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Zusammenfassung 

Während der Entwicklung des Nervensystems lassen sich bei Motoneuronen aktivitäts-

abhängige Kalziumströme beobachten, die das Axonwachstum regulieren. Diese Form der 

neuronalen Spontanaktivität sowie das Auswachsen von Axonen sind bei Motoneuronen, die 

aus Tiermodellen der Spinalen Muskelatrophie isoliert werden, gestört. Experimente aus 

unserer Arbeitsgruppe haben gezeigt, dass spontane Erregbarkeit und aktivitätsabhängiges 

Axonwachstum von kultivierten Motoneuronen auch unter Verwendung von Toxinen 

beeinträchtigt sind, welche die Aktivität von spannungsabhängigen Natriumkanälen 

blockieren. In diesen Versuchen war die Wirkung von Saxitoxin effizienter als die Wirkung 

von Tetrodotoxin. Wir identifizierten den Saxitoxin-sensitiven/Tetrodotoxin-insensitiven 

spannungsabhängigen Natriumkanal NaV1.9 als Trigger für das Öffnen spannungs-

abhängiger Kalziumkanäle. Die Expression von NaV1.9 in Motoneuronen konnte über 

quantitative RT-PCR nachgewiesen werden und Antikörperfärbungen offenbarten eine 

Anreicherung des Kanals im axonalen Wachstumskegel sowie an Ranvier'schen 

Schnürringen von isolierten Nervenfasern wildtypischer Mäuse. Motoneurone von  

NaV1.9 knock-out Mäusen zeigen reduzierte Spontanaktivität und eine Reduktion des 

Axonwachstums, welche durch NaV1.9 Überexpression normalisiert werden kann. In 

Motoneuronen von Smn-defizienten Mäusen konnte keine Abweichung der NaV1.9 

Proteinverteilung nachgewiesen werden.  

Kürzlich wurden Patienten identifiziert, die eine missense-Mutation im NaV1.9 kodierenden 

SCN11A Gen tragen. Diese Patienten können keinerlei Schmerz empfinden und leiden 

zudem an Muskelschwäche in Kombination mit einer verzögerten motorischen Entwicklung. 

Im Rahmen dieser Doktorarbeit konnten molekularbiologische Untersuchungen an Mäusen, 

welche die Mutation im orthologen Scn11a Gen tragen, zur Aufklärung des 

Krankheitsmechanismus beitragen. Die Kooperationsstudie zeigte, dass eine gesteigerte 

Funktion von NaV1.9 diese spezifische Kanalerkrankung auslöst, was die Wichtigkeit von 

NaV1.9 in menschlichen Motoneuronen unterstreicht. 

Eine frühere Studie beschrieb an hippocampalen Neuronen, dass die Rezeptortyrosinkinase 

tropomyosin receptor kinase B (TrkB) den NaV1.9 Kanal öffnen kann. Im Wachstumskegel 

von Motoneuronen ist TrkB nachweisbar und folglich in räumlicher Nähe zu NaV1.9 zu finden. 

Um zu prüfen, ob TrkB in die spontane Erregbarkeit von Motoneuronen involviert ist, wurden 

TrkB knock-out Mäuse untersucht. Isolierte Motoneurone von TrkB knock-out Mäusen 

weisen eine Reduktion der Spontanaktivität und eine Verringerung des Axonwachstums auf. 

Ob TrkB und NaV1.9 hierbei funktionell gekoppelt sind, ist Gegenstand künftiger Forschung.  
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Abstract 

During development of the nervous system, spontaneous Ca2+ transients are observed that 

regulate the axon growth of motoneurons. This form of spontaneous neuronal activity is 

reduced in motoneurons from a mouse model of spinal muscular atrophy and this defect 

correlates with reduced axon elongation. Experiments from our group demonstrated that 

voltage-gated sodium channel pore blockers decrease spontaneous neuronal activity and 

axon growth in cultured motoneurons, too. In these experiments, saxitoxin was more potent 

than tetrodotoxin. We identified the saxitoxin-sensitive/tetrodotoxin-insensitive voltage-gated 

sodium channel NaV1.9 as trigger for the opening of voltage-gated calcium channels. In 

motoneurons, expression of NaV1.9 was verified via quantitative RT-PCR. Immuno labelling 

experiments revealed enrichment of the channel in axonal growth cones and at the nodes of 

Ranvier of isolated nerve fibres from wild type mice. Motoneurons from NaV1.9 knock-out 

mice show decreased spontaneous activity and reduced axonal elongation. This growth 

defect can be rescued by NaV1.9 overexpression. In motoneurons from Smn-deficient mice, 

NaV1.9 distribution appeared to be normal. 

Recently, patients carrying a missense mutation in the NaV1.9-encoding gene SCN11A were 

identified. These patients are not able to feel pain and suffer from muscular weakness and a 

delayed motor development. Molecular biological work during this dissertation supported the 

analysis of this mutation in a mouse model carrying the orthologous alteration in the Scn11a 

locus. The cooperation study confirmed that a gain-of-function mechanism underlies the 

NaV1.9-mediated channelopathy, thus suggesting a functional role of NaV1.9 in human 

motoneurons. 

An earlier study showed in hippocampal neurons that the receptor tyrosine kinase 

tropomyosin receptor kinase B (TrkB) can open the NaV1.9 channel. TrkB is localized in 

growth cones of motoneurons and subsequently found in close proximity to NaV1.9. In order 

to proof whether TrkB is involved in spontaneous excitability in motoneurons, TrkB knock-out 

mice were analysed. Isolated motoneurons from TrkB knock-out mice show a reduced 

spontaneous activity and axon elongation. It remains to be studied whether TrkB and NaV1.9 

are functionally connected.  
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1 Introduction 

During development of the nervous system, axons of motoneurons grow over long distances 

to make synaptic connections with the target tissue, the skeletal muscle (Sanes & Lichtman 

1999, Sendtner et al. 2000). Very early experiments conducted in developing chick embryos 

showed that significant populations of motoneurons undergo a physiological cell death during 

this period of target finding (Hamburger 1934, Hamburger 1975). Studies on this 

physiological form of cell death led to the discovery of neurotrophic factors (for review see 

(Sendtner et al. 2000, Dekkers et al. 2013)) These factors have been identified to support 

motoneuron survival and maintenance as well as neurite elongation (Arakawa et al. 1990, 

Thoenen 1993, Barde 1994, Sendtner et al. 2000, Zhou & Snider 2006). According to the 

neurotrophic factor hypothesis, targets of innervation were postulated to secrete limiting 

amounts of survival factors that function to ensure a balance between the size of a target 

organ and the number of innervating neurons (Huang & Reichardt 2001). But in the course of 

time, neurotrophic factors have shown to be secreted proteins from various sources that act 

together in regulating multiple aspects of neural circuit development and function, including 

cell proliferation and differentiation, neurite outgrowth, synaptogenesis as well as synaptic 

function and activity-dependent forms of synaptic plasticity (Sendtner et al. 2000, Lu et al. 

2005, Reichardt 2006, Amaral & Pozzo-Miller 2007, Minichiello 2009). 

1.1 Neurotrophic factors and their receptors 

Since the discovery of nerve growth factor (NGF) by Levi-Montalcini, Hamburger and Cohen, 

more than a dozen neurotrophic molecules have been characterized (Levi-Montalcini 1987, 

Sendtner et al. 2000, Poo 2001). The group of neurotrophic factors comprises the family of 

neurotrophins (NTs), the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF) 

family, the hepatocyte growth factor (HGF) family, the family of insulin-like growth factors 

(IGFs), as well as the family of glial-derived neurotrophic factors (Sendtner et al. 2000). A list 

of the members and their particular receptors is shown in Figure 1. 

Among these neurotrophic factor families, neurotrophins comprise small and closely related 

proteins that are initially synthesized as precursors or pro-neurotrophins (Hallbook 1999, 

Lessmann et al. 2003, Blum & Konnerth 2005, Skaper 2008). The pre-peptide provides the 

signal for the translocation of the pro-neurotrophins into the lumen of the endoplasmic 

reticulum and is subsequently cleaved off. Further processing within the intracellular protein 

transport pathway includes the removal of the pro-domain, which precedes the generation of 

mature neurotrophins (Blum & Konnerth 2005).  
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Figure 1: 
Neurotrophic 
factors and their 
receptors 
(modified from 
(Sendtner et al. 
2000))                 
GFR = GDNF family 
receptor; gp130 = 
glycoprotein 130; 
p75NTR = p75 
neurotrophin 
receptor; Trk = 
tropomyosin 
receptor kinase 

 

 

 

Biological effects of each of the four mammalian neurotrophins, NGF, brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4), are mediated 

through activation of one or more of the three members of the tropomyosin receptor kinase 

(Trk) family consisting of the proteins TrkA, TrkB and TrkC (Chao et al. 2006, Skaper 2008). 

NGF binds preferentially to TrkA, BDNF and NT-4 to TrkB, and NT-3 to TrkC (Figure 2) 

(Chao 2003, Huang & Reichardt 2003). Moreover, all neurotrophins activate the p75 

neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily 

(Rodriguez-Tebar et al. 1990, Dechant & Barde 1997, Dechant & Barde 2002, Skaper 2008).  

 

Figure 2: Neurotrophins and 
their receptors 
Neurotrophins bind selectively to 
specific Trk receptors, whereas 
all neurotrophins bind to the p75 
neurotrophin receptor. Trk 
receptors contain extracellular 
immunoglobulin G (IgG) domains 
for ligand binding and a catalytic 
tyrosine kinase sequence in the 
intracellular domain. The p75NTR 
receptor contains four 
extracellular cysteine-rich 
repeats and the intracellular part 
includes a "death" domain. 
(modified from (Chao 2003)) 
BDNF = brain-derived 
neurotrophic factor; NGF = nerve 

growth factor; NT = neurotrophin; Trk = tropomyosin receptor kinase 

Neurotrophin-mediated p75NTR signalling (Frade et al. 1996), which activates caspase-

dependent apoptotic pathways, induces a negative signal for cell survival (Chao 2003, 

Reichardt 2006, Park & Poo 2013). The p75NTR receptor can further act as co-receptor for Trk 
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receptors and the expression of p75NTR can increase the affinity of TrkA for NGF and can 

enhance its specificity for cognate neurotrophins (Hempstead et al. 1991, Bibel et al. 1999, 

Chao 2003). A recent study using embryonic stem cells that express only one type of Trk 

receptor showed that cells expressing TrkA or TrkC readily die in the absence of the 

neurotrophin-binding partner of Trk, whereas the survival of TrkB-expressing cells is not 

affected by the absence of BDNF (Nikoletopoulou et al. 2010). However, the lack of the 

death-activating capability of TrkB does not imply that its activation by BDNF is not effective 

to prevent neuronal death during development of the peripheral nervous system (Liu et al. 

1995, Nikoletopoulou et al. 2010). In the central nervous system, where BDNF is the most 

widely expressed neurotrophin, BDNF and the neurotrophic factor CNTF prevent the death of 

motoneurons after facial nerve transection (Sendtner et al. 1990, Sendtner et al. 1992, 

Sendtner et al. 1996, Sendtner et al. 2000). Moreover, cultured motoneurons survive by 

addition of BDNF and CNTF (Arakawa et al. 1990, Sendtner et al. 1996, Wiese et al. 2010).  

1.1.1 Trk receptor-mediated signalling cascades 

Trk receptors are typical receptor tyrosine kinases whose activation is stimulated by 

neurotrophin-mediated dimerization and trans-autophosphorylation of activation loop 

tyrosines (Reichardt 2006). In the case of TrkB, Figure 3 presents three main intracellular 

signalling pathways activated by BDNF binding: the phosphatidylinositol 3-kinase (PI3K)-Akt 

pathway, the Ras-mitogen-activated protein kinase (MAPK) pathway and the phospholipase 

C(PLC-Ca2+ pathway (Kaplan & Miller 2000, Blum & Konnerth 2005, Minichiello 2009). 

Ligand binding leads to phosphorylation of tyrosine residues in the juxtamembrane domain or 

the carboxyl terminus of the receptor, which act as docking sites for adaptor molecules like 

Src homologous and collagen-like (Shc) and PLC (Blum & Konnerth 2005, Minichiello 

2009). Recruitment and phosphorylation of Shc adaptors leads to the activation of PI3K, that 

generate 3-phosphoinositides and activate 3-phosphoinositide-dependent protein kinase 1 

(PDPK1). Together with these 3-phosphoinositides, PDPK1 activates the protein kinase Akt, 

that phosphorylates several proteins (Franke et al. 1997, Crowder & Freeman 1998), 

resulting in survival signals in a wide range of neuronal cell types (Brunet et al. 2001). 

The Shc adaptor protein also links activated Trk to the Ras-MAPK pathway. Thereby, 

phosphorylated Shc leads to an activation of the guanine nucleotide exchange factor son of 

sevenless (SOS) (Yoshii & Constantine-Paton 2010). SOS promotes the removal of GDP 

from Ras that subsequently binds GTP and becomes active. Ras activates the downstream 

kinases B-raf, Mitogen-activated ERK activating kinase (MEK), and MAPK (Huang & 

Reichardt 2003, Reichardt 2006, Yoshii & Constantine-Paton 2010). The Ras-MAPK 

pathway influences transcription events, such as the activation of the cAMP response 
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element-binding protein (CREB) transcription factor and therefore might play a role in BDNF 

induced long-term potentiation (LTP) (Finkbeiner et al. 1997, Shaywitz & Greenberg 1999, 

Blum & Konnerth 2005, Minichiello 2009, Park & Poo 2013).  

Finally, phosphorylation of tyrosine 816 of TrkB leads to recruitment and phosphorylation of 

PLCγ (Kaplan & Miller 2000). Active PLCγ hydrolyses phosphatidylinositol 4,5-bisphosphate 

(PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 promotes 

release of Ca2+ from internal stores, which results in the activation of enzymes like 

Ca2+/calmodulin-dependent protein kinases and DAG stimulates DAG-regulated PKC 

isoforms (Reichardt 2006, Minichiello 2009). The PLC-Ca2+ pathway influences the 

synthesis and activation of several proteins, which are involved in plasticity-dependent 

mechanisms of nerve cells (Minichiello et al. 2002, Gartner et al. 2006).   

 

Figure 3: BDNF-TrkB binding activates three major signalling pathways: PI3K, MAPK and PLC 
BDNF binding induces dimerization and autophosphorylation of TrkBFL receptors. Phosphorylation of 
tyrosine at position 515 (Y515) produces a binding site for Shc, whereas Y816 forms the adaptor site for 
PLC. The activated signalling pathways mediate effects on neuronal survival, differentiation, gene 
expression as well as acute effects on synaptic transmission and long-term potentiation. (from (Blum & 
Konnerth 2005)) Akt = Akt kinase; ATP = adenosine triphosphate; BDNF = brain-derived neurotrophic 
factor; Cai

2+ = intracellular Ca2+; CaM = calmodulin; CaMKII and IV = Ca2+-CaM-dependent kinase II 
and IV; CREB = cAMP response element-binding protein; DAG = diacylglycerol; IP3 = inositol 1,4,5-
trisphosphate; MAPK = mitogen-activated protein kinase; P = phosphorylation; PI3K = 
phosphatidylinositol 3-kinase; PIP2 = phosphatidylinositol 4,5-bisphosphate; PLC = phospholipase C; 
Ras = rat sarcoma, small GTP-binding protein Ras; Shc = Src homology 2/-collagen-related protein; 
TrkBFL = full-length tropomyosin receptor tyrosine kinase B; Y = tyrosine residue 
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1.1.2 Trk receptor-mediated activation of ion channels 

The neurotrophic factor BDNF influences the frequency and amplitude of synaptic currents 

(Lohof et al. 1993, Kang & Schuman 1995, Korte et al. 1995, Levine et al. 1995, Chao 2003). 

These findings indicate a link between neurotrophin-receptor signalling and ion channel 

function. Li et al. found that 30 seconds after a brief application of BDNF, pontine neurons 

show a PLC/IP3-dependent, non-selective cation current (Li et al. 1999). This ion current 

was mediated by the non-voltage-gated, store operated cation channel transient receptor 

potential (Trp) C3 (Li et al. 2010). TrpC3 belongs to the Trp ion channel superfamily (Montell 

et al. 2002). These channels are generally activated through signalling pathways in contrast 

to voltage activation (Clapham 2003). TrpC5 regulates neurite growth and growth cone 

morphology in hippocampal neurons (Greka et al. 2003) and is highly expressed in 

motoneurons, where Trk receptors are found (Jablonka et al. 2007). TrpC3 contributes to 

BDNF-mediated survival and growth cone guidance in cerebellar granule neurons (Li et al. 

2005). Co-expression analysis showed that activation of TrkB and PLC leads to an IP3-

dependent, store-operated influx of Ca2+ and Na+ through TrpC3, indicating that ion channels 

are closely associated with receptor tyrosine kinases (Figure 4A) (Li et al. 1999, Chao 2003, 

Blum & Konnerth 2005). Moreover, the interplay between neurotrophins and Trp channels 

might be involved in synaptic transmission by altering membrane potentials, which in turn 

facilitate synaptic Ca2+ entry through N-methyl-D-aspartate (NMDA) glutamate receptors or 

voltage-gated channels (Li et al. 1999, Blum & Konnerth 2005). There is good evidence that 

BDNF regulates ionotropic glutamate receptors at synapses as well. BDNF treatment causes 

increased tyrosine phosphorylation of NMDA receptors and voltage-gated potassium 

channels (Levine et al. 1995, Lin et al. 1998, Tucker & Fadool 2002). Phosphorylation of the 

NMDA receptor subunits NR1 (Suen et al. 1997) and NR2B (Lin et al. 1998) by BDNF/TrkB 

increases the open probability of NMDA receptors (Levine et al. 1998) and is mediated by a 

direct interaction between TrkB and NMDAR though the non-receptor Src family tyrosine 

kinase Fyn (Figure 4B). Thereby, TrkB and the NMDAR are members of the same protein 

complex, as verified by co-immunoprecipitation of TrkB and the NR2B subunit (Mizuno et al. 

2003). These data identified a postsynaptic signalling cascade that is likely to contribute to 

hippocampal spatial memory formation (Minichiello 2009, Park & Poo 2013). 

Another line of evidence suggests fast effects of the neurotrophin BDNF on non-NMDA 

receptors. Electrophysiological measurements in sensory relay neurons showed that BDNF 

can block postsynaptic -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 

receptor-mediated currents (Balkowiec et al. 2000). The catalytic activity of TrkB receptors is 

required for the decrease in AMPA receptor activity, implying a close association between 

TrkB and AMPA receptors (Chao 2003). On the other hand, the exo- and endocytosis of 
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AMPA receptors (Carroll et al. 2001) determine activity-dependent changes of synaptic 

efficacy and are influenced by BDNF signalling (Chao 2003). Furthermore, an interaction 

between TrkB and the voltage-gated sodium channel NaV1.9 was described (Blum et al. 

2002). This interaction is part of this thesis and will be present later under "1.4.2 BDNF - 

TrkB - NaV1.9". 

 
Figure 4: BDNF/TrkB-mediated activation of ion channels  
(A) TrkBFL/PLC-mediated, IP3-dependent Ca2+ store depletion activates ion influx through TrpC3. 
(B) TrkBFL-dependent phosphorylation activates Fyn kinase that increases the open probability of 
postsynaptic NMDARs. (C) Truncated TrkB-T1 mediates G protein-dependent PLC activation, IP3-
dependent Ca2+ release from Ca2+ stores, and following activation of store-operated ion channels. 
(modified from (Blum & Konnerth 2005)) ATP = adenosine triphosphate; BDNF = brain-derived 
neurotrophic factor; DAG = diacylglycerol; Fyn = FYN oncogene related to SRC, FGR, YES; IP3 = 
inositol 1,4,5-trisphosphate; NMDAR = N-methyl-D-aspartate receptor; P = phosphorylation; PIP2 = 
phosphatidylinositol 4,5-bisphosphate; PLC = phospholipase C; Trk = tropomyosin receptor kinase; 
TrpC = transient receptor potential C; SOCC = store-operated calcium channels  

Beside full-length TrkB receptors, truncated splice variants of TrkB also regulate signalling 

pathways and modulate ion channel functions. In glial cells the truncated TrkB receptor T1 is 

the predominant Trk receptor version and BDNF binding to TrkB-T1 can induce PLC/IP3-

depentent release of Ca2+
 from intracellular stores, followed by Ca2+ entry through store-

operated Ca2+ channels (Figure 4C) (Rose et al. 2003, Blum & Konnerth 2005). Glial cells 

are thought to be potent modulators of synaptic function, a model called the tripartite 

synapse concept (Araque & Perea 2004, Christensen et al. 2013). BDNF may act as a 

mediator between neurons and glial cells, thus acting as a modulator of neuronal activity 

(Bezzi & Volterra 2001, Reichardt 2003, Rose et al. 2003, Blum & Konnerth 2005). 

1.1.3 Transactivation of Trk receptors 

Many transmembrane receptors (Linseman et al. 1995, Daub et al. 1996, Luttrell et al. 1999) 

as well as Trk receptors can be activated in absence of their principal binding ligands through 

transactivation by G protein-coupled receptors and other receptor tyrosine kinases (Lee & 

Chao 2001, Lee et al. 2002, Huang & Reichardt 2003, Puehringer et al. 2013). A potent 

inducer of Trk transactivation is adenosine. This neuromodulator can initiate Trk receptor 
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autophosphorylation in PC12 cells and hippocampal neurons through the adenosine 2A (A2A) 

receptor (Lee & Chao 2001). The increased Trk activity may be inhibited by protein kinase 

inhibitors, such as PP1 (specific for Src family members) or K-252a. Another neuropeptide, 

the pituitary adenylate cyclaseactivating polypeptide (PACAP) is able to transactivate Trk 

receptors as well by interaction of PACAP with the PAC1 receptor (Lee et al. 2002). 

Adenosine and PACAP require a long period of time (hours, not minutes) to activate Trk 

tyrosine kinase activity. Both ligands produce an activation of the PI3K/Akt cascade, resulting 

in enhanced cell survival (Lee & Chao 2001, Lee et al. 2002). These results offer an 

explanation for the neuroprotective actions of adenosine and PACAP, and point to a 

therapeutic use for small-molecule GPCR agonists in neurodegenerative disorders (Chao 

2003). This neuroprotective action was further demonstrated by (Wiese et al. 2007), who 

showed that a well established A2A receptor agonist, CGS21680, is able to rescue 

motoneurons from cell death. This survival effect was caused by transactivation of TrkB and 

included an increase in Akt activity in motoneurons (Wiese et al. 2007). Unexpected was that 

the majority of transactivated Trk receptors resided in intracellular membranes, where the 

transactivation process may occur (Rajagopal et al. 2004, Rajagopal & Chao 2006, Wiese et 

al. 2007). In a recent study, it was shown that TrkB and TrkC of embryonic mouse cortical 

precursor cells are transactivated within minutes by epidermal growth factor receptor (EGFR) 

signalling (Puehringer et al. 2013). This transactivation procedure was shown to regulate the 

migration of early neuronal cells to their final position in the developing cortex. 

Transactivation by EGF leads to the membrane translocation of TrkB, hence promoting its 

signalling responsiveness to its natural ligand BDNF (Puehringer et al. 2013). 

1.2 The motoneuron disease spinal muscular atrophy (SMA) 

Neurological disorders that are caused by selective cell death of motoneurons are defined as 

motoneuron diseases (MND). Two major forms of motoneuron disease are amyotrophic 

lateral sclerosis (ALS) and proximal spinal muscular atrophy (SMA) (Kariya et al. 2012). 

While incidence of ALS peaks in the sixth decade of life (Kwiatkowski et al. 2009), proximal 

spinal muscular atrophy is a classical autosomal recessive disorder that is the most 

predominant form of motoneuron disease in children and young adults (Crawford & Pardo 

1996, Sendtner 2010). Based on the clinical severity and age at onset, childhood SMA has 

been subdivided into three types: Type I SMA as the most severe form with a disease onset 

before 6 months and death occurring by the age of 2 years, Type II SMA as intermediate in 

severity with an onset before 18 months of age and patients never gaining the ability to walk 

and Type III SMA as the mildest form with onset after 18 months and patients that are able to 

walk (Monani et al. 2000). One type with adult onset, developing the first clinical symptoms 
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after the age of 30 (Type IV SMA), and very severe cases with prenatal onset and early 

neonatal death (Type 0 SMA) are further classified (Pearn et al. 1978, Dubowitz 1999, Briese 

et al. 2005). Spinal muscular atrophy is caused by insufficient levels of the survival motor 

neuron (SMN) protein leading to muscle paralysis and respiratory failure (Michaud et al. 

2010). The loss of SMN protein correlates with the severity of the SMA disease. The most 

severe form of SMA (Type I) expresses less SMN protein than the milder forms (Type II and 

III) (Lefebvre et al. 1995, Coovert et al. 1997, Burlet et al. 1998). The SMN gene exists in two 

copies, termed SMN1 and SMN2, on human chromosome 5q13 (Lefebvre et al. 1995, 

Jablonka et al. 2002, Jablonka et al. 2006). Whereas the SMN1 gene allows expression of 

the functional full-length protein, the major product of SMN2 is differentially spliced, thus 

lacking a specific exon (exon 7) (Lorson et al. 1999, Jablonka et al. 2002). Only the 

homozygous absence of SMN1 is responsible for spinal muscular atrophy, whereas 

homozygous absence of SMN2, found in about 5% of controls, has no clinical phenotype 

(Wirth 2000, Jablonka et al. 2002). The SMN protein is ubiquitously expressed and is 

localized to nuclear complexes known as Gemini of coiled bodies (Gems), which are involved 

in small nuclear ribonucleoprotein processing and recycling (Burghes & Beattie 2009, 

Sendtner 2010). In motoneurons the SMN protein is also found at relatively high quantities in 

the cytoplasm of the cell bodies, in axons and in axon terminals (Rossoll et al. 2002, 

Sendtner 2010).  

To mimic the disease situation in a model organism, transgenic mice were created that 

express two copies of human SMN2 gene and these mice were mated onto a Smn-/- 

background (Monani et al. 2000). Smn-/--SMN2tg mice normally die within 5 days after birth, 

but isolated motoneurons from these mice survive normal and show defects in axonal growth 

and growth cone morphology (Rossoll et al. 2003). Interestingly, reduced axon elongation of 

Smn-deficient motoneurons correlates with reduced numbers of spontaneous Ca2+ transients 

in axons and axonal growth cones (Figure 5) (Jablonka et al. 2007). Several lines of 

evidence support the view that disturbed neuromuscular endplate development and function 

is responsible for abnormalities in synaptic transmission, hence causing muscle weakness in 

SMA patients (Chan et al. 2003, Monani 2005, Jablonka et al. 2007, McGovern et al. 2008, 

Kong et al. 2009, Murray et al. 2010, Sendtner 2010). SMN protein is able to form a complex 

with heterogeneous nuclear ribonucleoprotein (hnRNP) R (Rossoll et al. 2002), that can 

associate with the 3´ untranslated region (UTR) of the β-actin mRNA and supports its 

transport into axons and growth cones of motoneurons (Rossoll et al. 2002, Rossoll et al. 

2003). A reduced number of β-actin mRNA and locally synthesised β-actin protein molecules 

was found in distal parts of the axon and in the growth cone of Smn-deficient motoneurons 

(Rossoll et al. 2003, Rathod et al. 2012). This cytoskeletal defects in growth cones of Smn-/--

SMN2tg motoneurons cause defects in cell-surface clustering of the N-type calcium channel 
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CaV2.2. As a consequence, local voltage-dependent calcium ion influx is reduced (Figure 5) 

(Jablonka et al. 2007, Ruiz et al. 2010, Wetzel et al. 2013).  

 

Figure 5: Reduced Ca2+ transients and axon length in Smn-/--SMN2 motoneurons 
(A) In axons and axonal growth cones of cultured embryonic motoneurons from Smn-/--SMN2tg mice, 
spontaneous Ca2+ transients are decreased compaired to wild type motoneurons after four, five and 
seven days in culture. (B) Cultured motoneurons from Smn-/--SMN2tg mice show significantly shorter 
axons compaired to motoneurons from Smn+/+-SMN2tg mice after five, six and seven days in vitro. 
(modified from (Jablonka et al. 2007)) SMN = survival motor neuron  

1.3 Spontaneous neuronal activity regulates axonal growth 

Spontaneous activity is an evolutionary conserved process that plays an important role 

during development of the nervous system (O'Donovan & Landmesser 1987, Gu & Spitzer 

1995, Spitzer et al. 2000, Hanson & Landmesser 2004, Spitzer 2006, Wang et al. 2009, 

Rosenberg & Spitzer 2011). It regulates developmental processes like proliferation of neural 

stem cells, migration of these neural precursors, neural differentiation and survival (Spitzer 

2006). Furthermore, neurite outgrowth and the refinement of synaptic connections are 

involved (Spitzer 2006, Spitzer 2008, Vizard et al. 2008). In many cases the neuronal 

depolarization goes along with spontaneous influx of calcium ions into the neuronal cytosol. 

The analysis of molecular mechanisms underlying spontaneous calcium influx revealed two 

principle mechanisms of how neural activity is initiated. On the one hand, this excitability can 

be ligand-dependent and caused by the non-synaptic release of transmitters such as 

glutamate or -aminobutyric acid (GABA) (Milner & Landmesser 1999). On the other hand, 

excitability is part of a developmental program and consequently a cell-autonomous feature 

of a young neuron (Wetzel et al. 2013). Spontaneous Ca2+ transients in embryonic 

motoneurons are either locally restricted to discrete domains in the entire cell, for example 

the growth cone, distal or proximal axons, or they are globally distributed over the whole cell 

(Jablonka et al. 2007, Subramanian et al. 2012). Furthermore, experiments in Xenopus 

spinal neurons characterized calcium transients as fast-rising global calcium spikes with 

characteristics of action potentials and slower wave like calcium transients, which are 
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generated in growth cones and are likely to regulate neurite extension (Gu et al. 1994, 

Gomez & Spitzer 1999). 

At early stages during development, embryonic motoneurons exhibit spontaneous activity, 

while they are growing over long distances to make synaptic connections with the skeletal 

muscle (O'Donovan & Landmesser 1987, Nishimaru et al. 1996, Milner & Landmesser 1999, 

Ciccolini et al. 2003, Hanson & Landmesser 2003, Spitzer 2006). When embryonic 

motoneurons from mice are cultured at low density, so that these cells do not form any 

synaptic contact with each other, spontaneous excitation is preserved and spontaneous Ca2+ 

transients are preferentially observed in axons and axonal growth cones (Jablonka et al. 

2007, Subramanian et al. 2012). In motoneurons, this spontaneous activity contributes to 

axon growth and presynaptic differentiation (Jablonka et al. 2007). The spontaneous 

electrical activity is driven by voltage-gated ion channels that are present at presynaptic sites 

in motoneurons. For example the N-type calcium channel CaV2.2 and the P/Q-type channel 

CaV2.1 that normally require a strong depolarization for activation (Catterall et al. 2005, 

Wetzel et al. 2013). This activation presupposes a specific trigger molecule that has to be 

expressed in motoneurons, especially in axons and axonal growth cones, with a low 

activation threshold and a spontaneous opening at voltages close to the resting membrane 

potential (Wetzel et al. 2013).  

Figure 6: VGSC pore blockers 
reduce spontaneous calcium 
transients in soma and growth 
cone of wild type motoneurons 
(A - C) Live cell imaging analysis 
performed with wild type cultured 
motoneurons show that in soma 
and growth cones, spontaneous 
Ca2+ transients are reduced after 
perfusion with the voltage-gated 
sodium channel pore blockers 
saxitoxin and tetrodotoxin. STX (A) 
is more potent than TTX (B and C) 
and the blockage is reversible. 
(modified from (Subramanian et al. 
2012)) ACSF = artificial 
cerebrospinal fluid; STX = saxitoxin; 
TTX = tetrodotoxin 
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In parallel to this dissertation, my colleagues observed that cultured embryonic motoneurons 

from wild type mice show a significantly reduced spontaneous calcium ion influx into the 

soma and axonal growth cone in presence of voltage-gated sodium channel pore blockers 

like saxitoxin (STX) and tetrodotoxin (TTX) (Figure 6) (Subramanian et al. 2012). Moreover, 

my colleagues found that the blockage of voltage-gated sodium channels caused a 

decreased axon growth of motoneurons which were cultured at low density for seven days in 

vitro (Figure 7) (Subramanian et al. 2012). 

 
Figure 7: VGSC pore blockers reduce axon growth of wild type motoneurons 
(A and B) Axon length of wild type, DIV 7 motoneurons is decreased after treatment with the voltage-
gated sodium channel pore blockers: saxitoxin and tetrodotoxin. A significant reduction of axon 
elongation is observed in presence of 1, 5 and 10 nM of STX and 50 nM of TTX. STX is more potent 
than TTX. (modified from (Subramanian et al. 2012)) STX = saxitoxin; TTX = tetrodotoxin; VGSC = 
voltage-gated sodium channel 
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1.4 Voltage-gated sodium channels 

The family of voltage-gated sodium channels (VGSC) comprises nine members, classified as 

NaV1.1 to NaV1.9 (Goldin et al. 2000). They are important for the initiation of action potentials 

in excitable cells and show similarities in structure and function. VGSCs are expressed with a 

pronounced tissue specificity and posses differences in their regulatory and pharmacological 

properties (Catterall 2000, Catterall et al. 2005, Catterall 2010, Catterall 2012). 

Voltage-gated sodium channels consist of a pore-forming  subunit of about 260 kDa and 

smaller  subunits, which are important for the kinetics and regulation of cell surface 

expression as well as for voltage dependence of the channel gating (Isom 2001, Patino & 

Isom 2010). An outline of the domain structure of voltage-gated sodium channels is 

presented in Figure 8. 

 

 

Figure 8: Structure of voltage-gated sodium channels 
The  subunit is organized in four homologous domains (I–IV), each with six helical transmembrane 
segments (S1–S6). The S4 segment of each domain plays an important role for the voltage sensitivity 
and gating and contains positive-charged amino acid residues at every third position. Depolarization of 
the membrane leads to a movement of the 4th segment outwards to initiate channel activation by 
conformational changes. The linker that connects S5 and S6 forms the external mouth of the channel 
pore and the selectivity filter. The cytoplasmic linker between domain III and IV acts as a “hinged lid” 
(h) and is responsible for fast inactivation. Residues in the inner cavity of the channel pore involving 
the S6 segment of domains I, III, and IV form the binding site for some local anesthetic, antiepileptic, 
and antiarrhythmic drugs. (from (Liu & Wood 2011)) P = phosphorylation 

Pharmacological agents like neurotoxins and local anesthetics as well as related drugs have 

at least six distinct receptor sites on the  subunits of VGSCs (Cestele & Catterall 2000, 

Stevens et al. 2011). Especially the neurotoxin tetrodotoxin (TTX) and the close relative 

saxitoxin (STX) played an important role in the early discovery and first analysis of sodium 
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channel proteins (Agnew et al. 1980, Noda et al. 1986, Heinemann et al. 1992). Both toxins 

use the same receptor binding site. The NaV1.9 channel exhibits an amino acid exchange 

from tyrosine or phenylalanine to serine at a critical position, leading to a more than 200-fold 

decrease in TTX affinity, whereas STX-sensitivity remains unaffected (Penzotti et al. 1998, 

Blum et al. 2002). Sodium channels are distinguishable by their affinity to TTX. Only the 

NaV1.5, which is described to be expressed in heart and the close relative NaV1.8 and 

NaV1.9 channel, known to be expressed predominantly in dorsal root ganglia are TTX-

insensitive (Satin et al. 1992, Fozzard & Hanck 1996, Sivilotti et al. 1997, Catterall et al. 

2005). Conservation of the TTX-resistant phenotype, and the proximity of the genes 

encoding NaV1.5, NaV1.8 and NaV1.9 on the same chromosome (Dib-Hajj et al. 1999), 

indicate that there is an evolutionary link between these three channels, but NaV1.9 is a 

voltage-gated sodium channel with unique properties (Dib-Hajj et al. 2002). 

1.4.1 The voltage-gated sodium channel NaV1.9 

The discovery of the NaV1.9 channel, also known as NaN, occurred in 1998 using a PCR-

based assay (Dib-Hajj et al. 1998). NaV1.9 exhibits all the hallmarks of voltage-gated sodium 

channels, including the inactivation tripeptide Ile-Phe-Met (West et al. 1992), multiple 

predicted phosphorylation sites in the intracellular loops, N-glycosylation sites in the 

extracellular linkers as well as sequences for the positively charged S4 and pore-lining SS1-

SS2 segments at expected positions (Figure 8) (Dib-Hajj et al. 1998, Dib-Hajj et al. 2002). In 

humans, the NaV1.9 encoding gene SCN11a, maps to chromosome 3 (3p21–24), while in 

mice Scn11a is found in the analogous region on chromosome 9 (Dib-Hajj et al. 1999). It was 

demonstrated that NaV1.9 is preferentially expressed in small (<30 µm diameter) nociceptive 

neurons of the dorsal root ganglia and trigeminal ganglia (Dib-Hajj et al. 2002, Fang et al. 

2002). In accordance with its predominant expression in nociceptive neurons, NaV1.9 is 

involved in nociception and even in pain transmission, at least in humans (Waxman et al. 

1999, Fjell et al. 2000, Fang et al. 2002, Wood et al. 2004, Priest et al. 2005, Amaya et al. 

2006, Ostman et al. 2008, Smith & Momin 2008, Dib-Hajj et al. 2010, Leo et al. 2010, Liu & 

Wood 2011, Leipold et al. 2013). Furthermore, NaV1.9 is expressed in myenteric neurons 

(Rugiero et al. 2003) and within free nerve terminals of the skin and the cornea (Dib-Hajj et 

al. 2002). No or only low expression levels of NaV1.9 were found in the central nervous 

system via quantitative RT-PCR and northern blot analysis (Dib-Hajj et al. 1998, Jeong et al. 

2000, Ogata et al. 2000, Blum et al. 2002).  

NaV1.9 has unique electrophysiological and pharmacological properties. The channel 

produces a persistent, TTX-resistant current with a substantial overlap of activation and 

steady-state inactivation, very slow activation and inactivation kinetics, as well as a negative 

threshold of activation close to normal resting potential (Cummins et al. 1999, Herzog et al. 
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2001, Rugiero et al. 2003, Ostman et al. 2008). Therefore, NaV1.9 is not a major contributor 

to the rapid depolarizing phase of the action potential, but regulates the electrogenic 

properties of nociceptor dorsal root ganglia and myenteric sensory neurons by modulating 

their resting potentials and by amplifying their responses to subthreshold stimuli (Herzog et 

al. 2001, Rugiero et al. 2003, Waxman & Estacion 2008). This characteristic is special for the 

NaV1.9 channel and gives him the ability to open spontaneously at resting membrane 

potentials. Studies focused on the role of inflammatory mediators that act through G protein-

coupled receptors found that NaV1.9 contributes to the setting of inflammatory pain 

thresholds (Baker et al. 2003, Rush & Waxman 2004, Ostman et al. 2008). This model is 

supported by behavioral studies on NaV1.9 knock-out mice lines (Priest et al. 2005, Amaya et 

al. 2006). Interestingly, Blum et al. found that the neurotrophin BDNF can trigger the opening 

of NaV1.9 in central principle neurons via the activation of TrkB receptors (Blum et al. 2002). 

These findings proposed a ligand-gated channel opening of NaV1.9 (see 1.4.2). The idea that 

the NaV1.9 channel may be gated by ligand binding rather than by voltage in brain neurons 

adds further complexity to the functional characterization of NaV1.9. Several studies have 

revealed that a better understanding of NaV1.9 is disabled by the lack of functional data on 

recombinant NaV1.9, since it has been quite difficult to achieve robust heterologous 

expression levels of NaV1.9 in transfected cell lines (Ostman et al. 2008, Smith & Momin 

2008, Waxman & Estacion 2008).  

1.4.2 BDNF - TrkB - NaV1.9 

In 1999, Kafitz et al. reported that local and transient applications of BDNF and NT-4/5 to 

various types of central neurons lead to a depolarization of these neurons within 

milliseconds, resulting in trains of action potentials (Kafitz et al. 1999). BDNF and NT-4/5 

were much more effective than glutamate. The rapid neurotrophin-evoked depolarization is a 

result of an immediate activation of sodium channels, which are insensitive to the voltage-

gated sodium channel pore blocker tetrodotoxin (Kafitz et al. 1999, Catterall 2000, Blum & 

Konnerth 2005). By screening candidate transcripts with an antisense mRNA expression, the 

NaV1.9 channel and receptor tyrosine kinase TrkB were identified as key components for this 

fast BDNF-induced sodium inward current (Blum et al. 2002, Blum & Konnerth 2005). Blum 

et al., 2002 demonstrated that stimulation of recombinant TrkB receptors by BDNF induces 

sodium ion influx through the co-expressed NaV1.9 channel in HEK 293 cells. Expression of 

either NaV1.9 or TrkB alone failed to reconstitute the BDNF-evoked sodium current, which 

was insensitive to tetrodotoxin, but highly sensitive to voltage-gated sodium channel pore 

blocker saxitoxin (Catterall 2000, Blum et al. 2002, Blum & Konnerth 2005). The gating 

mechanism of NaV1.9 via TrkB activation is still unknown and became controversial, because 

the kinetics of BDNF release conflict with the much faster activation kinetics of the NaV1.9-



1 Introduction 

 28

mediated currents (Brigadski et al. 2005, Minichiello 2009). Blum et al. suggested that there 

is a direct interaction between TrkB and NaV1.9 leading to BDNF-elicited depolarisation, 

which activates voltage-gated calcium channels (Figure 9), resulting in calcium ion influx 

(Blum et al. 2002, Blum & Konnerth 2005).  

Figure 9: BDNF/TrkB mediated rapid 
opening of NaV1.9 
Schematic model of the rapid opening of the 
sodium channel NaV1.9 (red) by activation 
through the binding of BDNF (light green) on 
TrkB (grey) with the subsequent dimerization 
and autophosphorylation of TrkB neurotrophic 
receptor. The resulting depolarization through 
the influx of sodium ions activates Voltage-
operated calcium channels (VOCC) (green) 
and thus produces calcium ion influx. 
(modified from (Blum & Konnerth 2005)) 
BDNF = brain-derived neurotrophic factor;  
Trk = tropomyosin receptor kinase; VOCC = 
voltage-operated calcium channels  

 
 

 

The existence of fast BDNF-induced currents have been reported only in a series of studies 

from the same group (Kafitz et al. 1999, Blum et al. 2002, Kovalchuk et al. 2002, Rose et al. 

2003) and has only been confirmed indirectly by other studies (Cheng & Yeh 2003, Fujisawa 

et al. 2004, Kovalchuk et al. 2004, Blum & Konnerth 2005). Remarkably, the BDNF-mediated 

increase could only be blocked by the Trk kinase inhibitor K-252a, when cells were pre-

incubated with the inhibitor for a longer time (Kafitz et al. 1999). These data imply that pre-

phosphorylated TrkB receptors would be a structural prerequisite for the rapid activation of a 

TTX-insensitive sodium channel by BDNF (Blum & Konnerth 2005). The binding of BDNF 

and the subsequent dimerization of the “primed” receptors might then be sufficient for the 

gating of NaV1.9 (Figure 9) (Blum & Konnerth 2005). In 2007, Lang et al. provided strong 

evidence that developing hippocampal neurons intrinsically generate fast BDNF signalling in 

presence of TTX, which can be blocked by BDNF-specific antibodies or with K-252a (Lang et 

al. 2007). The onset kinetics of BDNF-evoked calcium transients were faster than 100 ms, 

suggesting that they are in the range of several tens of milliseconds or less (Lang et al. 

2007). Thus, there is a lot of evidence that indeed NaV1.9 is a downstream mediator of fast 

neurotrophin action, however, it has not been tested yet whether fast excitation of neurons by 

BDNF is blocked in NaV1.9 knock-out mice. 
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1.5 Aims of the thesis 

The aim of this thesis was to unravel regulators of spontaneous excitability in motoneurons. 

As outlined in the introduction, first experiments by my colleagues revealed that a blockage 

of voltage-gated sodium channels with STX and TTX leads to a reduced axonal elongation in 

young cultured motoneurons, indicating that a voltage-gated sodium channel is involved in 

spontaneous excitability of motoneurons. In these experiments, neurons were grown at very 

low density, so that these cells did not receive a synaptic input from each other. In addition, 

experiments by our group demonstrated that STX was more potent than TTX in blocking 

spontaneous excitation and activity-dependent axon growth of motoneurons.  

These observations raised the question whether TTX-resistant voltage-gated sodium 

channels are responsible for the activity-dependent axon growth in motoneurons. Basing on 

these findings, the present study aimed to: 

 support the molecular identification of a voltage-gated sodium channel involved in early 

motoneuron excitation and axon elongation.  

 localize this sodium channel at the node of Ranvier, the principle site of action potential 

generation in axons of adult motoneurons. 

 work out evidences how the here identified candidate is linked to the disease mechanism 

in spinal muscular atrophy. 

 clarify whether there is a link between neurotrophin signalling and spontaneous 

excitability which regulates axon growth in motoneurons.  
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2 Material and Methods 

2.1 Material 

2.1.1 Animals 

All mice, except of Scn11a+/L799P knock-in mice, were bred in the animal facility of the Institute 

for Clinical Neurobiology, University Hospital Würzburg. The animals (approximately 20 g) 

were housed three per cage (370 cm2) or 18 per cage (1829 cm2) in a colony room kept at  

21 ± 1°C with humidity around 45 - 50%, and on a 12 h light-dark cycle. The mice had free 

access to food and water and in each standard polysulphone cage small autoclaved paper 

channels were available for environmental enrichment.  

For the experiments C57BL/6JOlaHsd mice (Harlan Laboratories, Germany, originated from 

Jackson Laboratory, Bar Harbor, Maine), NaV1.9-/- mice (Ostman et al. 2008) (kindly provided 

by John Wood, London), Scn11a+/L799P mice (Leipold et al. 2013) (kindly provided by Ingo 

Kurth, Jena), Smn-/--SMN2tg mice (Monani et al. 2000) and TrkB-/- mice (Rohrer et al. 1999) 

(Jackson Laboratory, Bar Harbor, Maine) were used.  

The genotype of the transgenic mice was identified by PCR of tail DNA. 

  

2.1.2 Cell lines 

In this study Human Embryonic Kidney (HEK 293T) cells were used to produce a stable 

NaV1.9 expressing cell line. These cells express the simian virus 40 (SV40) large T antigen, 

which enables to replicate plasmids carrying the SV40 origin (Graham et al. 1977, Lebkowski 

et al. 1985).  

Furthermore, primary embryonic motoneurons were isolated from day 13.5 (14) embryos as 

described earlier (Wiese et al. 2010).  
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2.1.3 Chemicals for cell culture  

Table 1: Chemicals for cell culture  
DMEM = Dulbecco’s modified eagle medium; DMSO = dimethyl sulfoxide; PBS = phosphate buffered 
saline; BSS = balanced salt solution; BDNF = brain-derived neurotrophic factor; CNTF = ciliary 
neurotrophic factor 

substances company; reference 

B27 Supplement 50x  Invitrogen-Gibco; 17504-044  

-mercaptoethanol Sigma; M7154 

Boric acid Merck; 203667 

DMEM high glucose, pyruvate, GlutaMaxTM  Invitrogen-Gibco; 31966-021  

DMSO Sigma; D8779 

Dulbecco’s PBS without Ca/Mg 1x  Invitrogen-Gibco; 14190-094 

Fetal calf serum Invitrogen-Gibco; 10270-106  

Geneticin® selective antibiotic (G418 sulfate)   Invitrogen; 10131-027  

GlutaMax Invitrogen-Gibco; 35050-038  

Hanks’ BSS without Ca/Mg, with phenol red 1x  Invitrogen-Gibco; 14170-088 

HEPES Pufferan, ≥99.5% cell pure  Roth; HN77.4  

Horse serum  Linaris; SHD3250ZK 

Laminin  Invitrogen; 23017-015 

Neurobasal® medium  Invitrogen-Gibco; 21103-049 

Neurotrophic factors (BDNF and CNTF) Institute for Clinical Neurobiology 

Penicillin-streptomycin  Invitrogen; 15070-063  

Pluronic® F-127 Invitrogen; P6867 

Poly-DL-ornithine hydrobromide (PORN)  Sigma; P8638  

Purified human merosin Millipore; CC085 

TrypLETM Express  Invitrogen; 12605-028  

Trypsin inhibitor Sigma; T6522  

Trypsin TRL3 1% Worthington; LS003707  

Water – Ampuwa® Aqua ad injectabilia  DeltaSelect; 8771004 
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2.1.4 Chemicals for DNA and RNA techniques  

Table 2: Chemicals for DNA and RNA techniques  
BSA = bovine serum albumin; ATP = adenosine triphosphate; CTP = cytidine triphosphate; GTP = 
guanosine triphosphate; TTP = thymidine triphosphate; DTT = dithiothreitol; DNA = deoxyribonucleic 
acid; HPLC = high performance liquid chromatography 

substances company; reference 

Agarose Biozym; 840004 

Betaine 5 M Sigma; 14300 

BSA 100x New England BioLabs; B9001 

Chloroform Sigma; 32211 

dATP 100 mM Fermentas; R0141  

dCTP 100 mM Fermentas; R0151 

dGTP 100 mM Fermentas; R0161 

dTTP 100 mM Fermentas; R0171 

DTT 0.1 mM Invitrogen; 90289  

Ethanol absolute Sigma; 32205 

Ethidium bromide Sigma; E1510 

First strand buffer 5x Invitrogen; Y00146  

Formamide  Merck; 344205  

Gene RulerTM 100 bp DNA Ladder Fermentas; SM0242 

Gene RulerTM 1 kb DNA Ladder Fermentas; SM0311 

HPLC water  Merck; 1153331000  

MgCl2 25 mM Roche; 11699113001  

Primer, random pd(N)6 50 A260 units Roche; 11034731001 

Proteinase K  Roche; 03115828001 

RNasin® Plus RNase Inhibitor Promega; N2611 

SuperScript® III reverse transcriptase Invitrogen; 18080-044 

Taq buffer advanced 10x 5 Prime; 2201240 

Taq DNA polymerase 5 Prime; 2200010 
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2.1.5 Chemicals for protein analysis  

Table 3: Chemicals for protein analysis  
BSA = bovine serum albumin; ECL = enhanced chemiluminescence; NaF = sodium fluoride; PVDF = 
polyvinylidene difluoride; SDS = sodium dodecyl sulfate  

substances company; reference 

Aqua polymount Polyscience; 18606 

BSA Sigma; A2153 

Criterion XT Precast gel 3-8% Tris-Acetate BioRad; 345-0129 

ECL Prime Western Blotting Detection Reagent GE Healthcare; RPN2232  

Goat serum Linaris; SGA3511KYA 

High performance chemiluminescence HyperfilmTM GE Healthcare; 28906836 

Immuno-Blot PVDF membrane BioRad; 162-0177  

Methanol Sigma; 32213 

NaF Sigma; S6776 

Na-orthovanadate Sigma; S6508 

Na-pyrophosphate Sigma; 221368 

Nonidet P40 Substitute Fluka Analytical; 74385 

Powdered milk Roth; T145.3 

Precision Plus ProteinTM All Blue Standards BioRad; 161-0373 

Roti®-Liquid Barrier Marker Roth; AN92.1 

SDS BioRad; 161-0418 

Tablet of complete Mini EDTA-free Roche; 04693159001 

Tissue-Tek® O.C.T™ Compound Sakura; 4583 

Triton X-100 Sigma; T8787 

Tween 20 Sigma; P7949 
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2.1.6 Buffers, media and solutions 

Table 4: Buffers, media and solutions  
ACSF = artificial cerebrospinal fluid; DNA = deoxyribonucleic acid; BSA = bovine serum albumin;   
HEK = human embryonic kidney; PBS = phosphate buffered saline; PFA = paraformaldehyde;    
PORN = poly-DL-ornithine hydrobromide; TAE = Tris acetate EDTA; TBE = Tris borate EDTA; TBS = 
Tris buffered saline; EDTA = ethylenediaminetetraacetic acid; SDS = sodium dodecyl sulphate;   
DMEM = Dulbecco’s modified eagle medium; HBSS = Hanks’ balanced salt solution                     

name composition 

ACSF ringer solution   127 mM NaCl; 3 mM KCl; 2.5 mM NaH2PO4; 2 mM CaCl2; 
2 mM MgCl2; 23 mM NaHCO3; 25 mM D-glucose 

pH adjustment with CO2 

Basic protein lysis buffer 150 mM NaCl; 10% glycerol; 50 mM HEPES pH 7.4 

sterile filtered  

Blocking solution for 
immunocytochemistry 

1x PBS; 10% horse serum; 0.1% Tween 20;                 
0.3% Triton X-100 

Blocking solution for protein 
detection after western blot 

1x TBS-T; 5% powdered milk; 5% goat serum 

Borate solution 150 mM boric acid dissolved in cell culture grade water 

pH adjustment to pH 8.35 with NaOH, sterile filtered  

Depolarization solution 30 mM KCl; 0.8% NaCl; 2 mM CaCl  

sterile filtered 

DNA loading buffer 6x (10 ml) 6 ml 50% glycerol; 1 ml 2% bromophenol blue;                  
1 ml 2% xylene cyanol solution; 2 ml H2O dest. 

DNA lysis buffer 10 mM Tris pH 7.5; 100 mM EDTA pH 8.0; 150 mM NaCl;    
0.5% SDS 

EB-BSA 1 mg/ml BSA diluted in 10 mM Tris pH 8.0 

Electrophoresis buffer 10x   
(1 l) 

30.3 g Tris base; 144 g glycine; 10 g SDS 

pH adjustment to 8.45 

HEK 293T cell culture 
medium 

DMEM with GlutaMaxTM; 10% FCS; 1% penicillin-
streptomycin, 500 μg/ml geneticin 

Laminin 2.5 µg/ml 21 μl aliquots diluted in 6 ml HBSS 

Motoneuron complete 
medium 

Neurobasal® medium; 2% horse serum; 1x GlutaMaxTM; 
1x B27 supplement; 10 nM β-mercaptoethanol          

sterile filtered 
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PBS 10x (1 l) 80 g NaCl; 2 g KCl; 2.4 g KH2PO4; 14.4 g Na2HPO4; H2O 
bidest. 

autoclaved 

PFA 4% (100 ml) 4 g paraformaldehyde dissolved in 50 ml H2O at 60°C;  
few drops of 2 M NaOH, filtered; 45 ml 0.2 M Na2HPO4;    
5 ml 0.2 M NaH2PO4 

pH adjustment with to 7.4 

PORN 0.5 mg/ml Diluted in 150 mM borate solution pH 8.35 

Sample buffer 4x (20 ml) 
(Laemmli) 

4 ml 1M Tris HCl pH 6.8; 8 ml 20% SDS; 5 ml glycerol;  
1.6 ml -mercaptoethanol; 50 mg bromophenol blue;        
1.4 ml H2O dest. 

TAE 50x (1 l) 242 g Tris base; 57.1 ml glacial acetic acid, 100 ml 0.5 M 
EDTA; H2O dest. 

TBE 10x 108 g/l Tris base; 55 g/l boric acid; 40 ml 0.5 M EDTA     
pH 8.0 

pH adjustment to 8.4 

TBS 10x (1 l) 12.1 g Tris base; 87.8 g NaCl 

pH adjustment with 5 N HCl to pH 8.0 

TBS-T 1x TBS; 0.2% Tween 20 

Transfer buffer 1x electrophoresis buffer; 20% methanol 

Trypsin 1% 1 g trypsin diluted in 100 ml HBSS 

Trypsin inhibitor 1% 1 g trypsin inhibitor diluted in 98 ml HBSS and 2 ml of 1 M 
HEPES pH 7,4 

Washing solution for 
immunocytochemistry 

1x PBS; 0.1% Tween 20; 0.1% Triton X-100 

 

2.1.7 Antibodies and labelling dyes 

Table 5: Primary antibodies  
Caspr = contactin-associated protein; NFL = neurofilament; Trk = tropomyosin receptor kinase 

name host dilution reference 

mNaV1.9 (71n) Rabbit IF-1:400, WB-1:1000 By PD Dr. R. Blum 

panNaV Mouse IF-1:500 Sigma, S8809 
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NFL Chicken IF-1:10000 Millipore; AB5539 

-Tubulin Mouse IF-1:2000 Sigma, T5168 

Caspr Mouse  IF-1:300 Biocompare; 75-001 

TrkB Rabbit IF-1:400 Millipore; 07-225 

Trk Rabbit WB-1:1000 Santa Cruz; Sc-11 

p75NTR Mouse Panning: 15 ng/ml Prof. R. Rush, 
Flinders University, 
Australia 

Table 6: Secondary antibodies and labelling dyes  
DAPI = 4', 6-diamidino-2-phenylindole; HRP = horseradish peroxidase 

name host dilution reference 

mouse IgG affi-pure (H+L) Alexa 488 Goat IF-1:800 Invitrogen; A11029   

mouse IgG (H+L) DyLight 488 Goat IF-1:800 Jackson Immuno;      
115-485-146 

rabbit IgG affi-pure (H+L) Alexa 488 Donkey IF-1:800 Jackson Immuno;       
711-545-152 

rabbit IgG affi-pure (H+L) DyLight 488 Donkey IF-1:800 Jackson Immuno;       
711-485-152 

mouse IgG affi-pure (H+L) Cy3 Goat IF-1:800 Jackson Immuno;      
115-165-146 

rabbit IgG affi-pure (H+L) Cy3 Donkey IF-1:800 Jackson Immuno;      
711-165-152 

chicken IgG affi-pure (H+L) DyLight 649 Donkey IF-1:800 Jackson Immuno;      
703-495-155 

mouse IgG affi-pure (H+L) Cy5 Donkey IF-1:600 Jackson Immuno;       
715-175-150 

rabbit IgG Atto647N Goat IF-1:100 Sigma; 40839 

rabbit IgG affi-pure (H+L) HRP Goat WB-1:10000 Jackson Immuno; 
111-035-003 

Alexa Fluor® 546 phalloidin - IF-1:100 Invitogen, A22283 

Alexa Fluor® 633 phalloidin - IF-1:100 Invitogen, A22284 

DAPI - IF-1:5000 Sigma, D9542  

Oregon Green 488 BAPTA-1, AM - 5 μM Invitogen; O-6807  
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2.1.8 Plasmids and primers  

Table 7: Plasmids  
VSVG = glycoproteins of vesicular stomatitis virus 

name description  reference 

719-pLVX1-ROP-mNav1-9 
mouse NaV1.9 expression 

vector 

cloned by Steven 
Havlicek and PD Dr. 
Robert Blum 

pMD.G VSVG 

pRSV-REV 

pMDLg/pRRE 

pCMVR8.91 

helper plasmids for the 
packaging of lentiviral particles 

Addgene                
(Dull et al. 1998, 
Zufferey et al. 1998) 

 

Table 8: Primers for genotyping  
KO = knock-out; SMN = survival motor neuron; tg = transgene; Trk = tropomyosin receptor kinase;    
wt = wild type 

name sequence mouse line 

NaV1.9_antisense 5'-AACAGTCTTACGCTGTTCCGATG-3' 

NaV1.9_sense 5-ATGTGGCACTGGGCTTGAACTC-3 

neomycin gene 5-CTCGTCGTGACCCATGGCGAT-3 

NaV1.9 KO 

sense      5-CTGGAATTCAATATGCTAGACTGGCCTG-3 

KO primer 5-GATGTGCTGCAAGGCGATTAAGTTG-3 

wt primer 1049r 5-CAACTTTCCACTGTTTCAAGGGAGTTG-3 

Smn-/--SMN2tg 

trkb-n2 5’-ATGTCGCCCTGGCTGAAGTG-3’ 

trkb-c8 5’-ACTGACATCCGTAAGCCAGT-3’ 

pgk3-1 5’-GGTTCTAAGTACTGTGGTTTCC-3’ 

Ntrk-2-ROHR 

 

Table 9: Primers for cDNA amplification  
GAPDH = glyceraldehyde 3-phosphate dehydrogenase 

name sequence PCR targets 

712-for 5'-TTCACCGCCATCTACACCT-3' 

855-rev 5'-GAGCCGACAAATTGCCTAGC-3' 

mNaV1.5 
(NM_021544) 
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2541-for 5'-CATTCCTTCCTCGTCGTC-3' 

2676-rev 5'-AAAGCGATGAATAGGTTGAG-3' 

mNaV1.8 
(NM_009134) 

1992-for 5'-CCCTTGTGAGTCTCGCTGAC-3' 

2114-rev 5'-GGAGTGGCCGATGATCTTAAT-3' 

mNaV1.9 
(AF118044) 

2318U17-for 5'-GGGGAGTGGATCGAGAA-3' 

2448L16-rev 5'-TTGCTGAAGGAATTGG-3' 

NaV1.9L799P 
(NM_011887+LP)

205-for 5'-GCAAATTCAACGGCACA-3' 

337-rev 5'-CACCAGTAGACTCCACGAC-3' 

GAPDH 
(NM_008084) 

 

2.1.9 Commercial kits 

Table 10: Commercial kits  
BCA = bicinchoninic acid 

name reference 

LightCycler® FastStart DNA Master SYBR Green I Roche; 12239264001 

Pierce BCA Protein Assay Kit Thermo Scientific; 23225  

RNeasy Mini Kit  QIAGEN; 74104  

 

2.1.10 Software 

Table 11: Software  

name reference 

ApE- A plasmid Editor v2.0.36  2003-2009 by M. Wayne Davis  

BZ observation application 2007-2011 KEYENCE Corporation 

GraphPad Prism 4.02  1992-2004 GraphPad Software, Inc., San Diego, 
Califormia, USA  

ImageJ 1.42l  

 

Wayne Rasband, National Institutes of Health, USA, 
http://rsb.info.nih.gov/ij, Java 1.6.0_10-rc (32-bit) 1686K 
of 1500MB (<1%)  

LAS AF Lite 2.2.1 build 4842 2005-2009 Leica Microsystems CMS GmbH  

Microsoft Office 2003 1985-2003 Microsoft Corporation  
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Oligo 6.71 1989-2005 Wojciech Rychlik; Molecular Biology Insights, 
Inc., 8685 U.S. Highway 24 West Cascade, CO 80809, 
USA  

OriginPro 9.0.OG 1991-2012 OriginLab Corporation, One Roundhouse 
Plaza Northampton, MA 01060 USA 

Photoshop CS5 Adobe Systems, San Jose, CA, USA 

StreamPix 4  NORPIX Digital Video Recording Software 
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2.2 Methods 

2.2.1 Cell culture  

2.2.1.1 HEK 293T cells 

HEK 293T cells were cultured in DMEM with GlutaMax, 10% heat-inactivated fetal calf serum 

(FCS), 1% penicillin-streptomycin and 500 μg/ml geneticin at 37°C and 5% CO2 in a standard 

cell culture incubator. Confluent cells were washed two times with 1x PBS and detached with 

a 10% dilution of TrypLE Express in 1x PBS. After cell detachment trypsinization was 

stopped by addition of culture medium. A centrifugation step removed TrypLE Express 

solution and a defined part of the cell solution was transferred into a new cell culture flask 

with fresh culture medium.     

For experiments cells were cultivated on 0.5 mg/ml Poly-DL-ornithine hydrobromide (PORN) 

coated cover glasses or cell culture dishes. PORN coating of cover glasses and dishes 

occurred over night at 4°C. Coated material was three times washed with HBSS before cells 

were plated at appropriate densities.  

 

2.2.1.2 Embryonic motoneurons 

The isolation of primary embryonic motoneurons from spinal cord was performed according 

to the protocol described by Wiese et al. (2010). The lumbar spinal cord was dissected from 

day 14 embryos. Dorsal root ganglia were removed from spinal cord by displacing the 

ensheathing meninges and the spinal cord was stored in 180 µl of HBSS and kept on ice. 

Afterwards the tissue was trypsinized by addition of 20 µl of 1% Trypsin and incubation for 15 

minutes at 37°C. Addition of 20 µl of 1% Trypsin inhibitor stopped the trypsinization process 

and gently trituration solved the cell aggregates completely. For enrichment of motoneurons, 

cells were transferred to a 24-well plate which was coated with p75NTR antibody (1.8 mg/ml) 

and washed three times with neurobasal medium containing GlutaMax. After incubation at 

room temperature for 45 minutes, the panning plate was gently washed for three times with 

pre-warmed neurobasal medium containing GlutaMax to remove p75NTR negative cells. To 

dissolve and collect the motoneurons from the panning plate, 150 µl of depolarization 

solution and 30 seconds later 450 µl of motoneuron complete medium were added. The cell 

solution was transferred into a 15 ml falcon tube and centrifuged for four minutes at 400 x g. 

Cells were resolved in motoneuron complete medium and plated on PORN and laminin 

coated 10 mm cover glasses at a density of 1000 - 2000 cells/cover glass. Approximately   

45 minutes later when cells have attached, they were fed with motoneuron complete medium 
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containing the neurotrophic factors BDNF and CNTF (both at 5 ng/ml). One day after 

motoneuron isolation and then every second day 40% of the medium were replaced. 

 

2.2.2 DNA and RNA techniques  

2.2.2.1 Isolation of DNA 

Mouse tail biopsies of three-week-old mice or head biopsies of day 14 embryos were 

dispersed in 500 µl DNA lysis buffer with 20 µl of 20 mg/ml proteinase K at 60°C in a shaker 

at 550 rpm for over night. Next, 300 µl of 5% SDS and 120 µl of 3 M NaCl were added to 

each reaction tube. The samples were mixed until the solutions were uniform and viscous. 

After addition of 750 µl chloroform, samples were mixed again until the solution became 

homogenous. A 10 minutes centrifugation step followed at 4°C and 14 000 rpm. The upper 

phase of each sample was transferred to a new reaction tube and chloroform clearance was 

repeated until the phase became completely clear. Next, 1 ml of 100% ethanol was added to 

the supernatant and tubes were mixed carefully until a white DNA precipitate became visible. 

After 10 minutes centrifugation at 4°C and 14 000 rpm, the DNA pellet was washed with  

70% ethanol. The supernatant was taken off and the pellet was dried on air for almost five 

minutes. DNA was resolved in 100 µl of 10 mM Tris pH 8.0 and stored at 4°C.  

 

2.2.2.2 Isolation of RNA 

Isolation of total RNA from spinal cord tissue, dorsal root ganglia tissue or cultured primary 

motoneurons was performed by using the RNeasy Mini Kit from QIAGEN, according to the 

manufactures' protocol. Briefly, frozen tissue was solved in RLT Plus buffer and 

homogenized using an autoclaved Silent Crusher S (Heidolph). After centrifugation the 

supernatant was transferred to a genomic DNA Eliminator spin column placed in a 2 ml 

collection tube. After a centrifugation step, a defined volume of 70% ethanol was added to 

the flow-through. The sample was mixed and 700 µl were transferred to a RNeasy spin 

column. After the next centrifugation step, the RNA containing column membrane was 

washed by adding RW1 and RPE buffer. To elute the RNA, the RNeasy spin column was 

placed in a new 1.5 ml collection tube and 30-50 µl RNase-free water was added directly to 

the spin column membrane. The lid of the tube was closed gently and centrifugation for one 

minute at 10000 rpm took place. Afterwards RNA concentration was measured using 

NanoDrop 1000 spectrophotometer from PeqLab. The purity of RNA was assessed by the 

calculated ratio of absorption at 260 nm and 280 nm. The Ration of 260/280 should be close 

to two for pure RNA. For an additional quality control, ribosomal 5S, 18S and 28S RNA was 
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visualized by electorphoresis using a 1.6% agarose gel in 1x TBE. Each RNA probe was 

mixed with 7 µl formamide, 2x TBE and 1 mg/ml ethidium bromide and incubated for           

10 minutes at 70°C before loading on the TBE gel. Electrophoresis was performed at         

40-80 mA in a mini gel chamber treated with 3% H2O2 for at least 15 minutes. 

 

2.2.2.3 Polymerase chain reaction 

DNA amplification by polymerase chain reaction (PCR) was performed using Taq 

polymerase and PCR reaction buffer from 5 Prime. Each reaction mix contained: DNA as 

template, forward and reverse primer, 2 mM dNTPs, 10x PCR buffer, Taq polymerase and 

water. In case 5 M betaine was used as enhancer.  

 

Figure 10: Reaction mix and PCR program for genotyping 
(A - C) Reaction mix (left) and PCR program (right) for genotyping of the NaV1.9 KO mouse line (A), 
the Smn-/--SMN2tg mouse line (B), and the TrkB-/- (Ntrk-2-Rohr) mouse line (C). PCR = polymerase 
chain reaction; KO = knock-out; tg = transgene; dNTP = deoxyribonucleotide; DNA = deoxyribonucleic 
acid; SMN = survival motor neuron; Trk = tropomyosin receptor kinase 
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The DNA amplification process occurred in Eppendorf's Mastercycler® PCR machine. PCR 

was used for genotyping of the following mouse lines: NaV1.9 KO, Smn-/--SMN2tg and TrkB-/- 

(Ntrk-2-Rohr). The reaction mix and PCR program for each genotyping experiment is shown 

in Figure 10. After the PCR process DNA fragments were analysed by agarose gel 

electrophoresis.  

 

2.2.2.4 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments in a 1-2% agarose gel 

containing agarose, 1x TAE and 0.4 µg/ml ethidium bromide. Samples were mixed with       

1x DNA loading buffer and loaded on the gel together with 250 ng (5 µl) of a 100 bp or 1 kb 

DNA size marker. The DNA loaded agarose gel was run in 1x TAE for 30 minutes at 120 V. 

Finally, the visualization of DNA bands was performed at 368 nm. 

 

2.2.2.5 Reverse transcriptase polymerase chain reaction 

In this variant of PCR, RNA is reverse-transcribed into its DNA complement (cDNA) using the 

enzyme reverse transcriptase. To synthesize cDNA, 100-200 ng RNA were mixed with 2 μl of 

10 mM dNTPs, 1 μl of 100 nmol/μl random hexamer primers and 1 μl of 40 units RNasin. The 

solution was incubated for five minutes at 65°C and after a short placement on ice a master 

mix containing 4 µl of 5x first strand buffer, 2 µl of 0.1 mM DTT and 2 µl of 25 mM MgCl2 was 

added. The reaction was further incubated for five minutes at 37°C. Subsequently, 1 µl of 

SuperScriptTM III Reverse Transcriptase was added to each reaction and reverse 

transcription occurred for two hours at 37°C. After 10 minutes of heat inactivation of the 

enzyme at 70°C, synthesized cDNA was diluted 1:10 in EB-BSA and stored at -20°C or used 

for qPCR immediately. 

 

2.2.2.6 Quantitative real time polymerase chain reaction 

Quantitative real time polymerase chain reaction (qRT-PCR) was used to amplify and 

simultaneously quantify PCR products. This variant of PCR was performed using the 

LightCycler 1.5 Instrument (Roche) according to the protocol of the LightCycler® FastStart 

DNA Master SYBR Green I kit. The reaction took place in glass capillaries in a final volume 

of 20 µl. Figure 11 shows the qRT-PCR components and cycling conditions for the 

quantitative amplification of NaV1.5, NaV1.8, NaV1.9, NaV1.9L799P and GAPDH as target in 

cDNA from several tissues and cultured motoneurons.  
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Figure 11: qRT-PCR components and cycling conditions 
(A - E) Reaction mix (left) and qRT-PCR program (right) for amplification of NaV1.5 (A), NaV1.8 (B), 
NaV1.9 (C), NaV1.9-L799P (D), and GAPDH (E). qRT-PCR = quantitative real time polymerase chain 
reaction; cDNA = copy or complementary Deoxyribonucleic acid; GAPDH = glyceraldehyde 3-
phosphate dehydrogenase  
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Intron-spanning primers, producing a PCR product of around 150 bp, were selected with 

Oligo 6.71 software and PCR conditions, primer concentration and MgCl2 concentration were 

optimized as described earlier (Durand et al. 2006). After polymerase chain reaction, 

products were further analysed by agarose gel electrophoresis, melting curve analysis, and 

control PCRs. 

 

2.2.3 Protein analysis techniques 

2.2.3.1 Protein isolation and measurement of protein concentration 

For protein isolation, lumbar and thoracic dorsal root ganglia (DRG) were dissected from 

adult mice, collected in a 1.5 ml reaction tube, which was filled with 500 µl 1x PBS, and kept 

on ice. After short centrifugation, PBS was removed and the tissue was solved in 14 µl of 

10% Nonidet P40 and 70 µl of protein lysis buffer composed of 2.5 ml basic protein lysis 

buffer (150 mM NaCl; 10% glycerol; 50 mM HEPES pH 7.4) together with one tablet of 

complete Mini (EDTA-free) and 25 µl 100 mM DTT. The tissue was homogenized using 

Hielscher UP50H ultrasonic homogenizer with a MS1/3 sonotrode. After several short pulses 

(5 s pulse with 85% amplitude; MS1 sonotrode) and incubation steps on ice, the sample was 

centrifuged and a part of the protein lysate was directly prepared for gel electrophoresis. 

Another part of the lysate was used for protein concentration determination and the rest of 

the lysate was stored at -20°C (or for long-term at -80°C).  

To isolate proteins from cultured cells, a 6 cm cell culture dish with adherent cells was put on 

ice, cells were washed twice with 1x PBS and 200-300 µl of protein lysis buffer containing     

4 ml basic protein lysis buffer (150 mM NaCl; 10% glycerol; 50 mM HEPES pH 7.4), 1 ml of 

2% Nonidet P40, ½ tablet of complete Mini (EDTA-free), 1 mM NaF, 10 mM Na-

pyrophosphate and 2 mM Na-orthovanadate, was added. Cells were scrapped from culture 

dishes, collected in 1.5 ml reaction tubes and incubated for 10 to 15 minutes on ice. Cells 

were further solubilised with Hielscher UP50H ultrasonic homogenizer and after 

centrifugation lysates were used in the same way as lysates from tissue samples. 

The protein concentration was determined with the Pierce BCA Protein Assay kit according 

to the manufactures’ protocol. Samples were diluted 1:10 in 1x PBS and mixed with 1 ml of 

BCA solution. After incubation for 30 minutes at 37°C, the absorption was measured at     

562 nm with an Eppendorf photometer. To determine the protein amount of the samples, a 

BSA standard calibration curve was generated. Calculation occurred with Microsoft Excel 

2003 software.  
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2.2.3.2 SDS-polyacrylamid gel electrophoresis and Western blot analysis 

Sodium dodecyl sulphate (SDS) polyacrylamid gel electrophoresis (PAGE) was performed 

with 3-8% Tris-Acetate gradient gels from BioRad. Samples were mixed with 4x Laemmli 

sample buffer and boiled for 10 minutes at 50°C. After centrifugation a defined amount (40-

60 µg) of each sample was loaded on the gel together with 8 µl of Precision Plus ProteinTM 

All Blue Standards for size identification. The process of electrophoresis occurred in a 

CriterionTM Cell from BioRad, in 1x electrophoresis buffer (30.3 g/l Tris base; 144 g/l glycine; 

10 g/l SDS, pH 8.45) at constant 150 V for 120 minutes.  

To transfer the proteins from gel to a polyvinylidene difluoride (PVDF, BioRad, 162-0177) 

membrane, the gel and some filter papers (BioRad, 1703969) were equilibrated in transfer 

buffer (1x electrophoresis buffer; 20% methanol) for 30 minutes. The PVDF membrane was 

activated in methanol and then equilibrated in transfer buffer, too. Filter paper was placed on 

the anode of the Trans-Blot SD Semi-Dry Transfer Cell (BioRad), followed by PVDF 

membrane, gel, another filter paper and the lid containing the cathode plate. Proteins were 

blotted using the semi-dry western blot chamber under the conditions 20 V constant and   

640 mA (5.5 mA/cm2) for 40 minutes.  

 

2.2.3.3 Immunological detection of proteins  

After blotting, the membrane was washed for 10 minutes in TBS-T (1x TBS, 0.2% Tween 20) 

and afterwards incubated in blocking solution (1x TBS-T, 5% powdered milk, 5% goat serum) 

over night at 4°C on a shaker. Next day, the membrane was transferred into blocking solution 

with primary antibody and incubated for three to four hours at room temperature. A three 

times washing step followed with TBS-T for 10 minutes and secondary antibody incubation 

occurred in 1x TBS-T with 5% powdered milk for another three hours at room temperature. 

The membrane was again washed three times with TBS-T for 10 minutes and finally protein 

visualisation took place in a dark room using ECL Prime Western Blotting Detection System 

(Amersham) according to the manufacturers’ instructions. ECL was incubated, removed and 

the blots were exposed to X-ray HyperfilmTM (Amersham) for detection of the 

chemiluminescence. Films were developed by Agfa HealthCare CP 1000 Medical X-Ray Film 

Processor. For loading control the membrane was washed with TBS-T for 10 minutes at 

room temperature, blocked over night at 4°C with blocking solution and re-probed with a 

primary and secondary antibody.    
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2.2.3.4 Immunocytochemistry and immunohistochemistry 

For immunocytochemistry, cells were fixed with pre-warmed 4% paraformaldehyde (PFA) for 

10 minutes at room temperature, washed three times with 1x PBS and incubated in blocking 

solution containing 1x PBS, 10% horse serum, 0.1% Tween 20 and 0.3% Triton X-100 for   

1.5 hours at room temperature. Afterwards, cells on cover glasses were transferred into a 

dark and wet chamber on a plastic paraffin film (Parafilm) and covered with 75 µl of the 

primary antibody solution. Antibodies were diluted in blocking solution. After 2-3 hours of 

antibody incubation, cells were washed three times with washing solution (1x PBS; 0.1% 

Tween 20; 0.1% Triton X-100) and incubated with 75 µl of the secondary antibody solution 

for another two hours at room temperature. Subsequently, cells were washed three times 

with washing solution and incubated with 75 µl of 0.4 μg/ml DAPI in 1x PBS for 10 to 15 

minutes. Next, cells were washed three times with 1x PBS, cover glasses were dipped in 

water and after a short drying step the cells were embedded with aqua poly/mount on glass 

slides. Finally, the slides were used for staining analysis via microscopy or stored at 4°C in 

slide boxes or slide folders to protect them from light. 

Immunohistochemistry was performed using teased nerve fibres or dorsal root ganglia 

cryostat slices. For preparation of teased nerve fibres, adult mice were deeply anesthetized 

with CO2 and trans-cardially perfused with 2% PFA. For this, the thoracic cavity was opened, 

a perfusion needle was inserted into the left ventricle of the exposed heart and the right 

atrium was cut to allow the exchange of blood and PFA. After perfusion, nerves were 

dissected and separated, so called teased (Kohl et al. 2010) in 0.5x PBS on glass slides and 

dried over night at room temperature. Next morning, the tissue was surrounded with Roti®-

Liquid Barrier Marker and after drying, PBS was added. The further procedure was same as 

used for immunocytochemistry. The tissue was fixed with 4% PFA, blocked for 1.5 hours, 

incubated with primary (over night at 4°C) and secondary antibodies, stained with DAPI and 

embedded with aqua polymount. Finally, a cover glass was put on the stained fibres.  

For preparation of dorsal root ganglia cryostat slices, adult mice were anesthetized and 

trans-cardially perfusion was performed with 4% PFA. Dorsal root ganglia were dissected 

and incubated in 4% PFA over night at 4°C. Next day, fixed dorsal root ganglia were 

transferred into sucrose solutions in PBS with increasing sucrose concentration from 10% to 

30%. When the tissue was submerged in the 30% sucrose solution, dorsal root ganglia were 

embedded into Tissue-Tek and frozen with the help of dry ice. Afterwards, the embedded 

DRGs were stored at -20°C over night. Next day, the tissue was cut into 10 µm thick sections 

using the Leica CM1950 cryostat and placed on super frost glass slides. Cryostat slides were 

stored at -20°C and dried before staining at room temperature. The immunological labelling 

procedure was same as described above.  
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To analyse the immunological staining, the following microscopes were used: Leica SP5 

confocal laser scanning microscope equipped with a Mai-Tai multi photon laser (Spectra-

Physics) for stimulated emission depletion (STED) microscopy, an inverted confocal 

microscope (SP5, Leica) equipped with a laser combiner for standard confocal laser 

scanning microscopy, alternatively Fluoview1000ix81, Olympus equipped with a FV10-

MCPSU laser combiner was used for standard confocal laser scanning microscopy as 

described recently (Subramanian et al. 2012). 

 

2.2.4 Axon length measurement  

Motoneurons from E14 embryos were cultured for five to seven days in vitro and stained by 

immunocytochemistry (see 2.2.1.2 and 2.2.3.4). Images from anti -tubulin labelled cells 

were captured using a Keyence BZ-8000 fluorescence microscope equipped with the 

following objective: PlanApo 20x NA0.75. Axon length was measured with ImageJ 1.42l 

software and statistically analysed with GraphPad Prism 4.02 software. Mean values of at 

least three independent experiments were presented with the standard error of the mean. 

 

2.2.5 Survival assay 

To analyse the survival of motoneurons, 24-well plates were signed at the bottom with a 

vertical and a horizontal line crossing each well as orientation for counting. Plates were 

coated with PORN, washed three times with neurobasal medium containing GlutaMax and 

coated additionally with laminin. Motoneurons were isolated (see 2.2.1.2) and seeded on the 

coated 24-well plates. After 24 hours of incubation at 37°C in a standard cell culture 

incubator, living motoneurons were counted using the drawn "pluses" on the bottom of the 

plates. A defined area of four quadrants along the lines was counted under the phase 

contrast microscope. Every second day 40% of the medium was exchanged as described in 

2.2.1.2 and the counting procedure was repeated at day five and day seven in vitro. 

Percentage survival was calculated on the basis of results obtained at day five and day 

seven. Survival of motoneurons was compared between several mouse genotypes and 

between different neurotrophic factor combinations, which were used in the motoneuron 

complete medium for cell feeding. The neurotrophic factors BDNF (5 ng/ml) and CNTF        

(5 ng/ml) were used. As control, cells were fed with motoneuron complete medium without 

any additional factor.    
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2.2.6 Calcium imaging 

For Ca2+ imaging, artificial cerebral spinal fluid (ACSF) ringer solution composed of 127 mM 

NaCl, 3 mM KCl, 2.5 mM NaH2PO4, 2 mM CaCl2, 2 mM MgCl2, 23 mM NaHCO3 and 25 mM 

D-glucose was used. Glucose, CaCl2 and MgCl2 were added freshly before use and pH was 

adjusted during the experiment by bubbling the ACSF with carbogen gas. Osmolarity of the 

solution was verified using the Micro-Osmometer TypOM806 from Vogel. The high-affinity 

calcium indicator Oregon Green 488 BAPTA-1, AM was prepared as 5 mM stock solution by 

adding 7.94 µl of 20% Pluronic® F-127 solved in DMSO. After incubation for two minutes in a 

sonifier water bath (Bandelin), 0.5 µl aliquots were made. For dye loading of cells, 500 µl of 

ACSF was added to one aliquot of Oregon Green 488 BAPTA-1, AM. Cells, grown on cover 

glasses were incubated in the solution for 15 minutes at 37°C and 5% CO2. Subsequently the 

cover glasses were transferred to the imaging setup containing an upright fixed microscope 

(BXWI, Olympus) equipped with a CoolLED (Visitron Systems) and a X-cite 120Q excitation 

light source (Lumen dynamics). The microscope system was controlled by Remote Control 

SM7 (Luigs and Neumann), while imaging was performed in a imaging chamber under 

continuous perfusion with ACSF warmed to 35°C using a SH-27B In-line Solution Heater 

(Warner Instrument Cooperation) regulated over Automatic temperature controller (Warner 

Instrument Cooperation) and a Bridge 500 under the control of Bad Controller V (Luigs & 

Neumann). For steady flow of the solution, the Minipuls 3 Peristaltic Pump (Gilson) was used 

and images were captured with the Rolera-XR camera (Qimaging) operated by the 

StreamPix 4 software (Norpix). During imaging of Ca2+ dynamics, the following parameters 

were applied: frame size limited to 600, 200 ms exposure, at a speed of 5 Hz. Oregon Green 

was excited at a wave length of 470 nm.  

To analyse Ca2+ imaging data, fluorescent intensity in defined regions of interest (ROIs) were 

obtained using the ImageJ 1.42l software. After ROI definition, change in fluorescence 

intensity was measured over time using the Time Series Analyzer V2 0 tool. Results were 

transferred to Microsoft Excel 2003 for further calculations. Here, background noise was 

subtracted from each ROI at each time point using the average of three background ROIs. 

To display relative changes of fluorescence intensity over the time (F/F0), fluorescence 

intensity at each time point (FROI) was set in correlation to the basic fluorescence intensity 

(F0) using the following formula: (F/F0) = (FROI - F0) / F0. Afterwards peak analysis was done 

with OriginPro 9.0.OG software (OriginLab Corporation). For this, a baseline was defined and 

peaks with an amplitude of at least 10% increase over background were defined to represent 

a calcium transient. 
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3 Results 

Earlier experiments by our group showed that pharmacological inhibition of voltage-gated 

sodium channels (VGSC) causes a reduced spontaneous neural activity as well as 

decreased axon elongation of cultured embryonic motoneurons (Jablonka et al. 2007, 

Subramanian et al. 2012). During these experiments, VGSC pore blocker saxitoxin appeared 

to be more efficient than the pore blocker tetrodotoxin (Subramanian et al. 2012). Thus, for 

the discovery of voltage-gated sodium channels, which are responsible for the regulation of 

Ca2+ influx and subsequent axon growth in motoneurons, we focused on 

TTX-insensitive/STX-sensitive VGSCs. 

3.1 NaV1.9 is expressed in spinal cord and motoneurons 

Three TTX-resistant voltage-gated sodium channels have been described in the literature: 

the heart specific NaV1.5 channel and the homologues NaV1.8 and NaV1.9. NaV1.8 and 

NaV1.9 are well known to be highly expressed in dorsal root ganglia neurons (Dib-Hajj et al. 

1998, Catterall et al. 2005, Beyder et al. 2010). In order to investigate the expression level of 

all three channels in the spinal cord, where motoneurons are located, and in cultured 

motoneurons, channel encoding transcripts were amplified by efficiency controlled 

quantitative RT-PCR (Figure 12A and B). RNA was isolated from spinal cord and dorsal root 

ganglia at different developmental stages, from cultured embryonic motoneurons at day 7 in 

vitro and as reference for NaV1.5 from heart at postnatal day 1 (P1). Representative 

amplification products and RT-PCR amplification curves are demonstrated in Figure 12A - D. 

External standard dilution curves with P1 heart RNA (2 ng - 100 ng) and E18 spinal cord 

RNA (10 ng - 500 pg) provided as references for the amplification of NaV1.5 and NaV1.9 in 

cultured motoneurons (Figure 12C and D). In the spinal cord, NaV1.5 and NaV1.9 transcripts 

were already detectable at embryonic day 14 (E14), while NaV1.8 expression started at E15 

(Figure 12A). NaV1.5 as well as NaV1.9 transcripts were also verified in cultured motoneurons 

at day in vitro (DIV) 7, whereas NaV1.8 transcripts were not found (Figure 12B). The 

amplification efficiency of the NaV1.8 qRT-PCR protocol (1.92) was close to the amplification 

efficiency of the NaV1.9 qRT-PCR protocol (1.95). This reveals that NaV1.9 mRNA is 

expressed at relatively high levels in motoneurons (Figure 12B). Interestingly, the relative 

expression of NaV1.5 in cultured motoneurons was at least 27-fold higher than the 

expression of NaV1.9. Consequently, NaV1.5 and NaV1.9 are the best candidate proteins that 

may trigger the VGSC-dependent Ca2+ transients in motoneurons. However, in comparison 

to NaV1.5, the NaV1.9 channel comprises unique electrophysiological properties, suggesting 
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him as most likely candidate as an initial trigger of cell-autonomous excitation of 

motoneurons. NaV1.9 has a lower activation threshold than NaV1.5 and is able to mediate 

spontaneous excitation near the resting potential, at least in dorsal root ganglia and 

myenteric neurons (Cummins et al. 1999, Herzog et al. 2001, Rugiero et al. 2003, Catterall et 

al. 2005, Ostman et al. 2008). Hence, we focused in subsequent analysis on NaV1.9.  

 
Figure 12: Expression pattern of TTX-resistant VGSCs in spinal cord, DRGs and motoneurons 
(A and B) Representative amplification products after qRT-PCR with indicated cDNA samples.           
(A) Early expression pattern of transcripts encoding tetrodotoxin-resistant voltage-gated sodium 
channels in spinal cord and DRG neurons. (B) Expression of transcripts encoding NaV1.9 (right panel) 
and NaV1.5 and NaV1.8 (left panel) in cultured motoneurons at DIV 7. (C and D) Real-time monitoring 
of the fluorescence emission of SYBR Green I during PCR amplification of NaV1.5 (C) and NaV1.9 (D). 
In NaV1.5 amplification, serial dilutions of heart RNA served as external control (black lines in C) and 
for NaV1.9, spinal cord RNA was used as control (black lines in D). (E) Determination of the number of 
VGSC transcripts per RNA or per number of GAPDH transcripts in spinal cord, cultured motoneurons 
and DRG neurons. cDNA = copy/complementary deoxyribonucleic acid; DIV = day in vitro;                  
E = embryonal; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; MN = motoneuron; P = 
postnatal; qRT-PCR = quantitative real time polymerase chain reaction; RNA = ribonucleic acid; SC = 
spinal cord; TTX = tetrodotoxin; VGSC = voltage-gated sodium channel 
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In some studies, a broad expression pattern of NaV1.9 was described (Jeong et al. 2000, 

Ogata et al. 2000, Blum et al. 2002). However, in contrast to data from dorsal root ganglia 

and myenteric neurons, these expression data were not supported by a verification of 

voltage-dependent NaV1.9 currents. Earlier studies demonstrated no or only low expression 

levels for NaV1.9 in the spinal cord (Dib-Hajj et al. 1998, Jeong et al. 2000, Tyrrell et al. 2001, 

Wetzel et al. 2013). For that reason, we determined the number of NaV1.9 transcripts in the 

developing spinal cord, in dorsal root ganglia neurons and in cultured motoneurons at DIV 7 

(Figure 12E). Quantitative RT-PCR confirmed 26 NaV1.9 transcripts per 10 ng RNA in 

cultured motoneurons and our data indicated that NaV1.9 expression increases continuously 

between E12 (spinal cord: 2 copies/10 ng RNA; DRG: 18 copies/10 ng RNA) and E18 (spinal 

cord: 373 copies/10 ng RNA; DRG: 11 580 copies/10 ng RNA) in spinal cord and DRG tissue 

(Figure 12E). In dorsal root ganglia NaV1.9 expression became very high in older mice (P19: 

27 015 copies/10 ng RNA), while in spinal cord the NaV1.9 expression level decreases after 

birth compared to NaV1.9 expression levels at late embryonic stages (E18: 373 copies/10 ng 

RNA; P1: 207 copies/10 ng RNA). This observation suggests that NaV1.9 presence and 

activity is necessary during early developmental periods, when axon growth of motoneurons 

occurs. Moreover, NaV1.9 transcripts were also found in young motoneurons in situ 

(Subramanian et al. 2012). Laser-assisted microdissection of young motoneurons from the 

anterior horn of the spinal cord exposed a low abundance of NaV1.9 transcripts 

(Subramanian et al. 2012). In summary, NaV1.9 transcripts are expressed in the spinal cord 

and in embryonic motoneurons. This raised the question whether NaV1.9 protein is also 

found in motoneurons.   

3.2 NaV1.9 protein is localized in cultured embryonic motoneurons 

and at the node of Ranvier of motor and sensory nerve fibres 

Voltage-gated sodium channels are transmembrane proteins containing a highly processed  

 subunit with a relative molecular weight (Mr) of 260 kDa, which is associated with smaller 

 subunits (Catterall et al. 2005). Moreover, multiple phosphorylation sites in the intracellular 

loops as well as glycosylation sites in the extracellular linkers are common for voltage-gated 

sodium channels (Dib-Hajj et al. 2002, Catterall et al. 2005). In the case of NaV1.9 protein 

detection by western blot analysis different results were described (Yiangou et al. 2000, 

Tyrrell et al. 2001). Yiangou et al., 2000 identified a 180 kDa band for NaV1.9 (Yiangou et al. 

2000), while Tyrrell et al., 2001 were able to observe a NaV1.9-specific antibody reaction at 

210 kDa from membrane fractions of adult dorsal root ganglia and trigeminal ganglia, but not 

from liver or spinal cord (Tyrrell et al. 2001).  
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In order to verify our antibody against the carboxyterminal end of NaV1.9, a stable cell line 

expressing NaV1.9 was developed. 

3.2.1 Generation of a stable NaV1.9 expressing cell line 

It has shown to be problematic to achieve robust heterologous expression levels of NaV1.9 in 

transfected cell lines, oocytes or other reconstitution models (Ostman et al. 2008, Smith & 

Momin 2008, Waxman & Estacion 2008). Therefore, we established a lentiviral vector with a 

high DNA packaging capacity and a stabilized DNA amplification backbone. This lentiviral 

NaV1.9 expression vector consists of a rop-element, which enables the stabilization of the 

NaV1.9 DNA amplification in Escherichia coli and a shortened "woodchuck hepatitis post-

transcriptional regulatory" (WPRE) element. This construction enabled a packaging capacity 

in the range of 5460 base pairs (bp). The NaV1.9 DNA element (5.3 kb) and the retroviral 

elements kept the vector below 9.8 kb, which is the proposed packaging limit of lentiviral 

vectors. After packaging using a "second-generation packaging system", HEK 293T cells 

were infected with these lentiviral particles. A first test via immunocytochemistry and western 

blot analysis revealed that isolation steps were necessary to increase the amount of NaV1.9 

expressing HEK 293T cells. Therefore, infected HEK 293T cells were cultivated on uncoated 

cell culture dishes in suspension to permit the selection of single positive clones (Figure 

13A). In the course of a first isolation step, 48 clones were transferred to 24-well plates, 

where they grew adherent in small colonies for a few days (Figure 13B). Cells were 

afterwards tested using immunocytochemistry and western blot analysis (Figure 14). 

 

Figure 13: Isolation 
process to generate 
stable NaV1.9 
expressing cells 
(A) After HEK 293T 
cell infection with 
lentiviral particles 
containing recombinant 
NaV1.9 expression 
vector (719-pLVX1-
ROP-mNav1-9), single 
clones, growing in an 
uncoated cell culture 
dish in suspension.  
(B) Single colonies 
growing on 24-well 
plates after selection of 
48 single clones.           
HEK = human 
embryonic kidney  
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Five out of 48 HEK 293T cell clones were 40 - 50% immuno-positive for NaV1.9 (Figure 14A), 

but only very weak signals were detected via western blot analysis (Figure 14C, clone B16). 

In a next round of single clone selection, 48 more clones were selected out of cells from a 

previous NaV1.9-positive clone. The second isolation step resulted in five clones that stably 

express high amounts of mouse NaV1.9 protein as indicated in Figure 14B and C (B16A7, 

B16A8, B16A9, B16A10, B16B18). Lysates of these cells showed two predominant bands for 

NaV1.9, one at approximately 180 kDa and a second at about 280 kDa (Figure 14C). Beside 

its function as positive control for further protein detection analysis, the newly generated 

stable NaV1.9 expressing cell line display a useful tool for functional analysis of NaV1.9. 

 
Figure 14: Verification of the stable NaV1.9 expressing cell line 
(A and B) Stable expression of mouse NaV1.9 in HEK 293T cells visualized by immunocytochemistry. 
Anti-NaV1.9 staining (left), anti-pan NaV staining (middle), and overlap of anti-NaV1.9 and anti-pan NaV 
immunoreactivity with or without DAPI stained nuclei (right). Bar: 20 µm. (A) Immuno-stained clone 
B16 from the first selection step. (B) Immuno-stained clone B16A8 from the second selection step.            
(C) Stable expression of recombinant mouse NaV1.9 in a clone from the first selection step (B16) and 
in clones from the second selection step displayed by two bands at a Mr of ~180 kDa and ~280 kDa. 
DAPI = 4', 6-diamidino-2-phenylindole; kDa = kilo dalton; HEK = human embryonic kidney 
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3.2.2 Verification of the anti-mouse NaV1.9 antibody 

For the detection of NaV1.9 protein, in cultured embryonic motoneurons, anti-mouse NaV1.9 

antibodies had been provided, which were raised in rabbits. Figure 15A shows the sequence 

of Peptide 71 in red, which was deduced from the carboxyterminal end of mouse NaV1.9 and 

used for immunization of the rabbits. The NaV1.9-specific rabbit antiserum labelled mouse 

NaV1.9 protein in cryostat slides of dorsal root ganglia from wild type mice (Figure 15B; upper 

panel). In contrast, dorsal root ganglia from NaV1.9 knock-out mice were NaV1.9 immuno-

negative (Figure 15B, lower panel). We used DRG tissue for NaV1.9 antibody verification, 

because NaV1.9 is known to be highly expressed in neurons of dorsal root ganglia (Figure 

12E). Western blot analysis of lysates from wild type lumbar and thoracic dorsal root ganglia 

demonstrated the typical double band pattern for NaV1.9 (Figure 15C). This pattern closely 

resembles the detection pattern of NaV1.9, after stable expression in HEK 293T cells (Figure 

14C). No signal for NaV1.9 was detectable in dorsal roots alone (Figure 15C). A further 

western blot experiment revealed the same specific NaV1.9 immuno-positive signal in lysates 

from a stable NaV1.9 expressing cell line, which served as positive control and in lysates from 

wild type dorsal root ganglia (Figure 15D). The signal was absent in dorsal root ganglia 

lysates harvested from NaV1.9 knock-out mice (n = 4). Detection of Trk receptors verified 

equal loading of protein from wild type and NaV1.9 knock-out animals. 

Anti-NaV1.9 immunohistochemistry experiments with cryostat slides of wild type dorsal root 

ganglia were difficult to interpret (Figure 16). Here, smaller DRG neurons showed a 

continuous red staining (Figure 16, triangle arrows). In this assay, the anti-NaV1.9 antibody 

also caused a nuclear label, which was not observed in all cells, but also found in the NaV1.9 

knock-out, thus labelling e.g. DRG neurons with a bigger diameter size as well (Figure 16, 

non-triangle arrows). This observation fits perfectly to the description that NaV1.9 is 

preferentially expressed in small (<30 µm diameter) nociceptive neurons of the dorsal root 

ganglia and trigeminal ganglia (Dib-Hajj et al. 2002, Fang et al. 2002).  
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Figure 15: Verification of the specificity of anti-mouse NaV1.9 antibody 
(A) Sequence of Peptide 71, a specific sequence for the carboxyterminal end of mouse NaV1.9 (red). 
Differences to rat or human NaV1.9 in yellow. (B) Immunoreactivity of anti-mNaV1.9 (71n) (middle) and 
Neurofilament and DAPI positive nuclei as orientation on cryostat slides of DRG neurons from wild 
type and NaV1.9-/- mice. Bar: 20 µm. (C and D) Detection of NaV1.9 via western blot analysis displayed 
by the typical double band pattern with bands at ~180 kDa and ~280 kDa. (C) Endogenous mouse 
NaV1.9 from lumbar and thoracic DRG neurons. (D) Endogenous mouse NaV1.9 in DRGs from wild 
type and NaV1.9-/- mice and recombinant NaV1.9 in the stable cell line 293-mNaV1.9. Anti-Trk 
antibodies served as loading control for DRG tissue. DAPI = 4', 6-diamidino-2-phenylindole; DRG = 
dorsal root ganglia; kDa = kilo dalton; HEK = human embryonic kidney; NFL = neurofilament; Trk = 
tropomyosin receptor kinase 
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Figure 16: Immunohistochemistry of NaV1.9 in dorsal root ganglia 
Single confocal sections of anti-mNaV1.9 (71n) immunoreactivity on cryostat slides of wild type DRG 
neurons. Small NaV1.9 positive DRG neurons marked with triangle arrows, NaV1.9 negative DRG 
neurons marked with non-triangle arrows. Caspr staining (green) and DAPI positive nuclei (blue) 
served as orientation. Bar: 20 µm. Caspr = contactin-associated protein; DAPI = 4', 6-diamidino-2-
phenylindole; DRG = dorsal root ganglia 

3.2.3 Detection of NaV1.9 protein in cultured embryonic motoneurons 

In young cultured motoneurons, local Ca2+ transients appear in the soma, in distal axons and 

even in growth cones (Jablonka et al. 2007, Subramanian et al. 2012). Thus, we expected 

NaV1.9 protein in these regions, close to voltage-gated calcium channels. To analyse the 

localization of NaV1.9 protein in cultured embryonic motoneurons, we performed stimulated 

emission depletion (STED) microscopy combined with standard confocal laser scanning 

microscopy for the detection of actin and -tubulin as structural markers (Figure 17). NaV1.9 

protein was found in immuno-positive clusters along the axon and enriched at somatic sites 

(Figure 17A). In axons and growth cones, anti-mouse NaV1.9 antibody detected high 

amounts of the protein in distal regions of the axon and in small protrusions (Figure 17B and 

C). Thereby, NaV1.9 protein was determinable along the cell surface of growth cones in a 

small punctuated formation (Figure 17C). These results support the concept that NaV1.9 may 

act as a local trigger for the generation of local calcium transients in the axon of 

motoneurons.   

 
 



3 Results 

 58

 

Figure 17: Detection of NaV1.9 protein in cultured embryonic motoneurons 
(A - C) Single confocal sections of anti-mNaV1.9 (arrows) stained motoneurons by STED microscopy, 
combined with standard laser scanning microscopy of actin and -tubulin staining. (A) Anti-mouse 
NaV1.9 immunoreactivity, concentrated in axonal regions of DIV 7 motoneurons with enlarged inlet 
(lower panel). (B) Example of a DIV 3 growth cone with anti-NaV1.9 immunoreactivity in a fine 
protrusion. Bar in A and B: 10 µm. (C) Example of a motoneuron growth cone at DIV 7 with NaV1.9 
immunoreactivity, concentrated in axonal region and then found on the surface of the growth cone in 
small punctuate-like elements. Bar: 10 µm (C, upper panel), 5 µm (C, lower panel). DIV = day in vitro; 
STED = stimulated emission depletion 

3.2.4 Localization of NaV1.9 protein in motor and sensory nerve fibres 

The NaV1.9 channel was previously found at some nodes of Ranvier of thinly myelinated 

axons of the sciatic nerve – a distribution of NaV1.9, which is consistent with its role in 

nociceptive transmission (Fjell et al. 2000). In order to investigate NaV1.9 localization in 

motor nerve fibres in vivo, adult wild type and NaV1.9 knock-out mice were perfused with 

2% PFA and nerves were dissected and separated by teasing on glass slides in 0.5x PBS. 

Femoral quadriceps nerve fibres as well as teased facial nerve fibres were labelled using 

anti-mouse NaV1.9 antibody and a antibody against the contactin-associated protein (Caspr) 

as paranode marker (Figure 18 and 19). 
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Figure 18: Detection of NaV1.9 protein in femoral quadriceps nerve fibres  
(A and B) Single confocal sections of anti-mouse NaV1.9 stained teased fibres of the femoral 
quadriceps nerve by laser scanning microscopy. Caspr as paranode marker and nuclear DAPI served 
as counterstain. Bar: 10 µm. (A) Anti-mouse NaV1.9 immunoreactivity concentrated at the node of 
Ranvier of femoral quadriceps nerve fibres from adult wild type mice. (B) Mouse NaV1.9 protein is not 
detectable at the node of Ranvier of quadriceps nerve fibres from adult NaV1.9-/- mice. Caspr = 
contactin-associated protein; DAPI = 4', 6-diamidino-2-phenylindole 

 

Figure 19: Detection of NaV1.9 protein in facial nerve fibres 
(A and B) Representative confocal sections of anti-mouse NaV1.9 stained teased fibres of the facial 
nerve by laser scanning microscopy. Caspr staining served as control. Bar: 10 µm (A) Anti-mouse 
NaV1.9 immunoreactivity concentrated at the node of Ranvier of facial nerve fibres from adult wild type 
mice (B) Mouse NaV1.9 protein is not detectable at the node of Ranvier of facial nerve fibres from 
adult NaV1.9-/- mice. Caspr = contactin-associated protein 
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Mouse and rat facial motoneurons are important for the innervation of whisker muscles and 

motoneurons of the femoral quadriceps nerve innervate the quadriceps muscle. Our 

immunohistochemistry experiments revealed a signal for NaV1.9 protein at nodes of Ranvier 

of femoral quadriceps nerve fibres as well as of facial nerve fibres from wild type mice 

(Figure 18A and 19A). NaV1.9 appeared partially in a very strong punctuated formation at 

nodes of Ranvier in both wild type nerves. The signal was not found at nodes of Ranvier of 

femoral quadriceps nerve fibres and of facial nerve fibres isolated from NaV1.9 knock-out 

mice (Figure 18B and 19B). This observation verified the specificity of this finding. 

3.3 The axons of motoneurons from NaV1.9-/- mice are shorter 

As indicated previously, treatment of cultured motoneurons with voltage-gated sodium 

channel pore blockers resulted in a reduction of spontaneous neural activity and axon 

expansion (Jablonka et al. 2007, Subramanian et al. 2012). To investigate the role of NaV1.9 

in activity-dependent axon growth, motoneurons were isolated from NaV1.9 knock-out and 

strain-matched wild type mice and cultured for 7 days in vitro at low density. 

Immunocytochemistry experiments performed by Dr. Narayan Subramanian and 

PD Dr. Robert Blum verified no anti-mouse NaV1.9 signal in motoneurons from NaV1.9 

knock-out mice compared to motoneurons from wild type mice (Subramanian et al. 2012). 

Furthermore, NaV1.9 knock-out motoneurons show reduced rates of global Ca2+ transients, 

distributed all over the cell, and local spontaneous Ca2+ transients, in the soma and growth 

cones (Subramanian et al. 2012). 

Analysis regarding the axon length of motoneurons revealed a 38% reduction of axon length 

from NaV1.9 knock-out motoneurons compared to axon length from wild type motoneurons 

(Figure 20), which is in accordance with a reduced level of local calcium transients in the 

distal axon and growth cone (Jablonka et al. 2007, Subramanian et al. 2012, Wetzel et al. 

2013). Consequently, the NaV1.9 channel seems to play an important role in the process of 

activity-dependent axon augmentation of young motoneurons. 
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Figure 20: Axon length of motoneurons from NaV1.9 wild type and knock-out mice 
Reduced axon elongation of motoneurons from NaV1.9 knock-out mice. Representative confocal 
sections of DIV 7, -tubulin stained motoneurons from wild type and NaV1.9-/- mice. Bar: 40 µm. 
Statistical analysis performed by Dr. Narayan Subramanian (wild type: n = 286, NaV1.9-/-: n = 447, 3 
independent cultures) Results represent the mean ±SEM of pooled data. *** P < 0.001 tested by two-
tailed nonparametric Mann-Withney test. DIV = day in vitro; KO = knock-out; wt = wild type 

3.4 Reduced axon growth of NaV1.9-/- motoneurons can be rescued 

by a NaV1.9 encoding virus 

The axon growth of motoneurons from NaV1.9 knock-out mice is reduced compared to wild 

type littermates (Figure 20). To analyse whether this knock-out effect can be rescued, low 

density motoneurons were infected with a NaV1.9 encoding virus. The same virus was used 

to generate a stable NaV1.9 expressing cell line as described under "3.2.1 Generation of a 

stable NaV1.9 expressing cell line". Motoneurons were infected directly after plating. They 

grew for 5 days in vitro and axon length was measured directly after immunocytochemistry 

and confocal microscopy. Axons of infected wild type motoneurons were longer compared to 

axons from wild type motoneurons without NaV1.9 virus infection (Figure 21C). The same 

experiment was performed with motoneurons from NaV1.9 knock-out mice. Axons of NaV1.9 

knock-out motoneurons with NaV1.9 virus infection grew longer than axons of untransduced 

NaV1.9 knock-out motoneurons (Figure 21A, B and D). Thus, re-expression of NaV1.9 in 

NaV1.9-deficient motoneurons can partially rescue activity-dependent axon elongation 

(Figure 21D). 
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Figure 21: Axon length of 
motoneurons from NaV1.9 
wild type and knock-out mice 
with and without NaV1.9 virus 
infection 
Increased axon elongation of 
DIV 5 motoneurons from wild 
type and NaV1.9-/- mice after 
NaV1.9 encoding virus infection. 
(A and B) Representative 
single confocal sections of -
tubulin stained motoneurons 
from NaV1.9-/- mice without (A) 
and with NaV1.9 virus infection 
(B). Bar: 50 µm. (C) Axon 
length of wild type motoneurons 
with and without NaV1.9 virus 
infection (wild type: n = 30, wild 
type + virus: n = 35,                  
1 independent culture).          
(D) Statistical analysis of 
axonal elongation of NaV1.9 
knock-out motoneurons with 
and without NaV1.9 virus 
infection (NaV1.9-/-: n = 136, 
NaV1.9-/- + virus: n = 216, 2 
independent cultures). Results 
represent the mean ±SEM of 
pooled data. *** P < 0.0001 
tested by two-tailed 
nonparametric Mann-Withney 
test. DIV = day in vitro; SEM = 
standard error of the mean 

3.5 NaV1.9 protein is present in growth cones of motoneurons 

from Smn-/--SMN2tg mice 

Our results demonstrated that the NaV1.9 channel is important for the process of axon growth 

in motoneurons. In a mouse model for the motoneuron disease, spinal muscular atrophy 

(SMA), spontaneous Ca2+ transients are reduced because of defects in CaV2.2 clustering at 

axonal terminals, which correlates with decreased axon growth (Jablonka et al. 2007). In 

order to investigate whether these observations in motoneurons from Smn-deficient mice are 

also influenced by a disturbed distribution of the NaV1.9 channel, Smn-/--SMN2tg 

motoneurons were cultured for 7 days in vitro, fixed and labelled with anti-mouse NaV1.9 

antibody. As indicated in Figure 22, NaV1.9 protein was still found in axons and axonal 

growth cones of Smn-/--SMN2tg motoneurons (Figure 22). Additional experiments via qPCR 

revealed normal expression levels of NaV1.9 in motoneurons from Smn-deficient and wild 

type mice (Subramanian et al. 2012). Moreover, treatment of Smn-/--SMN2tg motoneurons 

with 10 nM STX led to an unchanged axon elongation, thus functional block of VGSCs had 
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no further growth inhibiting effect (Subramanian et al. 2012), indicating that NaV1.9 may 

serve as a target molecule to restore neuronal activity in SMA-diseased motoneurons.  

 

Figure 22: NaV1.9 labelling in motoneurons from Smn-/--SMN2tg mice 
Single confocal sections of anti-mouse NaV1.9 staining in motoneurons from Smn-/--SMN2tg mice by 
standard laser scanning microscopy of -tubulin staining. Anti-mouse NaV1.9 immunoreactivity 
concentrated in distal axonal regions and growth cones (arrows). Bar: 10 µm. SMN = survival 
motoneuron; tg = transgene  

3.6 Mutant NaV1.9 is expressed in DRGs from Scn11a+/L788P mice 

In parallel to this work our cooperation partners in Jena identified a specific de novo 

missense mutation in the SCN11A gene, encoding the NaV1.9 channel in human (Leipold et 

al. 2013). The mutation results in the replacement of leucine 811 by proline at the distal end 

of the sixth transmembrane segment in domain II of NaV1.9, a highly conserved position. 

Affected individuals showed self-mutilations, slow-healing wounds and multiple painless 

fractures as result of the inability to feel pain since birth. Interestingly, these patients also 

developed a mild muscular weakness and delayed motor development, probably due to the 

role of NaV1.9 in the development of motoneurons.  

To understand the pathogenicity of the human Leu811Pro alteration, heterozygous knock-in 

mice were generated that care the orthologous mutation (Leipold et al. 2013). These 

Scn11a+/L799P (NaV1.9+/P) mice displayed reduced sensitivity to pain, self-inflicted tissue 
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lesions and a prominent gain-of-function phenotype, increasing the basal activity of NaV1.9 

channels. We supported the study by the providing of our verified NaV1.9 encoding vectors. 

In order to characterize NaV1.9+/P mice molecularly, the mRNA level as well as the protein 

level of wild type and mutant NaV1.9 in DRG neurons from certain mouse lines were 

analysed (Figure 23).  

 
Figure 23: Detection of mutant NaV1.9 transcripts and NaV1.9 protein in dorsal root ganglia from 
wild type and mutant mice 
(A and B) Representative amplification products after NaV1.9-L799P qRT-PCR with indicated cDNA 
samples. (A) Real-time monitoring of the fluorescence emission of SYBR Green I during PCR 
amplification of mutant NaV1.9-L799P in DRG neurons from different mouse lines. (B) Expression of 
mutant NaV1.9-L799P transcripts only in DRGs of NaV1.9-/P mice. (C and D) Detection of NaV1.9 
protein via western blot analysis displayed by the typical double band pattern with bands at 
approximately 180 kDa and ~280 kDa. Endogenous mouse NaV1.9 from lumbar and thoracic DRG 
neurons from wild type (C), NaV1.9-/-, NaV1.9+/P and NaV1.9P/P mice and as control recombinant NaV1.9 
in the stable cell line 293-mNaV1.9 (D). Anti-Trk antibodies served as loading control for DRG tissue. 
cDNA = copy/complementary deoxyribonucleic acid; ctr = control; DRG = dorsal root ganglia; HEK = 
human embryonic kidney; kDa = kilo dalton; Trk = tropomyosin receptor kinase; qRT-PCR = 
quantitative real time polymerase chain reaction 
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For the amplification of mutant NaV1.9 transcripts, RNA was isolated from DRG tissue of 

heterozygous mice encoding either one copy of wild type NaV1.9 (NaV1.9-/+) or one copy of 

mutant NaV1.9 (NaV1.9-/P). Representative amplification products and RT-PCR amplification 

curves are shown in Figure 23A and B. Mutant NaV1.9 transcripts were identified in DRG 

neurons from heterozygous mice encoding one copy of mutant NaV1.9 (NaV1.9-/P). This 

observation raised the question whether mutant NaV1.9 protein is found in DRGs of mutant 

knock-in mice, too. 

Western blot analysis demonstrated the typical double band pattern with a band at ~180 kDa 

and a band at ~280 kDa for NaV1.9 in DRG neurons from wild type mice and in the stable 

NaV1.9 expressing cell line (Figure 23C and D). This signal was absent in DRG neurons from 

NaV1.9 knock-out mice, while NaV1.9 detection in heterozygous and homozygous mutant 

DRG neurons (NaV1.9+/P and NaV1.9P/P) appeared at least in one band at ~180 kDa (Figure 

23D). Western blots with a longer exposure time confirmed the typical band at ~280 kDa 

for NaV1.9 control littermates and in DRG tissue from NaV1.9+/P and NaV1.9P/P mice. In 

summary, mutated NaV1.9 protein was stably expressed in DRG tissue from heterozygous 

and homozygous NaV1.9 knock-in mice, carrying one or two copies of the orthologous 

missense mutation. 

3.7 TrkB protein is localized in cultured embryonic motoneurons 

and at the node of Ranvier of facial nerve fibres 

NaV1.9 channels play an important role in activity-dependent axon growth in motoneurons 

(Subramanian et al. 2012). However the analysis of mechanisms that regulate the opening of 

NaV1.9 channels became a critical issue. Studies on fast excitatory transients after BDNF 

application proposed a link between NaV1.9 channel opening and BDNF induced activation 

of TrkB receptors in central neurons (Blum et al. 2002, Lang et al. 2007). In order to identify a 

possible trigger that increases the open probability of NaV1.9 channels in motoneurons, thus 

regulating activity-dependent Ca2+ influx and axon elongation, TrkB full knock-out mice were 

analysed. 

3.7.1 Detection of TrkB protein in cultured embryonic motoneurons 

In cultured embryonic motoneurons, the NaV1.9 channel was detectable along the axon and 

enriched at soma and growth cone sites (see 3.2.3), where local Ca2+ transients are 

observed. When TrkB receptors are triggers for local NaV1.9 channel opening, these receptor 

tyrosine kinases should be present in close proximity to NaV1.9. To test this hypothesis, 

cultured motoneurons from wild type and TrkB knock-out mice were analysed by 
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immunocytochemistry. Anti-TrkB antibodies detected TrkB in wild type motoneurons, but not 

in motoneurons from TrkB knock-out mice (Figure 24). TrkB receptors were localized at 

positions where NaV1.9 channels are also found in young cultured motoneurons. Anti-TrkB 

immunoreactivity was enriched at somatic sites, in axon terminals and represented a 

punctuated formation along the axon (Figure 24A). Thus, TrkB receptors are possible 

candidates for NaV1.9 channel triggering in motoneurons during the process of axon growth. 

 

 

Figure 24: Recognition of TrkB protein in cultured embryonic motoneurons 
(A and B) Representative single confocal sections of anti-TrkB stained, DIV 5 motoneurons by 
standard laser scanning microscopy. Actin and -tubulin staining served as reference. Bar: 20 µm.    
(A) Anti-TrkB immunoreactivity, concentrated in the soma and in axon terminal regions of wild type 
motoneurons with enlarged inlet of the axonal growth cone (lower panel). (B) TrkB signal is not 
detectable in motoneurons from TrkB knock-out mice. DIV = day in vitro; KO = knock-out; Trk =  
tropomyosin receptor kinase; wt = wild type 
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3.7.2 Localization of TrkB protein in facial nerve fibres 

NaV1.9 channel was found at the node of Ranvier of teased fibres of motor and sensory 

nerves of adult wild type mice in vivo (see 3.2.4). To test whether TrkB is also present at the 

node of Ranvier, facial nerves were dissected and stained with anti-TrkB antibody and anti-

Caspr antibody. The latter antibody was used to identify the nodes of Ranvier along the 

myelinated axon. 

 
Figure 25: Labelling of TrkB protein at the node of Ranvier of facial nerve fibres 
Representative confocal sections of TrkB labelled teased fibres of the facial nerve by laser scanning 
microscopy. Caspr staining provided as control. Bar: 20 µm (upper panel) and 10 µm (middle and 
lower panel). Anti-TrkB immunoreactivity concentrated at the node of Ranvier of facial nerve fibres 
from adult wild type mice. Caspr = contactin-associated protein; Trk = tropomyosin receptor kinase 

Anti-TrkB antibodies identified TrkB protein at nodes of Ranvier of facial nerve fibres of adult 

wild type mice (Figure 25). The anti-TrkB signal appeared in a strong punctuated formation at 

the nodes of Ranvier. This reveals that TrkB as well as NaV1.9 are both present at nodes of 

Ranvier. 
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3.8 Spontaneous activity is reduced in motoneurons from TrkB-/- 

mice 

In order to test whether the loss of TrkB receptors affects spontaneous excitability, 

motoneurons of TrkB knock-out mice were isolated and cultured for four and seven days in 

vitro. Motoneurons were loaded with the high affinity intracellular calcium indicator Oregon 

Green 488 BAPTA-1, AM and spontaneous Ca2+ transients were measured under continuous 

perfusion with ACSF-Ringer. Wild type motoneurons exhibited peak like Ca2+ transients at 

DIV 4 and DIV 7, while in growth cones more Ca2+ transients were observed than in 

somatodentritic regions (Figure 26). Motoneurons of TrkB knock-out mice revealed 

significantly reduced rates of spontaneous Ca2+ transients compared to strain-matched wild 

type controls at DIV 4 and  DIV 7, in the soma and the growth cone (Figure 26), indicating 

that the loss of TrkB receptors affects global and local Ca2+ transients in motoneurons. 

 

Figure 26: Spontaneous 
activity of motoneurons 
from wild type and  
TrkB-/- mice 
Spontaneous calcium 
transients in wild type and 
TrkB-/- motoneurons 
loaded with Oregon Green 
488 BAPTA-1, AM at 
DIV 4 (A and C) and 
DIV 7 (B and D). 
(A and B) Representative 
curves showing calcium-
dependent changes in 
fluorescence intensity 
(f/f0) measured in growth 
cone regions of 
motoneurons from wild 
type (upper panel) and 
TrkB-/- (lower panel) mice 
at DIV 4 (A) and DIV 7 (B). 
(C and D) Statistical 
analysis of the frequency 
of spontaneous Ca2+ 
transients (transients/min) 
determined at DIV 4 (C) 
and DIV 7 (D) at the soma 
and growth cone of wild 
type and TrkB-/- 
motoneurons (DIV 4: 
soma: wt = 85, KO = 98, 
growth cone: wt = 94, 
KO = 114, 4 independent 
cultures; DIV 7: soma: 

wt = 73, KO = 71, growth cone: wt = 95, KO = 81; 4 independent cultures). Results represent the 
mean ±SEM of pooled data. *** P < 0.001, ** P < 0.01, * P < 0.05 tested by two-tailed nonparametric 
Mann-Withney test. DIV = day in vitro; KO = knock-out; SEM = standard error of the mean; Trk = 
tropomyosin receptor kinase; wt = wild type 
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3.9 The axons of motoneurons from TrkB-/- mice are shorter 

With the intention to clarify whether TrkB receptors are also involved in the regulation of 

activity-dependent axon elongation of motoneurons, the axon length of TrkB knock-out 

motoneurons and control littermates was analysed. Motoneurons were isolated from wild 

type and TrkB knock-out mice and cultured for five and seven days in vitro. Then, 

motoneurons were fixed and labelled with anti--tubulin antibodies and the axon length was 

determined. Axons of TrkB knock-out motoneurons were shorter than axons of wild type 

motoneurons at DIV 5 and DIV 7 (Figure 27). Hence, the loss of TrkB receptors affects the 

process of axon growth in motoneurons, too. 

 
Figure 27: Axon length of cultured motoneurons from wild type and TrkB-/- mice 
Reduced axon growth of motoneurons from TrkB knock-out mice. (A and B) Representative confocal 
sections of DIV 5 (A) and DIV 7 (B), -tubulin stained motoneurons from wild type and TrkB-/- mice. 
Bar: 50 µm. (C and D) Statistical analysis of the axon length of motoneurons from wild type and TrkB-/- 
mice at DIV 5 (wild type: n = 465, TrkB-/-: n = 563, 2 independent cultures) (C) and DIV 7 (wild type:    
n = 284, TrkB-/-: n = 310, 3 independent cultures) (D). Results represent the mean ±SEM of pooled 
data. *** P < 0.001, ** P < 0.01 tested by two-tailed nonparametric Mann-Withney test. DIV = day in 
vitro; SEM = standard error of the mean; Trk = tropomyosin receptor kinase 
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3.10 BDNF and TrkB mediate motoneuron survival by two 

independent mechanisms     a 

Neurotrophic factors like BDNF, CNTF, NT-3 and NT-4 support the survival of motoneurons 

(Arakawa et al. 1990, Sendtner et al. 2000). These molecules act through members of the 

Trk family of receptor tyrosine kinases (TrkB and TrkC) or in the case of CNTF through 

complex membrane receptors like gp130, LIFR and CNTFR (Sendtner et al. 2000, Chao 

et al. 2006). The pharmacological inhibition of voltage-gated sodium channels and the loss of 

NaV1.9 channels in motoneurons did not affect motoneuron survival (Subramanian et al. 

2012). Nevertheless, to test whether the loss of TrkB had an effect on neurotrophin-mediated 

motoneuron survival, wild type and TrkB-/- motoneurons were cultivated with either BDNF 

(5 ng/ml) or CNTF (5 ng/ml) or with and without both factors together. After five or seven 

days in vitro the percentage survival of motoneurons relative to originally plated cells was 

determined. A cultivation of wild type and TrkB-/- motoneurons with CNTF only or BDNF and 

CNTF together promoted motoneuron survival. In contrast, in presence of BDNF alone the 

survival of TrkB-/- motoneurons was reduced after five and seven days in vitro (Figure 28).  

 

Figure 28: Survival of cultured 
motoneurons from TrkB+/+ and 
TrkB-/- mice 
(A and B) Statistical analysis of 
motoneuron survival of DIV 5 (A) 
and DIV 7 (B) motoneurons from 
wild type and TrkB-/- mice in the 
presence or absence of 
neurotrophic factors (DIV 5: BDNF: 
n = 5 independent cultures; CNTF: 
n = 4 independent cultures; BDNF + 
CNTF: n = 6 independent cultures; 
DIV 7: BDNF: n = 5 independent 
cultures; CNTF: n = 4 independent 
cultures; BDNF + CNTF: n = 7 
independent cultures). Results 
represent the mean ±SEM of pooled 
data. ** P < 0.01 tested by two-
tailed nonparametric Mann-Withney 
test. BDNF = brain-derived 
neurotrophic factor; CNTF = ciliary 
neurotrophic factor; DIV = day in 
vitro; SEM = standard error of the 
mean; Trk = tropomyosin receptor 
kinase 
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Interestingly, despite a complete lack of all TrkB receptors, BDNF still had a substantial effect 

on motoneuron survival. Whether this BDNF-dependent survival affects only a subfraction of 

all motoneurons, or whether this effect is caused by BDNF activation of the TrkC receptor is 

not clear yet. TrkC is expressed in motoneurons and is able to bind BDNF with a low but 

functionally relevant affinity (Philo et al. 1994, Sendtner et al. 2000). 
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4 Discussion 

Spontaneous neuronal activity plays an important role during development of the nervous 

system (O'Donovan & Landmesser 1987, Gu & Spitzer 1995, Spitzer 2006, Wang et al. 

2009). Motoneurons become spontaneously active before they make synaptic interactions 

with their target tissue (Nishimaru et al. 1996, Milner & Landmesser 1999, Hanson & 

Landmesser 2004, Subramanian et al. 2012). This spontaneous calcium ion influx is 

important for growth cone differentiation and axon extension in cultured motoneurons 

(Jablonka et al. 2007, Subramanian et al. 2012). The aim of this thesis was the molecular 

discovery and characterization of regulators for spontaneous neuronal activity and activity-

dependent axon growth in motoneurons. Voltage-gated sodium channels are key proteins for 

neuronal activity and action potential initiation, but spontaneous electrical activity in 

motoneurons is also a local event, and is therefore unlikely to be mediated by ligand-

dependent initiation of action potentials (Wetzel et al. 2013). Basing on initial 

pharmacological hints in combination with its specific electrophysiological properties, the 

VGSC NaV1.9 became the most likely candidate for a sodium channel that can act as a local 

trigger of voltage-dependent calcium influx. This sodium channel is able to mediate 

subthreshold excitability and this specific feature may explain the initiation of local excitation 

events. Indeed, in cultured embryonic motoneurons, NaV1.9 was found at the soma, along 

the axon and enriched at the growth cone, a region where spontaneous neuronal activity is 

observed (Hanson & Landmesser 2004, Blankenship & Feller 2010, Subramanian et al. 

2012). Moreover, NaV1.9 was found at the node of Ranvier of isolated nerve fibres, which 

represents the principle site of action potential generation in axons of adult motoneurons 

(Rumsey et al. 2009). Live cell imaging experiments preformed by my colleagues 

demonstrated that spontaneous neuronal activity in motoneurons from NaV1.9 knock-out 

mice is reduced (Subramanian et al. 2012). As a consequence, activity-dependent axon 

elongation is reduced in motoneurons from these mice, too. This phenotype could not be 

compensated by other members of the family of voltage-gated sodium channels. 

Spontaneous excitation and the subsequent process of axon growth are disturbed in 

motoneurons from TrkB knock-out mice. Thus, TrkB acts as regulator for activity-dependent 

axon expansion in motoneurons, too, but it is not clear yet whether NaV1.9 and TrkB-

dependent events are linked or independent events. A better understanding of the interplay 

of TrkB and NaV1.9 during the process of axon elongation and synapse maintainance would 

be helpful for the development of therapies for motoneuron diseases like spinal muscular 

atrophy.  
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4.1 The NaV1.9 channel is found in motoneurons  

It was surprising that we found NaV1.9 channel expression in motoneurons. The channel is 

normally prominent for its expression in pain sensory neurons (Dib-Hajj et al. 2002) and 

earlier studies excluded NaV1.9 expression in central neurons, the spinal cord or embryonic 

tissue (Dib-Hajj et al. 1998, Fukuoka et al. 2010). Our data confirmed an exceptionally high 

expression level for NaV1.9 in dorsal root ganglia neurons and revealed NaV1.9 expression 

during early neuronal development in spinal cord tissue, where young motoneurons reside. 

Moreover, substantial amounts of NaV1.9 transcripts were found in cultured embryonic 

motoneurons at day 7, as well. In dorsal root ganglia, NaV1.9 expression increased 

continuously and became very high in older mice. In spinal cord, on the other hand, NaV1.9 

expression decreased after birth. This observation suggests that NaV1.9 presence and 

activity seem to be necessary during early developmental periods, when axon growth of 

motoneurons takes place. In addition, expression of NaV1.9 in motoneurons was much lower 

than in DRG neurons, indicating that even low expression levels of NaV1.9 are sufficient to 

enhance neuronal excitability, to regulate spontaneous voltage-dependent calcium ion influx, 

and to support activity-dependent axon growth in motoneurons. 

To localize NaV1.9 protein in cultured embryonic motoneurons, a NaV1.9 specific antibody 

was used which recognizes the C-terminal end of mouse NaV1.9. In western blot analysis the 

anti-mouse NaV1.9 antibody showed a double band pattern with one band at ~180 kDa and 

another band at ~280 kDa in DRG tissue as well as in lysates of a stable NaV1.9 expressing 

cell line. The signal was absent in DRG tissue from NaV1.9 knock-out mice. 

Immunocytochemistry experiments combined with super resolution imaging using stimulated 

emission depletion microscopy (STED) showed NaV1.9 localization preferentially in axons 

and axonal growth cones, regions where local calcium ion influx is pronounced (Cohan et al. 

1987, Hanson & Landmesser 2004, Jablonka et al. 2007, Blankenship & Feller 2010, 

Subramanian et al. 2012). The NaV1.9 localization pattern in motoneurons is in accordance 

with a local excitatory action of the channel. 

Beside the finding that NaV1.9 protein was detectable in embryonic motoneurons in vitro, 

immunohistochemistry experiments, using isolated nerve fibres, revealed NaV1.9 localization 

at the node of Ranvier, the general site of action potential generation in axons of adult 

motoneurons (Rumsey et al. 2009). NaV1.9 channel was previously found at some nodes of 

Ranvier of thinly myelinated axons of the sciatic nerve (Fjell et al. 2000). The peripheral facial 

nerve is a primary motor nerve (Sendtner et al. 1996) leading to the conclusion that NaV1.9 

may regulate the excitability at nodes of Ranvier as well.  
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4.2 Is NaV1.9 a therapeutic target for motor defects? 

The findings of this dissertation reveal that the NaV1.9 channel is an important trigger for 

activity-dependent axon outgrowth in young cultured motoneurons. To understand this 

mechanism in detail is of central interest for the development of therapies for motoneuron 

diseases like spinal muscular atrophy. Isolated motoneurons from a mouse model for spinal 

muscular atrophy show defects in synapse maintenance. A reduced number of β-actin 

mRNA and locally synthesised β-actin protein was observed in growth cones of Smn-

deficient motoneurons (Rossoll et al. 2003, Rathod et al. 2012). This cytoskeletal defects 

result in an affected cell-surface clustering of the N-type calcium channel CaV2.2, leading to 

reduced local calcium influx (Jablonka et al. 2007, Ruiz et al. 2010, Wetzel et al. 2013). 

Isolated motoneurons from Smn-deficient mice have shorter axons than wild type littermates 

(Rossoll et al. 2003, Jablonka et al. 2007). Immunocytochemical experiments indicated that 

the NaV1.9 channel distribution is not affected in growth cones of Smn-/--SMN2tg 

motoneurons. Substantial amounts of the channel are present in motoneurons of Smn-

deficient mice. Earlier publications have confirmed that intracellular signalling pathways can 

modulate persistent sodium currents by NaV1.9 (Rush & Waxman 2004, Ostman et al. 2008) 

and we observed that lentiviral overexpression of NaV1.9 rescues the phenotype of impaired 

axon growth in motoneurons from NaV1.9 knock-out mice. These findings raise the hope that 

pharmacological increase of the open probability of NaV1.9 might support synapse 

maintenance of motoneurons suffering from SMA deficiency and therefore making NaV1.9 to 

a possible therapeutic target for spinal muscular atrophy and even axon regeneration. 

Beside other more prominent symptoms like the inability to feel pain since birth, the motor 

system is also affected in patients with a missense mutation in the SCN11A gene, encoding 

NaV1.9 (Leipold et al. 2013). Affected individuals suffer from a mild muscular weakness and 

delayed motor development. Muscle biopsy and electromyography are normal in these 

patients, but electroneurography showed slightly reduced motor and sensory nerve 

conduction velocities with normal amplitudes (Leipold et al. 2013). Investigations of nerves 

by sural biopsy did not show sensory axonal loss (Leipold et al. 2013). The muscular 

weakness might be attributed to the developmental role of the NaV1.9 channel in 

motoneurons (Subramanian et al. 2012, Wetzel et al. 2013). 
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4.3 NaV1.5 might act downstream of NaV1.9-mediated excitation 

Spontaneous calcium influx to motoneurons largely depends on the activity of the N-type 

voltage-gated calcium channel CaV2.2 (Jablonka et al. 2007). This channel is known to open 

at high voltages, in the range of approximately +5 to +10 mV (Catterall et al. 2005). This 

raises the question how subthreshold activity of NaV1.9 is enhanced. In DRG neurons, the 

concomitant partners of NaV1.9 are NaV1.8 and NaV1.7 (Wood et al. 2004, Dib-Hajj et al. 

2010). However, NaV1.8 is not expressed in embryonic (see 3.1, Figure 12) (Subramanian et 

al. 2012) and adult motoneurons (Moldovan et al. 2011) and NaV1.7 is sensitive to 

tetrodotoxin (Catterall et al. 2005). Interestingly, quantitative analysis revealed high 

expression levels of the TTX-insensitive VGSC NaV1.5 in cultured motoneurons. This 

channel is normally found in electromechanical systems like heart and gut (Beyder et al. 

2010) and is important for action potential initiation and conduction with an voltage activation 

around -47 mV (Catterall et al. 2005). The activation threshold of NaV1.9 is much lower than 

the activation threshold of NaV1.5, which gives him the possibility to open spontaneously 

near the resting potential (Cummins et al. 1999, Herzog et al. 2001, Rugiero et al. 2003, 

Ostman et al. 2008). In conclusion, the NaV1.5 channel would be an ideal physiological 

partner to potentiate NaV1.9-mediated excitation. It may be that NaV1.9 could first activate 

NaV1.5, which afterwards initiates a rapid depolarization and a fast voltage-dependent gating 

of clustered CaV2.2 channels at axonal terminals of growing motoneurons (Figure 29). 

4.4 Is TrkB upstream of NaV1.9-mediated excitation? 

Spontaneous excitation of motoneurons is not a continuous process. Motoneurons switch 

between phases of no or low activity and phases of high activity (Wetzel et al. 2013). This 

leads to the question how phases of high activity are initiated. It is known that G protein-

dependent signalling cascades and their interaction with intracellular signalling cascades can 

increase NaV1.9 activity (Baker et al. 2003, Ostman et al. 2008). Despite this initial hint it is 

still a puzzling issue how NaV1.9 activity is regulated.  

In brain neurons the neurotrophin BDNF acts through the receptor tyrosine kinase TrkB and 

can activate NaV1.9-mediated excitation (Blum et al. 2002). Therefore, it was tested whether 

TrkB is also involved in the generation of spontaneous calcium transients. Indeed, 

motoneurons cultured from a mouse model lacking the complete TrkB receptor gene show a 

reduced number of spontaneous calcium transients in the soma and growth cone and have 

shorter axons. TrkB protein was localized in axons and growth cones, indicating that there is 

a close proximity between the NaV1.9 channel and the TrkB kinase. At least in motoneurons, 

it may be that TrkB is upstream of NaV1.9 activity, but it is possible that this interaction is 
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BDNF-independent. More likely is a model that includes signalling mechanisms such as 

transactivation of an intracellular domain of TrkB (Lee & Chao 2001, Wiese et al. 2007, 

Puehringer et al. 2013), leading to an increased open probability of NaV1.9 (Figure 29).  

 

Figure 29: Model for the interplay of regulators for axon elongation at the growth cone of 
developing motoneurons 
During activity-dependent axon growth of embryonic motoneurons, actin mRNA is anterogradely 
transported from the soma into the axon and local actin translation takes place at the growth cone. 
The receptor tyrosine kinase TrkB and the voltage-gated sodium channel NaV1.9 contribute to the 
process of activity-dependent axon elongation. Thereby, TrkB might modulate the open probability of 
NaV1.9 and/or leads to an opening of non-selective TrpC ion channels. The opening of NaV1.9 near 
the resting membrane potential and the subsequent influx of sodium leads to a depolarization cascade 
that gates clusters of the voltage-gated N-type calcium channel CaV2.2. The influx of free calcium 
supports axon growth by an unknown mechanism. (modified from (Wetzel et al. 2013)) Trk = 
tropomyosin receptor kinase; TrpC = transient receptor potential C 

4.5 TrpC channels and motoneuron excitation at growth cones 

In 1999, Li et al. have shown that brief applications of BDNF to pontine neurons activate the 

receptor tyrosine kinase TrkB, leading to a PLC/IP3-dependent, store-operated influx of Ca2+ 

and Na+ through TrpC3 channels (Li et al. 1999). This mechanism was further verified by the 

group of Pozzo-Miller in the CA1 and CA3 region of the hippocampus (Amaral & Pozzo-Miller 

2007, Li et al. 2010). Activation of a membrane conductance mediated by TrpC channels 
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through the activation of the TrkB-PLC pathway seems to be the most immediate action of 

BDNF in central neurons. However, Lang et al. described a fast BDNF-evoked calcium influx 

in hippocampal neurons that extend the findings from Kafitz et al., 1999 and Blum et al., 

2002, who published a BDNF caused depolarization within a few milliseconds that require 

the activity of voltage-dependent sodium channels as well as fast calcium transients through 

the opening of voltage-gated calcium channels (Berninger et al. 1993, Kafitz et al. 1999, 

Blum et al. 2002, Kovalchuk et al. 2002, Lang et al. 2007). Nevertheless, activation of Trp 

channels in motoneuron growth cones seems to be another possibility to initiate spontaneous 

excitation and subsequent axon elongation. TrpC3 contributes to BDNF-mediated survival 

and growth cone guidance of cerebellar granule neurons (Li et al. 2005, Trebak 2010). 

However, TrpC3 is barley detectable in embryonic motoneurons, whereas TrpC5 has shown 

to be highly expressed in motoneuron growth cones (Jablonka et al. 2007). Moreover, TrpC5 

is known to regulate neurite growth and growth cone morphology, at least in hippocampal 

neurons (Greka et al. 2003). In motoneurons, it is not clear yet how the components interact 

with each other, but it is possible that kinase-active TrkB first acts via PLC recruitment to 

increase neuronal excitability by a non-selective ion influx through TrpC channels. This weak 

and local TrpC-dependent increase in excitability may cause NaV1.9 activation and that gates 

voltage-dependent calcium influx (Figure 29). On the other hand, there could be an 

interaction between TrkB, NaV1.9 and VGCC independent of TrpC channels or NaV1.9 may 

act spontaneously without TrkB activation.  

Future physiological and molecular analysis has to clarify in detail the exact signalling 

pathways, leading to motoneuron differentiation and activity-dependent axon elongation in 

developing motoneurons. 

In summary, this study contributed to better understanding of the role of subthreshold, cell-

autonomous excitation in neurons. It will be a challenging endeavour to unravel the role of 

NaV1.9 as an amplifier of subthreshold excitability for synapse formation and synapse 

maintainance, not only at the motor endplate, but also at chemical synapses in the brain.  
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