56% we observe a higher rating than
for the 0% time on high (steady low) sequence, but no correlation to an increasing
time on high percentage. Both statements are valid for low and high amplitude
switches. From the observed acceptance rates, two conclusions can be drawn. First,
we observe the same increase starting from 56% time on high percentage as for the
quality rating. Second, for the user's QoE, a sequence with less than 56% of high
quality, is as acceptable as the sequence with steady low quality.
For the design of an adaptation algorithm, the following conclusions can be drawn

from the crowdsourcing user studies. First, quality switches should be avoided.
Second, the amplitude of the quality switches should be kept as low as possible and
third, if a quality switch does not lead to a phase of higher quality longer than a
previous or following low quality phase, there is no increase in the QoE of the user
to expect for the investigated sequence length of 15 seconds.
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4. An Adaptation Algorithm and

Methodology for Objective

Evaluation

In this chapter, we describe the proposed adaptation algorithm in detail and present
the methodology used for the evaluation of the adaptation algorithms. Figure 4.1
illustrates the evaluation approach. Realistic network scenarios derived from real-
world tra�c traces, encoded test content and the adaptation algorithms are input
parameters for an evaluation process in a test bed environment. The test-bed per-
forms tra�c shaping to simulate the network scenarios, provides the test content
over HTTP and executes the DASH client and monitors the adaptation algorithms
during playback. Objective metrics are deduced based on the recorded playback
behavior. Afterwards, the results from the user studies are used to compare the
adaptation algorithms from a user-centric point of view.

Test Content
Tears Of Steel 

encoded with AVC/SVC

Playback Behavior

Objective Metrics
e.g. Quality Switches, 
Frequency, Amplitude, 

Stalling

Comparison of the algorithms through 
subjective evaluation results

DASH Adaptation Algorithms
BIEB, KLUDCP, TRDA, Tribler

Evaluation in test bed 
environment

DASH Client, Traffic Shaping

Realistic Network Scenarios
based on network traces

Figure 4.1.: Objective evaluation methodology overview

This chapter is structured as follows. First, we present the proposed adaptation
algorithm. Second, we introduce the user- and resource-centric evaluation metrics we
derive from the recorded playback behavior. Third, we highlight the characteristics
of the used test content. Forth, we present the structure of the testbed used in
the process of this evaluation. Afterwards, we discuss di�erent evaluation scenarios.
Evaluation scenarios allow us to answer further questions about the performance
of the algorithms in real-world situations. For example, one evaluation scenario
investigates the performance of the algorithms in the presence of a large �le download
in addition to a �uctuation network access characteristic. The section after the
evaluation scenarios takes a closer look at the evaluation framework developed as



4.1. Bandwidth Independent E�cient Bu�ering (BIEB) Algorithm

part of this thesis. We conclude this chapter by giving an overview of the evaluations
performed for this thesis and their objectives. The subsequent section introduces
the proposed DASH-SVC adaptation algorithm.

4.1. Bandwidth Independent E�cient Bu�ering

(BIEB) Algorithm

The DASH/SVC algorithm Bandwidth Independent E�cient Bu�ering (BIEB) pro-
posed by the author of this thesis is designed to o�er a high image quality while
also avoiding stalling and frequent quality switches. The algorithm does not rely
on bandwidth estimations based on the current throughput and does not make as-
sumptions about the content bitrate based on the average bitrate speci�ed in the
MPD �le. It does, however, make an assumption about the relative size of segments
of di�erent representations to each other. The assumption is based on observations
of encoded SVC-content and is illustrated in the following example.
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Figure 4.2.: Tears Of Steel representation bit-rates relative to the base layer

Section 4.3 introduces the open-source movie Tears Of Steel SVC-encoded with
three spatial resolutions. Figure 4.5 in Section 4.3 illustrates the bit rate of the
encoded bitstream separated into the three layers. Bitrate variations as shown in the
example are typical for H.264-encoded content with time-varying amount of spatial
and temporal information. We conclude that the average bitrate of a layer is not a
reliable approximation of the bitrate for a given point in time during the playback.
But, as shown in Figure 4.2, the ratio of the segment sizes of the representations
relative to the base-layer stays fairly constant.
The average bitrates for each representation given by the MPD �le can be used

to calculate the segment size ratios used for the proposed adaptation algorithm. In
detail, the following de�nitions are used to describe the algorithm. ravg(i) is de�ned
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4.1. Bandwidth Independent E�cient Bu�ering (BIEB) Algorithm

as the average bitrate of representation i without the preceding dependent quality
layers, br(i) is ratio of representation i and the base layer (br(i) = ravg(i)

ravg(0)
), icurr is

the highest currently selected representation (with icurr = 0 being the base layer,
also referred to as imin), imax is the highest selectable representation, pcurr is the
segment number of the current playback position, γ gives the minimum bu�er level
in segments per each selected representation and δ(i) returns the current bu�er level
in segments for representation i. A representation is called selected if at least one
segment of this representation is already bu�ered.
The desired bu�er level beta(i) per each selected representation depends on the

number of currently selected representations and the ratio of the segment sizes.

β(i) =

{
γ + br(icurr − i) if i ≤ imax ,

γ + (i− imax + 2) · br(imax) if i > imax .

The aim of the algorithm is to divide the currently available bandwidth evenly
between the selected representations starting from the most important (i.e. the base-
layer). Evenly is here de�ned by the ratio of the segment sizes as given by br(i).
The output of br(i) can also be interpreted as the cost of representation i where the
cost of the base-layer is always 1. In the cost-model the base-layer is 'cheap' and
with a growing number of selected higher, more 'expensive', representations, we also
have to 'buy' more base-layer segments for the current time frame.
Figure 4.3 gives a simple example for this model. The �gure shows the current

bu�er level in Megabytes and in number of segments per representation. In this
example the segments of the representation with the resolution 1280 x 720 have
each a size of six Megabytes, the segments from the next lower representation (i.e.
640 x 360) have a size of three Megabytes and the segments from the base layer have
a size of one MB each. Note that all segments contain the same amount of playback
time. From Figure 4.3a it follows that we have to download six segments from the
base-layer, two segments from the �rst enhancement layer and one from the second
enhancement layer to reach the desired bu�er level. The resulting bu�er level in
number of segments is shown in Figure 4.3b. In case of one second of playback time
per segment this is equivalent to the number of playback seconds bu�ered.
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Figure 4.3.: Example bu�er levels
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4.1. Bandwidth Independent E�cient Bu�ering (BIEB) Algorithm

The algorithm can be in one of three phases during the playback depending on
the current bu�er level. The steady, growing and quality increase phase. During
the steady phase the algorithm tries to reach the desired bu�er level for each se-
lected representation. The growing phase begins when the algorithm has reached
the desired bu�er level. During the growing phase the bu�er level requirements for
each selected representation are increased to prepare to select the next higher rep-
resentation. Note that the bu�er level requirements are increased past the amount
required for the next representation. This is done to inhibit any short-term through-
put �uctuations from casing unwanted quality switches. The growing phase ends
when the new desired bu�er levels are reached. Afterwards, in the quality increase
phase the algorithm selects a speci�c segment from the next higher representation
as next segment to download and implicitly enters the steady phase again. The
algorithm is called after a segment �nished downloading to determine the next seg-
ment to download. Algorithm 1 de�nes the proposed algorithm in detail. First, the
algorithm determines the number of currently selected representations by iterating
through the list of representations in reverse order and stopping when the �rst rep-
resentation with bu�ered segments is found. Next, the algorithm iterates through
the representation starting from the base-layer and checks if all segments belonging
to the steady phase are available. If one segment is missing, the algorithm stops and
the segment is selected to be downloaded next. If all segments for the steady phase
are available, the process is repeated with the segment requirements for the growing
phase. If the segments of both phases are already available, the algorithm selects
the next higher representation.

(a) Quality Level 0: Steady Phase

Playback time relative to the current playback position

Playback time relative to the current playback position

Playback time relative to the current playback position

(b) Quality Level 0: Growing Phase

Playback time relative to the current playback position

Playback time relative to the current playback position

Playback time relative to the current playback position

(c) Quality Level 1: Increase and new Steady Phase

Playback time relative to the current playback position

Playback time relative to the current playback position

Playback time relative to the current playback position

Figure 4.4.: Example Switch from Q0 to Q1

Figure 4.4 outlines the transition between two steady phases by example. At �rst,
quality level 0 (i.e. base-layer) is selected and the minimum bu�er level is available
and in addition two segments. In Figure 4.4b, the algorithm enters the growing
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4.1. Bandwidth Independent E�cient Bu�ering (BIEB) Algorithm

i = rmin;
icurr = imax;
while δ(icurr) == 0 do

icurr = icurr − 1;
end

i = 0; // Steady Phase
while i ≤ icurr do

if delta(i) < β(i) then
request next segment of representation i;
exit;

end

i = i+ 1;

end

i = 0; // Growing Phase
while i ≤ icurr do

if delta(i) < β(i+ 2) then
request next segment of representation i;
exit;

end

i = i+ 1;

end

// Quality Increase
if i 6= imax then

icurr = icurr + 1;
request segment pcurr + γ of representation i

else
// idle until pcurr increases

end
Algorithm 1: BIEB Adaptation Algorithm

phase, were four base-layer segments are added to the bu�er. At the end of the
growing phase, six base-layer segments are bu�ered in addition to the minimum
bu�er level. In Figure 4.4c, the algorithm increased the quality level by one and
enters the new steady phase with two quality levels.
It has to be noted that the algorithm's desired bu�er level strategy can be im-

proved further to reach a theoretical optimum. E.g. as illustrated in Figure 4.2,
the relative size ratios stay fairly constant for a long duration of the movie. How-
ever, the last two minutes exhibit a di�erent behavior. The relative sizes of the
representations to each other increase. Future work could include an estimation
function of the size ratios to improve the algorithm's e�ectiveness in such situations.
Additionally, the evaluation showed that in some situations the algorithm exhibits
a risky segment picking behavior where the algorithm tries to download segments
which are too close to the current playback position. A decrease in bandwidth (or
equivalently an unexpected increase in the content bit rate) can lead to situations
where the playback position already moved past the currently downloading segment
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when the segment �nished downloading and the segment can no longer be used and
has to be discarded (referred to as wasted bandwidth in the evaluation). Further
constrains for the segment picking can be put in place to prevent or decrease the
amount of wasted bandwidth. In order to evaluate our proposed algorithm in com-
parison to other DASH adaptation algorithms, we also introduce a set of objective
and subjective metrics in the subsequent section.

4.2. Utilized Evaluation Metrics

In this section, we introduce the evaluation metrics we derive from the playback
behavior of the adaptation algorithms during a streaming session. We di�erentiate
the evaluation metrics in resource-centric and user-centric metrics. Resource-centric
metrics describe the behavior of an adaptation algorithm from a technical perspective
(e.g. memory use, bandwidth utilization), whereas user-centric metrics characterize
the algorithms by the resulting output (e.g. video quality, switching frequency).

4.2.1. Resource-centric Metrics

The resource-centric metrics describe how well and fair the algorithms use the
available bandwidth and memory resources. Computational complexity is highly
implementation-speci�c and is therefore not considered here.

Memory Use

The memory use of an adaptation algorithm is characterized by the mean
memory use and peak memory use during a session. Memory use is here
de�ned as the amount of content data bu�ered, not including implementation
speci�c data structures. Peak memory is the maximum memory use of the
algorithm over all conducted evaluation runs of a particular scenario.

Bandwidth Utilization

Bandwidth utilization is here quanti�ed by the ratio of the amount of down-
loaded data to a theoretical optimum and the amount of data downloaded but
not used (referred to as bandwidth wasted). The theoretical optimum is cal-
culated from the values used by the tra�c shaping process and because of its
theoretical nature may not be reachable by any algorithm. Bandwidth wasted
refers to situations where the adaptation algorithm downloads a segment but
does not use it during the encoding process.

Bandwidth Fairness

Bandwidth Fairness is de�ned as the absolute and relative di�erence in average
playback quality between two concurrent clients using the same adaptation
algorithm and sharing the same Internet connection. Concurrent means that
the playback session of both clients overlap during the same scenario. The
start time for the second client is chosen by random between 0 and 60 seconds.
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4.2.2. User-centric Metrics

The user-centric metrics describe the behavior of the playback during a streaming
session from the perspective of an imaginary viewer.

Quality Switches

The quality switches are quanti�ed by the absolute number, the amplitude and
the distribution of the switches over the length of the session. The distribution
of the switches is given by the inter-switching times, i.e. the length of the time
intervals between two switches.

Playback Quality

The playback quality is characterized through the downloaded number of seg-
ments per representation. Derived from that, you can calculate the mean
quality level, the standard deviation and objective image quality metrics like
PSNR [14] and SSIM [60].

Stallings

Playback stalling describes the situation where the algorithm does not output
any content to the video encoder. Initial delay/stalling describes the time
interval between the download of the MPD �le and the output of the �rst
segment (i.e. the waiting time before the playback starts). Initial delay is
the result of algorithms pre-bu�ering a speci�c amount of data before starting
the playback. Stalling time is the sum of the time intervals and the number
of occurrences where no content is decoded during the session, not including
the initial delay. From a technical perspective, stalling during the playback is
caused by bu�er starvation as result of insu�cient bandwidth.

4.3. Content Characteristics

Tears of Steel [23] is a short movie by the Blender Foundation [2] published as open-
source movie with a playback length of about 12 minutes (17620 individual frames).
It is freely available (Creative Commons Attribution license [16]) and features high
image quality (i.e. two high resolution versions with 1080p and 720p), real actors
and sophisticated visual e�ects in a Science-Fiction scenario.

Resolution Average bitrate Maximal bitrate SSIM
320 x 180 0.294 Mbps 1.279 Mbps 0.922
640 x 360 0.949 Mbps 3.368 Mbps 0.978
1280 x 720 2.671 Mbps 10.46 Mbps 1.0

Table 4.1.: Tears Of Steel with spatial scalability

Based on the 720p version, we encoded the movie into H.2.64/SVC with spatial
scalability using the (Joint Scalable Video Model) JSVM [19] reference software
(version 9.19.15). A Group of Pictures (GOP) size of 8 frames, an IDR and Intra
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period of 24 frames and QP factor of 24 was used. The encoding con�guration �le
used for the encoding process is available in the appendix of this thesis (A.2). Table
4.1 shows the resulting average and maximal bitrates of the encoded movie with
the three spatial resolutions and also the SSIM value with the highest resolution
as reference quality. Doubling the resolution (i.e. 4 times the number of pixels)
increases the required bitrate by approximately factor 3.
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Figure 4.5.: Tears Of Steel with spatial scalability

The bitrate of the encoded movie over time is depicted by Figure 4.5. For increased
readability, the bitrate is smoothed using a moving average with a window size of 10
seconds. The moving average is the reason why the maximal bitrates given in Table
4.1 di�er from the bitrates illustrated by the �gure. The bitrate spike at the end of
the movie is due to the complex end credits. The lower spikes during the movie are
caused by fast action scenes with a high amount of motion and explosions.

4.4. Testbed Environment

The testbed used for the experiments is illustrated in Figure 4.6. A plain HTTP
server (apache2) running on a Linux host is serving the DASH content (i.e. Tears
of Steel in segments, each 2 s long). The tra�c shaping device is running Debian
Linux 6 (Squeeze) and tra�c shaping is done using the Linux Advanced Routing &
Tra�c Control [11] framework (i.e. NetEm). We implemented two tra�c shaping
options, transmission delay and bandwidth. It has to note, that the tra�c shaping
in our testbed is only applied to tra�c from the HTTP server, not for data from the
clients to the HTTP server. The tra�c shaping process is started by uploading a
script �le to the shaping device which contains for each second of the evaluation run
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a bandwidth and delay value. Once the evaluation process is started, the shaping
device uses the supplied values to shape the tra�c. After reaching the end of the
script �le, the shaping is started from the beginning again.

DASH Client 1

HTTP ServerTraffic Shaper

DASH Client 2

Delay, Bandwidth

NetEm

Tears Of Steel

Figure 4.6.: Testbed schematic

Two DASH clients (running Kubuntu Linux 12.10) are connected to the HTTP
server through the tra�c shaping device by Ethernet cables and a Gbit-enabled
switch. TCP Cubic [32] is used as congestion avoidance algorithm on both clients
and the HTTP server. Next, we describe the di�erent network access characteristics
we utilize to shape the tra�c for the evaluations.

4.5. Network Access Characteristics

In this thesis, network access characteristics describe the downstream transmission
path between the content server and the DASH client(s) and can be either arti�cial
(e.g. set to a constant value) or deduced from recorded network traces. Two metrics
describe a network access characteristic, transmission delay and available bandwidth,
both as a function of time. In the following, we �rst describe transmission paths
with arti�cial constant limitations. Afterwards, we discuss the characteristics of a
transmission path observed in a vehicular mobility scenario.

4.5.1. Constant Bandwidth Limitation

Constant bandwidth limitation is a primitive arti�cial network access characteristic
where a speci�c bandwidth and delay do not change during a playback session.
We de�ne nine di�erent constant bandwidth limitations for use in the evaluation.
The limitations are derived from the test content and are multiples of the average
bitrate of the base-layer ranging from two times the base-layer to ten times the
base-layer. Accordingly, the di�erent limitations are ranging from 589Kilobits/s to
2944Kilobits/s. The transmission delay is set to 70ms for all limitations.
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Figure 4.7.: Vehicular mobility pattern

4.5.2. Vehicular Mobility

The vehicular mobility network access characteristic is derived from a real-world
recording. Figure 4.7 shows the measured bandwidth during a short drive on the free-
way around Klagenfurt, Austria recorded by the Institute of Information Technology
of the Alpen-Adria Universitaet Klagenfurt [47] using an UTMS stick. Transmission
path delays were not recorded. We de�ne a �xed transmission delay of 70ms in the
performance evaluation. The average measured throughput is 2.88Megabits/s and
the available bandwidth �uctuates rapidly in a range of about 0.8Mbps and 5Mbps.

4.6. Investigated Scenarios

The following sections describe the evaluation scenarios implemented in the objective
evaluation framework. Each of the implemented scenarios is designed to mimic
a speci�c real-world situation from an end-user's point of view. This is done by
shaping the available bandwidth on the transmission path according to arti�cial
and recorded tra�c patterns and allowing event-based interferences (e.g. start of a
second transmission over the same link).

4.6.1. Vehicular Mobility

In this scenario, we evaluate the adaptation algorithms in situation were the available
bandwidth of the Internet link and the transmission delay is changing rapidly and
unpredictably. The scenario is modeled with vehicular mobility in mind, where the
Internet link is heavily in�uenced by external factors like the speed and direction
of the moving vehicle or the distance to the closest base station. As network access
characteristic, we utilize the recorded vehicular mobility pattern illustrated in Figure
4.7 and described in Subsection 4.5.2. The tra�c pattern is played in a loop and
the starting point inside the loop is randomized prior to each evaluation run. In this
scenario, we only use one DASH client.
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4.6.2. Scalability to Bandwidth

The constant bandwidth scenario is designed to evaluate how well the the algorithms'
performance scale to the available bandwidth. For a constant transmission delay,
the available bandwidth on the transmission path is increased by steps of 100% of
the average base-layer bitrate for each run up to the average bitrate of the high-
est representation (i.e. the network access characteristics described in Subsection
4.5.1). We selected the user-centric performance metrics average playback quality
and switching frequency to assess the algorithms. We are interested in, whether the
algorithm o�er a higher playback quality for an increased bandwidth and whether
the switching frequency stays on roughly the same level for di�erent bandwidth
limitations. In this scenario, we only use one DASH client.

4.6.3. Fairness for Two Clients

In shared living environments and households, one Internet link is generally shared
among multiple client devices, where each client is constantly competing for a fair
share of the bandwidth. In this scenario we evaluate the fairness between two com-
peting DASH-clients sharing one Internet link. We assume the network to be un-
managed (i.e. best-e�ort delivery) and congestion avoidance is employed by the
TCP implementation on the clients. Both clients are using the same adaptation
algorithm and viewing the same content. For each run, the clients start the trans-
mission time-displaced by a random amount of time between zero seconds and 60 s.
As network access characteristic, we use the vehicular mobility tra�c pattern.

4.6.4. Fairness for Cross-Tra�c

In this scenario, we evaluate how the adaptation algorithms react to a competing
HTTP download request on a shared Internet link. Each algorithm is evaluated
twice, �rst with a constant available bandwidth of b and constant delay and without
a competing download request and second with a available bandwidth of b/2, the
same constant delay as before and a competing unlimited HTTP download request.
The download request starts simultaneously with the video transmission and does
not end until the video transmission has �nished.

The table in Figure 4.8 summarizes the introduced evaluation scenarios by their
utilized network access characteristic and the number of clients. We use the vehic-
ular mobility tra�c pattern for the fairness study and for the vehicular mobility
scenario. The scenario where we evaluate how the algorithm react to di�erent con-
stant bandwidth limitations (i.e. Scalability to Bandwidth) and the fairness for
cross-tra�c scenario utilize only constant bandwidth limitations. The fairness for
two-clients scenario is the only scenario where two DASH clients share the Internet
connection. In the fairness for cross-tra�c scenario a competing HTTP download is
started concurrent to the DASH client.
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Evaluation Scenario Network Access Number of Clients 
Vehicular Mobility Vehicular Mobility 1 
Scalability to Bandwidth Constant Bandwidth 1 
Fairness for Two Clients Vehicular Mobility 2 
Fairness for Cross-Traffic Constant Bandwidth 1 + competing HTTP download 
 

Figure 4.8.: Evaluation Scenarios Summary

4.7. Evaluation Framework for HTTP DASH

Measurements

In this section, we brie�y discuss the DASH client implementation used in the per-
formance evaluation of the adaptation algorithms. Since the DASH standardization
was completed relatively recently, not many freely available DASH implementations
exist as of today suitable for a comprehensive performance evaluation. Existing im-
plementations were developed with di�erent use cases in mind and therefore would
have required a substantial amount of work to add additional adaptation algorithms
and monitoring capabilities. As a consequence, we developed our own DASH client
implementation based on freely available open-source components and included com-
prehensive monitoring capabilities. The following subsection gives a short introduc-
tion to the developed DASH client implementation.

Implementation Details

The client implementation is written in C++ and utilizes the libcURL [10] library to
handle HTTP requests, the pugixml [15] XML library to parse the MPD document
tree and the Boost [3] libraries to increase general programming e�ciency. The
evaluation utilizes Matlab 2007. For a particular scenario and algorithm, three steps
are performed for the evaluation. First, the framework is con�gured. Second, the
playback is started and its behavior monitored and third, the algorithm is evaluated
based on the monitored performance.

1 Con�guration

The DASH evaluation client is con�gured through command line options and
JSON-based con�guration �les. Taken together, four input parameters are
supported. a) The tra�c pattern for the scenario, b) the adaptation algorithm
to use, c) the URL of the MPD content �le and if requested, d) any non-default
parameter values for the adaptation algorithm.

2 Playback & Monitoring

The behavior of the playback is exclusively dictated by the selected adap-
tation algorithm. The evaluation framework provides all information about
the current application state (ce.g. bu�er levels, current throughput) to the
adaptation algorithm and the algorithm decides which segment to download
next and which to send to the video decoder. This approach allows us to
add new algorithms or make changes to existing without having to implement
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changes to other parts of the framework. Monitoring is done by recording all
information send to and send from the algorithm.

3 Evaluation

The evaluation is based on the information recorded during the playback. All
data objects recorded during one playback session are referred to as the data
of one run in the terminology of the implementation. All runs with the same
con�guration are aggregated and referred to as a statistics set. In order to
increase the con�dence of the results, each con�guration is repeated a de�ned
number of times and therefore each statistics set contains at least two or more
runs in our evaluation.
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5. Performance Evaluation of

DASH Adaptation Algorithms

In the following, we discuss the �ndings regarding the objective performance evalu-
ation of the investigated adaptation algorithms. First, we present the results from
the vehicular mobility scenario, a realistic scenario where the available bandwidth
rapidly �uctuates during the playback. For the evaluation of this scenario we con-
sider �ve metrics. This includes two QoE in�uence factors (switching frequency, av-
erage playback quality), as discussed in Chapter 3, as well as three resource-centric
metrics, namely memory consumption, resource utilization and the amount of band-
width wasted. Second, we take a look at how well the algorithms adapt to di�erent
bandwidth limitations in terms of the two user-centric metrics playback quality and
switching frequency. To do so, we evaluate the investigated algorithms with a set of
constant bandwidth limitations and compare the behavior for the di�erent limitation
settings. Afterwards, we present a fairness study where two clients using the same
adaptation algorithm share a vehicular mobility Internet connection. We assess the
fairness between the two clients using the metrics di�erence in playback quality and
di�erence in switching frequency for both clients. Next, we discuss the behavior of
the investigated algorithms for a scenario with competing cross-tra�c. Speci�cally,
we answer the question if the choice of the adaptation algorithm may in�uence the
partition of the available bandwidth between the streaming client and a large �le
download. At the end of this chapter, we summarize the �ndings and compare the
investigated adaptation algorithms.

5.1. Evaluation in the Vehicular Mobility Scenario

In this section, we discuss the results of the evaluation of the adaptation algorithms
in the vehicular mobility scenario. We �rst present the �ndings concerning the QoE
in�uence factors initial delay, stalling, quality switching and playback quality. Next,
we show results from the resource-centric perspective, namely bandwidth utilization
and memory usage. All measurements are conducted 30 times for each algorithm
to get statistical signi�cant results and in each measurement run, a random entry
point was chosen for the looping tra�c pattern. The results are presented with a
95% con�dence interval indicated by error-bars.

5.1.1. Qoe In�uence Factors

Playback interruptions, especially stalling during playback, but also at the begin-
ning of a video session (i.e. initial delay) have a strong impact on the user's QoE
[34]. Therefore, adaptation algorithms should be designed to minimize both, the



5.1. Evaluation in the Vehicular Mobility Scenario

initial delay due to content pre-bu�ering, and bu�er underruns due to insu�cient
available network bandwidth. Our �ndings show, that all four evaluated adaptation
algorithms prevent playback stalling. Furthermore, for the initial delay, a maximum
value of 2.5 s was observed, which is known to have no impact on the user's QoE
[34].
In an adaptive video streaming scenario, the Quality of Experience of the stream-

ing session as perceived by the user is in�uenced by two factors. The image quality
and �icker e�ects [65]. Flicker e�ects are caused by the adaptation and describe
multiple changes in quality over a short period of time. We specify �icker e�ects
by their frequency in terms of switches per minute and by the length of time peri-
ods without quality switches. Image quality is here speci�ed by time in percent of
the whole playback session spend on a speci�c quality level. The in�uence of both
factors on the QoE is discussed Chapter 3.
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Figure 5.1.: Playback quality in time spend on the di�erent quality levels

Figure 5.1 shows the average quality of a playback session in this scenario for the
four evaluated adaptation algorithms. The �gure depicts that Tribler and BIEB
are able to play back more than half of the time the best quality (73%, 67%),
whereas KLUDCP and TRDA show 37% and 19% of the time the best quality
level, respectively. Furthermore, when comparing BIEB with Tribler, BIEB exhibits
a higher percentage of the second quality level (25% to 10%). Accordingly, BIEB
and Tribler both outperform KLUDCP and TRDA in terms of playback quality.
When comparing BIEB with Tribler, BIEB o�ers an increased average quality (1.63
to 1.56, for base layer equal to 0).
Figure 5.2 and Figure 5.3 depict the quality switching behavior of the algorithms.

The former one as mean and maximum quality switches per minute and the latter
one as time periods of steady quality. Figure 5.2 indicates that BIEB and TRDA
have a similar average quality switching frequency of 0.98 switches/min and 0.63
switches/min, respectively. The switching frequency of KLUDCP and Tribler is
about 10 times higher than for BIEB and TRDA, namely 11.7 switches/min and
8.8 switches/min. Mapping this to average inter-switching times, BIEB and TRDA
adapt the playback quality on average every 61.33 s and 92 s, respectively, whereas
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Figure 5.2.: Switching frequency
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Figure 5.3.: Switching CDF

KLUDCP changes the quality every 5.15 s and 6.81 s, respectively. Figure 5.3 il-
lustrates the switching behavior of the algorithms by the cumulative distribution
function (CDF) of continuous segments with the same quality level. It can be seen
that Tribler and KLUDCP show a similar behavior as well as BIEB and TRDA.
This corresponds to the observed quality switching frequency. BIEB and TRDA can
keep a quality level for a long time before they have to switch, whereas Tribler and
KLUDCP have a high probability of switching the quality level after only a small
number of segments. In numbers, after 10 segments (i.e. 20 seconds of playback
time) of continuous playback keeping one quality level, TRDA and BIEB have a
probability of about 35% for a quality switch. Whereas it is about three times more
likely to switch after 10 segments of playback with KLUDCP and Tribler (95%).
In summary, it can be stated that Tribler and KLUDCP adapt the playback

quality aggressively to the currently available bandwidth. This results in a high
switching frequency. TRDA shows a conservative switching behavior with a very
low switching frequency, but in turn can not o�er a high playback quality. BIEB
also shows a low switching frequency, but also o�ers a high playback quality. We
conclude that in this scenario BIEB provides the best performance from a user-
centric point of view.
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5.1.2. E�ciency and Usage of Resources

In wireless scenarios, network and hardware resources are limited and thus an ef-
�cient usage of the available resources is important. In the following, we present
the results from the resource-centric evaluation of the adaptation algorithms. Three
metrics are used for the evaluation. First, the bandwidth utilization. Second, the
amount of wasted bandwidth and third, the memory consumption during the play-
back in terms of bu�ered segment data.
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Figure 5.4.: Bandwidth utilization relative to a theoretical maximum
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Figure 5.5.: Bandwidth wasted in percentage of movie �le size on highest quality

Figure 5.4 illustrates the bandwidth utilization of the four adaptation algorithms
on a scale of 0 to 1 (i.e. 0% to 100% of the theoretical maximum). On average, BIEB
provides the highest utilization with 70%, closely followed by Tribler with 67%.
KLUDCP and TRDA o�er a lower network resource utilization, with KLUDCP
using 53% and TRDA 40% of the available resources.
Adaptation algorithms may choose to download segments which are not used

during the encoding process. Therefore, bandwidth utilization alone does not re�ect
the overall network e�ciency. The average amount of data wasted by the algorithms
is presented in Figure 5.5, given as the percentage of the �le size of the content
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including all higher layer segments. In 30 runs, the adaptation strategy of Tribler and
TRDA did not result in any discarded segments during the encoding process. The
amount of data discarded by KLUDCP is considered insigni�cant. BIEB discards
segments in 66% of the runs, with an average wasted data of 0.8Mbyte per run.
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Figure 5.6.: Memory usage

Figure 5.6 illustrates the average and mean peak memory use of the algorithms.
The peak memory consumption is the maximal amount of segment data the algo-
rithm bu�ers at a point in time during one run. It can be interpreted as the minimum
memory requirement for a mobile viewing device to support the playback of the test
content in this scenario. The �gure also indicates that none of the four adapta-
tion algorithms uses an extensive amount of memory. BIEB has the highest peak
memory consumption of 15.1MBytes (i.e. 6.6% of the whole test content), which
is an insigni�cant amount of data compared to today's mobile device's memory re-
sources. BIEB is followed by Tribler with a memory consumption of 12.7MBytes
and KLUDCP with 12MBytes. TRDA has the lowest peak memory consumption
(9.9MBytes) of the four investigated adaptation algorithms.
In summary, it can be said that BIEB and Tribler manage to utilize a higher

percentage of the available network resources in contrast to TRDA and KLUDCP.
BIEB has to discard some of the downloaded data, but additional segment picking
constrains may decrease the amount of wasted data. None of the algorithms exhibits
an extensive use of memory for the investigated scenario and test content.

5.2. Playback Quality and Switching Scalability

In this chapter, we evaluate how well the adaptation algorithms scale to the available
bandwidth in terms of playback quality and if the switching frequency behavior is
the same for di�erent limitations. To do so, we choose a number of bandwidth
limitations evenly distributed between two times and ten times the average bit-rate
of the base layer and perform ten evaluation runs for each algorithm and bandwidth
limitation. Con�dence intervals were observed to be small for constant bandwidth
limitations and therefore omitted here for the sake of readability. The following
�gures show the results for two selected performance metrics for each algorithm and
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limitation as the mean of the results gathered from the ten runs. First, we present
the average playback quality for the di�erent limitations. Afterwards, we display
the results regarding the average switching frequency.
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Figure 5.7.: Average playback quality

Figure 5.7 indicates the average playback quality for di�erent bandwidth limita-
tions. The playback quality is here de�ned in a range of zero to two, with zero being
the quality level 0 (i.e. the base layer) and 2 being the second enhancement layer
of the test content. The �gure highlights that for BIEB and Tribler, an increase
in bandwidth always leads to an increase in playback quality and both can o�er
approximately the same average playback quality. KLUDCP and TRDA however
show a di�erent behavior. TRDA only shows the base layer up to a bandwidth
limitation of �ve times the bitrate of the base layer. For �ve and six times the base
bitrate, the average playback quality increases and remains roughly constant for all
higher evaluated limitations. KLUDCP increases the average playback quality for
three, four, �ve and ten times the base bitrate. For six to nine, the playback quality
remains roughly constant. We can conclude, that BIEB and Tribler always increase
the average playback quality for the the evaluated limitations. Whereas TRDA and
KLUDCP exhibit limitations where the average playback quality does not improve
with increasing available bandwidth.
Figure 5.8 shows the average switching frequency for the di�erent evaluated band-

width limitations. The �gures shows that BIEB and TRDA keep the switching fre-
quency low for all evaluated limitations, whereas KLUDCP and Tribler exhibit an
unstable behavior. Tribler only provides a low switching frequency for six times
the base bitrate and KLUDCP for two, seven, eight and nine times. To put it in a
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Figure 5.8.: Average switching frequency

nutshell, BIEB and TRDA outperform KLUDCP and Tribler in terms of stability
of the switching frequency for the evaluated limitations. We come to the conclusion
that the oscillation of the KLUDCP algorithm is due to the utilized bandwidth es-
timator. Hence, it may cause an increase in the switching frequency if the available
bandwidth is close to the average bitrate of a quality level.
The evaluation indicates, that the proposed algorithm BIEB outperforms the other

three adaptation algorithms in terms of stability of playback quality and switching
frequency for the evaluated bandwidth limitations. For BIEB and Tribler, the av-
erage playback quality scales well to the available bandwidth. However, Tribler
exhibits an unstable behavior for the switching frequency. TRDA o�ers a stable
switching frequency, but provides a low average playback quality which is also does
not scale well to the available bandwidth.

5.3. Playback Quality and Switching Fairness

In the following, we discuss the results of the concurrent clients experiment where
we evaluate the fairness of the adaptation algorithms in a competitive setting for
the two user-centric metrics playback quality and switching frequency. In this sce-
nario two clients share one Internet connection and concurrently watch the same
content utilizing the same adaptation algorithm. As network characteristic for the
Internet connection we use the vehicular mobility tra�c pattern (average bandwidth
2.88 Megabits/s). During each run, the two clients start the video playback time-
displaced by a random number of seconds between 0 s and 60 s. As evaluation metrics
in each run, we use the di�erence in number of quality switches and di�erence of the
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(a) Di�erence in playback quality (b) Di�erence in number of quality switches

Figure 5.9.: Di�erence between two concurrent clients

average playback quality of the two clients.
Figure 5.9a shows the cumulative distribution function (CDF) of the absolute

di�erences of the average playback qualities between the two clients for all runs. The
di�erence in average playback quality shown on the bottom axis can range between
0 (i.e. no di�erence in playback quality) and 2 (i.e. one client only shows the base
layer, the other client only the second enhancement layer). The �gure depicts that
BIEB and KLUDCP exhibit a similar fairness between the two clients. The di�erence
in average playback quality is 0.12 or less (6% of the maximal possible di�erence)
and 0.16 or less (8%) when using BIEB and KLUDCP, respectively. Tribler exhibits
a similar fairness as BIEB and KLUDCP in 70% of the evaluation runs, but the
maximal di�erence can be as high as 1.55 (78%). For TRDA the maximal observed
di�erence is 0.31 (15.5%). In summary, it can be stated that BIEB and KLUDCP
exhibit a high fairness compared to TRDA and Tribler in this scenario in terms
of average playback quality. On average, Tribler shows a similar fairness but we
observe runs with highly unfair behavior. TRDA exhibits a more unfair behavior
than the other three investigated adaptation algorithms.
Figure 5.9b shows the CDF of the absolute di�erences of the number of quality

switches per run. In this scenario, for BIEB and TRDA, the number of quality
switches between the concurrent clients does not di�er by more than eight and nine
switches (i.e. a di�erence of 0.66 and 0.74 switches per minute), respectively. For
KLUDCP and Tribler, the probability to observe a di�erence of eight or less is
7.7% and 4.7% and the di�erence is always 35 and 104 or less (i.e. a di�erence of
2.87 and 8.52 per minute), respectively. From this it follows, that the adaptation
algorithms BIEB and TRDA show a high fairness between two concurrent clients in
terms of number of quality switches. Whereas, when using the adaptation algorithms
KLUDCP and Tribler, the probability of one client exhibiting a signi�cant larger
number of quality switches than the other, is high.
We can conclude that BIEB is the only evaluated adaptation algorithm o�ering

a high fairness in terms of both metrics, playback quality and number of quality
switches. KLUDCP shows a high fairness regarding the average playback quality,
but performs poorly in terms of di�erence in number of quality switches. TRDA
o�ers a high fairness regarding the quality switches, but exhibits a low fairness for
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(a) 2.7Megabit/s bandwidth limitation and
concurrent download
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(b) 1.35Megabit/s bandwidth limitation
without concurrent download

Figure 5.10.: Di�erence in playback quality for competing download tra�c

the average playback quality. Tribler depicts highly unfair behavior in terms of
number of quality switches. However, the fairness regarding the average playback
quality is high in about 80% of the observed runs.

5.4. Bandwidth Fairness for Cross-Tra�c

In this scenario, we answer the question if the choice of the algorithm e�ects the
distribution of the available bandwidth between a concurrent �le download and
a video playback session. In order to do so, we deploy each algorithm twice per
experiment. First, we set the available bandwidth to a �xed amount of 2.7Megabit/s
and start a concurrent large �le download simultaneously to the playback session.
For the second run, we cut the available bandwidth in half and start the playback
session without a concurrent HTTP �le download. We repeat the experiment 30
times for each algorithm to gain statistically signi�cant results. We use the metrics
playback quality per run, the number of quality switches and the distribution of the
bandwidth to assess the e�ect of the concurrent download on the playback session.
Figure 5.10 shows the observed playback quality for (a) the 2.7Megabit/s band-

width limitation with the concurrent download and (b) the 1.35Megabit/s band-
width limitation without the concurrent download. The �gures show that in both
cases BIEB and Tribler o�er a similar playback quality, whereas KLUDCP and
TRDA exhibit a higher playback quality for (a). For TRDA the di�erence in play-
back quality between (a) and (b) is the largest of all four algorithms. In (a), TRDA
is able to download more segments from the �rst enhancement layer than from the
base layer, whereas in (b), TRDA only downloads the base layer for the whole play-
back session. From this it follows, that in terms of playback quality, BIEB and
Tribler are not e�ected by a simultaneous large �le download, whereas KLUDCP
and TRDA exhibit a signi�cantly di�erent playback behavior.
The evaluation regarding the change in switching frequency shows that the switch-

ing behavior of the algorithms is not considerably e�ected by the �le download in
this scenario. Tribler exhibits the most signi�cant e�ect of the four algorithms
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with an absolute change of the switching frequency from 23.2 switches per minute
for the 1.35Megabit/s bandwidth limitation to 21.4 switches per minute for the
2.7Megabit/s bandwidth limitation with the concurrent download. BIEB displays
the least signi�cant e�ect with a change from 1.3 to 1.1 switches per minute. In terms
of bandwidth distribution as the ratio between download tra�c and video playback
tra�c, the algorithms can be divided up in two groups. BIEB and Tribler provide
a fair bandwidth distribution of 1.04 and 0.99, respectively, whereas KLUDCP and
TRDA get suppressed by the �le download (1.77 and 1.92, respectively).
In summary, it can be stated that BIEB is the least e�ected adaptation algorithms

of the four investigated algorithms in this scenario. For all three evaluated metrics,
change in playback quality, change in switching frequency and bandwidth distribu-
tion, the algorithm does not show a signi�cant di�erence between the two deployed
bandwidth limitations. Tribler also displays no signi�cant change in playback qual-
ity and bandwidth distribution, but the algorithm exhibits the largest di�erence
for the switching frequency. However, compared to the absolute number of quality
switches, that change can also be considered as negligible. KLUDCP and TRDA
show a signi�cant change for the observed playback quality. Regarding the band-
width distribution, these algorithms are not able to share the available bandwidth
evenly with the cross-tra�c. They only utilize less than half of the available network
resources. Future work on this topic should include additional bandwidth limitation
patterns to allow for a more general evaluation of the behavior of the algorithms in
the concurrent download tra�c scenario.

5.5. Comparison of the Investigated Algorithms

Next, we summarize the �ndings of the objective performance evaluation and com-
pare the four investigated adaptation algorithms. The �ndings are qualitatively
summarized in Table 5.1. The grading scale high, medium and low refers to the
measured values for each evaluated metric.
In the vehicular mobility scenario, we evaluated the four adaptation algorithms in

a challenging scenario where the available bandwidth heavily �uctuates. The results
show, that the SVC-based adaptation algorithms BIEB and Tribler can o�er a high
playback quality and are able to utilize most of the available bandwidth in this di�-
cult scenario. However, the use of Tribler results in a high number quality switches
during the playback. In contrast to Tribler, the conservative approach of TRDA can
keep the number of quality switches very low, but to do so, it does not utilizes the
available bandwidth well and hardly switches to the next higher playback quality.
This results in a low bandwidth utilization and a lower playback quality. KLUDCP
shows a similar low playback quality and bandwidth utilization, but in contrast to
TRDA, the switching frequency is high. In terms of memory requirements, all four
evaluated algorithms show a low consumption. It has to be noted that BIEB dis-
cards some segments during the playback (referred to as bandwidth wasted), but
compared to the size of the content, the amount of discarded data is neglectable.
From this follows, that BIEB outperforms the other three algorithm in this scenario.
In addition to the vehicular mobility scenario, we run the algorithms in three
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BIEB KLUDCP Tribler TRDA

Using SVC or AVC SVC AVC SVC AVC
Vehicular Mobility Scenario

Playback quality high med high med
(avg. quality, base=0) 1.63 1.22 1.56 1.07

Quality switching frequency low high high low
(avg. switches per minute) 0.98 11.7 8.79 0.63
Bandwidth utilization high med. high low

(avg. bandwidth utilization) 70% 53% 67% 40%
Wasted data med low low low

(avg. wasted data) 0.33% 0.02% 0% 0%
Memory consumption low low low low

(avg. memory consumption, MBytes) 6.9 4.46 5.38 4.33
Arti�cial Scenarios

Switching Consistency high med. low high
Quality Scalability high med. high low

Fairness Playback quality high high high/med. med.
Fairness Nr. of quality switches high low low high

Bandwidth Fairness high low high low
(ratio Download/DASH) 1.04 1.77 0.99 1.93

Table 5.1.: Comparison of the investigated algorithms

additional testbed con�gurations to assess the scalability and fairness of the algo-
rithms. We �rst evaluated how consistent the behavior of the algorithms is for
di�erent constant bandwidth limitations in terms of switching frequency. We also
assessed, how the resulting playback quality correlates to the deployed bandwidth
limitations. Next, we evaluated the fairness of the algorithms in experiments where
two concurrent clients were competing for the available bandwidth. As metrics we
used the di�erence in playback quality and number of quality switches between the
two clients. Following, we assessed how the algorithms react to a competing large �le
download request. Again, using the metrics playback quality and quality switches.
The results show, that BIEB and TRDA manage to keep the switching frequency
low for all tested constant bandwidth limitations, whereas the switching behavior
of KLUDCP and Tribler is dependent on the available bandwidth. From this it
follows, that the two algorithms BIEB and TRDA show a highly consistent behav-
ior across the series of tested bandwidth limitations in contrast to KLUDCP and
Tribler. For the playback quality scalability, we observe that for BIEB and Tribler
an increase of available bandwidth is equivalent to an increase in average playback
quality for the evaluated limitations. Whereas for KLUDCP and TRDA, the play-
back quality remains roughly constant across most limitations. In terms of fairness
between two clients sharing the same Internet connection and deploying the same
adaptation algorithm, BIEB is the only algorithm which can o�er a high fairness for
the quality of the playback and number of quality switches. KLUDCP and Tribler
also o�er a high fairness for the playback quality, but both exhibit an unfairness

61



5.5. Comparison of the Investigated Algorithms

regarding the number of quality switches. TRDA, as does BIEB, also exhibits a fair
behavior for the number of quality switches, but only shows a medium fairness for
the playback quality. In the fourth scenario, we evaluated if the algorithms show a
di�erent behavior when confronted with a simultaneous large �le download request
and how well the available bandwidth is distributed between the video playback
and the �le download. The results show, that the two adaptation algorithms which
base their adaptation decisions on estimations of the available bandwidth, KLUDCP
and TRDA, exhibit a di�erent behavior for the experiments with the concurrent �le
download enabled compared to experiments without the �le download. BIEB and
Tribler do not show any in�uence of the �le download on the used metrics in the
experiments. In terms of bandwidth distribution, BIEB and Tribler are not sup-
pressed by the large �le download. The video playback and the download request
share the available bandwidth evenly. The use of KLUDCP and TRDA results in
a highly unfair distribution of the bandwidth where the �le download uses a larger
percentage of the available bandwidth than the video playback.
In summary, it can be stated that the proposed BIEB algorithm outperforms the

other adaptation algorithms in the vehicular mobility scenario and in terms of scala-
bility and fairness. TRDA shows a very conservative behavior which results in a low
switching frequency, but also low playback quality. Tribler is very aggressive and can
o�er a high playback quality, but at the cost of a high switching frequency. KLUDCP
can not show a satisfying behavior for the evaluated metrics and con�gurations.
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6. Conclusion and Outlook

In 2012, 60% of the global Internet IP tra�c was generated by video streaming and
predictions show an increase of its tra�c share to 73% by 2017 [4]. Additionally,
more and more tra�c originates from mobile devices, with studies predicting mobile
tra�c to overtake wired tra�c by 2017. Of the mobile data tra�c in 2012, already
roughly half of the tra�c was generated by video streaming. This is due to the
world-wide adaption of mobile devices like smartphones and tablets which create a
demand for content to be available on all of the user's Internet video-enabled devices.
But video streaming is costly for content providers in terms of bandwidth, storage

and tra�c. In recent years, the HTTP protocol on top of the TCP transport protocol
gained popularity among video content providers as an e�cient way to deliver none
real-time content (i.e. pre-encoded Video-on-demand content) to their customers.
With the increasing use of wireless and mobile devices for video streaming, content
providers have to o�er robust solutions which can adapt the video playback to the
viewing environment. Dynamic Adaptive Streaming over HTTP (MPEG-DASH)
was standardized 2012 on top of HTTP/TCP to allow for client-side adaptation of
the video playback. However, the adaptation process is out of scope of the MPEG-
DASH standard and the design or choice of an adaptation strategy is left to the
client implementation. But there is little knowledge about the relationship between
adaptation strategy and resulting playback behavior. Additionally, it is uncertain
how the perceived Quality of Experience (QoE) of the user is in�uenced by the
adaptation process. Furthermore, this thesis shows that none of the investigated
MPEG-DASH adaptation algorithms taken from the literature can o�er satisfying
results for all of the evaluated metrics.
The �rst contribution of this thesis is the identi�cation of in�uence factors of

adaptive video streaming on the user's QoE. We conducted a laboratory study and
multiple crowdsourcing campaigns to gain a better understanding of the in�uence
of the adaptation process on the user's perceived quality. The second contribution
of this thesis is the design of a user-centric adaptation algorithm (BIEB). The de-
sign of the algorithm aims for a high average playback quality while also avoiding
the identi�ed negative in�uence factors of the user's QoE. The third contribution is
the user- and resource-centric comparison of the proposed algorithm to three exist-
ing algorithms (TRDA, KLUDCP, Tribler) based on the identi�ed in�uence factors.
In order to do this, we designed and implemented a test bed environment where
the algorithms were evaluated utilizing realistic network scenarios. Additionally, we
evaluated the fairness of the algorithms regarding two scenarios where a competing
DASH client and HTTP cross-tra�c share the Internet connection with the video
streaming. We also assessed in another scenario how the performance of the algo-
rithms changes for di�erent constant bandwidth limitations. The results of these
additional scenarios comprise the forth contribution of this thesis.



Conclusion and Outlook

Our �ndings regarding the in�uence factors of adaptive video streaming indicate,
that the occurrence of quality switches, the amplitude of the switches and the time
spend on the di�erent quality levels have a signi�cant in�uence on the perceived QoE
and the acceptance rate of the service. For the design of an adaptation algorithm,
the following conclusions can be drawn from the �ndings. First, quality switches
should be avoided. Second, the amplitude of the quality switches should be kept as
low as possible. Third, for the investigated sequence length of 15 seconds, switching
the quality has only a positive in�uence on the QoE if there is a subsequent phase
of higher quality longer than half of the sequence length.
The performance evaluation of the four investigated algorithms shows that the

playback behavior of the streaming session is highly dependent on the utilized adap-
tation algorithm. In the vehicular mobility scenario with rapidly varying bandwidth,
only BIEB and TRDA can o�er a low switching frequency. However, TRDA's con-
servative switching behavior leads to a medium average playback quality, whereas
BIEB presents a high average quality. Tribler and KLUDCP in turn exhibit a high
switching frequency, but of those two, only Tribler can o�er a high average quality.
In terms of bandwidth utilization, BIEB and Tribler can utilize a high percentage
(70%) of the available bandwidth, whereas KLUDCP can only use roughly half
(53%) and TRDA 40% of the available resources. BIEB inhibits a risky segment
picking behavior and on average, discards 0.33% of the test content in full quality.
Constrains for the segment picking may reduce or avoid this behavior. Regarding
the performance of the algorithms for di�erent constant bandwidth limitations, we
found that only BIEB and TRDA o�er a low switching frequency for all investigated
limitations, whereas KLUDCP and Tribler show a inconsistent behavior. The same
applies for the average playback quality, where BIEB and TRDA always exhibit an
increase of average quality for an increase in available bandwidth. For the fairness
study, we observe that only BIEB can o�er a high fairness for the two metrics play-
back quality and number of quality switches between two concurrent clients. From
the objective performance evaluations follows, that BIEB outperforms the other
three investigated algorithms for the tested con�gurations.
This thesis represents a �rst step towards Quality of Experience (QoE) manage-

ment of adaptive video streaming in wired and mobile scenarios. The knowledge
about the in�uence of the adaptation process on the user's perceived Quality of
Experience and the comparison of the algorithms can help video content provider
to assess and improve their service performance. Future work on this topic should
investigate additional test content, scenarios with more than two clients sharing one
Internet connection and the fairness between di�erent adaptation algorithms.

64



A. Appendix

The appendix of this thesis contains the relevant information about the user studies.
Additionally, the section A.2 gives a list of the �les and image sequences stored on
the data medium of this thesis. Next, we present the demographics of the �rst
crowdsourcing user study campaign.

A.1. Crowd-sourcing Demographic Campaign C1

In the following, we present the demographic results of the �rst crowdsourcing cam-
paign. The questionnaire utilized to gain the results is available in A.5. Table A.1
and Table A.2 summarize the results of the questionnaire.

Crowdsourcing Demographic (Part I)

Sex
Male 86%
Female 14%

Continent

Africa 3%
Asia 69.2%
Australia 0.75%
Europe 25.6%
North America 1.5%
South America 0%

Average Internet Usage
per day

Less than 1 hour/day 3%
1 - 5 hours/day 33.8%
5 - 7 hours/day 25.6%
7 - 10 hours/day 20.3%
more than 10 hours/day 17.3%

Occupation

Working 32.3%
Unemployed 13.5%
Student 46.6%
Apprenticeship 3.8%
Pensioner 0.75%
Home-keeper 3%

Age

18 - 21 18%
22 - 25 42.1%
26 - 30 18%
31 - 40 16.5%
41 - 50 4.5%
51 - 60 0.75%
61+ 0%

Table A.1.: Crowdsourcing Campaign C1 demographics (Part 1)



A.2. File Listing

Crowdsourcing Demographic (Part 2)

Education

< High School 3.0%
High School/GED 17.3%
Some College 8.3%
2-Year College 17.3%
4-Year College 39.8%
Masters Degree 12.8%
Doctoral Degree 0%
Professional Degree 1.5%

Video Website Usage

Several times a day 60.9%
Once a day 14.3%
Several times a week 18%
Several times a month 4.5%
Less often 1.5%
Never 0.75%

Table A.2.: Crowdsourcing Campaign C1 demographics (Part 2)

A.2. File Listing

Next, we give a summary of the data attached to the thesis on the data medium.
This includes on the one hand the source code of the implemented application and
evaluation scripts, on the other hand the framework and video sequences used for
the subjective evaluation.

Thesis File Listing
Folder Description
sources/cpp/dasvch Implemented DASH client
sources/cpp/dasvchmonitor DASH Client GUI (optional, not required)
sources/evaluation/scripts Scripts used in the testbed environment
sources/evaluation/tra�cpatterns Utilized tra�c patterns
sources/evaluation/matlab Matlab evaluation scripts
sources/thesis Latex source code of this thesis
userstudies/C1 Campaign 1 patterns
userstudies/C2 Campaign 2 patterns
userstudies/C3 Campaign 3 patterns
userstudies/C4 Campaign 4 patterns
userstudies/C5 Campaign 5 patterns

Table A.3.: Thesis Appendix File Listing
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A.3. Campaigns

Campaign Reward #User Users �ltered
C1 0.30 $ 139 6
C2 0.30 $ 149 16
C3 0.30 $ 98 14
C4 0.30 $ 98 8
C5 0.30 $ 97 4

Table A.4.: Crowdsourcing campaigns number of users and money compensation

A.3. Campaigns

Next, we present details about the conducted crowdsourcing campaigns. Table A.4
shows the number of user's who participated, the number of users �ltered due to the
content questions and the monetary compensation for the campaigns 1 to 5.
Table A.5 gives an overview over the used switching patterns in the campaigns.

The quality levels high and low are relative to the quality levels used for the speci�ed
amplitude. Figure A.1, A.2, A.3, A.4 and A.5 illustrate the utilized patterns.
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0 5 10 15
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Q2

Time (s)
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Time (s)

(d) Increasing quality

0 5 10 15

Q0

Q1

Q2

Time (s)

Figure A.1.: Campaign 1: Patterns a to d

A.4. Web-based Crowdsourcing Interface

Next, we present the web-based crowdsourcing interface by example. Figure A.6
gives a screenshot of the page where the video sequence is shown and the user is
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A.4. Web-based Crowdsourcing Interface

Campaign Pattern Switches Amplitude Begin End Scene(s)

C1

a 0 1 high high L,H
b 0 1 low low L,H
c 1 1 high low L,H
d 1 1 low high L,H
e 2 1 high high L,H
f 2 1 low low L,H

C2

a 0 1 high high L
b 1 1 high low L
c 2 1 high high L
d 3 1 high low L
e 4 1 high high L
f 6 1 high high L
g 8 1 high high L

C3

a 0 2 high high L
b 1 2 high low L
c 2 2 high high L
d 3 2 high low L
e 4 2 high high L
f 8 2 high high L
g 14 2 high high L
h 0 2 low low L

C4

a 0 2 high high L
b 1 2 low high L
c 2 2 low low L
d 3 2 low high L
e 4 2 low low L
f 5 2 low high L
g 7 2 low high L
h 8 2 low low L
i 0 2 low low L

C5

a 0 2 high high L
b 1 2 high low L
c 2 2 high high L
d 3 2 high low L
e 4 2 high high L
f 5 2 high low L
g 6 2 high high L
h 8 2 high high L
i 0 2 low low L

Table A.5.: Crowd-sourcing campaigns
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A.4. Web-based Crowdsourcing Interface
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Figure A.2.: Campaign 2: Patterns a to g

asked to rate his viewing experience. The video sequence is shown in a resolution
of 640 width to 480 height in the middle of the screen. The controls to start the
playback and the indicating bar for the current playback position and the pre-bu�er
status is located underneath the video sequence. Below the playback controls, we
show the rating slider to the user. After the video sequence �nished the playback
and the user rated his viewing experience, the user is able to press the next button
to continue to the other questions (e.g. acceptance question).
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A.4. Web-based Crowdsourcing Interface
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Figure A.3.: Campaign 3: Patterns a to h
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A.4. Web-based Crowdsourcing Interface
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Figure A.4.: Campaign 4: Patterns a to i
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A.4. Web-based Crowdsourcing Interface
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Figure A.5.: Campaign 5: Patterns a to i
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A.4. Web-based Crowdsourcing Interface

Figure A.6.: Web-based Crowdsourcing Interface
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A.5. Crowdsourcing Questionnaire

A.5. Crowdsourcing Questionnaire

Crowdsourcing Questionnaire (Part 1)

Are you Male or Female?
Male
Female

What is your age?

18 - 21
22 - 25
26 - 30
31 - 40
41 - 50
51 - 60
61+

What is the highest level of education
you have completed?

Less Than High School
High School/GED
Some College
2-Year College Degree (Associates)
4-Year College Degree (BA, BS)
Master's Degree
Doctoral Degree
Professional Degree (MD, JD)
Not Listed

What is your current occupation?

Working
Unemployed
Student
Apprenticeship
Pensioner
Home-keeper
Not Listed

Are you wearing prescription glasses
or contact lenses?

Yes
No

On average, how long do you use the
Internet per day?

Less than 1 hour/day
1 - 5 hours/day
5 - 7 hours/day
7 - 10 hours/day
more than 10 hours/day

What is your main reason for using
the Internet?

Professional (at work)
For fun at home

Are you currently using a �xed or
mobile Internet connection?

Fixed access line
Mobile

Which continent do you live on?

Africa
Asia
Australia
Europe
North American
South America
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A.6. Microworkers.com Campaign Description

Crowdsourcing Questionnaire (Part 2)

How often have you watched videos on
web-sites like YouTube or Net�ix
during the last month?

Several times a day
Once a day
Several times a week
Several times a month
Less often
Never

A.6. Microworkers.com Campaign Description

In t h i s task you w i l l p a r t i c i p a t e in a r e s ea r ch survey about v ideo
qua l i t y . To p a r t i c i p a t e your In t e rn e t download speed should be at
l e a s t 1 Mbps (125 Ki lobytes / s ) . The ta sk s takes qu i t e long (up to
15 minutes ) , but we guarantee that everyone who f i n i s h e s the task
w i l l be ab le to submit i t at Microworkers .

1 . Go to http : / /132 . 1 87 . 1 2 . 5 9/Q1/{{MW_ID}}
2 . Complete the survey
3 . Watch the v ideos c a r e f u l l y and answer the que s t i on s
4 . Submit you payment token here

A.7. Crowdsourcing Campaign Introduction

The listing below gives the text displayed to the participants on the landing page of
the online questionnaire.

Video Qual i ty Assessment

Welcome to the video qua l i t y assessment o f the Department o f
Communication Systems at the Un ive r s i ty o f Wuerzburg , Germany . The
survey w i l l r e qu i r e you to watch and ra t e movie sequences streamed
from the In t e rn e t . Your In t e rn e t download speed should be at l e a s t
1 Mbps (125 Ki lobytes / s ) to be ab le to p a r t i c i p a t e in the survey .
Adobe ' s FlashPlayer has to be i n s t a l l e d to do the survey .

We w i l l f i r s t ask you a few demographic que s t i on s be f o r e we w i l l
exp la in the survey procedure . C l i ck next to cont inue .

After the landing page, the user is presented with the demographic questionnaire
which is followed by the subsequent text.

How does i t work?

Thank you f o r p a r t i c i p a t i n g in the demographic survey !

The f o l l ow i n g survey i s comprised o f a sequence o f 8 shor t movie c l i p s
in random order . Each c l i p i s pre−loaded to avoid any unintendend
s t a l l i n g s during the playback . The pre−l oad ing i s i nd i c a t ed by a
green /white bar .
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A.7. Crowdsourcing Campaign Introduction

After the pre−l oad ing phase has f i n i s h e d a play button w i l l r ep l a c e the
pre−l oad ing bar . C l i ck the play button to watch the video c l i p .

After each c l i p you w i l l be asked to answer 5 que s t i on s about the
v i s u a l movie qua l i t y and sometimes a l s o a ques t i on about the
content . P lease watch the movie c l i p s c a r e f u l l y .

After the aforementioned text, the user is presented with three steps illustrating
the procedure of the test. Step 1 (shown in Figure A.7) describes the pre-loading
phase where a green bar is shown and the user has to wait for the pre-loading
to �nish. Step 2 (Figure A.8a) illustrates how to start the playback of the video
sequence. Step 3 (Figure A.8b) describes how to use the rating slider.

Figure A.7.: Crowdsourcing campaign introduction (Part 1)

(a) Crowdsourcing campaign introduction
(Part 2)

(b) Crowdsourcing campaign introduction
(Part 3)

Figure A.8.: Low and high SITI scenes used in the user studies
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