BEITRÄGE ZUR CHEMIE DES HÖHERKOORDINIERTEN SILICIUMS: SYNTHESE, STRUKTUR UND EIGENSCHAFTEN NEUER PENTA- UND HEXAKOORDINIERTER SILICIUM(IV)-KOMPLEXE

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg

> vorgelegt von Diplom-Chemiker Jörg Weiß aus Müllheim

Würzburg 2013

meiner Frau Justyna

Eingereicht am:_____

Bei der Fakultät für Chemie und Pharmazie

2. Gutachter:

der Dissertation

1. Prüfer:_____

2. Prüfer:_____

3. Prüfer:_____

des öffentlichen Promotionskolloquiums

Tag des öffentlichen Promotionskolloquiums:

Doktorurkunde ausgehändigt am:_____

Die vorliegende Arbeit wurde im Zeitraum Januar 2010 bis Oktober 2013 am Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg unter Anleitung von Herrn Prof. Dr. Reinhold Tacke durchgeführt. Die vorliegende Arbeit wurde auszugsweise veröffentlicht:

Zwitterionic and Anionic Multinuclear Pentacoordinate Silicon(IV) Complexes with Bridging (R,R)-*Tartrato(4–) Ligands and SiO*₅ *Skeletons: Synthesis and Reactivity in Aqueous Solution*

B. Theis, J. Weiß, W. P. Lippert, R. Bertermann, C. Burschka, R. Tacke

Chem. Eur. J. 2012, 18, 2202–2206.

Neutral Pentacoordinate Halogeno- and Pseudohalogenosilicon(IV) Complexes with a Tridentate Dianionic O,N,O or N,N,O Ligand: Synthesis and Structural Characterization in the Solid State and in Solution

J. Weiß, B. Theis, S. Metz, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke *Eur. J. Inorg. Chem.* **2012**, 3216–3228.

Neutral Pentacoordinate Silicon(IV) Complexes with a Tridentate Dianionic O,N,O or N,N,O Ligand, an Anionic PhX Ligand (X = O, S, Se), and a Phenyl Group: Synthesis and Structural Characterization in the Solid State and in Solution

J. Weiß, B. Theis, J. A. Baus, C. Burschka, R. Bertermann, R. Tacke

Z. Anorg. Allg. Chem. 2013, akzeptiert.

Neutral Hexacoordinate Silicon(IV) Complexes with an SiO_4NC or SiO_3N_2C Skeleton and Neutral Pentacoordinate Silicon(IV) Complexes Containing a Trianionic Tetradentate O,N,O',O'' Ligand

J. Weiß, K. Sinner, J. A. Baus, C. Burschka, R. Tacke

Eur. J. Inorg. Chem. 2013, DOI: 10.1002/ejic.201301185.

Neutral Hexacoordinate Silicon(IV) Complexes with a Tridentate Dianionic O,N,X Ligand (X = O, N, S), Bidentate Monoanionic X,N Ligand (X = O, S), and Phenyl Ligand: Compounds with an SiO₃N₂C, SiSO₂N₂C, SiO₂N₃C, SiSON₃C, or SiS₂ON₂C Skeleton

J. Weiß, J. A. Baus, C. Burschka, R. Tacke

Organometallics 2013

Verzeichnis der verwendeten Abkürzungen

Bu	Butyl
DMSO	Dimethylsulfoxid
Me	Methyl
Ph	Phenyl
THF	Tetrahydrofuran
TMS	Tetramethylsilan
TSP	Natrium-2,2,3,3-tetradeutero-3-(trimethylsilyl)propanoat
a. u.	Atomic Unit
Ber.	berechnet
Gef.	gefunden
GUI	Graphical User Interface
QP	Quadratische Pyramide
Sdp.	Siedepunkt
Smp.	Schmelzpunkt
TBP	Trigonale Bipyramide
u	Unit
Zers.	Zersetzung
d	Tag(e)
h	Stunde(n)
min	Minute(n)
br.	breit(es)
COSY	Correlated Spectroscopy
CSA	Chemical Shift Anisotropy
d	Dublett
DEPT	Distortionless Enhancement by Polarisation Transfer
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
J	Kopplungskonstante
m	Multiplett
MAS	Magic Angle Spinning
NMR	Nuclear Magnetic Resonance

NOESY	Nuclear Overhauser Effect Spectroscopy
ppm	Parts Per Million
q	Quartett
S	Singulett
VACP	Variable Amplitude Cross Polarisation
ESI	Electrospray Ionisation
GC	Gaschromatographie
HR	High Resolution
MS	Massenspektrometrie
НОМО	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
МО	Molecular Orbital

Inhaltsverzeichnis

1	E	Cinleit	tung1
2	Z	Lielset	zung4
	2.1	Unter (<i>R</i> , <i>R</i>)	rsuchungen zur Hydrolyse von λ ⁵ Si,λ ⁵ Si'-Disilicaten mit verbrückenden -Tartrato(4–)-Liganden4
	2.2	Neut	rale pentakoordinierte Silicium(IV)-Komplexe5
	2.	.2.1	Neutrale pentakoordinierte Silicium(IV)-Komplexe mit Halogeno- oder Pseudo-halogeno-Liganden
	2.	.2.2	Neutrale pentakoordinierte Silicium(IV)-Komplexe mit PhX-Liganden (X = O, S, Se, Te)
	2.3	Darst einen	tellung eines neutralen pentakoordinierten Silicium(IV)-Komplexes mit n tridentaten dianionischen <i>Se,N,O-</i> Liganden7
	2.4	Neut	rale hexakoordinierte Silicium(IV)-Komplexe7
	2.	.4.1	Neutrale hexakoordinierte Silicium(IV)-Komplexe mit bidentaten monoan- ionischen <i>O,O</i> -Liganden
	2.	.4.2	Neutrale hexakoordinierte Silicium(IV)-Komplexe mit bidentaten mono- anionischen <i>N</i> , <i>X</i> -Liganden (X = O, S, Se)
3	S	ynthe	esen11
	3.1	Synth	nese der $\lambda^5 Si, \lambda^5 Si'$ -Disilicate mit (<i>R</i> , <i>R</i>)-Tartrato(4–)-Liganden11
	3.	.1.1	Synthese von Verbindung 1
	3.	.1.2	Synthese von Verbindung 2
	3.2	Synth	nese der neutralen pentakoordinierten Silicium(IV)-Komplexe13
	3.	.2.1	Vorversuche zu den Synthesen und Vergleich der drei tridentaten dianionischen <i>N</i> , <i>N</i> , <i>O</i> -, <i>S</i> , <i>N</i> , <i>O</i> - und <i>O</i> , <i>N</i> , <i>O</i> -Liganden
	3	.2.2	Synthese von Verbindung 11 (<i>Si</i> N ₄ O ₂ -Gerüst)
	3.	.2.3	Synthese der neutralen pentakoordinierten Silicium(IV)-Komplexe mit Halogeno- und Pseudohalogeno-Liganden

3.2.3.1 Synthese von Verbindung 12 (<i>Si</i> ClN ₂ OC-Gerüst)	15
3.2.3.2 Synthese von Verbindung 13 (<i>Si</i> FN ₂ OC-Gerüst)	16
3.2.3.3 Synthese von Verbindung 14 (SiFNO ₂ C-Gerüst)	16
3.2.3.4 Synthese von Verbindung $16.0.5C_6H_6$ (SiBrN ₂ OC-Gerüst)	17
3.2.3.5 Synthese von Verbindung 17 (SiIN ₂ OC-Gerüst) und 18 (SiN ₃ OC-Gerüst)	st) 18
3.2.3.6 Synthese von Verbindung 19 (<i>Si</i> N ₂ O ₂ C-Gerüst)	18
3.2.4 Synthese der neutralen pentakoordinierten Silicium(IV)-Komplexe mit H	hX-
Liganden ($X = O, S, Se$)	19
3.2.4.1 Synthese von Verbindung 20 (<i>Si</i> O ₂ N ₂ C-Gerüst)	19
3.2.4.2 Synthese von Verbindung 22 (<i>Si</i> O ₃ NC-Gerüst)	21
3.2.4.3 Synthese von Verbindung 23 (SiSON ₂ C-Gerüst)	22
3.2.4.4 Synthese von Verbindung 24 (SiSeON ₂ C-Gerüst)	22
3.2.4.5 Versuchte Darstellung von Verbindung 25 (<i>Si</i> TeON ₂ C-Gerüst)	23
3.3 Versuchte Darstellung des neutralen pentakoordinierten Silicium(IV)-Kon	nplexes
mit einem tridentaten dianionische Se,N,O-Liganden, einem Phenyl-Lig	ganden
und einem Chloro-Liganden	23
3.3.1 Versuchte Darstellung von Verbindung 28	23
3.3.2 Versuchte Darstellung von Verbindung 30	24
3.3.3 Versuchte Darstellung von Verbindung 34 (<i>Si</i> ClSeNOC-Gerüst)	26
3.4 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe	27
3.4.1 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe	mit
bidentaten monoanionischen <i>O</i> , <i>O</i> -Liganden	27
3.4.1.1 Synthese der symmetrisch substituierten <i>O</i> , <i>O</i> -Liganden	27
3.4.1.2 Synthese von Verbindung 38 (<i>Si</i> O ₃ N ₂ C-Gerüst)	28
3.4.1.3 Synthese von Verbindung 39 · CH ₃ CN (<i>Si</i> O ₃ N ₂ C-Gerüst)	29
3.4.1.4 Synthese von Verbindung 40 (<i>Si</i> O ₃ NC-Gerüst)	29
3.4.1.5 Synthese von Verbindung 41 ·0.5CH ₃ CN (<i>Si</i> O ₄ NC-Gerüst)	30
3.4.1.6 Synthese von Verbindung 42 · CH ₃ CN (<i>Si</i> O ₄ NC-Gerüst)	31
3.4.1.7 Synthese von Verbindung $43 \cdot (C_2H_5)_2O(SiO_3NC-Ger"ust)$	32
3.4.1.8 Synthesen von Verbindung 44·0.5C ₆ H ₅ CH ₃ (<i>Si</i> O ₃ NC-Gerüst)	33
3.4.2 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe	mit
bidentaten monoanionischen N,X-Liganden (X = O, S, Se)	34

	3.4.	2.1 Synthese von Verbindung 46	
	3.4.	2.2 Synthese von Verbindung 47	
	3.4.	2.3 Versuchte Darstellung von Verbindung 49	
	3.4.	2.4 Synthese von Verbindung 53	
	3.4.	2.5 Synthese von Verbindung 54 (SiO_2N_3C -Gerüst)	39
	3.4.	2.6 Synthese von Verbindung 55 ·CH ₃ CN (<i>Si</i> SON ₃ C-Gerüst)	40
	3.4.	2.7 Synthese von Verbindung 56 (SiO_3N_2C -Gerüst)	
	3.4.	2.8 Synthese von Verbindung 57 ·0.5CH ₃ CN (<i>Si</i> SO ₂ N ₂ C-Gerüst)	
	3.4.	2.9 Synthese von Verbindung 58 ·0.5CH ₃ CN (<i>Si</i> SO ₂ N ₂ C-Gerüst)	
	3.4.	2.10 Synthese von Verbindung 59 ·0.5CH ₃ CN (<i>Si</i> S ₂ ON ₂ C-Gerüst)	
	3.4.	2.11 Versuchte Darstellung der Verbindungen 60-62 (SiSeON ₂ CX-Geri	ist, X =
		NMe, O, S)	
4	NMF	R-Untersuchungen	
	4 1 NM	R -Untersuchungen zur Hydrolyse des $\lambda^5 Si$, $\lambda^5 Si'$ -Disilicates 2	
4	4.1 19191		
2	4.2 NM	R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex	e 13, 14,
2	4.1 NM 4.2 NM 16·(R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex).5C ₆ H ₆ , 17–20 und 22–24	e 13, 14, 50
2	4.2 NM 4.2 NM 16·(4.2.1 N	R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex).5C6H6, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komple	e 13, 14, 50
2	4.2 NM 4.2 NM 16·(4.2.1 N 16·(R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex).5C ₆ H ₆ , 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex).5C ₆ H ₆ , 17–20 und 22–24 im Festkörner	e 13, 14, 50 xe 13, 14, 51
2	4.2 NM 16·(4.2.1 N 16·(R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 im Festkörper	e 13, 14, 50 xe 13, 14, 51
2	4.2 NM 16·(4.2.1 N 16·(4.2.2	R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 im Festkörper Vergleich der ²⁹ Si-chemischen Verschiebungen der pentakoord	e 13, 14, 50 xe 13, 14, 51 inierten
	4.2 NM 16·(4.2.1 N 16·(4.2.2	R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 im Festkörper Vergleich der ²⁹ Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper	e 13, 14, 50 xe 13, 14, 51 inierten und in
	4.2 NM 16·(4.2.1 N 16·(4.2.2	R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C ₆ H ₆ , 17–20 und 22–24 im Festkörper Vergleich der ²⁹ Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung	e 13, 14, 50 xe 13, 14, 51 inierten und in 54
	4.2 NM 16·(4.2.1 N 16·(4.2.2 4.2.2	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14,
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.3	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.3 4.2.3	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 Jntersuchungen zur Dynamik in Lösung 	ae 13, 14,
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.2 4.2.3 4.2.4 N 4.2.4 N	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 Jntersuchungen zur Dynamik in Lösung 	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.2 4.2.3 4.2.4 N 4.3 NM 38–	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex 0.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 Jntersuchungen zur Dynamik in Lösung R-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-44 und 54–59 	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.2 4.2.3 4.2.4 0 4.3 NM 38- 4.3 1	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.2 4.2.3 4.2.4 0 4.3 NM 38- 4.3.1	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 Jntersuchungen der neutralen hexakoordinierten Silicium(IV)-44 und 54–59 NMR-Untersuchungen der neutralen hexakoordinierten Silici Komplexe 38–44 mit bidentaten monoanionischen O O-Ligenden 	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59 um(IV)-
	4.2 NM 4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.3 4.2.4 N 4.3 NM 38- 4.3.1 4.3	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76 Intersuchungen zur Dynamik in Lösung	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59 um(IV)- 60 und in
	4.2 NM 4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.3 4.2.4 N 4.3 NM 38- 4.3.1 4.3.	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59 um(IV)- 60 und in
	4.2 NM 16.0 4.2.1 N 16.0 4.2.2 4.2.2 4.2.3 4.2.4 0 4.3.1 4.3.1 4.3.1 4.3.1	 R-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 MR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplex D.5C₆H₆, 17–20 und 22–24 im Festkörper Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoord Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper Lösung Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 16–20, 22–24 und 63–76	e 13, 14, 50 xe 13, 14, 51 inierten und in 54 12–14, 55 57 Komplexe 59 um(IV)- 60 und in 60 60

	4.	.3.2	NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV))-
			Komplexe 54–59 mit bidentaten monoanionischen N,X -Liganden (X = O, S).	61
5	K	Krista	allstrukturanalysen	. 63
	5.1	Allg	emeine Bemerkungen	63
	5.2	Kris	tallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 11	64
	5.3	Kris	tallstrukturen der pentakoordinierten Silicium(IV)-Komplexe 13.	14.
	0.0	16.0	.5C ₆ H ₆ , 18·2CH ₃ CN und 19 mit (Pseudo)halogeno-Liganden	65
	5.	.3.1	Kristallstruktur von 13	65
	5.	.3.2	Kristallstruktur von 14	66
	5.	.3.3	Kristallstruktur von $16.0.5C_6H_6$	68
	5.	.3.4	Kristallstruktur von 18·2CH ₃ CN	69
	5.	.3.5	Kristallstruktur von 19	70
	5.	.3.6	Vergleich der Kristallstrukturen mit (Pseudo)halogeno-Liganden	71
	5.4	Kris	tallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe	mit
		PhX	-Liganden (X = O, S, Se)	74
	5.	.4.1	Kristallstruktur von 20	74
	5.	.4.2	Kristallstruktur von 22	76
	5.	.4.3	Kristallstruktur von 23	77
	5.	.4.4	Kristallstruktur von 24	78
	5.	.4.5	Vergleich der pentakoordinierten Silicium(IV)-Komplexe mit PhX-Ligander	n
			(X = O, S, Se)	79
	5.5	Kris	tallstrukturen der neutralen hexakoordinierten Silicium(IV)-Komplexe	mit
		zwei	zähnigen monoanionischen <i>0,0-</i> Liganden	81
	5.	.5.1	Kristallstruktur von 38	81
	5.	.5.2	Kristallstruktur von 39 ·CH ₃ CN	83
	5.	.5.3	Kristallstruktur von 40	84
	5.	.5.4	Kristallstruktur von 41·0.53CH ₃ CN	85
	5.	.5.5	Kristallstruktur von 42 · CH ₃ CN	87

	5.5.6	Kristallstruktur von $43 \cdot (C_2H_5)_2O$	
	5.5.7	Kristallstruktur von 44·0.5C ₆ H ₅ CH ₃	89
	5.5.8	Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mi	t einem
		zweizähnigen monoanionischen <i>O</i> , <i>O</i> -Liganden.	
5	5.6 Kris	stallstrukturen der neutralen hexakoordinierten Silicium(IV)Kom	plexe mit
	zwei	izähnigen monoanionischen <i>N,X</i> -Liganden (X = O, S)	
	5.6.1	Kristallstruktur von 54	
	5.6.2	Kristallstruktur von 55·CH ₃ CN	
	5.6.3	Kristallstruktur von 56	
	5.6.4	Kristallstruktur von 57 ·0.5CH ₃ CN	
	5.6.5	Kristallstruktur von 58	
	5.6.6	Kristallstruktur von 59 ·0.5CH ₃ CN	
	5.6.3	Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mi	t einem
		zweizähnigen monoanionischen <i>N</i> , <i>X</i> -Liganden (X = O, S).	100
6	Zusa	nmenfassung	102
7	Sumr	nary	107
8	Expe	rimenteller Teil	112
8	3.1 Arb	eits- und Messtechniken	112
	8.1.1	Allgemeine Arbeitstechniken	112
	8.1.2	Messtechniken	
8	3.2 Syn	thesen	116
9	Liter	aturverzeichnis und Anmerkungen	149
	_		·
An	hang A	A: Daten zu den Kristallstrukturanalysen	156

1 Einleitung

Silicium ist ein Element der vierten Hauptgruppe und liegt somit meist in der Koordinationszahl vier vor. Die chemischen Eigenschaften des Siliciums sind denen des Kohlenstoffs, dem nächst niederen Homologen, sehr ähnlich. Allerdings existieren auch gravierende Unterschiede, wie z. B. in den Atomradien oder den Elektronegativitäten. Kohlenstoff-Verbindungen mit den Koordinationszahlen (KZ) zwei (z. B. Alkine) und drei (z. B. Carbonyle, Alkene, Aromaten) sind sehr häufig. Ganz anders verhält es sich bei Silicium-Verbindungen mit einer Koordinationszahl kleiner als vier (z. B. Silene (KZ = 3), Disilene (KZ = 3) oder Silvlene (KZ = 2)), welche weitaus seltener sind. Niedervalente Silicium-Verbindungen stellen daher ein aktuelles Forschungsgebiet der Siliciumchemie dar, das in den letzten Jahren immer mehr an Bedeutung gewonnen hat und mittlerweile zu einem der am intensivsten bearbeiteten Gebiete der Siliciumchemie avancierte.^[1] Zweifach koordinierte Silicium(II)-Verbindungen sind häufig in freier Form instabil, es konnten jedoch in den letzten zwei Jahrzehnten einige stabile Vertreter dieser Klasse isoliert werden.^[2] Höherkoordinierte. donorstabilisierte Silylene (KZ > 2; z. B. $I^{[2a]}$ und $II^{[4a]}$) weisen dagegen häufig eine bemerkenswert hohe thermische Stabilität auf. Besonders Amidinato-substituierte Silicium(II)-Verbindungen (z.B. II und III^[4c]) werden in diesem Zusammenhang seit einiger Zeit intensiver untersucht.^[3,4]

Während höherkoordinerte Kohlenstoff-Verbindungen fast ausschließlich als Übergangszustände auftreten, sind Silicium-Verbindungen mit den Koordinationszahlen fünf und sechs stabil. Die Erhöhung der Koordinationszahl am Silicium-Atom wird vorzugsweise durch kleine, elektronegative Donor-Ligandatome wie Fluor, Sauerstoff oder Stickstoff (z. B. $IV^{[5]}$) realisiert.^[6–8] Allerdings konnte gezeigt werden, dass höherkoordinierte Silicium-Verbindungen auch mit weichen Ligandatomen, wie z. B. Schwefel (V),^[8c] Selen oder Tellur, stabil sein können und zudem ganz neue Perspektiven auf diesem Themengebiet bieten.^[8f,h,k,9]

Im Allgemeinen werden höherkoordinierte Silicium-Komplexe in drei Gruppen eingeteilt. Es wird unterschieden zwischen anionischen (z. B. $VI^{[10]}$), kationischen (z. B. $VII^{[11]}$) und neutralen (z. B. $V^{[8c]}$) Silicium-Komplexen. Zu den neutralen Silicium-Komplexen gehören auch die zwitterionischen (molekularen) $\lambda^5 Si$ -Silicate, wie z.B. VIII,^[12] bei der das Silicium-Koordinationszentrum formal negativ und das Ammonium-Stickstoff Atom formal positiv geladen ist.

Um ein besseres Verständnis für Substitutionsreaktionen am Silicium-Zentrum zu erlangen, werden höherkoordinierte Silicium-Komplexe als Modellsysteme für Intermediate herangezogen.^[13] Analog dazu werden auch Substitutionsreaktionen an Kohlenstoff-Zentren unter Zuhilfenahme höherkoordinierter Silicium-Komplexe erforscht, da die dabei auftretenden Zwischenstufen häufig lokale Minima und keine Übergangszustände darstellen.^[14] Hierfür eignen sich besonders pentakoordinierte Silicium(IV)-Komplexe. In diesem Bereich haben sich besonders tridentate dianionische Liganden, wie **IX–XI**, etabliert.

Um in organischen Synthesen C–C-Kupplungsreaktionen durchzuführen, können unter anderem auch höherkoordinierte Silicium-Komplexe als reaktive Einheiten verwendet werden.^[15]

Weiterhin ist seit langem bekannt, dass Silicium in vielen Pflanzen, vor allem aber in marinen Organismen wie Schwämmen, Diatomeen oder Radiolarien, als Siliciumdioxid (Polykieselsäure, Silica), angereichert wird. Wie die Aufnahme, der Transport und die Speicherung der Kieselsäure bzw. der Polykieselsäuren vonstatten gehen, ist aber unbekannt. Die Schlüsselrolle von höherkoordinierten Silicium-Verbindungen bei der SiO₂-Biomineralisation wird aber in diesem Zusammenhang diskutiert.^[16]

2 Zielsetzung

2.1 Untersuchungen zur Hydrolyse von $\lambda^5 Si, \lambda^5 Si'$ -Disilicaten mit verbrückenden (*R*,*R*)-Tartrato(4–)-Liganden

Aufbauend auf früheren Arbeiten unseres Arbeitskreises sollte ein bereits bekanntes zwitterionisches $\lambda^5 Si, \lambda^5 Si'$ -Disilicat ($\mathbf{A}^{[17]}$) mit zwei SiO_5 -Gerüsten synthetisiert und hinsichtlich seiner Hydrolyse zum $\lambda^5 Si, \lambda^5 Si'$ -Disilicat **B** untersucht werden. Diese beiden Verbindungen besitzen jeweils zwei pentakoordinierte, formal negativ geladene Silicium-Atome und jeweils zwei verbrückende (R, R)-Tartrato(4–)-Liganden.

Dem Element Silicium werden heilsame Wirkungen bei manchen Krankheiten wie Osteoporose, Hautalterung oder Arteriosklerose zugeschrieben und es zeigt zudem positive Effekte auf den Zustand von Haut, Haar und Fingernägel.^[18] Orthokieselsäure und ihre Salze stellen die häufigsten Silicium-Verbindungen im Trinkwasser dar und werden vom menschlichen Körper im Vergleich zu anderen Silicium-Verbindungen am besten aufgenommen. Da bei der Hydrolyse von **A** nur Spaltprodukte entstehen, welche auch in der Natur vorkommen (Weinsäure, Cholin und Orthokieselsäure), könnte **A** interessante Eigenschaften als Nahrungsergänzungsmittel besitzen.^[19]

Während pentakoordinierte Silicium(IV)-Komplexe im Allgemeinen in wässriger Lösung labil sind, besitzt **B** eine bemerkenswerte Stabilität in neutraler wässriger Lösung. So dauert die vollständige Hydrolyse zu Weinsäure, Cholin und Orthokieselsäure bei Raumtemperatur mehr als zehn Tage. In einer früheren Arbeit unseres Arbeitskreises wurde die vollständige Hydrolyse von **A** zu den Spaltprodukten in Abhängigkeit des pH-Wertes und der Konzentration der wässrigen Lösungen untersucht.^[17] Deshalb sollte jetzt im Rahmen dieser Arbeit die partielle Hydrolyse von **A** zu **B** und die vollständige Hydrolyse von **B** im Vergleich zu Tetramethoxysilan (ein Derivat der Orthokieselsäure) untersucht werden. Weiterhin sollte untersucht werden, inwieweit das $\lambda^5 Si, \lambda^5 Si'$ -Disilicat **B** Kondensationsprodukte bilden kann, wie sie beispielsweise bei den Kondensationsreaktionen von Orthokieselsäure zu Polykieselsäuren bekannt sind.

2.2 Neutrale pentakoordinierte Silicium(IV)-Komplexe

2.2.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit Halogeno- oder Pseudohalogeno-Liganden

Ein wesentliches Ziel dieser Arbeit war es, neuartige neutrale Silicium(IV)-Komplexe des Formeltyps C zu synthetisieren und hinsichtlich ihrer Struktur und Eigenschaften zu untersuchen. Diese Verbindungen zeichnen sich durch einen tridentaten dianionischen N,N,O-, einen Phenyl- und einen Halogeno bzw. Pseudohalogeno-Liganden aus. Da einige artverwandte Verbindungen schon bekannt,^[15,18] allerdings noch nicht vollständig charakterisiert waren, sollten die analytischen Daten dieser Verbindungen komplettiert werden.

Die erhaltenen analytischen Daten sollten dann mit analogen Silicium(IV)-Komplexen, welche einen tridentaten dianionischen *S*,*N*,*O*- bzw. *O*,*N*,*O*-Liganden an Stelle des *N*,*N*,*O*-Liganden von **C** besitzen, verglichen werden.

Zur Synthese aller weiteren Verbindungen sollte zunächst der Silicium(IV)-Komplex des Formeltyps C mit X = Cl dargestellt werden. Die angestrebten Verbindungen sollten dann durch Transsilylierungen mittels Reagenzien des Typs Me₃SiX (X = Br, I) synthetisiert werden. Für die Synthese des Fluorosilicium(IV)-Komplexes sollten alternative Reagenzien verwendet werden. Zur Vervollständigung der Daten der Vergleichsstudie aller drei Serien (*N*,*N*,*O*-, *O*,*N*,*O*- und *S*,*N*,*O*-Ligand) sollten außerdem ausgehend von dem entsprechenden Chlorosilicium(IV)-Komplex neutrale pentakoordinierte Silicium(IV)-Komplexe des Typs **D** mit einem tridentaten dianionischen *O*,*N*,*O*-, einem Phenyl- und einem Fluoro- bzw. (Thiocyanato-*N*)-Liganden dargestellt werden.

Im Falle des Fluorosilicium(IV)-Komplexes gab es bereits Vorarbeiten, jedoch waren die erhaltenen analytischen Daten unvollständig.^[17]

2.2.2 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit PhX-Liganden (X = O, S, Se, Te)

Ein weiteres Ziel dieser Arbeit bestand darin, ausgehend von den entsprechenden Chlorosubstituierten Silicium(IV)-Komplexen neutrale pentakoordinierte Silicium(IV)-Komplexe der Formeltypen **E** und **F** zu synthetisieren. Auch hier konnte auf Vorarbeiten aufgebaut werden; so waren die Silicium(IV)-Komplexe des Typs **E** mit X = S und X = Se bereits bekannt.^[17]

2.3 Darstellung eines neutralen pentakoordinierten Silicium(IV)-Komplexes mit einem tridentaten dianionischen *Se*,*N*,*O*-Liganden

Ferner sollte eine Synthesestrategie zur Darstellung des Chlorosilicium(IV)-Komplexes des Formeltyps **G** mit einem tridentaten dianionischen *Se*,*N*,*O*-Liganden entwickelt werden.

Ein großer Vorteil dieses *Se*,*N*,*O*-Liganden gegenüber den entsprechenden *N*,*N*,*O*-, *O*,*N*,*O*oder *S*,*N*,*O*-Liganden wäre die Einführung einer weiteren NMR-Sonde (⁷⁷Se, I = 1/2, rel. Häufigkeit 7.63%, positives γ), die weitere Strukturinformationen zugänglich machen würde.

2.4 Neutrale hexakoordinierte Silicium(IV)-Komplexe

Im Rahmen dieser Arbeit sollte weiterhin versucht werden, ausgehend von den entsprechenden pentakoordinierten Chlorosilicium(IV)-Komplexen mit *N*,*N*,*O*-, *O*,*N*,*O*- bzw. *S*,*N*,*O*-Liganden durch Einführung bidentater monoanionischer Liganden neutrale hexakoordinierter Silicium(IV)-Komplexe zu synthetisieren und diese strukturell zu untersuchen.

2.4.1 Neutrale hexakoordinierte Silicium(IV)-Komplexe mit bidentaten monoanionischen *O*,*O*-Liganden

Aufbauend auf einer früheren Arbeit unseres Arbeitskreises^[8d] sollten die Chlorosilicium(IV)-Komplexe des Formeltyps **C** bzw. **D** (O,N,O- bzw. N,N,O-Ligand) mit einem bidentaten monoanionischen O,O-Liganden des Acetylacetonato-Typs umgesetzt werden, um die neutralen hexakoordinierten Silicium(IV)-Komplexe des Formeltyps **H** zu erhalten.

Um das Auftreten zusätzlicher Stereoisomere zu vermeiden, sollten nur symmetrisch Acetylacetonato-Derivate substituierte verwendet werden. Hierzu sollten in Transilylierungsreaktionen die Acetylacetonato-Derivate des Formeltyps I verwendet werden. Da die Bildung eines pentakoordinierten Silicium(IV)-Komplexes mit einem tetradentaten trianionischen O,N,O,O-Liganden im Zusammenhang mit einem einfach Trifluormethylsubstituierten Acetylacetonato-Liganden bereits bekannt war,^[8d] sollte untersucht werden, ob ausgehend von den entsprechenden neutralen pentakoordinieren Chlorosilicium(IV)-Komplexen mit einem tridentaten dianionischen N,N,O-, O,N,O-, bzw. S,N,O-Liganden durch Umsetzung mit 1,1,1,5,5,5-Hexafluor-4-(trimethylsilyloxy)pent-3-en-2-on (Formeltyp I, R = CF₃) eine gezielte Darstellung der pentakoordinierten Silicium(IV)-Komplexe des Formeltyps J mit einem tetradentaten trianionischen O,N,O,O-Liganden möglich ist.

2.4.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe mit bidentaten monoanionischen *N,X*-Liganden (X = O, S, Se)

Des weiteren sollten, ausgehend von entsprechenden neutralen pentakoordinierten Silicium(IV)-Komplexen, hexakoordinierte Silicium(IV)-Komplexe des Formeltyps **K** mit zweizähnigen N,X-Liganden (X = O, S, Se) dargestellt werden, die nicht nur harte Ligandatome wie Sauerstoff, Stickstoff oder Kohlenstoff, sondern auch weiche Ligandatome wie Schwefel oder Selen enthalten. Da das HSAB-Prinzip (Pearson-Konzept der "Hard and Soft Acids and Bases") offensichtlich zu primitiv ist, um die Bindungssituation am Silicium-Atom zu beschreiben, sollte untersucht werden, inwieweit weiche Ligand-Atome am Silicium-Koordinationszentrum toleriert werden.

Die monoanionischen bidentaten *N,X*-Liganden sind sich strukturell sehr ähnlich, da sie sich nur in einem Atom unterscheiden (O/S/Se-Austausch). Durch die Anwesenheit von sowohl harten (Sauerstoff) als auch weichen Ligandatomen (Schwefel oder Selen) sollten sich durch den Vergleich der entsprechenden O/S/Se-Analoga weitere Erkenntnisse über den Einfluss von weichen Ligandatomen auf die Koordinationssphäre des Silicium-Atoms gewinnen lassen.

Alle hexakoordinierten Silicium(IV)-Komplexe des Formeltyps K sollten ausgehend von den entsprechenden neutralen pentakoordinierten Chlorosilicium(IV)-Komplexen mittels Transsilylierungsreaktionen dargestellt werden, da das bei der Reaktion entstehende Chlortrimethylsilan im Vakuum entfernt werden kann (Verschiebung der Gleichgewichtslage) und sich so die Ausbeuten (im Vergleich zu der Umsetzung mit den entsprechenden XH-aciden Chinolin-Derivaten und einer Base) signifikant verbessern lassen sollten. Hierfür war es notwendig, geeignete Syntheswege zur Darstellung der benötigten Reagenzien des Typs L zu entwerfen.

Reagenzien des Formeltyps L waren bis dato in der Literatur nur teilweise oder gar nicht beschrieben: Nur im Falle von L mit X = O konnte auf Vorarbeiten zurückgegriffen werden. Die Darstellung des silylierten 8-Mercaptochinolin bzw. 8-Selenochinolin war jedoch gänzlich unbekannt.^[21]

3 Synthesen

3.1 Synthese der $\lambda^5 Si, \lambda^5 Si'$ -Disilicate mit (*R*,*R*)-Tartrato(4–)-Liganden

3.1.1 Synthese von Verbindung 1

Das literaturbekannte $\lambda^5 Si_i \lambda^5 Si'$ -Disilicat **1** wurde gemäß Schema 3.1 durch Umsetzung von Tetramethoxysilan mit einem Moläquivalent Cholin-(*R*,*R*)-hydrogentartrat in siedendem *N*,*N*-Dimethylformamid dargestellt.^[17]

Schema 3.1

Da Verbindung 1 bereits literaturbekannt war, wurde diese nur durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si-NMR) identifiziert.

3.1.2 Synthese von Verbindung 2

Das $\lambda^5 Si, \lambda^5 Si'$ -Disilicat **2** wurde gemäß Schema 3.2 durch Hydrolyse des $\lambda^5 Si, \lambda^5 Si'$ -Disilicates **1** in Wasser bei 20 °C und unmittelbar folgende Gefriertrocknung der resultierenden wässrigen Lösung synthetisiert. Verbindung **2** wurde mit einer Ausbeute von 94% in einer Reinheit von ca. 98% als farbloser Feststoff erhalten. Versuche, das Wasser durch Destillation (45 °C, 70 mbar, 5.5 h) zu entfernen, bewirkten eine signifikante Verringerung der Reinheit von **2**. Alle Versuche, das $\lambda^5 Si, \lambda^5 Si'$ -Disilicat **2** aus gängigen organischen Lösungsmitteln wie Dimethylsulfoxid, Dimethylformamid, Tetrahydrofuran, 1,4-Dioxan oder Acetonitril zu kristallisieren, scheiterten. Verbindung **2** wurde mittels Elementaranalyse (C, H, N), NMR- Spektroskopie in Lösung (¹H, ¹³C, ²⁹Si) und im Festkörper (¹³C, ¹⁵N, ²⁹Si) sowie durch ESI-MS-Experimente charakterisiert.

Schema 3.2

Kryoskopische Untersuchungen einer frisch hergestellten 33 mM wässrigen Lösung von 1 zeigten eine schnelle Hydrolyse des Zwitterions an. Die gemessene Gefrierpunktserniedrigung wies auf die Existenz von 3 Teilchen (2: zwei Kationen und ein Anion) anstelle von einem Teilchen (1: ein Zwitterion) hin. Dieser Befund wurde durch die Ergebnisse von ESI-MS-Untersuchungen einer frisch hergestellten wässrigen Lösung von 1 untermauert. Hierbei konnten ein Cluster, der ein Cholin-Kation und ein $\lambda^5 Si_i \lambda^5 Si'$ -Disilicat-Dianion (m/z =486.04) beinhaltet, und ein einfach protoniertes Dianion (m/z = 382.94) nachgewiesen werden.

3.2 Synthese der neutralen pentakoordinierten Silicium(IV)-Komplexe

3.2.1 Vorversuche zu den Synthesen und Vergleich der drei tridentaten dianionischen N,N,O-, S,N,O- und O,N,O-Liganden

4-[(2-(Methylamino)phenyl)amino]pent-3-en-2-on (**3**), ein tridentater, zweifach deprotonierter N,N,O-Präligand, war zwar bereits für die Synthese höherkoordinierter Silicium(IV)-Komplexe bekannt,^[8e] aber es schien interessant, diesen Liganden noch genauer auf seine Eigenschaften im Vergleich zu den analogen S,N,O- (1-(2-Methyl-2,3-dihydrobenzthiazol-2-yl)propan-2-on (**4**)) und O,N,O-Präliganden (4-[(2-Hydroxyphenyl)amino]pent-3-en-2-on (**5**)) hin zu untersuchen.

Wie sich bereits herausgestellt hat, ist es nicht möglich, Verbindung **3** durch Umsetzung mit 1,1,1,3,3,3-Hexamethyldisilazan zu silylieren.^[20] GC-MS-Untersuchungen der Reaktionsmischung ergaben, dass dabei ein Moläquivalent Aceton abgespalten und 1,2-Dimethyl-1*H*-benzimidazol (**6**) gebildet wird.

Wie umfangreiche Studien ergaben, liegt **4** im Festkörper als auch vorwiegend in Lösung in der gezeigten Benzolthiazol-artigen Struktur vor, da sich *iso*-**4** in Lösung zu **4** umlagert.^[22] Zudem kann eine Abspaltung von einem Moläquivalent Aceton beobachtet werden, und es bildet sich 2-Methylbenzthiazol (7). Die Abspaltung von Aceton wurde bereits vor einigen Jahren durch massenspektroskopische Untersuchungen von **4** nachgewiesen.^[23]

Da **3** (*N*,*N*,*O*-Ligand) und **5** (*O*,*N*,*O*-Ligand) in Lösung wie auch im Festkörper in der Keto-Enamin-Form vorliegen, sind sie gegenüber der Abspaltung von Aceton resistent.

Bei der Umsetzung von 4 und 5 mit Tetra(cyanato-*N*)silan (8) gemäß Schema 3.3 wurden die hexakoordinierten Silicium(IV)-Komplexe 9 bzw. 10 erhalten.^[24] Trotz der unterschiedlichen Strukturen des *S*,*N*,*O*- und *O*,*N*,*O*-Präliganden reagieren diese analog.

Schema 3.3

3.2.2 Synthese von Verbindung 11 (*Si*N₄O₂-Gerüst)

Vor dem Hintergrund der in Kapitel 3.2.1 beschriebenen Ergebnisse (Bildung von 9 und 10) war es interessant herauszufinden, ob der *N*,*N*,*O*-Ligand **3** in analoger Weise reagiert. Dazu wurde **8** gemäß Schema 3.4 mit zwei Moläquivalenten **3** und vier Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C umgesetzt. Der neutrale hexakoordinierte Silicium(IV)-Komplex **11** konnte nach Entfernen des bei der Reaktion gebildeten Triethylammoniumcyanats und des Tetrahydrofurans aus Acetonitril kristallisiert und in einer Ausbeute von 38% als roter kristalliner Feststoff isoliert werden. Die Identität von **11** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristall-strukturanalyse sichergestellt.

3.2.3 Synthese der neutralen pentakoordinierten Silicium(IV)-Komplexe mit Halogenound Pseudohalogeno-Liganden

3.2.3.1 Synthese von Verbindung 12 (*Si*ClN₂OC-Gerüst)

Verbindung **12** wurde gemäß Lit. [8e] durch Umsetzung von Trichlorphenylsilan mit einem Moläquivalent **3** in Gegenwart von zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C synthetisiert (Schema 3.5). Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids wurde Verbindung **12** aus Acetonitril kristallisiert und in einer Ausbeute von 59% als orange gefärbter kristalliner Feststoff isoliert.

Schema 3.5

3.2.3.2 Synthese von Verbindung 13 (SiFN₂OC-Gerüst)

Verbindung **13** wurde gemäß Schema 3.6 durch Umsetzung von **12** mit einem Moläquivalent Ammoniumfluorid in Tetrahydrofuran bei 20 °C dargestellt. Aufgrund der schlechten Löslichkeit von Ammoniumfluorid in Tetrahydrofuran war die Konzentration der Fluorid-Ionen während der Reaktion konstant niedrig, was eine sehr langsame, aber dafür selektive Synthese von **13** zur Folge hatte. Wenn die Konzentration an Fluorid-Ionen zu hoch ist (Reaktion in Acetonitril), werden in Nebenreaktionen auch andere Bindungen am Silicium-Atom gebrochen. Nach Entfernen des bei der Reaktion gebildeten Ammoniumchlorids und des Tetrahydrofurans konnte Verbindung **13** aus Acetonitril kristallisiert und in einer Ausbeute von 49% als gelber kristalliner Feststoff isoliert werden. Die Identität von **13** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Alternativ konnte **13** auch durch Umsetzung von **12** mit jeweils einem Moläquivalent Silbertetrafluoroborat und Triethylamin in Tetrahydrofuran unter Lichtausschluss bei 20 °C dargestellt werden. Nach Kristallisation aus Acetonitril wurde **13** in einer Ausbeute von 61% als gelber kristalliner Feststoff isoliert (Schema 3.6). Der Vorteil dieser Methode waren die deutlich kürzere Reaktionszeit (20 vs. 1 h) und die bessere Ausbeute (49 vs. 61%).

3.2.3.3 Synthese von Verbindung 14 (SiFNO₂C-Gerüst)

Verbindung 14 wurde gemäß Schema 3.7 durch Umsetzung von 15 mit einem Moläquivalent Ammoniumfluorid in Tetrahydrofuran bei 20 °C dargestellt.^[17]

Schema 3.7

Nach Entfernen des bei der Reaktion gebildeten Ammoniumchlorids und des Tetrahydrofurans konnte Verbindung **14** aus Toluol kristallisiert und in einer Ausbeute von 57% als gelber kristalliner Feststoff isoliert werden. Die Identität von **14** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.3.4 Synthese von Verbindung 16.0.5C₆H₆ (*Si*BrN₂OC-Gerüst)

Verbindung 16 wurde gemäß Schema 3.8 durch Reaktion von 12 mit einem Überschuss an Bromtrimethylsilan in Benzol dargestellt. Da es sich bei dieser Transsilylierung um eine Gleichgewichtsreaktion handelt und der Reaktionsumsatz, trotz kontinuierlicher destillativer Abtrennung des gebildeten Chlortrimethylsilans, bei der ersten Reaktionsdurchführung nicht quantitativ war, war eine Wiederholung dieser Prozedur notwendig. Nach Entfernen des entstandenen Chlortrimethylsilans konnte 16 aus Benzol kristallisiert und als das Hemibenzolsolvat 16·0.5C₆H₆ in einer Ausbeute von 84% als orange gefärbter kristalliner Feststoff erhalten werden. Die Identität von 16·0.5C₆H₆ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.8

3.2.3.5 Synthese von Verbindung 17 (SiIN₂OC-Gerüst) und 18 (SiN₃OC-Gerüst)

Verbindung 17 wurde gemäß Schema 3.9 durch Umsetzung von 12 mit drei Moläquivalenten Iodtrimethylsilan in Dichlormethan bei -80 °C im NMR-Rohr dargestellt und durch unmittelbar folgende NMR-spektroskopische Analyse (¹H-, ¹³C- und ²⁹Si-NMR) identifiziert. Wie sich zeigte, zersetzt sich Verbindung 17 schon beim Erwärmen auf über -20 °C. Alle Versuche, Verbindung 17 unterhalb von -20 °C zu isolieren, scheiterten.

Während die Verwendung des nichtkoordinierenden Lösungmittels Dichlormethan zur Bildung von **17** führte, wurde bei Verwendung des koordinierenden Lösungsmittels Acetonitril der kationische pentakoordinierte Silicium(IV)-Komplex **18** erhalten (Schema 3.9). Verbindung **18** wurde aus Acetonitril kristallisiert und mit einer Ausbeute von 64% als gelber kristalliner Feststoff als Acetonitrilsolvat **18**·CH₃CN isoliert. Die Identität von **18**·CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Die Synthese von **18** war zwar schon Gegenstand einer früheren Arbeit unseres Arbeitskreises, jedoch war die Charakterisierung noch unzureichend.^[17]

Schema 3.9

3.2.3.6 Synthese von Verbindung 19 (SiN₂O₂C-Gerüst)

Verbindung **19** wurde gemäß Schema 3.10 durch Umsetzung von **15** mit einem Moläquivalent (Thiocyanato-*N*)trimethylsilan in Acetonitril bei 20 °C dargestellt. Nach

Entfernen des bei der Reaktion entstandenen Chlortrimethylsilans konnte **19** aus Acetonitril kristallisiert und in einer Ausbeute von 88% als gelber kristalliner Feststoff isoliert werden. Die Identität von **19** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

Schema 3.10

3.2.4 Synthese der neutralen pentakoordinierten Silicium(IV)-Komplexe mit PhX-Liganden (X = O, S, Se)

3.2.4.1 Synthese von Verbindung 20 (*Si*O₂N₂C-Gerüst)

Alle Versuche zur Darstellung von Verbindung **20** durch Umsetzung des Chlorosilicium(IV)-Komplexes **12** mit Phenoxytrimethylsilan oder Phenol und Triethylamin gemäß Schema 3.11 scheiterten. Bei der Umsetzung von **12** mit einem kleinen Überschuss (1.2 Moläquivalente) Phenoxytrimethylsilan in Acetonitril bei 20 °C konnte kein Reaktionsumsatz beobachtet werden. Auch eine Erhöhung der Temperatur ergab keinen Reaktionsumsatz, stattdessen wurden in beiden Fällen die eingesetzten Edukte quantitativ reisoliert. Durch Umsetzung von **12** mit jeweils einem Moläquivalent Phenol und Triethylamin in Tetrahydrofuran bei 20 °C konnte **20** ebenfalls nicht dargestellt werden, es wurde vielmehr die vollständige Zersetzung von **12** beobachtet. Neben der Bildung von Benzol, das durch die Spaltung der Si–C-Bindung entstand, konnte auch der hexakoordinierte Silicium(IV)-Komplex **11** nachgewiesen werden.

Weiterhin wurde versucht, Verbindung **20** ausgehend von Dichlor(phenoxy)phenylsilan (**21**) zu synthetisieren. Zur Darstellung von **21** wurde Trichlorphenylsilan mit jeweils einem Moläquivalent Phenol und Triethylamin in Tetrahydrofuran bei –20 °C gemäß Schema 3.12 umgesetzt.

Schema 3.12

Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids konnte Verbindung **21** durch fraktionierende Destillation bei vermindertem Druck isoliert werden. Die Identität von **21** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und durch eine Elementaranalyse sichergestellt.

Die Zielverbindung **20** konnte dann gemäß Schema 3.13 durch Umsetzung von **21** mit einem Moläquivalent **3** und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C dargestellt werden.

Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte Verbindung **20** aus Acetonitril kristallisiert und in einer Ausbeute von 68% als gelber kristalliner Feststoff isoliert werden. Die Identität von **20** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.13

3.2.4.2 Synthese von Verbindung 22 (SiO₃NC-Gerüst)

Verbindung 22 wurde gemäß Schema 3.14 durch Umsetzung von 21 mit einem Moläquivalent 5 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C dargestellt.

Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte Verbindung **22** aus Acetonitril kristallisiert und in einer Ausbeute von 65% als gelber kristalliner Feststoff isoliert werden. Die Identität von **22** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.4.3 Synthese von Verbindung 23 (SiSON₂C-Gerüst)

Verbindung 23 wurde gemäß Schema 3.15 durch Umsetzung von 12 mit jeweils einem Moläquivalent Benzolthiol und Triethylamin in Tetrahydrofuran bei 20 °C dargestellt.

Schema 3.15

Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte **23** aus Acetonitril kristallisiert und in einer Ausbeute von 73% als dunkelroter kristalliner Feststoff isoliert werden. Die Identität von **23** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.2.4.4 Synthese von Verbindung 24 (SiSeON₂C-Gerüst)

Verbindung **24** wurde gemäß Schema 3.16 durch Umsetzung von **12** mit jeweils einem Moläquivalent Benzolselenol und Triethylamin in Tetrahydrofuran bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte **24** aus Acetonitril kristallisiert und mit einer Ausbeute von 63% als dunkelroter kristalliner Feststoff isoliert werden. Die Identität von **24** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ⁷⁷Se-NMR) und im Festkörper (¹³C-, ¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.4.5 Versuchte Darstellung von Verbindung 25 (SiTeON₂C-Gerüst)

Alle Versuche, die zu 23 bzw. 24 analoge Tellur-Verbindung 25 darzustellen, scheiterten. Da Benzoltellurol (PhTeH) nicht stabil ist, sondern spontan unter Abspaltung von Wasserstoff zu Diphenylditellurid (PhTeTePh) reagiert, war eine analoge Umsetzung gemäß Schema 3.15 und 3.16 durch Umsetzung von Benzoltellurol in Anwesenheit von Triethylamin nicht möglich. Bei der alternativen Umsetzung des Chlorosilicium(IV)-Komplexes 12 mit 1.1 Moläquivalenten (Benzoltelluro)trimethylsilan (26) in Acetonitril gemäß Schema 3.17 konnte auch bei –30 °C nur die Zersetzung von 12 beobachtet werden.

Schema 3.17

Auch die Umsetzung von 12 mit einem Moläquivalent Natriumbenzoltellurolat (27) in Toluol gemäß Schema 3.18 führte nicht zum gewünschten Produkt. Auch hier konnte nur die vollständige Zersetzung von 12 beobachtet werden.

Schema 3.18

3.3 Versuchte Darstellung des neutralen pentakoordinierten Silicium(IV)-Komplexes mit einem tridentaten dianionische *Se*,*N*,*O*-Liganden, einem Phenyl-Liganden und einem Chloro-Liganden

3.3.1 Versuchte Darstellung von Verbindung 28

Der tridentate *Se*,*N*,*O*-Präligand **28** sollte gemäß Schema 3.19 ausgehend von 4-((2-Bromphenyl)amino)pent-3-en-2-on (**29**) durch eine mehrstufige Synthese ohne Aufreinigung der Zwischenstufen dargestellt werden. Dazu sollte **29** zunächst mit drei Moläquivalenten *n*-Butyllithium bei –78 °C in Tetrahydrofuran umgesetzt werden. Neben der Deprotonierung der NH-Funktion und dem Metall-Halogen-Austausch war das dritte Moläquivalent *n*-Butyllithium nötig, um das bei dem Metall-Halogen-Austausch gebildete 1-Brombutan, welches im nächsten Reaktionsschritt stören würde, zu entfernen. Die Zugabe von einem Moläquivalent grauem Selen bei 0 °C in Tetrahydrofuran sollte anschließend zur Insertion des Selens in die Lithium-Kohlenstoff-Bindung führen. Nach wässriger Aufarbeitung sollte **28** dann durch Extraktion mit Diethylether isoliert werden. Allerdings konnte Verbindung **28** durch diese Syntheseroute nicht dargestellt werden. NMR spektroskopische Untersuchungen der Reaktionsmischung ergaben ein komplexes Gemisch selenhaltiger Verbindungen, wobei die Zielverbindung **28** jedoch nicht identifiziert werden konnte.

Schema 3.19

3.3.2 Versuchte Darstellung von Verbindung 30

Da die Darstellung von **28** durch Umsetzung von 2-Aminobenzolselenol mit Acetylaceton nicht möglich war (2-Aminobenzolselenol ist nicht stabil, es reagiert spontan unter Abspaltung von Wasserstoff zu Bis-(2-aminophenyl)diselenid (**31**)), sollte untersucht werden, ob die Darstellung des *Se*,*N*,*O*-Präliganden **28** ausgehend von **31** möglich ist. Dazu musste Verbindung **31** zunächst in größeren Mengen dargestellt werden. Die Synthese erfolgte in Anlehnung an Literatur [25] gemäß Schema 3.20 durch Umsetzung von Natrium mit einem Moläquivalent grauem Selen bei –78 °C in flüssigem Ammoniak. Durch Umsetzung des dabei entstandenen Natriumdiselenids (Na₂Se₂) mit einem Moläquivalent 2-Chlornitrobenzol wurde dann Bis-(2-nitrophenyl)diselenid (**32**) dargestellt. Nach Entfernen des Lösungsmittels konnte **32** aus Ethanol kristallisiert und in einer Ausbeute von 81% als orange gefärbter kristalliner Feststoff isoliert werden.

Das Diselenid **31** wurde anschließend durch Reduktion von **32** mit drei Moläquivalenten Hydrazinhydrat in Anwesenheit von 0.1 Moläquivalenten Raney-Nickel in siedendem n-Propanol dargestellt. Nach Entfernen des Lösungsmittels konnte **31** aus Ethanol kristallisiert und in einer Ausbeute von 91% als gelber kristalliner Feststoff isoliert werden. Die Identitäten von **31** und **32** wurden durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ⁷⁷Se-NMR) und durch Elementaranalysen (C, H, N) sichergestellt.

Schema 3.20

Anschließend sollte das Diselenid **30** gemäß Schema 3.21 durch Umsetzung von **31** mit 2.1 Moläquivalenten Acetylaceton in siedendem Ethanol dargestellt werden. Wie sich jedoch herausstellte, entstand **30** unter diesen Reaktionsbedingungen nicht. Stattdessen wurde Verbindung **33** erhalten. Als Ergebnis einer intramolekularen CH-Aktivierung und Abspaltung von Wasserstoff bildete sich Verbindung **33**. Die Identität von **33** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ⁷⁷Se-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (Abb. 3.1) sichergestellt.

Schema 3.21

Verbindung **33** liegt wie auch der tridentate N,N,O- (**3**) und O,N,O-Präligand (**5**) in der Keto-Enamin-Form vor (s. Kapitel 3.2.1). Dieses Tautomer wird durch eine intramolekulare N– H···O-Wasserstoffbrückenbindung stabilisiert. Da Verbindung **33** durch die Abspaltung von Wasserstoff entstand, war es nicht mehr möglich, den *Se*,*N*,*O*-Präliganden **28** ausgehend von **33** zu generieren. Aus diesem Grund wurden keine weiteren Versuche mehr unternommen, den tridentaten *Se*,*N*,*O*-Präliganden **28** darzustellen.

Abb. 3.1: Molekülstruktur von **33** im Kristall und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Die gestrichelte Linie zeigt die intramolekulare N–H···O-Wasserstoffbrückenbindung an (die hierzu gehörigen Daten sind in Tabelle A29 wiedergegeben).

3.3.3 Versuchte Darstellung von Verbindung 34 (SiClSeNOC-Gerüst)

Des Weiteren wurde versucht, den gewünschten Se,N,O-Präliganden 28 ohne Isolierung gemäß Schema 3.22 durch einen Metall-Halogen-Austausch darzustellen und ihn direkt zu dem entsprechenden Chlorosilicium(IV)-Komplex 34 umzusetzten. Dazu sollte 29 zunächst mit drei Moläquivalenten *n*-Butyllithium bei –78 °C in Tetrahydrofuran umgesetzt werden. Neben der Deprotonierung der NH-Funktion und dem Metall-Halogen-Austausch war das dritte Moläquivalent *n*-Butyllithium nötig, um das bei dem Metall-Halogen-Austausch gebildete 1-Brombutan, welches im nächsten Reaktionsschritt stören würde, abreagieren zu lassen. Die Zugabe von einem Moläquivalent grauem Selen bei 0 °C in Tetrahydrofuran sollte die resultierende lithiierte Spezies mit 1.3 Moläquivalenten Trichlorphenylsilan bei 20 °C in Tetrahydrofuran umgesetzt werden. Allerdings konnte nach Entfernen des Lösungsmittels die gewünschte Zielverbindung **34** nicht isoliert werden. NMR spektroskopische Untersuchungen der Reaktionsmischung ergaben ein komplexes Gemisch an verschieden selenhaltigen Verbindungen. Das Edukt **29** hatte sich vollständig zersetzt. Ebenso konnte Benzol nachgewiesen werden, welches durch eine Si–C-Bindungsspaltung des Trichlorphenylsilans

entstand. Auch an dieser Stelle wurden keine weiteren Versuche unternommen, Verbindung **34** darzustellen.

Schema 3.22

3.4 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe

3.4.1 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe mit bidentaten monoanionischen *0,0*-Liganden

3.4.1.1 Synthese der symmetrisch substituierten 0,0-Liganden

4-(Trimethylsilyloxy)pent-3-en-2-on (**35**) wurde gemäß Lit. [26] durch Umsetzung von Acetylaceton mit einem Moläquivalent Triethylamin und 1.2 Moläquivalenten Chlortrimethylsilan in Diethylether bei 20 °C synthetisiert (Schema 3.23).

Schema 3.23

1,3-Diphenyl-3-(trimethylsilyloxy)prop-2-en-1-on (**36**) wurde gemäß Lit. [27] durch Umsetzung von Dibenzoylmethan in 1,1,1,3,3,3-Hexamethyldisilazan als Lösungsmittel und Reagenz bei 125 °C synthetisiert (Schema 3.24).

Schema 3.24

1,1,1,5,5,5-Hexafluor-4-(trimethylsilyloxy)pent-3-en-2-on (**37**) konnte nicht durch Umsetzung mit 1,1,1,3,3,3-Hexamethyldisilazan dargestellt werden, da **37** und das Disilazan wegen ihrer sehr ähnlichen Siedepunkte (1,1,1,3,3,3-Hexamethyldisilanzan: Sdp. 126 °C; **36**: Sdp. 124–126 °C) nicht destillativ voneinander getrennt werden konnten.

Verbindung **37** wurde deshalb gemäß Schema 3.25 durch Umsetzung von 1,1,1,5,5,5-Hexafluoracetylaceton mit jeweils einem Moläquivalent Triethylamin und Chlortrimethylsilan in Tetrahydrofuran bei 20 °C synthetisiert. Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte **37** durch fraktionierende Destillation in einer Ausbeute von 52% als leicht gelb gefärbte Flüssigkeit erhalten werden. Die erhalten analytischen Daten stimmten mit denen aus Literatur [28] überein.

Schema 3.25

3.4.1.2 Synthese von Verbindung 38 (*SiO*₃N₂C-Gerüst)

Verbindung **38** wurde gemäß Schema 3.26 durch Umsetzung von **12** mit 1.6 Moläquivalenten **35** in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans konnte **38** aus Acetonitril kristallisiert und in einer Ausbeute von 69% als dunkelroter kristalliner Feststoff isoliert werden.

Schema 3.26

Die Identität von **38** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.3 Synthese von Verbindung 39·CH₃CN (*Si*O₃N₂C-Gerüst)

Verbindung **39** wurde gemäß Schema 3.27 durch Umsetzung von **12** mit 1.5 Moläquivalenten **36** in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans konnte **39** aus Acetonitril kristallisiert und als Acetonitril-Solvat **39** ·CH₃CN in einer Ausbeute von 44% als dunkelroter kristalliner Feststoff isoliert werden.

Schema 3.27

Die Identität von **39**·CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.4 Synthese von Verbindung 40 (SiO₃NC-Gerüst)

Verbindung **40** wurde gemäß Schema 3.28 durch Umsetzung von **12** mit 1.5 Moläquivalenten **37** in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans und des Lösungsmittels konnte **40** aus Toluol kristallisiert und in einer Ausbeute von 52% als farbloser kristalliner Feststoff isoliert werden. In Analogie zu einer früheren Studie^[8d] kam es zu einer Si–N-Bindungsspaltung, so dass nicht der neutrale hexakoordinierte Silicium(IV)-Komplex **40**', sondern der neutrale pentakoordinierte Silicium(IV)-Komplex **40** entstand, der sich durch einen tetradentaten trianionischen *O*,*N*,*O*,*O*-Liganden und einen Phenyl-Liganden auszeichnet.

Die während der Reaktion auftretenden Farbänderungen können herangezogen werden, um einen möglichen Reaktionsweg zu beschreiben. Da alle untersuchten hexakoordinierten Silicium(IV)-Komplexe (*N*,*N*,*O*-Ligand) mit bidentaten dianionischen *O*,*O*-Liganden farbig sind (**38** und **39**: dunkelrot) und auch die Reaktionslösung nach der Zugabe von **37** dunkelrot gefärbt ist, obwohl es sich bei **40** um eine farblose Verbindung handelt, liegt die Vermutung nahe, dass zunächst der hexakoordinierte Silicium(IV)-Komplex **40**' gebildet wird, der sich

dann durch eine Si–N-Bindungsspaltung zum pentakoordinierten Silicium(IV)-Komplex **40** umlagert. Während der Bildung von **40** entfärbte sich die Reaktionslösung.

Schema 3.28

Die Identität von **40** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.5 Synthese von Verbindung 41·0.5CH₃CN (*Si*O₄NC-Gerüst)

Verbindung 41 wurde gemäß Schema 3.29 durch Umsetzung von 15 mit 1.6 Moläquivalenten 35 in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans konnte 41 aus Acetonitril kristallisiert und als Hemiacetonitril-Solvat 41.0.5CH₃CN in einer Ausbeute von 80% als gelber kristalliner Feststoff isoliert werden.

Schema 3.29

Die Identität von **41**·0.5CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.6 Synthese von Verbindung 42 · CH₃CN (*Si*O₄NC-Gerüst)

Verbindung 42 wurde gemäß Schema 3.30 durch Umsetzung von 15 mit einem Moläquivalent 36 in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans konnte 42 aus Acetonitril kristallisiert und als Acetonitril-Solvat 42·CH₃CN in einer Ausbeute von 85% als gelber kristalliner Feststoff isoliert werden.

Schema 3.30

Die Identität von **42**·CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.7 Synthese von Verbindung 43·(C₂H₅)₂O (*Si*O₃NC-Gerüst)

Verbindung **43** wurde gemäß Schema 3.31 durch Umsetung von **15** mit 1.2 Moläquivalenten **37** in Diethylether bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans konnte **43** aus Diethylether kristallisiert und als Diethylether-Solvat **43** $(C_2H_5)_2O$ in einer Ausbeute von 76% als roter kristalliner Feststoff isoliert werden. Die Reaktionslöung zeigt auch nach mehrtägigem Aufbewahren bei 20 °C keine Farbänderung.

Schema 3.31

Der Grund, warum Verbindung **43** als pentakoordinierter Komplex isoliert wurde und nicht als der hexakoordinierte Silicium(IV)-Komplex **43'**, ist bisher noch nicht verstanden, zumal Hexakoordination auf Grund des Chelat-Effekts des bidentaten *O,O*-Liganden gegenüber Pentakoordination bevorzugt sein sollte.

Auch durch Durchführung der Reaktion in Toluol und anschließender Erwärmung der Reaktionslösung auf über 100 °C konnte keine Si–O-Bindungsspaltung induziert werden. Somit konnte die Bildung des zu **40** analogen pentakoordinierten Silicium(IV)-Komplexes **43**'' nicht beobachtet werden. Bei Verwendung von Acetonitril anstatt Diethylether als Lösungsmittel, analog zu den Synthesen von **40** und **44**, entstand Verbindung **43** ebenfalls, konnte allerdings nicht als kristalliner Feststoff isoliert werden.

Die Identität von $43 \cdot (C_2H_5)_2O$ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹Fund ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.1.8 Synthesen von Verbindung 44·0.5C₆H₅CH₃ (*Si*O₃NC-Gerüst)

Verbindung 44 wurde gemäß Schema 3.32 durch Umsetzung des bereits bekannten Chlorosilicium(IV)-Komplexes $45^{[8a]}$ mit 1.2 Moläquivalenten 37 in Acetonitril bei 20 °C dargestellt. Nach Entfernen des bei der Reaktion gebildeten Chlortrimethylsilans und des Lösungsmittels konnte 44 aus Toluol kristallisiert und als Hemitoluol-Solvat $44 \cdot 0.5C_6H_5CH_3$ in einer Ausbeute von 63% als farbloser kristalliner Feststoff isoliert werden. Die Farbänderungen der Reaktionslösung können wie schon bei der Synthese von 40 an dieser Stelle herangezogen werden, um einen Mechanismus analog zur Bildung von Verbindung 40 zu postulieren: Die gelbe Reaktionslösung färbte sich nach Zugabe von 37 orange. Während der Bildung von 44 entfärbte sich die Lösung, und es konnte ein farbloser kristalliner Feststoff isoliert werden.

Analog zu den bereits bestehenden Beobachtungen im Falle der Synthese von **40** verläuft die Reaktion wohl über das hexakoordinierte Intermediat **44'**, welches dann durch eine Si–S-Bindungsspaltung zu dem pentakoordinierten Silicium(IV)-Komplex **44** umlagert.

Die Identität von 44·C₆H₅CH₃ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹Fund ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

Schema 3.32

3.4.2 Synthese der neutralen hexakoordinierten Silicium(IV)-Komplexe mit bidentaten monoanionischen *N,X*-Liganden (X = O, S, Se)

3.4.2.1 Synthese von Verbindung 46

Verbindung **46** wurde gemäß Schema 3.33 durch Umsetzung von 8-Hydroxychinolin mit einem großen Überschuss 1,1,1,3,3,3-Hexamethyldisilazan bei 125 °C dargestellt. Verbindung **46** konnte durch fraktionierende Destillation bei vermindertem Druck in einer Ausbeute von 91% als farblose Flüssigkeit isoliert werden.

Schema 3.33

Die Identität von **46** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und durch eine Elementaranalyse (C, H, N) sichergestellt.

3.4.2.2 Synthese von Verbindung 47

Verbindung 47 wurde in Anlehnung an Lit. [29] gemäß Schema 3.34 durch zwei unterschiedliche Syntheserouten dargestellt. Ausgehend von Chinolin-8-sulfonylchlorid konnte 47 in einer dreistufigen Synthese ohne Aufarbeitung der Zwischenstufen synthetisiert werden. Zunächst wurde Chinolin-8-sulfonylchlorid mit drei Moläquivalenten Triphenylphosphin in Toluol bei 20 °C umgesetzt, und es wurde anschließend wässrig aufgearbeitet. Durch diese Prozedur wurde das Chinolin-8-sulfonylchlorid zu 8-Mercaptochinolin reduziert, welches dann durch Reaktion mit jeweils einem Moläquivalent Triethylamin und Chlortrimethylsilan in Tetrahydrofuran bei 20 °C zu Verbindung 47 umgesetzt wurde. Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte 47 durch fraktionierende Destillation bei vermindertem Druck in einer Ausbeute von 65% als farblose Flüssigkeit isoliert werden.

Schema 3.34 durch Umsetzung von 8-Mercapto-Alternativ wurde 47 gemäß chinolinhydrochlorid (48) mit einem großen Überschuss 1,1,1,3,3,3-Hexamethyldisilazan bei 125 °C dargestellt. Durch fraktionierende Destillation bei vermindertem Druck konnte 47 in einer Ausbeute von 75% als farblose Flüssigkeit isoliert werden.

Verbindung 48 wurde gemäß Schema 3.34 in Anlehnung an Lit. [29,30] in einer dreistufigen Synthese ohne weitere Aufarbeitung der Zwischenstufen synthetisiert. Dazu wurde zunächst Chinolin-8-sulfonylchlorid mit drei Moläquivalenten Triphenylphosphin in Toluol bei 20 °C es wurde dann wässrig aufgearbeitet. Das dabei entstandene umgesetzt und 8-Mercaptochinolin wurde anschließend mit einem Überschuss an Chlorwasserstoff in Diethylether umgesetzt. Verbindung **48** konnte als gelber amorpher Feststoff erhalten und in einer Ausbeute von 72% isoliert werden. Die Gesamtausbeute dieser zweiten Synthesevariante ausgehend von Chinolin-8-sulfonylchlorid zu **47** betrug zwar nur 54%, jedoch ist Verbindung **48** im Vergleich zu **47** gegenüber Oxidation zu dem entsprechenden Disulfid wesentlich stabiler und stellte so eine sehr gut lagerfähige (Schutzgasbedingungen sind nicht erforderlich) Zwischenstufe dar, die schnell und in guter Ausbeute zu **47** umgesetzt werden konnte.

Die Identitäten von **47** und **48** wurden durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und durch Elementaranalysen (C, H, N, S) sichergestellt.

3.4.2.3 Versuchte Darstellung von Verbindung 49

Verbindung **49** sollte gemäß Schema 3.35 durch Umsetzung von 8-Selenochinolin (**50**) mit 1,1,1,3,3,3-Hexamethyldisilazan bei 125 °C dargestellt werden. Allerdings konnte keine Produktbildung beobachtet werden. Stattdessen konnte nur das Diselenid **51** isoliert werden. Auch durch Umsetzung von **50** mit jeweils einem Moläquivalent Triethylamin und Chlortrimethylsilan in Tetrahydrofuran bei 20 °C gemäß Schema 3.35 konnte **49** nicht dargestellt werden. Nach Entfernen des bei der Reaktion gebildeten Triethylammonium-chlorids und des Lösungsmittels konnte auch hier nur das Diselenid **51** isoliert werden. Schließlich wurde versucht, Verbindung **49** durch Umsetzung von **50** mit jeweils einem Moläquivalent Lithiumhydrid und Chlortrimethylsilan in Tetrahydrofuran bei 20 °C darzustellen. Nach Entfernen des bei der Reaktion gebildeten Lithiumchlorids und des Lösungsmittels konnte auch hier nur das Diselenid **51** isoliert werden.

Das für diese Syntheseversuche benötigte Selenol **50** wurde in Anlehnung an Lit. [31] gemäß Schema 3.36 durch Umsetzung von **51** mit 50%iger (v/v) Phosphinsäure und 6 M Salzsäure bei 20 °C dargestellt. Verbindung **51** wurde in Anlehnung an Lit. [32] gemäß Schema 3.36 durch Umsetzung von jeweils einem Moläquivalent Natrium und Selen mit 0.5 Moläquivalenten Hydrazinhydrat (Bildung von Natriumdiselenid) und nachfolgende Umsetzung mit 8-Bromchinolin (**52**) in Dimethylformamid bei 153 °C dargestellt.

Die Identitäten von **50** und **51** wurden durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, und ⁷⁷Se-NMR) und durch Elementaranalysen (C, H, N) sichergestellt.

Schema 3.36

Schließlich sollte versucht werden, das silylierte 8-Selenochinolin **49** ausgehend von **51** darzustellen. Dazu wurde gemäß Schema 3.37 zunächst **51** mit zwei Moläquivalenten Lithium in flüssigem Ammoniak bei –78 °C umgesetzt. Anschließend wurden zwei Moläquivalente Chlortrimethylsilan zugegeben, um **49** zu erhalten. Nach Entfernen des bei der Reaktion gebildeten Lithiumchlorids und des Lösungsmittels konnte aber auch hier nur das Diselenid **51** isoliert werden. Offensichtlich ist die postulierte intermediär gebildete Verbindung **49** nicht stabil, so dass eine Isolierung nicht möglich war. Durch die Farbänderung der Reaktionslösung (gelb \rightarrow braun) nach der Zugabe des Chlortrimethylsilans konnte die Zersetzung von **49** augenscheinlich verfolgt werden.

Schema 3.37

3.4.2.4 Synthese von Verbindung 53

Verbindung **53** wurde gemäß Schema 3.38 durch Umsetzung des Selenols **50** mit einem Moläquivalent Kaliumhydrid in Tetrahydrofuran bei 20 °C dargestellt.

Schema 3.38

Nach Entfernen des Lösungsmittels konnte **53** in einer Ausbeute von 95% als gelber Feststoff erhalten werden. Verbindung **53** wurde nicht weiter gereinigt, sondern direkt für die weiteren Synthesen verwendet.

Die Identität von **53** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ⁷⁷Se-NMR) und durch eine Elementaranalyse (C, H, N) sichergestellt.

3.4.2.5 Synthese von Verbindung 54 (SiO₂N₃C-Gerüst)

Verbindung 54 wurde gemäß Schema 3.39 durch Umsetzung von 12 mit 1.2 Moläquivalenten 46 in Acetonitril bei 20 °C dargestellt. Verbindung 54 kristallisierte direkt aus der Reaktionslösung und konnte in einer Ausbeute von 99% als roter kristalliner Feststoff isoliert werden.

Schema 3.39

Alternativ konnte **54** gemäß Schema 3.40 durch Umsetzung von **12** mit jeweils einem Moläquivalent 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran bei 20 °C dargestellt werden. Verbindung **54** konnte nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels aus Acetonitril kristallisiert und in einer Ausbeute von 41% als roter kristalliner Feststoff isoliert werden. Weiterhin war es möglich, Verbindung **54** gemäß Schema 3.40 durch Lithiierung von 8-Hydroxychinolin mit einem Moläquivalent *n*-Buthyllithium und anschließende Umsetzung mit einem Moläquivalent **12** in Tetrahydrofuran bei 20 °C darzustellen. Nach Entfernen des bei der Reaktion gebildeten Lithiumchlorids und des Lösungsmittels konnte **54** aus Acetonitril kristallisiert und in einer Ausbeute von 20% als roter kristalliner Feststoff isoliert werden. Die niedrigere Ausbeute, im Vergleich zu der Darstellung durch Transsilylierung gemäß Schema 3.39 ist in der schlechten Löslichkeit von **54** in Acetonitril begründet.

Schema 3.40

Die Identität von **54** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.2.6 Synthese von Verbindung 55·CH₃CN (*Si*SON₃C-Gerüst)

Verbindung **55** wurde gemäß Schema 3.41 durch Umsetzung von **12** mit 1.2 Moläquivalenten **47** in Acetonitril bei 20 °C dargestellt. Der Silicium(IV)-Komplex **55** kristallisierte direkt aus der Reaktionslösung und konnte als das Acetonitrilsolvat **55**·CH₃CN in einer Ausbeute von 77% als roter kristalliner Feststoff isoliert werden.

Schema 3.41

Die Identität von **55**·CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.4.2.7 Synthese von Verbindung 56 (*Si*O₃N₂C-Gerüst)

Verbindung **56** wurde gemäß Schema 3.42 durch Umsetzung von **15** mit einem Moläquivalent **46** in Acetonitril bei 20 °C dargestellt. Verbindung **56** kristallisierte direkt aus der Reaktionslösung und konnte in einer Ausbeute von 94% als gelber kristalliner Feststoff isoliert werden.

Schema 3.42

Darüber hinaus war es möglich, Verbindung **56** gemäß Schema 3.43 über zwei weitere Syntheserouten darzustellen. Durch Umsetzung von **15** mit jeweils einem Moläquivalent 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran bei 20 °C konnte **56** nach Abtrennen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels aus Acetonitril kristallisiert und in einer Ausbeute von 36% als gelber kristalliner Feststoff isoliert werden. Weiterhin war es möglich, Verbindung **56** gemäß Schema 3.43 durch Umsetzung von 8-Hydroxychinolin mit einem Moläquivalent *n*-Buthyllithium und anschließende Reaktion der so erhaltenen lithiierten Spezies mit einem Moläquivalent **15** in Tetrahydrofuran bei 20 °C zu synthetisieren. Nach Entfernen des bei der Reaktion gebildeten Lithiumchlorids und des Lösungsmittels konnte **56** aus Acetonitril kristallisiert und in einer Ausbeute von 68% als gelber kristalliner Feststoff isoliert werden.

Schema 3.43

Die Identität von **56** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Die niedrigeren Ausbeuten der beiden alternativen Synthesewege sind auf die schlechte Löslichkeit von **56** in Acetonitril zurückzuführen. Da die Löslichkeit auch in Tetrahydrofuran schlecht ist, gestaltete sich die Abtrennung der Reaktionsprodukte (Triethylammoniumchlorid, Lithiumchlorid) schwierig. Der Vorteil der Transilylierungsreaktion gegenüber den beiden alternativen Synthesevarianten ist, dass das bei der Reaktion entstehende Chlortrimethylsilan eine flüchtige Verbindung ist, die sich einfach zusammen mit dem Lösungsmittel entfernen lässt.

3.4.2.8 Synthese von Verbindung 57·0.5CH₃CN (*Si*SO₂N₂C-Gerüst)

Verbindung 57 wurde gemäß Schema 3.44 durch Umsetzung von 15 mit einem Moläquivalent 47 in Acetonitril bei 20 °C dargestellt. Verbindung 57 kristallisierte direkt aus der Reaktionslösung und konnte als das Hemiacetonitrilsolvat $57 \cdot 0.5$ CH₃CN in einer Ausbeute von 79% als gelber kristalliner Feststoff isoliert werden.

Schema 3.44

Weiterhin konnte **57** gemäß Schema 3.45 durch Umsetzung von **15** mit einem Moläquivalent **48** und zwei Moläquivalenten Triehtylamin in Tetrahydrofuran bei 20 °C dargestellt werden. Nach Entfernen des bei der Reaktion gebildeten Triethylammoniumchlorids und des Lösungsmittels konnte **57**·0.5CH₃CN aus Acetonitril kristallisiert und in einer Ausbeute von 27% als gelber kristalliner Feststoff isoliert werden. Die geringe Ausbeute ist auch hier durch die schlechte Löslichkeit von **57**·0.5CH₃CN in Tetrahydrofuran und Acetonitril begründet.

Schema 3.45

Die Identität von 57·0.5CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.4.2.9 Synthese von Verbindung 58.0.5CH₃CN (SiSO₂N₂C-Gerüst)

Verbindung **58** wurde gemäß Schema 3.46 durch Umsetzung von **45** mit 1.1 Moläquivalenten **46** in Acetonitril bei 20 °C dargestellt. Verbindung **58** kristallisierte direkt aus der

Reaktionslösung und konnte in einer Ausbeute von 74% als orange gefärbter kristalliner Feststoff isoliert werden.

Schema 3.46

Ferner konnte Verbindung **58** gemäß Schema 3.48 durch Umsetzung von **45** mit jeweils einem Moläquivalent 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran bei 20 °C dargestellt werden. Die Verbindung **58** konnte nach Abtrennen des bei der Reaktion gebildeten Triethylammoniumchlorids und Entfernen des Lösungsmittels aus Acetonitril kristallisiert und in einer Ausbeute von 50% als orange gefärbter kristalliner Feststoff isoliert werden. Weiterhin war es möglich, Verbindung **58** gemäß Schema 3.47 durch Umsetzung von 8-Hydroxychinolin mit einem Moläquivalent *n*-Buthyllithium und anschließende Reaktion der so erhaltenen lithiierten Spezies mit einem Moläquivalent **45** in Tetrahydrofuran bei 20 °C darzustellen. Nach Entfernen des bei der Reaktion gebildeten Lithiumchlorids und des Lösungsmittels konnte **58** aus Acetonitril kristallisiert und als das Hemiacetonitrilsolvat **58**·0.5CH₃CN in einer Ausbeute von 68% als orange gefärbter kristalliner Feststoff isoliert werden. Die Identität von **58**·0.5CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

Schema 3.47

3.4.2.10 Synthese von Verbindung 59·0.5CH₃CN (*Si*S₂ON₂C-Gerüst)

Verbindung **59** wurde gemäß Schema 3.48 durch Umsetzung von **45** mit einem Moläquivalent **47** in Acetonitril bei 20 °C dargestellt. Verbindung **59** kristallisierte direkt aus der Reaktionslösung und konnte als das Hemiacetonitrilsolvat **59**·0.5CH₃CN in einer Ausbeute von 88% als orange gefärbter kristalliner Feststoff isoliert werden.

Schema 3.48

Die Identität von **59**·0.5CH₃CN wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.4.2.11 Versuchte Darstellung der Verbindungen 60–62 (SiSeON₂CX-Gerüst, X = NMe, O, S)

Um die von den Verbindungen **54–59** abzuleitenden Selen-Analoga **60–62** darzustellen, wurden die entsprechenden Chlorosilicium(IV)-Komplexe **12**, **15** und **45** mit jeweils einem Moläquivalent **53** in Tetrahydrofuran bei 20 °C gemäß Schema 3.49 umgesetzt.

Schema 3.49

Allerdings konnte in keinem Fall die Bildung des gesuchten Produkts nachgewiesen werden, sondern lediglich die vollständige Zersetzung der jeweiligen Edukte beobachtet werden. Offensichtlich sind die postulierten intermediär gebildeten Verbindung **60–62** nicht stabil, so dass eine Isolierung nicht möglich war. Durch die Farbänderungen der Reaktionslösungen (grün \rightarrow braun) war die Zersetzung der Produkte augenscheinlich zu beobachten. An dieser Stelle wurden keine weiteren Versuche mehr unternommen, die Verbindungen **60–62** zu synthetisieren.

4 NMR-Untersuchungen

4.1 NMR-Untersuchungen zur Hydrolyse des $\lambda^5 Si_{,\lambda} Si'$ -Disilicates 2

Die kinetische Stabilität von **2** in wässriger Lösung wurde mittels ¹H-NMR-Spektroskopie untersucht (Solvens: D₂O/CH₃CN, 1:1 (v/v); c = 5 mM). Dabei dienten die *CH*-Signale des gebundenen (*R*,*R*)-Tartrato-Liganden von **2** und die der freien Weinsäure, welche bei der vollständigen Hydrolyse von **2** gebildet wird, als Sonden. Durch Integration dieser Resonanzsignale konnte die kinetik der Hydrolyse bestimmt werden. Wie sich gezeigt hat, hydrolysiert Verbindung **1** in wässriger Lösung sehr schnell zu **2**. Die vollständige Hydrolyse von Verbindung **2** zu den Spaltprodukten Cholin, (*R*,*R*)-Weinsäure und Orthokieselsäure bei 23 °C dauerte jedoch etwa 10 d (Abb. 4.1). Anschließend wurde die Bildung eines Gels beobachtet. Die Hydrolyse ist nicht von der Konzentration von **2** aber sehr stark vom pH-Wert abhängig.^[17] Diese bemerkenswerte Stabilität von **2**, gegenüber Hydrolyse geht wahrscheinlich auf den Chelat-Effekt der (*R*,*R*)-Tartrato-Liganden zurück, welche die beiden Silicium(IV)-Koordinationszentren verbrücken.

In einem weiteren Experiment wurde die Hydrolyse von 2 im Vergleich zu Tetramethoxysilan untersucht. Wie sich herausstellte, ist Verbindung 2 in wässriger Lösung wesentlich stabiler als Tetramethoxysilan (Abb. 4.1).

Abb. 4.1: Kinetik der Hydrolyse einer äquimolaren Mischung von 2 und Tetramethoxysilan in D_2O/CD_3CN (1:1(v/v); c = 50 mM) bei 23 °C.

Abbildung 4.1 zeigt das Hydrolyseverhalten von **2** und Tetramethoxysilan im Vergleich. Die kinetischen Daten wurden durch Integration der ¹H-NMR-Signale (300.1 MHz) von **2** (*CH*-Resonanzsignal), (MeO)_xSi(OD)_{4-x} mit x = 1–4 (*CH*₃-Resonanzsignale) und MeOD (*CH*₃-Resonanzsignal) bestimmt. Für die kinetischen Messungen wurde Verbindung **2** im NMR-Rohr *in situ* durch Lösen von **1**·3DMSO in einer Lösung aus D₂O und CD₃CN (1:1(v/v)) erzeugt. Das frisch destillierte Tetramethoxysilan wurde anschließend sofort zugegeben.

Weiterführende NMR-spektroskopische Untersuchungen haben gezeigt, dass sich bei der Gefriertrocknung einer frisch hergestellten wässrigen Lösung von 2 Kondensationsprodukte des Dianions I bilden. Abbildung 4.2 zeigt die anionischen zwei- und vierkernigen Kondensationsprodukte II–IV, die neben I im Produktgemisch nach der Gefriertrocknung einer wässrigen Lösung von 2 (durch Lösen von 1·3DMSO in Wasser erhalten) nachgewiesen werden konnten.

Abb. 4.2: Strukturen des Dianions I und dessen Kondensationsprodukte II-IV.

Der Gehalt und die Natur der Kondensationsprodukte ist abhängig von der Dauer der Gefriertrocknung. Wird nur 16 h gefriergetrocknet, kann 2 mit einer Reinheit von ca. 98% (ausgehend von 1) erhalten werden; d. h., es liegt praktisch ausschließlich das Dianion I vor. Wurde die Dauer der Gefriertocknung jedoch auf 96 h verlängert, konnte ein Gemisch an verschiedenen Kondensationsprodukten nachgewiesen werden.

Abbildung 4.3 zeigt die ²⁹Si-NMR-Spektren von 2 direkt nach dem Lösen von 1 in D₂O (A), von 2 nach 16 h Gefriertrocknung (B) und von 2 nach 96 h Gefriertrocknung (C) mit den Signalen der Kondensationsprodukte. Durch ¹H-, ¹³C- und ²⁹Si-NMR-Untersuchungen (inklusive ¹H-DOSY Experimente) konnte das Vorhandensein von 1 (allerdings nur in Spuren), Cholin, der dinuklearen pentakoordinierten Silicium(IV)-Komplexe I (dianionisch) und II (monoanionisch) sowie der tetranuklearen Silicium(IV)-Komplexe III (tetraanionisch) und IV (dianionisch) nachgewiesen werden. Die Identität von I–III konnte darüber hinaus durch ESI-HRMS-Untersuchungen bestätigt werden. Ein Nachweis von IV durch Massenspektrometrie war nicht möglich, da die Si–OC-Bindung in wässriger Lösung zu schnell gespalten wurde. Weiterhin konnte durch NMR-Spektroskopie in Lösung auch die Existenz noch höherer Oligomere (abgesehen von I–IV) nachgewiesen werden, da der Gehalt dieser Kondensationsprodukte in der Lösung zu gering war.

Wie in Abbildung 4.3 erkennbar ist, lassen sich die verschiedenen ²⁹Si-Resonanzsignale in drei Bereiche einteilen. Die Si–OH-Bindung liegt im Bereich von –106 ppm, die Si–OC-Bindung im Bereich von –110 ppm und die Si–O–Si-Bindung im Bereich von –113 ppm. Die verschiedenen Signale innerhalb des jeweiligen Bereiches lassen die Vielfalt der Kondensationsprodukte erahnen (vgl. C in Abb. 4.3).

Abb. 4.3: A) ²⁹Si-NMR-Spektrum von **2** (direkt nach dem Lösen von **1** in D₂O) in D₂O; B) ²⁹Si-NMR-Spektrum von **2** (Gefriertrocknung, 16 h) in [D₆]DMSO; C) ²⁹Si-NMR-Spektrum des Produktgemisches (Gefriertrocknung, 96 h) in [D₆]DMSO.

4.2 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 13, 14, 16·0.5C₆H₆, 17–20 und 22–24

Die neutralen pentakoordinierten Silicium(IV)-Komplexe **13**, **14**, **16**·0.5C₆H₆, **17**, **19**, **20** und **22–24** wurden durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR; außer **17**) sowie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) untersucht. Da Verbindung **24** zusätzlich ein NMR-aktives Selenatom besitzt, konnte sie im Festkörper und in Lösung zusätzlich durch ⁷⁷Se-NMR-Spektroskopie untersucht werden. Verbindung **17** konnte auf

Grund seiner thermischen Labilität nur durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) identifiziert werden. Weiterhin wurde der kationische pentakoordinierte Silicium(IV)-Komplex **18**·2CH₃CN durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) und in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) charakterisiert.

4.2.1 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 13, 14, 16·0.5C₆H₆, 17–20 und 22–24 im Festkörper

Da die drei pentakoordinierten Halogenosilicium(IV)-Komplexe **13**, **14** und **16** jeweils eine Silicium–Halogen-Bindung (**13** und **14**: X = F; **16**: X = Br) besitzen und alle Isotope dieser Halogene NMR-aktiv sind, weisen die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,X-Kopplungen eine Strukturierung auf (X = F, ¹⁹F (*I* = 1/2 [100%]); X = Br, ⁷⁹Br (*I* = 3/2 [50.7%]) und ⁸¹Br (*I* = 3/2 [49.3%])). Abbildung 4.4 zeigt die ²⁹Si-VACP/MAS-NMR-Spektren der fluorosubstituierten Silicium(IV)-Komplexe **13** und **14**; durch die ²⁹Si,¹⁹F-Kopplung (**13**: ¹*J*(²⁹Si,¹⁹F) = 227 Hz; **14**: ¹*J*(²⁹Si,¹⁹F) = 206 Hz) ergibt sich jeweils ein Dublett. Das ²⁹Si-VACP/MAS-NMR-Signal von Verbindung **16** ist verbreitert und stark strukturiert (Abb. 4.4). Da Brom zudem ein Quadrupol-Kern ist, trägt zur Strukturierung zusätzlich noch ein wohlbekanntes Phänomen bei: Da die MAS-Methode den Effekt dipolarer Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, der eine Quadrupol-Frequenz nahe der Zeeman-Frequenz hat, trägt dies zu starken Verbreiterungen und/oder Strukturierungen dieser Signale bei.^[33]

Da das ²⁹Si-VACP/MAS-NMR-Spektrum von Verbindung **18** nur ein scharfes Signal bei – 96.4 ppm ohne Verbreiterung oder Strukturierung zeigt, war dies ein erster Hinweis darauf, dass das Iod-Atom (¹²⁷I (I = 5/2 [100%])) nicht direkt an das Silicium-Atom gebunden ist.

Abb. 4.4: ²⁹Si-VACP/MAS-NMR-Spektren von A) **13** (*N*,*N*,*O*; X = F), B) **14** (*O*,*N*,*O*; X = F) und C) **16** (*N*,*N*,*O*; X = Br).

Auffällig ist, dass das ²⁹Si-Resonanzsignal von Verbindung **24** keine ¹J(²⁹Si,⁷⁷Se)-Satelliten zeigt. Da das Selen-Isotop (⁷⁷Se, I = 1/2 [7.63%]) direkt an das Silicium-Atom gebunden ist, sollten durch die ¹J(²⁹Si,⁷⁷Se)-Kopplung ⁷⁷Se-Satelliten mit einem Integral von jeweils ca. 3.8% existieren. Die Relaxation des ⁷⁷Se-Kerns wird in größeren Molekülen jedoch durch den Mechanismus der Verschiebungsanisotropie (CSA) dominiert, die proportional zum Quadrat des äußeren Magnetfeldes B₀ ist.^[32a] Auch das ⁷⁷Se-VACP/MAS-NMR-Spektrum von Verbindung **24** im Festkörper zeigt deutlich die große Anisotropie der chemischen Verschiebung des ⁷⁷Se-Kerns, was sich signifikant in den Rotationsseitenbanden widerspiegelt. Die Signalbreite nach Herzfeld-Berger beträgt $\Omega = 953$ ppm.^[32e] Aufgrund dessen ist die Detektion der ⁷⁷Se-Satelliten mit dem verwendeten 400-MHz-NMR-Gerät durch die Relaxationsverbreiterung erschwert, da bei steigender Magnetfeldstärke die Intensität der Satelliten-Signale sinkt.^[32c] Dieses Phänomen kann für eine ganze Reihe vor

allem schwerer NMR-aktiver Kerne wie beispielsweise bei ³¹P, ⁷⁷Se, ⁵⁷Fe, ¹⁰³Rh oder ¹⁹⁵Pt beobachtet werden.^[34]

Die ¹⁵N-chemischen Verschiebungen der Imino-Stickstoff-Atome der dreizähnigen O,N,Obzw. N,N,O-Liganden im Festkörper geben Einblicke in die Bindungssituation der untersuchten Verbindungen. Die pentakoordinierten Verbindungen **12–15**, **16**·0.5C₆H₆, **18–20** und **22–23** besitzen jeweils einen monodentaten monoanionischen Liganden in *trans*-Stellung zu dem Imino-Stickstoff-Atom. Die ¹⁵N-chemische Verschiebung und damit die Elektronendichte am Imino-Stickstoff-Atom ist ein Indikator für die Bindungsstärke der Si– N(imino)-Bindung, welche entscheidend durch die *trans*-ständigen Substituenten beeinflusst wird. In Tabelle 4.1 sind die ¹⁵N-chemischen Verschiebungen der Imino-Stickstoff-Signale mit den Si–N(imino)-Bindungslängen korreliert.

Tabelle 4.1: Korrelation der isotropen ¹⁵N-chemischen Verschiebungen [ppm] mit den Si–N(imino)-Bindungslängen [pm] von 12–15, 16·0.5C₆H₆, 18–20 und 22–23 im Festkörper.

Verbindung (Ligand)	δ^{15} N	Si–N(imino)	Gerüsttyp
12 ^[a] (<i>N</i> , <i>N</i> , <i>O</i>)	-161.5	200.44(14)	SiClON ₂ C
13 (<i>N</i> , <i>N</i> , <i>O</i>)	-173.1	196.03(8)	SiFON ₂ C
14 (<i>O</i> , <i>N</i> , <i>O</i>)	-160.4	200.52(14)	SiFO ₂ NC
15 ^[a] (<i>O</i> , <i>N</i> , <i>O</i>)	-167.7	198.43(7)	SiClO ₂ NC
16 ·0.5C ₆ H ₆ (<i>N</i> , <i>N</i> , <i>O</i>)	-165.4	197.17(18)	SiBrON ₂ C
18 (<i>N</i> , <i>N</i> , <i>O</i>)	-170.0	192.27(19)	SiON ₃ C
19 (<i>O</i> , <i>N</i> , <i>O</i>)	-173.2	196.70(11)	SiO ₂ N ₂ C
20 ^[b] (<i>N</i> , <i>N</i> , <i>O</i>)	-151.9/-156.5	206.37(16)/204.56(17)	SiO ₂ N ₂ C
22 (<i>O</i> , <i>N</i> , <i>O</i>)	-152.8	206.0(3)	SiO ₃ NC
23 ^[c] (<i>N</i> , <i>N</i> , <i>O</i>)	-205.8	186.10(12)	SiSON ₂ C
24 ^[c] (<i>N</i> , <i>N</i> , <i>O</i>)	-203.3	186.52(18)	SiSeON ₂ C

[a] Die Daten wurden aus Lit. [8e] entnommen. [b] Im Kristall liegen zwei kristallographisch unabhängige Moleküle vor. [c] Die Verbindung kristallisiert mit einer anderen Struktur (Imino-Stickstoff-Atom in äquatorialer Position; vgl. Abb. 4.5).

Verbindung 13 weist eine sehr starke Si–F-Bindung auf, was sich – bedingt durch die erhöhte Lewis-Acidität des Silicium-Atoms – durch eine kurze Si–N(imino)-Bindungslänge (196.03(8) pm) bemerkbar macht. Formal unterscheiden sich die Verbindungen 12 und 13 nur durch die Substitution des Chloro- durch einen Fluoro-Liganden. Dadurch verkürzt sich im Vergleich zu 12 (200.44(14) ppm) die Si–N(imino)-Bindungslänge von 13 um 4 pm – gepaart mit einer Hochfeldverschiebung von 12 ppm. Ganz anders verhält es sich bei einer formalen Substitution des Chloro-Liganden von Verbindung 15 durch einen Fluoro-Liganden (Verbindung 14). Hier verlängert sich die Si–N(imino)-Bindungslänge von 15 (198.43(7) pm) im Vergleich zu Verbindung 14 (200.52(14) pm) um 2 pm, gepaart mit einer Tieffeldverschiebung von 7 ppm. Es lassen sich durch die ¹⁵N-chemischen Verschiebungen dennoch Rückschlüsse auf die *trans*-ständigen Si–X-Bindungslängen ziehen. Die Hochfeldverschiebung ist mit einer Verkürzung und die Tieffeldverschiebung mit einer Verlängerung der Si–N(imino)-Bindungslänge verbunden. Wird der Chloro-Ligand von Verbindung 12 durch einen Bromo-Liganden (Verbindung 16) substituiert, resultiert daraus eine Verkürzung des Si–N(imino)-Bindungsabstands um 3 pm – gepaart mit einer Hochfeldverschiebung von 4 ppm. Wird der Chloro-Ligand der Verbindungen 12 und 15 durch einen Phenolato-Liganden substituiert, verlängert sich der Si–N(imino)-Bindungsabstand im Falle von 20 (*N*,*N*,*O*) bzw. 22 (*O*,*N*,*O*) um ca. 6 ppm – verbunden mit einer Tieffeldverschiebung von ca. 10 (20) bzw. 15 ppm (22).

Bei den Verbindungen 23 und 24 befindet sich der monodentate monoanionische PhX-Ligand (X = S, Se) in äquatorialer Position (vgl. Kapitel 5.4). Diese Veränderung des Koordinationsmodus ist auch durch die ¹⁵N-chemischen Verschiebungen ersichtlich. Formal wird nur der Chloro-Ligand von Verbindung 12 durch einen PhX-Liganden (X = S, Se) ausgetauscht, jedoch resultieren Verschiebungen zu höherem Feld von 40 ppm – gepaart mit um etwa 14 pm stark verkürzten Si–N(imino)-Bindungsabständen.

4.2.2 Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 12–14, 16–20 und 22–24 im Festkörper und in Lösung

Die ²⁹Si-NMR-Spektren der Verbindungen **12–14**, **16–20** und **22–24** weisen alle ähnliche isotrope ²⁹Si-chemische Verschiebungen im Festkörper und in Lösung auf (Tabelle 4.2), was darauf hindeutet, dass die Strukturen der untersuchten Verbindungen im Festkörper und in Lösung ähnlich sind. Größere Abweichungen werden nur bei den Verbindungen **23** und **24** gefunden. Hier unterscheiden sich die isotropen ²⁹Si-chemischen Verschiebungen um etwa 5 ppm. Die Größe der Veschiebungsdifferenz ist jedoch nicht ungewöhnlich und wurde bereits in früheren Arbeiten ausführlich diskutiert und durch quantenchemische Berechnungen gestützt.^[8k] Betrachtet man beispielsweise die ²⁹Si-chemischen Verschiebungen von Verbindung **20**, so unterscheiden sich die ²⁹Si-chemischen Verschiebungen der beiden kristallographisch unabhängigen Moleküle im Festkörper bereits um 3.0 ppm, obwohl die Struktur der beiden Moleküle sehr ähnlich ist (vgl. Abb. 5.7).

Durch Substitution des Chloro-Liganden von Verbindung 12 durch verschiedene monodentate monoanionische Liganden ergibt sich, abhängig von der Art der Liganden, eine Verschiebung der ²⁹Si-Resonanzsignale von bis zu 10 ppm. Auffällig ist dabei, dass Verbindungen mit weichen Ligandatomen wie z. B. Schwefel (23) oder Selen (24) zu tieferem Feld und Verbindungen mit harten Ligandatomen wie z. B. Fluor (13, 14) oder Sauerstoff (20, 22) deutlich zu höherem Feld verschoben sind, was auf die Elektronegativität der Ligandatome zurückzuführen ist (vgl. Tabelle 4.2). Eine besonders große Hochfeldverschiebung weist Verbindung 19 (X = NCS) auf, was aber auch schon in früheren Arbeiten generell für NCS-bzw. NCO-Einheiten beobachtet wurde.

Tabelle 4.2: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **12–14**, **16**·0.5C₆H₆, **17** (nur in Lösung), **18–20** und **22–24** im Festkörper (T = 22 °C) und in Lösung (T = 23 °C).

Verbindung	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung) ^[a]	Gerüsttyp
12 ^[b]	-96 ^[c]	-94.8	SiClON ₂ C
13	-111.5 ^[d]	$-108.1^{[d]}$	SiFON ₂ C
14	-108.5	-109.3	SiFO ₂ NC
16 ·0.5C ₆ H ₆	-97 ^[c]	-94.1	SiBrON ₂ C
17		-81.9	SiION ₂ C
18	-98.5	-96.4	SiON ₃ C
19	-116.4	-114.2	SiO ₂ N ₂ C
20	$-106.1/-109.1^{[e]}$	-107.5	SiO ₂ N ₂ C
22	-109.5	-108.7	SiO ₃ NC
23	-78.9	-84.4	SiSON ₂ C
24	-78.5	-84.3	SiSeON ₂ C

[a] Alle NMR-Spektren wurden in CD_2Cl_2 aufgenommen (außer **18**; CD_3CN). [b] Die Daten wurden aus Lit. [8e] entnommen. [c] Zentrum eines asymmetrischen Multipletts. [d] Das ²⁹Si-NMR-Signal ist aufgrund der ¹J(²⁹Si, ¹⁹F)-Kopplung in ein Dublett aufgespalten. [e] Signale für zwei kristallographisch unabhängige Moleküle.

4.2.3 Vergleich der analogen pentakoordinierten Silicium(IV)-Komplexe 12–14, 16–20, 22–24 und 63–76

Im Rahmen der systematischen Untersuchung der analogen neutralen pentakoordinierten Silicium(IV)-Komplexe 12–14, 16–20, 22–24 und 63–76, die sich formal nur durch Substitution eines Atoms bzw. einer Atomgruppe im tridentaten dianionischen Chelat-Liganden (NMe/O/S-Austausch) unterscheiden, wurden die NMR-spektroskopischen Daten dieser Verbindungen miteinander verglichen. Abbildung 4.4 zeigt eine Übersicht dieser drei Serien von NMe/O/S-Analoga. Interessanterweise ist der neutrale Iodosilicium(IV)-Komplex

67 (*S*,*N*,*O*) eine stabile Verbindung, die sich strukturell durch NMR-Spektoskopie im Festkörper und in Lösung sowie durch eine Kristallstrukturanalyse untersuchen lies,^[8a] wohingegen der analoge Iodosilicium(IV)-Komplex **17** (*N*,*N*,*O*) sich nur durch NMR-Spektroskopie in Lösung bei –80 °C untersuchen lies. Weiterhin war es nicht möglich, den Iodosilicium(IV)-Komplex **66** (*O*,*N*,*O*) zu synthetisieren. Während die kationischen Silicium(IV)-Komplexe **18** (*N*,*N*,*O*) und **68** (*O*,*N*,*O*) stabile Verbindungen darstellen und sich strukturell durch NMR-Spektroskopie im Festkörper und in Lösung sowie durch eine Kristallstrukturanalyse untersuchen ließen, war es nicht möglich, den analogen kationischen pentakoordinierten Silcium(IV)-Komplex **69** (*S*,*N*,*O*) zu synthetisieren.

Abb. 4.4: Übersicht der analogen neutralen pentakoordinierten Silicium(IV)-Komplexe 12–14, 16–20, 22–24 und 63–76.

Vergleicht man die analogen Verbindungen 12–20, 22–24, 45, 63–65, 67, 68 und 70–76 miteinander, so fällt auf, dass sich jene Verbindungen, die einen O,N,O- oder einen N,N,O-Liganden tragen, im Allgemeinen viel ähnlicher in den ²⁹Si-chemischen Verschiebungen sind als die Verbindungen mit einem S,N,O-Liganden (vgl. Tabelle 4.3). Dieser generelle Trend ändert sich jedoch bei Substitution des Chloro-Liganden der Chlorosilicium(IV)-Komplexe (12: N,N,O; 15: O,N,O; 45: S,N,O) durch einen PhX-Liganden (X = S, Se) – einhergehend mit der Änderung des Strukturtyps des Silicium-Koordinationspolyeders. In diesen Fällen sind sich die neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem tridentaten N,N,O-bzw. S,N,O-Liganden ähnlicher in ihren ²⁹Si-chemischen Verschiebungen (s. Tabelle 4.3). Aus Tabelle 4.3 ist weiterhin ersichtlich, dass die ²⁹Si-chemischen Verschiebungen sowohl

von dem tridentaten Chelat-Liganden als auch von dem monodentaten X-Liganden (X = F, Cl, Br, I, NCCH₃, NCS, OPh, SPh, SePh) abhängen. Aus dem Austausch der harten NMe-

Gruppe bzw. des harten Sauerstoff-Atoms durch ein weiches Schwefel-Atom in dem dreizähnigen Chelat-Liganden resultiert eine Hochfeldverschiebung der ²⁹Si-Resonanzsignale um etwa 10–20 ppm.

Substituent X	δ^{29} Si (Lösung) ^[a]			
	<i>N,N,O</i> -Ligand (Verbindung)	O,N,O-Ligand (Verbindung)	<i>S</i> , <i>N</i> , <i>O</i> -Ligand (Verbindung)	
X = Cl	-94.8 (12) ^[b]	-95.5 (15) ^[b]	-82.1 (45) ^[c]	
X = F	-108.1 (13)	-109.3 (14)	-88.1 (63) ^[d]	
X = Br	-94.1 (16)	-98.0 (64) ^[e]	-86.7 (65) ^[d]	
X = I	-81.9 (17) ^[f]		-92.5 (67) ^[c]	
$X = NCCH_3$	-96.4 (18)	-103.2 (68) ^[e]		
X = NCS	-111.2 (70) ^[g]	-114.2 (19)	-98.3 (71) ^[d]	
X = OPh	-107.5 (20)	-108.7 (22)	-56.0/-55.8 (72) ^[h]	
X = SPh	-84.4 (23)	-88.3 (73) ^[e]	-79.7 (74) ^[h]	
X = SePh	-84.3 (24)	-88.7 (75) ^[e]	-82.7 (76) ^[h]	

Tabelle 4.3: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] der analogen Komplex-Tripel, die sich nur durch den Austausch des dreizähnigen *N*,*N*,*O*-, *O*,*N*,*O*- bzw. *S*,*N*,*O*-Liganden unterscheiden.

[a] Die NMR-Spektren wurden bei 22 °C in CD_2Cl_2 aufgenommen (außer **18** und **68**; CD_3CN). [b] Die Daten wurden aus Lit. [8e] entnommen. [c] Die Daten wurden aus Lit. [8a] entnommen. [d] Die Daten wurden aus Lit. [8f] entnommen. [e] Die Daten wurden aus Lit. [17] entnommen. [f] Die Messtemperatur betrug -80 °C. [g] Die Daten wurden aus Lit. [20] entnommen. [h] Die Daten wurden aus Lit. [8c] entnommen.

Weiterhin ist durch Substitution des Chloro-Liganden der Chlorosilicium(IV)-Komplexe (12: N,N,O; 15: O,N,O; 45: S,N,O) durch weiche Ligand-Atome wie Iod, Schwefel oder Selen eine Verschiebung der ²⁹Si-chemischen Resonanzsignale zu tieferem Feld zu beobachten bzw. eine Verschiebung zu höherem Feld durch Substitution durch harte Ligand-Atome wie Sauerstoff oder Stickstoff. Eine Ausnahme bildet der Iodosilicium(IV)-Komplex 67: Hier verschiebt sich bei der formalen Substitution des Chloro-Liganden von 45 durch einen weichen Iodo-Liganden das ²⁹Si-Resonanzsignal um 10.4 ppm zu höherem Feld.

4.2.4 Untersuchungen zur Dynamik in Lösung

Die Verbindungen 72 (X = O), 74 (X = S) und 76 (X = Se), welche einen *S*,*N*,*O*-Liganden besitzen, zeigen in Lösung ein dynamisches Gleichgewicht zwischen einer pentakoordinierten Spezies A und einer tetrakoordinierten Spezies B (Abb. 4.5).^[8c]

Abb. 4.5: Dynamisches Gleichgewicht zwischen A und B der pentakoordinierten Komplexe 72, 74, und 76 (X = S, Se).

Ein solches dynamisches Gleichgewicht konnte für die analogen Verbindungen 22 (X = O), 73 (X = S) und 75 (X = Se) mit einem O,N,O-Liganden bzw. für die Verbindungen 20 (X = O), 23 (X = S) und 24 (X = Se) mit einem N,N,O-Liganden nicht beobachtet werden. Verbindung 72 (X = OPh) lag ausschließlich als tetrakoordinierte Spezies (Strukturtyp B) vor.^[8c] Diese Beobachtungen können durch eine leichtere Si–S-Bindungsspaltung im Vergleich zu einer Si–O- (O,N,O) oder Si–N-Bindungsspaltung (N,N,O) erklärt werden. Im Gegensatz dazu zeigen die Verbindungen 12–20, 23 und 24 kein solches dynamisches Verhalten; die Komplexe liegen jeweis entweder in dem Strukturtyp C oder D vor.

Abb. 4.6: Unterschiedliche Geometrien C und D der untersuchten pentakoordinierten Silicium(IV)-Komplexe 12–20, 23 und 24.

Verbindung 23 (X = SePh; N,N,O) zeigte Austausch eines Chlor-Atoms des Lösungsmittels (CD₂Cl₂) mit einem Benzolselenolato-Liganden, so dass nach etwa 8 h ein Gemisch aus den Verbindungen 23 und 12 im Verhältnis 60:40 vorlag. Die NMR-spektroskopischen Messungen mussten demnach zügig und stets mit frisch präparierten Proben durchgeführt werden.
4.3 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 38–44 und 54–59

Da die neutralen pentakoordinierten Silicium(IV)-Komplexe **40**, **43**·(C₂H₅)₂O und **44**·0.5C₆H₅CH₃ als Konstitutionsisomere zu **40'**, **43'** bzw. **44'** gesehen werden können, werden diese Verbindungen ebenfalls in diesem Kapitel diskutiert. Die neutralen Silicium(IV)-Komplexe **38**, **39**·CH₃CN, **40**, **41**·0.5CH₃CN, **42**·CH₃CN, **43**·(C₂H₅)₂O, **44**·0.5C₆H₅CH₃, **54**, **55**·0.5CH₃CN, **56**, **57**·0.5CH₃CN, **58**·0.5CH₃CN und **59**·0.5CH₃CN wurden durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) und in Lösung (¹H-, ¹³C-, ¹⁹F- (nur **40**, **43**·(C₂H₅)₂O und **44**·0.5C₆H₅CH₃) und ²⁹Si-NMR) untersucht.

4.3.1 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 38–44 mit bidentaten monoanionischen *0,0*-Liganden

4.3.1.1 Vergleich der ²⁹Si-chemischen Verschiebungen im Festkörper und in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen von **38–44** im Festkörper und in Lösung sind jeweils sehr ähnlich, was darauf hindeutet, dass auch die Strukturen dieser Verbindungen im Festkörper und in Lösung sehr ähnlich sind (vgl. Tabelle 4.4).

Tabelle 4.4: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **38–44** im Festkörper (T = 22 °C) und in Lösung (Lösungsmittel CD₂Cl₂; T = 23 °C).

Verbindung	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung)	Gerüsttyp
38	-163.4	-162.0	SiN ₂ O ₃ C
39	$-161.5^{[a]}$	-161.1	SiN ₂ O ₃ C
40	-127.2	-124.2	SiNO ₃ C
41	$-168.1/\!-\!167.2/\!-\!166.1/\!-\!165.8^{[b]}$	-165.1	SiNO ₄ C
42	-164.3 ^[c]	-164.2	SiNO ₄ C
43	$-134.4^{[d]}$	-133.2	SiNO ₃ C
44	-124.5 ^[e]	-125.3	SiNO ₃ C

[a] Solvat **39**·CH₃CN. [b] Solvat **41**·0.5CH₃CN; vier kristallographisch unabhängige Moleküle. [c] Solvat **42**·CH₃CN. [d] Solvat **43**·(C₂H₅)₂O. [e] Solvat **44**·0.5C₆H₅CH₃.

Die Größenordnung der jeweiligen isotropen ²⁹Si-chemischen Verschiebungen spiegelt die Hexakoordination der *Si*-Koordinationszentren der Verbindungen **38**, **39**, **41** und **42** und die Pentakoordination der Verbindungen **40**, **43** und **44** wider.

4.3.1.2 Untersuchungen zur Dynamik in Lösung

Die ¹H- und ¹³C-NMR-spektroskopischen Daten können für eine Analyse des dynamischen Verhaltens in Lösung herangezogen werden. Für Verbindung **38** zeigt das ¹H-NMR-Spektrum nur ein einzelnes Resonanzsignal für die beiden Methyl-Gruppen des Acetyacetonato-Liganden ($\delta = 2.00$ ppm (s, 6 H; CH₃)), was im Sinne eines dynamischen Verhaltens des *O*,*O*-Liganden interpretiert werden kann. Diese Beobachtung wurde auch bei der analogen Verbindung **77** mit einem tridentaten *S*,*N*,*O*-Liganden anstelle des *N*,*N*,*O*-Liganden gemacht.

Die ¹H-chemische Verschiebung der Methyl-Gruppen des Acetylacetonato-Liganden von **38** und **77** ist dabei identisch.^[8d] Dementsprechend zeigen auch die ¹³C-NMR-Spektren jeweils nur ein Resonanzsignal für die beiden Methyl-Gruppen des bidentaten *O,O*-Liganden. Im Falle von **39** kann auch ein dynamisches Verhalten beobachtet werden. Allerdings beschränken sich die Beobachtungen hier auf die ¹³C-NMR-Spektren: Hier existiert nur ein einziges Resonazsignal für die beiden Carbonyl-Kohlenstoffatome des bidentaten *O,O*-Liganden (δ = 186.1 ppm (2 C, *C*(O)C₆H₅)). Bei den übrigen Verbindungen in dieser Serie wurde kein dynamisches Verhalten der *O,O*-Liganden beobachtet.

4.3.2 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 54–59 mit bidentaten monoanionischen *N*,*X*-Liganden (X = O, S)

Die isotropen ²⁹Si-chemischen Verschiebungen von **54–59** im Festkörper und in Lösung sind jeweils sehr ähnlich, was darauf hindeutet, dass auch die Strukturen dieser Verbindungen in Lösung und im Festkörper sehr ähnlich sind (vgl. Tabelle 4.5).

Vergleicht man die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **54–59**, so fällt auf, dass die Differenzen für die ²⁹Si-chemischen Verschiebungen von **54** und **55** (*N*,*N*,*O*-Ligand) am größten sind (Festkörper: $\Delta \delta = 11.6$ ppm; Lösung: $\Delta \delta = 8.2$ ppm). Die Verschiebungsdifferenz zwischen den Verbindungen **56** und **57** (*O*,*N*,*O*-Ligand) beträgt 4.6 ppm (Festkörper) bzw. 8.4 ppm (Lösung). Die geringsten Unterschiede in den Verschiebungen zeigen die Verbindungen **58** und **59**, welche beide einen tridentaten *S*,*N*,*O*-Liganden besitzten. Die Differenz beträgt hier gerade einmal 1.0 ppm im Festkörper und 0.1 ppm in Lösung, obwohl durch den formalen Austausch eines Sauerstoff-Atoms (**58**) durch ein Schwefel-Atoms (**59**) eine weitere Si–S-Bindung existiert, die einen entscheidenden Einfluss auf die elektronische Umgebung des Silicium-Atoms und damit auf die chemische Verschiebung haben sollte.

Verbindung (Ligand)	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung)	Gerüsttyp
54 (<i>N</i> , <i>N</i> , <i>O</i>)	-146.9	-144.0	SiO ₂ N ₃ C
55 (<i>N</i> , <i>N</i> , <i>O</i>)	-135.3 ^[a]	-135.8	SiSON ₃ C
56 (<i>O</i> , <i>N</i> , <i>O</i>)	-144.6	-147.2	SiO ₃ N ₂ C
57 (<i>O</i> , <i>N</i> , <i>O</i>)	$-140.0^{[b]}$	-138.8	SiSO ₂ N ₂ C
58 (<i>S</i> , <i>N</i> , <i>O</i>)	-146.4 ^[c]	-141.7	SiSO ₂ N ₂ C
59 (<i>S</i> , <i>N</i> , <i>O</i>)	-145.4 ^[d]	-141.6	SiS_2ON_2C

Tabelle 4.5: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **54–59** im Festkörper (T = 22 °C) und in Lösung (Lösungsmittel CD₂Cl₂; T = 23 °C).

[a] Solvat **55**·0.5CH₃CN. [b] Solvat **57**·0.5CH₃CN. [c] Solvat **58**·0.5CH₃CN. [d] Solvat **59**·0.5CH₃CN.

5 Kristallstrukturanalysen^[a]

5.1 Allgemeine Bemerkungen

Die Verbindungen 11, 13, 14, 16·0.5C₆H₆, 18·2CH₃CN, 19, 20, 22–24, 33, 38, 39·CH₃CN, 40, 41·0.53CH₃CN, 42·CH₃CN, 43·(C₂H₅)₂O, 44·0.5C₆H₅CH₃, 54, 55·CH₃CN, 56, 57.0.5CH₃CN, 58 und 59.0.5CH₃CN wurden durch Einkristall-Röntgenstrukturanalysen Öl strukturell charakterisiert. Geeignete Einkristalle wurden inertem in (Perfluorpolyalkylether, ABCR) auf einen Glasfaden montiert und in den kalten Stickstoff-Strom des Diffraktometers gebracht. Die Messung erfolgte mit einem Diffraktometer des Typs Stoe-IPDS (11, 13, 14, 16.0.5C₆H₆, 18.2CH₃CN, 19, 20, 22–24, 33, 38, 39.CH₃CN, 40, 43 \cdot (C₂H₅)₂O, 44 \cdot 0.5C₆H₅CH₃, 56, 57 \cdot 0.5CH₃CN und 58; graphitmonochromatisierte Mo- K_{q} -Strahlung, $\lambda = 0.71073$ Å) oder des Typs Bruker Nonius KAPPA APEX II (41·0.53CH₃CN, 42·CH₃CN, 54, 55·CH₃CN und 59·0.5CH₃CN; Montel-Spiegel, Mo- K_{α} -Strahlung, $\lambda =$ 0.71073 Å). Alle Strukturen wurden mit direkten Methoden gelöst (Programm SHELXS-97^[35]). Die Verfeinerung erfolgte mit dem Programm SHELXL-97.^[35] SHELXLE wurde als GUI bei der Verfeinerung der Strukturen verwendet.^[36] Alle Nichtwasserstoff-Atome wurden anisotrop verfeinert. Für an Kohlenstoff gebundene Wasserstoff-Atome wurde ein Reitermodell verwendet. In den Legenden der jeweiligen Strukturabbildungen sind und ausgewählte Bindungslängen -winkel angegeben. Die Abbildungen der Molekülstrukturen mit Angabe der vollständigen Nummerierungsschemata, die Tabellen mit den kristallographischen Daten und den Angaben zu den Kristallstrukturanalysen sowie die Tabellen der Atomkoordinaten, der äquivalenten isotropen Auslenkungsparameter der Nichtwasserstoff-Atome und der Daten des Wasserstoff-Brückenbindungssystems^[35] finden sich im Anhang A. Die zur Diskussion der Bindungslängen herangezogenen Kovalenzradien wurden aus Lit. [38] entnommen.

Pentakoordinierte Verbindungen können als Koordinationspolyeder eine trigonale Bipyramide (TBP) oder eine quadratische Pyramide (QP) ausbilden. Häufig finden sich aber auch Geometrien, die dazwischen auf der Berry-Pseudorotations-Koordinate angesiedelt sind. Diese Geometrien lassen sich über die sog. Berry-Verzerrung beschreiben. Dabei repräsentiert ein Verzerrungsgrad von 0% eine ideale trigonale Bipyramide und ein Verzerrungsgrad von 100% eine ideale quadratische Pyramide. Die Verzerrungsgrade wurden mit Hilfe des Programms Platon^[37] ermittelt.

^[a] Alle in diesem Kapitel aufgeführten Kristallstrukturanalysen wurden von Herrn Dr. Christian Burschka bzw. Herrn Dipl.-Chem. Johannes A. Baus, Institut für Anorganische Chemie der Universität Würzburg, durchgeführt.

5.2 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 11^[b]

Verbindung 11 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von 11 im Kristall ist in Abb. 5.1 gezeigt.

Abb. 5.1: Molekülstruktur von **11** mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). (Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet).^[39] Ausgewählte Bindungslängen [pm] und -winkel [°]: Si1–O1 180.45(11), Si1–O1A 180.45(11), Si1–N1 190.28(13), Si1–N1A 190.28(13), Si1–N2 184.04(13), Si1–N2A 184.04(13); O1A–Si1–O1 87.15(7), O1–Si1–N1 90.76(5), O1–Si1–N1A 92.30(5), O1–Si1–N2 172.73(5), O1–Si1–N2A 88.74(5), O1A–Si1–N1 92.29(5), O1A–Si1–N1A 90.76(5), O1A–Si1–N2 88.74(5), O1A–Si1–N1 472.73(5), N1A–Si1–N1 175.79(7), N2–Si1–N1 83.41(5), N2A–Si1–N1 93.76(5), N2–Si1–N1A 93.76(5), N2A–Si1–N1A 83.41(5), N2–Si1–N2A 95.95(8).

Das Si-Koordinationspolyeder von **11** (*Si*O₂N₄-Gerüst) entspricht dem eines leicht verzerrten Oktaeders mit maximalen Abweichungen von den idealen 90°- bzw. 180°-Winkeln von 6.59(5)° bzw. 7.27(5)°. Die Si–O-Bindungsabstände betragen jeweils 180.45(11) pm und liegen somit im erwarteten Bereich. Die Si–N-Bindungslängen betragen jeweils 190.28(13) pm für die Iminostickstoff-Atome und 184.04(13) pm für die Amidostickstoff-Atome. Die Bindungsabstände der Si–N(Amido)-Bindungen liegen im erwarteten Bereich. Die Si– N(Imino)-Bindungslängen sind etwas länger als die Summe der jeweiligen Kovalenzradien (187 pm). Die schwächeren Si–N-Bindungen der Iminostickstoff-Atome des dreizähnigen

^[b] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe *Pbcn*; a = 13.595(3) Å; b = 19.044(4) Å; c = 8.6747(17) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0456$.

Chelat-Liganden zeichnen sich im Vergleich zu den Amidostickstoff-Atomen durch eine um etwa 6 pm längere Bindung zum Silicium-Atom aus. Die beiden dreizähnigen Liganden überspannen jeweils drei meridionale Positionen des Oktaeders. Vergleicht man die Struktur von **11** mit den Strukturen der analogen neutralen hexakoordinierten Silicium(IV)-Komplexen **9** bzw. **10**, die anstelle des dreizähnigen *N*,*N*,*O*-Liganden einen dreizähnigen *S*,*N*,*O*- bzw. *O*,*N*,*O*-Liganden besitzen (S/O/NMe-Austausch; Schema 3.4), zeichnet sich ein Trend in den Si–O(Enolato)- und Si–N(Imino)-Bindungsabständen ab. Die Si–O(Enolato)-Bindungslängen von **11** (180.45(11) pm) sind um etwa 4 pm länger als die der entsprechenden *O*,*N*,*O*-(175.93(12) und 177.63(12) pm) und *S*,*N*,*O*-Analoga (176.4(2) und 176.50(19) pm). Diese Verlängerung konnte auf den steigenden sterischen Anspruch beim Gang von Sauerstoff über Schwefel zur NMe-Einheit zurückgeführt werden. Die Si–N(Imino)-Bindungsabstände von **11** (190.28(13) pm) liegen etwa im selben Bereich wie die der beiden analogen *O*,*N*,*O*-(189.66(14) bzw. 190.24(13) pm) und *S*,*N*,*O*-Komplexe (190.4(2) bzw. 192.3(3) pm).

5.3 Kristallstrukturen der pentakoordinierten Silicium(IV)-Komplexe 13, 14, 16·0.5C₆H₆, 18·2CH₃CN und 19 mit (Pseudo)halogeno-Liganden

Aus Gründen der Vergleichbarkeit wird zusätzlich zu den neutralen pentakoordinierten Silicium(IV)-Komplexen 13, 14, $16 \cdot 0.5C_6H_6$ und 19 hier auch die Kristallstruktur des kationischen pentakoordinierten Silicium(IV)-Komplexes $18 \cdot 2CH_3CN$ diskutiert.

5.3.1 Kristallstruktur von 13^[c]

Verbindung **13** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **13** im Kristall ist in Abb. 5.2 gezeigt.

Das Si-Koordinationspolyeder von **13** (*Si*FON₂C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide. Das Sauerstoff-Atom und das Amidostickstoff-Atom des dreizähnigen N,N,O-Liganden besetzen zusammen mit dem Kohlenstoff-Atom des Phenyl-Liganden die äquatorialen Positionen. Die axialen Positionen werden durch den Fluoro-Liganden und durch das Iminostickstoff-Atom des N,N,O-Liganden eingenommen. Die Si–F-Bindungslänge beträgt 165.26(7) pm und liegt damit zwar im erwarteten Bereich, ist jedoch deutlich kürzer als die Summe der jeweiligen Kovalenzradien (181 pm). Die Si–O- (172.25(7) pm), Si–N(Amido)- (175.49(9) pm) sowie die Si–C-Bindungslängen (188.60(9) pm) liegen im

^[c] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$; a = 10.9936(6) Å; b = 8.9073(4) Å; c = 16.9919(9) Å; $a = 90^\circ$; $\beta = 108.517(3)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0354$.

erwarteten Bereich. Die Si–N(Imino)-Bindung des dreizähnigen Chelat-Liganden ist mit 196.03(8) pm deutlich verlängert (Summe der Kovalenzradien 187 pm).

Abb. 5.2: Molekülstruktur von **13** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–F 165.26(7), Si–O 172.25(7), Si–N1 196.03(8), Si–N2 175.49(9), Si–C1 188.60(9); F–Si–O 87.76(3), F–Si–N1 171.25(4), F–Si–N2 92.71(4), F–Si–C1 96.07(4), O–Si–N1 88.27(3), O–Si–N2 128.23(4), O–Si–C1 112.73(4), N1–Si–N2 83.64(4), N1–Si–C1 92.66(4), N2–Si–C1 118.66(4).

Vergleicht man den axialen N–Si–F-Bindungwinkel der analogen neutralen pentakoordinierten Silicium(IV)-Komplexe **13**, **14** und **63** (S/O/NMe-Austausch), so ist dieser Winkel von **13** (171.25(4)°) geringfügig größer als der von **63** (*S*,*N*,*O*-Ligand) (168.46(3)°)^[7f] und **14** (*O*,*N*,*O*-Ligand) (169.55(5)°). Allerdings ist die Berry-Verzerrung (TBP \rightarrow QP: 26.1%) von **13** zwar etwas größer als im analogen *S*,*N*,*O*-Komplex **63** (19.0%),^[7f] jedoch kleiner als die von Verbindung **14** mit 29.8%.^[40]

5.3.2 Kristallstruktur von 14^[d]

Verbindung 14 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf –20 °C. Die Molekülstruktur von 14 im Kristall ist in Abb. 5.3 gezeigt.

^[d] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 9.0307(18) Å; b = 17.230(3) Å; c = 13.356(3) Å; $a = 90^\circ$; $\beta = 105.22(3)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0371$.

Abb. 5.3: Molekülstruktur von 14 im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–F 164.62(11), Si–O1 168.45(13), Si–O2 168.61(12), Si–N 200.52(14), Si–C1 186.61(15); F–Si–O1 89.40(6), F–Si–O2 89.04(6), F–Si–N 169.55(5), F–Si–C1 98.90(7), O1–Si–O2 129.42(6), O1–Si–N 83.82(6), O1–Si–C1 115.94(7), O2–Si–N 89.13(6), O2–Si–C1 114.23(7), N–Si–C1 91.24(7).

Das Si-Koordinationspolyeder von **14** (*Si*FO₂NC-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide. Die beiden Sauerstoff-Atome des tridentaten *O*,*N*,*O*-Liganden besetzen zusammen mit dem Kohlenstoff-Atom des Phenyl-Liganden die äquatorialen Positionen. Die axialen Positionen werden von dem Fluoro-Liganden und dem Iminostickstoff-Atom des *O*,*N*,*O*-Liganden eingenommen. Der Si–F-Bindungsabstand beträgt 164.62(11) pm und ist damit etwas kürzer als die Si–F-Bindungslänge von Verbindung **13** (165.26(7) pm). Die Si–O-Bindungsabstände betragen 168.45(13) bzw. 168.61(12) pm und sind damit nahezu gleich lang. Auch im Falle von Verbindung **14** ist die Si–N(Imino)-Bindungslänge mit 200.52(14) pm deutlich länger als die Summe der jeweiligen Kovalenzradien (187 pm). Wie bereits unter 5.3.1 erwähnt, besitzt **14** mit 29.8% die größte Berry-Verzerrung der drei untersuchten Fluorosilicium(Iv)-Komplexe **13**, **14** und **63** (S/O/NMe-Analoga).

5.3.3 Kristallstruktur von 16·0.5C₆H₆^[e]

Verbindung $16.0.5C_6H_6$ kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Benzol) auf 20 °C. Die Molekülstruktur von 16 im Kristall von $16.0.5C_6H_6$ ist in Abb. 5.4 gezeigt.

Abb. 5.4: Molekülstruktur von **16** im Kristall von **16**·0.5C₆H₆ mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Br 242.98(7), Si–O 168.53(15), Si–N1 197.17(18), Si–N2 175.61(19), Si–C1 187.9(2); Br–Si–O 85.85(6), Br–Si–N1 175.27(5), Br–Si–N2 94.54(7), Br–Si–C1 92.64(7), O–Si–N1 91.07(7), O–Si–N2 126.11(9), O–Si–C1 115.48(9), N1–Si–N2 84.38(8), N1–Si–C1 91.92(8), N2–Si–C1 118.33(9).

Das Si-Koordinationspolyeder von **16** (*Si*BrON₂C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide. Der Bromo-Ligand sowie das Iminostickstoff-Atom des dreizähnigen *N*,*N*,*O*-Liganden besetzen die beiden axialen Positionen. Das Sauerstoff-Atom und das Amidostickstoff-Atom des Chelat-Liganden nehmen zusammen mit dem Kohlenstoff-Atom des Phenyl-Liganden die drei äquatorialen Positionen ein. Verbindung **16** unterscheidet sich formal von dem Chlorosilicium(IV)-Komplex **12** durch Substitution des Chloro- durch einen Bromo-Liganden. Mit einem Bindungsabstand von 242.98(7) pm ist der Abstand zwischen dem Silicium- und dem Brom-Atom etwa 12 pm länger als die Summe der jeweiligen Kovalenzradien (231 pm). Die Si–O-, Si–N(Amido)- und Si–C-Bindungslängen liegen mit

^[e] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 9.0307(18) Å; b = 17.230(3) Å; c = 13.356(3) Å; $a = 90^\circ$; $\beta = 105.22(3)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0371$.

168.53(15), 175.61(19) bzw. 187.9(2) pm im erwarteten Bereich. Der Si–N(Imino)-Bindungsabstand ist mit 197.17(18) pm nur etwa 3 pm länger als die Summe der jeweiligen Kovalenzradien (187 pm). Der axiale Br–Si–N-Bindungswinkel weicht mit 175.27(5)° nur leicht vom idealen 180°-Winkel ab. Dies spiegelt sich auch in einer relativ kleinen Berry-Verzerrung von 16.2% wider.

5.3.4 Kristallstruktur von 18·2CH₃CN^[f]

Verbindung 18·2CH₃CN kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von 18 im Kristall von 18·2CH₃CN ist in Abb. 5.5 gezeigt.

Abb. 5.5: Molekülstruktur von **18** im Kristall von **18**·2CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O 167.70(19), Si–N1 192.27(19), Si–N2 174.1(2), Si–N3 199.6(2), Si–C1 187.3(2), N3–C19 113.6(3), C19–C20 146.0(4); O–Si–N1 93.08(9), O–Si–N2 126.63(10), O–Si–N3 83.09(9), O–Si–C1 112.49(10), N1–Si–N2 86.18(9), N1–Si–N3 172.58(10), N1–Si–C1 96.83(9), N2–Si–N3 90.99(9), N2–Si–C1 120.58(11), N3–Si–C1 90.52(10), N3–C19–C20 179.9(3).

Bei Verbindung **18** handelt es sich um einen kationischen pentakoordinierten Silicium(IV)-Komplex, der ein separiertes Iodid-Anion besitzt, das für den Ladungsausgleich sorgt. Bei der

^[f] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 9.1373(9) Å; b = 20.734(2) Å; c = 14.3220(14) Å; $a = 90^\circ$; $\beta = 108.052(11)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0379$.

Synthese von 18 wurde ursprünglich versucht, den Chloro-Liganden von Verbindung 12 durch einen Iodo-Liganden zu substituieren. Allerdings war es nicht möglich, den entsprechenden Iodo-Komplex 17 zu isolieren, da sich die Verbindung bereits bei Temperaturen überhalb -20 °C zersetzte. Durch Verwendung von Acetonitril als Lösungsmittel wurde der Iodo-Ligand durch ein Acetonitril-Molekül substituiert, das über das Nitrilstickstoff-Atom an das Si-Koordinationszentrum gebunden ist. Das Si-Koordinationspolyeder von 18 (SiON₃C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide. Die Berry-Verzerrung (TBP \rightarrow QP) beträgt 20.1%. Das Iminostickstoff-Atom des N,N,O-Liganden und das Nitrilstickstoff-Atom des (Acetonitril-N)-Liganden besetzten die beiden axialen Positionen. Das Sauerstoff-Atom und das Amidostickstoff-Atom des tridentanten N,N,O-Liganden sowie das Kohlenstoff-Atom des Phenyl-Liganden nehmen die äquatorialen Positionen ein. Die jeweiligen Bindungslängen und -winkel sind mit denen der analogen Silicium(IV)-Komplexe 12–16 und 19 vergleichbar. Ein deutlicher Unterschied zeigt sich nur bei den Si-N(Imino)-Bindungsabständen: Dieser ist im Falle von 18 mit 192.27(19) pm sehr lang (Summe der jeweiligen Kovalenzradien 187 pm), aber im Vergleich zum Chlorosilicium(IV)-Komplex 12 um etwa 8 pm kürzer. Die Verkürzung dieser Bindungslänge wurde auch im Vergleich mit dem analogen Silicium(IV)-Komplex mit dem O,N,O-Liganden festgestellt^[17] und kann durch die höhere Lewis-Acidität des Silicium-Koordinationszentrum des kationischen Silicium(IV)-Komplexes 18 erklärt werden. Der N1-Si-N3-Winkel weicht mit 172.58(10)° nur leicht vom idealen 180°-Winkel ab, und auch der Acetonitril-N-Ligand besitzt einen N3-C19-C20-Winkel von 179.9(3)° und zeigt damit fast perfekte Linearität.

5.3.5 Kristallstruktur von 19^[g]

Verbindung **19** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von **19** im Kristall ist in Abb. 5.6 gezeigt.

Das Si-Koordinationspolyeder entspricht dem einer verzerrten trigonalen Bipyramide. Mit einer Berry-Verzerrung (TBP \rightarrow QP) von 42.6% ist **19** stärker verzerrt als die analogen Strukturen mit einem *S*,*N*,*O*- (29.8%)^[8f] bzw. *N*,*N*,*O*-Liganden (25.6%).^[20] Starke Berry-Verzerrungen sind allerdings für neutrale pentakoordinierte Silicium(IV)-Komplexe mit einem tridentaten *O*,*N*,*O*-Liganden nicht ungewöhnlich.^[17] Die axialen Positionen der trigonalen Bipyramide werden von dem Iminostickstoff-Atom des Chelat-Liganden und von dem Stickstoff-Atom des Thiocyanato-*N*-Liganden eingenommen. Die beiden Sauerstoff-Atome

^[g] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 8.2731(16) Å; b = 10.270(2) Å; c = 10.601(2) Å; $a = 109.09(2)^{\circ}$; $\beta = 99.02(2)^{\circ}$; $\gamma = 90.11(2)^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0348$.

des *O*,*N*,*O*-Liganden und das Kohlenstoff-Atom des Phenyl-Liganden nehmen die äquatorialen Positionen ein. Die Si–O-Bindungsabstände liegen mit 167.88(10) bzw. 168.88(10) pm im erwarteten Bereich.

Abb. 5.6: Molekülstruktur von **19** mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 167.88(10), Si–O2 168.88(10), Si–N1 196.70(11), Si–N2 184.70(12), Si–C1 185.35(13), N2–C18 116.01(17), C18–S 160.88(13); O1–Si–O2 133.61(5), O1–Si–N1 85.01(5), O1–Si–N2 86.79(5), O1–Si–C1 112.57(5), O2–Si–N1 90.47(5), O2–Si–N2 86.83(5), O2–Si–C1 113.81(6), N1–Si–N2 165.80(5), N1–Si–C1 96.13(5), N2–Si–C1 97.72(6), Si–N2–C18 173.83(11), N2–C18–S 179.33(11).

Die Si–C- und Si–N(Thiocyanato-*N*)-Bidungslängen liegen mit 185.35(13) bzw. 184.70(12) pm ebenfalls im erwarteten Bereich. Die Si–N(Imino)-Bindungslänge ist mit 196.70(11) pm stark verlängert. Die große Berry-Verzerrung von Verbindung **19** lässt sich auch in einer signifikanten Abweichung des N1–Si–N2-Bingungswinkels (165.80(5)°) von dem idealen 180°-Winkel ablesen. Mit einer Abweichung von dem idealen 180°-Winkel von 0.67(11)° weist der Thiocyanato-*N*-Ligand fast perfekte Linearität auf.

5.3.6 Vergleich der Kristallstrukturen mit (Pseudo)halogeno-Liganden

Auf Grund der strukturellen Ähnlichkeit bietet es sich an dieser Stelle an, die analogen pentakoordinierten Silicium(IV)-Komplexe, welche alle einen dreizähnigen Chelat-Liganden

(*S*,*N*,*O*-, *O*,*N*,*O*- und *N*,*N*,*O*-Ligand), einen Phenyl-Liganden und einen (Pseudo)halogeno-Liganden tragen, miteinander zu vergleichen. Da sich die einzelnen Komplexe jeweils nur durch ein Atom unterscheiden (S/O/NMe-Austausch), können Rückschlüsse auf den Einfluss der einzelnen Ligand-Atome auf die Struktur der untersuchten Silicium(IV)-Komplexe gezogen werden. In Tabelle 5.1 sind die Bindungsabstände der jeweiligen Silicium–Element-Bindungen gegenübergestellt.

Verbindung (Liganden)	Si–O(Enolat)	Si–N(Imino)	Si–C	Si–X
63 $(S,N,O, X = F)^{[a]}$	169.67(6)	200.96(6)	187.45(7)	166.87(5)
13 (<i>O</i> , <i>N</i> , <i>O</i> , X = F)	168.61(12)	200.52(14)	186.61(15)	164.62(11)
14 (<i>N</i> , <i>N</i> , <i>O</i> , X = F)	172.25(7)	196.03(8)	188.60(9)	165.26(7)
Δ_{\max}	3.64	4.93	1.99	2.25
45 $(S,N,O, X = Cl)^{[b]}$	168.50(8)	200.69(10)	185.93(11)	219.54(4)
15 $(O,N,O, X = Cl)^{[c]}$	168.02(7)	198.43(7)	185.47(8)	219.13(3)
12 (<i>N</i> , <i>N</i> , <i>O</i> , X = Cl)	168.58(14)	200.44(14)	187.62(18)	220.98(6)
Δ_{\max}	0.56	2.26	2.15	1.85
65 $(S,N,O, X = Br)^{[a]}$	168.02(10)	198.51(12)	185.79(13)	240.51(4)
64 ($O,N,O, X = Br$) ^[b]	169.4(2)	197.4(2)	185.9(3)	238.70(9)
16 (<i>N</i> , <i>N</i> , <i>O</i> , X = Br)	168.53(15)	197.17(18)	187.9(2)	242.98(7)
Δ_{\max}	1.38	1.34	2.11	4.28
71 $(S,N,O, X = NCS)^{[a]}$	167.88(13)	196.84(13)	186.97(16)	187.29(17)
19 (<i>O</i> , <i>N</i> , <i>O</i> , X = NCS)	168.88(10)	196.70(11)	185.35(13)	184.70(12)
70 (<i>N</i> , <i>N</i> , <i>O</i> , $X = NCS$) ^[d]	168.37(11)	197.33(12)	186.00(15)	185.02(13)
Δ_{\max}	1.00	0.63	1.62	2.59
68 $(O,N,O, X = NCCH_3)^{[c]}$	168.99(16)	189.69(19)	185.8(2)	193.4(2)
18 (<i>N</i> , <i>N</i> , <i>O</i> , X = NCCH ₃)	167.70(19)	192.27(19)	187.3(2)	199.6(2)
Δ_{\max}	1.29	2.58	1.50	6.20

Tabelle 5.1: Vergleich der Si–O(Enolato)-, Si–N(Imino)-, Si–C- und Si–X-Bindungslängen [pm] (X = F, Cl, Br, NCS, NCCH₃) mit maximalen Abweichungen der Bindungsabstände Δ_{max} der untersuchten Verbindungen.

[a] Die Daten wurden aus Lit. [8f] entnommen. [b] Die Daten wurden aus Lit. [8e] entnommen. [c] Die Daten wurden aus Lit. [17] entnommen. [d] Die Daten wurden aus Lit. [20] entnommen.

Es zeigt sich, dass die äquatorialen Si–O(Enolato)- und die Si–C-Bindungen alle kürzer sind als die Summe der jeweiligen Kovalenzradien. Ganz anders verhält es sich bei den Si– N(Imino)-Bindungen, die alle gegenüber der Summe der entsprechenden Kovalenzradien deutlich verlängert sind. Die Abweichungen der jeweiligen Silicium–Element-Bindungslängen sind recht klein, was darauf schließen lässt, dass der Einfluss der axialen (Pseudo)halogeno-Liganden auf die Bindungsabstände relativ gering ist. Die größte Abweichung wurde für die Si-N(Imino)-Bindungslänge von 14 (O,N,O) gefunden, die verglichen mit ihren Analoga 13 (N,N,O) und 63 (S,N,O) etwa 4 pm kürzer ist. Hier scheint der trans-ständige Fluoro-Ligand einen entscheidenden Einfluss auf die Si-N(Imino)-Bindungslänge auszuüben. Bemerkenswert ist auch, dass es eine gute Übereinstimmung der Ergebnisse für den pentakoordinierten kationischen Komplexen 18 (N,N,O-Ligand) und seinem Analogon 68 mit einem O,N,O-Liganden gibt. Abweichungen existieren nur bezüglich der Si-X-Bindungen (X = Acetonitril-N-Ligand), die gegenüber der Summe der jeweiligen Kovalenzradien deutlich verlängert sind, wohingegen die Si-X-Bindungsabstände für die (Pseudo)halogeno-Liganden kürzer als die Summe ihrer jeweiligen Kovalenzradien sind. Der Unterschied in den axialen Si-X-Bindungslängen (X = Acetonitril-N-Ligand) beträgt etwa 6 pm, was darauf schließen lässt, dass der Einfuss des O/NMe-Austauschs recht groß ist. Zum einen ist die Elektronegativität des Sauerstoff-Atoms größer als die des Stickstoff-Atoms, was zu einer geringeren Elektronendichte am Silicium-Atom von 68 führt und somit zu einer Verkürzung der Si-N(Acetonitril-N)-Bindungslänge beiträgt. Zum anderen kann der etwas größere sterische Anspruchs der NMe-Gruppe von 18 ebenfalls zu einer Verlängerung der axialen Si-N(Acetonitril-N)-Bindung beitragen.

In Tabelle 5.2 sind die axialen N-Si-X-Bindungswinkel und die jeweiligen Berry-Verzerrungen gegenübergestellt. Hierdurch können Rückschlüsse auf die Änderung des räumlichen Anspruchs der dreizähnigen Chelat-Liganden auf die Struktur der untersuchten Silicium(IV)-Komplexe gezogen werden. Der Verzerrungsgrad der untersuchten Komplexe steigt in der Reihe S < NMe < O. Die Berry-Verzerrungen der Komplexe mit S,N,O-Liganden liegen im Bereich von 19.0–29.8%, für die Komplexe mit N,N,O-Liganden liegen die Berry-Verzerrungen im Bereich von 16.2–26.1%, und für die Analoga mit O,N,O-Liganden betragen diese 29.8–44.5% (vgl. Tabelle 5.2). Die axialen N–Si–X-Bindungswinkel (X = F, Cl, Br, NCS, NCCH₃) liegen im Bereich von 167.41(3)-168.46(3)° (S,N,O-Ligand), 171.25(4)-175.27(5)° (N,N,O-Ligand) bzw. 163.12(12)–169.55(5)° (O,N,O-Ligand). Aus Tabelle 5.2 ist ersichtlich, dass der axiale N-Si-X-Bindungswinkel (X = F, Cl, Br, NCS, NCCH₃) allein nicht aussagekräftig genug ist, was den Grad der Verzerrung anbelangt. Verbindung 13 besitzt einerseits eine deutlich größere Berry-Verzerrung (26.1%) als 63 (19.0%), andererseits weicht der axiale N-Si-F-Bindungswinkel von 13 mit 171.25(4)° gerade einmal um 8.75(4)° von dem idealen 180°-Winkel ab, während die Abweichungen des axialen N-Si-X-Bindungswinkels von dem idealen 180°-Winkel für 14 und 63 10.45(5) bzw. 11.54(3)° betragen.

Verbindung (Liganden)	N–Si–X	Berry-Verzerrungen
63 $(S,N,O, X = F)^{[a]}$	168.46(3)	19.0
14 (<i>O</i> , <i>N</i> , <i>O</i> , X = F)	169.55(5)	29.8
13 (<i>N</i> , <i>N</i> , <i>O</i> , X = F)	171.25(4)	26.1
45 (<i>S</i> , <i>N</i> , <i>O</i> , X = Cl)	167.66(3)	28.4
15 (<i>O</i> , <i>N</i> , <i>O</i> , X = Cl)	166.02(2)	41.2
12 (<i>N</i> , <i>N</i> , <i>O</i> , X = Cl)	173.04(5)	23.8
65 $(S,N,O, X = Br)^{[b]}$	167.41(3)	27.9
64 $(O,N,O, X = Br)^{[c]}$	165.41(7)	42.6
16 (<i>N</i> , <i>N</i> , <i>O</i> , X = Br)	175.27(5)	16.2
71 (<i>S</i> , <i>N</i> , <i>O</i> , $X = NCS$) ^[a]	168.30(7)	29.8
19 (<i>O</i> , <i>N</i> , <i>O</i> , X = NCS)	165.80(5)	42.6
70 (<i>N</i> , <i>N</i> , <i>O</i> , $X = NCS$) ^[d]	171.98(6)	25.6
68 ($O,N,O, X = NCCH_3$) ^[c]	163.12(12)	44.5
18 (<i>N</i> , <i>N</i> , <i>O</i> , X = NCCH ₃)	172.58(10)	20.1

Tabelle 5.2: Vergleich der Berry-Verzerrungen [%] und axialen N–Si– X-Bindungswinkel [°] der untersuchten Verbindungen.

[a] Die Daten wurden aus Lit. [8f] entnommen. [b] Die Daten wurden aus Lit. [8e] entnommen. [c] Die Daten wurden aus Lit. [17] entnommen. [d] Die Daten wurden aus Lit. [20] entnommen.

5.4 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe mit PhX-Liganden (X = O, S, Se)

5.4.1 Kristallstruktur von 20^[h]

Verbindung **20** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C, wobei zwei Diastereomere co-kristallisieren. Die Molekülstrukturen der Diastereomere von **20** im Kristall sind in Abb. 5.7 gezeigt.

Die Si-Koordinationspolyeder der beiden Diastereomere (*Si*O₂N₂C-Gerüst) entsprechen denen einer verzerrten trigonalen Bipyramide.

^[h] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe PT; a = 7.7687(12) Å; b = 11.560(2) Å; c = 23.392(4) Å; $a = 100.18(2)^\circ$; $\beta = 91.50(2)^\circ$; $\gamma = 95.28(2)^\circ$; $R1 [I > 2\sigma(I)] = 0.0404$.

Abb. 5.7: Molekülstruktur der beiden Diastereomere von **20** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: *Diastereomer A* (links): Si1–O1 169.99(15), Si1–O2 171.81(14), Si1–N1 206.37(16), Si1–N2 175.67(19), Si1–C1 188.44(19); O1–Si1–O2 90.90(7), O1–Si1–N1 87.77(7), O1–Si1–N2 127.36(8), O1–Si1–C1 111.50(9), O2–Si1–N1 175.48(7), O2–Si1–N2 95.94(8), O2–Si1–C1 95.01(7), N1–Si1–N2 81.48(7), N1–Si1–C1 89.50(7), N2–Si1–C1 119.70(9). *Diastereomer B* (rechts): Si2–O21 169.71(16), Si2–O22 171.94(14), Si2–N21 204.56(17), Si2–N22 177.24(17), Si2–C31 187.7(2); O21–Si2–O22 90.53(7), O21–Si2–N21 87.84(7), O21–Si2–N22 127.29(8), O21–Si2–C31 114.48(8), O22–Si2–N21 171.91(7), O22–Si2–N22 93.42(8), O22–Si2–C31 95.20(8), N21–Si2–N22 81.32(7), N21–Si2–C31 92.68(8), N22–Si2–C31 117.42(9).

Da im Allgemeinen die Kristallisationsgeschwindigkeit und die Löslichkeit von Diastereomeren unterschiedlich sind, können Diastereomere häufig durch fraktionierende Kristallisation voneinander getrennt werden.^[41] Daher ist es aber ungewöhnlich, dass zwei Diastereomere im Verhältnis 1:1 zusammen kristallisieren (Co-Kristallisation). Das Vorhandensein zweier Diastereomere konnte auch durch NMR-Spektroskopie im Festkörper (VACP/MAS-NMR) nachgewiesen werden, da die Spektren einen doppelten Signalsatz zeigten.

Die beiden axialen Positionen der beiden trigonal-bipyramidalen Si-Koordinationspolyeder werden von dem Sauerstoff-Atom des Phenolato-Liganden und von dem Iminostickstoff-Atom des tridentaten *N*,*N*,*O*-Liganden eingenommen. Die äquatorialen Positionen werden von dem Sauerstoff- bzw. Amidostickstoff-Atom des *N*,*N*,*O*-Liganden und von dem Kohlenstoff-Atom des Phenyl-Liganden besetzt. Alle Bindungslängen, außer den Si–N(Imino)-

Bindungslängen, liegen im erwarteten Bereich. Die beiden Si–N(Imino)-Bindungsabstände (Si1–N1- bzw. Si2–N21-Bindungsabstand) zeigen mit 206.37(16) bzw. 204.56(17) pm eine Verlängerung im Vergleich zur Summe der jeweiligen Kovalenzradien um 19 bzw. 17 pm. Die Berry-Verzerrungen betragen 20.4 bzw. 24.2%.

5.4.2 Kristallstruktur von 22^[i]

Verbindung 22 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von 22 im Kristall ist in Abb. 5.8 gezeigt.

Abb. 5.8: Molekülstruktur von **22** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 168.0(2), Si–O2 167.9(2), Si–O3 168.7(2), Si–N 206.0(3), Si–C1 185.8(3); O1–Si–O2 132.59(13), O1–Si–O3 91.58(10), O1–Si–N 87.77(10), O1–Si–C1 111.85(13), O2–Si–O3 87.43(11), O2–Si–N 81.72(10), O2–Si–C1 114.63(13), O3–Si–N 164.57(12), O3–Si–C1 102.32(12), N–Si–C1 92.20(12).

Verbindung 22 ist analog zu Verbindung 20 aufgebaut und besitzt an Stelle des tridentaten N,N,O-Liganden einen tridentaten O,N,O-Liganden. Die beiden Sauerstoff-Atome des Chelat-Liganden besetzten zusammen mit dem Kohlenstoff-Atom des Phenyl-Liganden die

^[i] Ausgewählte Parameter der Kristallstrukturanalyse: T = 293(2) K; Raumgruppe $P\overline{1}$; a = 10.297(3) Å; b = 10.3614(19) Å; c = 10.525(2) Å; $a = 106.55(2)^\circ$; $\beta = 97.37(3)^\circ$; $\gamma = 111.39(3)^\circ$; $R1 [I > 2\sigma(I)] = 0.0515$.

äquatorialen Positionen des Si-Koordinationspolyeders (*Si*O₃NC-Gerüst), das dem einer stark verzerrten trigonalen Bipyramide entspricht.

Die beiden axialen Positionen werden durch das Iminostickstoff-Atom des dreizähnigen O,N,O-Liganden und durch das Sauerstoff-Atom des Phenolato-Liganden besetzt. Der Si–N-Bindungsabstand ist mit 206.0(3) pm im Vergleich zur Summe der jeweiligen Kovalenzradien (187 pm) stark verlängert. Die Si–O- und Si–C-Bindungsabstände liegen im erwarteten Bereich. Die Berry-Verzerrung liegt mit 41.7% (wie unter 5.3.6 geschildert) ebenfalls im erwarteten Bereich. Der axiale O3–Si–N-Bindungswinkel (164.57(12)°) weicht von dem idealen 180°-Winkel um etwa 15° ab.

5.4.3 Kristallstruktur von 23^[j]

Verbindung **23** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von **23** im Kristall ist in Abb. 5.9 gezeigt.

Si-Koordinationspolyeder (SiSON₂C-Gerüst) Das entspricht dem einer trigonalen Bipyramide. Die beiden axialen Positionen werden von dem Sauerstoff- bzw. Amidostickstoff-Atom des dreizähnigen N,N,O-Liganden besetzt. Die äquatorialen Positionen werden von dem Schwefel-Atom des Benzolthiolato-Liganden, dem Iminostickstoff-Atom des N,N,O-Liganden und dem Kohlenstoff-Atom des Phenyl-Liganden eingenommen. Durch die Änderung des Koordinationsmodus der trigonalen Bipyramide (im Gegensatz zu den bisher diskutierten Verbindungen wechselt das Iminostickstoff-Atom von einer axialen in eine äquatoriale Position), wird die Si-N1-Bindungslänge (186.10(12) pm) so stark verkürzt, dass diese nun etwas unterhalb der Summe der Kovalenzradien (187 pm) der beteiligten Atome liegt. Der axiale O-Si-N2-Bindungswinkel (170.53(5)°) zeigt eine Abweichung von dem idealen 180°-Winkel von etwa 10°. Die Berry-Verzerrung ist mit 16.2% kleiner als für den analogen Komplex 20 (PhO-Ligand; 20.4 bzw. 24.2%) mit axial angeordnetem Phenolato-Liganden, was für den Abbau sterischer Spannungen spricht, zumal die Größe des Kovalenzradius vom Sauerstoff- (66 pm) zum Schwefel-Atom (104 pm) und damit der sterische Anspruch der Ligand-Atome deutlich ansteigt.

^[j] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 13.109(2) Å; b = 10.9701(13) Å; c = 14.690(2) Å; $a = 90^{\circ}$; $\beta = 91.05(2)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0380$.

Abb. 5.9: Molekülstruktur von **23** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 218.60(6), Si–O 184.70(10), Si–N1 186.10(12), Si–N2 181.15(12), Si–C1 188.67(14); S–Si–O 79.23(4), S–Si–N1 122.42(4), S–Si–N2 100.76(4), S–Si–C1 117.95(5), O–Si–N1 87.61(5), O–Si–N2 170.53(5), O–Si–C1 90.86(5), N1–Si–N2 84.43(5), N1–Si–C1 118.04(6), N2–Si–C1 97.40(6).

5.4.4 Kristallstruktur von 24^[k]

Verbindung 24 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von 24 im Kristall ist in Abb. 5.10 gezeigt.

Das Si-Koordinationspolyeder (*Si*SeON₂C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide. Im Vergleich zu Verbindung **23** besitzt **24** an Stelle des Benzolthiolato-Liganden einen Benzolselenolato-Liganden. Der strukturelle Unterschied zwischen **23** und **24** ist abgesehen von der Si–S- bzw. Si–Se-Bindung jedoch sehr gering. Die Si–Se-Bindungslänge ist mit 233.13(7) pm nur wenig kürzer als die Summe der jeweiligen Kovalenzradien (234 pm). Sie ist im Vergleich zur Si–S-Bindung von Verbindung **23** etwa 14 pm länger, was etwa der Zunahme der Kovalenzradien (S \rightarrow Se) entspricht.

^[k] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 13.195(3) Å; b = 11.0155(15) Å; c = 14.723(3) Å; $a = 90^\circ$; $\beta = 90.36(2)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0347$.

Abb. 5.10: Molekülstruktur von **24** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Se 233.13(7), Si–O 184.51(14), Si–N1 186.52(18), Si–N2 180.85(17), Si–C1 187.8(2); Se–Si–O 78.55(5), Se–Si–N1 123.44(6), Se–Si–N2 100.65(6), Se–Si–C1 117.15(6), O–Si–N1 87.56(7), O–Si–N2 169.76(8), O–Si–C1 91.02(8), N1–Si–N2 84.41(8), N1–Si–C1 117.66(8), N2–Si–C1 98.32(8).

Die übrigen Si–O-, Si–N- und Si–C-Bindungsabstände und die Bindungswinkel von **24** sind denen von **23** sehr ähnlich und weichen höchstens um 1 pm bzw. 1° ab, so dass die beiden Strukturen, abgesehen von dem Schwefel-Selen-Austausch, als isostrukturell angesehen werden können. Diese Tatsache wird auch durch die fast identischen Zellparameter unterstrichen. Die Berry-Verzerrung von Verbindung **24** ist nur wenig größer als die von **23** (**23**: 16.2%; **24**: 18.8%), was durch die größere Abweichung des axialen O–Si–N2-Bindungswinkels (169.76(8)°) von dem idealen 180°-Winkel erklärt werden kann. Die stärkere Verzerrung resultiert aus dem größeren sterischen Anspruch des Benzolselenolato-Liganden im Vergleich zu dem Benzolthiolato-Liganden von Verbindung **23**.

5.4.5 Vergleich der pentakoordinierten Silicium(IV)-Komplexe mit PhX-Liganden (X = O, S, Se)

Auf Grund der strukturellen Ähnlichkeit bietet sich ein Vergleich der Silicium(IV)-Komplexe 20 und 22–24 an, welche einen dreizähnigen Chelat-Liganden (*S*,*N*,*O*-, *O*,*N*,*O*- bzw. *N*,*N*,*O*- Ligand), einen Phenyl-Liganden und einen PhX-Liganden (X = OPh, SPh, SePh) besitzen. In Tabelle 5.3 sind die Bindungsabstände der Si–O(Enolato)-, Si–N(Imino)-, Si–C-, und Si–X-Bindungen (X = OPh, SPh, SePh) gegenübergestellt.

Tabelle 5.3: Vergleich der Si–O(Enolato)-, Si–N(Imino)-, Si–C- und Si–X-Bindungslängen [pm] (X = OPh, SPh, SePh) mit maximalen Abweichungen der Bindungsabstände Δ_{max} der untersuchten Verbindungen 20, 22–24 und 73–76.

Verbindung (Liganden)	Si–O(Enolat)	Si–N(Imino)	Si–C	Si–X
22 (<i>O</i> , <i>N</i> , <i>O</i> , X = OPh)	168.0(2)	206.0(3)	185.8(3)	168.7(2)
20 (<i>N</i> , <i>N</i> , <i>O</i> , $X = OPh$) ^[a]	169.99(15),	206.37(16),	188.44(19),	171.81(14),
	169.71(16)	204.56(17)	187.7(2)	171.94(14)
Δ_{max}	1.99	1.81	2.64	3.24
74 $(S,N,O, X = SPh)^{[b]}$	176.76(10)	185.92(12)	187.82(16)	218.81(6)
73 ($O,N,O, X = SPh$) ^[c]	176.75(6)	186.98(7)	188.38(8)	216.94(3)
23 (<i>N</i> , <i>N</i> , <i>O</i> , X = SPh)	184.70(10)	186.10(12)	188.67(14)	218.60(6)
Δ_{max}	7.95	1.06	0.85	1.87
76 $(S,N,O, X = \text{SePh})^{[b]}$	176.44(8)	185.45(10)	187.57(12)	232.01(3)
75 (<i>O</i> , <i>N</i> , <i>O</i> , $X = SePh$) ^[c]	177.18(15)	187.38(17)	189.3(2)	230.97(7)
24 (<i>N</i> , <i>N</i> , <i>O</i> , X = SePh)	184.51(14)	186.52(18)	187.8(2)	233.13(7)
Δ_{max}	8.07	1.93	1.73	2.16

[a] Daten für zwei kristallographisch unabhängige Moleküle. [b] Die Daten wurden aus Lit. [8c] entnommen. [c] Die Daten wurden aus Lit. [17] entnommen.

Am auffälligsten ist, dass bei Änderung des Koordinationsmodus des dreizähnigen Liganden – der PhX-Ligand wechselt von einer axialen (X = O) in eine äquatoriale Position (X = S, Se) – die Si–N(Imino)-Bindungslängen deutlich verkürzt werden (ca. 20 pm). Aus Tabelle 5.4 ist weiterhin ersichtlich, dass die Berry-Verzerrungen, die als Indikator für sterische Spannungen innerhalb eines Komplexes herangezogen werden können, durch die Änderung des Koordinationsmodus signifikant kleiner werden. Die Silicium(IV)-Komplexe **23**, **24**, **73** und **74** besitzen jeweils einen Benzolthiolato- bzw. Benzolselenolato-Liganden (X = PhS, PhSe). Dabei ist auffällig, dass nur die Si–O(Enolato)-Bindungslängen von **23** und **24** (N,N,O-Ligand) deutlich länger sind (ca. 8 pm) als die der Silicium(IV)-Komplexe **73–76** mit *S*,*N*,*O*- bzw. *O*,*N*,*O*-Liganden. Dies ist wohl auf den größeren sterischen Einfluss der NMe-Gruppe zurückzuführen. Die übrigen Bindungslängen zeigen nur geringe Unterschiede.

Verbindung	Axiale Bindungswinkel	Berry-Verzerrungen
22 (<i>O</i> , <i>N</i> , <i>O</i> , X = OPh) 20 (<i>N</i> , <i>N</i> , <i>O</i> , X = OPh) ^[a]	164.57(12)	41.7
20 $(N,N,O, X - OPI)^{[b]}$ 74 $(S,N,O, X = SPh)^{[b]}$	173.48(7), 171.91(7)	20.4, 24.2 29.3
73 $(O,N,O, X = SPh)^{[c]}$	170.13(3)	22.4
23 (N , N , O , X = SPh)	170.53(5)	16.2
76 $(S,N,O, X = \text{SePh})^{[b]}$	168.68(3)	24.7
24 $(N,N,O, X = \text{SePh})^{(r)}$ 24 $(N,N,O, X = \text{SePh})$	169.22(7) 169.76(8)	27.0 18.8

Tabelle 5.4: Vergleich der Berry-Verzerrungen [%] und axialen N–Si–X-Bindungswinkel [°] der untersuchten Verbindungen **20**, **22–24** und **73–76**.

[a] Daten für zwei kristallographisch unabhängige Moleküle. [b] Die Daten wurden aus Lit. [8c] entnommen. [c] Die Daten wurden aus Lit. [17] entnommen.

Die axialen Bindungswinkel von **20** und **22** (N–Si–OPh-Winkel) liegen im Bereich von 164.57(12)–175.48(7)°, und die axialen Bindungswinkel (O(Enolato)–Si–X-Winkel; X = S, O, NMe) von **23**, **24** und **73–76** liegen im Bereich von 167.90(4)–170.53(5)°.

5.5 Kristallstrukturen der neutralen hexakoordinierten Silicium(IV)-Komplexe mit zweizähnigen monoanionischen *O,O*-Liganden

Aus Gründen der Vergleichbarkeit werden hier auch die neutralen pentakoordinierten Silicium(IV)-Komplexe 40, $43 \cdot (C_2H_5)_2O$ und $44 \cdot 0.5C_6H_5CH_3$ diskutiert.

5.5.1 Kristallstruktur von 38^[1]

Verbindung **38** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von **38** im Kristall ist in Abb. 5.11 gezeigt.

^[1] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 8.4805(13) Å; b = 15.143(3) Å; c = 16.710(2) Å; $a = 90^\circ$; $\beta = 93.445(18)^\circ$; $\gamma = 90^\circ$; $R1 [I > 2\sigma(I)] = 0.0362$.

Abb. 5.11: Molekülstruktur von **38** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 178.96(13), Si–O2 192.66(11), Si–O3 178.02(12), Si–N1 192.75(14), Si–N2 181.72(14), Si–C1 193.83(16), O2–C20 126.83(18), O3–C22 129.70(19), C20–C21 139.8(2), C21–C22 137.5(2); O1–Si–O2 82.87(5), O1–Si–O3 88.10(6), O1–Si–N1 92.10(6), O1–Si–N2 170.58(6), O1–Si–C1 92.71(6), O2–Si–O3 90.16(5), O2–Si–N1 83.53(5), O2–Si–N2 87.95(6), O2–Si–C1 175.09(6), O3–Si–N1 173.61(5), O3–Si–N2 94.05(6), O3–Si–C1 91.81(6), N1–Si–N2 84.74(6), N1–Si–C1 94.56(6), N2–Si–C1 96.39(6).

Das Si-Koordinationspolyeder (*Si*O₃N₂C-Gerüst) von **38** entspricht dem eines leicht verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.13(5) bzw. 9.42(6)°. Der dreizähnige *N*,*N*,*O*-Ligand ist meridional an das Si-Koordinationszentrum gebunden. Die Si–O(Enolato)- und Si–N(Amido)-Bindungslängen liegen im erwarteten Bereich. Die Si–N(Imino)-Bindungslänge ist um etwa 5 pm länger als die Summe der Kovalenzradien (187 pm) der beteiligten Atome. Der Si–O2-Abstand ist mit 192.66(11) pm deutlich verlängert im Vergleich zu den Si–O1- und Si–O3-Bindungsabständen (178.96(13) bzw. 178.02(12) pm). Die Summe der Kovalenzradien für eine Si–O-Bindung beträgt 183 pm. Da sich die C20–C21- und C21–C22-Bindungslängen (139.8(2) bzw. 137.5(2) pm) um etwa 2 pm unterscheiden, lässt das auf ein nicht vollständig delokalisiertes Doppelbindungssystem des Acetyacetonato-Liganden schließen. Dafür sprechen auch die O2–C20- und O3–C22-Bindungsabstände mit 126.83(18) bzw. 129.70(19) pm; sie unterscheiden sich um etwa 3 pm. Allerdings sind die Unterschiede in den Bindungslängen zu klein, um von lokalisierten Bindungen mit einer Si=O2- und C21=C22-Doppelbindung zu sprechen.

5.5.2 Kristallstruktur von 39·CH₃CN^[m]

Verbindung **39**·CH₃CN kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **39** im Kristall von **39**·CH₃CN ist in Abb. 5.12 gezeigt.

Abb. 5.12: Molekülstruktur von **39** im Kristall von **39**·CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 178.39(11), Si–O2 190.32(11), Si–O3 180.64(13), Si–N1 190.99(14), Si–N2 182.49(13), Si–C1 193.46(15), O2–C25 128.12(17), O3–C27 130.18(17), C25–C26 139.9(2), C26–C27 138.9(2); O1–Si–O2 83.60(5), O1–Si–O3 88.07(6), O1–Si–N1 92.02(6), O1–Si–N2 172.09(5), O1–Si–C1 93.33(6), O2–Si–O3 87.67(5), O2–Si–N1 82.82(5), O2–Si–N2 88.96(5), O2–Si–C1 176.93(5), O3–Si–N1 170.42(5), O3–Si–N2 94.33(6), O3–Si–C1 92.17(6), N1–Si–N2 84.37(6), N1–Si–C1 97.39(6), N2–Si–C1 94.11(6).

Das Si-Koordinationspolyeder (*Si*O₃N₂C-Gerüst) von Verbindung **39**·CH₃CN entspricht dem eines leicht verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.18(5) bzw. 9.58(5)° und sind denen von Verbindung **38** sehr ähnlich. Der dreizähnige *N*,*N*,*O*-Ligand nimmt eine meridionale Anordnung ein. Auch hier ist die Si–N(Imino)-Bindungslänge (190.99(14) pm) fast 4 pm länger, als die Summe der jeweiligen Kovalenzradien (187 pm). Die Si–O2-Bindungslänge (190.32(11) pm) ist im Vergleich zur Si–O3-Bindung (180.64(13) pm) um etwa 10 pm länger, was auch hier auf ein

^[m] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 10.119(2) Å; b = 12.055(3) Å; c = 13.764(3) Å; $a = 69.33(3)^{\circ}$; $\beta = 83.80(3)^{\circ}$; $\gamma = 72.37(3)^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0354$.

nicht vollständig delokalisiertes Doppelbindungssystem des Diphenylacetylacetonato-Liganden schließen lassen könnte. Jedoch sind die Unterschiede zwischen der O2–C25-(128.12(17) pm), O3–C27- (130.18(17) pm), C25–C26- (139.9(2) pm) und der C26–C27-Bindungslänge (138.9(2) pm) nur sehr klein. Die C–O-Bindungen unterscheiden sich um etwa 2 pm, die C–C-Bindungen nur um 1 pm. Damit liegt im Diphenylacetylacetonato-Ligand ein fast vollständig delokalisiertes Doppelbindungssystem vor.

5.5.3 Kristallstruktur von 40^[n]

Verbindung **40** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf –20 °C. Die Molekülstruktur von **40** im Kristall ist in Abb. 5.13 gezeigt.

Abb. 5.13: Molekülstruktur von **40** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 180.13(12), Si–O2 172.57(12), Si–O3 169.94(12), Si–N1 182.67(14), Si–C1 189.40(17), O2–C20 139.00(19), O3–C22 134.54(19), C20–C21 150.8(2), C21–C22 133.3(2); O1–Si–O2 178.55(5), O1–Si–O3 84.59(6), O1–Si–N1 89.55(6), O1–Si–C1 89.52(6), O2–Si–O3 94.28(6), O2–Si–N1 90.04(6), O2–Si–C1 91.84(6), O3–Si–N1 112.08(6), O3–Si–C1 120.51(7), N1–Si–C1 127.04(7).

^[n] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.878(2) Å; b = 13.1457(19) Å; c = 16.012(3) Å; $a = 90^{\circ}$; $\beta = 93.58(3)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0367$.

Das Si-Koordinationspolyeder (*Si*O₃NC-Gerüst) von **40** entspricht dem einer leicht verzerrten trigonalen Bipyramide. Die beiden axialen Positionen werden von einem Enolatosauerstoffund einem Olatosauerstoff-Atom des vierzähnigen *O*,*N*,*O*,*O*-Liganden eingenommen. Die äquatorialen Positionen werden von dem Iminostickstoff- und dem zweiten Enolatosauerstoff-Atom des Chelat-Liganden und dem Kohlenstoff-Atom des Phenyl-Liganden besetzt. Der Si– N(Imino)-Bindungsabstand ist mit 182.67(14) pm kleiner als die Summe der jeweiligen Kovalenzradien (187 pm). Der axiale Bindungswinkel (O1–Si–O2) beträgt 178.55(5)° und weicht damit nur um etwa 1.5° von dem idealen 180°-Winkel ab. Die Struktur von **40** weist eine Berry-Verzerrung von 11.9% auf.

5.5.4 Kristallstruktur von 41·0.53CH₃CN^[0]

Verbindung 41·0.53CH₃CN kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur eines der vier kristallographisch unabhängigen Moleküle von 41 im Kristall von 41·0.53CH₃CN ist in Abb. 5.14 gezeigt.

Abb. 5.14: Molekülstruktur von **41** im Kristall von **41** \cdot 0.53CH₃CN (nur eines der vier kristallographisch unabhängigen Moleküle ist abgebildet) mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: *Molekül A*: Si1–O1 177.02(17), Si1–O2 186.06(17), Si1–O3 180.53(17), Si1–O4 176.26(17), Si1–N1 192.8(2), Si1–C1 192.4(2), O2–C19 127.9(3), O3–C21 129.5(3), C19–C20 139.4(3), C20–C21 138.4(4); O1–Si1–O2 84.29(8), O1–Si1–O3 89.43(8), O1–Si1–O4 171.96(9), O1–Si1–N1 93.44(8), O1–Si1–C1 93.72(9), O2–Si1–O3 90.20(8), O2–Si1–O4 87.68(8), O2–Si1–N1 83.43(8), O2–Si1–C1

^[o] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1$; a = 11.7786(17) Å; b = 23.476(3) Å; c = 15.793(2) Å; $a = 90^{\circ}$; $\beta = 90.205(7)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0465$.

177.32(9), O3-Si1-O4 90.16(8), O3-Si1-N1 172.71(9), O3-Si1-C1 91.57(9), O4-Si1-N1 86.06(8), O4-Si1-C1 94.32(9), N1-Si1-C1 94.92(9); Molekül B: Si31-O31 1.775(2), Si31-O32 1.900(2), Si31-O33 1.785(2), Si31-O34 1.752(2), Si31-N31 1.922(3), Si31-C31 1.928(3); O31-Si31-O32 82.44(11), O31-Si31-O33 90.32(12), O31-Si31-O34 170.18(12), O31-Si31-N31 93.24(11), O31-Si31-C31 93.95(13), O32-Si31-O33 90.84(11), O32-Si31-O34 87.75(11), O32-Si31-N31 84.29(11), O32-Si31-C31 176.06(13), O33-Si31-O34 89.33(12), O33-Si-N31 173.53(12), O33-Si-C31 90.78(12), O34-Si31-N31 86.23(11), O34-Si31-C31 95.86(13), N31-Si31-C31 94.36(12); Molekül C: Si61-O61 1.768(2), Si61-O62 1.888(2), Si-O63 1.801(2), Si61-O64 1.745(2), Si61-N61 1.957(3), Si61-C61 1.932(3); O61-Si61-O62 85.04(11), O61-Si61-O63 89.60(11), O61-Si61-O64 171.03(12), O61-Si61-N61 94.21(11), O61-Si61-C61 93.28(12), O62-Si61-O63 91.19(10), O62-Si61-O64 86.15(11), O62-Si61-N61 82.42(10), O62-Si61-C61 176.77(12), O63-Si61-O64 88.89(11), O63-Si61-N61 172.23(12), O63-Si61-C61 91.55(12), O64-Si61-N61 86.29(11), O64-Si61-C61 95.61(13), N61-Si61-C61 94.98(12); Molekül D: Si91-O91 1.765(2), Si91-O92 1.902(2), Si91-O93 1.796(2), Si91-O94 1.747(2), Si91-N91 1.953(3), Si91-C91 1.929(3); O91-Si91-O92 83.96(11), O91-Si91-O93 89.24(11), O91-Si91-O94 170.20(12), O91-Si91-N91 94.56(11), O91-Si91-C91 93.20(13), O92-Si91-O93 91.31(11), O92-Si91-O94 86.47(11), O92-Si91-N91 83.57(11), O92-Si91-C91 175.94(12), O93-Si91-O94 88.88(11), O93-Si91-N91 173.26(12), O93-Si91-C91 91.55(12), O94-Si91-N91 86.44(11), O94-Si91-C91 96.46(13), N91-Si91-C91 93.79(12). Auf Grund der Ähnlickeit ihrer Strikturen wurde auf die Abbildung der anderen drei kristallographisch unabhängigen Moleküle bewusst verzichtet.

Im Kristall von **41**·0.53CH₃CN liegen vier Silicium(IV)-Komplexe **41** in der asymmetrischen Einheit vor. Zusätzlich existieren drei Positionen für die Acetonitril-Moleküle, die aber nicht zu 100% besetzt sind. Daraus ergibt sich ein Gesamtgehalt von 0.53 Äquivalenten Solvat pro kristallographisch unabhängigem Molekül. Das Si-Koordinationspolyeder (*SiO*₄NC-Gerüst) entspricht jeweils dem eines leicht verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.58(10) bzw. 9.82(12)°. Der dreizähnige *O*,*N*,*O*-Ligand von Verbindung **41** nimmt wie bei **38** und **39** eine meridionale Anordnung ein. Verbindung **41** besitzt stark verlängerte Si–N-Bindungslängen (Si1–N1: 192.8(2) pm; Si31– N31: 192.2(3) pm; Si61–N61: 195.7(3) pm; Si91–N91: 195.3(3) pm); diese sind um ca. 5 bzw. 9 pm länger als die Summe der jeweiligen Kovalenzradien (187 pm). Verbindung **41** besitzt ein fast vollständig delokalisiertes Doppelbindungssystem der Acetylacetonato-Liganden. Die Differenzen in den C–C-Bindungslängen sind mit etwa 1 pm sehr gering.

Die Si–O-, C–O- und C–C-Bindungsabstände liegen alle im erwarteten Bereich. Die Si–O-Bindungsabstände des dreizähnigen *O*,*N*,*O*-Liganden sind gemäß der Erwartung, deutlich kürzer als die Si–O-Bindungslängen des Acetylacetonato-Liganden.

5.5.5 Kristallstruktur von 42·CH₃CN^[p]

Verbindung 42·CH₃CN kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf –20 °C. Die Molekülstruktur von 42 im Kristall von 42·CH₃CN ist in Abb. 5.15 gezeigt.

Abb. 5.15: Molekülstruktur von **42** im Kristall von **42**·CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 178.57(7), Si–O2 186.02(7), Si–O3 178.37(7), Si–O4 176.12(7), Si–N1 190.75(8), Si–C1 192.54(10), O2–C24 129.61(11), O3–C26 128.18(11), C24–C25 138.58(13), C25–C26 140.21(13); O1–Si–O2 84.10(3), O1–Si–O3 89.75(3), O1–Si–O4 172.03(4), O1–Si–N1 91.47(3), O1–Si–C1 93.41(4), O2–Si–O3 89.18(3), O2–Si–O4 88.16(3), O2–Si–N1 84.32(3), O2–Si–C1 177.34(4), O3–Si–O4 92.07(3), O3–Si–N1 173.23(4), O3–Si–C1 89.88(4), O4–Si–N1 85.84(3), O4–Si–C1 94.36(4), N1–Si–C1 96.70(4).

Das Si-Koordinationspolyeder (*Si*O₄NC-Gerüst) von Verbindung **42** entspricht dem eines verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 6.70(4) bzw. 7.97(4)° und sind denen von Verbindung **41** sehr ähnlich. Der dreizähnige *O*,*N*,*O*-Ligand nimmt eine meridionale Anordnung im Si-Koordinationspolyeder ein. Die Si–O1- (178.57(7) pm) und Si–O4-Bindungsabstände (176.12(7) pm) von **42** unterscheiden sich kaum von denen in Verbindung **41** (Si1–O1 177.02(17) pm; Si1–O4 176.26(17) pm). Die Si–O2- (186.02(7) pm) und Si–O3-Bindungslängen (178.37(7) pm)

^[p] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$; a = 10.0010(7) Å; b = 12.4225(9) Å; c = 12.8603(10) Å; $a = 111.202(2)^{\circ}$; $\beta = 97.313(2)^{\circ}$; $\gamma = 102.624(2)^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0369$.

unterscheiden sich voneinander um fast 8 pm, was auf ein nicht vollständig delokalisiertes Doppelbindungssystem des Diphenylacetylacetonato-Liganden hinweist. Die Differenz zwischen den C24–C25- (138.58(13) pm) und C25–C26-Bindungslängen (140.21(13) pm) ist mit fast 2 pm größer als für **41** (1 pm), jedoch sind auch hier die Abweichungen zu gering, um von einem lokalisierten Doppelbindungssystem sprechen zu können.

5.5.6 Kristallstruktur von 43·(C₂H₅)₂O^[q]

Verbindung $43 \cdot (C_2H_5)_2O$ kristallisierte durch langsames Abkühlen einer gesättigten Lösung (Diethylether) auf –20 °C. Die Molekülstruktur von 43 im Kristall von $43 \cdot (C_2H_5)_2O$ ist in Abb. 5.16 gezeigt.

Abb. 5.16: Molekülstruktur (Besetzungsfaktor 63%) von **43** im Kristall von **43** $(C_2H_5)_2O$ mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 173.82(16), Si \cdots O2 233.3,^[r] Si–O3 178.03(16), Si–O4 172.10(16), Si–N 189.61(18), Si–C1 188.9(2), O2–C19 123.0(3), O3–C21 129.4(3), C19–C20 142.3(4), C20–C21 135.5(3); O1–Si–O3 86.27(7), O1–Si–O4 158.48(8), O1–Si–N 92.43(8), O1–Si–C1 100.64(9), O3–Si–O4 88.58(7), O3–Si–N 163.32(8), O3–Si–C1 96.50(8), O4–Si–N 86.57(7), O4–Si–C1 100.70(9), N–Si–C1 100.07(9).

Das Si-Koordinationspolyeder (*SiO*₃NC-Gerüst) von Verbindung $43 \cdot (C_2H_5)_2O$ entspricht dem einer leicht verzerrten quadratischen Pyramide. Die Berry-Verzerrung (TBP \rightarrow QP) beträgt

^[q] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 10.8309(18) Å; b = 13.033(2) Å; c = 19.248(3) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0464$.

^[r] Der Si–O2-Abstand wurde mit ORTEP-3 für Windows (Version 2.02) berechnet.

94.0%. Die Abweichungen von den idealen 90- und 180°-Winkeln einer idealen trigonalen Bipyramide betragen 10.7(9) bzw. 21.52(8)°. Der Si…O2-Abstand von Verbindung 43 pm. Inwieweit hier noch eine Wechselwirkung beträgt 233.3 mit dem Si-Koordinationszentrum besteht, ist nicht geklärt, aber es ist auffällig, dass das Carbonylsauerstoff-Atom (O2) dem Silicium-Atom zugewandt ist. In diesem Zusammenhang können die Koordinationsverhältnisse am Silicium-Atom auch im Sinne einer [5+1]-Koordination diskutiert werden. Das Si-Koordinationspolyeder wäre dann eine Basisüberdachte quadratische Pyramide. Allerdings gibt es keinen eindeutigen experimentellen Nachweis für eine Fernwechselwirkung zwischen dem Silicium-Atom und dem Sauerstoff-Atom O2.

In diesem Silicium(IV)-Komplex besteht ein lokalisiertes Doppelbindungssystem, was aus den O2–C19- (123.0(3) pm), O3–C21- (129.4(3) pm), C19–C20- (142.3(4) pm) und C20–C21-Bindungsabständen (135.5(3) pm) ersichtlich ist. Die C=O-Doppelbindung (O2–C19 123.0(3) pm) ist etwa 6 pm kürzer als die O3–C21-Bindung (129.4(3) pm). Deutlich wird die Lokalisierung des Doppelbindungssystems vor allem in den C–C-Abständen des Hexafluoroacetylacetonato-Liganden. Die C19–C20-Bindung (142.3(4) pm) ist ca. 7 pm länger als die C20–C21-Bindung (135.5(3) pm), was für die Differnez zwischen einer C–C-Einfach- und einer C–C-Doppelbindung zu erwarten ist.

5.5.7 Kristallstruktur von 44·0.5C₆H₅CH₃^[s]

Verbindung $44 \cdot 0.5C_6H_5CH_3$ kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf –20 °C. Die Molekülstruktur von 44 im Kristall von $44 \cdot 0.5C_6H_5CH_3$ ist in Abb. 5.17 gezeigt.

Im Kristall von $44.0.5C_6H_5CH_3$ liegen zwei kristallographisch unabhängige Moleküle in der asymmetrischen Einheit vor, die sich in erster Näherung zueinander wie Bild und Spiegelbild verhalten. Das Si-Koordinationspolyeder (*Si*O₃NC-Gerüst) wird am besten durch eine leicht verzerrte trigonale Bipyramide beschrieben. Die axialen Positionen werden jeweils von einem Enolatosauerstoff- und einem Olatosauerstoff-Atom des neu gebildeten vierzähnigen *O,N,O,O*-Liganden besetzt. Die äquatorialen Positionen werden jeweils von einem Enolatosauerstoff- und einem Iminostickstoff-Atom des Chelat-Liganden sowie von einem Kohlenstoff-Atom des Phenyl-Liganden eingenommen. Verbindung **44** unterscheidet sich von **40** formal nur durch die Substitution der NMe-Gruppe des vierzähnigen *O,N,O,O*-Liganden

^[s] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 11.8529(17) Å; b = 12.2558(18) Å; c = 18.634(3) Å; $a = 80.423(17)^\circ$; $\beta = 76.044(16)^\circ$; $\gamma = 79.184(17)^\circ$; R1 [$I > 2\sigma(I)$] = 0.0513.

durch ein Schwefel-Atom. Auf Grund der strukturellen Ähnlichkeit unterscheiden sich die Bindungslängen und -winkel um das Silicium-Koordinationszentrum nur wenig voneinander. Erwähnenswerte Abweichungen gibt es lediglich in den Si–O(Olato)-Bindungsabständen des Chelat-Liganden (O2–C19 137.8(3) pm; O5–C41 138.4(3) pm). Diese unterschieden sich von denen von **40** (O2–C20 139.00(19) pm) um maximal 1.2 pm. Die Abweichung aller anderen Bindungsabstände von **44** verglichen mit denen von **40** liegen unter 1 pm. Die axialen O–Si–O-Bindungswinkel betragen 176.73(10) bzw. 176.39(10)° und weichen damit etwa 2° stärker von den idealen 180°-Winkeln ab als in Verbindung **40** (178.55(5)°). Die Berry-Verzerrungen von **44** betragen 14.4% (*Molekül A*) bzw. 16.1% (*Molekül B*).

Abb. 5.17: Molekülstruktur der beiden kristallographisch unabhängigen Moleküle von **44** im Kristall von **44**·0.5C₆H₅CH₃ mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: *Molekül A* (links): Si1–O1 180.0(2), Si1–O2 173.9(2), Si1–O3 170.5(2), Si1–N1 182.8(2), Si1–C1 188.6(3), O2–C19 137.8(3), O3–C21 135.2(3), C19–C20 150.3(4), C20–C21 132.2(4); O1–Si1–O2 176.73(10), O1–Si1–O3 83.89(10), O1–Si1–N1 90.21(10), O1–Si1–C1 88.83(11), O2–Si1–O3 93.28(10), O2–Si1–N1 92.47(10), O2–Si1–C1 91.54(11), O3–Si1–N1 114.55(10), O3–Si1–C1 126.24(11), N1–Si1–C1 118.68(11); *Molekül B* (rechts): Si2–O4 179.4(2), Si2–O5 173.46(19), Si2–O6 170.8(2), Si2–N2 183.8(2), Si2–C23 187.7(3), O5–C41 138.4(3), O6–C43 135.2(3), C41–C42 149.8(4), C42–C43 132.2(4); O4–Si2–O5 176.39(10), O4–Si2–O6 83.72(9), O4–Si2–N2 90.18(10), O4–Si2–C23 89.14(10), O5–Si2–C6 93.43(9), O5–Si2–N2 93.05(10), O5–Si2–C23 90.81(10), O6–Si2–N2 115.38(10), O6–Si2–C23 126.86(11), N2–Si2–C23 117.23(11).

5.5.8 Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit einem zweizähnigen monoanionischen *O*,*O*-Liganden.

Aus Gründen der Vergleichbarkeit und um Aussagen über den Einfluss des S/O/NMe-Austauschs treffen zu können, werden in die Diskussion der Kristallstruktur-Analysen auch die analogen Komplexe 77 und 78 mit einem tridentaten dianionischen *S*,*N*,*O*-Liganden mit einbezogen.^[8e]

In Tabelle 5.5 sind die Si–O-, Si–N(Imino)- und Si–X-Bindungslängen (X = S, O, NMe) der Verbindungen **38–44**, 77 und **78** gegenübergestellt.

Die Si-Koordinationspolyeder von **38**, **39**, **41**, **42**, **77** und **78** werden am besten durch ein verzerrtes Oktaeder beschrieben. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln reichen von 6.46(13) bis $7.58(10)^{\circ}$ bzw. von 7.97(4) bis $9.82(12)^{\circ}$. Die tridentaten *O*,*N*,*O*- und *N*,*N*,*O*-Liganden nehmen eine *mer*-Anordnung ein. Die axialen O1–Si–O4-Winkel reichen von 170.18(12) bis 172.03(4)°, die O1–Si–N2-Winkel von 170.58(6) bis 172.09(5)°.

Die Si–O1- (176.5(2)–178.96(13) pm) und Si–O3-Bindungslängen (178.02(12)–180.64(13) pm) von **38**, **39**, **41** und **42** sind sehr ähnlich, wohingegen für die Si–O2-Bindungslängen ein Unterschied beobachtet wurde. Die Si–O2-Bindungslängen von **41/42** (186.06(2)–190.2(2)/186.02(7) pm; O,N,O-Ligand) sind signifikant kürzer als die von **38/39** (192.66(11)/190.32(11) pm; N,N,O-Ligand). Die Si–O4-Bindungslängen von **41** und **42** betragen 174.5(2)–176.3(2) bzw. 176.12(7) pm, und die dazugehörigen Si–N(amido)-bindungsabstände von **38** und **39** reichen von 181.72(14) bis 182.49(13) pm. Die Si–N(imino)-Bindungslängen von **38**, **39**, **41** und **42** liegen im Bereich von 190.75(8)–195.7(3) pm, und die Si–C-Bindungslängen betragen 192.4(3)–193.83(16) pm. Generell gilt, dass sich die Strukturen von **38**, **39**, **41** und **42** sehr ähnlich sind und mit den analogen Strukturen von **77** und **78** (*S,N,O*-Ligand) vergleichbar sind. Offensichtlich haben die drei verschiedenen tridentaten *S,N,O-*, *O,N,O-* und *N,N,O-*Liganden und die beiden verschiedenen bidentaten

anionischen *O*,*O*-Liganden nur wenig Einfluss auf die Struktur der untersuchten analogen Verbindungen **38**, **39**, **41** und **42**.

Verbindung (Liganden)	Si-O1	Si–O2	Si–O3	Si–N(Imino)	Si–C	Si–X
77 (X = S, R = Me) ^[a]	177.33(15)	185.05(16)	179.88(15)	191.07(17)	192.8(2)	229.65(8)
78 (X = S, R = Ph) ^[a]	179.00(11)	184.92(10)	180.06(11)	192.97(12)	194.15(14)	227.44(7)
38 (X = NMe, R = Me)	178.96(13)	192.66(11)	178.02(12)	192.75(14)	193.83(16)	181.72(14)
39 (X = NMe, $R = Ph$)	178.39(11)	190.32(11)	180.64(13)	190.99(14)	193.46(15)	182.49(13)
41 $(X = O, R = Me)^{[b]}$	177.02(17)	186.06(17)	180.53(17)	192.8(2)	192.4(2)	176.26(17)
	177.5(2)	190.0(2)	178.5(2)	192.2(3)	192.8(3)	175.2(2)
	176.8(2)	188.8(2)	180.1(2)	195.7(3)	193.2(3)	174.5(2)
	176.5(2)	190.2(2)	179.6(2)	195.3(3)	192.9(3)	174.7(2)
42 (X = O, R = Ph)	178.57(7)	186.02(7)	178.37(7)	190.75(8)	192.54(10)	176.12(7)
43 $(X = O, R = CF_3)^{[c]}$	173.82(16)		178.03(16)	189.61(18)	188.9(2)	172.10(16)
40 (X = NMe, R = CF_3) ^[d]	180.13(12)	172.57(12)	169.94(12)	182.67(14)	189.40(17)	
44 (X = S, R = CF_3) ^[d]	180.0(2)	173.9(2)	170.5(2)	182.8(2)	188.6(3)	

Tabelle 5.5: Vergleich der Si–O-, Si–N(Imino)-, Si–C- und Si–X-Bindungsabstände (X = S, NMe, O) [pm] von **38–44**, 77 und **78**.

[a] Die Daten wurden aus Lit. [8d] entnommen. [b] Die Daten für vier kristallographisch unabhängige Moleküle. [c] Es handelt sich um einen pentakoordinierten Silicium(IV)-Komplex mit quadratisch-pyramidalen Si-Koordinationspolyeder. [d] Es handelt sich um einen pentakoordinierten Silicium(IV)-Komplex mit trigonalbipyramidalem Si-Koordinationspolyeder.

Das Si-Koordinationspolyeder von Verbindung **42** entspricht dem einer leicht verzerrten quadratischen Pyramide, mit dem Kohlenstoff-Atom des Phenyl-Liganden in der apikalen Position. Die Berry-Verzerrung (TBP \rightarrow QP) beträgt 94.0%. Die O1–Si–O4- und O3–Si–N-Winkel betragen 158.48(8) bzw. 163.32(8)°. Die drei Si–O-Bindungslängen liegen im Bereich von 172.10(16) bis 178.03(16) pm, und die Si–N- und Si–C-Bindungsabstände betragen 189.61(18) bzw. 188.9(2) pm. Die oben diskutierten Bindungswinkel und -längen und der sehr große Si…O3 Abstand (233.3 pm) belegen die Pentakoordination des Silicium-Atoms.

Die Si-Koordinationspolyeder von **40** und **44** werden am besten durch leicht verzerrte trigonale Bipyramiden beschrieben, mit einem Enolatosauerstoff-Atom und dem Iminostickstoff-Atom in den axialen Positionen. Die Berry-Verzerrungen betragen 11.9 und 14.4/16.1%. Die maximalen Abweichungen von den idealen 180°-Winkeln betragen 1.45(5) (**40**) und 3.61(10)° (**44**), und die maximalen Abweichungen von den idealen 120°-Winkeln betragen 7.92(6) (**40**) und 6.86(11)° (**44**). Die axialen Si–O-Bindungslängen von **40** und **44** (172.57(12)–180.13(12) pm) sind etwas länger als die äquatorialen Si–O-Bindungslängen

(169.94(12)–170.8(2) pm). Die Si–N-Bindungsabstände betragen 182.67(14) (**40**) und 182.8(2)/183.8(2) pm (**44**) und die Si–C-Bindungslängen 189.40(17) (**40**) und 188.6(3)/187.7(3) pm (**44**).

5.6 Kristallstrukturen der neutralen hexakoordinierten Silicium(IV)Komplexe mit zweizähnigen monoanionischen *N*,*X*-Liganden (X = O, S)

5.6.1 Kristallstruktur von 54^[t]

Verbindung **54** kristallisierte bei –20 °C direkt aus der Reaktionslösung (Acetonitril). Die Molekülstruktur von **54** im Kristall ist in Abb. 5.18 gezeigt.

Abb. 5.18: Molekülstruktur von **54** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 180.3(2), Si–O2 177.1(2), Si–N1 191.7(3), Si–N2 209.2(3), Si–N3 182.6(2), Si–C1 191.0(3); O1–Si–O2 90.35(10), O1–Si–N1 90.10(10), O1–Si–N2 82.72(9), O1–Si–N3 168.72(10), O1–Si–C1 93.05(11), O2–Si–N1 168.54(11), O2–Si–N2 82.00(10), O2–Si–N3 94.58(10), O2–Si–C1 93.56(11), N1–Si–N2 86.69(10), N1–Si–N3 83.07(11), N1–Si–C1 97.86(12), N2–Si–N3 87.91(10), N2–Si–C1 173.82(12), N3–Si–C1 96.75(12).

Das Si-Koordinationspolyeder (SiO_2N_3C -Gerüst) von **54** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 8.00(10) bzw. 11.46(11)°. Verbindung **54** besitzt neben einem tridentaten *N*,*N*,*O*-Liganden

^[t] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe C2/c; a = 30.279(8) Å; b = 9.790(3) Å; c = 15.194(4) Å; $a = 90^{\circ}$; $\beta = 98.502(9)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0523$.

einen bidentaten *N*,*O*-Liganden und einen Phenyl-Liganden. Der dreizähnige Chelat-Ligand nimmt eine *mer*-Anordnung ein. Das Sauerstoff-Atom des *N*,*O*-Liganden ist *trans* zum Iminostickstoff-Atom des dreizähnigen *N*,*N*,*O*-Liganden angeordnet. Das Chinolinstickstoff-Atom steht *trans* zum Kohlenstoff-Atom des Phenyl-Liganden. Die Si–O-Bindungslängen (Si–O1 180.3(2) pm; Si–O2 177.1(2) pm) liegen im erwarteten Bereich. Anders verhält es sich bei den Si–N-Bindungsabständen: Die Si–N1- und Si–N2- Bindungslängen sind mit 191.7(3) bzw. 209.2(3) pm – im Vergleich zur Summe der entsprechenden Kovalenzradien (187 pm) – deutlich verlängert, was aber nichts Ungewöhnliches für neutrale hexakoordinierte Silicium(IV)-Komplexe mit Chinolin-8-olato-Liganden darstellt. Ähnliche Beobachtungen wurden auch bei anderen hexakoordinierten Silicium(IV)-Komplexen mit Chinolin-8-olato-Liganden gemacht.^[8i] Hier lagen die Si–N(Chinolin)-Bindungslängen ebenfalls bei etwa 200 pm.

5.6.2 Kristallstruktur von 55·CH₃CN^[u]

Verbindung 55·CH₃CN kristallisierte bei 20 °C direkt aus der Reaktionslösung (Acetonitril). Die Molekülstruktur von 55 im Kristall von 55·CH₃CN ist in Abb. 5.19 gezeigt.

Das Si-Koordinationspolyeder (*Si*SON₃C-Gerüst) von **55** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 8.80(9) bzw. 12.41(8)°. Neben einem tridentaten *N*,*N*,*O*-Liganden besitzt Verbindung **55** einen bidentaten *N*,*S*- und einen Phenyl-Liganden. Der dreizähnige Chelat-Ligand nimmt eine *mer*-Anordnung ein. Das Chinolinstickstoff-Atom des zweizähnigen *N*,*S*-Liganden steht *trans* zum Kohlenstoff-Atom des Phenyl-Liganden. Bis auf das Schwefel-Atom des *N*,*S*-Liganden (anstelle des Sauerstoff-Atoms in Verbindung **54**) sind die Verbindungen **54** und **55** isostrukturell. Allerdings gibt es deutliche Unterschiede in den Bindungsabständen von **55** im Vergleich zu Verbindung **54**. Die Si–S-Bindungslänge ist mit 229.81(8) pm im Vergleich zu der Summe der jeweiligen Kovalenzradien (221 pm) deutlich verlängert. Die Si–N1- und die Si–N2-Bindungsabstände sind mit 190.97(18) bzw. 211.59(19) pm ebenfalls deutlich länger als die Summe der jeweiligen Kovalenzradien (187 pm). Die Si–O-, Si–N3- und die Si–C-Bindungsabstände liegen mit 180.13(15), 183.65(18) bzw. 192.9(2) pm im erwarteten Bereich.

^[u] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$; a = 17.635(4) Å; b = 9.1441(18) Å; c = 15.710(3) Å; $a = 90^{\circ}$; $\beta = 93.180(8)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0395$.

Abb. 5.19: Molekülstruktur von **55** im Kristall von **55**·CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 229.81(8), Si–O 180.13(15), Si–N1 190.97(18), Si–N2 211.59(19), Si–N3 183.65(18), Si–C1 192.9(2); S–Si–O 90.90(5), S–Si–N1 169.36(6), S–Si–N2 82.06(5), S–Si–N3 94.68(6), S–Si–C1 91.76(7), O–Si–N1 89.69(7), O–Si–N2 82.60(7), O–Si–N3 167.59(8), O–Si–C1 93.73(8), N1–Si–N2 87.49(7), N1–Si–N3 82.79(8), N1–Si–C1 98.80(9), N2–Si–N3 87.20(8), N2–Si–C1 172.73(9), N3–Si–C1 97.16(9).

5.6.3 Kristallstruktur von 56^[v]

Verbindung **56** kristallisierte bei –20 °C direkt aus der Reaktionslösung (Acetonitril). Die Molekülstruktur von **56** im Kristall ist in Abb. 5.20 gezeigt.

Das Si-Koordinationspolyeder (SiO_3N_2C -Gerüst) von Verbindung **56** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.45(5) bzw. 13.11(5)°. Verbindung **56** besitzt einen tridentaten *O*,*N*,*O*-und einen bidentaten *N*,*O*-Liganden aus sowie einen Phenyl-Liganden. Der dreizähnige *O*,*N*,*O*-Ligand nimmt eine *mer*-Anordnung. Das Iminostickstoff-Atom des *O*,*N*,*O*-Liganden und das Sauerstoff-Atom des *N*,*O*-Liganden stehen *trans* zueinander. Das Chinolinstickstoff-Atom und das Kohlenstoff-Atom des Phenyl-Liganden stehen ebenfalls *trans* zueinander. Die Si–O-Bindungslängen liegen mit 179.15(11) (Si–O1), 177.02(11) (Si–O2) und 175.64(10) pm (Si–O3) im erwarteten Bereich. Die Si–N-Bindungsabstände sind mit 193.29(13) (Si–N1)

^[v] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe *Pbca*; a = 7.5145(12) Å; b = 18.208(3) Å; c = 31.013(3) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0379$.

bzw. 209.07(13) pm (Si–N2) im Vergleich zur Summe der jeweiligen Kovalenzradien (187 pm) deutlich verlängert.

Abb. 5.20: Molekülstruktur von **56** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 179.15(11), Si–O2 177.02(11), Si–O3 175.64(10), Si–N1 193.29(13), Si–N2 209.07(13), Si–C1 191.07(15); O1–Si–O2 166.89(5), O1–Si–O3 91.26(5), O1–Si–N1 89.70(5), O1–Si–N2 82.72(5), O1–Si–C1 95.69(5), O2–Si–O3 92.23(5), O2–Si–N1 84.94(5), O2–Si–N2 85.21(5), O2–Si–C1 96.80(6), O3–Si–N1 171.10(5), O3–Si–N2 82.55(5), O3–Si–C1 92.31(5), N1–Si–N2 88.80(5), N1–Si–C1 96.40(6), N2–Si–C1 174.56(6).

5.6.4 Kristallstruktur von 57·0.5CH₃CN^[w]

Verbindung 57.0.5CH₃CN kristallisierte bei 20 °C direkt aus der Reaktionslösung (Acetonitril). Die Molekülstruktur von 57 im Kristall von 57.0.5CH₃CN ist in Abb. 5.21 gezeigt.

Das Si-Koordinationspolyeder ($SiSO_2N_2C$ -Gerüst) von **56** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.36(6) bzw. 11.45(6)°. Verbindung **56** besitzt einen tridentaten *O*,*N*,*O*-, einen bidentaten *N*,*S*- und einen Phenyl-Liganden. Der dreizähnige *O*,*N*,*O*-Ligand nimmt eine *mer*-Anordnung ein. Das Iminostickstoff-Atom des dreizähnigen Chelat-Liganden steht *trans* zum Schwefel-Atom des zweizähnigen *N*,*S*-Liganden und das Chinolinstickstoff-Atom *trans* zum Kohlenstoff-Atom des Phenyl-Liganden. Verbindung **56** kann, abgesehen von dem

^[w] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe C2/c; a = 30.450(6) Å; b = 9.6612(19) Å; c = 15.857(3) Å; $a = 90^{\circ}$; $\beta = 91.07(3)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0425$.

Schwefelatom des *N*,*S*-Liganden, als isostrukturell zu Verbindung **55** angesehen werden. Die Si–O- und Si–C-Bindungslängen liegen mit 180.07(13) (Si–O1), 177.23(13) (Si–O2) und 193.23(19) pm (Si–C1) alle im erwarteten Bereich. Die Si–N-Bindungsabstände (Si–N1 193.08(15) pm; Si–N2 207.20(16) pm) sind im Vergleich zu der Summe der jeweiligen Kovalenzradien (187 pm) deutlich verlängert.

Abb. 5.21: Molekülstruktur von 57 im Kristall von 57·0.5CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 226.77(7), Si–O1 180.07(13), Si–O2 177.23(13), Si–N1 193.08(15), Si–N2 207.20(16), Si–C1 193.23(19); S–Si–O1 92.27(5), S–Si–O2 90.45(5), S–Si–N1 171.68(5), S–Si–N2 84.26(5), S–Si–C1 91.84(6), O1–Si–O2 168.55(6), O1–Si–N1 90.81(6), O1–Si–N2 82.64(6), O1–Si–C1 95.47(7), O2–Si–N1 85.06(6), O2–Si–N2 86.57(6), O2–Si–C1 95.56(7), N1–Si–N2 88.48(6), N1–Si–C1 95.55(7), N2–Si–C1 175.58(8).

5.6.5 Kristallstruktur von 58^[x]

Verbindung **58** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Tetrahydrofuran) auf 20 °C. Die Molekülstruktur von **58** im Kristall ist in Abb. 5.22 gezeigt. Im Kristall von **58** existieren zwei kristllographisch unabhängige Moleküle, die sich in erster Näherung zueinander wie Bild und Spiegelbild verhalten.

^[x] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $Pca2_1$; a = 22.036(5) Å; b = 15.743(3) Å; c = 12.9690(19) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0382$.

Abb. 5.22: Molekülstruktur der beiden kristallographisch unabhängigen Moleküle von **58** im Kristall mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: *Molekül A* (oben): Si1–S1 229.39(15), Si1–O1 179.8(3), Si1–O2 175.4(2), Si1–N1 191.3(3), Si1–N2 203.9(3), Si1–C1 193.0(3); S1–Si1–O1 169.88(9), S1–Si1–O2 90.30(9), S1–Si1–N1 85.57(9), S1–Si1–N2 87.48(9), S1–Si1–C1 95.44(11), O1–Si1–O2 92.38(11), O1–Si1–N1 90.51(12), O1–Si1–N2 83.15(11), O1–Si1–C1 94.24(13), O2–Si1–N1 171.82(11), O2–Si1–N2 83.17(11), O2–Si1–C1 91.66(13), N1–Si1–N2 89.59(12), N1–Si1–C1 95.76(13), N2–Si1–C1 174.08(13); *Molekül B* (unten): Si2–S2 228.62(14), Si2–O3 179.4(3), Si2–O4 175.9(2), Si2–N3 193.5(3), Si2–N4 203.3(3), Si2–C27 192.0(4); S2–Si2–O3 169.86(10), S2–Si2–O4 89.82(9), S2–Si2–N3 85.66(9), S2–Si2–N4 88.16(9), S2–Si2–C27 95.44(11), O3–Si2–O4 92.51(11), O3–Si2–N3 90.67(12), O3–Si2–N4 82.32(11), O3–Si2–C27 94.34(13), O4–Si2–N3 171.13(11), O4–Si2–N4 83.36(11), O4–Si2–C27 91.85(13), N3–Si2–N4 88.87(11), N3–Si2–C27 96.17(13), N4–Si2–C27 174.01(13).

Das Si-Koordinationspolyeder ($SiSO_2N_2C$ -Gerüst) der beiden Stereoisomere von Verbindung 58 wird jeweils am besten durch stark verzerrte Oktaeder beschrieben. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 6.85(11) bzw. 10.12(9)° für *Molekül A* und 7.68(11) bzw. 10.14(10)° für *Molekül B*. Verbindung 58 besitzt einen tridentaten *S*,*N*,*O*-, einen bidentaten *N*,*O*- und einen Phenyl-Liganden. Der dreizähnige Chelat-Ligand nimmt eine *mer*-Anordnung ein. Das Sauerstoff-Atom des *N*,*O*-Liganden steht *trans* zum Iminostickstoff-Atom des *S*,*N*,*O*-Liganden, und das Chinolinstickstoff-Atom des *N*,*O*-Liganden steht *trans* zum Kohlenstoff-Atom des Phenyl-Liganden.

Die Si–O- und die Si–C-Bindungslängen liegen mit 179.8(3) (Si1–O1), 175.4(2) (Si1–O2) und 193.0(3) pm (Si1–C1) für *Molekül A* und mit 179.4(3) (Si2–O3), 175.9(2) (Si2–O4) und 192.0(4) (Si2–C27) pm für *Molekül B* im erwarteten Bereich. Die Si–S-Bindungslängen (Si1–S1 229.39(15) pm; Si2–S2 228.62(14) pm) sind im Vergleich zu der Summe der jeweiligen Kovalenzradien (221 pm) leicht verlängert. Deutliche Verlängerungen der Bindungsabstände zeigen die Si–N-Bindungsabstände: Die Si–N(Imino)-Bindungslängen sind im Vergleich zu der Summe der jeweiligen Kovalenzradien (187 pm) um 4.3(3) (Si1–N1 191.3(3) pm) bzw. 6.5(3) pm (Si2–N3 193.5(3) pm) verlängert. Die Bindungsabstände zu den Chinolinstickstoff-Atomen betragen 203.9(3) (Si1–N2) bzw. 203.3(3) pm (Si2–N4) und sind damit etwa 16 pm länger als die Summe der jeweiligen Kovalenzradien.

5.6.6 Kristallstruktur von 59.0.5CH₃CN^[y]

Verbindung 59.0.5CH₃CN kristallisierte bei 20 °C direkt aus der Reaktionslösung (Acetonitril). Die Molekülstruktur von 59 im Kristall von 59.0.5CH₃CN ist in Abb. 5.23 gezeigt.

Das Si-Koordinationspolyeder (SiS₂ON₂C-Gerüst) von Verbindung **59** wird am besten durch einen stark verzerrten Oktaeder beschrieben. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 7.57(7) bzw. 9.83(5)°. Verbindung 59 besitzt einen tridentaten S,N,O-, einen bidentaten N,S- und einen Phenyl-Liganden. Der dreizähnige S,N,O-Ligand nimmt eine mer-Anordnung ein. Das Schwefel-Atom des zweizähnigen N,S-Liganden Iminostickstoff-Atom dreizähnigen steht trans zum des S.N.O-Liganden. Das Chinolinstickstoff-Atom des N.S-Liganden steht trans zum Kohlenstoff-Atom des Phenyl-Liganden. Die Si-O- und Si-C-Bindungslängen liegen mit 177.85(14) bzw. 193.2(2) pm im erwarteten Bereich. Die Bindungsabstände zu den Schwefel-Atomen sind mit 227.04(9) (Si-

^[y] Ausgewählte Parameter der Kristallstrukturanalyse: T = 296(2) K; Raumgruppe C2/c; a = 31.474(5) Å; b = 9.512(6) Å; c = 15.600(9) Å; $a = 90^{\circ}$; $\beta = 91.32(4)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0336$.

S1) bzw. 228.34(12) pm (Si–S2) im Vergleich zu der Summe der jeweiligen Kovalenzradien (221 pm) um etwa 6 bzw. 7 pm verlängert. Die Si–N-Bindungslängen zeigen mit 192.76(18) (Si–N1) und 203.37(19) (Si–N2) jeweils eine deutliche Verlängerung im Vergleich zu der Summe der jeweiligen Kovalenzradien (187 pm). Verbindung **59** kann, abgesehen von dem Schwefel-Atom des *N*,*S*-Liganden anstelle des Sauerstoff-Atoms des *N*,*O*-Liganden isostrukturell zu **58** betrachtet werden.

Abb. 5.23: Molekülstruktur von **59** im Kristall von **59**·0.5CH₃CN mit Angabe des Nummerierungsschemas ausgewählter Atome und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%). Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S1 227.04(9), Si–S2 228.34(12), Si–O 177.85(14), Si–N1 192.76(18), Si–N2 203.37(19), Si–C1 193.2(2); S1–Si–S2 88.15(4), S1–Si–O 170.17(5), S1–Si–N1 86.02(6), S1–Si–N2 88.04(5), S1–Si–C1 94.50(7), S2–Si–O 93.28(6), S2–Si–N1 171.60(6), S2–Si–N2 84.26(7), S2–Si–C1 90.21(8), O–Si–N1 91.45(7), O–Si–N2 82.43(7), O–Si–C1 95.22(8), N1–Si–N2 89.49(8), N1–Si–C1 96.28(9), N2–Si–C1 173.84(8).

5.6.3 Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit einem zweizähnigen monoanionischen *N*,*X*-Liganden (X = O, S).

Die Si-Koordinationspolyeder von **54**, **55**·CH₃CN, **56**, **57**·0.5CH₃CN, **58** und **59**·0.5CH₃CN werden am besten durch stark verzerrte Oktaeder beschrieben. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln liegen im Bereich von 6.85(11) bis $8.80(9)^{\circ}$ bzw. von 9.83(5) bis $13.11(5)^{\circ}$. Das Si-Koordinationszentrum ist von sechs Ligand-Atomen umgeben; drei stammen von den tridentaten *N*,*N*,*O*-, *O*,*N*,*O*- bzw. *S*,*N*,*O*-Liganden, zwei gehören zu

dem bidentaten *N*,*X*-Liganden (X = O, S), und ein Ligand-Atom gehört der Phenyl-Gruppe. Wie aus Tabelle 5.6 ersichtlich, unterscheiden sich die Bindungslängen bei Substitution der NMe-Gruppe (*N*,*N*,*O*-Ligand) durch ein hartes Sauerstoff- (*O*,*N*,*O*-Ligand) bzw. weiches Schwefel-Atom (*S*,*N*,*O*-Ligand; NMe/O/S-Austausch) nur wenig voneinander.

Tabelle 5.6: Vergleich der Si–O(Enolato)-, Si–N(Imino)-, Si–N(Chinolin)- und Si–C-Bindungslängen [pm] von 54, 55·CH₃CN, 56, 57·0.5CH₃CN, 58 und 59·0.5CH₃CN.

Verbindung (Ligand)	Si-O(Enolato)	Si–N(Imino)	Si–N(Chinolin)	Si–C
54 (<i>N</i> , <i>N</i> , <i>O</i>)	1.803(2)	1.917(3)	2.092(3)	1.910(3)
55 (<i>N</i> , <i>N</i> , <i>O</i>) ^[a]	1.8013(15)	1.9097(18)	2.1159(19)	1.929(2)
56 (<i>O</i> , <i>N</i> , <i>O</i>)	1.7915(11)	1.9329(13)	2.0907(13)	1.9107(15)
57 (<i>O</i> , <i>N</i> , <i>O</i>) ^[b]	1.8007(13)	1.9308(15)	2.0720(16)	1.9323(19)
58 (<i>S</i> , <i>N</i> , <i>O</i>) ^[c]	1.798(3)/1.794(3)	1.913(3)/1.935(3)	2.039(3)/2.033(3)	1.930(3)/1.920(4)
59 (<i>S</i> , <i>N</i> , <i>O</i>) ^[d]	1.7785(14)	1.9276(18)	2.0337(19)	1.932(2)

[a] Solvat 55·CH₃CN. [b] Solvat 57·0.5CH₃CN. [c] Daten für zwei kristallographisch unabhängige Moleküle.
[d] Solvat 59·0.5CH₃CN.

Die Si-O(Enolato)-Bindungslängen von 54, 55 ·CH₃CN, 56, 57 ·0.5CH₃CN, 58 und 59.0.5CH₃CN liegen im Bereich von 177.85(14) bis 180.3(2) pm, die Si-C-Bindungslängen im Bereich von 191.0(3) bis 193.23(19) pm. Die Si-N(Imino)-Bindungslängen (190.97(18)-193.5(3) pm) sind deutlich kürzer als die Si-N(Chinolin)-Bindungslängen (203.3(3)-211.59(19) pm). Interessanterweise sind die Si-N(Chinolino)-Bindungsabstände von 58 und 59 (S,N,O) wesentlich kürzer als die von 54 und 55 (N,N,O) sowie 56 und 57 (O,N,O). Dies kann durch die generell schwächere Si-S-Bindung im Vergleich zu einer stärkeren Si-N- oder Si–O-Bindung erklärt werden. Bemerkenswert ist, dass die Si–N(Chinolino)-Bindungsabstände von 58 und 59 fast identisch sind. Offensichtlich beeinflusst die Substitution des Sauerstoff-Atoms des N.O-Liganden von 58 durch ein Schwefel-Atom $(\rightarrow 59)$ die Struktur nicht. Die analogen N,N,O- bzw. O,N,O-Serien weisen hierbei deutliche Unterschiede auf.

6 Zusammenfassung

Die vorliegende Arbeit stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Im Vordergrund stand die Synthese neuer penta- und hexakoordinierter Silicium(IV)-Verbindungen und deren strukturelle Charakterisierung im Festkörper und in Lösung.

Im Rahmen dieser Arbeit wurden das spirocyclische $\lambda^5 Si_i \lambda^5 Si'$ -Disilicat 2, die neutralen pentakoordinierten Silicium(IV)-Komplexe 13, 14, 16·0.5C₆H₆, 17, 19, 20, 22–24, 40, 43·(C₂H₅)₂O und 44·0.5C₆H₅CH₃, der kationische pentakoordinierte Silcium(IV)-Komplex 18 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 11, 38, 39·CH₃CN, 41·0.5CH₃CN, 42·CH₃CN, 54, 55·CH₃CN, 56, 57·0.5CH₃CN, 58 und 59·0.5CH₃CN erstmalig dargestellt. Weiterhin wurden das Silan 21, das Selenazin-Derivat 33 und die Präliganden 46 und 47 erstmalig synthetisiert. Die Charakterisierung aller Verbindungen erfolgte durch Elementaranalysen (außer 17), NMR-Spektroskopie im Festkörper (außer 17, 21, 46 und 47; ¹³C-, ¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) und in Lösung (¹H-, ¹³C-, ¹⁹F-, ²⁹Si- und ⁷⁷Se-NMR) sowie durch Kristallstrukturanalyse (außer 2, 17, 21, 46 und 47).

Spirocyclische λ^5 Si, λ^5 Si'-Disilicate mit SiO₅-Gerüsten

Das spirocyclische $\lambda^5 Si, \lambda^5 Si'$ -Disilicat **2** wurde durch Hydrolyse des zwitterionischen $\lambda^5 Si, \lambda^5 Si'$ -Disilicats **1** in Wasser bei 20 °C dargestellt. Die unmittelbar folgende Gefriertrocknung der wässrigen Lösung verhinderte die vollständige Hydrolyse von Verbindung **2** zu Orthokieselsäure, Cholin und (*R*,*R*)-Weinsäure.

Verbindung 2 besitzt zwei SiO_5 -Gerüste, die von den beiden Tartrato-Liganden verknüpft werden. Die Hydrolysestabilität von 2 wurde im Vergleich zu Tetramethoxysilan durch NMR-Untersuchungen einer Lösung ebendieser Substanzen in Wasser und Acetonitril (1:1 (v/v)) bei 20 °C untersucht. Die vollständige Hydrolyse von 2 erfolgte erst nach 10 Tagen, was vor dem Hintergrund des Vorliegens von SiO_5 -Gerüsten bemerkenswert ist. Aufgrund dieses Verhaltens und des leichten synthetischen Zugangs zu diesen Verbindungen könnten sich 1 und 2 für bestimmte medizinische Anwendungen und als Nahrungsergänzungsmittel eignen.

Pentakoordinierte Silicium(IV)-Komplexe

Die pentakoordinierten Silicium(IV)-Komplexe 13, 14, 16–20, 22–24, 40, 43 und 44 wurden ausgehend von den entsprechenden Chlorosilicium(IV)-Komplexen 12, 15 bzw 45 durch Salzmetathesen (13 und 14), d. h. Umsetzung mit Ammoniumfluorid in Tetrahydrofuran bzw. Umsetzung mit Silbertetrafluoroborat in Gegenwart von Triethylamin in Tetrahydrofuran, durch Transsilylierungen (16–19, 40, 43, und 44) mit entsprechenden Silanen des Typs Me₃SiX (16: X = Br; 17 und 18: X = I; 19: X = NCS) oder mit F₃CC(O)–CH=C(OSiMe₃)CF₃ (40, 43 und 44) in Acetonitril (außer 17; Lösungsmittel CD₂Cl₂) oder durch Umsetzung von XH-aciden Verbindungen (\rightarrow 23 und 24) in Gegenwart von Triethylamin in Tetrahydrofuran dargestellt. Die Bildung von 40 und 44 impliziert zusätzlich eine Umlagerung, die zur Ausbildung des tetradentaten *O*,*N*,*O*,*O*-Liganden dieser Verbindungen führt. Die pentakoordinierten Silicium(IV)-Komplexe 20 und 22 wurden durch Umsetzung des Silans 21 des des entsprechenden *N*,*N*,*O*- bzw. *O*,*N*,*O*-Präliganden in Gegenwart von Triethylamin in Tetrahydrofuran synthetisiert.

Die Si-Koordinationspolyeder von 13, 14, 16, 19, 20 und 22 im Kristall sind stark verzerrte trigonale Bipyramiden, mit dem Sauerstoff- und Amidostickstoff-Atom des dreizähnigen N,N,O-Liganden bzw. den beiden Sauerstoff-Atomen des dreizähnigen O,N,O-Liganden und dem Kohlenstoff-Atom des Phenyl-Liganden in den drei äquatorialen Positionen.

Der Iodosilicium(IV)-Komplex 17 konnte nur durch NMR-Spektroskopie in Lösung (Lösungsmittel: CD₂Cl₂) bei -80 °C untersucht werden. Bereits bei Temperaturen über -20 °C zersetzte sich die Verbindung. Alle Versuche, Verbindung 17 bei Temperaturen unter -20 °C zu isolieren, scheiterten. Bei Verwendung des koordinierenden Lösungsmittels Acetonitril wurde die labile Si-I-Bindung von 17 gespalten, und es entstand der kationische pentakoordinierte Silicium(IV)-Komplex 18 (Iodo/Acetonitril-Austausch). Das Si-Koordinationspolyeder von 18 ist eine verzerrte trigonale Bipyramide mit dem Iminostickstoff-Atom des dreizähnigen N,N,O-Liganden und dem Stickstoff-Atom des Acetonitril-Liganden in den beiden axialen Positionen. Die Si-Koordinationspolveder von 23 und 24 im Kristall entsprechen ebenfalls trigonalen Bipyramiden, jedoch besetzen hier das Sauerstoff- und Amidostickstoff-Atom des dreizähnigen N,N,O-Liganden die beiden axialen Positionen.

Die Verbindungen 40 und 44 besitzen ebenfalls ein trigonal-bipyramidales Si-Koordinationspolyeder, wohingegen Verbindung 43 ein quadratisch-pyramidales Si-Koordiantionspolyeder besitzt.

Im Rahmen von Untersuchungen zur Darstellung eines pentakoordinierten Chlorosilicium(IV)-Komplexes mit einem tridentaten dianionischen *Se*,*N*,*O*-Liganden wurde

das Selenazin-Derivat **33** durch Umsetung von Bis(2-aminophenyl)diselenid mit Acetylaceton in Ethanol dargestellt.

Hexakoordinierte Silicium(IV)-Komplexe

Der neutrale hexakoordinierte Silicium(IV)-Komplex **11** wurde durch Umsetzung von Tetra(cyanato-*N*)silan mit zwei Moläquivalenten des entsprechenden *N*,*N*,*O*-Präliganden und vier Moläquivalenten Triethylamin in Tetrahydrofuran synthetisiert.

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **38**, **39**, **41** und **42** wurden durch Umsetzung der jeweiligen Chlorosilicium(IV)-Komplexe **12** bzw. **15** durch Transsilylierung mit den bidentaten *O*,*O*-Präliganden **35** bzw. **36** dargestellt. Die neutralen hexakoordinierten Silicium(IV)-Komplexe **54–59** wurden mittels Transsilylierungsreaktionen der jeweiligen Chlorosilicium(IV)-Komplexe **12**, **15** bzw. **45** mit den zweizähnigen *N*,*X*-Präliganden (X = O, S) **46** bzw. **47** synthetisiert.

Die Verbindungen 35 und 36 wurden ausgehend von Acetylaceton bzw. Diphenylacetylaceton durch Umsetzung mit 1,1,1,3,3,3-Hexamethyldisilazan dargestellt. Verbindung 46 wurde durch Reaktion von 8-Hydroxychinolin mit 1,1,1,3,3,3-Hexamethyldisilazan synthetisiert. Verbindung 47 konnte sowohl durch Umsetzung von 8-Mercaptochinolinhydrochlorid mit 1,1,1,3,3,3-Hexamethyldisilazan als auch durch Reduktion Chinolin-8-sulfonylchlorid mit Triphenylphosphin zu 8-Mercaptochinolin und von anschließende Umsetzung mit Chlortrimethylsilan in Gegenwart von Triethylamin dargestellt werden.

Die Si-Koordinationspolyeder von **11**, **38**, **39**, **41**, **42** und **54–59** entsprechen stark verzerrten Oktaedern. Die tridentaten *N*,*N*,*O*-, *O*,*N*,*O*- und *S*,*N*,*O*-Liganden nehmen eine *mer*-Anordnung ein. Die Verbindungen **38** und **39** zeigen in Lösung ein dynamisches Verhalten; in den ¹³C-NMR-Spektren existiert nur ein Satz von Resonanzsignalen für die Carbonylkohlenstoff-Atome des bidentaten *O*,*O*-Liganden, wohingegen die Verbindungen **41** und **42** kein solches Verhalten aufweisen. Dies kann durch eine höhere Mobilität der NMe-Gruppe im Vergleich zu den O- bzw. S-Atomen in den dreizähnigen Chelat-Liganden erklärt werden.

Die Verbindungen **54–59** sind sich strukturell sehr ähnlich. Sie unterscheiden sich formal nur durch den Austausch der NMe-Gruppe durch ein Sauerstoff- oder Schwefel-Atom (NMe/O/S-Austausch) bzw. durch Austausch des Sauerstoff-Atoms durch ein Schwefel-Atom des bidentaten N,X-Liganden (X = O, S). In den Si-Koordinationspolyedern von **54–59** stehen das Kohlenstoff-Atom des Phenyl-Liganden und die NMe-Gruppe bzw. das Sauerstoff- oder Schwefel-Atom der tridentaten Chelat-Liganden *trans* zueinander. Ebenso stehen das Iminostickstoff-Atom der N,N,O-, O,N,O- oder S,N,O-Liganden und das Sauerstoff- bzw. Schwefel-Atom der bidentaten N,X-Liganden (X = O, S) *trans* zueinander.

7 Summary

This thesis deals with the chemistry of higher-coordinate silicon, with an emphasize on the synthesis of penta- and hexacoordinate silicon(IV) compounds and their structural characterization in the solid state and in solution.

In the course of these studies, the spirocyclic $\lambda^5 Si_{,\lambda} Si'_{,\lambda} Si'_$

Spirocyclic λ^5 Si, λ^5 Si'-Disilicates with SiO₅ Skeletons

The spirocyclic $\lambda^5 Si_i \lambda^5 Si'$ -disilicat **2** was obtained by hydrolysis of **1** at 20 °C. Immediate freeze drying of the aqueous solution prevented complete hydrolysis of compound **2** to monossilicic acid, choline, and (*R*,*R*)-tartaric acid.

Compound **2** contains two SiO_5 skeletons, which are bridged by the two tartrato ligands. The hydrolytic stability of **2** and tetramethoxysilane (as a reference) was studied by NMR spectroscopic investigations of a solution of these two compounds in water/acetonitrile (1:1 (v/v)) at 20 °C. Complete hydrolysis of **2** took place after 10 days, which is quite remarkable considering the presence of the SiO_5 skeletons. Because of this behavior and the easy synthetic access to **1** and **2**, these compounds are of interest for potential medical applications and their use as food supplements.

Pentacoordinate Silicon(IV) Complexes

The pentacoordinate silicon(IV) complexes 13, 14, 16–20, 22–24, 40, 43, and 44 were prepared starting from the respective chlorosilicon(IV) complexes 12, 15, and 45, respectively, by salt metathesis (13 and 14), i. e. reaction with ammonium fluoride in tetrahydrofuran or reaction with silver tetrafluoroborate in tetrahydrofuran in the presence of triethylamine, by transsilylation reactions (16–19, 40, 43, and 44) with the respective silanes of the type Me₃SiX (16: X = Br; 17 and 18: X = I; 19: X = NCS) or F₃CC(O)–CH=C(OSiMe₃)CF₃ (40, 43, and 44) in acetonitrile (except 17; solvent CD₂Cl₂), or by reaction of XH-acidic compounds (\rightarrow 23 and 24) in the presence of triethylamine in tetrahydrofuran. The formation of 40 and 44 implies an additional rearrangement reaction that leads to the generation of the tetradentate *O*,*N*,*O*,*O* ligands of these compounds. The pentacoordinate silicon(IV) complexes 20 and 22 were synthesized by reaction of the silane 21 with the respective *N*,*N*,*O* or *O*,*N*,*O* preligands in tetrahydrofuran in the presence of triethylamine.

The silicon coordination polyhedra of 13, 14, 16, 19, 20, and 22 are strongly distorted trigonal bipyramids, with the oxygen and the amido-nitrogen atom of the tridentate N,N,O ligand or the two oxygen atoms of the tridentate O,N,O ligand and the carbon atom of the phenyl group in the three equatorial positions.

The iodosilicon(IV) complex 17 could only be studied by NMR spectroscopy in solution at – 80 °C (solvent CD₂Cl₂). Compound 17 decomposed upon warming to -20 °C. All attempts to isolate 17 at temperatures below -20 °C failed. When using the coordinating solvent acetonitrile, the weak Si–I bond of 17 was cleaved, and the cationic pentacoordinate silicon(IV) complex 18 was obtained (iodo/acetonitrile exchange). The silicon coordination polyhedron of 18 is best described as distorted trigonal bipyramid, with the imino-nitrogen atom and the nitrogen atom of the acetonitrile-ligand in the two axial positions. The silicon coordination polyhedra of 23 and 24 are best described as trigonal bipyramids; however, in this case the oxygen atom and the amido-nitrogen atom of the tridentate *N*,*N*,*O* ligand occupy the two axial sites.

Compounds 40 and 44 also contain a trigonal-bipyramidal silicon coordination polyhedron, whereas the structure of 43 is characterized by a square pyramidal coordination polyhedron. The selenazine derivative 33 was prepared in context with the attempted synthesis of a pentacoordinate chlorosilicon(IV) complex with a tridentate dianionic Se,N,O ligand. Compound 33 was obtained by reaction of bis(2-aminophenyl)diselenide with acetylacetone in ethanol.

Hexacoordinate Silicon(IV) Complexes

The neutral hexacoordinate silicon(IV) complex **11** was synthezised by reaction of tetra(cyanato-*N*)silane with two molar equivalents of the respective *N*,*N*,*O* preligand in the presence of four molar equivalents of triethylamine in tetrahydrofuran.

The neutral hexacoordinate silicon(IV) complexes **38**, **39**, **41**, and **42** were synthezised by reaction of the respective chlorosilicon(IV) complexes **12**, and **15**, respectively, via transilylation with the bidentate *O*,*O* preligands **35** and **36**, respectively. The syntheses of the hexacoordinate silicon(IV) complexes **54–59** were performed by transilylation reactions of the respective chlorosilicon(IV) complexes **12**, **15**, and **45** with the bidentate *N*,*X* preligands (X = O, S) **46** and **47**, respectively.

Compounds **35** and **36** were synthesized by reaction of acetylacetone and diphenylacetylaceton, respectively, with 1,1,1,3,3,3-hexamethyldisilazane. Compound **46** was prepared by reaction of 8-hydroxychinoline with 1,1,1,3,3,3-hexamethyldisilazane. Compound **47** was obtained either by reaction of 8-mercaptochinoline hydrochloride with 1,1,1,3,3,3-hexamethyldisilazane or by reduction of chinoline-8-sulfonyl chloride with triphenylphosphine to 8-mercatochinoline and subsequent reaction with chlorotrimethylsilane in the presence of triethylamine.

The silicon coordination polyhedra of **11**, **38**, **39**, **41**, **42**, and **54–59** are stongly distorted octahedra. The tridentate N,N,O, O,N,O, and S,N,O ligands display a *mer* coordination. Compounds **38** and **39** show a dynamic behavior in solution; only one set of resonace signals for the carbonyl carbon atoms of the bidentate O,O ligands is observed in the ¹³C NMR spectra, whereas compounds **41** and **42** do not show such a behavior. This can be explained by the higher mobility of the NMe group compared to the oxygen and sulfur atom of the tridentate chelate ligands.

Compounds **54–59** are structurally very similar. They formally differ by the exchange of the NMe group by an oxygen or sulfur atom (NMe/O/S exchange) and by the exchange of the oxygen atom by a sulfur atom of the bidentate N,X ligand (X = O, S), respectively. In the silicon coordination polyhedra of **54–59**, the carbon atom of the phenyl group and the NMe group, the oxygen atom, or the sulfur atom of the tridentate chelate ligands are *trans* to each other. Likewise, the imino-nitrogen atom of the N,N,O, O,N,O, and S,N,O ligands and the oxygen or the sulfur atom of the bidentate N,X ligands are *trans* to each other.

8 Experimenteller Teil

8.1 Arbeits- und Messtechniken

8.1.1 Allgemeine Arbeitstechniken

Chemische Synthesen

Alle Synthesen wurden in getrockneten, sauerstoffreien Lösungsmitteln unter einer trockenen Argonatmosphäre durchgeführt. Das verwendete Schutzgas wurde durch eine mit Silica-Gel und zwei mit Phosphorpentoxid/Bimsstein gefüllte Trockentürme geleitet und dadurch wasserfrei erhalten.

Die verwendeten Lösungsmittel wurden nach Standardverfahren getrocknet, durch Destillation gereinigt und unter einer trockenen Argonatmosphäre aufbewahrt. Die zum Extrahieren verwendeten Lösungsmitttel wurden vor Gebrauch destilliert. Das verwendete Wasser war entionisiert. Alle kommerziellen Reagenzien besaßen mindestens p.a.-Qualität und wurden ohne weitere Reinigung direkt verwendet.

Lösungsmittel für die physikalischen Messungen

Die für die NMR-Spektroskopie eingesetzten und kommerziell erhältlichen deuterierten Lösungsmittel wurden aus abgeschmolzenen Ampullen ohne weitere Reinigung direkt zur Messung eingesetzt. Das für die UV/Vis-Messungen verwendete Acetonitril wurde durch Standardverfahren getrocknet und auf Molsieb (3 Å) unter einer Argonatmosphäre aufbewahrt.

Kugelrohrdestillationen

Kugelrohrverdampfer des Typs GRK-50 mit Glasrohrofen der Firma Büchi. Die angegebenen Temperaturen entsprechen der Innentemperatur des Ofens.

8.1.2 Messtechniken

¹*H*-*NMR*-*Spektren*

Geräte DRX-300 (300.1 MHz) und Avance 500 (500.1 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂ (interner Standard CHDCl₂, $\delta = 5.32$), CD₃CN (interner Standard CHD₂CN, $\delta = 1.93$), [D₆]DMSO (interner Standard [D₅]DMSO, $\delta = 2.49$), C₆D₆ (interner Standard C₅HD₅, $\delta = 7.28$), D₂O (interner Standard HDO, $\delta = 4.70$); Messtemperatur ca. 23 °C. Die Zuordnungen wurden durch ¹H,¹H- und ¹H,¹³C- Korrelationsexperimente (¹H, ¹H-COSY, ¹H, ¹H-NOESY) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

¹³C-NMR-Spektren

Geräte DRX-300 (75.5 MHz) und Avance 500 (125.8 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂ (interner Standard CD₂Cl₂, $\delta = 53.8$), CD₃CN (interner Standard CD₃CN, $\delta = 1.3$), [D₆]DMSO (interner Standard [D₆]DMSO, $\delta = 39.5$), C₆D₆ (interner Standard C₆D₆, $\delta = 128.0$), D₂O (externer Standard TSP, $\delta = 0$); Messtemperatur ca. 23 °C. Alle ¹³C-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Signalzuordnungen wurden durch DEPT-135-Experimente sowie ¹H,¹³C-Korrelationsexperimente (HMBC bzw. HMQC) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

¹⁹F-NMR-Spektren

Gerät Avance 400 (376.5 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD_2Cl_2 , CD_3CN , C_6D_6 (externer Standard CFCl₃, $\delta = 0$); Messtemperatur ca. 23 °C. Alle ¹⁹F-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

²⁹Si-NMR-Spektren

Geräte DRX-300 (59.6 MHz) und Avance 500 (99.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂, CD₃CN, [D₆]DMSO, C₆D₆, D₂O (externer Standard TMS, $\delta = 0$); Messtemperatur ca. 23 °C. Alle ²⁹Si-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Zuordnungen wurden durch ¹H,²⁹Si-Korrelationsexperimente unterstützt (HMQC); die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

⁷⁷Se-NMR-Spektren

Geräte DRX-300 (57.2 MHz) und Avance 500 (95.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂, C₆D₆ (externer Standard Me₂Se mit 5 Gewichtsprozent C₆D₆, $\delta = 0$); Messtemperatur ca. 23 °C. Alle ⁷⁷Se-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹³C-VACP/MAS-NMR-Spektren

DSX-400-Gerät (100.6 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$; Messtemperatur ca. 22 °C. Alle ¹³C-VACP/MAS-NMR-Spektren wurden ¹Hbreitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 2 ms; 90°-¹H-Pulslänge 2.6 µs (4 mm) bzw. 3.6 µs (7 mm); Signalakkumulationswartezeit 4 s.

¹⁵N-VACP/MAS-NMR-Spektren

DSX-400-Gerät (40.6 MHz) der Firma Bruker; externer Standard Glycin, $\delta = -342.0$; Messtemperatur ca. 22 °C. Alle ¹⁵N-VACP/MAS-NMR-Spektren wurden ¹Hbreitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 3–5 ms; 90°-¹H-Pulslänge 2.6 µs (4 mm) bzw. 3.6 µs (7 mm); Signalakkumulationswartezeit 4 s.

²⁹Si-VACP/MAS-NMR-Spektren

DSX-400-Gerät (79.5 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$; Messtemperatur ca. 22 °C. Alle ²⁹Si-VACP/MAS-MR-Spektren wurden ¹Hbreitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90°-¹H-Pulslänge 2.6 µs (4 mm) bzw. 3.6 µs (7 mm); Signalakkumulationswartezeit 4 s.

⁷⁷Se-VACP/MAS-NMR-Spektren

DSX-400-Gerät (76.3 MHz) der Firma Bruker; externer Standard Me₂Se, $\delta = 0$; Messtemperatur ca. 22 °C. Alle ⁷⁷Se-VACP/MAS-NMR-Spektren wurden ¹Hbreitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90°-¹H-Pulslänge 2.6 µs (4 mm) bzw. 3.6 µs (7 mm); Signalakkumulationswartezeit 5 s.

ESI-MS

Die wässrige Lösung von Verbindung **2** wurde durch Lösen von 2 mg der zu untersuchenden Substanz in 2 mL Wasser (HPLC-Qualität) hergestellt. Die Messung wurde mit einem Triple-Stage-Quadrupole(TSQ)-Massenspektrometer des Typs MAT7000 der Firma Finnigan mit ESI-Interface unter Verwendung der Software Xcalibur 1.2 der Firma Finnigan durchgeführt. Stickstoff diente als Kapillarhüllgas ("sheath gas"). Die Elektrosprayionisierungs-Parameter waren wie folgt: Kapillartemperatur 220 °C; Elektrospray-Kapillar-Spannung 4.0 kV; Kapillarhüllgas 70 psi (1 psi = 6894.74 Pa). Für die Messungen wurde die Probenlösung mittels eines Spritzenpumpen-Systems (Harvard Apparatus, No. 22, South Natick, USA) kontinuierlich zugeführt (Flussrate 20 μ L min⁻¹). Negative Ionen wurden in einem Messbereich von 100 u bis 700 u mit einer Scan-Dauer von 1.0 s detektiert; dabei wurden 60 Scans innerhalb einer Minute gesammelt. Die Multiplier-Spannung betrug 1.6 kV.

ESI-HRMS

Eine wässrige Lösung der Kondensationsprodukte von 2 wurde durch Lösen von 2 mg der zu untersuchenden Substanz in 2 mL Wasser (HPLC-Qualität) hergestellt. Die Probe wurde bei 20 °C für 20 h gelagert und direkt vor der Messung mit Wasser auf eine Konzentration von 2 μ M verdünnt. Die ESI-HRMS-Messung wurde mit einem Spectrometer des Typs micrOTOF focus der Firma Bruker Daltonics, ausgerüstet mit einer ESI-Ionen-Quelle der Firma Apollo, durchgeführt.

Schmelzpunkte (unkorrigiert)

Gerät Melting Point B540 der Firma Büchi; die Messungen wurden in abgeschmolzenen Glaskapillaren durchgeführt.

Elementaranalysen

Gerät Leco CHNS-932 der Firma Leco Instruments und Gerät VarioMicro der Firma Elementar.

8.2 Synthesen

Verbindung 1

Verbindung 1 wurde gemäß Lit. [17] dargestellt.

Verbindung 2

Eine frisch hergestellte Lösung von 1 (303 mg, 564 µmol) in Wasser (2 mL) wurde über einen Zeitraum von 16 h gefriergetrocknet (-55 °C, 1 mbar). Ausbeute: 312 mg (528 µmol, 94%) eines farblosen Feststoffs. — ¹H-NMR (D₂O, 500.1 MHz): δ = 3.12 (br. s, 18 H; NC*H*₃), 3.42–3.46 (m, 4 H; OCH₂C*H*₂N), 3.96–4.01 (m, 4 H; OC*H*₂CH₂N), 4.57 ppm (s, 4 H; C*H*). — ¹³C-NMR (D₂O, 125.8 MHz): δ = 53.9 (t, ¹*J*(¹³C, ¹⁴N) = 4.0 Hz; NCH₃), 55.6 (OCH₂CH₂N), 67.4 (t, ¹*J*(¹³C, ¹⁴N) = 3.0 Hz; OCH₂CH₂N), 75.3 (CH), 175.6 ppm (*C*=O). — ²⁹Si-NMR (D₂O, 99.4 MHz): δ = -106.6 ppm. — ¹H-NMR ([D₆]DMSO, 500.1 MHz): δ = 3.09 (br. s, 18 H; NCH₃), 3.36–3.41 (m, 4 H; OCH₂C*H*₂N), 3.78–3.86 (m, 4 H; OCH₂CH₂N), 4.03 (s, 4 H; C*H*), 4.66 (br. s, 2 H; SiO*H*), 5.23 ppm (br. s, 2 H; CH₂O*H*). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): δ = 53.2 (t, ¹*J*(¹³C, ¹⁴N) = 3.8 Hz; NCH₃), 55.2 (OCH₂CH₂N), 66.9 (t, ¹*J*(¹³C, ¹⁴N) = 2.8 Hz; OCH₂CH₂N), 75.3 (CH), 173.3 ppm (*C*=O). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): δ = -106.0 ppm. — ¹³C-VACP/MAS-NMR: δ = 54.8 (NCH₃), 56.8 (OCH₂CH₂N), 68.4 (OCH₂CH₂N), 76.4 (CH), 175.6 ppm (*C*=O). — ¹⁵N-VACP/MAS-NMR: δ = -327.0 ppm. — ²⁹Si-VACP/MAS-NMR: δ = -105.6 ppm. — MS (ESI): *m/z*: 486.04 ([Dianion + ein Cholin-Kation]⁻), 382.94 ([monoprotoniertes Dianion]⁻).

$C_{18}H_{34}N_2O_{16}Si_2$ (590.64)	Ber.	C 36.60	H 5.80	N 4.74
	Gef.	C 36.6	H 5.8	N 4.8

Gemisch der Kondensationsprodukte

Das Gemisch der Kondensationsprodukte wurde gemäß der Vorschrift zur Synthese von Verbindung **2** hergestellt, jedoch wurde die Dauer der Gefriertrocknung auf 96 h verlängert.

Daten für 1 (0.8%):^[42] ¹H-NMR ([D₆]DMSO, 500.1 MHz): $\delta = 4.17$ ppm (s, 4 H; CH). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.2$ (CH), 172.6 ppm (C=O). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): $\delta = -109.9$ ppm.

Daten für I (11.5%):^{[42] 1}H-NMR ([D₆]DMSO, 500.1 MHz): $\delta = 4.01$ (s, 4 H; *CH*), 4.63 ppm (s, 2 H; SiO*H*). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.3$ (*C*H), 173.3 ppm (*C*=O). — ²⁹Si NMR ([D₆]DMSO, 99.4 MHz): $\delta = -105.96$ ppm. — ESI-HRMS: *m/z* ber. ([Dianion + ein Cholin-Kation]⁻): 486.03770; gef.: 486.03704.

Daten für II (6.6%):^{[42] 1}H-NMR ([D₆]DMSO, 500.1 MHz): $\delta_A = 4.04$ (2 H; CHC(O)OSiOH) und $\delta_X = 4.13$ (2 H; CHC(O)OSiOCH₂) (AX System, ³J(AX) = 2.1 Hz), 4.71 ppm (s, 1 H; SiOH). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.1$ (CHC(O)OSiOH), 75.4 (CHC(O)OSiOCH₂), 172.9 (CHC(O)OSiOCH₂), 173.0 ppm (CHC(O)OSiOH). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): $\delta = -109.8$ (SiOCH₂), -106.02 ppm (SiOH). — ESI-HRMS: *m/z* ber.: 468.02713; gef.: 468.02654.

Daten für III (40.9%):^[42] ¹H-NMR ([D₆]DMSO, 500.1 MHz): $\delta_A = 3.98$ (2 H; CHC(O)OSiOH) und $\delta_B = 3.993$ (2 H; CHC(O)OSiOSi) (AB System, ³J(AB) = 2.1 Hz), $\delta_A = 3.98$ (2 H; CHC(O)OSiOH) und $\delta_B = 3.994$ (2 H; CHC(O)OSiOSi) (AB System, ³J(AB) = 2.1 Hz), 4.611 (s, 1 H; SiOH), 4.612 ppm (s, 1 H; SiOH). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.1$ (CHC(O)OSiOSi), 75.3 (CHC(O)OSiOH), 173.3 (CHC(O)OSiOSi), 173.4 ppm (CHC(O)OSiOH). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): $\delta = -113.22$ (SiOSi), -113.20 (SiOSi), -106.03 ppm (SiOH). — ESI-HRMS: *m/z* ber. ([Tetraanion + 3 Cholin-Kationen]⁻): 1058.17182; gef.: 1058.17066.

Daten für IV (11.8%):^[42] ¹H-NMR ([D₆]DMSO, 500.1 MHz): $\delta_A = 4.017$ (2 H; CHC(O)OSiOSi) und $\delta_X = 4.09$ (2 H; CHC(O)OSiOCH₂) (AX System, ³J(AX) = 2.1 Hz), $\delta_A = 4.019$ (2 H, CHC(O)OSiOSi) und $\delta_X = 4.09$ ppm (2 H, CHC(O)OSiOCH₂) (AX System, ³J(AX) = 2.1 Hz). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.0$ (CHC(O)OSiOSi), 75.4 (CHC(O)OSiOCH₂), 173.1 (CHC(O)OSiOCH₂), 173.3 ppm (CHC(O)OSiOSi). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): $\delta = -113.3$ (*SiOSi*), -113.2 (*SiOSi*), -109.8 ppm (*Si*OCH₂). — ESI-HRMS: Der Nachweis von IV misslang wahrscheinlich durch die schnelle Hydrolyse der Si–O(Cholin)-Bindung in wässriger Lösung.

Daten für höhere Oligomere (28.4%):^{[42] 1}H-NMR ([D₆]DMSO, 500.1 MHz): $\delta = 3.96$ (br. s, *CH*). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 75.1$ (*C*H), 173.5 ppm (*C*=O). — ²⁹Si-NMR ([D₆]DMSO, 99.4 MHz): $\delta = -113.35$ (*SiOSi*), -113.32 (*SiOSi*), -113.30 ppm (*SiOSi*); es konnten keine zugehörigen *Si*OH Signale detektiert werden. Entsprechend den durchgeführten ¹H-DOSY Experimente ist die Differenz der Diffusionskoeffizienten von **I** und **III** ähnlich zur Differenz der Diffusionskoeffizienten von **III** und den höheren Oligomeren.

Verbindung 3

Verbindung **3** wurde in Anlehnung an Lit. [8e] dargestellt: Zu einer Lösung von frisch destilliertem *N*-Methylbenzol-1,2-diamin (41.6 g, 341 mmol) in Ethanol (200 mL) wurde unter Rühren bei 20 °C in einer Portion Acetylaceton (37.5 g, 375 mmol) gegeben und die erhaltene Lösung wurde 10 min bei dieser Temperatur gerührt. Die Lösung wurde auf –20 °C

abgekühlt und 3 d bei dieser Temperatur ungestört aufbewahrt. Der erhaltene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 50 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 3 h). Ausbeute: 50.8 g (249 mmol, 73%) eines gelben kristallinen Feststoffs. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.78$ (d, ⁴*J*(¹H, ¹H) = 0.5 Hz, 3 H; CCH₃), 2.04–2.06 (m, 3 H; CCH₃), 2.82 (d, ³*J*(¹H, ¹H) = 5.0 Hz, 3 H; NCH₃), 4.05 (br. s, 1 H; N(CH₃)*H*), 5.22–5.24 (m, 1 H; CCHC), 6.62–6.70, 6.93–6.99, 7.12–7.21 (m, 4 H; C₆H₄), 11.8 ppm (br. s, 1 H; *H*NCCH₃). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 19.3$ (CCH₃), 29.2 (CCH₃), 30.5 (NCH₃), 97.2 (CCHC), 110.6, 116.5, 124.4, 128.0, 128.6, 145.9 (C₆H₄), 163.2 (C(N)CH₃), 196.4 ppm (CO). — ¹⁵N-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -257.7/-252.1$ (*N*CCH₃), -323.9 ppm (2 N, *N*CH₃).

C ₁₂ H ₁₆ N ₂ O (204.27)	Ber.	C 70.56	Н 7.89	N 13.71
	Gef.	C 70.5	H 7.8	N 13.7

Verbindung 4

Verbindung 4 wurde gemäß Lit. [20a] dargestellt.

Verbindung 5

Verbindung 5 wurde gemäß Lit. [23] dargestellt.

Verbindung 8

Verbindung 8 wurde gemäß Lit. [43] dargestellt.

Verbindung 11

Zu einer Lösung von **3** (1.90 g, 9.30 mmol) in Tetrahydrofuran (60 mL) wurden unter Rühren bei 20 °C in je einer Portion nacheinander Triethylamin (1.88 g, 18.6 mmol) und **8** (912 mg, 4.65 mmol) gegeben. Das Gemisch wurde 24 h bei dieser Temperatur gerührt, und alle unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt und im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (70 mL) gegeben und die Mischung solange erwärmt, bis eine klare Lösung erhalten wurde, welche 48 h bei –20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 3 h). Ausbeute: 761 mg (1.76 mmol, 38%) eines roten kristallinen Feststoffs. Smp. >265 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.70$ (s, 6 H; CH₃), 2.40 (s, 6 H; CH₃), 2.43 (s, 6 H; NCH₃), 5.38 (s, 2 H; CCHC), 6.21–6.24, 6.34–6.41, 6.91–7.00 ppm (m, 8 H; C₆H₄). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 23.2 (CCH₃), 24.3 (CCH₃), 32.5 (NCH₃), 102.3 (CCHC), 108.1, 112.0, 120.6, 127.6, 130.7, 149.3 (C₆H₅), 167.8 (C(N)CH₃), 178.4 ppm (CO). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -161.8$ ppm. — ¹³C-VACP/MAS-NMR: $\delta =$ 22.6 (CCH₃), 26.1 (CCH₃), 33.1 (NCH₃), 100.1 (CCHC), 108.7, 112.9, 120.8, 128.6, 130.8, 149.0 (C₆H₅), 169.4 (C(N)CH₃), 175.8 ppm (CO). — ¹⁵N-VACP/MAS-NMR: $\delta = -180.1$ $(C(N)CH_3)$, -284.7 ppm (NCH₃). ²⁹Si-VACP/MAS-NMR: $\delta = -163.9$ ppm. C₂₄H₂₈N₄O₂Si (432.60) C 66.64 N 12.95 Ber. H 6.52 Gef. C 66.4 H 6.7 N 13.4

Verbindung 12

Verbindung 12 wurde gemäß Lit. [8e] dargestellt.

Verbindung 13

Methode A: Zu einer Lösung von 12 (883 mg, 2.58 mmol) in Tetrahydrofuran (20 mL) wurde unter Rühren bei 20 °C in einer Portion frisch sublimiertes Ammoniumfluorid (95.6 mg, 2.58 mmol) gegeben, und die resultierende Suspension wurde 20 h bei dieser Temperatur gerührt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit 5 ml Tetrahydrofuran gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (9 mL) gegeben, und die entstandene Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche 3 h bei 20 °C und danach weitere 24 h bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 4 h). Ausbeute: 410 mg (1.26 mmol, 49%) eines gelben kristallinen Feststoffs. Smp. >143 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 2.16$ (d, ⁴J(¹H, ¹H) = 0.6 Hz, 3 H; CCH₃), 2.47 (s, 3 H; CCH₃), 3.14 (s, 3 H; NCH₃), 5.60 (m, 1 H; CCHC), 6.72–6.77, 6.83–6.86, 7.13–7.29, 7.36–7.39 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 24.1 (CCH₃), 25.1 (CCH₃), 33.0 (d, ${}^{3}J({}^{13}C, {}^{19}F) = 12.4$ Hz; NCH₃), 106.1 (d, ${}^{4}J({}^{13}C, {}^{19}F) = 0.8$ Hz; CCHC), 110.8 (d, $J({}^{13}C, {}^{19}F) = 2.8$ Hz), 116.4, 120.1, 127.6 (2 C; d, ${}^{4}J({}^{13}C, {}^{19}F) = 0.8$ Hz), 128.4, 129.3 $(d, J({}^{13}C, {}^{19}F) = 1.0 \text{ Hz}), 131.0, 134.0 (2 \text{ C}) (d, {}^{3}J({}^{13}C, {}^{19}F) = 3.9 \text{ Hz}), 138.8 (d, {}^{2}J({}^{13}C, {}^{19}F) = 3.9 \text{ Hz}), 138.8 (d, {}^{2}J({}^{13}$ 36.1 Hz), 146.1 (d, $J({}^{13}C, {}^{19}F) = 3.6$ Hz) (C_6H_5 , C_6H_4), 166.8 ($C(N)CH_3$), 170.2 ppm $(C(O)CH_3)$. — ¹⁹F-NMR (CD₂Cl₂, 282.4 MHz): $\delta = -112.4$ ppm. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -108.1$ ppm (d, ¹J(Si,F) = 222 Hz). — ¹³C-VACP/MAS-NMR: $\delta = 24.9$ (CCH₃).

26.3 (CCH₃), 33.1 (NCH₃), 107.9 (CCHC), 109.6, 116.1, 118.9, 127.2 (3 C), 129.7, 131.7, 133.5, 136.0, 141.4, 145.4 (C_6H_5 , C_6H_4), 169.2 ($C(N)CH_3$), 170.2 ppm ($C(O)CH_3$). — ¹⁵N-VACP/MAS-NMR: $\delta = -306.2$ (NCH₃), -173.1 ppm ($C(N)CH_3$). — ²⁹Si-VACP/MAS-NMR: $\delta = -111.5$ ppm (d, ¹*J*(Si,F) = 227 Hz).

C ₁₈ H ₁₉ FN ₂ OSi (326.45)	Ber.	C 66.23	Н 5.87	N 8.58
	Gef.	C 65.7	Н 5.9	N 8.8

Methode B: Zu einem Gemisch von **12** (1.58 g, 4.61 mmol), Triethylamin (465 mg, 4.60 mmol) und Tetrahydrofuran (30 mL) wurde unter Rühren bei 20 °C in einer Portion unter Lichtausschluss Silbertetrafluoroborat (895 mg, 4.60 mmol) gegeben, und die resultierende Suspension wurde 1 h bei dieser Temperatur gerührt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Tetrahydrofuran (5 ml) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde mit Acetonitril (11 mL) versetzt und erwärmt, bis eine klare Lösung erhalten wurde, welche 2 h bei 20 °C und danach weitere 19 h bei –20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 5 h). Ausbeute: 918 mg (2.81 mmol, 61%) eines gelben kristallinen Feststoffs.

Die NMR-spektroskopischen Daten des nach *Methode B* erhaltenen Produktes stimmten mit den unter *Methode A* genannten überein.

Verbindung 14

Zu einer Lösung von **15** (1.00 g, 3.03 mmol) in Tetrahydrofuran (20 mL) wurde unter Rühren bei 20 °C in einer Portion frisch sublimiertes Ammoniumfluorid (119 mg, 3.18 mmol) gegeben, und die resultierende Suspension wurde 48 h bei dieser Temperatur gerührt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Tetrahydrofuran (5 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Toluol (8 mL) gegeben und die entstandene Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche 4 h bei 20 °C und weitere 16 h bei –20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit *n*-Pentan (8 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 4 h). Ausbeute: 538 mg (1.72 mmol, 57%) eines gelben kristallinen Feststoffs. Smp. >160 °C (Zers.). —¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 2.18$ (d, ⁴J(¹H,¹H) = 0.5 Hz, 3 H; CCH₃), 2.52 (s, 3 H; CCH₃), 5.66-5.69 (m, 1 H; CCHC), 6.92-6.97, 7.10-7.13, 7.19-7.24, 7.27-7.32, 7.35-7.40, 7.44-7.48 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 24.3 (CCH₃), 24.9 (CCH_3) , 106.2 (d, ${}^{4}J({}^{13}C, {}^{19}F) = 0.5$ Hz; CCHC), 115.8 (d, $J({}^{13}C, {}^{19}F) = 0.8$ Hz), 120.5, 120.7, 127.9 (2 C; d, ${}^{4}J({}^{13}C, {}^{19}F) = 0.7$ Hz), 128.8, 130.1 (d, $J({}^{13}C, {}^{19}F) = 0.6$ Hz), 132.7, 134.5 (2 C; d, ${}^{3}J({}^{13}C, {}^{19}F) = 3.5$ Hz), 135.5 (d, ${}^{2}J({}^{13}C, {}^{19}F) = 32.5$ Hz), 151.8 (d, $J({}^{13}C, {}^{19}F) = 7.7$ Hz) ($C_{6}H_{5}$, $C_{6}H_{4}$, 168.9 (C(N)CH₃), 172.3 ppm (d, $J({}^{13}C, {}^{19}F) = 7.9$ Hz; C(O)CH₃), $-{}^{19}F$ -NMR (CD₂Cl₂, 282.4 MHz): $\delta = -118.1$ ppm. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -109.3$ ppm $(d, {}^{1}J({}^{29}Si, {}^{19}F) = 204.8 \text{ Hz}). - {}^{13}C-VACP/MAS-NMR: \delta = 23.8 (CCH_3), 24.6 (CCH_3), 106.9$ (CCHC), 116.6, 119.0 (2 C), 121.0, 128.7 (2 C), 129.8, 131.5 (3 C), 136.6, 151.4 (C₆H₅, $C_{6}H_{4}$), 166.8 ($C(N)CH_{3}$), 167.8 ppm ($C(O)CH_{3}$). — ¹⁵N-VACP/MAS-NMR: $\delta = -160.4$ ppm. - ²⁹Si-VACP/MAS-NMR: $\delta = -108.5$ ppm (d, ¹J(²⁹Si, ¹⁹F) = 206 Hz). C₁₇H₁₆FNO₂Si (313.40) C 65.15 H 5.15 Ber. N 4 47

Gef.	C 64.8	Н 5.4	N 4.5

Verbindung 15

Verbindung 15 wurde gemäß Lit. [8e] dargestellt.

Verbindung $16 \cdot 0.5C_6H_6$

Zu einer Suspension von 12 (3.19 g, 9.22 mmol) in Benzol (30 mL) wurde unter Rühren bei 20 °C in einer Portion Bromtrimethylsilan (1.69 g, 11.0 mmol) gegeben. Die Reaktionsmischung wurde innerhalb von 5 h auf 85 °C erwärmt und dann durch Destillation auf ein Volumen von ca. 30 mL eingeengt. Die resultierende Lösung wurde auf 20 °C abgekühlt und bei dieser Temperatur in einer Portion mit Bromtrimethylsilan (1.69 g, 11.0 mmol) versetzt. Die Reaktionsmischung wurde dann innerhalb von 5 h auf 85 °C erwärmt, und alle flüchtigen Bestandteile wurden im Vakuum entfernt. Zu dem resultierenden Feststoff wurde Benzol (20 mL) gegeben und die resultierende Suspension erwärmt, bis eine klare Lösung erhalten wurde, welche auf 20 °C abgekühlt und bei dieser Temperatur für 24 h ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 4 h). Ausbeute: 3.00 g (7.74 mmol, 84%) eines orange gefärbten kristallinen Feststoffs. Smp. >170 °C (Zers.). - ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 2.32 (s, 3 H; CCH₃), 2.36 (s, 3 H; CCH₃), 3.44 (s, 3 H; NCH₃), 5.72 (s, 1 H; CCHC), 6.78–6.85, 7.00–7.05, 7.10–7.25, 7.28–7.32 (m, 9 H; C₆H₅, C_6H_4), 7.37 ppm (s, 3 H; 0.5 C_6H_6). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 24.1 (CCH₃), 24.4 (CCH₃), 36.3 (NCH₃), 106.9 (CCHC), 112.3, 117.9, 120.5 (2 C), 127.5 (2 C), 128.6 (3

C), 129.2, 130.1, 130.2 (2 C), 142.1, 145.1 (C_6H_5 , C_6H_4 , 0.5 C_6H_6), 166.7 ($C(N)CH_3$), 169.3 ppm ($C(O)CH_3$). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -94.1$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.2$ (CCH₃), 25.7 (CCH₃), 37.0 (NCH₃), 106.6 (CCHC), 111.6, 119.6, 120.5, 127.0, 129.3 (7 C), 130.5 (2 C), 142.0, 144.4 (C_6H_5 , C_6H_4 , 0.5 C_6H_6), 167.0 ($C(N)CH_3$), 169.7 ppm ($C(O)CH_3$). — ¹⁵N-VACP/MAS-NMR: $\delta = -310.3$ (NCH₃), -165.4 ppm ($C(N)CH_3$). — ²⁹Si-VACP/MAS-NMR: $\delta = -97$ ppm (Zentrum eines asymmetrischen Multipletts). C₁₈H₁₉BrN₂OSi (387.35) Ber. C 55.81 H 4.94 N 7.23 Gef. C 55.6 H 5.0 N 7.2

Verbindung 17

In einem NMR-Rohr wurde zu einer Lösung von **12** (33 mg, 96 µmol) in [D₂]Dichlormethan (750 µL) in einer Portion bei –80 °C Iodtrimethylsilan (58 mg, 290 µmol) gegeben und die resultierende Lösung sofort mittels NMR-Spektroskopie in Lösung untersucht. — ¹H-NMR (CD₂Cl₂, 500.1 MHz, –80 °C): δ = 2.47 (s, 3 H; CCH₃), 2.65 (s, 3 H; CCH₃), 3.24 (s, 3 H; NCH₃), 6.43 (s, 1 H; CCHC), 6.92–6.98, 7.02–7.07, 7.25–7.29, 7.30–7.36, 7.37–7.42, 7.44–7.50 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz, –80 °C): δ = 23.8 (CCH₃), 25.0 (CCH₃), 32.7 (NCH₃), 108.3 (CCHC), 111.2, 118.6, 120.3, 128.1 (2 C), 128.5, 129.4, 130.5, 131.6, 132.4 (2 C), 142.3 (C₆H₅, C₆H₄), 169.9 (C(N)CH₃), 171.4 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₂Cl₂, 99.6 MHz, –80 °C): δ = –81.9 ppm.

Verbindung 18

Zu einer Lösung von **12** (2.51 g, 7.32 mmol) in Acetonitril (50 mL) wurde unter Rühren bei 20 °C in einer Portion Iodtrimethylsilan (1.47 g, 7.35 mmol) gegeben, und die Reaktionsmischung wurde 1 h bei dieser Temperatur gerührt und anschließend 24 h bei -20 °C ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 6 h). Ausbeute: 2.24 g (4.71 mmol, 64%) eines orange gefärbten kristallinen Feststoffs. Smp. >107 °C (Zers.). — ¹H-NMR (CD₃CN, 500.1 MHz):^[44] δ = 1.95 (s, 3 H; N=CCH₃), 2.34 (d, ⁴J(¹H, ¹H) = 0.6 Hz, 3 H; CCH₃), 2.50 (s, 3 H; CCH₃), 2.28 (s, 3 H; NCH₃), 6.06 (d, ⁴J(¹H, ¹H) = 0.6 Hz, 1 H; CCHC), 6.88–6.92, 7.07–7.11, 7.25–7.29, 7.34–7.38, 7.46–7.49 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR (CD₃CN, 125.8 MHz):^[441] δ = 1.79 (N=CCH₃), 23.8 (CCH₃), 24.9 (CCH₃), 33.8 (NCH₃), 108.5 (CCHC), 118.2 (N=CCH₃), 113.1, 119.7, 121.7, 129.0 (2 C), 130.0, 130.4, 131.5, 132.6 (2 C), 135.2, 144.0 (C₆H₅, C₆H₄), 171.0 (C(N)CH₃), 171.9 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₃CN, 99.4 MHz):^[441] δ = -96.4 ppm. — ¹³C-VACP/MAS-NMR: δ = 8.1 (N≡CCH₃), 22.9 (CCH₃), 25.2 (CCH₃), 35.5 (NCH₃), 107.8 (N≡CCH₃), 109.5 (CCHC), 113.7, 117.9, 129.2 (6 C), 132.7 (2 C), 135.5, 145.4 (C_6H_5 , C_6H_4), 170.9 (C(N)CH₃), 169.7 ppm (C(O)CH₃). — ¹⁵N-VACP/MAS-NMR: δ = −313.7 (NCH₃), −170.0 (C(N)CH₃), −129.6 ppm (N≡CCH₃). — ²⁹Si-VACP/MAS-NMR: δ = −98.5 ppm. C₂₀H₂₂IN₃OSi (475.40) Ber. C 50.53 H 4.66 N 8.84

$C_{20}\Pi_{22}\Pi_{3}OSI(475.40)$	Del.	C 30.33	П 4.00	IN 0.04
	Gef.	C 50.9	H 4.8	N 9.0

Verbindung 19

Zu einer Lösung von 15 (1.41 g, 4.27 mmol) in Acetonitril (20 mL) wurde unter Rühren bei 20 °C in einer Portion (Thiocyanato-N)trimethylsilan (560 mg, 4.27 mmol) gegeben und die Reaktionsmischung 2 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der Rückstand wurde mit Acetonitril (18 mL) versetzt. Die resultierende Mischung wurde solange erwärmt, bis eine klare Lösung erhalten wurde, welche für 2 h bei 20 °C und weitere 16 h bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (20 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 1.32 g (3.74 mmol, 88%) eines gelben kristallinen Feststoffs. Smp. >216 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 2.29 (d, ${}^{4}J({}^{1}H,{}^{1}H) = 0.5 \text{ Hz}, 3 \text{ H}; \text{ CCH}_{3}), 2.49 \text{ (s, 3 H; CCH}_{3}), 5.73 \text{ (q, }{}^{4}J({}^{1}H,{}^{1}H) = 0.5 \text{ Hz}, 1 \text{ H};$ CCHC), 6.97–7.02, 7.17–7.21, 7.22–7.36, 7.42–7.46 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR $(CD_2Cl_2, 125.8 \text{ MHz})$: $\delta = 24.2 (CCH_3), 24.9 (CCH_3), 107.2 (CCHC), 116.0, 120.7, 121.3, 107.2 (CCHC), 120.7, 121.3, 107.2 (CCHC), 120.7, 121.3, 107.2 (CCHC), 120.7, 12$ 128.2 (2 C), 129.4, 130.4, 132.5, 133.0 (2 C), 135.5, 150.9 ppm (C₆H₅, C₆H₄), 169.6 $(C(N)CH_3)$, 171.9 ppm $(C(O)CH_3)$; das NCS-Resonanzsignal wurde nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -114.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 23.4$ (CCH₃), 27.4 (CCH₃), 108.0 (CCHC), 115.0, 119.6, 121.4, 126.7, 129.3, 130.8 (4 C), 132.8, 136.1, 149.4 (C₆H₅, C₆H₄), 168.8 (C(N)CH₃), 172.7 ppm (C(O)CH₃); das NCS-Resonanzsignal wurde nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -229.3$ (*N*CS), -173.2 ppm (C(*N*)CH₃). - ²⁹Si-VACP/MAS-NMR: $\delta = -116.4$ ppm. C₁₈H₁₆N₂O₂SSi (352 49) Rer C 61 33 H 1 58 N 7 05 S 9.10

$\Pi_{16} \Pi_{2} O_{2} SSI(532.49)$	Del.	C 01.55	П 4.36	IN 7.93	59.1
	Gef.	C 61.4	H 4.7	N 7.9	S 9.0

Verbindung 20

Zu einer Suspension von **3** (1.22 mg, 5.97 mmol) in Tetrahydrofuran (50 mL) wurden unter Rühren bei 20 °C nacheinander in je einer Portion Triethylamin (1.21 g, 11.96 mmol) und **21** (1.61 g, 5.98 mmol) gegeben, und das Reaktionsgemisch wurde 30 min bei dieser Temperatur gerührt. Der ausgefallene Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (20 mL) gegeben und die resultierende Mischung erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und 20 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.63 g (4.07 mmol, 68%) eines gelben kristallinen Feststoffs. Smp. >163 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.95$ (d, ⁴J(H,H) = 0.6 Hz, 3 H; CCH₃), 2.41 (s, 3 H; CCH₃), 3.23 (s, 3 H; NCH₃), 5.60 (q, ${}^{4}J({}^{1}H, {}^{1}H) = 0.6$ Hz, 1 H; CCHC), 6.65–6.69, 6.72–6.76, 6.77–6.81, 6.83–6.87, 7.10–7.15, 7.17–7.22, 7.25–7.29 ppm (m, 14 H; C₆H₄, SiC_6H_5 , OC_6H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.4$ (CCH₃), 24.6 (CCH₃), 34.0 (NCH₃), 105.8 (CCHC), 110.7, 115.9, 119.4, 120.6, 120.9 (2 C), 127.5 (2 C), 128.4, 128.7, 128.9 (2 C), 130.6, 133.3 (2 C), 140.5, 146.5, 158.4 (C₆H₄, SiC₆H₅, OC₆H₅), 166.6 $(C(N)CH_3)$, 170.8 ppm $(C(O)CH_3)$. — ²⁹Si-NMR $(CD_2Cl_2, 99.4 \text{ MHz})$: $\delta = -107.5 \text{ ppm.}$ — ¹³C-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = 22.7$ (2 C; CCH₃), 25.0 (2 C; CCH₃), 33.5 (2 C; NCH₃), 105.4 (CCHC), 106.1 (CCHC), 109.9, 110.6, 112.2 (2 C), 115.9, 116.4, 119.0, 119.8, 120.5 (2 C), 122.1 (2 C), 126.1 (2 C), 127.7 (4 C), 128.4 (3 C), 129.0 (2 C), 130.5 (2 C), 131.7 (2 C), 132.8 (2 C), 140.3, 141.6, 146.3, 146.3, 147.0, 156.6, 158.2 (C₆H₄, SiC₆H₅, OC₆H₅), 164.7 (C(N)CH₃), 166.6 (C(N)CH₃), 167.0 (C(O)CH₃), 169.9 ppm (C(O)CH₃). — ¹⁵N-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -151.9/-156.5$ (C(N)CH₃), -302.9/-305.8 ppm (NCH₃). — ²⁹Si-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -109.1/-106.1$ ppm.

$C_{24}H_{24}N_2O_2Si$ (400.55)	Ber.	C 71.97	H 6.04	N 6.99
	Gef.	C 72.0	H 6.1	N 7.0

Verbindung 21

Zu einem Gemisch von frisch destilliertem Trichlorphenylsilan (7.63 g, 36.1 mmol), Triethylamin (3.65 g, 36.1 mmol) und Tetrahydrofuran (100 mL) wurde unter Rühren bei -20 °C eine Lösung von Phenol (3.40 g, 36.1 mmol) in Tetrahydrofuran (25 mL) innerhalb von 1 h zugetropft. Die resultierende Suspension wurde auf 20 °C erwärmt und weitere 40 h gerührt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (20 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde *n*-Pentan (150 mL) gegeben, und die resultierende Lösung wurde auf –20 °C gekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit *n*-Pentan (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde bei vermindertem Druck durch fraktionierende Destillation gereinigt. Ausbeute: 5.62 g (20.9 mmol, 58%) einer farblosen Flüssigkeit. Sdp. 107–111 °C / 1 mbar. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 7.11–7.17, 7.32–7.37, 7.51–7.56, 7.60–7.64, 7.86–7.90 ppm (m, 10 H; C₆H₅, OC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 120.3 (2 C), 124.2, 128.9 (2 C), 130.1, 130.5, 132.9 (2 C), 134.1 (2 C), 152.3 ppm (C₆H₅, OC₆H₅). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = –26.2 ppm.

C ₁₂ H ₁₀ Cl ₂ OSi (269.20)	Ber.	C 53.54	Н 3.74
	Gef.	C 53.5	Н 3.7

Verbindung 22

Zu einer Suspension von 5 (970 mg, 5.07 mmol) in Tetrahydrofuran (40 mL) wurden unter Rühren bei 20 °C nacheinander in je einer Portion Triethylamin (1.03 g, 10.18 mmol) und 15 (1.36 g, 5.05 mmol) gegeben, und das Reaktionsgemisch wurde 1 h bei dieser Temperatur gerührt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (10 mL) gegeben und die erhaltene Reaktionsmischung im Vakuum vom Lösungsmittel befreit. Zu dem entstandenen Festoff wurde Acetonitril (15 mL) gegeben und die resultierende Mischung wurde erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C gekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.28 g (3.30 mmol, 65%) eines gelben kristallinen Feststoffs. Smp. >138 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.90$ (d, ${}^{4}J({}^{1}H,{}^{1}H) = 0.3$ Hz, 3 H; CCH₃), 2.50 (s, 3 H; CCH₃), 5.69 (q, ${}^{4}J({}^{1}H,{}^{1}H) = 0.3$ Hz, 1 H; CCHC), 6.75–6.79, 6.80–6.84, 6.88–6.92, 7.13–7.18, 7.22–7.25, 7.27–7.31, 7.70–7.74 ppm (m, 14 H; C_6H_4 , SiC₆H₅, OC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 24.0 (CCH_3), 24.3 (CCH_3), 104.6 (CCHC), 115.1, 118.7, 120.9, 121.0, 121.4 (2 C),$ 127.7 (2 C), 128.3, 129.1 (2 C), 129.7, 131.8, 135.9 (2 C), 138.4, 153.3, 157.0 (C₆H₄, SiC₆H₅, OC_6H_5), 171.1 (C(N)CH₃), 179.9 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -$

108.7 ppm. — ¹³C-VACP/MAS-NMR: δ = 23.7 (CCH₃), 24.1 (CCH₃), 105.8 (CCHC), 116.4, 119.5 (3 C), 121.4 (2 C), 127.9 (4 C), 129.8 (2 C), 132.1 (4 C), 138.8, 150.9 (*C*₆H₄, Si*C*₆H₅, O*C*₆H₅), 157.6 (*C*(N)CH₃), 169.1 ppm (*C*(O)CH₃). — ¹⁵N-VACP/MAS-NMR: δ = -152.8 ppm. — ²⁹Si-VACP/MAS-NMR: δ = -109.5 ppm.

C ₂₃ H ₂₁ NO ₃ Si (387.51)	Ber.	C 71.29	Н 5.46	N 3.61
	Gef.	C 71.0	Н 5.4	N 3.9

Verbindung 23

Zu einer Lösung von 12 (3.70 g, 11.05 mmol) in Tetrahydrofuran (40 mL) wurden unter Rühren bei 20 °C nacheinander in je einer Portion Triethylamin (1.12 g, 11.07 mmol) und Benzolthiol (1.22 g, 11.07 mmol) gegeben, und die resultierende Suspension wurde 2 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (5 mL) gegeben und die erhaltene Reaktionsmischung im Vakuum vom Lösungsmittel befreit. Zu dem resultierenden Festoff wurde Acetonitril (60 mL) gegeben und so lange erwärmt, bis eine klare Lösung entstand, welche langsam auf -20 °C abgekühlt und für 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 \times 15 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 3 h). Ausbeute: 3.34 g (8.02 mmol, 73%) eines dunkelroten kristallinen Feststoffs. Smp. >127 °C (Zers.). - ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.58$ (s, 3 H; CCH₃), 2.42 (s, 3 H; CCH₃), 2.52 (s, 3 H; NCH₃), 5.00 (s, 1 H; CCHC), 6.46–6.50, 6.57–6.62, 7.04–7.05, 7.12–7.16, 7.17–7.20, 7.25– 7.33, 7.37–7.43, 7.51–7.54 ppm (m, 14 H; C_6H_4 , SiC₆H₅, SC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.5$ (CCH₃), 24.4 (CCH₃), 32.6 (NCH₃), 104.6 (CCHC), 108.2, 114.1, 120.9, 126.1, 127.6 (2 C), 128.1 (2 C), 128.2, 128.4, 129.0, 134.9 (2 C), 135.8 (2 C), 136.9, 140.7, 148.2 (C₆H₄, SiC₆H₅, SC₆H₅), 171.4 (C(N)CH₃), 181.9 ppm (C(O)CH₃). - ²⁹Si-NMR $(CD_2Cl_2, 99.4 \text{ MHz})$: $\delta = -84.4 \text{ ppm}$. — ¹³C-VACP/MAS-NMR: $\delta = 26.1 (CCH_3)$, 26.6 (CCH₃), 30.5 (NCH₃), 105.0 (CCHC), 108.1, 113.4, 119.8, 126.5, 127.4 (2 C), 128.4 (5 C), 129.4, 134.1, 136.8 (3 C), 140.3, 148.7 (C₆H₄, SiC₆H₅, SC₆H₅), 172.9 (C(N)CH₃), 184.2 ppm $(C(O)CH_3)$. — ¹⁵N-VACP/MAS-NMR: $\delta = -205.8$ (C(N)CH₃), -290.1 ppm (NCH₃). — ²⁹Si-VACP/MAS-NMR: $\delta = -78.9$ ppm.

C ₂₄ H ₂₄ N ₂ OSSi (416.62)	Ber.	C 69.19	H 5.81	N 6.72	S 7.70
	Gef.	C 69.1	Н 5.8	N 6.8	S 7.6

Verbindung 24

Zu einer Lösung von 12 (1.84 g, 5.37 mmol) in Tetrahydrofuran (50 mL) wurden unter Rühren bei 20 °C nacheinander in je einer Portion Triethylamin (544 mg, 5.38 mmol) und Benzolselenol (844 mg, 5.37 mmol) gegeben, und die Reaktionsmischung wurde 2.5 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (7 mL) gegeben und so lange erwärmt, bis eine klare Lösung entstand, welche langsam auf 20 °C abgekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2×10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 1.56 g (3.37 mmol, 63%) eines dunkelroten kristallinen Feststoffs. Smp. >130 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.64$ (s, 3 H; CCH₃), 2.36 (s, 3 H; CCH₃), 2.49 (s, 3 H; NCH₃), 5.50 (s, 1 H; CCHC), 6.45–6.51, 6.58–6.64, 7.01–7.07, 7.10–7.17, 7.18– 7.23, 7.25–7.31, 7.47–7.56 ppm (m, 14 H; C_6H_4 , SiC_6H_5 , SeC_6H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.5$ (CCH₃), 24.4 (CCH₃), 32.7 (NCH₃), 104.9 (CCHC), 108.5, 114.4, 120.9, 126.3, 127.6 (2 C), 128.3 (2 C), 129.0, 129.7, 130.9, 133.7, 134.9 (2 C), 137.2 (2 C), 141.0, 147.8 (C_6H_4 , Si C_6H_5 , Se C_6H_5), 171.1 ($C(N)CH_3$), 181.1 ppm ($C(O)CH_3$). — ²⁹Si-NMR $(CD_2Cl_2, 99.4 \text{ MHz}): \delta = -84.2 \text{ ppm} (^{77}\text{Se-Satelliten}, {}^{1}J({}^{29}\text{Si}, {}^{77}\text{Se}) = 112 \text{ Hz}). - {}^{77}\text{Se-NMR}$ (CD₂Cl₂, 95.4 MHz): δ = 140.0 ppm. — ¹³C-VACP/MAS-NMR: δ = 26.5 (CCH₃), 27.8 (CCH₃), 30.6 (NCH₃), 105.6 (CCHC), 108.9, 113.6, 120.0, 127.0, 128.0 (3 C), 129.0 (3 C), 130.0, 137.6 (5 C), 140.5, 148.8 (C₆H₄, SiC₆H₅, SeC₆H₅), 176.5 (C(N)CH₃), 184.3 ppm $(C(O)CH_3)$. — ¹⁵N-VACP/MAS-NMR: $\delta = -203.3$ (C(N)CH₃), -287.3 ppm (NCH₃). — ²⁹Si-VACP/MAS-NMR: $\delta = -78.5$ ppm (⁷⁷Se-Satelliten nicht detektiert). — ⁷⁷Se-VACP/MAS-NMR: $\delta = 164.2$ ppm.

$C_{24}H_{24}N_2OSeSi$ (463.51)	Ber.	C 62.19	Н 5.22	N 6.04
	Gef.	C 62.3	H 5.1	N 6.1

Verbindung 26

Verbindung 26 wurde gemäß Lit. [45] dargestellt.

Verbindung 27

Verbindung 27 wurde gemäß Lit. [46] dargestellt.

Verbindung 29

Verbindung 29 wurde in Anlehnung an Lit. [47] dargestellt: Zu einer Mischung von Acetylaceton (8.93 g, 89.2 mmol) und Certrinitrathexahydrat (7.74 g, 17.8 mmol) wurde unter Rühren bei 20 °C in einer Portion 2-Bromanilin (15.3 g, 88.9 mmol) gegeben. Das Reaktionsgemisch wurde auf 40 °C erwärmt und für 2 h bei dieser Temperatur gerührt. Die resultierende Lösung wurde auf 20 °C abgekühlt und mit Wasser (100 mL) versetzt. Das Gemisch wurde mit Diethylether (3 \times 80 mL) extrahiert, und die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Diethylether (20 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Essigsäureethylester (10 mL) gegeben und die resultierende Suspension solange erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und bei dieser Temperatur 20 h ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum (0.01 mbar, 20 °C, 2 h) getrocknet. Ausbeute: 12.9 g (50.8 mmol, 57%) eines gelben kristallinen Feststoffs. Smp. 72–73 °C. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.91 (s, 3 H; CCH₃), 2.08 (s, 3 H; CCH₃), 5.27 (s, 1 H; CCHC), 7.08–7.12, 7.21–7.24, 7.29–7.34, 7.62–7.65 (m, 4 H; C₆H₄), 12.36 ppm (s, 1 H; N*H*). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 19.8 (CCH₃), 29.3 (CCH₃), 98.4 (CCHC), 120.6, 127.5, 127.6, 128.3, 133.5, 138.2 (C₆H₄), 159.8 (*C*(N)CH₃), 196.8 ppm (*C*O).

C ₁₁ H ₁₂ BrNO (254.13)	Ber.	C 51.99	H 4.76	N 5.51
	Gef.	C 52.0	H 4.9	N 5.6

Verbindung 31

Verbindung **31** wurde in Anlehnung an Lit. [25] dargestellt: Zu einer Mischung von **32** (2.74 g, 6.81 mmol) in *n*-Propanol (30 mL) wurde unter Rühren bei 20 °C in einer Portion Raney-Nickel (40 mg) gegeben. Die Reaktionsmischung wurde unter Rühren auf 95 °C erwärmt und mit Hydrazinhydrat (1.53 g, 30.6 mmol) versetzt, und das resultierende Gemisch wurde 3 h bei dieser Temperatur gerührt. Die erhaltene Reaktionsmischung wurde auf 20 °C abgekühlt und das Lösungsmittel im Vakuum entfernt. Zu dem verbliebenen Rückstand wurde Dichlormethan (150 mL) gegeben und die erhaltene Lösung über Natriumsulfat getrocknet. Alle unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan (60 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Ausbeute: 2.13 g (6.23 mmol, 91%) eines gelben Feststoffs. — ¹H-NMR ([D₆]DMSO, 500.1 MHz): $\delta = 5.32$ (s, 4 H; NH₂), 6.37–6.44, 6.69–6.75, 7.02–7.09, 7.20–7.25 ppm (m, 8 H; C₆H₄). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): $\delta = 113.1$, 114.4, 116.4, 130.9, 136.8, 149.8 ppm (C₆H₄). — ⁷⁷Se-NMR ([D₆]DMSO, 95.4 MHz): $\delta = 399.9$ ppm.

$C_{12}H_{12}N_2Se_2$ (342.16)	Ber.	C 42.12	Н 3.53	N 8.19
	Gef.	C 42.1	Н 3.5	N 8.1

Verbindung 32

Verbindung 32 wurde in Anlehnung an Lit. [25] dargestellt: Zu einer Mischung von Selen (5.80 g, 73.5 mmol) und flüssigem Ammoniak (120 mL) wurde unter Rühren in einer Portion bei -78 °C fein zerkleinertes Natrium (1.69 g, 73.5 mmol) gegeben und das Reaktionsgemisch 2 h bei dieser Temperatur gerührt. Zu der resultierenden Suspension wurde in einer Portion 2-Chlornitrobenzol (11.58 g, 73.5 mmol) gegeben, und es wurde weitere 2 h bei dieser Temperatur gerührt. Anschließend wurde das Gemisch auf 20 °C erwärmt und mit Wasser (100 mL) und Dichlormethan (100 mL) versetzt, und das resultierende Gemisch wurde 16 h bei 20 °C gerührt. Anschließend wurde mit Dichlormethan extrahiert (3 × 100 mL), und die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan (100 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Ausbeute: 12.0 g (59.7 mmol, 81%) eines orange gefärbten Feststoffs. — ¹H-NMR ([D₆]DMSO, 500.1 MHz): δ = 7.55–7.61, 7.66–7.72, 7.83–7.90, 8.35–8.42 ppm (m, 8 H; C₆H₄). — ¹³C-NMR ([D₆]DMSO, 125.8 MHz): δ = 126.6, 127.6, 128.4, 131.2, 135.7, 146.1 ppm (C_6 H₄). — ⁷⁷Se-NMR ([D₆]DMSO, 95.4 MHz): δ = 480.4 ppm.

$C_{12}H_8N_2O_4Se_2$ (402.13)	Ber.	C 35.84	H 2.01	N 6.97
	Gef.	C 35.9	H 2.0	N 6.7

Verbindung 33

Zu einer Lösung von **31** (5.15 g, 15.1 mmol) in Ethanol (120 mL) wurde unter Rühren bei 20 °C in einer Portion Acetylaceton (3.12 g, 31.2 mmol) gegeben und das Reaktionsgemisch 2 h bei 80 °C gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der verbliebene Rückstand wurde mit Ethanol (20 mL) versetzt. Die resultierende Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf –20 °C abgekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde

durch Filtration isoliert, mit n-Pentan (35 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 2.76 g (10.9 mmol, 36%) eines gelben kristallinen Feststoffs. Smp. 91 °C. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 2.13 (s, 3 H; CCH₃), 3.36 (s, 2 H; SeCH₂), 5.21 (s, 1 H; CCHC), 6.90–6.95, 6.95–99, 7.14–7.19, 7.31–7.35 (C₆H₄), 12.46 ppm (br. s, 1 H; N*H*). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 21.4 (SeCH₂), 29.7 (CCH₃), 95.8 (CCHC), 117.3, 119.4, 123.7, 128.0, 131.0, 137.4 (C₆H₄), 151.7 (CHCNH), 198.5 ppm (CO). $-^{77}$ Se-NMR (CD₂Cl₂, 95.4 MHz): $\delta = 183.2$ ppm. $C_{11}H_{11}NOSe(252.17)$ Ber. C 52.39 H 4.40N 5.55 Gef. C 52.1 H 4.4 N 5.5

Verbindung 35

Verbindung 35 wurde gemäß Lit. [26] dargestellt.

Verbindung 36

Verbindung 36 wurde gemäß Lit. [27] dargestellt.

Verbindung 37

Zu einer Lösung von 1,1,1,5,5,5-Hexafluor-2,4-pentandion (23.3 g, 112 mmol) in *n*-Hexan (100 mL) wurden unter Rühren bei 20 °C nacheinander in je einer Portion Triethylamin (11.3 g, 112 mmol) und Chlortrimethylsilan (13.4 g, 123 mmol) gegeben, und das resultierende Gemisch wurde 3 d bei dieser Temperatur gerührt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit n-Hexan (60 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum auf ein Volumen von ca. 50 mL eingeengt. Der erhaltene Rückstand wurde durch fraktionierende Destillation gereinigt. Ausbeute: 16.4 g (58.5 mmol, 52%) einer leicht gelblich gefärbten Flüssigkeit. Sdp. 124–126 °C. — ¹H-NMR (500.1 MHz, CD₂Cl₂): $\delta = 0.35$ (s, 9 H; Si(CH₃)₃), 6.38 ppm (s, 1 H; CCHC). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 0.2$ (Si(CH₃)₃), 100.7 (q, ${}^{4}J({}^{13}C, {}^{19}F) = 3.2 \text{ Hz; } CCHC), 116.0 \text{ (q, } {}^{1}J({}^{13}C, {}^{19}F) = 290.5 \text{ Hz; } C(OSi(CH_3)_3)CF_3), 119.1 \text{ (q, }$ ${}^{1}J({}^{13}C, {}^{19}F) = 279.2 \text{ Hz}; C(O)CF_3), 155.9 (q, {}^{2}J({}^{13}C, {}^{19}F) = 35.8 \text{ Hz}; C(OSi(CH_3)_3)CF_3), 178.2$ ppm (q, ${}^{2}J({}^{13}C, {}^{19}F) = 36.3$ Hz; $C(O)CF_{3}$). — ${}^{19}F$ -NMR (CD₂Cl₂, 376.5 MHz): $\delta = -79.8$ $(C(OSi(CH_3)_3)CF_3)$, -74.9 ppm $(C(O)CF_3)$. — ²⁹Si-NMR $(CD_2Cl_2, 99.4 \text{ MHz})$: $\delta = 32.6 \text{ ppm}$. $C_8H_{10}F_6O_2Si(280.24)$ Ber. C 34.29 H 3.60 C 34.7 Gef. H 3.7
Zu einer Lösung von 12 (1.11 g, 3.24 mmol) in Acetonitril (13 mL) wurde unter Rühren in einer Portion bei 20 °C 35 (889 mg, 5.16 mmol) gegeben und das Reaktionsgemisch 2 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand mit Acetonitril (10 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 21 h bei dieser Temperatur und anschließend 3 d bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (8 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 910 mg (2.24 mmol, 69%) eines dunkelroten kristallinen Feststoffs. Smp. >167 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.84$ (s, 3 H; CCH₃), 2.00 (s, 6 H; CCH₃), 2.28 (s, 3 H; CCH₃), 2.53 (s, 3 H; NCH₃), 5.11 (s, 1 H; CCHC), 5.69 (s, 1 H; CCHC), 6.26–6.36, 6.91–6.95, 7.01–7.09, 7.39–7.44 ppm (m, 9 H; NC₆H₄N, SiC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 23.7 (CCH₃), 24.6 (CCH₃), 25.9 (2 C, CCH₃), 31.4 (NCH₃), 101.9 (CCHC), 102.7 (CCHC), 107.6, 112.2, 120.7, 125.8, 126.2 (2 C), 127.7, 130.9, 134.8 (2 C), 149.7, 153.8 (NC₆H₄N, SiC₆H₅), 167.7 (C(N)CH₃), 177.1 (C(O)CH₃); die CO-Resonanzsignale des Acetylacetonato-Liganden wurden nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -162.0$ ppm. — ¹³C-VACP/MAS-NMR: δ = 24.4 (CCH₃), 24.7 (CCH₃), 25.5 (CCH₃), 27.9 (CCH₃), 31.4 (NCH₃), 101.1 (CCHC), 105.7 (CCHC), 107.7, 113.2, 121.7, 125.1, 126.2 (2 C), 127.6, 131.3, 135.1 (2 C), 148.9, 155.9 (NC₆H₄N, SiC₆H₅), 168.0 (C(N)CH₃), 176.2 (C(O)CH₃), 188.4 (CO), 191.6 ppm (CO). — ¹⁵N-VACP/MAS-NMR: $\delta = -284.6$ (NCH₃), -174.9 ppm (C(N)CH₃), - ²⁹Si-VACP/MAS-NMR: $\delta = -163.4$ ppm. C₂₃H₂₆N₂O₃Si (406.56) C 67.95 H 6.45 N 6.89 Ber. C 67.8 N 6.9 Gef. H 6.2

Verbindung **39**·CH₃CN

Zu einer Lösung von 12 (564 mg, 1.64 mmol) in Acetonitril (8 mL) wurde unter Rühren bei 20 °C in einer Portion 36 (739 mg, 2.49 mmol) gegeben und das Reaktionsgemisch 1 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand mit Acetonitril (13 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 30 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (8 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 3 h). Ausbeute: 412 mg (721 µmol, 44%) eines dunkelroten kristallinen Feststoffs. Smp.

>153 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.81 (s, 3 H; CCH₃), 1.97 (s, 3 H; CH₃CN), 2.37 (s, 3 H; CCH₃), 2.47 (s, 3 H; NCH₃), 5.13 (s, 1 H; CCHC), 7.00 (s, 1 H; CCHC), 6.90–6.97, 7.09–7.20, 7.48–7.66, 7.96–8.02 ppm (m, 19 H; OC₆H₄N, SiC₆H₅, CC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 2.1 (CH₃CN), 23.5 (CCH₃), 24.7 (CCH₃), 31.6 (NCH₃), 94.7 (CCHC), 102.9 (CCHC), 116.5 (CH₃CN), 107.9, 110.6, 112.4, 120.6, 125.9, 126.3 (2 C), 127.5 (2 C), 127.8 (2 C), 128.4, 128.7, 129.1 (2 C), 131.4, 132.9, 133.2 (2 C), 135.1 (2 C), 135.8, 150.3, 153.3 (NC₆H₄N, SiC₆H₅, CC₆H₅), 167.7 (C(N)CH₃), 177.6 (C(O)CH₃), 186.1 ppm (2 C, CO). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = –161.1 ppm. — ¹³C-VACP/MAS-NMR: δ = 1.4 (CH₃CN), 24.3 (2 C; CCH₃), 34.7 (NCH₃), 95.0 (CCHC), 104.6 (CCHC), 116.7 (CH₃CN), 107.5, 112.6, 122.6 (2 C), 126.0 (3 C), 127.0 (4 C), 129.8 (3 C), 131.8 (2 C), 133.6 (4 C), 135.2, 136.2, 150.5, 154.2 (NC₆H₄N, SiC₆H₅, CC₆H₅), 168.9 (C(N)CH₃), 174.5 (C(O)CH₃), 183.4 (CO), 184.2 ppm (CO). — ¹⁵N-VACP/MAS-NMR: δ = –290.9 (NCH₃), -175.3 (C(N)CH₃), -126.4 ppm (CH₃CN). — ²⁹Si-VACP/MAS-NMR: δ = –161.5 ppm.

C ₃₅ H ₃₃ N ₃ O ₃ Si (571.75)	Ber.	C 73.53	H 5.82	N 7.35
	Gef.	C 73.6	Н 5.8	N 7.0

Verbindung 40

Zu einer Lösung von 12 (1.62 g, 4.72 mmol) in Acetonitril (50 mL) wurde unter Rühren bei 20 °C in einer Portion 37 (1.99 g, 7.10 mmol) gegeben und das Gemisch 1 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt und der verbliebene Rückstand mit Toluol (15 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.25 g (2.44 mmol, 52%) eines farblosen kristallinen Feststoffs. Smp. >111 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.69 (s, 3 H; CCH₃), 2.24 (s, 3 H; CCH₃), 2.96 (g, ${}^{5}J({}^{1}H, {}^{19}F) = 2.3$ Hz, 3 H; NCH₃), 5.80 (s, 1 H; CCHC), 5.91 (s, 1 H; CCHC), 6.80–6.84, 7.04–7.10, 7.22–7.27, 7.28–7.38, 7.71–7.75 ppm (m, 9 H; NC₆H₄N(Me), SiC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 24.2 (CCH₃), 24.8 (CCH₃), 35.0 (q, ${}^{4}J({}^{13}C, {}^{19}F) = 2.3 \text{ Hz}; \text{ NCH}_{3}), 86.5 \text{ (q, } {}^{2}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; C_{q}CF_{3}), 101.1 \text{ (q, } {}^{3}J({}^{13}C, {}^{19}F) = 28.6 \text{ Hz}; 10.2 \text{ Hz}; 10.2$ 3.7 Hz; CCHCCF₃), 102.6 (CCHC), 120.0 (q, ${}^{1}J({}^{13}C, {}^{19}F = 273.6 \text{ Hz}; C_{0}CF_{3} \text{ oder } C_{1}CF_{3})$, 125.1 (q, ${}^{1}J({}^{13}C, {}^{19}F) = 297.7$ Hz; $C_{q}CF_{3}$ oder $C_{t}CF_{3}$), 146.8 (q, ${}^{2}J({}^{13}C, {}^{19}F) =$ Hz; $C_{t}CF_{3}$), 124.5, 125.1, 125.9, 127.4 (2 C), 128.9, 129.7, 137.1 (2 C), 138.5, 141.1, 143.3 (NC₆H₄N(Me), SiC₆H₅), 176.9 (*C*(N)CH₃), 187.3 ppm (*C*(O)CH₃). — ¹⁹F-NMR (CD₂Cl₂, 376.5 MHz): $\delta = -77.3$ (C_qCF₃), -75.1 ppm (C_tCF₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -124.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.7$ (CCH₃), 24.5 (CCH₃), 35.2 (NCH₃), 86.8 (*C*_qCF₃), 99.6 (CCHC), 102.2 (CCHC), 121.6 (C_qCF₃ oder C_tCF₃), 124.3 (C_qCF₃ oder C_tCF₃), 142.7 (*C*_tCF₃), 122.6, 125.9, 126.3, 127.4, 128.8 (2 C), 129.9, 137.6, 140.3 (2 C), 142.0, 147.1 ppm (NC₆H₄N(Me), SiC₆H₅), 177.9 (*C*(N)CH₃), 185.3 ppm (*C*(O)CH₃). — ¹⁵N-VACP/MAS-NMR: $\delta = -321.8$ (*N*CH₃), -203.4 ppm (C(*N*)CH₃). — ²⁹Si-VACP/MAS-NMR: $\delta = -127.7$ ppm.

C ₂₃ H ₂₀ F ₆ N ₂ O ₃ Si (514.50)	Ber.	C 53.69	Н 3.92	N 5.44
	Gef.	C 53.8	H 3.8	N 5.4

Verbindung 41.0.5CH₃CN

Zu einer Lösung von 15 (820 mg, 2.49 mmol) in Acetonitril (10 mL) wurde unter Rühren bei 20 °C in einer Portion 35 (700 mg, 4.06 mmol) gegeben und das Reaktionsgemisch 2 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 21 h bei dieser Temperatur und anschließend 3 d bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 782 mg (1.99 mmol, 80%) eines gelben kristallinen Feststoffs. Smp. >117 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.91 (s, 3 H; CCH₃), 1.95 (s, 3 H; CCH₃), 1.96 (s, 1.5 H; CH₃CN), 2.13 (s, 3 H; CCH₃), 2.35 (s, 3 H; CCH₃), 5.19 (s, 1 H; CCHC), 5.79 (s, 1 H; CCHC), 6.62–6.70, 6.96–7.01, 7.04–7.11, 7.12–7.16, 7.46–7.51 ppm (m, 9 H; OC₆H₄N, SiC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 1.9 (CH₃CN), 24.0 (CCH₃), 24.7 (CCH₃), 25.8 (CCH₃), 26.0 (CCH₃), 102.0 (CCHC), 102.4 (CCHC), 116.9 (CH₃CN), 115.2, 117.2, 121.1, 126.1, 126.4 (2 C), 127.8, 133.1, 134.6 (2 C), 153.2, 155.8 (OC₆H₄N, SiC₆H₅), 167.8 (C(N)CH₃), 176.5 (C(O)CH₃), 189.7 (CO), 192.5 ppm (CO). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -165.1$ ppm. — ¹³C-VACP/MAS-NMR (Daten für vier kristallographisch unabhängige Moleküle): $\delta = 1.4$ (2 C; CH₃CN), 23.1 (2 C), 23.4 (2 C), 25.0, 25.4 (3 C), 25.8, 26.1 (2 C), 26.8, 27.0 (2 C), 28.5 29.1 (CCH₃), 100.5 (2 C), 101.0, 102.1, 102.6, 102.9 (2 C) 103.1 (CCHC), 116.7 (2 C; CH₃CN), 113.4, 114.3 (4 C), 115.2, 117.8 (4 C), 118.2, 123.0 (4 C), 123.3 (4 C), 126.8 (3 C), 127.2 (2 C), 127.9 (2 C), 129.6, 133.1 (2 C), 133.4 (2 C), 134.1, 134.5 (2 C), 134.8 (2 C), 135.3, 135.6 (2 C), 136.1, 151.3, 151.7, 155.0, 155.3 (3 C), 156.5, 157.1 (NC₆H₄O, SiC₆H₅), 168.2 (2 C; C(N)CH₃), 170.6 (C(N)CH₃), 171.8 (C(N)CH₃), 173.4 (3 C; C(O)CH₃) 174.5 ppm (C(O)CH₃), 188.6 (2 C), 188.9, 189.5, 191.2, 191.7, 192.5 192.8 ppm (*CO*). — ¹⁵N-VACP/MAS-NMR (Daten für vier kristallographisch unabhängige Moleküle): $\delta = -179.7/-177.7/-175.5/-174.8$ ppm (C(*N*)CH₃); das CH₃CN-Signal wurde nicht detektiert. — ²⁹Si-VACP/MAS-NMR (Daten für vier kristallographisch unabhängige Moleküle): $\delta = -168.1/-167.2/-166.1/-165.8$ ppm.

 $\begin{array}{cccc} C_{23}H_{24.5}N_{1.5}O_{4}Si~(414.0) & \mbox{Ber.} & C~66.72 & \mbox{H}~5.96 & \mbox{N}~5.07 \\ & \mbox{Gef.} & C~66.3 & \mbox{H}~6.0 & \mbox{N}~4.7 \end{array}$

Verbindung 42 ·CH₃CN

Zu einer Lösung von 15 (542 mg, 1.64 mmol) in Acetonitril (15 mL) wurde unter Rühren bei 20 °C in einer Portion 36 (494 mg, 1.66 mmol) gegeben und das Reaktionsgemisch 15 min bei dieser Temperatur gerührt. Zu der resultierenden Suspension wurde Acetonitril (10 mL) gegeben und das Gemisch erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 3 h bei dieser Temperatur und anschließend 15 h bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 4 h). Ausbeute: 781 mg (1.40 mmol, 85%) eines dunkelroten kristallinen Feststoffs. Smp. >235 °C (Zers.). - ¹H-NMR $(CD_2Cl_2, 500.1 \text{ MHz})$: $\delta = 1.88 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 2.45 \text{ (s, 3 H; CCH_3)}, 1.97 \text{ (s, 3 H; CH_3CN)}, 1.97 \text{ (s, 3 H; CH_3CN)$ 5.25 (s, 1 H; CCHC), 7.12 (s, 1 H; CCHC), 6.63–6.74, 7.11–7.29, 7.37–7.75, 8.00–8.06 ppm (m, 19 H; OC₆ H_4 N, SiC₆ H_5 , CC₆ H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 2.0 (CH₃CN), 23.9 (CCH₃), 24.8 (CCH₃), 94.8 (CCHC), 102.6 (CCHC), 117.4, (CH₃CN), 115.4, 121.0, 126.2, 126.5 (2 C), 127.8, 128.4 (2 C), 128.6 (2 C), 128.9 (2 C), 129.0, 129.1 (2 C), 133.3, 133.4, 133.5, 134.7 (2 C), 135.8, 136.5, 153.0, 156.3 (OC₆H₄N, SiC₆H₅, CC₆H₅), 168.0 (C(N)CH₃), 177.2 (C(O)CH₃), 182.8 (CO), 184.7 ppm (CO). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -164.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 2.7$ (CH₃CN), 23.3 (CCH₃), 24.6 (CCH₃), 94.9 (CCHC), 103.2 (CCHC), 117.9 (CH₃CN), 116.6, 121.8, 126.0 (4 C), 128.2 (5 C), 129.2 (6 C), 133.2 (2 C), 134.6 (2 C), 135.7, 155.0, 157.5 (OC₆H₄N, SiC₆H₅, CC₆H₅), 168.9 (*C*(N)CH₃), 175.8 (*C*(O)CH₃), 182.7 ppm (2 C; *CO*). — 15 N-VACP/MAS-NMR: δ = -177.3 (C(N)CH₃), -126.1 ppm (CH₃CN), -29Si-VACP/MAS-NMR: $\delta = -164.3$ ppm. C₃₄H₃₀N₂O₄Si (558.71) C 73.09 H 5.41 Ber. N 5.01 Gef. C 73.0 H 5.4 N 4.8

Verbindung $43 \cdot (C_2H_5)_2O$

Zu einer Lösung von **15** (1.63 g, 4.94 mmol) in Diethylether (50 mL) wurde unter Rühren bei 20 °C in einer Portion **37** (1.66 g, 5.92 mmol) gegeben und das Gemisch 3 d bei dieser

Temperatur gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der verbliebene Rückstand wurde mit Diethylether (15 mL) versetzt. Die resultierende Suspension wurde erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und 3 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 4 h). Ausbeute: 1.92 g (3.83 mmol, 76%) eines dunkelroten kristallinen Feststoffs.^[48] Smp. >105 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 2.01 $(d, {}^{4}J({}^{1}H, {}^{13}C) = 0.4 \text{ Hz}, 3 \text{ H}; \text{ CCH}_{3}), 2.50 \text{ (s, 3 H; CCH}_{3}), 5.46 \text{ (q, } {}^{4}J({}^{1}H, {}^{13}C) = 0.4 \text{ Hz}, 1 \text{ H};$ CCHC), 6.41 (s, 1 H; CCHC), 6.78-6.83, 6.83-6.86, 7.09-7.14, 7.17-7.25, 7.29-7.30, 7.42-7.46 ppm (m, 9 H; OC₆H₄N, SiC₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 24.3 (CCH₃), 24.8 (CCH₃), 93.6 (CCHC), 104.3 (CCHC), 117.6 (q, ${}^{1}J({}^{13}C, {}^{19}F) = 283$ Hz; CCF₃), 115.3, 119.2, 120.9, 127.4 (2 C), 128.6, 128.8, 132.1, 134.1 (2 C), 142.2, 153.1 (OC₆H₄N, SiC₆H₅), 171.1 (C(N)CH₃), 176.3 ppm (C(O)CH₃); die C(O)CF₃-Resonanzsignale wurden nicht detektiert. — ¹⁹F-NMR (CD₂Cl₂, 376.5 MHz): $\delta = -76.9$ ppm. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -133.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.6$ (CCH₃), 25.1 (CCH₃), 93.1 (CCHC), 107.4 (CCHC), 114.0, 117,1, 120.0, 126.8, 128.7 (2 C), 132.6, 134.6, 135.4 (2 C), 142.9, 154.2 (OC₆H₄N, SiC₆H₅), 168.7 (C(O)CF₃), 171.7 (C(N)CH₃), 175.4 (C(O)CH₃), 179.6 ppm (C(O)CF₃). — ¹⁵N-VACP/MAS-NMR: $\delta = -187.3$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta =$ -134.4 ppm.

C ₂₂ H ₁₇ F ₆ NO ₄ Si (501.5)	Ber.	C 52.69	H 3.42	N 2.79
	Gef.	C 53.0	Н 3.4	N 3.0

Verbindung 44.0.5C₆H₅CH₃

Zu einer Lösung von **45** (2.13 g, 6.16 mmol) in Acetonitril (50 mL) wurde unter Rühren bei 20 °C in einer Portion **37** (2.07 g, 7.39 mmol) gegeben und das Reaktionsgemisch 1 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der verbliebene Rückstand wurde mit Toluol (20 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf –20 °C abgekühlt und 17 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 2.19 g (3.89 mmol, 63%) eines farblosen kristallinen Feststoffs. Smp. >183 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.78 (s, 3 H; CCH₃), 2.29 (s, 3 H; CCH₃), 2.35 (m, 1.5 H; C₆H₅CH₃), 5.79 (s, 1 H; CCHC), 5.87 (s, 1 H; CCHC), 6.94–6.99, 7.13–7.20, 7.23–7.30, 7.31–7.36, 7.36–7.40, 7.64–7.68, 7.69–7.73

ppm (m, 11.5 H; SC₆H₄N, SiC₆H₅, C₆H₅CH₃). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 21.5 $(0.5 \text{ C}, \text{ C}_6\text{H}_5\text{C}\text{H}_3), 24.9 \text{ (CCH}_3), 25.0 \text{ (CCH}_3), 83.7 \text{ (q, } {}^2J({}^{13}\text{C}, {}^{19}\text{F}) = 32.5 \text{ Hz}; C_q\text{CF}_3), 102.6$ (CCHC), 102.9 (q, ${}^{3}J({}^{13}C, {}^{19}F) = 1.9$ Hz; CCHC), 119.7 (q, ${}^{1}J({}^{13}C, {}^{19}F) = 273.9$ Hz; C₀CF₃ oder C_tCF_3 , 124.3 (g, ${}^{1}J({}^{13}C, {}^{19}F) = 283.5$ Hz; C_aCF_3 oder C_tCF_3), 146.9 (g, ${}^{2}J({}^{13}C, {}^{19}F) = 36.8$ Hz; C₁CF₃), 125.6 (0.5 C), 126.8, 127.5 (2 C), 128.5, 128.7, 129.2, 129.3, 130.0, 131.4, 137.2 (2 C), 137.4, 137.6, 138.3 (0.5 C), 147.8 (SC₆H₄N, SiC₆H₅, C₆H₅CH₃), 177.3 (C(N)CH₃), 187.9 ppm (*C*(O)CH₃). — ¹⁹F-NMR (CD₂Cl₂, 376.5 MHz): $\delta = -81.6$ (C_qCF₃), -75.3 ppm (C_tCF₃). - ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -125.3$ ppm. - ¹³C-VACP/MAS-NMR: $\delta = 21.6$ (0.5 C; C₆H₅CH₃), 25.2 (2 C; CCH₃), 83.8 (C_qCF₃), 102.4 (CCHC), 103.9 (CCHC), 119.2 (C_qCF₃) oder CtCF3), 122.1 (CaCF3 oder CtCF3), 146.7 (CtCF3), 125.8 (1.5 C), 126.6 (2 C), 127.1, 129.1, 130.1, 130.2 (2 C), 130.7, 135.8, 137.9 (2 C), 138.3 (0.5 C), 138.5, 146.3 (SC₆H₄N, SiC_6H_5 , $C_6H_5CH_3$), 176.4 (C(N)CH₃), 189.6 ppm (C(O)CH₃). — ¹⁵N-VACP/MAS-NMR: $\delta =$ -205.3 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -124.5$ ppm. C₂₅₅H₂₁F₆NO₃SSi (563.56) Ber. C 54.34 N 2.49 S 5.69 H 3.76

H 3.7

N 2.9

S 5.5

Verbindung 45

Verbindung 45 wurde gemäß Lit. [8a] dargestellt.

Gef.

C 54.7

Verbindung 46

Eine Mischung von 8-Hydroxychinolin (9.29 g, 64.0 mmol) und 1,1,1,3,3,3-Hexamethyldisilazan (120 mL) wurde 2 h bei 125 °C gerührt. Die resultierende Lösung wurde auf 20 °C abgekühlt und im Vakuum von den leichtflüchtigen Komponenten befreit. Der erhaltene Rückstand wurde bei vermindertem Druck durch fraktionierende Destillation gereinigt. Ausbeute: 12.7 g (58.4 mmol, 91%) einer farblosen Flüssigkeit. Sdp. 102–104 °C/0.04 mbar. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 0.36 (s, 9 H; SiCH₃), 7.15–7.20, 7.36–7.41, 7.42– 7.45, 8.11–8.15, 8.84–8.88 ppm (m, 6 H; C₉H₆N). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 1.18 (SiCH₃), 118.0, 120.8, 121.7, 127.3, 130.2, 136.0, 142.3, 148.9, 152.8 ppm (C₉H₆N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = 20.0 ppm.

C ₁₂ H ₁₅ NOSi (217.34)	Ber.	C 66.32	H 6.96	N 6.44
	Gef.	C 66.0	Н 7.0	N 6.9

Methode A: Eine Mischung von **48** (4.83 g, 29.9 mmol) und 1,1,1,3,3,3-Hexamethyldisilazan (50 mL) wurde 3 h bei 125 °C gerührt. Die resultierende Lösung wurde auf 20 °C abgekühlt und im Vakuum von den leichtflüchtigen Komponenten befreit. Der erhaltene Rückstand wurde bei vermindertem Druck durch fraktionierende Destillation gereinigt. Ausbeute: 1.30 g (5.57 mmol, 74%) einer farblosen Flüssigkeit. Sdp. 106 °C/0.08 mbar. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 0.33 (s, 9 H; SiCH₃), 7.39–7.45, 7.68–7.72, 7.89–7.92, 8.13–8.17, 8.94–8.97 ppm (m, 6 H; C₉H₆N). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 2.0 (3 C; (SiCH₃), 121.7, 126.5, 127.0, 129.4, 134.6, 135.0, 136.8, 148.5, 149.9 ppm (C₉H₆N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = 16.8 ppm.

C ₁₂ H ₁₅ NSSi (233.41)	Ber.	C 61.75	H 6.48	N 6.00	S 13.74
	Gef.	C 61.5	Н 6.5	N 6.1	S 13.8

Methode B: Verbindung 46 wurde in Anlehnung an Lit. [29] dargestellt. Zu einer Mischung von Chinolin-8-sulfonylchlorid (19.5 g, 85.5 mmol) und Toluol (200 mL) wurde unter Rühren bei 20 °C in einer Portion eine Lösung von Triphenylphosphin (67.3 g, 256 mmol) in Toluol (10 mL) gegeben und das resultierende Gemisch 90 min bei dieser Temperatur gerührt. Zu dem Reaktionsgemisch wurde Wasser (100 mL) gegeben und die resultierende Suspension mit einer 10% igen wässrigen Natriumhydroxid-Lösung extrahiert (3 × 100 mL). Zu den vereinigten wässrigen Phasen wurde Wasser (300 mL) gegeben, und die entstandene Lösung wurde mit konzentrierter Salzsäure neutralisiert. Die erhaltene Lösung wurde mit Dichlormethan extrahiert ($4 \times 100 \text{ mL}$), und die vereinigten organischen Phasen wurden über wasserfreiem Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan (50 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde mit Tetrahydrofuran (180 mL) versetzt und zu der resultierenden Lösung wurden unter Rühren bei 20 °C in jeweils einer Portion nacheinander Triethylamin (8.65 g, 85.5 mmol) und Chlortrimethylsilan (9.29 g, 85.5 mmol) gegeben. Das erhaltene Reaktionsgemisch wurde 16 h bei 20 °C gerührt, und die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Tetrahydrofuran (40 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt und im Vakuum vom Lösungsmittel befreit. Der erhaltene Rückstand wurde durch fraktionierende Destillation bei vermindertem Druck gereinigt. Ausbeute: 13.0 g (55.5 mmol, 65%) einer farblosen Flüssigkeit. Die NMR-spektroskopischen Daten des nach *Methode B* erhaltenen Produktes stimmten mit den unter *Methode A* genannten überein.

Verbindung 48

Verbindung 48 wurde in Anlehnung an Lit. [30] dargestellt. Zu einer Lösung von Chinolin-8sulfonvlchlorid (6.08 g, 26.7 mmol) in Toluol (100 mL) wurde unter Rühren bei 20 °C in einer Portion eine Lösung von Triphenylphosphin (21.0 g, 80.1 mmol) in Toluol (50 mL) gegeben und das resultierende Gemisch 40 min bei dieser Temperatur gerührt. Anschließend wurde Wasser (25 mL) zugegeben und das Gemisch wurde mit einer 10% igen wässrigen Natriumhydroxid-Lösung extrahiert (3 × 60 mL). Zu den vereinigten wässrigen Phasen wurde Wasser (250 mL) gegeben und die entstandene Lösung mit konzentrierter Salzsäure neutralisiert. Die erhaltene Lösung wurde mit Dichlormethan extrahiert (3×100 mL), und die vereinigten organischen Phasen wurden über wasserfreiem Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan (50 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde mit einer 2 M Chlorwasserstoff-Lösung (130 mL) in Diethylether versetzt. Das resultierende Gemisch wurde auf -20 °C gekühlt und 7 d ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 3.82 g (19.3 mmol, 72%) eines gelben Feststoffs. Smp. >175 °C (Zers.). — ¹H-NMR ([D₄]MeOH, 300.1 MHz): $\delta = 5.04$ (br. s, SH), ^[49] 7.86–7.94, 8.16–8.24, 8.25–8.39, 9.22–9.34 (C₉ H_6 N); das HN-Signal wurde nicht detektiert. — ¹³C-NMR $([D_4]MeOH, 75.5 MHz): \delta = 123.6, 124.6, 129.8, 131.2, 131.7, 138.7, 140.7, 146.7, 150.0$ $(C_9H_6N).$

C ₉ H ₈ CINS (197.69)	Ber.	C 54.68	H 4.08	N 7.09	S 16.22
	Gef.	C 54.7	H 4.1	N 7.3	S 16.1

Verbindung 50

Verbindung **50** wurde gemäß Lit. [31] dargestellt. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 2.93 (br. s, 1 H; Se*H*), 6.72–6.78, 6.96–7.03, 7.20–7.26, 7.46–7.51, 7.57–7.62, 8.61–8.66 ppm (C₉*H*₆NSe). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 121.4, 124.9, 127.1, 128.3, 132.9, 136.3, 146.0, 147.5, 149.2 ppm (C₉H₆NSe). — ⁷⁷Se-NMR (CD₂Cl₂, 95.4 MHz): δ = 94.3 ppm.

Verbindung 51 wurde in Anlehnung an Lit. [32] dargestellt. Zu einer Lösung von Lithium (743 mg, 107 mmol) in flüssigem Ammoniak (200 mL) wurde unter Rühren bei -78 °C in einer Portion Selen (8.45 g, 107 mmol) gegeben und die resultierende Mischung 4 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde auf 20 °C erwärmt und bei dieser Temperatur unter Rühren nacheinander in jeweils einer Portion mit Dimethylformamid (150 mL) und 8-Bromchinolin (35.0 g, 168 mmol) versetzt. Die erhaltene Mischung wurde auf 153 °C erwärmt und 4 d bei dieser Temperatur gerührt. Das Gemisch wurde dann auf 20 °C abgekühlt und mit Wasser (150 mL) versetzt und 16 h das resultierende Gemisch bei dieser Temperatur gerührt. Anschließend wurde mit Dichlormethan (3 × 200 mL) extrahiert, und die vereinigten organischen Phasen wurden über wasserfreiem Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan (100 mL) gewaschen und verworfen. Das Filtrat und die Waschlösung wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde mit 6 N Salzsäure (50 mL) und wässriger Phosphinsäure (50% (v/v), 30 mL) versetzt und das resultierende Gemisch auf ca. 40 °C erwärmt und dann 15 min bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde auf 20 °C abgekühlt und solange mit einer wässrigen 12 M Natriumhydroxyd-Lösung versetzt, bis pH = 14 erreicht wurde. Anschließend wurde mit einer wässrigen 1%igen Wasserstoffperoxyd-Lösung (10 mL) versetzt, und das Gemisch 1 h gerührt. Der resultierende Feststoff wurde durch Filtration isoliert, mit Wasser (100 mL) und Diethylether (100 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 10 h). Ausbeute: 18.8 g (45.3 mmol, 85%) eines farblosen Feststoffs. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 7.36$ (dd, ³J(¹H, ¹H) = 7.4 Hz, ³J(¹H, ¹H) = 8.2 Hz, 1 H; H-6, C₉H₆NSe), 7.51 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 4.3$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, 1 H; H-3, C_9H_6NSe , 7.70 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.2 Hz$, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2 Hz$, 1 H; H-7, C_9H_6NSe), 7.92 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 7.4 \text{ Hz}, {}^{4}J({}^{1}H,{}^{1}H) = 1.2 \text{ Hz}, 1 \text{ H}; H-5, C_{9}H_{6}\text{NSe}, 8.22 \text{ (dd, } {}^{3}J({}^{1}H,{}^{1}H) = 8.4 \text{ Hz},$ ${}^{4}J({}^{1}H,{}^{1}H) = 1.7$ Hz, 1 H; H-4, C₉H₆NSe), 8.97 ppm (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 4.3$ Hz, ${}^{4}J({}^{1}H,{}^{1}H) = 1.7$ Hz, 1 H; H-2, C₉H₆NSe). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 122.2 (C-3; C₉H₆NSe), 126.2 (C-6; C₉H₆NSe), 127.7 (C-5; C₉H₆NSe), 128.7 (C-4a; C₉H₆NSe), 128.8 (C-7; C₉H₆NSe), 131.8 (C-8; C₉H₆NSe), 136.6 (C-4; C₉H₆NSe), 147.2 (C-8a; C₉H₆NSe), 149.9 ppm $(C-2; C_9H_6NSe)$. — ⁷⁷Se-NMR (CD₂Cl₂, 95.4 MHz): δ = 322.4 ppm.

$C_{18}H_{12}N_2Se_2$ (414.23)	Ber.	C 52.19	H 2.92	N 6.76
	Gef.	C 52.4	H 2.8	N 6.9

Verbindung 52 wurde in Anlehnung an Lit. [50] dargestellt: Zu einer Lösung von 2-Bromanilin (33.7 g, 196 mmol) in Methansulfonsäure (100 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Natrium-3-nitrobenzolsulfonat (27.8 g, 123 mmol), Eisensulfatheptahydrat (1.64 g, 5.90 mmol) und Hydrochinon (432 mg, 3.92 mmol) gegeben, und das Gemisch wurde 10 min bei dieser Temperatur gerührt. Die Reaktionsmischung wurde auf 125 °C erwärmt und bei dieser Temperatur unter Rühren in einer Portion mit Glycerin (18.1 g, 197 mmol) versetzt. Die resultierende Lösung wurde 2 h bei dieser Temperatur gerührt, auf 0 °C gekühlt und mit Wasser (400 mL) versetzt. Anschließend wurde eine 50% ige (w/w) wässrige Natriumhydroxid-Lösung zugegeben, bis pH = 14 erreicht wurde. Das erhaltene Gemisch wurde mit Diethylether ($3 \times je 200 \text{ mL}$) extrahiert, und die vereinigten organischen Phasen wurden über wasserfreiem Natriumsulfat getrocknet. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Diethylether (100 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und der erhaltene Rückstand durch fraktionierende Destillation gereinigt. Ausbeute: 30.8 g (148 mmol, 76%) einer farblosen Flüssigkeit. Sdp. 124 °C/1 mbar. — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 7.34$ – 7.41, 7.42–7.47, 7.76–7.81, 8.01–8.06, 8.12–8.18, 8.96–9.01 ppm (m, 6 H; C₉*H*₆NBr). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): δ = 122.3, 125.1, 127.2, 128.2, 129.9, 133.4, 136.8, 145.5, 151.5 ppm (C_9 H₆NBr).

C ₉ H ₆ BrN (208.06)	Ber.	C 51.96	H 2.91	N 6.73
	Gef.	C 51.9	H 3.0	N 7.0

Verbindung 53

Zu einer Lösung von 8-Selenochinolin (625 mg, 3.22 mmol) wurde unter Rühren bei 20 °C in einer Portion Kaliumhydrid (129 mg, 3.22 mmol) gegeben und die Reaktionsmischung 16 h bei dieser Temperatur gerührt. Die erhaltene Suspension wurde im Vakuum vom Lösungsmittel befreit. Ausbeute: 864 mg (3.06 mmol, 95%) eines gelben Feststoffs. — ¹H-NMR ([D₆]DMSO, 500.1 MHz): $\delta = 7.12-7.17$, 7.19–7.25, 7.95–8.03, 8.67–8.72 (C₉H₆NSe). - 13 C-NMR ([D₆]DMSO, 125.8 MHz): δ = 118.0, 119.6, 125.4, 128.7, 136.2, 136.7, 147.2, 151.6, 153.2 ppm (C_9H_6NSe). — ⁷⁷Se-NMR ([D₆]DMSO, 95.4 MHz): δ = 191.2 ppm. C₁₁H₁₀KNO_{0.5}Se (282.27) N 5.69 Ber. C 43.90 H 2.46 C 44.0 Gef. H 2.9 N 5.4

Methode A: Zu einer Lösung von 12 (1.37 g, 4.00 mmol) in Acetonitril (70 mL) wurde unter Rühren bei 20 °C in einer Portion 46 (1.05 g, 4.83 mmol) gegeben und die Reaktionsmischung 1 min bei dieser Temperatur gerührt und dann 16 h bei 20 °C und weitere 24 h bei -20 °C ungestört aufbewahrt. Der erhaltene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (20 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.79 g (3.96 mmol, 99%) eines roten kristallinen Feststoffs. Smp. >243 °C (Zers.). - ¹H-NMR (500.1 MHz, CD₂Cl₂): δ = 1.76 (s, 3 H; CCH₃), 2.26 (s, 3 H; CCH₃), 2.37 (s, 3 H; CCH₃), 2. H; NCH₃), 5.10 (s, 1 H; CCHC), 6.02–6.07, 6.40–6.46, 6.84–6.90, 7.10–7.15, 7.16–7.26, 7.53–7.58, 7.60–7.65, 8.18–8.22, 8.23–8.27 ppm (m, 15 H; C_6H_4 , C_6H_5 , C_9H_6 NO). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 24.0$ (CCH₃), 24.8 (CCH₃), 30.9 (NCH₃), 103.4 (CCHC), 108.4, 111.4, 112.7, 114.3, 120.3, 121.5, 126.4 (2 C), 126.5, 127.8, 129.3, 130.4, 130.5, 135.1 (2 C), 135.2, 138.0, 140.6, 148.8, 150.4, 154.5 (C₆H₄, C₆H₅, C₉H₆NO), 170.6 (C(N)CH₃), 180.7 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -144.0$ ppm. — ¹³C-VACP/MAS-NMR: *δ* = 24.2 (2 C; CCH₃), 31.5 (NCH₃), 106.8 (CCHC), 109.8 (2 C), 111.7, 114.6, 121.1, 122.9, 127.0, 128.2 (3 C), 130.1 (3 C), 134.2, 135.9 (3 C), 142.3, 148.2, 153.4, ppm ($C(O)CH_3$). — ¹⁵N-155.2 (C₆H₄, C₆H₅, C₉H₆NO), 170.3 (C(N)CH₃), 180.6 VACP/MAS-NMR: $\delta = -288.0$ (NCH₃), -185.3 (C(N)CH₃), -118.7 ppm (C₉H₆NO). - ²⁹Si-VACP/MAS-NMR: $\delta = -146.9$ ppm.

C ₂₇ H ₂₅ N ₃ O ₂ Si (451.60)	Ber.	C 71.81	Н 5.58	N 9.30
	Gef.	C 71.8	Н 5.6	N 9.4

Methode B: Zu einer Lösung von **12** (844 mg, 2.46 mmol) in Benzol (40 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (249 mg, 2.46 mmol) und 8-Hydroxychinolin (357 mg, 2.46 mmol) gegeben. Die Mischung wurde 2 h bei dieser Temperatur gerührt und anschließend auf 80 °C erwärmt, und die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Benzol (2×10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösungen wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (10 mL) gegeben und die resultierende Suspension erwärmt, bis eine klare Lösung erhalten wurde, welche 24 h bei 20 °C ungestört aufbewahrt wurde. Der erhaltene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 460 mg (1.02 mmol, 41%) eines roten kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach *Methode B* erhaltenen Produktes stimmten mit den unter *Methode A* genannten überein.

Methode C: Zu einer Lösung von 8-Hydroxychinolin (249 mg, 1.72 mmol) in Tetrahydrofuran (5 mL) wurden unter Rühren bei 20 °C in einer Portion eine 1.6 M *n*-Buthyllithium-Lösung (1.07 mL, 1.71 mmol) in *n*-Hexan gegeben, und das Gemisch wurde 10 min bei dieser Temperatur gerührt. Die erhaltene Lösung wurde unter Rühren bei 20 °C in einer Portion zu einer Lösung von 12 (588 mg, 1.71 mmol) in Tetrahydrofuran (10 mL) gegeben, und das resultierende Gemisch wurde 2 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand wurde mit Dichlormethan (35 mL) versetzt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Dichlormethan gewaschen (2 \times 20 mL) und verworfen. Das Filtrat und die Waschlösungen wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (50 mL) gegeben und die resultierende Suspension erwärmt, bis eine klare Lösung erhalten wurde, welche 2 d bei -20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (2×10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 153 mg (339 µmol, 20%) eines roten kristallinen Feststoffs. Die NMRspektroskopischen Daten des nach Methode C erhaltenen Produktes stimmten mit den unter Methode A genannten überein.

Verbindung 55.0.5CH₃CN

Zu einer Lösung von **12** (1.37 g, 4.00 mmol) in Acetonitril (70 mL) wurde unter Rühren bei 20 °C in einer Portion **47** (1.03 g, 4.41 mmol) gegeben und die Reaktionsmischung 1 min bei dieser Temperatur gerührt und dann 16 h bei dieser Temperatur ungestört aufbewahrt. Der resultierende Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (20 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.44 g (2.95 mmol, 74%) eines dunkelroten kristallinen Feststoffs. Smp. >197 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.94$ (s, 3 H; CCH₃), 1.97 (s, 1.5 H; N≡CCH₃), 2.32 (s, 3 H; CCH₃), 2.49 (s, 3 H; NCH₃), 5.23 (s, 1 H; CCHC), 5.93–5.97, 6.37–6.43, 6.75–6.81, 7.03–7.07, 7.12–7.20, 7.38–7.44, 7.48–7.52, 7.73–7.77, 8.10–8.14, 8.41–8.45 ppm (m, 15 H; C₆H₄, C₆H₅, C₉H₆NS). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 2.0$ (N≡CCH₃), 23.6 (CCH₃), 25.0 (CCH₃), 32.7 (NCH₃), 103.9 (CCHC), 116.5 (N≡CCH₃), 109.2, 113.2, 120.1, 120.3, 120.6, 126.6, 126.7 (2 C), 127.9, 128.1, 128.3, 134.0 (2 C), 137.1, 139.4, 140.1, 142.7, 145.0, 148.9, 149.7, 151.8 (C₆H₄,

C_6H_5 , C_9H_6NS), 170.5 ($C(N)$)CH3),	181.4 ppm (<i>C</i>	$(O)CH_3) {}^{29}S$	Si-NMR (CD ₂ C	l ₂ , 99.4 MHz):
$\delta = -135.8$ ppm. — ¹³ C-VA	CP/MA	S-NMR: ^[51] δ	$= 24.1 (CCH_3)$), 26.7 (C <i>C</i> H ₃),	34.5 (NCH ₃),
105.8 (CCHC), 108.0, 112	9, 114.	6, 120.4, 121	.4 (2 C), 126.	8, 127.3 (2 C),	, 129.0 (2 C),
129.9, 130.7, 133.5, 137.6,	139.7,	142.3, 146.7,	148.8, 149.3, 1	154.6 (C ₆ H ₄ , C ₆	₅ H ₅ , C ₉ H ₆ NS),
170.6 (C(N)CH ₃), 182.2 pp	n (<i>C</i> (O))CH ₃). — 15 N	-VACP/MAS-1	NMR: $^{[51]}\delta = -2$	283.1 (NCH ₃),
—187.9 (C(N)CH ₃), -114.1	ppm (C	$_{9}$ H ₆ NS). — ²⁹	Si-VACP/MAS	S-NMR: ^[51] $\delta =$	–135.3 ppm.
C ₂₇ H ₂₅ N ₃ OSSi (467.67) ^[52]	Ber.	C 69.34	Н 5.39	N 8.99	S 6.86
	Gef.	C 68.8	Н 5.4	N 9.0	S 6.7

Methode A: Zu einer Lösung von 15 (457 mg, 1.39 mmol) in Acetonitril (60 mL) wurde unter Rühren bei 20 °C in einer Portion 46 (316 mg, 1.45 mmol) gegeben und die Reaktionsmischung 1 min bei dieser Temperatur gerührt und dann 16 h bei 20 °C und weitere 24 h bei -20 °C ungestört aufbewahrt. Der resultierende Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 572 mg (1.30 mmol, 94%) eines gelben kristallinen Feststoffs. Smp. >242 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.77$ (s, 3 H; CCH₃), 2.46 (s, 3 H; CCH₃), 5.18 (s, 1 H; CCHC), 6.49-6.52, 6.70-6.74, 6.91-6.96, 7.13-7.16, 7.18-7.21, 7.27-7.36, 7.58-7.65, 8.17–8.20, 8.27–8.31 ppm (m, 15 H; C_6H_4 , C_6H_5 , C_9H_6NO). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 24.4$ (CCH₃), 24.9 (CCH₃), 103.0 (CCHC), 111.7, 114.4, 115.8, 117.8, 120.6, 121.6, 126.7 (2 C), 126.9, 128.0, 129.4, 130.8, 133.0, 134.5 (2 C), 135.1, 138.9, 141.7, 149.8, 154.3, 155.3 (C₆H₄, C₆H₅, C₉H₆NO), 170.5 (C(N)CH₃), 179.7 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -147.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 23.3$ (CCH₃), 25.7 (CCH₃), 105.1 (CCHC), 110.8, 114.8 (2 C), 117.7, 120.3, 122.0, 126.7, 126.9, 127.4 (4 C), 133.9, 134.5, 135.9, 136.1, 138.1, 139.6, 149.2, 152.6, 155.3 (C₆H₄, C₆H₅, C₉H₆NO), 172.9 (*C*(N)CH₃), 184.4 ppm (*C*(O)CH₃). — ¹⁵N-VACP/MAS-NMR: $\delta = -186.6$ (C(*N*)CH₃), -122.8 ppm (C₆H₆NO). - ²⁹Si-VACP/MAS-NMR: $\delta = -144.6 \text{ ppm}$. C₂₆H₂₂N₂O₃Si (438.56) Ber. C 71.21 H 5.06 N 6.39

Methode B: Zu einer Lösung von **15** (1.69 g, 5.12 mmol) in Tetrahydrofuran (50 mL) wurden unter Rühren bei –50 °C nacheinander in jeweils einer Portion Triethylamin (518 mg, 5.12 mmol) und 8-Hydroxychinolin (743 mg, 5.12 mmol) gegeben, und die Reaktionsmischung wurde 1 h bei dieser Temperatur und anschließend 20 h bei 20 °C gerührt. Das erhaltene

H 5.2

N 6.5

C 71.0

Gef.

Gemisch wurde mit Tetrahydrofuran mittels Soxhlet-Extraktion extrahiert. Das Extrakt wurde im Vakuum vom Lösungsmittel befreit und der verbliebenen Rückstand mit Acetonitril (130 mL) versetzt. Die resultierende Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 798 mg (1.82 mmol, 36%) eines gelben kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach *Methode B* erhaltenen Produktes stimmten mit den unter *Methode A* genannten überein.

Methode C: Zu einer Lösung von 8-Hydroxychinolin (671 mg, 4.62 mmol) in Tetrahydrofuran (10 mL) wurde unter Rühren bei 20 °C innerhalb von 2 min eine 1.6 M *n*-Buthyllithium-Lösung (2.89 mL, 4.62 mmol) in *n*-Hexan getropft und die Reaktionsmischung 15 min bei dieser Temperatur gerührt. Die resultierende Lösung wurde unter Rühren bei 20 °C innerhalb von 2 min zu einer Lösung von 15 (1.52 g, 4.61 mmol) in Tetrahydrofuran (60 mL) getropft und die Reaktionsmischung 18 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand mit Dichlormethan (10 mL) versetzt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt und verworfen. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und der verbliebene Rückstand mit Acetonitril (135 mL) versetzt. Die resultierende Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und 3 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (10 mL) gewaschen und im Vakuum getrocknet (0.01 mabr, 20 °C, 2 h). Ausbeute: 1.37 g (3.12 mmol, 68%) eines gelben kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach Methode C erhaltenen Produktes stimmten mit den unter Methode A genannten überein.

Verbindung 57.0.5*CH*₃*CN*

Methode A: Zu einer Lösung von **15** (1.14 g, 3.46 mmol) in Acetonitril (70 mL) wurde unter Rühren bei 20 °C in einer Portion **47** (810 mg, 3.47 mmol) gegeben und die Reaktionsmischung 1 min bei dieser Temperatur gerührt und dann 16 h bei 20 °C ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (20 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.30 g (2.74 mmol, 79%) eines gelben kristallinen Feststoffs. Smp. >198 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.94$ (s, 3 H; CCH₃), 1.97 (s, 1.5 H; N≡CCH₃), 2.38 (s, 3 H; CCH₃), 5.25 (s, 1 H; CCHC), 6.40–6.44, 6.67–6.72, 6.86–6.91, 7.16–7.20, 7.23–7.30, 7.43–7.51, 7.52–7.56, 7.75–7.79, 8.23–8.26, 8.51–8.55 ppm (m, 15 H; C₆H₄, C₆H₅, C₉H₆NS). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 2.0$ (N=CCH₃), 24.1 (CCH₃), 25.1 (CCH₃), 103.7 (CCHC), 116.9 (N=CCH₃), 115.6, 117.9, 120.5, 120.6, 120.7, 126.9 (2 C), 127.0, 128.1, 128.5, 128.7, 129.8, 132.8, 133.2 (2 C), 139.0, 141.1, 142.6, 146.1, 151.9, 155.0 (C₆H₄, C₆H₅, C₉H₆NS), 171.1 (C(N)CH₃), 180.2 ppm (C(O)CH₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -138.8$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 3.1$ (N=CCH₃), 25.1 (2 C; CCH₃), 105.2 (CCHC), 116.8 (2 C), 121.7, 122.2 (2 C), 126.7, 127.8 (2 C), 128.5 (2 C), 129.9 (2 C), 132.9 (2 C), 133.6, 138.0, 141.2, 142.1, 147.2, 155.1, 156.6 (C₆H₄, C₆H₅, C₉H₆NS), 171.4 (C(N)CH₃), 179.1 ppm (C(O)CH₃); das N=CCH₃-Resonanzsignal wurde nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -176.0$ (C(*N*)CH₃), -127.3 (*N*=CCH₃), -120.8 ppm (C₉H₆NS). — ²⁹Si-VACP/MAS NMR: $\delta = -140.0$ ppm.

C ₂₇ H _{23.5} N _{2.5} O ₂ SSi (475.15)	Ber.	C 68.25	H 4.99	N 7.37	S 6.75
	Gef.	C 68.5	Н 5.1	N 7.5	S 6.7

Methode B: Zu einer Lösung von **15** (490 mg, 1.49 mmol) in Toluol (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (300 mg, 2.96 mmol) und **48** (295 mg, 1.49 mmol) gegeben, und das Gemisch wurde 30 min bei dieser Temperatur gerührt. Anschließend wurde die Mischung auf 110 °C erwärmt und die unlöslichen Bestandteile durch Filtration bei dieser Temperatur abgetrennt, mit Toluol (2×10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösungen wurden vereinigt, und die resultierende Lösung wurde im Vakkum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (7 mL) gegeben, und die resultierende Suspension wurde erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 1 h bei dieser Temperatur und anschließend weitere 20 h bei –20 °C ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 188 mg (396 µmol, 27%) eines gelben kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach *Methode B* erhaltenen Produktes stimmten mit den unter *Methode A* genannten überein.

Verbindung **58**·0.5*CH*₃*CN*

Methode A: Zu einer Lösung von **45** (1.26 g, 3.64 mmol) in Acetonitril (60 mL) wurde unter Rühren bei 20 °C in einer Portion **46** (870 mg, 4.00 mmol) gegeben und die Reaktionsmischung 1 min bei dieser Temperatur gerührt und dann 16 h bei 20 °C ungestört aufbewahrt. Der erhaltene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (40 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.28 g (2.69 mmol, 74%) eines orange gefärbten kristallinen Feststoffs. Smp. >230 °C (Zers.). - ¹H-NMR $(CD_2Cl_2, 500.1 \text{ MHz})$: $\delta = 1.75$ (s, 3 H; CCH_3), 1.97 (s, 1.5 H; N=CCH_3), 2.40 (s, 3 H; CCH₃), 5.33 (s, 1 H; CCHC), 6.91–7.03, 7.12–7.20, 7.21–7.24, 7.27–7.31, 7.57–7.62, 7.77– 7.81, 8.12–8.15, 8.25–8.28 ppm (m, 15 H; C₆H₄, C₆H₅, C₉H₆NO). — 13 C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 2.0$ (N=CCH₃), 24.63 (CCH₃), 24.64 (CCH₃), 105.2 (CCHC), 116.9 (N≡CCH₃), 112.0, 114.7, 121.2, 122.4, 123.1, 126.1 (2 C), 126.4, 126.9, 129.5, 130.2, 130.7, 134.7, 135.4 (2 C), 139.1, 139.9, 140.5, 141.4, 152.6, 153.7 (C₆H₄, C₆H₅, C₉H₆NO), 173.6 $(C(N)CH_3)$, 181.2 ppm $(C(O)CH_3)$. — ²⁹Si-NMR $(CD_2Cl_2, 99.4 \text{ MHz})$: $\delta = -141.7 \text{ ppm.}$ — ¹³C-VACP/MAS-NMR: δ = 7.0 (N=CCH₃), 24.9 (2 C; CCH₃), 107.8 (CCHC), 120.0 (N≡CCH₃), 110.2, 114.8, 122.7, 123.4, 124.5, 125.3, 127.5 (2 C), 128.5, 129.0, 129.8, 131.7, 134.2 (2 C), 135.8, 139.4 (2 C), 141.0, 142.9, 153.9, 156.8 (C₆H₄, C₆H₅, C₉H₆NO), 172.9 $(C(N)CH_3)$, 180.2 ppm $(C(O)CH_3)$. — ¹⁵N-VACP/MAS-NMR: $\delta = -173.6 (C(N)CH_3)$, – 127.8 ($N \equiv CCH_3$), -122.5 ppm (C₉H₆NO). — ²⁹Si-VACP/MAS-NMR: $\delta = -146.4$ ppm. C₂₇H_{23.5}N_{2.5}O₂SSi (475.15) Ber. C 68.25 H 4.99 N 7.37 S 6.75 Gef. C 68.4 H 5.0 N 7.3 S 6.7

Methode B: Zu einer Lösung von 45 (664 mg, 1.92 mmol) in Tetrahydrofuran (40 mL) wurden unter Rühren bei –78 °C nacheinander in jeweils einer Portion Triethylamin (195 mg, 1.93 mmol) und 8-Hydroxychinolin (279 mg, 1.92 mmol) gegeben, und die resultierende Mischung wurde langsam auf 20 °C erwärmt und 20 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand mit Toluol (80 mL) versetzt. Die resultierende Suspension wurde auf 110 °C erwärmt, und die unlöslichen Bestandteile wurden durch Filtration abgetrennt, mit Toluol (2×10 mL) gewaschen und verworfen. Das Filtrat und die Waschlösungen wurden vereinigt, und die resultierende Lösung wurde im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde mit Acetonitril (25 mL) versetzt und die resultierende Suspension erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf 20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der erhaltene Feststoff wurde durch Filtration isoliert, mit Diethylether (2 × 10 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 2 h). Ausbeute: 458 mg (964 µmol, 50%) eines orange gefärbten kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach Methode B erhaltenen Produktes stimmten mit den unter Methode A genannten überein.

Methode C: Zu einer Lösung von 8-Hydroxychinolin (224 mg, 1.54 mmol) in Tetrahydrofuran (10 mL) wurde unter Rühren bei 20 °C innerhalb von 2 min eine 1.6 M *n*-Buthyllithium-Lösung (0.96 mL, 1.54 mmol) in *n*-Hexan getropft und die Reaktionsmischung 15 min bei dieser Temperatur gerührt. Die resultierende Lösung wurde unter Rühren bei 20 °C innerhalb von 2 min zu einer Lösung von 45 (532 mg, 1.54 mmol) in Tetrahydrofuran (60 mL) getropft und die Reaktionsmischung 18 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der verbliebene Rückstand mit Dichlormethan (25 mL) versetzt. Die unlöslichen Bestandteile wurden durch Filtration abgetrennt und verworfen. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und der verbliebene Rückstand mit Acetonitril (25 mL) versetzt. Die resultierende Suspension wurde erwärmt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstanden Feststoff wurde durch Filtration isoliert, mit Diethylether $(2 \times 10 \text{ mL})$ gewaschen und im Vakuum getrocknet (0.01 mabr, 20 °C, 2 h). Ausbeute: 492 mg (1.04 mmol, 68%) eines orange gefärbten kristallinen Feststoffs. Die NMR-spektroskopischen Daten des nach Methode C erhaltenen Produktes stimmten mit den unter Methode A genannten überein.

Verbindung 59.0.5CH₃CN

Zu einer Lösung von 45 (1.23 g, 3.56 mmol) in Acetonitril (70 mL) wurde unter Rühren bei 20 °C in einer Portion 47 (830 mg, 3.56 mmol) gegeben und die Reaktionsmischung wurde 1 min bei dieser Temperatur gerührt und dann 16 h bei 20 °C ungestört aufbewahrt. Der erhaltene Feststoff wurde durch Filtration isoliert, mit n-Pentan (15 mL) gewaschen und im Vakuum getrocknet (0.01 mbar, 20 °C, 1 h). Ausbeute: 1.54 g (3.14 mmol, 88%) eines orange gefärbten kristallinen Feststoffs. Smp. >202 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ = 1.91 (s, 3 H; CCH₃), 1.97 (s, 1.5 H; N=CCH₃), 2.33 (s, 3 H; CCH₃), 5.36 (s, 1 H; CCHC), 6.84–6.96, 7.06–7.20, 7.40–7.50, 7.72–7.78, 8.20–8.24, 8.36–8.40 ppm (m, 15 H; C₆H₄, C₆H₅, C_9H_6NS). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 2.1$ (N=CCH₃), 24.6 (CCH₃), 24.9 (CCH₃), 105.8 (CCHC), 119.7, 121.0, 122.4, 123.0, 124.8, 126.3 (2 C), 126.6, 127.2, 128.6, 128.7, 129.4, 130.2, 134.2 (2 C), 137.1, 141.4, 141.8, 146.2, 149.7, 155.0 (C₆H₄, C₆H₅, C₉H₆NS), 173.9 ($C(N)CH_3$), 181.4 ppm ($C(O)CH_3$); das N= CCH_3 -Resonanzsignal wurde nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -141.6$ ppm. — ¹³C-VACP/MAS NMR: $\delta = 7.2$ (N=CCH₃), 25.1 (CCH₃), 26.1 (CCH₃), 106.7 (CCHC), 121.3, 122.0 (2 C), 125.8 (2 C), 126.8, 127.1, 127.7, 128.8 (2 C), 129.9 (2 C), 133.0, 135.3, 138.0, 138.6, 140.6 (2 C), 142.1, 147.1, 158.7 (C₆H₄, C₆H₅, C₉H₆NS), 173.8 (C(N)CH₃), 180.4 ppm (C(O)CH₃); das N=CCH₃-Resonanzsignal wurde nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -176.0$ (C(*N*)CH₃), -124.2 (*N*=CCH₃), -119.8 ppm (C₉H₆*N*S). — ²⁹Si-VACP/MAS-NMR: $\delta = -145.4$ ppm.

$C_{27}H_{23.5}N_{2.5}OS_2Si$ (491.22)	Ber.	C 66.02	H 4.82	N 7.13	S 13.06
	Gef.	C 66.1	H 4.8	N 7.0	S 13.0

9 Literaturverzeichnis und Anmerkungen

- [1] Ausgewählte Übersichtsartikel über stabile Silicium(II)-Komplexe: a) S. Nagendran,
 H. W. Roesky, *Organometallics* 2008, 27, 457–492; b) Y. Mizuhata, T. Sasamori, N.
 Tokitoh, *Chem. Rev.* 2009, 109, 3479–3511; c) M. Asay, C. Jones, M. Driess, *Chem. Rev.* 2011, 111, 354–396; d) S. Yao, Y. Xiong, M. Driess, *Organometallics* 2011, 30,
 1748–1767; e) S. S. Sen, S. Khan, P. P. Samuel, H. W. Roesky, *Chem. Sci.* 2012, 3,
 659–682; f) M. Driess, *Nat. Chem.* 2012, 4, 525–526; g) B. Blom, M. Stoelzel, M.
 Driess, *Chem. Eur. J.* 2013, 19, 40–62.
- [2] Ausgewählte Publikationen zur Chemie stabiler zweifach koordinierter Silicium(II)-Verbindungen: a) M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Beljakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691-2692; b) B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc., Chem. Commun. 1995, 1931-1932; c) B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 1996, 521, 211-220; d) R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785-788; e) J. Heinicke, A. Oprea, M. K. Kindermann, T. Karpati, L. Nyulászi, T. Veszprémi, Chem. Eur. J. 1998, 4, 541-545; f) M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 1998, 120, 12714-12719; g) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722-9723; h) M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628-9629; i) P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, J. Organomet. Chem. 2010, 695, 398-408; j) Y. Xiong, S. Yao, M. Driess, Chem. Eur. J. 2012, 18, 3316–3320; k) A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldrige, J. Am. Chem. Soc. 2012, 134, 6500-6503; 1) B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504-6507; m) T. Abe, R. Tanaka, S. Ishida, M. Kira, T. Iwamoto, J. Am. Chem. Soc. 2012, 134, 20029-20032.
- [3] Ausgewählte Publikationen zur Chemie stabiler höherkoordinierter Silicium(II)-Verbindungen: a) P. Jutzi, D. Kanne, C. Krüger, *Angew. Chem.* 1986, 98, 163–164; *Angew. Chem. Int. Ed. Engl.* 1986, 25, 164; b) H. H. Karsch, U. Keller, S. Gamper, G. Müller, *Angew. Chem.* 1990, 102, 297–298; *Angew. Chem. Int. Ed. Engl.* 1990, 29, 295–296; c) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem.* 2009, 121, 5793–5796; *Angew. Chem. Int. Ed.* 2009, 48, 5683–5686; d) A. C. Filippou, O. Chernov, G. Schnakenburg, *Angew. Chem.* 2009, 121, 5797–5800;

Angew. Chem. Int. Ed. 2009, 48, 5687–5690; e) Y. Gao, J. Zhang, H. Hu, C. Cui, Organometallics 2010, 29, 3063–3065; f) R. Rodriguez, D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron, A. Baceiredo, Angew. Chem. 2011, 123, 11694–11697; Angew. Chem. Int. Ed. 2011, 50, 11492–11495; g) K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. 2012, 124, 6891–6895; Angew. Chem. Int. Ed. 2012, 51, 6785–6788.

- [4] Ausgewählte Publikationen zur Chemie stabiler höherkoordinierter Silicium(II)-Verbindungen mit Amidinato-Liganden: a) C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. 2006, 118, 4052–4054; Angew. Chem. Int. Ed. 2006, 45, 3948–3950; b) W. Wang, S. Inoue, S. Yao, M. Driess, J. Am. Chem. Soc. 2010, 132, 15890–15892; c) K. Junold, J. A. Baus, C. Burschka, R. Tacke, Angew. Chem. 2012, 124, 7126–7129; Angew. Chem. Int. Ed. 2012, 51, 7020–7023.
- [5] I. Kalikhman, B. Gostevskii, O. Girshberg, A. Sivaramakrishna, N. Kocher, D. Stalke,
 D. Kost, J. Organomet. Chem. 2003, 686, 202–214.
- [6] Ausgewählte Übersichtsartikel über höherkoordinierte Silicium(IV)-Komplexe: a) R.
 R. Holmes, *Chem. Rev.* 1996, 96, 927–950; b) V. Pestunovich, S. Kirpichenko, M.
 Voronkov in *The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2* (Hrsg.: Z.
 Rappoport, Y. Apeloig), Wiley, Chichester, 1998, S. 1447–1537; c) C. Chuit, R. J. P.
 Corriu, C. Reye in *Chemistry of Hypervalent Compounds* (Ed.: K.-y. Akiba), WileyVCH, New York, 1999, S. 81–146; d) R. Tacke, M. Pülm, B. Wagner, *Adv. Organomet. Chem.* 1999, 44, 221–273; e) M. A. Brook, *Silicon in Organic, Organometallic, and Polymer Chemistry*, Wiley, New York, 2000, S. 97–114; f) R.
 Tacke, O. Seiler in *Silicon Chemistry: From the Atom to Extended Systems* (Hrsg.: P.
 Jutzi, U. Schubert), Wiley-VCH, Weinheim, 2003, S. 324–337; g) D. Kost, I.
 Kalikhman, *Adv. Organomet. Chem.* 2004, *50*, 1–106; h) D. Kost, I. Kalikhman, *Acc. Chem. Res.* 2009, *42*, 303–314; i) E. P. A. Couzijn, J. C. Slootweg, A. W. Ehlers, K.
 Lammertsma, Z. Anorg. Allg. Chem. 2009, 635, 1273–1278; j) W. Levason, G. Reid,
 W. Zhang, *Coord. Chem. Rev.* 2011, 255, 1319–1341.
- [7] Ausgewählte Artikel anderer Arbeitsgruppen über höherkoordinierte Silicium(IV)-Komplexe: a) S. Yakubovich, I. Kalikhman, D. Kost, *Dalton Trans.* 2010, *39*, 9241–9244; b) P. Bombicz, I. Kovács, L. Nyulászi, D. Szieberth, P. Terleczky, *Organometallics* 2010, *29*, 1100–1106; d) E. Kertsnus-Banchik, B. Gostevskii, M. Botoshansky, I. Kalikhman, D. Kost, *Organometallics* 2010, *29*, 5435–5445; e) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel, D. Stalke,

Angew. Chem. 2010, 122, 4044–4047; Angew. Chem. Int. Ed. 2010, 49, 3952–3955; f) D. Schöne, D. Gerlach, C. Wiltzsch, E. Brendler, T. Heine, E. Kroke, J. Wagler, Eur. J. Inorg. Chem. 2010, 461-467; g) A. R. Bassindale, M. Sohail, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, Chem. Commun. 2010, 46, 3274-3276; h) R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358-364; i) S. Yakubovich, B. Gostevskii, I. Kalikhman, M. Botoshansky, L. E. Gusel'nikov, V. A. Pestunovich, D. Kost, Organometallics 2011, 30, 405–413; j) S. Muhammad, A. R. Bassindale, P. G. Taylor, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics 2011, 30, 564–571; k) D. Schwarz, E. Brendler, E. Kroke, J. Wagler, Z. Anorg. Allg. Chem. 2012, 638, 1768–1775; I) N. A. Kalashnikova, S. Y. Bylikin, A. A. Korlyukov, A. G. Shipov, Y. I. Baukov, P. G. Taylor, A. R. Bassindale, Dalton Trans. 2012, 41, 12681–12682; m) A. A. Nikolin, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, A. A. Korlyukov, D. E. Arkhipov, A. Bowden, S. Y. Bylikin, A. R. Bassindale, P. G. Taylor, Organometallics 2012, 31, 4988–4997; n) M. Sohail, A. R. Bassindale, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics 2013, 32, 1721–1731.

[8] Ausgewählte Artikel unserer Arbeitsgruppe über höherkoordinierte Silicium(IV)-Komplexe: a) S. Metz, C. Burschka, D. Platte, R. Tacke, Angew. Chem. 2007, 119, 7136–7139; Angew. Chem. Int. Ed. 2007, 46, 7006–7009; b) S. Metz, C. Burschka, R. Tacke, Organometallics 2008, 27, 6032-6034; c) B. Theis, S. Metz, C. Burschka, R. Bertermann, S. Maisch, R. Tacke, Chem. Eur. J. 2009, 15, 7329-7338; d) S. Metz, C. Burschka, R. Tacke, Organometallics 2009, 28, 2311-2317; e) B. Theis, S. Metz, F. Back, C. Burschka, R. Tacke, Z. Anorg. Allg. Chem. 2009, 635, 1306-1312; f) S. Metz, B. Theis, C. Burschka, R. Tacke, Chem. Eur. J. 2010, 16, 6844-6856; g) S. Cota, M. Beyer, R. Bertermann, C. Burschka, K. Götz, M. Kaupp, R. Tacke, Chem. Eur. J. 2010, 16, 6582-6589; h) K. Junold, C. Burschka R. Bertermann, R. Tacke, Dalton Trans. 2010, 39, 9401-9413; i) K. Junold, C. Burschka, R. Bertermann, R. Tacke, Dalton Trans. 2011, 40, 9844–9857; j) K. Junold, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2012, 189–193; k) C. Kobelt, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Dalton Trans. 2012, 41, 2148-2162; l) B. Theis, J. Weiß, W. P. Lippert, R. Bertermann, C. Burschka, R. Tacke, Chem. Eur. J. 2012, 18, 2202–2206; m) J. Weiß, B. Theis, S. Metz, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Eur. J. Inorg. Chem. 2012, 3216-3228; n) K. Junold, J. A. Baus, C. Burschka, R. Tacke, Angew. Chem. 2012, 124, 7126-7129; Angew. Chem.

Int. Ed. 2012, 51, 7020–7023; o) K. Junold, J. A. Baus, C. Burschka, D. Auerhammer,
R. Tacke, *Chem. Eur. J.* 2012, 18, 16288–16291; p) J. A. Baus, C. Burschka, R.
Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, *Inorg. Chem.* 2013, 52, 10664–10676.

- [9] Ausgewählte Artikel unserer Arbeitsgruppe über höherkoordinierte Silicium(IV)-Komplexe mit Silicium–Chalcogen Bindungen: a) R. Willeke, R. Tacke, Z. Anorg. Allg. Chem. 2001, 627, 1537–1541; b) R. Tacke, M. Mallak, R. Willeke, Angew. Chem. 2001, 113, 2401–2403; Angew. Chem. Int. Ed. 2001, 40, 2339–2341; c) R. Bertermann, A. Biller, M. Kaupp, M. Penka, O. Seiler, R. Tacke, Organometallics 2003, 22, 4104–4110; d) O. Seiler, M. Büttner, M. Penka, R. Tacke, Organometallics 2005, 24, 6059–6062; e) D. Troegel, C. Burschka, S. Riedel, M. Kaupp, R. Tacke, Angew. Chem. 2007, 119, 7131–7135; Angew. Chem. Int. Ed. 2007, 46, 7001–7005.
- [10] J. J. Flynn, F. P. Boer, J. Am. Chem. Soc. 1969, 91, 5756–5761.
- [11] D. Högerle, U. Link, U. Thewalt, Z. Naturforsch. 1993, 48b, 691–693.
- [12] R. Tacke, M. Pülm, B. Wagner, Adv. Organomet. Chem. 1999, 44, 221–273.
- [13] R. R. Holmes, Chem. Rev. 1990, 90, 17–31.
- [14] a) A. A. Korlyukov, K. A. Lyssenko, M. Y. Antipin, *Russ. Chem. Bull., Int. Ed.* 2002, 51, 1423–1432; b) N. Kocher, J. Henn, B. Gostevskii, D. Kost, I. Kalikhman, B. Engels, D. Stahlke, *J. Am. Chem. Soc.* 2004, 126, 5563–5568.
- [15] S. Rendler, M. Oestreich, Synthesis 2005, 11, 1727–1747.
- [16] a) R. K. Iler, *The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry*, Wiley, New York, **1978**, S. 783–784; b) P. B. Kaufman, P. Dayanandan, Y. Takeoka, W. C. Bigelow, J. D. Jones, R. Iler, in: *Silicon and Siliceous Structures in Biological Systems* (Hrsg.: T. L. Simpson, B. E. Volcani), Springer-Verlag, New York, **1981**, S. 442–446; c) C. W. Sullivan, in: *Silicon Biochemistry* (Hrsg.: D. Evered, M. O'Connor), Wiley, Chichester, **1986**, S. 70–73; d) S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, C. T. G. Knight, *Science* **1999**, *285*, 1542–1545; e) R. Tacke, C. Burschka, I. Richter, B. Wagner, R. Willeke, *J. Am. Chem. Soc.* **2000**, *122*, 8480–8485; f) R. Tacke, A. Steward, J. Becht, C. Burschka, I. Richter, *Can. J. Chem.* **2000**, *78*, 1380–1387; g) S. D. Kinrade, R. J. Hamilton, A. S. Schach, C. T. G. Knight, *J. Chem. Soc., Dalton Trans.* **2001**, 961–963; h) O. Seiler, C. Burschka, M. Penka, R. Tacke, *Silicon Chem.* **2002**, *1*, 355–365; i) K. Benner, P. Klüfers, M. Vogt, *Angew. Chem.* **2003**, *115*, 1088–1093; *Angew. Chem. Int. Ed.* **2003**, *42*, 1058–1062; j) S. D. Kinrade, E. W. Deguns,

A.-M. Gillson, C. T. G. Knight, J. Chem. Soc. Dalton Trans. 2003, 3713–3716; k) K.
Benner, P. Klüfers, M. Vogt, Angew. Chem. 2003, 115, 1088–1093; Angew. Chem. Int.
Ed. 2003, 42, 1058–1062; l) N. Sahai, Geochim. Cosmochim. Acta 2004, 68, 227–237;
m) S. D. Kinrade, R. J. Balec, A. S. Schach, J. Wang, C. T. G. Knight, Dalton Trans.
2004, 3241–3243; n) X. Kästele, P. Klüfers, F. Kopp, J. Schuhmacher, M. Vogt, Chem. Eur. J. 2005, 11, 6326–6346.

- [17] B. Theis, *Dissertation*, Universität Würzburg, 2009.
- a) K. Van Dyck, R. Van Cauwenbergh, H. Robberecht, H. Deelstra, Fresenius J. Anal. [18] Chem. 1999, 363, 541-544; b) R. Jugdaohsingh, S. H. C. Anderson, K. L. Tucker, H. Elliott, D. P. Kiel, R. P. H. Thompson, J. J. Powell, Am. J. Clin. Nutr. 2002, 75, 887-893; c) R. Jugdaohsingh, K. L. Tucker, N. Qiao, L. A. Cupples, D. P. Kiel, J. J. Powell, J. Bone Miner. Res. 2004, 19, 297-307; d) A. Barel, M. Calomme, A. Timchenko, K. De Paepe, N. Demeester, V. Rogiers, P. Clarys, D. Vanden Berghe, Arch. Dermatol. Res. 2005, 297, 147–153; e) R. Jugdaohsingh, J. Nutr., Health, Aging 2007, 11, 99-110; f) T. D. Spector, M. R. Calomme, S. H. Anderson, G. Clement, L. Bevan, N. Demeester, R. Swaminathan, R. Jugdaohsingh, D. A. Vanden Berghe, J. J. Powell, BMC Musculoskel. Disord. 2008, 9: 85; g) S. Sripanyakorn, R. Jugdaohsingh, W. Dissayabutr, S. H. C. Anderson, R. P. H. Thompson, J. J. Powell, Brit. J. Nutr. 2009, 102, 825-834; h) Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food on choline-stabilised orthosilicic acid for nutritional purposes to food supplements following a request from the European Commission. The EFSA Journal 2009, 948, 1-23; i) H. M. Macdonald, A. C. Hardcastle, R. Jugdaohsingh, W. D. Fraser, D. M. Reid, J. J. Powell, Bone 2012, 50, 681-687.
- [19] a) S. H. Zeisel, J. K. Blusztajn, Annu. Rev. Nutr. 1994, 14, 269–296; b) S. H. Zeisel, Nutrition 2000, 16, 669–671.
- [20] J. Weiß, *Diplomarbeit*, Universität Würzburg, **2009**.
- [21] a) G. Signore, C. Malanga, R. Menicagli, *Tetrahedron* 2008, 64, 197–203; b) M. G.
 Voronkow, O. M. Trofimova, N. F. Chernov, A. I. Albanov, N. N. Chipanina, E. A.
 Grebneva, *Appl. Organomet. Chem.* 2005, 19, 538–541.
- [22] a) R. V. Singh, J. P. Tandon, *Synth. React. Inorg. Met.-Org. Chem.* 1981, *11*, 109–131;
 b) S. Metz, *Dissertation*, Universität Würzburg, 2008.
- [23] E. C. Alyea, A. Malek, Can. J. Chem. 1975, 53, 939–944.
- [24] S. Metz, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2008, 4433–4439.

154	Literaturverzeichnis und Anmerkungen
[25]	H. Wójtowicz, M. Chojnacka, J. Młochowski, J. Palus, L. Syper, D. Hudecova, M.
	Uher, E. Piasecki, M. Rybka, Il Farmaco 2003, 58, 1235-1242.
[26]	J. Jullien, J. M. Pechine, F. Perez, J. J. Piade, Tetrahedron 1982, 38, 1413-1416.
[27]	S. T. Purrington, C. L. Bumgardner, N. V. Lazaridis, P. Singh, J. Org. Chem. 1987, 52 4207 4210
50 01	52,4307-4310.
[28]	D. A. Neumayer, J. A. Belot, R. L. Feezel, C. Reedy, C. L. Stern, T. J. Marks, <i>Inorg. Chem.</i> 1998 , <i>37</i> , 5625–5633.
[29]	E. V. Bellale, M. K. Chaudhari, K. G. Akamanchi, Synthesis 2009, 19, 3211-3213.
[30]	A. Corsini, Q. Fernando, H. Freiser, Anal. Chem. 1963, 35, 1424-1428.
[31]	J. Ashaks, Y. Bankovsky, D. Zaruma, I. Shestakova, I. Domracheva, A. Nesterova, E.
	Lukevics, Chem. Heterocycl. Comp. 2004, 40, 776–780.
[32]	a) K. K. Bhasin, J. Singh, J. Organomet. Chem. 2002, 658, 71-76; b) C. A. Collins, F.
	H. Fry, A. L. Holme, A. Yiakouvaki, A. Al-Qenaei, C. Pourzand, C. Jacob, Org.
	Biomol. Chem. 2005, 3, 1541–1546.
[33]	J. Böhm, D. Fenzke, H. Pfeifer, J. Magn. Reson. 1983, 55, 197-204.
[34]	a) J. Mason, Multinuclear NMR, Plenum Press, New York, 1987, S. 431; b) P. S.
	Pregosin, Transition Metal Nuclear Magnetic Resonance, Elsevier, New York, 1991,
	S. 331; c) P. S. Pregosin, NMR in Organometallic Chemistry, Wiley-VCH, Weinheim,
	2012, S. 15; d) J. G. Melnick, K. Yurkerwich, D. Buccella, W. Sattler, G. Parkin,
	Inorg. Chem. 2008, 47, 6421-6426; e) J. Rohonczy, SOLA-Solid Lineshape Analysis,
	Version 2.2.3, Lorand University, Hungary, 2013.
[35]	G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
[36]	C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281-
[07]	
[3/]	A. L. Speck, <i>PLATON</i> , Utrecht University, Utrecht, The Netherlands, 2008 .
[38]	Hollemann Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, Walter de
[20]	Gruyter, Berlin, 2007, S. 138.
[39]	Symmetrie-Transformationen, die zur Erzeugung der aquivalenten Atome (mit #1 gekennzeichnet) benutzt wurden: -x, y, $-z+1/2$.
[40]	Die Berry-Verzerrungen wurden mit dem Programm PLATON berechnet; A. L.
	Speck, Acta Crystallogr., Sect. D 2009, 65, 148–155.
[41]	a) H. D. Flack, G. Bernardinelli, Acta Crystallogr., Sect. A 1999, 55, 908-915; b) H.
	D. Flack, G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143-1148.

- [42] Um die Dokumentation der NMR-Spektren übersichtlicher zu gestalten, sind nur die ¹H-, ¹³C- und ²⁹Si-Verschiebungen jener Komponenten angegeben, die eindeutig zugeordnet werden konnten. Die chemischen Verschiebungen der gebundenen 2- (Trimethylammonio)ethanolato-Liganden und die des freien Cholins wurden nicht angegeben. Die Quantifizierung der einzelnen Bestandteile in der Mischung (angegeben in %) basieren auf den Integralen der entsprechenden C*H*-Resonanzsignale der ¹H-NMR-Spektren (Integral aller C*H*-Signale = 100%).
- [43] R. G. Neville, J. J. McGee, in: *Inorganic Syntheses, Vol. VIII* (Hrsg.: H. F Holtzclaw, Jr.), McGraw-Hill, New York, **1966**, S. 27–31.
- [44] Die angegebenen Daten gehören zu dem entsprechenden Isotopomer mit einem SiN≡CCD₃-Rest, welcher aus dem Ligandenaustausch (CH₃CN/CD₃CN) in Lösung resultiert (Lösungsmittel, CD₃CN).
- [45] K. Sasaki, Y. Aso, T. Otsubo, F. Ogure, *Tetrahedron Lett.* 1985, 26, 453–456.
- [46] J. Liesk, P. Schulz, G. Klar, Z. Anorg. Allg. Chem. 1977, 435, 98–102.
- [47] M. M. Khodaei, A. R. Khosropour, J. Abassi, J. Iran. Chem. Soc. 2005, 2, 289–293.
- [48] Verbindung 43 kristallisierte aus Diethylether als das Solvat 43 · (C₂H₅)₂O, aber während der Aufarbeitung im Vakuum wurde das Lösungsmittel der Verbindung vollständig entfernt.
- [49] Wegen des Austausches der XH-aciden Protonen mit dem deuterierten Lösungsmittel wird auf die Angabe des Integrals bewusst verzichtet.
- [50] A. M. Dreis, C. J. Douglas, J. Am. Chem. Soc. 2009, 131, 412–413.
- [51] Verbindung 55.0.5CH₃CN verlor das Acetonitril unter den MAS-Bedingungen.
- [52] Die Genauigkeit der Elementaranalyse ist durch den teilweisen Verlust des Acetonitrils (durch Lagerung bei Standardtemperatur und -druck) bedingt.

Anhang A: Daten zu den Kristallstrukturanalysen

	11	13	14	16 ·0.5C ₆ H ₆
Empirische Formel	$C_{24}H_{28}N_4O_2Si$	C ₁₈ H ₁₉ FN ₂ OSi	C ₁₇ H ₁₆ FNO ₂ Si	C ₂₁ H ₂₂ BrN ₂ OSi
Molekülmasse [g mol ⁻¹]	432.59	326.44	313.4	426.41
Messtemperatur [K]	173(2)	100(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	orthorhombisch	monoklin	triklin	monoklin
Raumgruppe (Nr.)	<i>Pbcn</i> (60)	$P2_{1}/c$ (14)	<i>P</i> 1 (2)	$P2_{1}/c$ (14)
<i>a</i> [Å]	13.595(3)	10.9936(6)	8.1136(16)	9.0307(18)
<i>b</i> [Å]	19.044(4)	8.9073(4)	8.4429(17)	17.230(3)
<i>c</i> [Å]	8.6747(17)	16.9919(9)	11.886(2)	13.356(3)
α [°]	90	90	70.86(3)	90
β[°])	90	108.517(3)	80.36(3)	105.22(3)
γ [°]	90	90	88.81(3)	90
V[Å ³]	2245.8(8)	1577.76(14)	757.8(3)	2005.3(7)
Ζ	4	4	2	4
$ ho_{\rm ber} [{ m g \ cm}^{-3}]$	1.279	1.374	1.373	1.412
$\mu (\mathrm{mm}^{-1})$	0.133	0.165	0.172	2.122
<i>F</i> (000)	920	688	328	876
Kristalldimensionen [mm]	$0.5\times0.35\times0.1$	$0.28 \times 0.12 \times 0.6$	$0.4 \times 0.3 \times 0.2$	$0.5\times0.5\times0.3$
Messbereich 2θ [°]	3.00-58.36	3.9-66.40	5.10-58.24	5.44-58.30
Index-Breite	$-18 \le h \le 18,$	$-16 \le h \le 16,$	$-11 \le h \le 11,$	$-12 \le h \le 12,$
	$-26 \le k \le 26,$	$-13 \le k \le 13,$	$-11 \le k \le 11,$	$-23 \le k \le 23,$
	$-11 \le l \le 11$	$-26 \le l \le 25$	$-16 \le l \le 16$	$-18 \le l \le 18$
gemessene Reflexe	30390	70770	10505	28517
unabhängige Reflexe	3018	6037	4028	5354
$R_{\rm int}$	0.0563	0.0412	0.0363	0.049
Restraints	144	211	201	238
verfeinerte Parameter	0	0	0	0
S ^{a)}	1.083	1.053	1.065	1.038
Gewichtungsschema a/b^{b}	0.0788/0.0143	0.0528/0.5589	0.0645/0.1379	0.0583/0.2743
$R1^{c}$ [$I > 2\sigma(I)$]	0.0456	0.0354	0.0424	0.0371
wR2 ^{d)} (alle Daten)	0.1286	0.1057	0.1204	0.1001
Restelektronendichte [e Å ⁻³]	+0.341/-0.407	+0.511/-0.321	+0.409/-0.300	+0.465/-0.701

Tabelle A1: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 11, 13, 14, und $16 \cdot 0.5 C_6 H_6$.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o||$. ^{d)} $wR2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{0.5}$.

	18·2CH ₃ CN	19	20	22
Empirische Formel	C ₂₄ H ₂₈ IN ₅ OSi	$C_{18}H_{16}N_2O_2SSi$	$C_{24}H_{24}N_2O_2Si$	C ₂₃ H ₂₁ NO ₃ Si
Molekülmasse [g mol ⁻¹]	557.5	352.48	400.54	387.50
Messtemperatur [K]	173(2)	173(2)	173(2)	293(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	triklin	triklin
Raumgruppe (Nr.)	$P2_{1}/c$ (14)	<i>P</i> 1 (2)	<i>P</i> 1(2)	<i>P</i> 1(2)
<i>a</i> [Å]	9.1373(9)	8.2731(16)	7.7687(12)	10.297(3)
<i>b</i> [Å]	20.734(2)	10.270(2)	11.560(2)	10.3614(19)
<i>c</i> [Å]	14.3220(14)	10.601(2)	23.392(4)	10.525(2)
α [°]	90	109.09(2)	100.18(2)	106.55(2)
β[°])	108.052(11)	99.02(2)	91.50(2)	97.37(3)
γ [°]	90	90.11(2)	95.28(2)	111.39(3)
V[Å ³]	2579.7(4)	839.3(3)	2056.9(6)	967.8(4)
Ζ	4	2	4	2
$\rho_{\rm ber} [{ m g cm}^{-3}]$	1.435	1.395	1.293	1.330
$\mu (\mathrm{mm}^{-1})$	1.312	0.277	0.137	0.146
<i>F</i> (000)	1128	368	848	408
Kristalldimensionen [mm]	$0.5\times0.2\times0.2$	$0.5\times0.4\times0.4$	$0.4\times0.4\times0.2$	$0.25\times0.2\times0.1$
Messbereich 2 <i>θ</i> [°]	5.08-58.30	6.60–58.52	4.58-56.56	4.52-52.04
Index-Breite	$-12 \le h \le 12,$	$-11 \le h \le 11,$	$-10 \le h \le 10,$	$-12 \le h \le 12,$
	$-28 \le k \le 28,$	$-14 \le k \le 14,$	$-14 \le k \le 15,$	$-12 \le k \le 12,$
	$-19 \le l \le 19$	$-14 \le l \le 14$	$-31 \le l \le 31$	$-12 \le l \le 12$
gemessene Reflexe	37287	12063	20076	7928
unabhängige Reflexe	6842	4100	9452	3568
$R_{ m int}$	0.0449	0.0326	0.0510	0.0851
Restraints	294	0	84	0
verfeinerte Parameter	9	219	529	255
S ^{a)}	1.067	1.064	0.877	0.848
Gewichtungsschema $a/b^{b)}$	0.0467/2.6474	0.0549/0.2101	0.0485/0.0000	0.0700/0.0000
$R1^{c}$ [$I > 2\sigma(I)$]	0.0379	0.0348	0.0404	0.0515
$wR2^{d}$ (alle Daten)	0.1024	0.0973	0.1033	0.1363
Restelektronendichte [e $Å^{-3}$]	+0.578/-0.835	+0.413/-0.246	0.350/-0.478	+0.327/-0.428

Tabelle A2: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 18 2CH₃CN, 19, 20, und 22.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{d)} $wR2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{0.5}$.

	23	24	33	38
Empirische Formel	$C_{24}H_{24}N_2OSSi$	C24H24N2OSeSi	C ₁₁ H ₁₁ NOSe	$C_{23}H_{26}N_2O_3Si$
Molekülmasse [g mol ⁻¹]	416.60	463.50	252.17	406.55
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)
<i>a</i> [Å]	13.109(2)	13.195(3)	6.3378(11)	8.4805(13)
<i>b</i> [Å]	10.9701(13)	11.0155(15)	21.786(4)	15.143(3)
<i>c</i> [Å]	14.690(2)	14.723(3)	7.9867(15)	16.710(2)
α [°]	90	90	90	90
β[°])	91.05(2)	90.36(2)	111.73(2)	93.445(18)
γ [°]	90	90	90	90
V[Å ³]	2112.1(6)	2139.8(7)	1024.4(3)	2141.9(6)
Ζ	4	4	4	4
$ ho_{ m ber} [m g \ m cm^{-3}]$	1.310	1.439	1.635	1.261
$\mu (\mathrm{mm}^{-1})$	0.228	1.829	3.63	0.136
<i>F</i> (000)	880	952	504	864
Kristalldimensionen [mm]	$0.4 \times 0.2 \times 0.2$	$0.5\times0.4\times0.3$	$0.6 \times 0.25 \times 0.2$	$0.7\times0.3\times0.3$
Messbereich 2θ [°]	4.64–58.26	5.54-58.32	5.8-52.04	5.52-52.04
Index-Breite	$-17 \le h \le 17$,	$-18 \le h \le 18,$	$-7 \le h \le 7,$	$-10 \le h \le 10,$
	$-15 \le k \le 14,$	$-14 \le k \le 14,$	$-26 \le k \le 26,$	$-18 \le k \le 18,$
	$-20 \le l \le 19$	$-20 \le l \le 20$	$26 - 9 \le l \le 9$	$-20 \le l \le 20$
gemessene Reflexe	29573	23039	11077	23060
unabhängige Reflexe	5608	5683	1973	4031
R _{int}	0.0399	0.0596	0.0472	0.0409
Restraints	0	0	128	0
verfeinerte Parameter	265	265	0	267
S ^{a)}	1.066	0.929	1.009	1.044
Gewichtungsschema $a/b^{b)}$	0.0552/0.5987	0.0545/0.0000	0.0000/0.0678	0.0435/0.7178
$R1^{c}$ [$I > 2\sigma(I)$]	0.0380	0.0347	0.0342	0.0362
$wR2^{d}$ (alle Daten)	0.1031	0.0869	0.0905	0.0947
Restelektronendichte [e Å ⁻³]	+0.370/-0.311	+0.608/-0.684	+0.864/-0.939	+0.266/-0.254

Tabelle A3: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 23, 24, 33, und 38.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{d)} $wR2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{0.5}$.

-

	39 ·CH ₃ CN	40	41 ·0.53CH ₃ CN	42 ·CH ₃ CN
Empirische Formel	$C_{35}H_{33}N_3O_3Si$	$C_{23}H_{20}F_6N_2O_3Si$	C _{23.06} H _{24.59} N _{1.53} O ₄ Si	$C_{34}H_{30}N_2O_4Si$
Molekülmasse [g mol ⁻¹]	571.73	514.50	415.21	585.69
Messtemperatur [K]	173(2)	173(2)	100(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	triklin	monoklin	monoklin	triklin
Raumgruppe (Nr.)	$P\overline{1}(2)$	$P2_{1}/n$ (14)	$P2_{1}(4)$	$P\overline{1}(2)$
<i>a</i> [Å]	10.119(2)	10.878(2)	11.7786(17)	10.0010(7)
<i>b</i> [Å]	12.055(3)	13.1457(19)	23.476(3)	12.4225(9)
<i>c</i> [Å]	13.764(3)	16.012(3)	15.793(2)	12.8603(10)
α [°]	69.33(3)	90	90	111.202(2)
β[°])	83.80(3)	93.58(3)	90.205(7)	97.313(2)
γ [°]	72.37(3)	90	90	102.624(2)
V[Å ³]	1497.2(6)	2285.3(8)	4366.9(11)	1415.70(18)
Ζ	2	4	8	2
$ ho_{\rm ber} [{ m g \ cm^{-3}}]$	1.268	1.495	1.263	1.311
$\mu (\mathrm{mm}^{-1})$	0.119	0.181	0.137	0.126
<i>F</i> (000)	604	1056	1757	588
Kristalldimensionen [mm]	$0.75 \times 0.55 \times 0.3$	$0.7\times0.5\times0.25$	$0.37 \times 0.31 \times 0.26$	$0.5\times0.4\times0.15$
Messbereich 2θ [°]	4.80-52.04	5.96-52.04	2.58-56.55	3.48-61.00
Index-Breite	$-12 \le h \le 12,$	$-13 \le h \le 13,$	$-15 \le h \le 15,$	$-14 \le h \le 14,$
	$-14 \le k \le 14,$	$-15 \le k \le 16,$	$-31 \le k \le 31,$	$-17 \le k \le 17,$
	$-16 \le l \le 16$	$-19 \le l \le 19$	$-21 \le l \le 20$	$-17 \le l \le 18$
gemessene Reflexe	20042	24407	97045	57658
unabhängige Reflexe	5511	4463	21465	8553
$R_{\rm int}$	0.0417	0.0439	0.0459	0.0263
Restraints	0	0	64	0
verfeinerte Parameter	383	319	1112	373
S ^{a)}	1.039	1.067	1.104	1.012
Gewichtungsschema a/b^{b}	0.0523/0.2807	0.0605/0.5755	0.05530/2.3679	0.0538/0.6631
$R1^{\rm c}\left[I > 2\sigma(I)\right]$	0.0354	0.0367	0.0456	0.0369
$wR2^{d}$ (alle Daten)	0.0963	0.1034	0.1183	0.1039
abs. Strukturparameter			0.04(2)	
Restelektronendichte [e $Å^{-3}$]			0.04(2)	
	+0.313/-0.240	+0.486/-0.313	+0.701/-0.313	+0.507/-0.300

Tabelle A4: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 39 CH₃CN, 40, 41 • 0.53CH₃CN, und 42 • CH₃CN.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{d)} $wR2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{0.5}$.

	$43 \cdot (\mathrm{C_2H_5})_2\mathrm{O}$	44 ·0.5C ₆ H ₅ CH ₃	54	55 · CH ₃ CN
Empirische Formel	C ₂₆ H ₂₇ F ₆ NO ₅ Si	C _{25.5} H ₂₁ F ₆ NO ₃ SSi	$C_{27}H_{25}N_3O_2Si$	C ₂₉ H ₂₈ N ₄ OSSi
Molekülmasse [g mol ⁻¹]	575.58	563.58	451.59	508.70
Messtemperatur [K]	173(2)	173(2)	100(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_{1}/c$ (14)	<i>P</i> 1(2)	<i>C</i> 2/ <i>c</i> (15)	$P2_{1}/c$ (14)
<i>a</i> [Å]	10.8309(18)	11.8529(17)	30.279(8)	17.635(4)
<i>b</i> [Å]	13.033(2)	12.2558(18)	9.790(3)	9.1441(18)
<i>c</i> [Å]	19.248(3)	18.634(3)	15.194(4)	15.710(3)
α [°]	90	80.423(17)	90	90
β[°])	90.327(19)	76.044(16)	98.502(9)	93.180(8)
γ [°]	90	79.184(17)	90	90
V[Å ³]	2716.9	2559.3(7)	4454(2)	2529.5(9)
Ζ	4	4	8	4
$\rho_{\rm ber} [{ m g \ cm^{-3}}]$	1.407	1.463	1:347	1.336
$\mu (\mathrm{mm}^{-1})$	0.164	0.246	0:136	0.206
<i>F</i> (000)	1192	1156	1904	1072
Kristalldimensionen [mm]	$0.6\times0.5\times0.4$	$0.8\times0.5\times0.4$	$0.22\times0.22\times0.1$	$0.49 \times 0.42 \times 0.09$
Messbereich 2 <i>θ</i> [°]	5.26-52.04	5.14-52.04	2.72-52.04	2.38-52.04
Index-Breite	$-13 \le h \le 13,$	$-14 \le h \le 14,$	$-37 \le h \le 37$,	$-21 \le h \le 21,$
	$-16 \le k \le 16,$	$-15 \le k \le 15,$	$-11 \le k \le 12,$	$-11 \le k \le 10,$
	$-23 \le l \le 23$	$-22 \le l \le 22$	$-17 \le l \le 18$	$-19 \le l \le 19$
gemessene Reflexe	24.547	27898	20873	23781
unabhängige Reflexe	5328	9407	4391	4987
<i>R</i> _{int}	0.0412	0.0666	0.1017	0.0657
Restraints	36	0	0	0
verfeinerte Parameter	5328	681	301	329
$S^{a)}$	1.053	1.105	1.019	1.011
Gewichtungsschema $a/b^{b)}$	0.0679/1.3915	0.0730/1.4813	0.0653/0.0000	0.0576/0.0000
$R1^{\rm c}\left[I > 2\sigma(I)\right]$	0.0464	0.0513	0.0523	0.0395
$wR2^{d}$ (alle Daten)	0.1266	0.1471	0.1401	0.1080
Restelektronendichte [e $Å^{-3}$]	+0.507/-0.371	+0.635/-0.401	+0.458/-0.329	+0.362/-0.330

Tabelle A5: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 43 (C2H5)2O, **44**·0.5C₆H₅CH₃, **54**, und **55**·CH₃CN.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{d)} $wR2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{0.5}$.

	56	57 ·0.5CH ₃ CN	58	59 ·0.5CH ₃ CN
Empirische Formel	$C_{26}H_{22}N_2O_3Si$	C ₂₇ H _{23.5} N _{2.5} O ₂ SSi	$C_{26}H_{22}N_2O_2SSi$	C ₂₇ H _{23.5} N _{2.5} OS ₂ Si
Molekülmasse [g mol ⁻¹]	438.55	475.13	454.61	491.19
Messtemperatur [K]	173(2)	173(2)	173(2)	296(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	orthorhombisch	moniklin	orthorhombisch	monoklin
Raumgruppe (Nr.)	<i>Pbca</i> (61)	<i>C</i> 2/ <i>c</i> (15)	<i>Pca</i> 2 ₁ (29)	<i>C</i> 2/ <i>c</i> (15)
<i>a</i> [Å]	7.5145(12)	30.450(6)	22.036(5)	31.474(5)
<i>b</i> [Å]	18.208(3)	9.6612(19)	15.743(3)	9.512(6)
<i>c</i> [Å]	31.013(6)	15.857(3)	12.9690(19)	15.600(9)
α [°]	90	90	90	90
β[°])	90	91.07(3)	90	91.32(4)
γ [°]	90	90	90	90
V[Å ³]	4243.2(12)	4664.1(16)	4499.1(14)	4669(4)
Ζ	8	8	8	8
$\rho_{\rm ber} [{ m g \ cm^{-3}}]$	1.373	1.353	1.342	1.398
$\mu (\mathrm{mm}^{-1})$	0.143	0.220	0.224	0.305
<i>F</i> (000)	1840	1992	1904	2056
Kristalldimensionen [mm]	$0.8\times0.65\times0.4$	$0.25\times0.25\times0.2$	$0.35 \times 0.25 \times 0.2$	$0.51 \times 0.41 \times 0.18$
Messbereich 2 <i>θ</i> [°]	5.18-52.74	5.10-58.38	4.86–52.04	2.58-52.04
Index-Breite	$-9 \le h \le 9,$	$-41 \le h \le 41,$	$-27 \le h \le 27$,	$-38 \le h \le 38,$
	$-22 \le k \le 22,$	$-13 \le k \le 13,$	$-19 \le k \le 19,$	$-11 \le k \le 11,$
	$-38 \le l \le 38$	$-21 \le l \le 21$	$-15 \le l \le 15$	$-19 \le l \le 19$
gemessene Reflexe	45011	33162	35128	23402
unabhängige Reflexe	4335	6286	8681	4609
R _{int}	0.0512	0.0604	0.0693	0.0434
Restraints	0	9	1	0
verfeinerte Parameter	291	309	581	307
S ^{a)}	1.053	1.020	0.872	1.058
Gewichtungsschema $a/b^{b)}$	0.0529/1.9844	0.0653/0.0000	0.0292/0.0000	0.0340/5.1722
$R1^{\rm c}\left[I > 2\sigma(I)\right]$	0.0379	0.0425	0.0382	0.0336
$wR2^{d}$ (alle Daten)	0.1012	0.1178	0.0795	0.0844
abs. Strukturparameter			0.15(8)	

Tabelle A6: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 56, 57 0.5CH₃CN, 58, und 59.0.5CH₃CN.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.}$ ^{b)} $w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{d)} $wR2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{0.5}$.

+0.421/-0.332

+0.367/-0.326

+0.284/-0.294

Restelektronendichte [e Å⁻³] +0.322/-0.293

Abb. A1: Struktur von **11** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A7: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von **11**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Ζ	U _{eq}
Sil	0	2217(1)	2500	23(1)
01	-175(1)	2903(1)	1093(1)	28(1)
C2	464(1)	3394(1)	745(2)	30(1)
N2	330(1)	1570(1)	3989(1)	26(1)
C3	1453(1)	3339(1)	1024(2)	32(1)
C4	1910(1)	2724(1)	1604(2)	28(1)
C7	2546(1)	1162(1)	1834(2)	30(1)
C6	1749(1)	1511(1)	2478(2)	26(1)
C5	3012(1)	2727(1)	1715(2)	37(1)
C8	2795(1)	494(1)	2377(2)	35(1)
С9	2241(1)	186(1)	3538(2)	36(1)
C10	1419(1)	521(1)	4156(2)	31(1)
C11	1140(1)	1184(1)	3598(2)	26(1)
C12	247(1)	1355(1)	5306(2)	35(1)

Fortsetzung von	Tabelle A7:				
C1	26(1)	4023(1)	-43(3))	43(1)
N1	1367(1)	2180(1)	2038(2)	25(1)
Tabelle A8: Bind	ungslängen [Å] un	d -winkel [°] von 11			
Si1–O1	1.8045(11)	C2–C3	1.371(2)	С7–С6	1.389(2)
Sil-O1A	1.8045(11)	C2–C1	1.503(2)	С7–С8	1.397(2)
Si1–N2	1.8404(13)	N2-C11	1.3658(18)	C6-C11	1.420(2)
Si1–N2A	1.8404(13)	N2-C12	1.445(2)	C6-N1	1.4281(17)
Si1–N1A	1.9028(13)	C3–C4	1.418(2)	C8–C9	1.387(2)
Si1–N1	1.9028(13)	C4N1	1.3259(18)	C9–C10	1.394(2)
O1–C2	1.3111(17)	C4–C5	1.502(2)	C10-C11	1.405(2)
01A-Si1-01	87.15(7)	N2A-Si1-N1	93.76(5)	С6С7С8	119.23(15)
O1A-Si1-N2	88.74(5)	N1A-Si1-N1	175.79(7)	C7–C6–C11	121.42(13)
O1-Si1-N2	172.73(5)	C2–O1–Si1	125.78(10)	C7-C6-N1	127.08(13)
O1A–Si1–N2A	172.73(5)	01C2C3	123.74(13)	C11-C6-N1	111.19(12)
O1–Si1–N2A	88.74(5)	O1C2C1	114.30(13)	С9–С8–С7	119.87(15)
N2-Si1-N2A	95.95(8)	C3-C2-C1	121.93(14)	C8-C9-C10	121.40(14)
O1A–Si1–N1A	90.76(5)	C11-N2-C12	118.84(12)	С9-С10-С1	1 119.71(14)
O1–Si1–N1A	92.30(5)	C11-N2-Si1	112.43(10)	N2-C11-C1	0 127.97(14)
N2-Si1-N1A	93.76(5)	C12-N2-Si1	127.73(10)	N2C11C6	113.91(12)
N2A-Si1-N1A	83.41(5)	C2–C3–C4	123.69(13)	C10-C11-C	6 118.11(13)
O1A-Si1-N1	92.29(5)	N1-C4-C3	120.20(14)	C4-N1-C6	124.83(12)
01-Si1-N1	90.76(5)	N1-C4-C5	122.68(13)	C4–N1–Si1	125.04(10)
N2-Si1-N1	83.41(5)	C3–C4–C5	117.11(13)	C6–N1–Si1	109.35(9)

Abb. A2: Struktur von **13** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A9: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von **13**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U _{eq}	
C1	4394(1)	2190(1)	1175(1)	17(1)	
C2	4670(1)	3259(1)	1815(1)	19(1)	
C3	5903(1)	3424(1)	2374(1)	22(1)	
C4	6900(1)	2545(1)	2291(1)	25(1)	
C5	6660(1)	1489(1)	1658(1)	27(1)	
C6	5418(1)	1304(1)	1115(1)	23(1)	
C7	3427(1)	2705(1)	-1670(1)	24(1)	
C8	3167(1)	3098(1)	-885(1)	17(1)	
С9	3433(1)	4475(1)	-520(1)	16(1)	
C10	2888(1)	4977(1)	90(1)	15(1)	
C11	3013(1)	6617(1)	294(1)	21(1)	
C12	1426(1)	4311(1)	860(1)	17(1)	
C13	934(1)	5683(1)	1013(1)	23(1)	
C14	53(1)	5716(2)	1454(1)	29(1)	
C15	-346(1)	4391(2)	1719(1)	33(1)	

Fortsetzung von Tab	elle A9:			
C16	90(1)	3011(2)	1542(1)	29(1)
C17	979(1)	2957(1)	1104(1)	21(1)
C18	963(1)	241(1)	1069(1)	34(1)
F	2871(1)	25(1)	366(1)	25(1)
N1	2282(1)	3997(1)	417(1)	15(1)
N2	1462(1)	1662(1)	866(1)	22(1)
0	2627(1)	1997(1)	-582(1)	19(1)
Si	2720(1)	1860(1)	447(1)	16(1)

Tabelle A10: Bindungslängen	[Å]	und -winkel	^o] von 13.
-----------------------------	-----	-------------	------------------------

C1–C2	1.4041(13)	C8–C9	1.3642(12)	C15-C16	1.3873(19)
C1–C6	1.4052(13)	C9–C10	1.4232(12)	C16–C17	1.4045(13)
C1–Si	1.8860(9)	C10-N1	1.3225(11)	C17–N2	1.3823(14)
C2–C3	1.3943(13)	C10-C11	1.4975(13)	C18–N2	1.4630(13)
C3–C4	1.3899(15)	C12–C13	1.3941(14)	F–Si	1.6526(7)
C4–C5	1.3901(17)	C12-N1	1.4085(11)	N1–Si	1.9603(8)
C5–C6	1.3941(15)	C12–C17	1.4131(13)	N2–Si	1.7549(9)
С7–С8	1.4914(12)	C13–C14	1.4006(14)	O–Si	1.7225(7)
С8–О	1.3317(11)	C14–C15	1.3820(19)		
C2C1C6	117.15(9)	C9-C10-C11	116.49(8)	C17-N2-C18	116.47(9)
C2–C1–Si	122.67(7)	C13-C12-N1	129.70(9)	C17–N2–Si	117.40(6)
C6–C1–Si	120.12(7)	C13-C12-C17	120.17(8)	C18–N2–Si	125.80(8)
C3-C2-C1	121.55(9)	N1-C12-C17	109.91(8)	C8–O–Si	123.65(6)
C4–C3–C2	119.94(9)	C12-C13-C14	119.52(10)	F–Si–O	87.76(3)
C3–C4–C5	119.85(9)	C15-C14-C13	120.07(11)	F-Si-N2	92.71(4)
C4C5C6	119.85(10)	C14-C15-C16	121.27(9)	O-Si-N2	128.23(4)
C5-C6-C1	121.63(10)	C15-C16-C17	119.44(11)	F-Si-C1	96.07(4)
O–C8–C9	122.96(8)	N2-C17-C16	125.42(10)	O-Si-C1	112.73(4)
O-C8-C7	114.11(8)	N2-C17-C12	115.17(8)	N2-Si-C1	118.66(4)
С9–С8–С7	122.92(8)	C16-C17-C12	119.39(10)	F-Si-N1	171.25(4)
C8–C9–C10	122.32(8)	C10-N1-C12	127.23(8)	O-Si-N1	88.27(3)
N1-C10-C9	118.88(8)	C10-N1-Si	119.96(6)	N2-Si-N1	83.64(4)
N1-C10-C11	124.60(8)	C12–N1–Si	112.30(6)	C1-Si-N1	92.66(4)

Abb. A3: Struktur von 14 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A11: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von 14. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}					
C1	1366(2)	5293(2)	7719(2)	34(1)					
C2	1036(2)	4663(2)	6821(2)	41(1)					
C3	674(2)	2966(3)	7082(2)	57(1)					
C4	653(3)	1868(2)	8239(2)	66(1)					
C5	977(3)	2454(2)	9139(2)	63(1)					
C6	1320(2)	4161(2)	8883(2)	46(1)					
C7	3993(3)	7682(3)	10127(2)	58(1)					
C8	4019(2)	7467(2)	8926(2)	41(1)					
C9	5305(2)	6830(2)	8354(2)	43(1)					
C10	5459(2)	6911(2)	7118(2)	36(1)					
C11	7131(2)	6534(3)	6520(2)	52(1)					
C12	4144(2)	7771(2)	5314(1)	32(1)					
C13	5225(2)	7412(2)	4396(2)	44(1)					
C14	4870(3)	7982(3)	3224(2)	54(1)					
C15	3466(3)	8890(3)	2966(2)	50(1)					
C16	2350(2)	9226(2)	3876(2)	41(1)					
C17	2700(2)	8640(2)	5040(1)	33(1)					
Fortsetzung von Tabelle A11:									
------------------------------	---------	---------	---------	-------	--	--	--	--	--
F	-8(1)	8112(1)	7924(1)	40(1)					
Ν	4169(2)	7367(2)	6568(1)	30(1)					
01	1611(1)	8836(1)	5989(1)	36(1)					
O2	2643(2)	8023(1)	8462(1)	37(1)					
Si	1838(1)	7573(1)	7378(1)	30(1)					

Tabelle A12: Bindungslängen [Å] und -winkel [°] von 14.

C1–C6	1.396(2)	C8–C9	1.349(3)	C15-C16	1.390(3)
C1–C2	1.403(2)	C9–C10	1.432(2)	C16–C17	1.384(2)
C1–Si	1.8661(15)	C10–N	1.3108(19)	C17–O1	1.3650(19)
C2–C3	1.390(2)	C10-C11	1.501(2)	F–Si	1.6462(11)
C3–C4	1.381(4)	C12–C13	1.392(2)	N–Si	2.0052(14)
C4–C5	1.379(4)	C12–C17	1.397(2)	O1–Si	1.6845(13)
C5–C6	1.396(3)	C12–N	1.4196(19)	O2–Si	1.6861(12)
С7–С8	1.494(2)	C13–C14	1.394(3)		
C8–O2	1.337(2)	C14–C15	1.380(3)		
C6C1C2	117.89(15)	C9-C10-C11	117.14(15)	C17–O1–Si	116.60(9)
C6–C1–Si	120.74(13)	C13-C12-C17	118.83(15)	C8–O2–Si	129.55(11)
C2–C1–Si	121.37(13)	C13-C12-N	132.01(14)	F-Si-O1	89.40(6)
C3-C2-C1	121.09(18)	C17-C12-N	109.12(13)	F-Si-O2	89.04(6)
C4–C3–C2	119.92(19)	C12C13C14	119.19(17)	O1-Si-O2	129.42(6)
C5–C4–C3	120.18(17)	C15-C14-C13	120.96(18)	F-Si-C1	98.90(7)
C4–C5–C6	120.1(2)	C14-C15-C16	120.71(17)	O1-Si-C1	115.94(7)
C1–C6–C5	120.84(19)	C17-C16-C15	118.04(16)	O2-Si-C1	114.23(7)
O2–C8–C9	123.56(15)	O1C17C16	121.23(14)	F-Si-N	169.55(5)
O2–C8–C7	112.40(16)	O1C17C12	116.53(13)	O1–Si–N	83.82(6)
C9–C8–C7	124.01(16)	C16-C17-C12	122.20(15)	O2–Si–N	89.13(6)
C8–C9–C10	123.45(15)	C10-N-C12	127.08(14)	C1–Si–N	91.24(7)
N-C10-C9	118.64(15)	C10–N–Si	125.33(11)		
N-C10-C11	124.16(15)	C12–N–Si	107.57(9)		

Verbindung 16.0.5C₆H₆

Abb. A4: Struktur von $16.0.5C_6H_6$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A13: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **16**·0.5C₆H₆. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
Br	1370(1)	2456(1)	7166(1)	39(1)
C1	3757(2)	1871(1)	5999(2)	29(1)
C2	3693(3)	2347(1)	5145(2)	39(1)
C3	5023(4)	2693(2)	4990(2)	53(1)
C4	6429(3)	2566(2)	5696(3)	56(1)
C5	6515(3)	2096(2)	6546(2)	49(1)
C6	5192(2)	1752(1)	6706(2)	37(1)
C7	-1315(2)	1933(1)	3699(2)	36(1)
C8	-36(2)	1428(1)	4277(2)	29(1)
C9	639(2)	876(1)	3831(2)	32(1)
C10	1741(2)	330(1)	4406(2)	27(1)
C11	2051(2)	-372(1)	3830(2)	34(1)
C12	3320(2)	-69(1)	6112(2)	28(1)
C13	4334(2)	-632(1)	5929(2)	33(1)

Fortsetzung von Tabelle A13:								
C14	5168(3)	-1078(1)	6760(2)	40(1)				
C15	4975(3)	-968(1)	7755(2)	42(1)				
C16	4001(3)	-392(2)	7953(2)	40(1)				
C17	3194(2)	76(1)	7134(2)	31(1)				
C18	1889(3)	785(2)	8241(2)	44(1)				
C20	9702(5)	759(2)	10159(3)	77(1)				
C21	8665(4)	316(3)	9435(3)	84(1)				
C22	8994(4)	-442(3)	9287(3)	73(1)				
N1	2358(2)	453(1)	5405(1)	25(1)				
N2	2254(2)	709(1)	7234(1)	32(1)				
0	352(2)	1565(1)	5310(1)	31(1)				
Si	2011(1)	1368(1)	6200(1)	26(1)				

Tabelle A14: Bindungslängen [Å] und -winkel [°] von $16.0.5C_6H_6$.

Br–Si	2.4298(7)	С8–О	1.352(2)	C16-C17	1.400(3)
C1–C2	1.394(3)	C9–C10	1.436(3)	C17–N2	1.410(3)
C1–C6	1.404(3)	C10-N1	1.321(3)	C18–N2	1.472(3)
C1–Si	1.879(2)	C10-C11	1.499(3)	C20–C22#1	1.332(6)
C2–C3	1.404(3)	C12–C13	1.399(3)	C20–C21	1.386(6)
C3–C4	1.386(5)	C12–C17	1.422(3)	C21–C22	1.365(6)
C4–C5	1.380(5)	C12-N1	1.422(3)	C22-C20#1	1.332(6)
C5–C6	1.400(3)	C13–C14	1.397(3)	N1–Si	1.9717(18)
С7–С8	1.489(3)	C14–C15	1.398(4)	N2–Si	1.7561(19)
C8–C9	1.350(3)	C15–C16	1.397(4)	O–Si	1.6853(15)
C2C1C6	118.0(2)	C13-C12-C17	120.66(19)	C12-N1-Si	107.67(13)
C2-C1-Si	122.16(16)	C13-C12-N1	129.52(19)	C17-N2-C18	116.07(19)
C6–C1–Si	119.81(17)	C17-C12-N1	109.75(18)	C17–N2–Si	112.32(14)
C1–C2–C3	121.1(2)	C14–C13–C12	119.0(2)	C18–N2–Si	130.50(17)
C4–C3–C2	119.9(3)	C13-C14-C15	120.3(2)	C8–O–Si	128.96(13)
С5-С4-С3	119.8(2)	C16-C15-C14	121.2(2)	O-Si-N2	126.11(9)
C4–C5–C6	120.6(2)	C15-C16-C17	119.1(2)	O-Si-C1	115.48(9)
C5-C6-C1	120.6(2)	C16-C17-N2	125.1(2)	N2-Si-C1	118.33(9)
С9–С8–О	123.21(18)	C16-C17-C12	119.5(2)	O-Si-N1	91.07(7)
С9–С8–С7	124.13(19)	N2-C17-C12	115.37(18)	N2-Si-N1	84.38(8)
O-C8-C7	112.63(19)	C22#1-C20-C21	119.9(4)	C1–Si–N1	91.92(8)
C8–C9–C10	123.73(19)	C22-C21-C20	119.7(3)	O–Si–Br	85.85(6)
N1-C10-C9	118.95(19)	C20#1-C22-C21	120.5(3)	N2–Si–Br	94.54(7)
N1-C10-C11	124.17(19)	C10-N1-C12	126.23(18)	C1–Si–Br	92.64(7)

Fortsetzung von Tabelle A14:										
C9-C10-C11	116.80(18)	C10-N1-Si	126.02(14)	N1-Si-Br	175.27(5)					

Verbindung 18·2CH₃CN

Abb. A5: Struktur von 18·2CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A15: Atomkoordinate	en (x 10^4)	und	äquivalente	isotrope A	Auslenk	ungsparar	neter	r (Å	² x	10^{3})	der
Nichtwasserstoff-Atome von 1	18·2CH ₃ CN.	Die	angegebener	n U _{eq} -Wert	te sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Tensors.											

	X	у	Z	U _{eq}
C1	6185(3)	6337(1)	3400(2)	26(1)
C2	4642(3)	6141(1)	3077(2)	32(1)
C3	3459(3)	6574(2)	3053(2)	39(1)
C4	3798(4)	7211(2)	3348(2)	41(1)
C5	5312(4)	7415(1)	3653(2)	39(1)
C6	6499(3)	6985(1)	3677(2)	33(1)
C7	11063(3)	6774(1)	5313(2)	33(1)
C8	9891(3)	6253(1)	5075(2)	28(1)
С9	9260(3)	5987(1)	5729(2)	30(1)
C10	8260(3)	5439(1)	5512(2)	27(1)
C11	8098(3)	5071(1)	6379(2)	33(1)
C12	6685(3)	4712(1)	4223(2)	25(1)
C13	5848(3)	4333(1)	4681(2)	29(1)
C14	4998(3)	3813(1)	4171(2)	33(1)
C15	4982(3)	3676(1)	3217(2)	35(1)
C16	5806(3)	4055(1)	2751(2)	32(1)
C17	6646(3)	4587(1)	3244(2)	26(1)
C18	7602(3)	4866(1)	1878(2)	33(1)
C19	8448(3)	6535(1)	1794(2)	32(1)
C20	8713(4)	6973(2)	1065(2)	48(1)
N4	872(4)	5655(2)	1230(3)	61(1)
C21	1570(4)	5252(2)	1040(2)	43(1)
C22	2459(5)	4730(2)	808(3)	57(1)
N5	4851(4)	3966(2)	9850(3)	69(1)
C23	5575(4)	3579(2)	9644(2)	43(1)
C24	6491(5)	3074(2)	9395(3)	56(1)
Ι	10328(1)	3212(1)	11698(1)	44(1)
N1	7597(2)	5272(1)	4584(1)	24(1)
N2	7440(3)	5031(1)	2841(1)	27(1)
N3	8241(3)	6195(1)	2362(2)	30(1)
0	9515(2)	6055(1)	4125(1)	29(1)
Si	7791(1)	5757(1)	3484(1)	24(1)

C1–C2	1.401(4)	C10-N1	1.324(3)	C19–N3	1.136(3)
C1–C6	1.406(3)	C10C11	1.504(3)	C19–C20	1.460(4)
C1–Si	1.873(2)	C12–C13	1.394(3)	N4-C21	1.134(4)
C2–C3	1.397(4)	C12–C17	1.416(3)	C21–C22	1.452(5)
C3–C4	1.391(5)	C12-N1	1.429(3)	N5-C23	1.135(4)
C4–C5	1.382(5)	C13–C14	1.395(4)	C23–C24	1.451(4)
C5–C6	1.395(4)	C14-C15	1.391(4)	N1–Si	1.9227(19)
С7–С8	1.486(3)	C15-C16	1.394(4)	N2–Si	1.741(2)
С8–О	1.359(3)	C16C17	1.403(3)	N3–Si	1.996(2)
C8–C9	1.359(4)	C17-N2	1.403(3)	O–Si	1.6770(19)
C9–C10	1.431(4)	C18-N2	1.472(3)		
C2C1C6	117.9(2)	C13-C12-N1	129.1(2)	C17–N2–Si	112.59(15)
C2–C1–Si	121.55(18)	C17-C12-N1	109.90(19)	C18–N2–Si	129.86(16)
C6–C1–Si	120.6(2)	C12C13C14	119.2(2)	C19–N3–Si	168.6(2)
C3-C2-C1	120.9(3)	C15-C14-C13	120.4(2)	C8–O–Si	124.23(16)
C4–C3–C2	120.3(3)	C14C15C16	120.9(2)	O-Si-N2	126.63(10)
C5–C4–C3	119.5(3)	C15-C16-C17	119.6(2)	O-Si-C1	112.49(10)
C4–C5–C6	120.4(3)	C16-C17-N2	125.5(2)	N2-Si-C1	120.58(11)
C5-C6-C1	120.9(3)	C16-C17-C12	119.0(2)	O-Si-N1	93.08(9)
О-С8-С9	122.6(2)	N2-C17-C12	115.4(2)	N2-Si-N1	86.18(9)
O–C8–C7	112.9(2)	N3-C19-C20	179.9(3)	C1–Si–N1	96.83(9)
С9–С8–С7	124.5(2)	N4-C21-C22	179.0(4)	O-Si-N3	83.09(9)
C8–C9–C10	123.4(2)	N5-C23-C24	178.7(4)	N2-Si-N3	90.99(9)
N1-C10-C9	119.2(2)	C10-N1-C12	127.5(2)	C1–Si–N3	90.52(10)
N1-C10-C11	124.4(2)	C10N1Si	123.80(17)	N1-Si-N3	172.58(10)
C9-C10-C11	116.3(2)	C12–N1–Si	108.64(14)		
C13-C12-C17	120.9(2)	C17-N2-C18	116.6(2)		

Tabelle A16: Bindungslängen [Å] und -winkel [°] von 18·2CH₃CN.

_

Abb. A6: Struktur von **19** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A17: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **19**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U_{eq}
C1	-183(1)	7921(1)	1346(1)	21(1)
C2	-600(2)	9122(1)	1053(1)	26(1)
C3	-2221(2)	9358(2)	648(1)	30(1)
C4	-3458(2)	8393(2)	538(1)	32(1)
C5	-3074(2)	7200(2)	830(2)	34(1)
C6	-1453(2)	6960(1)	1224(1)	30(1)
C7	1746(2)	4046(1)	2454(2)	36(1)
C8	1743(2)	5580(1)	2871(1)	26(1)
C9	1216(2)	6389(1)	4007(1)	29(1)
C10	1512(2)	7852(1)	4538(1)	25(1)
C11	1219(2)	8567(2)	5954(1)	35(1)
C12	2760(2)	9870(1)	4229(1)	24(1)
C13	2921(2)	10942(1)	5474(1)	33(1)

Fortsetzung von Tabelle A17:								
C14	3692(2)	12199(2)	5614(2)	38(1)				
C15	4300(2)	12402(1)	4542(2)	36(1)				
C16	4170(2)	11344(1)	3302(2)	31(1)				
C17	3400(2)	10096(1)	3166(1)	24(1)				
C18	2755(2)	6510(1)	-994(1)	24(1)				
N1	2086(1)	8494(1)	3797(1)	22(1)				
N2	2493(1)	6881(1)	108(1)	27(1)				
01	3247(1)	9006(1)	1987(1)	25(1)				
O2	2340(1)	6092(1)	2017(1)	26(1)				
Si	2008(1)	7646(1)	1833(1)	20(1)				
S	3116(1)	5977(1)	-2523(1)	39(1)				

Tabelle A18: Bindungslängen [Å] und -winkel [°] von **19**.

C1–C2	1.3984(16)	С8–С9	1.3576(18)	C15-C16	1.393(2)
C1–C6	1.4016(17)	C9–C10	1.4265(19)	C16-C17	1.3845(18)
C1–Si	1.8535(13)	C10-N1	1.3167(15)	C17–O1	1.3656(16)
C2–C3	1.3894(18)	C10-C11	1.4982(17)	C18-N2	1.1601(17)
C3–C4	1.388(2)	C12–C17	1.4007(17)	C18–S	1.6088(13)
C4–C5	1.384(2)	C12–C13	1.4019(18)	N1–Si	1.9670(11)
C5–C6	1.3888(19)	C12-N1	1.4179(16)	N2–Si	1.8470(12)
C7–C8	1.4910(18)	C13–C14	1.392(2)	O1–Si	1.6788(10)
C8–O2	1.3377(15)	C14–C15	1.386(2)	O2–Si	1.6888(10)
C2C1C6	117.98(11)	C9-C10-C11	117.32(11)	C12-N1-Si	109.70(8)
C2–C1–Si	119.03(9)	C17-C12-C13	118.70(12)	C18–N2–Si	173.83(11)
C6–C1–Si	122.97(9)	C17-C12-N1	109.14(11)	C17–O1–Si	117.55(8)
C3-C2-C1	121.21(12)	C13-C12-N1	132.12(11)	C8–O2–Si	127.06(8)
C4–C3–C2	119.80(12)	C14-C13-C12	119.29(13)	O1–Si–O2	133.61(5)
C5C4C3	119.97(12)	C15-C14-C13	120.90(13)	O1-Si-N2	86.79(5)
C4C5C6	120.21(13)	C14C15C16	120.67(13)	O2-Si-N2	86.83(5)
C5-C6-C1	120.83(12)	C17-C16-C15	118.28(13)	O1-Si-C1	112.57(5)
O2–C8–C9	122.85(12)	O1–C17–C16	121.58(11)	O2-Si-C1	113.81(6)
O2–C8–C7	113.09(11)	O1–C17–C12	116.25(11)	N2-Si-C1	97.72(6)
С9–С8–С7	124.06(12)	C16-C17-C12	122.15(12)	O1-Si-N1	85.01(5)
C8–C9–C10	123.48(11)	N2-C18-S	179.33(11)	O2-Si-N1	90.47(5)
N1-C10-C9	119.20(11)	C10-N1-C12	127.41(11)	N2-Si-N1	165.80(5)
N1-C10-C11	123.42(12)	C10-N1-Si	122.82(9)	C1-Si-N1	96.13(5)

Abb. A7: Struktur von **20** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A19: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **20**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
Si1	6139(1)	2205(1)	6756(1)	19(1)
01	4296(2)	2624(1)	7072(1)	25(1)
O2	7379(2)	3186(1)	7278(1)	25(1)
N1	4609(2)	945(1)	6178(1)	20(1)
N2	7211(2)	966(1)	6836(1)	24(1)
C1	6694(2)	3021(2)	6145(1)	21(1)
C2	6008(3)	4093(2)	6125(1)	26(1)
C3	6430(3)	4740(2)	5692(1)	34(1)
C4	7569(3)	4332(2)	5269(1)	36(1)
C5	8243(3)	3264(2)	5271(1)	33(1)
C6	7800(3)	2612(2)	5703(1)	26(1)
C7	1732(3)	3562(2)	7203(1)	38(1)
C8	2737(3)	2690(2)	6836(1)	27(1)
C9	2130(3)	2002(2)	6326(1)	29(1)
C10	2978(3)	1026(2)	6035(1)	24(1)
C11	1862(3)	106(2)	5613(1)	34(1)
C12	5533(3)	-51(2)	6003(1)	22(1)

C13	5254(3)	-976(2)	5522(1)	30(1)
C14	6303(3)	-1901(2)	5453(1)	37(1)
C15	7620(3)	-1914(2)	5857(1)	39(1)
C16	7964(3)	-985(2)	6333(1)	33(1)
C17	6947(3)	-36(2)	6401(1)	23(1)
C18	8533(3)	928(2)	7292(1)	34(1)
C19	7204(3)	3572(2)	7861(1)	22(1)
C20	6152(3)	2957(2)	8205(1)	28(1)
C21	6027(3)	3404(2)	8792(1)	30(1)
C22	6962(3)	4460(2)	9047(1)	30(1)
C23	8051(3)	5061(2)	8710(1)	28(1)
C24	8182(3)	4617(2)	8121(1)	23(1)
Si2	1068(1)	8848(1)	8256(1)	20(1)
O21	-664(2)	9515(1)	8532(1)	27(1)
O22	2452(2)	9965(1)	8653(1)	27(1)
N21	-627(2)	7680(1)	7705(1)	21(1)
N22	2048(2)	8976(1)	7591(1)	24(1)
C31	1747(3)	7669(2)	8648(1)	23(1)
C32	1763(3)	7862(2)	9256(1)	33(1)
C33	2412(3)	7077(2)	9572(1)	40(1)
C34	3084(3)	6078(2)	9280(1)	38(1)
C35	3069(3)	5848(2)	8679(1)	33(1)
C36	2385(3)	6630(2)	8368(1)	26(1)
C37	-3192(3)	9913(2)	9042(1)	41(1)
C38	-2301(3)	9110(2)	8602(1)	27(1)
C39	-3075(3)	8098(2)	8273(1)	30(1)
C40	-2306(3)	7467(2)	7778(1)	25(1)
C41	-3528(3)	6648(2)	7343(1)	34(1)
C42	250(3)	7228(2)	7199(1)	23(1)
C43	-89(3)	6162(2)	6810(1)	30(1)
C44	992(3)	5891(2)	6345(1)	39(1)
C45	2400(3)	6682(2)	6274(1)	39(1)
C46	2777(3)	7736(2)	6667(1)	32(1)
C47	1740(3)	8005(2)	7142(1)	23(1)
C48	3503(3)	9837(2)	7520(1)	38(1)
C49	2159(3)	11039(2)	8963(1)	23(1)
C50	2745(3)	11340(2)	9540(1)	32(1)
C51	2439(3)	12423(2)	9869(1)	43(1)
C52	1558(3)	13209(2)	9621(1)	45(1)
C53	1028(3)	12929(2)	9039(1)	43(1)

Fortsetzung von Tabelle A19:

Fortsetzung von Tabelle A19:							
C54	1341(3)	11850(2)		8710(1)	33(1)		
Tabelle A20: Bin	Tabelle A20: Bindungslängen [Å] und -winkel [°] von 20 .						
Si1-O1	1.6999(15)	C12–C17	1.419(3)	C31–C32	1.400(3)		
Si1–O2	1.7181(14)	C13–C14	1.393(3)	C31–C36	1.403(3)		
Si1-N2	1.7567(19)	C14–C15	1.377(4)	C32–C33	1.388(3)		
Si1–C1	1.8844(19)	C15–C16	1.405(3)	C33–C34	1.387(3)		
Si1-N1	2.0637(16)	C16–C17	1.399(3)	C34–C35	1.383(3)		
O1–C8	1.331(2)	C19–C20	1.397(3)	C35–C36	1.390(3)		
O2–C19	1.372(2)	C19–C24	1.398(2)	C37–C38	1.489(3)		
N1-C10	1.318(3)	C20–C21	1.390(3)	C38–C39	1.361(3)		
N1-C12	1.418(3)	C21–C22	1.389(3)	C39–C40	1.429(3)		
N2-C17	1.396(2)	C22–C23	1.393(3)	C40–C41	1.509(3)		
N2C18	1.470(3)	C23–C24	1.393(3)	C42–C43	1.395(3)		
C1–C2	1.402(3)	Si2021	1.6971(16)	C42–C47	1.423(3)		
C1–C6	1.407(3)	Si2022	1.7194(14)	C43–C44	1.402(3)		
C2–C3	1.390(3)	Si2-N22	1.7724(17)	C44–C45	1.392(3)		
C3–C4	1.393(3)	Si2-C31	1.877(2)	C45–C46	1.392(3)		
C4–C5	1.385(3)	Si2-N21	2.0456(17)	C46–C47	1.396(3)		
C5–C6	1.394(3)	O21–C38	1.339(2)	C49–C54	1.385(3)		
C7–C8	1.495(3)	O22–C49	1.364(2)	C49–C50	1.387(3)		
C8–C9	1.359(3)	N21-C40	1.326(3)	C50–C51	1.392(3)		
C9–C10	1.434(3)	N21-C42	1.424(3)	C51–C52	1.382(4)		
C10-C11	1.508(3)	N22-C47	1.394(2)	C52–C53	1.386(4)		
C12–C13	1.405(3)	N22-C48	1.469(2)	C53–C54	1.391(3)		
O1-Si1-O2	90.90(7)	C13-C12-C17	119.42(19)	C48-N22-Si	2 125.42(14)		
O1-Si1-N2	127.36(8)	N1-C12-C17	109.94(16)	C32–C31–C3	36 117.08(19)		
O2-Si1-N2	95.94(8)	C14-C13-C12	120.2(2)	C32–C31–Si	2 119.23(16)		
O1-Si1-C1	111.50(9)	C15-C14-C13	120.1(2)	C36–C31–Si	2 123.48(14)		
O2-Si1-C1	95.01(7)	C14-C15-C16	121.0(2)	C33–C32–C3	31 121.8(2)		
N2-Si1-C1	119.70(9)	C17-C16-C15	119.6(2)	C34–C33–C3	32 119.5(2)		
O1-Si1-N1	87.77(7)	N2-C17-C16	125.14(19)	C35–C34–C3	33 120.4(2)		
O2-Si1-N1	175.48(7)	N2-C17-C12	115.38(18)	C34–C35–C3	36 119.6(2)		
N2-Si1-N1	81.48(7)	C16-C17-C12	119.48(18)	C35–C36–C3	31 121.59(19)		
C1-Si1-N1	89.50(7)	O2-C19-C20	123.43(16)	O21–C38–C	39 122.19(19)		
C8–O1–Si1	130.39(13)	O2-C19-C24	117.52(16)	O21–C38–C	37 113.28(18)		
C19–O2–Si1	133.24(12)	C20-C19-C24	119.01(17)	C39–C38–C3	37 124.41(19)		
C10-N1-C12	125.63(16)	C21-C20-C19	120.40(18)	C38–C39–C4	40 123.15(18)		

e					
C10-N1-Si1	124.57(14)	C22-C21-C20	120.48(19)	N21-C40-C39	119.81(17)
C12-N1-Si1	109.59(12)	C21–C22–C23	119.45(18)	N21-C40-C41	123.90(19)
C17-N2-C18	115.81(18)	C22–C23–C24	120.32(18)	C39–C40–C41	116.13(19)
C17-N2-Si1	118.26(13)	C23-C24-C19	120.28(18)	C43-C42-C47	120.06(19)
C18-N2-Si1	125.53(14)	O21-Si2-O22	90.53(7)	C43-C42-N21	129.80(17)
C2C1C6	117.36(18)	O21-Si2-N22	127.29(8)	C47-C42-N21	109.98(16)
C2C1Si1	119.63(15)	O22-Si2-N22	93.42(8)	C42-C43-C44	119.67(19)
C6C1Si1	123.00(16)	O21-Si2-C31	114.48(8)	C45-C44-C43	120.0(2)
C3-C2-C1	121.4(2)	O22-Si2-C31	95.20(8)	C46-C45-C44	120.9(2)
С2С3С4	120.1(2)	N22-Si2-C31	117.42(9)	C45-C46-C47	119.8(2)
C5–C4–C3	119.88(19)	O21-Si2-N21	87.84(7)	N22-C47-C46	125.80(18)
C4–C5–C6	119.8(2)	O22-Si2-N21	171.91(7)	N22-C47-C42	114.81(17)
C5-C6-C1	121.5(2)	N22-Si2-N21	81.32(7)	C46-C47-C42	119.37(18)
O1–C8–C9	122.7(2)	C31-Si2-N21	92.68(8)	O22–C49–C54	121.59(18)
O1–C8–C7	112.69(18)	C38–O21–Si2	132.89(13)	O22–C49–C50	119.2(2)
С9–С8–С7	124.5(2)	C49-O22-Si2	131.44(13)	C54–C49–C50	119.22(19)
C8–C9–C10	123.5(2)	C40-N21-C42	125.24(16)	C49-C50-C51	120.3(2)
N1-C10-C9	119.22(17)	C40-N21-Si2	125.71(13)	C52-C51-C50	120.2(2)
N1-C10-C11	124.54(19)	C42-N21-Si2	108.73(12)	C51–C52–C53	119.6(2)
C9-C10-C11	116.07(18)	C47-N22-C48	115.83(17)	C52–C53–C54	120.2(2)
C13-C12-N1	130.64(19)	C47-N22-Si2	116.40(12)	C49–C54–C53	120.4(2)

Forsetzung von Tabelle A20:

Abb. A8: Struktur von **22** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A21: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **22**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
Si	2683(1)	1129(1)	733(1)	26(1)
01	1531(2)	1392(2)	1665(2)	34(1)
O2	2479(2)	398(2)	-963(2)	29(1)
O3	2234(2)	-598(2)	761(2)	30(1)
Ν	2763(3)	2939(3)	241(3)	28(1)
C1	4589(3)	2134(3)	1781(3)	26(1)
C2	4968(4)	2981(4)	3194(3)	33(1)
C3	6383(4)	3717(4)	3962(4)	41(1)
C4	7490(4)	3666(4)	3349(4)	40(1)
C5	7156(4)	2826(4)	1977(4)	36(1)
C6	5738(3)	2075(4)	1206(4)	30(1)
C7	630(4)	2391(4)	3459(4)	44(1)
C8	1374(3)	2608(4)	2361(3)	32(1)
C9	1819(4)	3856(4)	2053(3)	35(1)

Toresetzing von Tube	110 1 12 1 .			
C10	2362(4)	3965(4)	890(3)	33(1)
C11	2356(4)	5205(4)	434(4)	42(1)
C12	3139(3)	2785(4)	-1030(3)	27(1)
C13	3682(4)	3807(4)	-1679(4)	35(1)
C14	3896(4)	3306(4)	-2966(4)	39(1)
C15	3600(4)	1839(4)	-3613(4)	38(1)
C16	3120(4)	828(4)	-2960(3)	35(1)
C17	2921(3)	1331(4)	-1670(3)	27(1)
C18	2007(3)	-1083(3)	1833(3)	27(1)
C19	659(4)	-1584(4)	2066(4)	41(1)
C20	406(4)	-2187(4)	3083(4)	44(1)
C21	1522(4)	-2272(4)	3875(4)	40(1)
C22	2884(4)	-1743(4)	3680(4)	38(1)
C23	3149(4)	-1135(4)	2663(3)	36(1)

Fortsetzung von Tabelle A21:

Tabelle A22: Bindungslängen [Å] und -winkel [°] von 22.

Si-O2	1.679(2)	C1–C2	1.411(5)	C13-C14	1.382(5)
Si-O1	1.680(2)	C2–C3	1.376(5)	C14–C15	1.373(5)
Si–O3	1.687(2)	С3-С4	1.390(5)	C15-C16	1.390(4)
Si–C1	1.858(3)	C4–C5	1.378(5)	C16–C17	1.380(4)
Si–N	2.060(3)	C5–C6	1.379(5)	C18–C19	1.375(4)
O1–C8	1.344(4)	С7–С8	1.491(4)	C18–C23	1.400(4)
O2C17	1.368(3)	C8–C9	1.353(5)	C19–C20	1.393(4)
O3–C18	1.373(3)	C9–C10	1.425(4)	C20–C21	1.376(5)
N-C10	1.321(4)	C10-C11	1.496(4)	C21–C22	1.373(5)
N-C12	1.422(4)	C12–C17	1.382(4)	C22–C23	1.396(4)
C1–C6	1.410(4)	C12–C13	1.407(4)		
O2-Si-O1	132.59(13)	C6–C1–Si	121.5(2)	C14-C13-C12	119.0(3)
O2–Si–O3	87.43(11)	C2–C1–Si	122.2(2)	C15-C14-C13	121.4(3)
O1–Si–O3	91.58(10)	C3-C2-C1	121.7(3)	C14-C15-C16	120.2(3)
O2–Si–C1	114.63(13)	C2C3C4	120.3(3)	C17–C16–C15	118.4(3)
O1-Si-C1	111.85(13)	С5-С4-С3	119.4(3)	O2C17C16	121.2(3)
O3–Si–C1	102.32(12)	C4C5C6	120.4(3)	O2C17C12	116.5(3)
O2–Si–N	81.72(10)	C5-C6-C1	121.8(3)	C16–C17–C12	122.3(3)
O1–Si–N	87.77(10)	01–C8–C9	122.6(3)	O3-C18-C19	121.0(3)
O3–Si–N	164.57(12)	O1–C8–C7	112.1(3)	O3-C18-C23	119.5(3)
C1–Si–N	92.20(12)	С9–С8–С7	125.2(3)	C19–C18–C23	119.3(3)
C8–O1–Si	132.9(2)	C8-C9-C10	123.8(3)	C18-C19-C20	120.9(3)

Fortsetzung von Tabelle A22:							
C17–O2–Si	119.0(2)	N-C10-C9	119.0(3)	С21-С20-С19	119.6(3)		
C18–O3–Si	128.8(2)	N-C10-C11	124.0(3)	C22-C21-C20	120.3(3)		
C10-N-C12	125.3(3)	C9-C10-C11	116.9(3)	C21–C22–C23	120.5(3)		
C10–N–Si	126.3(2)	C17-C12-C13	118.5(3)	C22-C23-C18	119.3(3)		
C12–N–Si	107.82(18)	C17-C12-N	109.1(3)				
С6-С1-С2	116.3(3)	C13-C12-N	132.3(3)				

Abb. A9: Struktur von **23** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A23: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **23**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
C1	7650(1)	9224(1)	806(1)	22(1)
C2	7235(1)	9612(1)	-32(1)	28(1)
C3	6964(1)	10827(2)	-180(1)	34(1)
C4	7089(1)	11675(1)	511(1)	32(1)
C5	7478(1)	11310(1)	1353(1)	29(1)

•				
C6	7762(1)	10100(1)	1499(1)	25(1)
C7	10667(1)	9424(2)	1649(1)	34(1)
C8	9994(1)	8592(1)	1098(1)	25(1)
C9	10163(1)	8345(1)	196(1)	27(1)
C10	9646(1)	7400(1)	-271(1)	24(1)
C11	10047(1)	7035(2)	-1184(1)	32(1)
C12	8304(1)	5847(1)	-326(1)	24(1)
C13	8716(1)	4858(1)	-783(1)	30(1)
C14	8058(1)	3981(1)	-1158(1)	35(1)
C15	7010(1)	4106(1)	-1076(1)	35(1)
C16	6590(1)	5057(1)	-574(1)	30(1)
C17	7244(1)	5925(1)	-171(1)	24(1)
C18	5905(1)	7136(2)	529(1)	30(1)
C19	6761(1)	5874(1)	2367(1)	25(1)
C20	6698(1)	4756(1)	1919(1)	29(1)
C21	5830(1)	4036(2)	2004(1)	34(1)
C22	5031(1)	4414(2)	2544(1)	36(1)
C23	5101(1)	5503(2)	3009(1)	35(1)
C24	5959(1)	6239(1)	2920(1)	30(1)
N1	8830(1)	6852(1)	91(1)	22(1)
N2	6982(1)	6886(1)	377(1)	24(1)
0	9253(1)	8075(1)	1539(1)	24(1)
S	7875(1)	6796(1)	2336(1)	30(1)
Si	8047(1)	7586(1)	981(1)	20(1)

Fortsetzung von Tabelle A23:

Tabelle A24: Bindungslängen [Å] und -winkel [°] von 23.

C1–C2	1.4032(19)	C10–N1	1.3438(17)	C19–C20	1.394(2)	
C1–C6	1.4052(19)	C10–C11	1.504(2)	C19–C24	1.399(2)	
C1–Si	1.8867(14)	C12–C13	1.390(2)	C19–S	1.7772(14)	
C2–C3	1.395(2)	C12–C17	1.4155(19)	C20–C21	1.393(2)	
C3–C4	1.385(2)	C12-N1	1.4326(17)	C21–C22	1.388(2)	
C4–C5	1.388(2)	C13–C14	1.398(2)	C22–C23	1.378(2)	
C5–C6	1.394(2)	C14–C15	1.388(2)	C23–C24	1.393(2)	
C7–C8	1.4979(19)	C15–C16	1.396(2)	N1–Si	1.8610(12)	
С8–О	1.3067(16)	C16–C17	1.4037(19)	N2–Si	1.8115(12)	
C8–C9	1.373(2)	C17–N2	1.3745(18)	O–Si	1.8470(10)	
C9–C10	1.410(2)	C18-N2	1.4586(17)	S–Si	2.1860(6)	
C2C1C6	117.43(13)	C17-C12-N1	110.58(12)	C10-N1-Si	122.54(10)	

Fortsetzung von T	abelle A24:				
C2–C1–Si	120.69(11)	C12-C13-C14	119.00(14)	C12–N1–Si	111.44(9)
C6C1Si	121.88(10)	C15-C14-C13	120.12(15)	C17-N2-C18	119.14(11)
C3-C2-C1	121.40(14)	C14-C15-C16	121.37(14)	C17–N2–Si	114.43(9)
C4–C3–C2	120.05(14)	C15-C16-C17	119.06(14)	C18–N2–Si	125.77(10)
C3–C4–C5	119.73(14)	N2-C17-C16	127.61(13)	C8–O–Si	122.96(9)
C4–C5–C6	120.29(14)	N2-C17-C12	113.41(11)	C19–S–Si	110.34(5)
C5-C6-C1	121.09(13)	C16-C17-C12	118.98(13)	N2-Si-O	170.53(5)
О-С8-С9	121.83(12)	C20-C19-C24	119.15(13)	N2-Si-N1	84.43(5)
О-С8-С7	115.60(13)	C20–C19–S	122.02(11)	O-Si-N1	87.61(5)
C9–C8–C7	122.52(13)	C24–C19–S	118.63(11)	N2-Si-C1	97.40(6)
C8–C9–C10	121.96(13)	С21-С20-С19	119.87(14)	O-Si-C1	90.86(5)
N1-C10-C9	121.00(12)	C22-C21-C20	120.56(15)	N1-Si-C1	118.04(6)
N1-C10-C11	121.83(13)	C23-C22-C21	119.87(14)	N2-Si-S	100.76(4)
C9-C10-C11	117.17(12)	C22–C23–C24	120.15(14)	O–Si–S	79.23(4)
C13-C12-C17	121.09(13)	C23–C24–C19	120.38(14)	N1-Si-S	122.42(4)
C13-C12-N1	128.23(13)	C10-N1-C12	123.75(12)	C1–Si–S	117.95(5)

Abb. A10: Struktur von **24** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A25: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von **24**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
C1	7658(1)	9190(2)	779(1)	23(1)
C2	7777(1)	10078(2)	1463(1)	26(1)
C3	7502(2)	11269(2)	1319(1)	29(1)
C4	7112(2)	11635(2)	482(2)	32(1)
C5	6977(2)	10782(2)	-204(1)	34(1)
C6	7240(2)	9581(2)	-53(1)	28(1)
C7	10618(2)	9395(2)	1624(2)	35(1)
C8	9963(1)	8569(2)	1078(1)	26(1)
C9	10143(1)	8325(2)	175(1)	28(1)
C10	9640(1)	7383(2)	-291(1)	25(1)
C11	10062(2)	7022(2)	-1201(1)	33(1)
C12	8315(2)	5832(2)	-345(1)	25(1)
C13	8734(2)	4850(2)	-805(1)	32(1)
C14	8091(2)	3978(2)	-1178(2)	38(1)
C15	7050(2)	4092(2)	-1084(2)	38(1)
C16	6625(2)	5030(2)	-580(1)	32(1)
C17	7262(2)	5900(2)	-187(1)	26(1)
C18	5925(2)	7094(2)	531(2)	32(1)
C19	6657(1)	5737(2)	2398(1)	24(1)
C20	6635(2)	4655(2)	1918(1)	30(1)
C21	5787(2)	3904(2)	1963(2)	35(1)
C22	4969(2)	4223(2)	2499(2)	35(1)
C23	4999(2)	5280(2)	3001(2)	34(1)
C24	5837(2)	6045(2)	2947(1)	28(1)
N1	8832(1)	6833(2)	68(1)	23(1)
N2	6993(1)	6851(2)	365(1)	25(1)
0	9228(1)	8041(1)	1519(1)	24(1)
Se	7829(1)	6765(1)	2411(1)	30(1)
Si	8038(1)	7565(1)	958(1)	21(1)

Tabelle A26: Bindungslängen	[Å]	und -winkel	[°]	von 24.
0 0	L 1			1

C1C6	1.407(3)	C10-N1	1.339(3)	C19–C20	1.386(3)
C1–C2	1.412(3)	C10–C11	1.507(3)	C19–C24	1.396(3)
C1–Si	1.878(2)	C12–C13	1.392(3)	C19–Se	1.9174(19)
C2–C3	1.377(3)	C12–C17	1.412(3)	C20–C21	1.393(3)
C3–C4	1.392(3)	C12-N1	1.430(3)	C21–C22	1.387(3)

Fortsetzung von T	abelle A26:				
C4–C5	1.390(3)	C13–C14	1.392(3)	C22–C23	1.379(3)
C5–C6	1.385(3)	C14-C15	1.387(4)	C23–C24	1.393(3)
С7–С8	1.488(3)	C15-C16	1.392(4)	N1–Si	1.8652(18)
С8–О	1.307(2)	C16–C17	1.398(3)	N2–Si	1.8085(17)
С8–С9	1.379(3)	C17–N2	1.373(3)	O–Si	1.8451(14)
C9–C10	1.408(3)	C18–N2	1.456(3)	Se–Si	2.3313(7)
C6C1C2	116.73(19)	C17-C12-N1	110.81(17)	C10-N1-Si	122.26(15)
C6–C1–Si	121.14(15)	C14-C13-C12	119.0(2)	C12–N1–Si	111.34(13)
C2–C1–Si	122.13(14)	C15-C14-C13	120.0(2)	C17-N2-C18	119.63(17)
C3-C2-C1	121.45(19)	C14-C15-C16	121.5(2)	C17–N2–Si	114.68(13)
C2–C3–C4	120.6(2)	C15-C16-C17	119.1(2)	C18–N2–Si	125.06(14)
C5–C4–C3	119.4(2)	N2-C17-C16	127.6(2)	C8–O–Si	122.40(12)
C6–C5–C4	119.85(19)	N2-C17-C12	113.40(17)	C19–Se–Si	108.33(6)
C5-C6-C1	121.9(2)	C16-C17-C12	119.0(2)	N2-Si-O	169.76(8)
О-С8-С9	121.70(19)	C20-C19-C24	119.38(19)	N2-Si-N1	84.41(8)
OC8C7	115.76(18)	C20-C19-Se	121.81(15)	O-Si-N1	87.56(7)
С9–С8–С7	122.47(18)	C24-C19-Se	118.61(16)	N2-Si-C1	98.32(8)
C8–C9–C10	121.98(19)	C19–C20–C21	120.0(2)	O-Si-C1	91.02(8)
N1-C10-C9	121.05(18)	C22-C21-C20	120.3(2)	N1-Si-C1	117.66(8)
N1-C10-C11	122.09(19)	C23-C22-C21	120.0(2)	N2–Si–Se	100.65(6)
C9–C10–C11	116.86(18)	C22–C23–C24	119.9(2)	O–Si–Se	78.55(5)
C13-C12-C17	121.0(2)	C23-C24-C19	120.3(2)	N1–Si–Se	123.44(6)
C13-C12-N1	128.06(19)	C10-N1-C12	124.05(17)	C1–Si–Se	117.15(6)

Abb. A11: Struktur von **33** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A27: Atomkoordinate	en (x	10 ⁴)	und äquivale	ente isotropo	e Aus	lenkungsp	aram	eter	(Å ² 2	$x 10^{3}$)	der
Nichtwasserstoff-Atome von	33.	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Tensors.											

	Х	у	Z	U_{eq}
Se	1250(1)	3488(1)	7399(1)	37(1)
0	7503(3)	5279(1)	7697(3)	35(1)
Ν	5578(4)	4321(1)	8680(3)	27(1)
C1	5220(6)	6088(1)	5937(4)	40(1)
C2	5544(5)	5480(1)	6912(3)	30(1)
C3	3557(4)	5165(1)	6907(3)	30(1)
C4	3604(4)	4625(1)	7796(3)	26(1)
C5	1481(4)	4367(1)	7914(4)	32(1)
C6	4119(5)	3331(1)	9260(4)	30(1)
C7	4512(5)	2785(1)	10230(4)	35(1)
C8	6623(5)	2656(1)	11502(4)	39(1)
С9	8374(5)	3080(1)	11845(4)	39(1)
C10	7997(5)	3632(1)	10912(4)	33(1)
C11	5867(4)	3766(1)	9623(3)	26(1)

Tabelle A28: Bindungslängen [Å] und -winkel [°] von 33.

Se-C6	1.906(3)	C1–C2	1.512(4)	C6C11	1.404(4)
Se–C5	1.952(3)	C2–C3	1.432(4)	С7–С8	1.376(4)
O–C2	1.245(3)	C3–C4	1.370(4)	С8–С9	1.391(4)
N-C4	1.359(3)	C4–C5	1.493(4)	C9–C10	1.388(4)
N-C11	1.400(3)	C6–C7	1.390(4)	C10-C11	1.392(4)
C6–Se–C5	92.08(11)	NC4C5	117.5(2)	С7–С8–С9	119.8(3)
C4-N-C11	127.7(2)	C3–C4–C5	120.6(2)	С10-С9-С8	120.2(3)
О-С2-С3	123.0(2)	C4–C5–Se	110.76(18)	C9-C10-C11	120.4(3)
O-C2-C1	119.2(3)	C7–C6–C11	119.8(3)	C10C11N	118.4(2)
C3-C2-C1	117.8(2)	C7–C6–Se	120.7(2)	C10-C11-C6	119.1(2)
C4–C3–C2	124.0(2)	C11–C6–Se	119.5(2)	N-C11-C6	122.4(2)
N-C4-C3	121.8(2)	С8-С7-С6	120.7(3)		

Tabelle A29: Wasserstoff-Brückenbindung im Kristall von 33.

Donor-H···Akzeptor	D–H [Å]	H···A [Å]	D…A [Å]	D–H…A [°]
N–H0…O	0.88	1.99	2.678(3)	134

Abb. A12: Struktur von **38** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A30: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **38**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
Si	823(1)	2338(1)	173(1)	28(1)
01	2473(1)	2495(1)	878(1)	38(1)
O2	-285(1)	2973(1)	965(1)	31(1)
O3	442(1)	1325(1)	666(1)	37(1)
N1	1077(1)	3495(1)	-282(1)	31(1)
N2	-1014(1)	2311(1)	-445(1)	32(1)
C1	2102(2)	1749(1)	-589(1)	31(1)
C2	3061(2)	1022(1)	-380(1)	42(1)
C3	3972(2)	604(1)	-937(1)	52(1)
C4	3956(2)	903(1)	-1715(1)	49(1)
C5	3013(2)	1614(1)	-1944(1)	44(1)
C6	2109(2)	2025(1)	-1385(1)	35(1)
C7	5232(2)	2588(2)	1174(1)	72(1)
C8	3783(2)	2891(1)	687(1)	45(1)

Fortsetzung von Tab	elle A30.			
С9	3830(2)	3516(1)	113(1)	45(1)
C10	2491(2)	3867(1)	-324(1)	40(1)
C11	2775(3)	4658(1)	-841(2)	61(1)
C12	-340(2)	3791(1)	-693(1)	34(1)
C13	-732(2)	4642(1)	-960(1)	45(1)
C14	-2161(3)	4793(1)	-1387(1)	58(1)
C15	-3205(2)	4109(2)	-1528(1)	57(1)
C16	-2901(2)	3267(1)	-1221(1)	46(1)
C17	-1461(2)	3096(1)	-788(1)	33(1)
C18	-2145(2)	1589(1)	-495(1)	42(1)
C19	-1252(2)	3368(1)	2210(1)	38(1)
C20	-642(2)	2697(1)	1648(1)	29(1)
C21	-490(2)	1816(1)	1889(1)	36(1)
C22	25(2)	1172(1)	1388(1)	34(1)
C23	132(2)	230(1)	1639(1)	48(1)
-				

Fortsetzung von Tabelle A30:

Tabelle A31: Bindungslängen [A] und	-winkel	ĭ	von 38
-------------------------------------	---------	---	---------------

Si-O3	1.7802(12)	N2C17	1.364(2)	C10-C11	1.505(3)
Si-O1	1.7896(13)	N2C18	1.453(2)	C12–C13	1.397(2)
Si-N2	1.8172(14)	C1–C6	1.396(2)	C12–C17	1.421(2)
Si-O2	1.9266(11)	C1–C2	1.399(2)	C13–C14	1.387(3)
Si–N1	1.9275(14)	C2–C3	1.397(2)	C14–C15	1.374(3)
Si-C1	1.9383(16)	C3–C4	1.375(3)	C15–C16	1.393(3)
O1–C8	1.318(2)	C4–C5	1.382(3)	C16C17	1.405(2)
O2–C20	1.2683(18)	C5–C6	1.390(2)	C19–C20	1.496(2)
O3–C22	1.2970(19)	C7–C8	1.504(3)	C20–C21	1.398(2)
N1-C10	1.330(2)	C8–C9	1.351(3)	C21–C22	1.375(2)
N1-C12	1.421(2)	C9–C10	1.416(3)	C22–C23	1.488(2)
O3-Si-O1	88.10(6)	C10-N1-Si	121.87(12)	C9-C10-C11	116.32(16)
O3-Si-N2	94.05(6)	C12-N1-Si	111.51(10)	C13-C12-C17	120.19(16)
O1-Si-N2	170.58(6)	C17-N2-C18	117.76(14)	C13-C12-N1	128.60(16)
O3–Si–O2	90.16(5)	C17–N2–Si	115.27(11)	C17-C12-N1	111.15(13)
O1–Si–O2	82.87(5)	C18–N2–Si	126.13(11)	C14–C13–C12	119.95(19)
N2-Si-O2	87.95(6)	C6C1C2	115.90(15)	C15-C14-C13	119.91(18)
O3-Si-N1	173.61(5)	C6C1Si	121.55(12)	C14-C15-C16	121.57(19)
O1-Si-N1	92.10(6)	C2–C1–Si	122.54(13)	C15-C16-C17	119.60(19)
N2-Si-N1	84.74(6)	C3-C2-C1	121.81(18)	N2-C17-C16	125.99(16)
O2-Si-N1	83.53(5)	C4–C3–C2	120.38(18)	N2-C17-C12	115.58(14)

Fortsetzung von Tabelle A31:						
O3-Si-C1	91.81(6)	C3–C4–C5	119.41(16)	C16-C17-C12	118.43(16)	
O1-Si-C1	92.71(6)	C4–C5–C6	119.74(18)	O2-C20-C21	123.46(14)	
N2-Si-C1	96.39(6)	C5-C6-C1	122.75(16)	O2-C20-C19	116.75(14)	
O2-Si-C1	175.09(6)	01	123.46(16)	C21–C20–C19	119.79(14)	
N1-Si-C1	94.56(6)	O1–C8–C7	113.86(19)	C22-C21-C20	121.93(15)	
C8–O1–Si	122.62(11)	С9–С8–С7	122.68(18)	O3-C22-C21	123.66(14)	
C20–O2–Si	127.28(10)	C8–C9–C10	124.89(15)	O3–C22–C23	114.72(14)	
C22–O3–Si	130.64(10)	N1-C10-C9	120.77(16)	C21–C22–C23	121.62(15)	
C10-N1-C12	125.43(14)	N1-C10-C11	122.90(18)			

Verbindung 39 · CH₃CN

Abb. A13: Struktur von **39**·CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A32: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **39**·CH₃CN. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
Si	2588(1)	4708(1)	2256(1)	22(1)
01	3196(1)	4658(1)	1002(1)	27(1)

Toresetzung von Tube	nie 1152.			
O2	3754(1)	5751(1)	2039(1)	25(1)
O3	4074(1)	3409(1)	2802(1)	26(1)
N1	1213(1)	6246(1)	1673(1)	24(1)
N2	2041(1)	4953(1)	3490(1)	25(1)
N3	8135(3)	798(2)	444(2)	112(1)
C1	1435(2)	3637(1)	2405(1)	24(1)
C2	1863(2)	2566(1)	2126(1)	28(1)
C3	1018(2)	1789(1)	2288(1)	32(1)
C4	-274(2)	2059(1)	2732(1)	36(1)
C5	-732(2)	3113(2)	3010(1)	36(1)
C6	117(2)	3881(1)	2847(1)	30(1)
C7	2976(2)	4515(2)	-642(1)	46(1)
C8	2362(2)	5034(1)	202(1)	30(1)
C9	1085(2)	5865(1)	111(1)	31(1)
C10	554(2)	6545(1)	800(1)	28(1)
C11	-750(2)	7589(2)	473(1)	37(1)
C12	877(2)	6929(1)	2375(1)	26(1)
C13	270(2)	8187(1)	2148(1)	34(1)
C14	-7(2)	8671(2)	2956(2)	43(1)
C15	345(2)	7906(2)	3969(2)	43(1)
C16	1027(2)	6657(2)	4197(1)	34(1)
C17	1330(2)	6149(1)	3398(1)	26(1)
C18	2268(2)	4025(2)	4520(1)	33(1)
C19	4262(2)	7860(2)	2053(2)	44(1)
C20	4682(2)	8906(2)	1909(2)	59(1)
C21	5953(2)	8789(2)	2274(2)	52(1)
C22	6825(2)	7634(2)	2778(1)	41(1)
C23	6426(2)	6586(2)	2915(1)	33(1)
C24	5141(2)	6689(1)	2558(1)	29(1)
C25	4684(2)	5583(1)	2680(1)	25(1)
C26	5278(2)	4429(1)	3416(1)	28(1)
C27	5009(2)	3371(1)	3403(1)	26(1)
C28	5809(2)	2111(1)	4042(1)	27(1)
C29	6529(2)	1908(2)	4925(1)	39(1)
C30	7269(2)	717(2)	5507(1)	44(1)
C31	7314(2)	-274(2)	5211(1)	41(1)
C32	6599(2)	-84(2)	4341(1)	46(1)
C33	5834(2)	1100(1)	3765(1)	38(1)
C34	6211(3)	2568(2)	758(2)	86(1)
C35	7285(2)	1575(2)	592(2)	59(1)

Fortsetzung von Tabelle A32:

Si–O1	1.7839(11)	C2–C3	1.399(2)	C20–C21	1.380(3)
Si–O3	1.8064(13)	C3–C4	1.378(3)	C21–C22	1.381(3)
Si–N2	1.8249(13)	C4–C5	1.387(2)	C22–C23	1.385(2)
Si-O2	1.9032(11)	C5–C6	1.392(2)	C23–C24	1.395(2)
Si–N1	1.9099(14)	С7–С8	1.499(2)	C24–C25	1.489(2)
Si–C1	1.9346(15)	C8–C9	1.361(2)	C25–C26	1.399(2)
O1–C8	1.3219(18)	C9–C10	1.425(2)	C26–C27	1.389(2)
O2–C25	1.2812(17)	C10-C11	1.499(2)	C27–C28	1.485(2)
O3–C27	1.3018(17)	C12–C13	1.385(2)	C28–C33	1.392(2)
N1-C10	1.3198(18)	C12–C17	1.421(2)	C28–C29	1.394(2)
N1-C12	1.4307(18)	C13–C14	1.395(2)	C29–C30	1.389(2)
N2-C17	1.3695(19)	C14–C15	1.386(3)	C30–C31	1.378(2)
N2-C18	1.4522(18)	C15-C16	1.388(3)	C31–C32	1.380(2)
N3-C35	1.126(3)	C16–C17	1.404(2)	C32–C33	1.390(2)
C1–C6	1.396(2)	C19–C20	1.393(2)	C34–C35	1.421(3)
C1–C2	1.406(2)	C19–C24	1.395(2)		
O1–Si–O3	88.07(6)	C6–C1–Si	120.19(10)	C21–C20–C19	120.36(19)
O1-Si-N2	172.09(5)	C2–C1–Si	123.70(12)	C20–C21–C22	120.33(16)
O3-Si-N2	94.33(6)	C3-C2-C1	121.87(16)	C21–C22–C23	119.86(17)
O1–Si–O2	83.60(5)	C4–C3–C2	120.21(14)	C22–C23–C24	120.49(16)
O3–Si–O2	87.67(5)	C3–C4–C5	119.39(14)	C19–C24–C23	119.29(14)
N2-Si-O2	88.96(5)	C4–C5–C6	119.97(17)	C19–C24–C25	118.69(14)
O1–Si–N1	92.02(6)	C5-C6-C1	122.48(14)	C23–C24–C25	122.01(14)
O3–Si–N1	170.42(5)	O1–C8–C9	123.95(14)	O2-C25-C26	122.50(13)
N2-Si-N1	84.37(6)	O1–C8–C7	113.97(14)	O2-C25-C24	115.55(12)
O2-Si-N1	82.82(5)	С9–С8–С7	122.00(14)	C26-C25-C24	121.89(13)
O1–Si–C1	93.33(6)	C8-C9-C10	124.12(14)	C27–C26–C25	120.86(13)
O3–Si–C1	92.17(6)	N1-C10-C9	119.84(14)	O3–C27–C26	122.60(13)
N2-Si-C1	94.11(6)	N1-C10-C11	123.35(14)	O3–C27–C28	115.15(12)
O2–Si–C1	176.93(5)	C9-C10-C11	116.81(13)	C26–C27–C28	122.21(13)
N1-Si-C1	97.39(6)	C13-C12-C17	120.99(14)	C33-C28-C29	118.84(14)
C8–O1–Si	123.03(10)	C13-C12-N1	127.99(14)	C33–C28–C27	119.57(13)
C25–O2–Si	124.25(9)	C17-C12-N1	110.92(12)	C29–C28–C27	121.59(13)
C27–O3–Si	126.19(9)	C12-C13-C14	119.09(16)	С30-С29-С28	120.18(15)
C10-N1-C12	125.40(13)	C15-C14-C13	120.42(15)	C31–C30–C29	120.49(15)
C10–N1–Si	123.28(10)	C14-C15-C16	120.97(15)	C30–C31–C32	119.81(15)
C12–N1–Si	110.80(9)	C15-C16-C17	119.73(16)	C31–C32–C33	120.15(16)
C17-N2-C18	118.70(12)	N2-C17-C16	126.70(14)	C32–C33–C28	120.49(15)

Tabelle A33: Bindungslängen [Å] und -winkel [°] von 39·CH₃CN.

Fortsetzung von Tabelle A33:					
C17–N2–Si	114.33(10)	N2-C17-C12	114.80(12)	N3-C35-C34	178.9(3)
C18–N2–Si	126.96(10)	C16-C17-C12	118.50(14)		
С6-С1-С2	116.06(13)	C20-C19-C24	119.66(18)		

Abb. A14: Struktur von **40** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A34: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von 40. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
Si	1641(1)	7214(1)	1945(1)	22(1)
F1	-2707(1)	8668(1)	1463(1)	56(1)
F2	-1079(1)	9124(1)	868(1)	47(1)
F3	-1984(1)	7720(1)	511(1)	48(1)
F4	-166(1)	9668(1)	3979(1)	59(1)
F5	1432(1)	8769(1)	4317(1)	44(1)
F6	1568(1)	9981(1)	3443(1)	44(1)
01	3082(1)	6856(1)	2481(1)	26(1)

Fortsetzung von Tabelle A34:					
O2	245(1)	7558(1)	1456(1)	25(1)	
O3	1530(1)	8042(1)	2752(1)	28(1)	
N1	1015(1)	5963(1)	2179(1)	25(1)	
N2	-1398(1)	6770(1)	2083(1)	29(1)	
C1	2498(1)	7581(1)	997(1)	25(1)	
C2	1976(2)	8254(1)	392(1)	31(1)	
C3	2618(2)	8594(2)	-278(1)	39(1)	
C4	3812(2)	8261(2)	-373(1)	41(1)	
C5	4356(2)	7597(2)	212(1)	37(1)	
C6	3712(2)	7264(1)	884(1)	30(1)	
C7	4445(2)	6443(2)	3642(1)	43(1)	
C8	3210(2)	6352(1)	3180(1)	28(1)	
С9	2297(2)	5729(1)	3441(1)	32(1)	
C10	1270(2)	5476(1)	2909(1)	29(1)	
C11	466(2)	4619(2)	3162(1)	40(1)	
C12	56(2)	5513(1)	1620(1)	27(1)	
C13	331(2)	4653(1)	1168(1)	34(1)	
C14	-593(2)	4148(2)	687(1)	38(1)	
C15	-1789(2)	4519(2)	663(1)	40(1)	
C16	-2056(2)	5394(2)	1096(1)	35(1)	
C17	-1140(2)	5912(1)	1581(1)	28(1)	
C18	-2619(2)	6810(2)	2417(1)	42(1)	
C19	-1656(2)	8314(2)	1167(1)	36(1)	
C20	-838(1)	7742(1)	1847(1)	27(1)	
C21	-629(2)	8430(1)	2597(1)	31(1)	
C22	503(2)	8528(1)	2956(1)	27(1)	
C23	816(2)	9240(1)	3673(1)	32(1)	

Si-O3	1.6994(12)	O3–C22	1.3454(19)	C8–C9	1.373(2)
Si–O2	1.7257(12)	N1-C10	1.346(2)	C9–C10	1.402(2)
Si-O1	1.8013(12)	N1-C12	1.457(2)	C10-C11	1.498(2)
Si–N1	1.8267(14)	N2C17	1.424(2)	C12–C13	1.386(2)
Si-C1	1.8940(17)	N2C18	1.464(2)	C12–C17	1.401(2)
F1-C19	1.348(2)	N2-C20	1.474(2)	C13–C14	1.395(2)
F2-C19	1.340(2)	C1–C2	1.405(2)	C14–C15	1.388(3)
F3-C19	1.338(2)	C1–C6	1.407(2)	C15–C16	1.384(3)
F4-C23	1.327(2)	C2–C3	1.389(2)	C16–C17	1.400(2)
F5-C23	1.345(2)	C3–C4	1.388(3)	C19–C20	1.557(2)

0					
F6-C23	1.338(2)	C4–C5	1.386(3)	C20–C21	1.508(2)
O1–C8	1.300(2)	C5–C6	1.391(2)	C21–C22	1.333(2)
O2–C20	1.3900(19)	C7–C8	1.497(2)	C22–C23	1.504(2)
O3–Si–O2	94.28(6)	C3-C2-C1	122.20(16)	F3-C19-F2	106.89(15)
O3–Si–O1	84.59(6)	С4С3С2	120.19(18)	F3-C19-F1	106.74(15)
O2–Si–O1	178.55(5)	C5-C4-C3	119.16(16)	F2-C19-F1	106.14(15)
O3–Si–N1	112.08(6)	C4–C5–C6	120.44(17)	F3-C19-C20	112.34(15)
O2-Si-N1	90.04(6)	C5-C6-C1	121.85(17)	F2-C19-C20	111.96(14)
O1–Si–N1	89.55(6)	O1–C8–C9	121.68(15)	F1-C19-C20	112.35(15)
O3–Si–C1	120.51(7)	O1–C8–C7	115.42(15)	O2-C20-N2	109.93(13)
O2–Si–C1	91.84(6)	С9–С8–С7	122.76(16)	O2-C20-C21	111.87(13)
O1–Si–C1	89.52(6)	C8–C9–C10	121.35(15)	N2-C20-C21	111.15(13)
N1-Si-C1	127.04(7)	N1-C10-C9	121.86(15)	O2-C20-C19	103.37(13)
C8–O1–Si	125.90(10)	N1-C10-C11	120.09(15)	N2-C20-C19	111.74(13)
C20–O2–Si	125.99(10)	C9-C10-C11	118.03(15)	C21-C20-C19	108.54(14)
C22–O3–Si	126.05(10)	C13-C12-C17	120.82(15)	C22–C21–C20	119.40(15)
C10-N1-C12	116.09(14)	C13-C12-N1	118.89(15)	C21–C22–O3	127.48(15)
C10-N1-Si	123.15(11)	C17-C12-N1	120.20(15)	C21–C22–C23	123.29(15)
C12–N1–Si	120.14(10)	C12-C13-C14	120.28(17)	O3–C22–C23	109.23(14)
C17-N2-C18	116.74(14)	C15-C14-C13	119.43(18)	F4-C23-F6	108.31(15)
C17-N2-C20	116.33(12)	C16-C15-C14	120.20(17)	F4-C23-F5	106.63(14)
C18-N2-C20	117.50(14)	C15-C16-C17	121.21(17)	F6-C23-F5	105.22(14)
C2C1C6	116.15(15)	C16-C17-C12	118.01(16)	F4-C23-C22	113.35(14)
C2-C1-Si	121.02(12)	C16-C17-N2	122.66(15)	F6-C23-C22	110.78(14)
C6–C1–Si	122.67(13)	C12-C17-N2	119.13(14)	F5-C23-C22	112.13(14)

Fortsetzung von Tabelle A35:

Abb. A15: Struktur von **41**·0.53CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A36: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von **41**·0.53CH₃CN. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
C1	6060(3)	3531(1)	3020(2)	17(1)
C2	5154(3)	3711(1)	3529(2)	20(1)
C3	5138(3)	4247(2)	3918(2)	24(1)
C4	6035(3)	4622(2)	3796(2)	25(1)
C5	6950(3)	4458(1)	3297(2)	24(1)
C6	6952(3)	3921(1)	2911(2)	21(1)
C7	2850(3)	3115(2)	1817(2)	26(1)
C8	4110(3)	3115(1)	1727(2)	18(1)
С9	4635(3)	3429(1)	1116(2)	18(1)
C10	5822(3)	3395(1)	921(2)	17(1)
C11	6211(3)	3730(2)	162(2)	21(1)
C12	7646(3)	2944(1)	1201(2)	16(1)
C13	8212(3)	2945(1)	428(2)	19(1)
C14	9348(3)	2777(2)	394(2)	24(1)
C15	9896(3)	2586(2)	1120(2)	24(1)
C16	9325(3)	2556(1)	1889(2)	22(1)
C17	8204(3)	2731(1)	1934(2)	17(1)
C18	6657(4)	1155(2)	1637(2)	35(1)
C19	6422(3)	1613(1)	2265(2)	22(1)
C20	6502(3)	1523(2)	3137(2)	28(1)
C21	6158(3)	1934(1)	3710(2)	23(1)
C22	6092(4)	1805(2)	4639(2)	35(1)
C31	1098(3)	4248(1)	4514(2)	17(1)
C32	193(3)	4062(1)	4006(2)	21(1)
C33	184(3)	3529(2)	3617(2)	24(1)
C34	1089(3)	3160(2)	3732(2)	25(1)
C35	2004(3)	3329(1)	4230(2)	23(1)
C36	2003(3)	3863(1)	4617(2)	20(1)
C37	-2163(3)	4671(2)	5689(2)	26(1)
C38	-895(3)	4656(1)	5781(2)	18(1)
C39	-366(3)	4326(1)	6373(2)	18(1)
C40	807(3)	4360(1)	6583(2)	17(1)
C41	1205(3)	3997(1)	7316(2)	19(1)
C42	2637(3)	4818(1)	6344(2)	18(1)
C43	3206(3)	4788(1)	7122(2)	21(1)
C44	4348(3)	4934(2)	7166(2)	25(1)
C45	4913(3)	5131(2)	6447(2)	27(1)

Fortsetzung von Tabe	lle A36:			
C46	4342(3)	5190(2)	5678(2)	25(1)
C47	3198(3)	5042(1)	5632(2)	20(1)
C48	704(4)	6670(2)	5900(3)	39(1)
C49	902(4)	6190(2)	5291(2)	31(1)
C50	973(6)	6290(2)	4410(3)	56(2)
C51	930(4)	5848(2)	3835(2)	35(1)
C52	964(5)	5957(2)	2890(3)	46(1)
C61	2558(3)	4138(1)	-476(2)	17(1)
C62	1890(3)	3648(1)	-362(2)	23(1)
C63	2194(3)	3117(2)	-703(3)	31(1)
C64	3185(3)	3062(2)	-1161(2)	30(1)
C65	3878(3)	3534(2)	-1284(2)	25(1)
C66	3562(3)	4059(2)	-948(2)	21(1)
C67	-776(3)	4405(2)	1178(2)	32(1)
C68	465(3)	4532(1)	1103(2)	20(1)
C69	1170(3)	4535(1)	1792(2)	22(1)
C70	2355(3)	4654(1)	1773(2)	19(1)
C71	2939(3)	4642(2)	2623(2)	26(1)
C72	4047(3)	4923(1)	976(2)	18(1)
C73	4971(3)	4838(2)	1525(2)	24(1)
C74	6044(3)	5025(2)	1289(2)	31(1)
C75	6220(3)	5287(2)	513(3)	34(1)
C76	5329(3)	5358(2)	-54(2)	27(1)
C77	4249(3)	5174(1)	180(2)	20(1)
C78	756(4)	6434(2)	740(2)	37(1)
C79	1015(3)	5945(1)	164(2)	23(1)
C80	523(4)	5916(2)	-645(2)	31(1)
C81	821(3)	5493(1)	-1212(2)	21(1)
C82	401(3)	5510(2)	-2112(2)	28(1)
C91	7563(3)	3528(1)	7977(2)	17(1)
C92	8559(3)	3601(2)	8465(2)	21(1)
C93	8864(3)	4125(2)	8811(2)	24(1)
C94	8182(3)	4599(2)	8685(2)	27(1)
C95	7202(3)	4546(2)	8201(2)	27(1)
C96	6909(3)	4021(1)	7854(2)	22(1)
C97	4216(3)	3301(2)	6361(2)	32(1)
C98	5458(3)	3171(1)	6424(2)	22(1)
C99	6152(3)	3208(2)	5739(2)	24(1)
C100	7341(3)	3092(1)	5736(2)	20(1)
C101	7920(3)	3155(2)	4891(2)	29(1)

C102	9058(3)	2796(1)	6503(2)	18(1)
C103	9963(3)	2900(1)	5954(2)	21(1)
C104	11044(3)	2714(2)	6172(2)	26(1)
C105	11253(3)	2440(2)	6939(2)	26(1)
C106	10367(3)	2350(1)	7505(2)	23(1)
C107	9277(3)	2522(1)	7285(2)	19(1)
C108	5882(4)	1194(2)	6752(3)	38(1)
C109	6191(3)	1675(2)	7342(2)	26(1)
C110	5892(4)	1650(2)	8198(2)	40(1)
C111	6087(3)	2103(2)	8739(2)	27(1)
C112	5754(4)	2073(2)	9660(2)	38(1)
N1	6502(2)	3079(1)	1388(2)	16(1)
N31	1489(2)	4697(1)	6148(2)	16(1)
N61	2881(2)	4772(1)	1058(2)	16(1)
N91	7873(2)	2933(1)	6433(2)	16(1)
01	4642(2)	2781(1)	2271(1)	19(1)
O2	6124(2)	2091(1)	1946(1)	19(1)
O3	5844(2)	2442(1)	3491(1)	21(1)
O4	7588(2)	2708(1)	2651(1)	19(1)
O31	-360(2)	4991(1)	5244(1)	20(1)
O32	1052(2)	5703(1)	5603(1)	23(1)
O33	884(2)	5323(1)	4043(1)	24(1)
O34	2583(2)	5101(1)	4922(1)	21(1)
O61	796(2)	4629(1)	325(1)	18(1)
O62	1697(2)	5576(1)	452(1)	21(1)
O63	1482(2)	5071(1)	-1031(1)	19(1)
O64	3363(2)	5224(1)	-353(1)	21(1)
O91	5797(2)	3032(1)	7188(1)	21(1)
O92	6698(2)	2097(1)	7006(2)	22(1)
O93	6537(2)	2581(1)	8515(1)	22(1)
O94	8397(2)	2442(1)	7812(1)	20(1)
Sil	6115(1)	2793(1)	2494(1)	16(1)
Si31	1122(1)	4988(1)	5042(1)	18(1)
Si61	2127(1)	4875(1)	-37(1)	15(1)
Si91	7147(1)	2794(1)	7523(1)	16(1)
N153	13435(7)	1202(5)	15155(7)	106(3)
C154	12727(8)	1103(4)	15607(7)	75(2)
C155	11917(7)	949(3)	16230(7)	78(3)
N156	11786(10)	1546(5)	12106(9)	140(5)
C157	12464(9)	1594(4)	12611(7)	83(3)

Fortsetzung von Tabelle A36:

Fortsetzung von Tabelle A36:						
C158	13334(10)	1652(5)	13134(10)	123(5)		
N159	12353(11)	1452(5)	8477(9)	104(4)		
C160	12448(10)	1548(5)	9126(10)	73(3)		
C161	12719(12)	1671(6)	10075(9)	94(4)		

Tabelle A37: Bindungslängen [Å] und -winkel [°] von **41**·0.53CH₃CN.

-

C1–C2	1.404(4)	C45–C46	1.394(5)	C98–C99	1.361(5)
C1C6	1.405(5)	C46–C47	1.392(5)	C99–C100	1.426(5)
C1–Si1	1.924(3)	C47–O34	1.340(4)	C100–N91	1.318(4)
C2–C3	1.400(5)	C48–C49	1.501(5)	C100-C101	1.508(4)
C3–C4	1.389(5)	C49–O32	1.257(4)	C102–C103	1.399(4)
C4–C5	1.392(5)	C49–C50	1.414(6)	C102–C107	1.414(4)
C5–C6	1.399(5)	C50–C51	1.380(6)	C102-N91	1.436(4)
С7–С8	1.492(4)	C51–O33	1.277(4)	C103–C104	1.389(5)
C8–O1	1.320(4)	C51–C52	1.514(5)	C104–C105	1.393(5)
C8–C9	1.364(5)	C61–C62	1.405(5)	C105-C106	1.392(5)
C9–C10	1.435(4)	C61–C66	1.412(4)	C106-C107	1.390(5)
C10-N1	1.317(4)	C61–Si61	1.932(3)	C107–O94	1.345(4)
C10-C11	1.507(4)	C62–C63	1.407(5)	C108-C109	1.509(5)
C12–C13	1.392(4)	C63–C64	1.382(5)	C109–O92	1.273(4)
C12-N1	1.416(4)	C64–C65	1.392(6)	C109–C110	1.400(5)
C12–C17	1.420(4)	C65–C66	1.393(5)	C110-C111	1.383(5)
C13–C14	1.396(4)	C67–C68	1.497(5)	C111–O93	1.290(4)
C14-C15	1.388(5)	C68–O61	1.311(4)	C111–C112	1.509(5)
C15-C16	1.392(5)	C68–C69	1.367(5)	N1-Si1	1.928(3)
C16–C17	1.385(4)	С69–С70	1.424(5)	N31–Si31	1.922(3)
C17–O4	1.348(4)	C70–N61	1.319(4)	N61-Si61	1.957(3)
C18–C19	1.491(5)	C70–C71	1.505(4)	N91–Si91	1.953(3)
С19–О2	1.278(4)	С72–С73	1.404(4)	O1–Si1	1.770(2)
C19–C20	1.396(5)	С72–С77	1.409(4)	O2–Si1	1.860(2)
C20–C21	1.384(5)	C72–N61	1.425(4)	O3–Si1	1.805(2)
С21-О3	1.295(4)	С73–С74	1.390(5)	O4–Si1	1.763(2)
C21–C22	1.500(5)	C74–C75	1.387(5)	O31–Si31	1.775(2)
C31–C32	1.401(5)	С75-С76	1.387(5)	O32–Si31	1.900(2)
C31–C36	1.406(5)	C76–C77	1.394(5)	O33–Si31	1.785(2)
C31–Si31	1.928(3)	С77–О64	1.344(4)	O34–Si31	1.752(2)
C32–C33	1.394(5)	С78–С79	1.497(5)	O61–Si61	1.768(2)
C33–C34	1.384(5)	С79–О62	1.266(4)	O62–Si61	1.888(2)
C34–C35	1.390(5)	C79–C80	1.402(5)	O63-Si61	1.801(2)

C35 C36	1 205(5)	C80 C81	1 382(5)	061 Si61	1 745(2)
$C_{33} = C_{30}$	1.595(5) 1.501(4)	C81 - C81	1.362(3) 1.201(4)	O04-S101	1.743(2) 1.765(2)
$C_{38} - O_{31}$	1.301(4) 1.310(4)	C81-C82	1.291(4) 1.504(4)	091 - 3191 002 - 5191	1.703(2) 1.902(2)
C_{38} C_{39}	1.317(4) 1.362(4)	C01-C06	1.304(4)	092-5i91	1.902(2) 1.706(2)
$C_{38} - C_{39}$	1.302(4) 1.422(4)	C91-C90	1.403(3)	O93-5191	1.790(2) 1.747(2)
C40_N31	1.422(4) 1.323(4)	C91-Sj91	1.411(4) 1.020(3)	N153_C154	1.747(2) 1.126(13)
C40 C41	1.525(4) 1.511(4)	C91-5191	1.929(3) 1.304(5)	C154 C155	1.120(13) 1.418(13)
$C_{40} - C_{41}$	1.311(4) 1.300(4)	C_{92} - C_{93}	1.394(3) 1.386(5)	N156 C157	1.410(13) 1.121(13)
$C_{42} - C_{43}$	1.333(4) 1.400(4)	C93 - C94	1.380(3)	C157_C158	1.131(13) 1.222(14)
C42 - C47	1.409(4)	$C_{94} = C_{95}$	1.300(3)	N150 C160	1.322(14) 1.056(17)
C42 - N31	1.410(4) 1.200(5)	C93-C90	1.391(3)	N139-C100	1.030(17)
C43-C44	1.390(3)	C97 - C98	1.497(3)	C100-C101	1.30(2)
C44–C43	1.390(3)	098-091	1.512(4)		
C2C1C6	116.4(3)	O61–C68–C67	113.7(3)	C51–O33–Si31	130.3(2)
C2-C1-Si1	123.1(2)	C69–C68–C67	121.9(3)	C47-O34-Si31	115.0(2)
C6-C1-Si1	120.5(2)	C68–C69–C70	125.2(3)	C68-O61-Si61	128.8(2)
C3-C2-C1	122.2(3)	N61-C70-C69	121.5(3)	C79-O62-Si61	128.3(2)
C4–C3–C2	119.8(3)	N61-C70-C71	123.5(3)	C81-O63-Si61	129.9(2)
C3-C4-C5	119.6(3)	C69–C70–C71	115.0(3)	C77-O64-Si61	115.2(2)
C4–C5–C6	119.9(3)	C73–C72–C77	118.5(3)	C98–O91–Si91	128.7(2)
C5-C6-C1	122.1(3)	C73-C72-N61	130.8(3)	C109-O92-Si91	128.4(2)
01–C8–C9	124.5(3)	C77-C72-N61	110.6(3)	C111–O93–Si91	130.4(2)
01–C8–C7	114.1(3)	C74–C73–C72	119.6(3)	C107-O94-Si91	115.0(2)
С9–С8–С7	121.4(3)	C75–C74–C73	121.0(3)	O4-Si1-O1	171.96(12)
C8–C9–C10	124.6(3)	C74–C75–C76	120.6(3)	O4–Si1–O3	90.17(11)
N1C10C9	120.1(3)	C75–C76–C77	118.7(3)	O1–Si1–O3	89.42(11)
N1-C10-C11	123.7(3)	O64–C77–C76	121.0(3)	O4–Si1–O2	87.67(11)
C9–C10–C11	116.2(3)	O64–C77–C72	117.5(3)	O1-Si1-O2	84.30(11)
C13-C12-N1	129.9(3)	C76–C77–C72	121.5(3)	O3–Si1–O2	90.21(11)
C13-C12-C17	119.6(3)	O62–C79–C80	123.6(3)	O4–Si1–C1	94.32(12)
N1-C12-C17	110.3(3)	O62–C79–C78	115.9(3)	O1–Si1–C1	93.73(13)
C12-C13-C14	119.7(3)	C80–C79–C78	120.5(3)	O3-Si1-C1	91.57(12)
C15-C14-C13	120.2(3)	C81–C80–C79	121.4(3)	O2–Si1–C1	177.33(12)
C14C15C16	120.8(3)	O63–C81–C80	124.2(3)	O4–Si1–N1	86.05(11)
C17–C16–C15	119.6(3)	O63–C81–C82	115.1(3)	O1-Si1-N1	93.46(11)
O4–C17–C16	123.2(3)	C80–C81–C82	120.7(3)	O3-Si1-N1	172.71(12)
O4–C17–C12	116.7(3)	C96–C91–C92	115.5(3)	O2-Si1-N1	83.43(11)
C16-C17-C12	120.1(3)	C96–C91–Si91	123.2(2)	C1–Si1–N1	94.92(12)
O2–C19–C20	122.6(3)	C92–C91–Si91	121.4(2)	O34–Si31–O31	170.18(12)
O2–C19–C18	115.0(3)	C93–C92–C91	122.3(3)	O34–Si31–O33	89.33(12)

Fortsetzung von Tabelle A37:

Fortsetzung von Tabe	lle A37:				
C20-C19-C18	122.4(3)	С94–С93–С92	120.2(3)	O31-Si31-O33	90.32(12)
C21-C20-C19	121.4(3)	C93–C94–C95	119.2(3)	O34–Si31–O32	87.75(11)
O3–C21–C20	123.4(3)	С94С95С96	120.1(3)	O31-Si31-O32	82.44(11)
O3–C21–C22	115.6(3)	C95–C96–C91	122.8(3)	O33-Si31-O32	90.84(11)
C20–C21–C22	120.9(3)	O91–C98–C99	124.5(3)	O34-Si31-N31	86.23(11)
C32–C31–C36	116.1(3)	O91–C98–C97	113.9(3)	O31-Si31-N31	93.24(11)
C32-C31-Si31	122.6(2)	С99–С98–С97	121.6(3)	O33-Si31-N31	173.53(12)
C36-C31-Si31	121.3(2)	C98-C99-C100	125.6(3)	O32-Si31-N31	84.29(11)
C33–C32–C31	122.5(3)	N91-C100-C99	121.0(3)	O34-Si31-C31	95.86(13)
C34–C33–C32	119.9(3)	N91-C100-C101	123.4(3)	O31-Si31-C31	93.95(13)
C33–C34–C35	119.4(3)	C99-C100-C101	115.5(3)	O33-Si31-C31	90.78(12)
C34–C35–C36	120.2(3)	C103-C102-C107	118.9(3)	O32-Si31-C31	176.06(13)
C35-C36-C31	121.9(3)	C103-C102-N91	131.0(3)	N31-Si31-C31	94.36(12)
O31–C38–C39	124.2(3)	C107-C102-N91	110.2(3)	O64-Si61-O61	171.03(12)
O31-C38-C37	113.6(3)	C104–C103–C102	119.5(3)	O64–Si61–O63	88.89(11)
C39–C38–C37	122.2(3)	C103-C104-C105	121.3(3)	O61-Si61-O63	89.60(11)
C38-C39-C40	124.7(3)	C106-C105-C104	119.9(3)	O64–Si61–O62	86.15(11)
N31-C40-C39	120.2(3)	C107-C106-C105	119.3(3)	O61-Si61-O62	85.04(11)
N31-C40-C41	123.3(3)	O94–C107–C106	121.2(3)	O63-Si61-O62	91.19(10)
C39-C40-C41	116.5(3)	O94–C107–C102	117.7(3)	O64-Si61-C61	95.61(13)
C43-C42-C47	119.7(3)	C106-C107-C102	121.1(3)	O61-Si61-C61	93.28(12)
C43-C42-N31	129.5(3)	O92-C109-C110	123.7(3)	O63-Si61-C61	91.55(12)
C47-C42-N31	110.6(3)	O92–C109–C108	116.0(3)	O62-Si61-C61	176.77(12)
C44-C43-C42	119.5(3)	C110-C109-C108	120.3(3)	O64-Si61-N61	86.29(11)
C43-C44-C45	120.3(3)	С111-С110-С109	121.5(3)	O61-Si61-N61	94.21(11)
C46-C45-C44	120.8(3)	O93-C111-C110	124.5(3)	O63-Si61-N61	172.23(12)
C47–C46–C45	119.0(3)	O93-C111-C112	114.5(3)	O62-Si61-N61	82.42(10)
O34–C47–C46	122.6(3)	C110-C111-C112	121.0(3)	C61-Si61-N61	94.98(12)
O34–C47–C42	116.9(3)	C10-N1-C12	125.9(3)	O94–Si91–O91	170.20(12)
C46-C47-C42	120.5(3)	C10-N1-Si1	124.0(2)	O94–Si91–O93	88.88(11)
O32–C49–C50	121.9(3)	C12-N1-Si1	109.82(19)	O91–Si91–O93	89.24(11)
O32–C49–C48	117.0(3)	C40-N31-C42	126.0(3)	O94–Si91–O92	86.47(11)
С50-С49-С48	121.1(3)	C40-N31-Si31	123.4(2)	O91–Si91–O92	83.96(11)
С51-С50-С49	121.3(4)	C42-N31-Si31	109.8(2)	O93–Si91–O92	91.31(11)
O33-C51-C50	123.9(4)	C70-N61-C72	125.9(3)	O94–Si91–C91	96.46(13)
O33-C51-C52	114.7(3)	C70-N61-Si61	124.8(2)	O91-Si91-C91	93.20(13)
C50-C51-C52	121.3(4)	C72-N61-Si61	108.81(19)	O93-Si91-C91	91.55(12)
C62–C61–C66	115.5(3)	C100-N91-C102	126.0(3)	O92-Si91-C91	175.94(12)
C62-C61-Si61	122.6(2)	C100-N91-Si91	125.1(2)	O94-Si91-N91	86.44(11)
C66-C61-Si61	121.9(2)	C102-N91-Si91	108.79(19)	O91-Si91-N91	94.56(11)

Fortsetzung von Tabelle A37:						
C61–C62–C63	122.2(3)	C8–O1–Si1	125.6(2)	O93-Si91-N91	173.26(12)	
C64–C63–C62	120.0(4)	C19–O2–Si1	126.5(2)	O92-Si91-N91	83.57(11)	
C63–C64–C65	119.8(3)	C21–O3–Si1	127.0(2)	C91-Si91-N91	93.79(12)	
C64–C65–C66	119.5(3)	C17–O4–Si1	114.18(19)	N153-C154-C155	174.2(12)	
C65-C66-C61	123.0(3)	C38–O31–Si31	125.8(2)	N156-C157-C158	173.9(16)	
O61-C68-C69	124.3(3)	C49–O32–Si31	128.9(2)	N159-C160-C161	174.1(14)	

Verbindung 42·CH₃CN

Abb. A16: Struktur von **42**·CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A38: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **42**·CH₃CN. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U_{eq}	
C1	3514(1)	8446(1)	1580(1)	14(1)	
C2	2927(1)	7265(1)	743(1)	18(1)	
C3	3745(1)	6492(1)	354(1)	21(1)	
C4	5189(1)	6881(1)	790(1)	22(1)	
C5	5808(1)	8056(1)	1597(1)	20(1)	
Fortsetzung von Tabelle A38:					
------------------------------	----------	----------	----------	-------	--
C6	4977(1)	8821(1)	1980(1)	16(1)	
C7	1256(1)	8910(1)	-1122(1)	23(1)	
C8	2074(1)	9543(1)	93(1)	16(1)	
С9	3355(1)	10378(1)	391(1)	17(1)	
C10	4081(1)	11128(1)	1544(1)	15(1)	
C11	5388(1)	12103(1)	1734(1)	20(1)	
C12	4139(1)	11678(1)	3574(1)	14(1)	
C13	4739(1)	12922(1)	4115(1)	18(1)	
C14	5160(1)	13461(1)	5308(1)	21(1)	
C15	4978(1)	12763(1)	5945(1)	21(1)	
C16	4317(1)	11527(1)	5410(1)	18(1)	
C17	3862(1)	10988(1)	4224(1)	14(1)	
C23	-484(1)	6896(1)	2703(1)	14(1)	
C18	239(1)	6028(1)	2363(1)	19(1)	
C19	-324(1)	4886(1)	2327(1)	23(1)	
C20	-1612(1)	4594(1)	2605(1)	23(1)	
C21	-2345(1)	5445(1)	2928(1)	22(1)	
C22	-1779(1)	6598(1)	2986(1)	18(1)	
C24	151(1)	8113(1)	2757(1)	13(1)	
C25	-239(1)	9108(1)	3402(1)	14(1)	
C26	250(1)	10214(1)	3318(1)	13(1)	
C27	-307(1)	11238(1)	3855(1)	13(1)	
C28	-1549(1)	11084(1)	4247(1)	17(1)	
C29	-2094(1)	12047(1)	4689(1)	20(1)	
C30	-1397(1)	13174(1)	4748(1)	21(1)	
C31	-149(1)	13339(1)	4380(1)	21(1)	
C32	401(1)	12379(1)	3934(1)	17(1)	
C33	7589(2)	6476(2)	8744(1)	41(1)	
C34	8491(2)	7019(2)	9880(1)	53(1)	
N1	3608(1)	10939(1)	2391(1)	13(1)	
N2	6881(2)	6051(2)	7860(1)	69(1)	
01	1442(1)	9246(1)	827(1)	15(1)	
O2	1066(1)	8166(1)	2134(1)	14(1)	
O3	1168(1)	10389(1)	2741(1)	14(1)	
O4	3141(1)	9819(1)	3639(1)	14(1)	
Si	2350(1)	9452(1)	2204(1)	12(1)	

C1–C6	1.4005(14)	C13–C14	1.3951(14)	C26–C27	1.4763(13)
C1–C2	1.4051(14)	C14–C15	1.3923(16)	C27–C28	1.3995(13)
C1–Si	1.9254(10)	C15–C16	1.3943(15)	C27–C32	1.3997(13)
C2–C3	1.3935(14)	C16–C17	1.3896(13)	C28–C29	1.3869(14)
C3–C4	1.3878(16)	С17–О4	1.3456(11)	C29–C30	1.3906(15)
C4–C5	1.3916(16)	C23–C22	1.3982(14)	C30–C31	1.3905(15)
C5–C6	1.3959(14)	C23–C18	1.3984(14)	C31–C32	1.3873(14)
С7–С8	1.4948(14)	C23–C24	1.4795(13)	C33–N2	1.127(2)
C8–O1	1.3145(12)	C18–C19	1.3893(14)	C33–C34	1.4453(19)
С8–С9	1.3679(15)	C19–C20	1.3881(16)	N1–Si	1.9075(8)
C9–C10	1.4232(14)	C20–C21	1.3871(16)	O1–Si	1.7857(7)
C10-N1	1.3161(12)	C21–C22	1.3916(14)	O2–Si	1.7837(7)
C10–C11	1.4995(14)	C24–O2	1.2961(11)	O3–Si	1.8602(7)
C12–C13	1.3936(13)	C24–C25	1.3858(13)	O4–Si	1.7612(7)
C12–C17	1.4082(13)	C25–C26	1.4021(13)		
C12-N1	1.4181(12)	C26–O3	1.2818(11)		
C6-C1-C2	116.38(9)	C16-C17-C1	119.94(9)	N2-C33-C34	179.6(2)
C6–C1–Si	122.01(7)	C22-C23-C1	119.66(9)	C10-N1-C12	126.01(8)
C2–C1–Si	121.51(7)	С22-С23-С2	121.63(9)	C10-N1-Si	123.30(7)
C3-C2-C1	122.13(10)	С18-С23-С2	118.71(9)	C12-N1-Si	109.60(6)
С4-С3-С2	120.07(10)	C19–C18–C2	119.74(10)	C8–O1–Si	123.45(7)
C3–C4–C5	119.26(10)	C20-C19-C1	120.36(10)	C24–O2–Si	128.88(6)
C4–C5–C6	120.08(10)	C21-C20-C1	120.21(10)	C26–O3–Si	127.62(6)
C5-C6-C1	122.03(9)	C20-C21-C2	119.92(10)	C17–O4–Si	113.90(6)
O1–C8–C9	124.17(9)	C21–C22–C2	120.10(10)	O4–Si–O2	92.07(3)
O1–C8–C7	114.35(9)	O2–C24–C25	123.09(8)	O4-Si-O1	172.03(4)
С9–С8–С7	121.46(9)	O2–C24–C23	114.85(8)	O2-Si-O1	89.75(3)
C8-C9-C10	123.60(9)	C25–C24–C2	122.04(8)	O4–Si–O3	88.16(3)
N1-C10-C9	119.89(9)	C24–C25–C2	120.32(9)	O2–Si–O3	89.18(3)
N1-C10-C11	122.80(9)	O3-C26-C25	122.52(8)	O1–Si–O3	84.10(3)
C9-C10-C11	117.31(9)	O3–C26–C27	115.72(8)	O4-Si-N1	85.84(3)
C13-C12-C1	120.40(9)	C25-C26-C2	121.71(8)	O2-Si-N1	173.23(4)
C13-C12-N1	129.29(9)	С28-С27-С3	119.54(9)	O1-Si-N1	91.47(3)
C17-C12-N1	110.05(8)	С28-С27-С2	121.49(8)	O3-Si-N1	84.32(3)
C12-C13-C1	119.05(10)	С32-С27-С2	118.93(9)	O4–Si–C1	94.36(4)
C15-C14-C1	120.29(9)	C29–C28–C2	120.39(9)	O2-Si-C1	89.88(4)
C14-C15-C1	120.79(9)	С28-С29-С3	119.76(10)	O1-Si-C1	93.41(4)
C17-C16-C1	119.22(10)	С31-С30-С2	120.16(9)	O3–Si–C1	177.34(4)

Tabelle A39: Bindungslängen [Å] und -winkel [°] von 42 · CH₃CN.

Fortsetzung von Tabelle A39:						
O4C17C16	123.45(9)	С32-С31-С3	120.42(9)	N1-Si-C1	96.70(4)	
O4C17C12	116.60(8)	С31-С32-С2	119.72(9)			

Verbindung 43 · (C₂H₅)₂O

Abb. A17: Struktur von $43 \cdot (C_2H_5)_2O$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A40: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **43**·(C₂H₅)₂O. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
Si	8572(1)	7882(1)	1939(1)	23(1)
F1	3763(3)	7398(4)	2664(3)	88(1)
F2	4524(6)	5918(4)	2448(3)	112(2)
F3	5102(4)	6761(4)	3319(2)	79(1)
F1B	3907(6)	6402(6)	2220(3)	70(2)
F2B	5170(7)	5936(7)	2952(5)	102(2)
F3B	4248(10)	7415(8)	3034(5)	104(3)
F4	4790(2)	9465(2)	750(1)	71(1)
F5	6186(2)	8819(2)	117(1)	77(1)
F6	6601(2)	10087(2)	765(1)	76(1)
01	8719(1)	6754(1)	1465(1)	26(1)
O2	6865(2)	6962(1)	2331(1)	36(1)

0				
O3	7518(1)	8284(1)	1280(1)	27(1)
O4	7921(1)	8771(1)	2487(1)	26(1)
Ν	9274(2)	7279(1)	2746(1)	24(1)
C1	9946(2)	8627(2)	1610(1)	25(1)
C2	10113(2)	8835(2)	903(1)	32(1)
C3	11095(2)	9430(2)	669(1)	38(1)
C4	11937(2)	9838(2)	1142(2)	39(1)
C5	11799(2)	9643(2)	1843(1)	39(1)
C6	10818(2)	9040(2)	2072(1)	32(1)
C7	9793(2)	5417(2)	905(1)	39(1)
C8	9676(2)	6126(2)	1512(1)	28(1)
C9	10451(2)	6109(2)	2074(1)	28(1)
C10	10206(2)	6621(2)	2709(1)	26(1)
C11	11019(2)	6366(2)	3319(1)	32(1)
C12	8770(2)	7726(2)	3356(1)	25(1)
C13	8849(2)	7422(2)	4051(1)	31(1)
C14	8171(2)	7956(2)	4547(1)	36(1)
C15	7414(2)	8766(2)	4357(1)	37(1)
C16	7308(2)	9062(2)	3665(1)	32(1)
C17	7991(2)	8544(2)	3173(1)	25(1)
C18	4793(3)	6808(3)	2650(2)	53(1)
C19	5824(2)	7307(2)	2229(1)	34(1)
C20	5497(2)	8096(2)	1750(1)	37(1)
C21	6349(2)	8483(2)	1309(1)	29(1)
C22	5966(2)	9221(2)	731(1)	39(1)
C26	7150(20)	11961(17)	4360(5)	60(3)
C25	7536(9)	12141(6)	5070(4)	74(2)
O5	7405(4)	11274(3)	5504(2)	68(1)
C24	6174(10)	11000(9)	5642(4)	81(2)
C23	6118(19)	10037(16)	6134(7)	81(4)
C26B	7150(40)	11980(30)	4169(14)	60(3)
C25B	6995(16)	12001(11)	4932(8)	74(2)
O5B	6711(8)	11021(6)	5231(4)	68(1)
C24B	6410(20)	11013(18)	5935(8)	81(2)
C23B	6270(40)	10290(30)	6323(14)	81(4)

Fortsetzung von Tabelle A40:

Tabelle A41: Bindungslängen [Å] und -winkel [°] von $43 \cdot (C_2H_5)_2O$.

Si-O4	1.7210(16)	O3–C21	1.294(3)	C13-C14	1.394(3)
Si-O1	1.7382(16)	O4–C17	1.355(3)	C14–C15	1.384(4)

Fortsetzung von Ta	abelle A41:				
Si–O3	1.7803(16)	N-C10	1.327(3)	C15-C16	1.390(3)
Si–C1	1.889(2)	N-C12	1.423(3)	C16–C17	1.381(3)
Si–N	1.8961(18)	C1–C2	1.400(3)	C18–C19	1.529(4)
F1-C18	1.356(5)	C1–C6	1.402(3)	C19–C20	1.423(4)
F2C18	1.257(5)	C2–C3	1.394(3)	C20–C21	1.355(3)
F3-C18	1.329(5)	C3–C4	1.390(4)	C21–C22	1.527(3)
F1B-C18	1.370(6)	C4–C5	1.381(4)	C26–C25	1.446(13)
F2BC18	1.339(8)	C5–C6	1.395(3)	C25–O5	1.412(9)
F3B-C18	1.236(9)	С7–С8	1.496(3)	O5–C24	1.407(12)
F4-C22	1.315(3)	C8–C9	1.365(3)	C24–C23	1.57(2)
F5–C22	1.316(3)	C9–C10	1.420(3)	C26B-C25B	1.48(3)
F6-C22	1.323(3)	C10C11	1.500(3)	C25B-O5B	1.435(17)
O1–C8	1.324(3)	C12–C13	1.398(3)	O5B-C24B	1.396(17)
O2–C19	1.230(3)	C12–C17	1.404(3)	C24B-C23B	1.22(5)
O4-Si-O1	158.48(8)	C8-C9-C10	123.9(2)	F2B-C18-F1B	98.3(6)
O4–Si–O3	88.58(7)	N-C10-C9	119.71(19)	F1C18F1B	69.9(4)
O1–Si–O3	86.27(7)	N-C10-C11	123.0(2)	F3B-C18-C19	113.4(5)
O4-Si-C1	100.70(9)	C9-C10-C11	117.2(2)	F2-C18-C19	113.5(3)
O1-Si-C1	100.64(9)	C13-C12-C17	119.3(2)	F3-C18-C19	110.7(3)
O3-Si-C1	96.50(8)	C13-C12-N	130.7(2)	F2B-C18-C19	111.7(4)
O4–Si–N	86.57(7)	C17-C12-N	109.68(18)	F1C18C19	111.8(3)
O1-Si-N	92.43(8)	C14-C13-C12	119.0(2)	F1B-C18-C19	110.8(3)
O3–Si–N	163.32(8)	C15-C14-C13	120.9(2)	O2-C19-C20	126.4(2)
C1-Si-N	100.07(9)	C14-C15-C16	120.7(2)	O2C19C18	115.5(2)
C8–O1–Si	124.08(14)	C17-C16-C15	118.7(2)	C20-C19-C18	118.1(2)
C21–O3–Si	130.67(14)	O4–C17–C16	122.4(2)	С21-С20-С19	120.5(2)
C17–O4–Si	115.50(13)	O4–C17–C12	116.11(19)	O3-C21-C20	128.5(2)
C10-N-C12	127.16(18)	C16-C17-C12	121.5(2)	O3-C21-C22	110.9(2)
C10–N–Si	121.72(15)	F3B-C18-F2	131.7(5)	C20-C21-C22	120.6(2)
C12–N–Si	110.67(14)	F3B-C18-F3	64.5(6)	F4-C22-F5	107.6(2)
C2C1C6	116.9(2)	F2C18F3	108.3(4)	F4C22F6	107.1(2)
C2–C1–Si	122.10(17)	F3B-C18-F2B	115.5(7)	F5-C22-F6	106.8(2)
C6–C1–Si	120.96(17)	F2C18F2B	54.6(5)	F4-C22-C21	113.0(2)
C3-C2-C1	121.6(2)	F3-C18-F2B	57.8(5)	F5-C22-C21	110.8(2)
С4-С3-С2	120.1(2)	F3B-C18-F1	39.5(5)	F6-C22-C21	111.3(2)
С5-С4-С3	119.6(2)	F2-C18-F1	109.8(5)	O5-C25-C26	113.5(10)
C4–C5–C6	120.0(2)	F3-C18-F1	102.1(4)	C24–O5–C25	114.5(6)
C5-C6-C1	121.8(2)	F2B-C18-F1	136.2(4)	O5–C24–C23	110.9(9)
O1–C8–C9	122.9(2)	F3B-C18-F1B	105.8(6)	O5B-C25B-C26B	114.0(19)

Fortsetzung von Tabelle A41:						
O1–C8–C7	113.42(19)	F2C18F1B	45.3(4)	C24B-O5B-C25B	116.6(14)	
С9–С8–С7	123.7(2)	F3-C18-F1B	137.6(4)	C23B-C24B-O5B	129(2)	

Verbindung 44.0.5C₆H₅CH₃

Abb. A18: Struktur von **44**·0.5C₆H₅CH₃ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A42: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von $44.0.5C_6H_5CH_3$. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	у	Z	U_{eq}
S1	9163(1)	4174(1)	4407(1)	34(1)
Sil	7513(1)	5503(1)	2997(1)	26(1)
F1	11275(2)	4236(2)	3052(1)	43(1)
F2	11380(2)	5304(2)	3835(1)	51(1)
F3	11087(2)	6024(2)	2746(1)	46(1)

Fortsetzung von Tabe	lle A42:			
F4	6453(2)	8060(2)	4551(2)	74(1)
F5	8180(2)	8448(2)	4411(2)	75(1)
F6	7292(3)	8878(2)	3509(2)	77(1)
01	5979(2)	5875(2)	2970(1)	32(1)
O2	8997(2)	5224(2)	3023(1)	27(1)
O3	7250(2)	6632(2)	3471(1)	34(1)
N1	7218(2)	4189(2)	3581(1)	26(1)
C1	7869(2)	5533(2)	1952(1)	28(1)
C2	7081(3)	5234(3)	1590(2)	37(1)
C3	7309(3)	5292(3)	819(2)	42(1)
C4	8322(3)	5663(3)	387(2)	41(1)
C5	9121(3)	5951(3)	732(2)	39(1)
C6	8901(3)	5877(2)	1504(2)	31(1)
C7	3951(3)	6421(3)	3431(2)	43(1)
C8	5079(3)	5687(2)	3504(2)	32(1)
C9	5176(3)	4818(3)	4075(2)	34(1)
C10	6196(3)	4037(2)	4069(1)	30(1)
C11	6149(3)	2993(3)	4621(2)	41(1)
C12	8149(3)	3232(2)	3528(1)	29(1)
C13	8080(3)	2407(2)	3118(2)	37(1)
C14	8935(3)	1465(3)	3073(2)	47(1)
C15	9875(3)	1352(3)	3416(2)	46(1)
C16	9956(3)	2193(3)	3810(2)	39(1)
C17	9095(3)	3129(2)	3876(1)	31(1)
C18	10812(3)	5212(3)	3311(2)	35(1)
C19	9479(3)	5319(2)	3609(2)	30(1)
C20	9023(3)	6416(3)	3915(2)	34(1)
C21	7994(3)	6968(2)	3807(2)	33(1)
C22	7483(3)	8088(3)	4071(2)	46(1)
S2	1431(1)	-69(1)	465(1)	30(1)
Si2	2891(1)	-923(1)	1983(1)	25(1)
F7	-845(2)	-152(1)	1685(1)	38(1)
F8	-627(2)	-1471(2)	1004(1)	38(1)
F9	-489(2)	-1878(2)	2156(1)	39(1)
F10	4424(2)	-3715(2)	562(1)	64(1)
F11	2795(2)	-4366(2)	836(1)	59(1)
F12	3736(2)	-4380(2)	1686(1)	60(1)
O4	4389(2)	-1063(2)	2068(1)	31(1)
O5	1451(2)	-880(2)	1910(1)	25(1)
O6	3399(2)	-2080(2)	1531(1)	31(1)

028(2) 403(2) 496(3) 153(3) 687(3) 570(3) 936(3)	427(2) -896(2) -1455(2) -1408(3) -777(3) -207(3)	1394(1) 3016(1) 3460(2) 4223(2) 4559(2)	27(1) 27(1) 30(1) 35(1) 40(1)
403(2) 496(3) 153(3) 687(3) 570(3) 936(3)	-896(2) -1455(2) -1408(3) -777(3) -207(3)	3016(1) 3460(2) 4223(2) 4559(2)	27(1) 30(1) 35(1) 40(1)
496(3) 153(3) 687(3) 570(3) 936(3)	-1455(2) -1408(3) -777(3) -207(3)	3460(2) 4223(2) 4559(2)	30(1) 35(1) 40(1)
153(3) 687(3) 570(3) 936(3)	-1408(3) -777(3) -207(3)	4223(2) 4559(2)	35(1) 40(1)
687(3) 570(3) 936(3)	-777(3) -207(3)	4559(2)	40(1)
570(3) 936(3)	-207(3)		тU(1)
936(3)		4132(2)	42(1)
	-275(3)	3373(2)	36(1)
454(3)	-1454(3)	1625(2)	45(1)
283(2)	-812(2)	1541(2)	32(1)
129(3)	22(3)	962(2)	34(1)
038(2)	693(2)	941(2)	30(1)
008(3)	1747(3)	397(2)	41(1)
976(2)	1241(2)	1362(1)	28(1)
759(3)	2163(2)	1752(2)	33(1)
81(3)	2979(2)	1702(2)	38(1)
2(3)	2871(2)	1271(2)	38(1)
11(3)	1946(2)	895(2)	33(1)
184(3)	1127(2)	937(1)	29(1)
221(3)	-1145(2)	1536(2)	30(1)
109(2)	-1136(2)	1306(1)	27(1)
719(3)	-2256(2)	1087(1)	30(1)
769(3)	-2632(2)	1236(1)	30(1)
429(3)	-3774(2)	1078(2)	36(1)
851(4)	2068(4)	1149(3)	72(1)
972(3)	2109(3)	1877(2)	54(1)
072(4)	1257(3)	2467(3)	61(1)
a a a (a)	1329(4)	3144(3)	69(1)
305(4)		(3)	
305(4) 414(5)	2242(5)	3254(3)	78(1)
305(4) 414(5) 313(4)	2242(5) 3073(4)	3254(3) 2662(3)	78(1) 76(1)
2 1 1 2 1 1 2 7 4 8 9 7 7 4 8 9 7 7	2(3) 1(3) 84(3) 221(3) 09(2) 719(3) 769(3) 351(4) 972(3) 972(4) 605(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(3) $2979(2)$ $1702(2)$ $2(3)$ $2871(2)$ $1271(2)$ $1(3)$ $1946(2)$ $895(2)$ $84(3)$ $1127(2)$ $937(1)$ $221(3)$ $-1145(2)$ $1536(2)$ $09(2)$ $-1136(2)$ $1306(1)$ $19(3)$ $-2256(2)$ $1087(1)$ $769(3)$ $-2632(2)$ $1236(1)$ $429(3)$ $-3774(2)$ $1078(2)$ $851(4)$ $2068(4)$ $1149(3)$ $072(3)$ $2109(3)$ $1877(2)$ $072(4)$ $1257(3)$ $2467(3)$

Fortsetzung von Tabelle A42:

Tabelle A43: Bindungslängen [Å] und -winkel [°] von 44.0.5C₆H₅CH₃.

S1C17	1.768(3)	C12–C13	1.388(4)	C23–C24	1.403(4)
S1-C19	1.884(3)	C12–C17	1.402(4)	C23–C28	1.404(4)
Si1–O3	1.705(2)	C13–C14	1.385(5)	C24–C25	1.390(4)
Si1–O2	1.739(2)	C14–C15	1.387(5)	C25–C26	1.387(4)
Si1–O1	1.800(2)	C15–C16	1.390(5)	C26–C27	1.380(4)
Si1–N1	1.828(2)	C16–C17	1.386(4)	C27–C28	1.387(4)
Si1–C1	1.886(3)	C18–C19	1.532(4)	C29–C30	1.491(4)

Fortsetzung von T	abelle A43:				
F1-C18	1.335(4)	C19–C20	1.503(4)	C30–C31	1.380(4)
F2C18	1.341(3)	C20–C21	1.322(4)	C31–C32	1.403(4)
F3-C18	1.347(3)	C21–C22	1.505(4)	C32–C33	1.504(4)
F4–C22	1.330(4)	S2-C39	1.774(3)	C34–C35	1.395(4)
F5-C22	1.326(4)	S2-C41	1.878(3)	C34–C39	1.405(4)
F6-C22	1.334(4)	Si206	1.708(2)	C35–C36	1.392(5)
O1–C8	1.298(3)	Si2–O5	1.7346(19)	C36–C37	1.389(4)
O2–C19	1.378(3)	Si2–O4	1.794(2)	C37–C38	1.385(4)
O3–C21	1.352(3)	Si2–N2	1.838(2)	C38–C39	1.388(4)
N1-C10	1.351(4)	Si2-C23	1.877(3)	C40–C41	1.533(4)
N1-C12	1.450(4)	F7-C40	1.334(3)	C41–C42	1.498(4)
C1–C6	1.398(4)	F8-C40	1.344(3)	C42–C43	1.322(4)
C1–C2	1.406(4)	F9–C40	1.351(3)	C43–C44	1.507(4)
C2–C3	1.389(4)	F10-C44	1.335(4)	C45–C46	1.499(6)
C3–C4	1.384(5)	F11-C44	1.330(3)	C46-C51	1.380(6)
C4–C5	1.389(4)	F12-C44	1.336(4)	C46–C47	1.397(6)
C5–C6	1.389(4)	O4–C30	1.304(3)	C47–C48	1.371(7)
C7–C8	1.486(4)	O5–C41	1.384(3)	C48–C49	1.391(7)
C8–C9	1.384(4)	O6–C43	1.352(3)	C49–C50	1.383(7)
C9–C10	1.394(4)	N2-C32	1.349(3)	C50–C51	1.368(7)
C10-C11	1.503(4)	N2-C34	1.451(4)		
C17-S1-C19	97.64(12)	F2-C18-C19	112.2(2)	C30-C31-C32	122.1(3)
O3-Si1-O2	93.28(10)	F3-C18-C19	111.1(2)	N2-C32-C31	122.1(3)
O3-Si1-O1	83.89(10)	O2-C19-C20	112.5(2)	N2-C32-C33	119.6(3)
O2-Si1-O1	176.73(10)	O2-C19-C18	106.8(2)	C31–C32–C33	118.3(3)
O3-Si1-N1	114.55(10)	C20-C19-C18	109.8(2)	C35–C34–C39	119.6(3)
O2-Si1-N1	92.47(10)	O2-C19-S1	111.86(17)	C35-C34-N2	119.2(2)
O1-Si1-N1	90.21(10)	C20-C19-S1	107.11(18)	C39-C34-N2	121.2(2)
O3-Si1-C1	126.24(11)	C18-C19-S1	108.7(2)	C36-C35-C34	120.0(3)
O2-Si1-C1	91.54(11)	C21–C20–C19	118.7(2)	C37–C36–C35	120.2(3)
O1-Si1-C1	88.83(11)	C20-C21-O3	127.0(3)	C38–C37–C36	119.9(3)
N1-Si1-C1	118.68(11)	C20-C21-C22	122.6(3)	C37–C38–C39	120.6(3)
C8O1Si1	127.64(18)	O3-C21-C22	110.4(3)	C38–C39–C34	119.6(3)
C19-O2-Si1	126.57(17)	F5-C22-F4	106.8(3)	C38–C39–S2	120.6(2)
C21-O3-Si1	127.35(19)	F5-C22-F6	106.8(3)	C34–C39–S2	119.7(2)
C10-N1-C12	116.8(2)	F4-C22-F6	106.5(3)	F7-C40-F8	107.3(2)
C10-N1-Si1	125.0(2)	F5-C22-C21	112.5(3)	F7-C40-F9	106.8(2)
C12-N1-Si1	118.15(17)	F4-C22-C21	111.9(3)	F8-C40-F9	106.5(2)
C6C1C2	117.2(2)	F6-C22-C21	111.9(3)	F7-C40-C41	113.6(2)

C6C1Si1	122.1(2)	C39–S2–C41	97.97(12)	F8-C40-C41	111.5(2)
C2C1Si1	120.7(2)	O6-Si2-O5	93.43(9)	F9-C40-C41	110.8(2)
C3-C2-C1	121.5(3)	O6-Si2-O4	83.72(9)	O5-C41-C42	112.1(2)
C4–C3–C2	120.1(3)	O5-Si2-O4	176.39(10)	O5-C41-C40	106.9(2)
C3–C4–C5	119.5(3)	O6-Si2-N2	115.38(10)	C42-C41-C40	109.4(2)
C6C5C4	120.3(3)	O5-Si2-N2	93.05(10)	O5-C41-S2	111.75(16)
C5-C6-C1	121.4(3)	O4-Si2-N2	90.18(10)	C42-C41-S2	107.47(18)
O1–C8–C9	121.0(3)	O6-Si2-C23	126.86(11)	C40-C41-S2	109.16(18)
O1–C8–C7	115.5(3)	O5-Si2-C23	90.81(10)	C43-C42-C41	118.0(2)
С9–С8–С7	123.4(3)	O4-Si2-C23	89.14(10)	C42–C43–O6	126.6(3)
C8–C9–C10	122.2(3)	N2-Si2-C23	117.23(11)	C42–C43–C44	122.3(2)
N1-C10-C9	122.0(3)	C30-O4-Si2	126.69(18)	O6-C43-C44	111.0(2)
N1-C10-C11	119.3(3)	C41-O5-Si2	125.61(17)	F11-C44-F10	107.0(2)
C9–C10–C11	118.6(3)	C43-O6-Si2	127.05(18)	F11-C44-F12	106.9(2)
C13–C12–C17	120.3(3)	C32-N2-C34	116.5(2)	F10-C44-F12	106.3(3)
C13-C12-N1	118.0(3)	C32-N2-Si2	124.4(2)	F11-C44-C43	112.3(2)
C17-C12-N1	121.7(2)	C34-N2-Si2	118.83(17)	F10-C44-C43	112.2(2)
C14–C13–C12	119.6(3)	C24–C23–C28	117.3(2)	F12-C44-C43	111.7(2)
C13-C14-C15	120.6(3)	C24-C23-Si2	122.86(19)	C51-C46-C47	118.7(4)
C14-C15-C16	119.6(3)	C28-C23-Si2	119.8(2)	C51-C46-C45	120.9(4)
C17–C16–C15	120.6(3)	C25-C24-C23	121.2(2)	C47–C46–C45	120.3(4)
C16-C17-C12	119.2(3)	C26-C25-C24	120.2(3)	C48-C47-C46	120.1(4)
C16-C17-S1	120.9(2)	C27–C26–C25	119.6(3)	C47–C48–C49	120.9(4)
C12-C17-S1	119.9(2)	C26–C27–C28	120.4(3)	С50-С49-С48	118.4(5)
F1-C18-F2	107.2(2)	C27–C28–C23	121.3(3)	C51-C50-C49	120.8(5)
F1-C18-F3	106.8(2)	O4-C30-C31	120.7(3)	C50-C51-C46	121.0(4)
F2-C18-F3	106.7(2)	O4–C30–C29	115.9(3)		
F1-C18-C19	112.6(2)	C31–C30–C29	123.4(3)		

Fortsetzung von Tabelle A43:

Verbindung 54

Abb. A19: Struktur von **54** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A44: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **54**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
Si	3546(1)	288(1)	5745(1)	16(1)
01	3012(1)	939(2)	5232(1)	19(1)
O2	3608(1)	1689(2)	6490(1)	18(1)
N1	3542(1)	-1002(2)	4794(2)	16(1)
N2	3788(1)	1710(2)	4906(2)	16(1)
N3	4119(1)	-312(2)	6050(2)	16(1)
C1	3284(1)	-856(3)	6546(2)	17(1)
C2	2994(1)	-324(3)	7103(2)	22(1)
C3	2795(1)	-1144(4)	7676(2)	28(1)
C4	2880(1)	-2537(4)	7718(2)	30(1)
C5	3167(1)	-3100(3)	7183(2)	26(1)
C6	3364(1)	-2264(3)	6610(2)	21(1)
C7	2233(1)	788(3)	4788(2)	25(1)
C8	2686(1)	161(3)	4863(2)	18(1)

0				
C9	2751(1)	-1114(3)	4534(2)	17(1)
C10	3171(1)	-1649(3)	4438(2)	17(1)
C11	3181(1)	-2955(3)	3919(2)	22(1)
C12	3980(1)	-1381(3)	4665(2)	16(1)
C13	4114(1)	-1932(3)	3905(2)	18(1)
C14	4561(1)	-2237(3)	3902(2)	21(1)
C15	4867(1)	-1975(3)	4647(2)	21(1)
C16	4742(1)	-1355(3)	5398(2)	19(1)
C17	4296(1)	-1011(3)	5404(2)	16(1)
C18	4403(1)	-17(3)	6883(2)	21(1)
C19	3857(1)	1661(3)	4064(2)	19(1)
C20	4072(1)	2726(3)	3676(2)	22(1)
C21	4206(1)	3879(3)	4155(2)	22(1)
C22	4127(1)	3979(3)	5047(2)	20(1)
C23	4250(1)	5094(3)	5626(2)	25(1)
C24	4160(1)	5038(3)	6481(2)	26(1)
C25	3939(1)	3913(3)	6808(2)	22(1)
C26	3819(1)	2817(3)	6263(2)	17(1)
C27	3918(1)	2857(3)	5385(2)	16(1)

Fortsetzung von Tabelle A44:

Tabelle A45 [.] Bindungslängen	٢Å٦	l und -winkel	۲°٦	von 54
rabelle A45. Diffuungslangen	LUL	j unu -winker		V011 3 -

Si-O2	1.771(2)	N3-C18	1.451(4)	C13–C14	1.386(4)
Si-O1	1.803(2)	C1-C6	1.400(4)	C14–C15	1.377(4)
Si–N3	1.826(2)	C1–C2	1.407(4)	C15-C16	1.392(4)
Si–C1	1.910(3)	C2–C3	1.386(4)	C16–C17	1.395(4)
Si–N1	1.917(3)	C3–C4	1.387(5)	C19–C20	1.404(4)
Si–N2	2.092(3)	C4–C5	1.390(5)	C20–C21	1.371(4)
O1–C8	1.307(3)	C5–C6	1.393(4)	C21–C22	1.414(4)
O2–C26	1.346(3)	С7–С8	1.491(4)	C22–C27	1.401(4)
N1-C10	1.331(4)	C8–C9	1.370(4)	C22–C23	1.417(4)
N1-C12	1.421(4)	C9–C10	1.404(4)	C23–C24	1.368(4)
N2-C19	1.327(4)	C10-C11	1.505(4)	C24–C25	1.415(4)
N2-C27	1.366(4)	C12–C13	1.388(4)	C25–C26	1.372(4)
N3-C17	1.368(4)	C12–C17	1.410(4)	C26–C27	1.410(4)
O2-Si-O1	90.35(10)	C27–N2–Si	108.80(19)	C14-C13-C12	119.4(3)
O2-Si-N3	94.58(10)	C17-N3-C18	118.7(2)	C15-C14-C13	119.7(3)
O1-Si-N3	168.72(10)	C17–N3–Si	115.87(19)	C14-C15-C16	121.6(3)
O2-Si-C1	93.56(11)	C18–N3–Si	125.2(2)	C15-C16-C17	119.5(3)

_

Fortsetzung von Tabelle A45:							
O1-Si-C1	93.05(11)	С6-С1-С2	116.1(3)	N3-C17-C16	127.5(3)		
N3-Si-C1	96.75(12)	C6–C1–Si	122.5(2)	N3-C17-C12	114.2(2)		
O2-Si-N1	168.54(11)	C2–C1–Si	121.4(2)	C16-C17-C12	118.3(3)		
O1-Si-N1	90.10(10)	С3-С2-С1	122.1(3)	N2-C19-C20	121.7(3)		
N3-Si-N1	83.07(11)	С2-С3-С4	120.3(3)	C21-C20-C19	120.6(3)		
C1-Si-N1	97.86(12)	C3–C4–C5	119.4(3)	C20–C21–C22	119.1(3)		
O2-Si-N2	82.00(10)	C4–C5–C6	119.7(3)	C27–C22–C21	116.5(3)		
O1-Si-N2	82.72(9)	C5-C6-C1	122.4(3)	C27–C22–C23	117.9(3)		
N3-Si-N2	87.91(10)	01–C8–C9	123.2(3)	C21–C22–C23	125.6(3)		
C1-Si-N2	173.82(12)	O1–C8–C7	115.0(3)	C24–C23–C22	119.2(3)		
N1-Si-N2	86.69(10)	С9–С8–С7	121.8(3)	C23–C24–C25	122.4(3)		
C8–O1–Si	123.51(19)	C8–C9–C10	124.0(3)	C26-C25-C24	119.6(3)		
C26-O2-Si	118.70(18)	N1-C10-C9	120.2(3)	O2-C26-C25	125.4(3)		
C10-N1-C12	124.6(3)	N1-C10-C11	122.5(3)	O2-C26-C27	116.2(3)		
C10-N1-Si	122.06(19)	C9-C10-C11	117.4(3)	C25-C26-C27	118.3(3)		
C12-N1-Si	111.99(19)	C13-C12-C17	121.1(3)	N2-C27-C22	124.1(3)		
C19-N2-C27	118.0(3)	C13-C12-N1	127.6(3)	N2-C27-C26	113.3(3)		
C19-N2-Si	133.1(2)	C17-C12-N1	111.0(2)	C22–C27–C26	122.6(3)		

Abb. A20: Struktur von **55**·CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A46: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **55**·CH₃CN. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U _{eq}
S	1868(1)	339(1)	1532(1)	16(1)
Si	1850(1)	2216(1)	559(1)	12(1)
0	955(1)	1587(2)	85(1)	14(1)
N1	1942(1)	3534(2)	-373(1)	12(1)
N2	2286(1)	566(2)	-223(1)	13(1)
N3	2838(1)	2766(2)	814(1)	13(1)
C1	1383(1)	3524(2)	1339(1)	14(1)
C2	1604(1)	4997(2)	1427(1)	16(1)
C3	1284(1)	5922(3)	2018(1)	21(1)
C4	744(1)	5398(3)	2549(2)	23(1)
C5	512(1)	3951(3)	2476(1)	22(1)
C6	824(1)	3039(3)	1877(1)	19(1)
C7	-361(1)	1891(3)	-262(2)	20(1)
C8	432(1)	2480(2)	-248(1)	15(1)

Verbindung 55·CH₃CN

Fortsetzung von Tabe	lle A46:			
C9	600(1)	3821(2)	-584(1)	15(1)
C10	1349(1)	4301(2)	-704(1)	14(1)
C11	1448(1)	5695(2)	-1198(1)	18(1)
C12	2718(1)	3790(2)	-549(1)	14(1)
C13	3005(1)	4259(2)	-1309(1)	16(1)
C14	3790(1)	4375(2)	-1371(1)	18(1)
C15	4279(1)	3989(2)	-678(1)	18(1)
C16	3997(1)	3458(2)	71(1)	17(1)
C17	3209(1)	3326(2)	144(1)	13(1)
C18	3279(1)	2525(2)	1613(1)	17(1)
C19	2329(1)	674(2)	-1065(1)	15(1)
C20	2770(1)	-266(2)	-1540(2)	19(1)
C21	3176(1)	-1367(2)	-1136(2)	20(1)
C22	3119(1)	-1574(2)	-246(1)	18(1)
C23	3480(1)	-2743(2)	214(2)	21(1)
C24	3375(1)	-2901(2)	1068(2)	23(1)
C25	2907(1)	-1933(2)	1498(2)	20(1)
C26	2529(1)	-798(2)	1069(1)	15(1)
C27	2656(1)	-594(2)	188(1)	14(1)
N4	4803(1)	7764(3)	2646(2)	41(1)
C28	4913(1)	8486(3)	2071(2)	32(1)
C29	5039(2)	9420(3)	1335(2)	43(1)

Tabelle A47: Bindungslängen [Å] und -winkel [°] von $55 \cdot CH_3CN$.

S-C26	1.751(2)	C1–C6	1.407(3)	C15-C16	1.390(3)
S–Si	2.2981(8)	C1–C2	1.407(3)	C16–C17	1.405(3)
Si-O	1.8013(15)	C2–C3	1.398(3)	C19–C20	1.403(3)
Si–N3	1.8365(18)	C3–C4	1.386(3)	C20–C21	1.371(3)
Si–N1	1.9097(18)	C4–C5	1.387(3)	C21–C22	1.421(3)
Si–C1	1.929(2)	C5–C6	1.394(3)	C22–C27	1.414(3)
Si–N2	2.1159(19)	С7–С8	1.499(3)	C22–C23	1.420(3)
O–C8	1.318(2)	С8–С9	1.373(3)	C23–C24	1.372(3)
N1-C10	1.340(3)	C9–C10	1.414(3)	C24–C25	1.409(3)
N1-C12	1.430(3)	C10-C11	1.509(3)	C25–C26	1.388(3)
N2-C19	1.333(3)	C12–C13	1.390(3)	C26–C27	1.425(3)
N2-C27	1.386(3)	C12–C17	1.420(3)	N4-C28	1.144(4)
N3-C17	1.368(3)	C13–C14	1.398(3)	C28–C29	1.466(4)
N3-C18	1.457(2)	C14-C15	1.396(3)		

-					
C26–S–Si	98.70(8)	C17-N3-C18	117.67(17)	C16-C15-C14	121.0(2)
O-Si-N3	167.59(8)	C17–N3–Si	115.05(13)	C15-C16-C17	120.1(2)
O-Si-N1	89.69(7)	C18–N3–Si	126.93(14)	N3-C17-C16	127.76(19)
N3-Si-N1	82.79(8)	C6C1C2	116.2(2)	N3-C17-C12	113.83(18)
O-Si-C1	93.73(8)	C6–C1–Si	121.66(17)	C16-C17-C12	118.4(2)
N3-Si-C1	97.16(9)	C2–C1–Si	122.07(16)	N2-C19-C20	123.2(2)
N1-Si-C1	98.80(9)	C3-C2-C1	121.7(2)	C21-C20-C19	119.6(2)
O-Si-N2	82.60(7)	C4–C3–C2	120.4(2)	C20-C21-C22	119.4(2)
N3-Si-N2	87.20(8)	C3–C4–C5	119.3(2)	C27–C22–C23	119.1(2)
N1-Si-N2	87.49(7)	C4–C5–C6	120.0(2)	C27–C22–C21	117.7(2)
C1-Si-N2	172.73(9)	C5-C6-C1	122.3(2)	C23-C22-C21	123.1(2)
O–Si–S	90.90(5)	ОС8С9	123.0(2)	C24–C23–C22	119.7(2)
N3–Si–S	94.68(6)	OC8C7	114.49(19)	C23–C24–C25	121.1(2)
N1–Si–S	169.36(6)	С9–С8–С7	122.43(19)	C26-C25-C24	121.1(2)
C1–Si–S	91.76(7)	C8–C9–C10	123.4(2)	C25-C26-C27	118.2(2)
N2-Si-S	82.06(5)	N1-C10-C9	120.07(19)	C25-C26-S	123.73(18)
C8–O–Si	122.94(14)	N1-C10-C11	122.2(2)	C27-C26-S	118.03(16)
C10-N1-C12	124.99(18)	C9-C10-C11	117.74(19)	N2-C27-C22	122.03(19)
C10-N1-Si	122.00(15)	C13-C12-C17	121.0(2)	N2-C27-C26	117.21(19)
C12–N1–Si	112.01(13)	C13-C12-N1	127.96(19)	C22–C27–C26	120.73(19)
C19-N2-C27	117.89(19)	C17-C12-N1	110.62(18)	N4-C28-C29	178.9(3)
C19–N2–Si	124.45(15)	C12C13C14	119.5(2)		
C27–N2–Si	116.87(14)	C15-C14-C13	119.8(2)		

Fortsetzung von Tabelle A47:

Verbindung 56

Abb. A21: Struktur von **56** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A48: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **56**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U_{eq}
Si	2767(1)	927(1)	1216(1)	21(1)
C1	3142(2)	1240(1)	635(1)	23(1)
N1	1882(2)	-41(1)	1076(1)	24(1)
O2	4842(1)	482(1)	1284(1)	23(1)
C2	4125(3)	825(1)	342(1)	37(1)
N2	2369(2)	690(1)	1868(1)	23(1)
O3	3592(1)	1756(1)	1425(1)	23(1)
C4	3868(2)	1741(1)	-211(1)	35(1)
C5	2893(3)	2168(1)	70(1)	41(1)
C6	2550(2)	1918(1)	485(1)	35(1)
C7	-2215(2)	1625(1)	948(1)	32(1)
C8	-742(2)	1078(1)	979(1)	26(1)
C9	-737(2)	434(1)	748(1)	30(1)
C10	512(2)	-138(1)	811(1)	27(1)
C11	216(2)	-838(1)	565(1)	39(1)

U				
C12	3151(2)	-585(1)	1190(1)	24(1)
C13	2932(2)	-1343(1)	1239(1)	28(1)
C15	6004(2)	-1446(1)	1455(1)	30(1)
C14	4364(2)	-1769(1)	1374(1)	30(1)
C16	6228(2)	-688(1)	1420(1)	26(1)
C17	4782(2)	-257(1)	1299(1)	23(1)
C18	1679(2)	121(1)	2075(1)	28(1)
C19	1607(2)	93(1)	2529(1)	31(1)
C20	2254(2)	665(1)	2769(1)	31(1)
C21	3001(2)	1281(1)	2559(1)	27(1)
C22	3736(2)	1909(1)	2762(1)	32(1)
C23	4388(2)	2471(1)	2516(1)	33(1)
C24	4361(2)	2453(1)	2059(1)	28(1)
C25	3683(2)	1845(1)	1852(1)	23(1)
C26	3010(2)	1262(1)	2105(1)	24(1)
C3	4489(3)	1071(1)	-73(1)	42(1)
01	524(1)	1256(1)	1252(1)	25(1)

Fortsetzung von Tabelle A48:

Tabelle A49: Bindungslängen [Å] und -winkel [°] von ${\bf 56}.$

Si-O3	1.7564(10)	N2-C26	1.3622(19)	C15–C14	1.389(2)
Si–O2	1.7702(11)	O3–C25	1.3360(17)	C15-C16	1.395(2)
Si-O1	1.7915(11)	C4–C3	1.374(3)	C16–C17	1.392(2)
Si–C1	1.9107(15)	C4–C5	1.378(2)	C18–C19	1.409(2)
Si–N1	1.9329(13)	С5-С6	1.390(2)	C19–C20	1.370(2)
Si–N2	2.0907(13)	С7–С8	1.491(2)	C20–C21	1.412(2)
C1–C6	1.392(2)	C8–O1	1.3147(18)	C21–C26	1.410(2)
C1–C2	1.394(2)	C8–C9	1.374(2)	C21–C22	1.417(2)
N1-C10	1.3289(19)	C9–C10	1.416(2)	C22–C23	1.368(2)
N1-C12	1.4202(19)	C10-C11	1.503(2)	C23–C24	1.417(2)
O2–C17	1.3466(17)	C12–C13	1.397(2)	C24–C25	1.377(2)
C2–C3	1.388(2)	C12–C17	1.404(2)	C25–C26	1.413(2)
N2-C18	1.3241(19)	C13–C14	1.391(2)		
O3–Si–O2	92.23(5)	C3-C2-C1	122.26(15)	O2-C17-C16	123.10(13)
O3–Si–O1	91.26(5)	C18-N2-C26	118.40(12)	O2-C17-C12	116.51(13)
O2–Si–O1	166.89(5)	C18-N2-Si	133.37(10)	C16-C17-C12	120.38(13)
O3–Si–C1	92.31(5)	C26–N2–Si	108.22(9)	N2-C18-C19	121.82(14)
O2-Si-C1	96.80(6)	C25–O3–Si	119.22(9)	C20-C19-C18	120.06(14)
O1-Si-C1	95.69(5)	C3–C4–C5	119.08(15)	C19-C20-C21	119.72(14)

_

Fortsetzung von Tabelle A49:						
O3–Si–N1	171.10(5)	C4–C5–C6	119.88(16)	C26-C21-C20	116.20(14)	
O2-Si-N1	84.94(5)	C5-C6-C1	122.70(15)	C26-C21-C22	117.54(14)	
O1-Si-N1	89.70(5)	O1–C8–C9	122.96(14)	C20–C21–C22	126.27(14)	
C1-Si-N1	96.40(6)	O1–C8–C7	114.47(13)	C23–C22–C21	119.64(14)	
O3-Si-N2	82.55(5)	С9–С8–С7	122.55(14)	C22–C23–C24	122.45(14)	
O2-Si-N2	85.21(5)	C8-C9-C10	123.84(14)	C25–C24–C23	119.24(14)	
O1-Si-N2	82.72(5)	N1-C10-C9	120.10(14)	O3–C25–C24	125.21(13)	
C1-Si-N2	174.56(6)	N1-C10-C11	122.79(14)	O3–C25–C26	116.17(12)	
N1-Si-N2	88.80(5)	C9-C10-C11	117.11(14)	C24–C25–C26	118.63(13)	
C6C1C2	115.63(14)	C13-C12-C17	119.81(13)	N2-C26-C21	123.80(13)	
C6C1Si	122.13(11)	C13-C12-N1	129.57(14)	N2-C26-C25	113.72(12)	
C2–C1–Si	122.12(11)	C17-C12-N1	110.37(12)	C21–C26–C25	122.48(13)	
C10-N1-C12	125.51(13)	C14-C13-C12	119.47(14)	С4-С3-С2	120.45(16)	
C10-N1-Si	121.77(10)	C14-C15-C16	120.76(14)	C8–O1–Si	123.91(9)	
C12-N1-Si	110.49(9)	C15-C14-C13	120.36(14)			
C17–O2–Si	115.60(9)	C17-C16-C15	119.01(14)			

Verbindung 57.0.5CH₃CN

Abb. A22: Struktur von **57**·0.5CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

	5				
	х	у	Z	U_{eq}	
S	1412(1)	-1639(1)	-1641(1)	38(1)	
Si	1486(1)	-32(1)	-606(1)	28(1)	
01	2007(1)	-729(1)	-259(1)	33(1)	
O2	933(1)	486(1)	-766(1)	31(1)	
N1	1479(1)	1202(2)	352(1)	28(1)	
N2	1244(1)	-1579(2)	162(1)	30(1)	
C1	1730(1)	1300(2)	-1376(1)	32(1)	
C2	1598(1)	2691(2)	-1381(1)	36(1)	
C3	1761(1)	3640(2)	-1958(1)	44(1)	
C4	2059(1)	3219(3)	-2554(1)	50(1)	
C5	2195(1)	1854(3)	-2571(1)	51(1)	

Tabelle A50: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von 57·0.5CH₃CN. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

Fortsetzung von Tabelle A50:						
C6	2033(1)	912(2)	-1986(1)	40(1)		
C7	2761(1)	-753(2)	139(1)	37(1)		
C8	2322(1)	-43(2)	137(1)	30(1)		
C9	2257(1)	1188(2)	540(1)	32(1)		
C10	1838(1)	1783(2)	680(1)	28(1)		
C11	1825(1)	3066(2)	1209(1)	35(1)		
C12	1040(1)	1592(2)	534(1)	29(1)		
C13	873(1)	2158(2)	1271(1)	33(1)		
C14	423(1)	2375(2)	1327(1)	37(1)		
C15	141(1)	2020(2)	661(1)	36(1)		
C16	304(1)	1417(2)	-63(1)	33(1)		
C17	752(1)	1166(2)	-120(1)	29(1)		
C18	1239(1)	-1498(2)	997(1)	36(1)		
C19	1024(1)	-2460(2)	1505(1)	43(1)		
C20	810(1)	-3553(2)	1131(1)	44(1)		
C21	822(1)	-3716(2)	245(1)	38(1)		
C22	619(1)	-4836(2)	-191(2)	47(1)		
C23	644(1)	-4929(2)	-1047(2)	48(1)		
C24	880(1)	-3940(2)	-1510(1)	43(1)		
C25	1088(1)	-2836(2)	-1112(1)	35(1)		
C26	1049(1)	-2703(2)	-226(1)	32(1)		
C28	-159(2)	481(6)	7444(4)	77(2)		
C27	-80(1)	1955(4)	7472(4)	47(1)		
N3	30(4)	3108(4)	7521(9)	60(1)		

Tabelle A51: Bindungslängen [Å] und -winkel [°] von 57.0.5CH₃CN.

SC25	1.745(2)	C1–C2	1.402(3)	C16-C17	1.390(2)
S–Si	2.2677(7)	C2–C3	1.393(3)	C18–C19	1.402(3)
Si–O2	1.7723(13)	C3–C4	1.383(3)	C19–C20	1.369(3)
Si-O1	1.8007(13)	C4–C5	1.383(4)	C20–C21	1.415(3)
Si–N1	1.9308(15)	C5–C6	1.395(3)	C21–C26	1.418(3)
Si–C1	1.9323(19)	С7–С8	1.502(2)	C21–C22	1.421(3)
Si–N2	2.0720(16)	C8–C9	1.366(3)	C22–C23	1.363(3)
O1–C8	1.314(2)	C9–C10	1.421(2)	C23–C24)	1.409(3)
O2–C17	1.344(2)	C10–C11	1.498(3)	C24–C25	1.387(3)
N1-C10	1.327(2)	C12–C13	1.395(3)	C25–C26	1.419(3)
N1-C12	1.424(2)	C12–C17	1.408(2)	C28–C27	1.445(7)
N2-C18	1.326(2)	C13–C14	1.389(3)	C27–N3	1.165(6)
N2-C26	1.377(2)	C14-C15	1.393(3)		

C1–C6	1.401(3)	C15–C16	1.387(3)		
C25–S–Si	98.94(7)	C18–N2–Si	123.71(13)	C16-C15-C14	120.43(16)
O2–Si–O1	168.55(6)	C26–N2–Si	117.48(12)	C15-C16-C17	119.59(16)
O2–Si–N1	85.06(6)	C6C1C2	116.40(18)	O2-C17-C16	123.53(15)
O1–Si–N1	90.81(6)	C6–C1–Si	121.63(16)	O2-C17-C12	116.47(14)
O2-Si-C1	95.56(7)	C2-C1-Si	121.91(14)	C16-C17-C12	119.97(17)
O1–Si–C1	95.47(7)	C3-C2-C1	121.99(19)	N2-C18-C19	123.33(18)
N1-Si-C1	95.55(7)	C4–C3–C2	120.0(2)	C20C19C18	119.03(19)
O2–Si–N2	86.57(6)	C5-C4-C3	119.7(2)	C19–C20–C21	119.72(19)
O1–Si–N2	82.64(6)	C4–C5–C6	120.0(2)	C20-C21-C26	117.87(18)
N1-Si-N2	88.48(6)	C5-C6-C1	122.0(2)	C20-C21-C22	123.33(19)
C1-Si-N2	175.58(8)	O1–C8–C9	123.53(15)	C26–C21–C22	118.79(19)
O2–Si–S	90.45(5)	O1–C8–C7	114.24(16)	C23-C22-C21	120.1(2)
O1–Si–S	92.27(5)	C9–C8–C7	122.20(15)	C22–C23–C24	120.89(19)
N1–Si–S	171.68(5)	C8–C9–C10	124.30(15)	C25-C24-C23	121.1(2)
C1–Si–S	91.84(6)	N1-C10-C9	120.21(16)	C24-C25-C26	118.30(18)
N2–Si–S	84.26(5)	N1-C10-C11	122.64(15)	C24-C25-S	123.32(16)
C8–O1–Si	125.93(12)	C9-C10-C11	117.15(15)	C26-C25-S	118.33(14)
C17–O2–Si	115.53(10)	C13-C12-C17	120.00(15)	N2-C26-C21	121.29(17)
C10-N1-C12	125.34(15)	C13-C12-N1	129.22(15)	N2-C26-C25	118.06(16)
C10–N1–Si	123.23(12)	C17-C12-N1	110.36(15)	C21–C26–C25	120.63(17)
C12-N1-Si	110.34(10)	C14-C13-C12	119.24(16)	N3-C27-C28	172.6(7)
C18-N2-C26	118.62(16)	C13-C14-C15	120.58(18)		

Fortsetzung von Tabelle A51:

Verbindung 58

Abb. A23: Struktur von **58** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A52: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) der Nichtwasserstoff-Atome von **58**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
S1	2517(1)	4869(1)	163(1)	31(1)
Si1	3319(1)	4911(1)	1288(1)	29(1)
01	3868(1)	4822(1)	2309(2)	32(1)

Tortsetzung von Tuo	che 1152.			
O2	3735(1)	4232(1)	481(2)	33(1)
N1	2783(1)	5523(2)	2179(2)	29(1)
N2	3005(1)	3798(2)	1888(2)	33(1)
C1	3693(1)	5903(2)	686(3)	31(1)
C2	3372(2)	6629(2)	392(3)	33(1)
C3	3645(2)	7321(2)	-71(3)	37(1)
C4	4269(2)	7320(2)	-239(3)	43(1)
C5	4600(2)	6620(2)	57(3)	44(1)
C6	4320(2)	5921(2)	501(3)	39(1)
C7	4621(2)	5416(2)	3409(3)	44(1)
C8	4005(2)	5468(2)	2918(3)	34(1)
C9	3627(1)	6132(2)	3088(3)	33(1)
C10	3006(1)	6148(2)	2767(3)	28(1)
C11	2646(2)	6904(2)	3111(3)	37(1)
C12	2142(1)	5435(2)	2025(3)	28(1)
C13	1712(1)	5575(2)	2807(3)	34(1)
C14	1103(2)	5485(2)	2591(3)	41(1)
C15	914(2)	5222(2)	1625(3)	44(1)
C16	1337(2)	5033(2)	871(3)	37(1)
C17	1960(2)	5122(2)	1064(3)	30(1)
C18	2650(2)	3617(2)	2681(3)	36(1)
C19	2489(2)	2777(2)	2929(3)	41(1)
C20	2711(2)	2116(2)	2364(3)	43(1)
C21	3099(2)	2280(2)	1515(3)	39(1)
C22	3365(2)	1665(2)	860(3)	49(1)
C23	3742(2)	1926(2)	76(4)	50(1)
C24	3878(2)	2785(2)	-89(3)	43(1)
C25	3635(2)	3398(2)	541(3)	34(1)
C26	3229(1)	3136(2)	1320(3)	33(1)
S2	5007(1)	145(1)	5128(1)	32(1)
Si2	4219(1)	-114(1)	4024(1)	29(1)
O3	3663(1)	-176(1)	3018(2)	33(1)
O4	3733(1)	472(1)	4830(2)	33(1)
N3	4827(1)	-598(2)	3122(2)	27(1)
N4	4381(1)	1040(2)	3374(2)	31(1)
C27	3981(2)	-1165(2)	4655(3)	33(1)
C28	4377(2)	-1842(2)	4837(3)	34(1)
C29	4192(2)	-2596(2)	5298(3)	38(1)
C30	3592(2)	-2686(2)	5615(3)	45(1)
C31	3197(2)	-2034(2)	5444(3)	47(1)

Fortsetzung von Tabelle A52:						
C32	3376(2)	-1285(2)	4968(3)	40(1)		
C33	3003(1)	-937(2)	1920(3)	44(1)		
C34	3614(2)	-840(2)	2424(3)	34(1)		
C35	4070(1)	-1406(2)	2237(3)	32(1)		
C36	4684(2)	-1263(2)	2547(3)	31(1)		
C37	5133(2)	-1916(2)	2187(3)	40(1)		
C38	5444(1)	-328(2)	3267(3)	30(1)		
C39	5881(1)	-352(2)	2482(3)	35(1)		
C40	6462(2)	-50(2)	2680(3)	45(1)		
C41	6614(2)	280(2)	3629(3)	44(1)		
C42	6173(2)	343(2)	4389(3)	37(1)		
C43	5582(2)	53(2)	4213(3)	30(1)		
C44	4695(2)	1278(2)	2549(3)	35(1)		
C45	4738(2)	2135(2)	2266(3)	39(1)		
C46	4448(2)	2753(2)	2813(3)	39(1)		
C47	4093(2)	2521(2)	3680(3)	32(1)		
C48	3755(2)	3078(2)	4313(3)	40(1)		
C49	3425(2)	2752(2)	5127(3)	43(1)		
C50	3406(2)	1881(2)	5339(3)	39(1)		
C51	3728(1)	1318(2)	4733(3)	32(1)		
C52	4079(1)	1653(2)	3919(3)	28(1)		

S1-C17	1.741(4)	C14–C15	1.383(6)	C27–C32	1.405(5)
S1-Si1	2.2939(15)	C15–C16	1.382(6)	C28–C29	1.390(4)
Si1–O2	1.754(2)	C16-C17	1.403(5)	C29–C30	1.390(5)
Si1–O1	1.798(3)	C18–C19	1.408(5)	C30–C31	1.365(5)
Si1–N1	1.913(3)	C19–C20	1.362(5)	C31–C32	1.390(5)
Si1–C1	1.930(3)	C20–C21	1.418(5)	C33–C34	1.504(5)
Si1-N2	2.039(3)	C21–C26	1.401(4)	C34–C35	1.364(4)
O1–C8	1.322(4)	C21–C22	1.414(5)	C35–C36	1.430(4)
O2–C25	1.335(4)	C22–C23	1.375(6)	C36–C37	1.502(4)
N1-C10	1.337(4)	C23–C24	1.401(5)	C38–C43	1.399(5)
N1-C12	1.434(4)	C24–C25	1.372(5)	C38–C39	1.402(5)
N2C18	1.324(5)	C25–C26	1.411(5)	C39–C40	1.391(5)
N2-C26	1.367(4)	S2-C43	1.743(4)	C40–C41	1.376(6)
C1–C2	1.398(4)	S2–Si2	2.2862(14)	C41–C42	1.388(5)
C1–C6	1.403(4)	Si2–O4	1.759(2)	C42–C43	1.399(5)
C2–C3	1.382(5)	Si203	1.794(3)	C44–C45	1.402(5)

-					
C3–C4	1.391(5)	Si2-C27	1.920(4)	C45–C46	1.363(5)
C4–C5	1.375(5)	Si2–N3	1.935(3)	C46–C47	1.419(5)
C5–C6	1.387(5)	Si2-N4	2.033(3)	C47–C52	1.402(4)
C7–C8	1.503(5)	O3–C34	1.304(4)	C47–C48	1.412(5)
C8–C9	1.354(5)	O4–C51	1.337(4)	C48–C49	1.382(5)
C9–C10	1.431(4)	N3-C36	1.323(4)	C49–C50	1.399(5)
C10–C11	1.499(4)	N3–C38	1.438(4)	C50–C51	1.380(5)
C12–C17	1.399(5)	N4-C44	1.329(4)	C51–C52	1.412(5)
C12–C13	1.406(5)	N4-C52	1.369(4)		
C13–C14	1.378(4)	C27–C28	1.397(4)		
C17–S1–Si1	96.33(13)	C13-C14-C15	120.6(3)	C44-N4-Si2	132.6(2)
O2-Si1-O1	92.38(11)	C16-C15-C14	120.2(3)	C52-N4-Si2	109.3(2)
O2-Si1-N1	171.82(11)	C15-C16-C17	120.8(4)	С28-С27-С32	116.2(3)
O1-Si1-N1	90.51(12)	C12-C17-C16	118.3(3)	C28-C27-Si2	123.9(2)
O2-Si1-C1	91.66(13)	C12-C17-S1	118.4(3)	C32-C27-Si2	119.9(2)
O1-Si1-C1	94.24(13)	C16-C17-S1	123.2(3)	C29–C28–C27	122.7(3)
N1-Si1-C1	95.76(13)	N2-C18-C19	121.8(3)	C28-C29-C30	119.5(3)
O2-Si1-N2	83.17(11)	C20-C19-C18	120.3(4)	С31-С30-С29	118.8(3)
O1-Si1-N2	83.15(11)	C19-C20-C21	119.7(3)	C30–C31–C32	121.9(3)
N1-Si1-N2	89.59(12)	C26–C21–C22	117.7(4)	C31–C32–C27	120.8(3)
C1-Si1-N2	174.08(13)	C26-C21-C20	115.9(3)	O3–C34–C35	124.6(3)
O2-Si1-S1	90.30(9)	C22-C21-C20	126.3(3)	O3–C34–C33	114.3(3)
O1-Si1-S1	169.88(9)	C23-C22-C21	119.3(3)	C35–C34–C33	121.1(3)
N1-Si1-S1	85.57(9)	C22–C23–C24	122.0(3)	C34–C35–C36	123.1(3)
C1-Si1-S1	95.44(11)	C25-C24-C23	120.2(4)	N3-C36-C35	120.5(3)
N2-Si1-S1	87.48(9)	O2-C25-C24	126.3(3)	N3-C36-C37	124.1(3)
C8–O1–Si1	122.3(2)	O2–C25–C26	115.7(3)	C35–C36–C37	115.4(3)
C25-O2-Si1	118.6(2)	C24–C25–C26	118.0(3)	C43–C38–C39	120.0(3)
C10-N1-C12	120.8(3)	N2-C26-C21	124.2(3)	C43-C38-N3	116.6(3)
C10-N1-Si1	119.2(2)	N2-C26-C25	113.1(3)	C39-C38-N3	123.1(3)
C12-N1-Si1	118.4(2)	C21-C26-C25	122.6(3)	C40-C39-C38	119.2(3)
C18-N2-C26	118.0(3)	C43-S2-Si2	96.36(13)	C41–C40–C39	121.2(4)
C18-N2-Si1	133.0(2)	O4-Si2-O3	92.51(11)	C40-C41-C42	119.5(3)
C26-N2-Si1	109.1(2)	O4-Si2-C27	91.85(13)	C41–C42–C43	120.8(4)
C2C1C6	115.8(3)	O3-Si2-C27	94.34(13)	C42–C43–C38	119.1(3)
C2-C1-Si1	123.8(2)	O4-Si2-N3	171.13(11)	C42-C43-S2	122.6(3)
C6C1Si1	120.4(2)	O3-Si2-N3	90.67(12)	C38-C43-S2	118.3(3)
C3-C2-C1	122.9(3)	C27-Si2-N3	96.17(13)	N4-C44-C45	121.2(3)
С2-С3-С4	119.8(3)	O4-Si2-N4	83.36(11)	C46-C45-C44	121.3(4)

Fortsetzung von Tabelle A53:

Fortsetzung von Tabelle A53:						
C5-C4-C3	118.8(3)	O3-Si2-N4	82.32(11)	C45-C46-C47	119.2(3)	
C4–C5–C6	121.0(3)	C27-Si2-N4	174.01(13)	C52–C47–C48	117.8(3)	
C5-C6-C1	121.7(3)	N3-Si2-N4	88.87(11)	C52–C47–C46	115.9(3)	
O1–C8–C9	123.4(3)	O4-Si2-S2	89.82(9)	C48-C47-C46	126.3(3)	
O1–C8–C7	114.7(3)	O3-Si2-S2	169.86(10)	C49–C48–C47	119.4(3)	
С9–С8–С7	121.9(3)	C27-Si2-S2	95.44(11)	C48-C49-C50	122.1(3)	
C8–C9–C10	123.6(3)	N3-Si2-S2	85.66(9)	C51-C50-C49	120.1(3)	
N1-C10-C9	120.3(3)	N4-Si2-S2	88.16(9)	O4-C51-C50	126.2(3)	
N1-C10-C11	124.0(3)	C34–O3–Si2	122.0(2)	O4–C51–C52	115.9(3)	
C9-C10-C11	115.7(3)	C51-O4-Si2	118.2(2)	C50-C51-C52	117.9(3)	
C17-C12-C13	120.3(3)	C36-N3-C38	122.2(3)	N4-C52-C47	124.3(3)	
C17-C12-N1	116.2(3)	C36–N3–Si2	119.2(2)	N4-C52-C51	112.9(3)	
C13-C12-N1	123.3(3)	C38–N3–Si2	117.3(2)	C47–C52–C51	122.8(3)	
C14-C13-C12	119.5(3)	C44-N4-C52	118.0(3)			

Verbindung 59.0.5CH₃CN

Abb. A24: Struktur von **59** im Kristall von **59** \cdot 0.5CH₃CN mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit 50%).

Tabelle A54: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å² x 10^3) der Nichtwasserstoff-Atome von **59**·0.5CH₃CN. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U _{eq}
S 1	827(1)	5399(1)	4067(1)	16(1)
S2	1485(1)	3090(1)	3485(1)	20(1)
Si	1495(1)	4804(1)	4510(1)	14(1)
0	1975(1)	4176(1)	4998(1)	16(1)
N1	1421(1)	6154(2)	5416(1)	13(1)
N2	1234(1)	3298(2)	5258(1)	15(1)
C1	1770(1)	6071(2)	3730(1)	17(1)
C2	1639(1)	7458(2)	3592(1)	21(1)
C3	1813(1)	8293(3)	2956(1)	28(1)
C4	2122(1)	7750(3)	2434(1)	33(1)
C5	2267(1)	6396(3)	2567(1)	31(1)
C6	2094(1)	5577(2)	3209(1)	24(1)
C7	2702(1)	4383(2)	5367(1)	21(1)
C8	2267(1)	5014(2)	5329(1)	16(1)
С9	2176(1)	6334(2)	5622(1)	17(1)
C10	1759(1)	6865(2)	5710(1)	15(1)
C11	1725(1)	8270(2)	6142(1)	20(1)
C12	996(1)	6520(2)	5635(1)	15(1)
C13	881(1)	7010(2)	6440(1)	18(1)
C14	461(1)	7321(2)	6605(1)	23(1)
C15	147(1)	7109(2)	5977(1)	21(1)
C16	254(1)	6542(2)	5193(1)	18(1)
C17	676(1)	6228(2)	5015(1)	15(1)
C18	1201(1)	3419(2)	6104(1)	18(1)
C19	970(1)	2474(2)	6597(1)	23(1)
C20	768(1)	1372(2)	6205(1)	25(1)
C21	809(1)	1166(2)	5313(1)	21(1)
C22	625(1)	16(2)	4867(2)	29(1)
C23	692(1)	-150(2)	4012(2)	31(1)
C24	951(1)	791(2)	3568(1)	25(1)
C25	1137(1)	1935(2)	3975(1)	20(1)
C26	1054(1)	2141(2)	4857(1)	18(1)
N3	0	1587(4)	7500	40(1)
C27	0	2774(4)	7500	33(1)
C28	0	4288(4)	7500	65(1)

S1-C17	1.751(2)	C1–C6	1.400(3)	C16C17	1.393(3)
S1–Si	2.2704(9)	C2–C3	1.393(3)	C18–C19	1.398(3)
S2-C25	1.741(2)	C3–C4	1.385(3)	C19–C20	1.364(3)
S2–Si	2.2834(12)	C4–C5	1.380(4)	C20–C21	1.413(3)
Si–O	1.7785(14)	C5–C6	1.389(3)	C21–C26	1.411(3)
Si–N1	1.9276(18)	С7–С8	1.495(3)	C21–C22	1.413(3)
Si–C1	1.932(2)	C8–C9	1.369(3)	C22–C23	1.364(3)
Si–N2	2.0337(19)	C9–C10	1.416(3)	C23–C24	1.403(3)
O–C8	1.314(2)	C10-C11	1.502(3)	C24–C25	1.383(3)
N1-C10	1.334(2)	C12–C13	1.395(3)	C25–C26	1.420(3)
N1-C12	1.433(2)	C12–C17	1.408(3)	N3-C27	1.129(5)
N2C18	1.331(3)	C13–C14	1.385(3)	C27–C28	1.440(6)
N2-C26	1.380(3)	C14-C15	1.390(3)		
C1–C2	1.397(3)	C15–C16	1.385(3)		
C17–S1–Si	97.07(7)	C18–N2–Si	123.36(14)	C16-C15-C14	119.73(19)
C25–S2–Si	98.15(8)	C26-N2-Si	117.89(13)	C15-C16-C17	120.76(18)
O-Si-N1	91.45(7)	C2C1C6	116.41(19)	C16-C17-C12	119.36(18)
O-Si-C1	95.22(8)	C2–C1–Si	123.41(16)	C16-C17-S1	122.88(15)
N1-Si-C1	96.28(9)	C6–C1–Si	119.93(16)	C12-C17-S1	117.68(15)
O-Si-N2	82.43(7)	С3-С2-С1	121.9(2)	N2-C18-C19	122.91(19)
N1-Si-N2	89.49(8)	С4-С3-С2	120.0(2)	C20-C19-C18	119.3(2)
C1-Si-N2	173.84(8)	С5-С4-С3	119.5(2)	C19-C20-C21	119.8(2)
O-Si-S1	170.17(5)	C4C5C6	119.9(2)	C26-C21-C22	118.9(2)
N1-Si-S1	86.02(6)	C5-C6-C1	122.2(2)	C26-C21-C20	117.91(19)
C1–Si–S1	94.50(7)	О-С8-С9	122.53(18)	C22–C21–C20	123.2(2)
N2-Si-S1	88.04(5)	O–C8–C7	113.91(17)	C23-C22-C21	120.0(2)
O-Si-S2	93.28(6)	С9–С8–С7	123.55(18)	C22–C23–C24	120.9(2)
N1-Si-S2	171.60(6)	C8–C9–C10	124.13(18)	C25-C24-C23	121.3(2)
C1–Si–S2	90.21(8)	N1-C10-C9	121.28(18)	C24-C25-C26	117.9(2)
N2-Si-S2	84.26(7)	N1-C10-C11	122.77(18)	C24-C25-S2	124.05(17)
S1-Si-S2	88.15(4)	C9-C10-C11	115.94(17)	C26-C25-S2	118.00(15)
C8–O–Si	123.01(13)	C13-C12-C17	119.21(18)	N2-C26-C21	121.24(18)
C10-N1-C12	122.52(16)	C13-C12-N1	123.96(17)	N2-C26-C25	117.86(18)
C10-N1-Si	118.81(13)	C17-C12-N1	116.53(17)	C21–C26–C25	120.86(18)
C12-N1-Si	117.75(12)	C14-C13-C12	120.47(18)	N3-C27-C28	180.000(2)
C18-N2-C26	118.57(17)	C13-C14-C15	120.22(19)		

Tabelle A55: Bindungslängen [Å] und -winkel [°] von **59**·0.5CH₃CN.

-

Anhang B: Formelregister

36

F₃C CF_3 37

Ph' Ph Ph 39

O

Ph

Ο

·CF₃

Ph

Ph

ò

ò

Ò.

Ph'

Se

ΙΘ

Danksagung

Ich bedanke mich bei *Herrn Prof. Dr. Reinhold Tacke* für die nette Aufnahme in den Arbeitskreis, für die interessante Themenstellung und die Möglichkeit, diese Arbeit durchführen zu können. Ich möchte mich außerdem für die vielen Freiheiten während der Anfertigung dieser Arbeit und für die Möglichkeit der Teilnahme an diversen internationalen Tagungen bedanken.

Herrn Dr. Rüdiger Bertermann und Frau Marie-Luise Schäfer danke ich für die Aufnahme zahlloser NMR-Spektren und für die Hilfestellung bei der Auswertung dieser Spektren. Für die Aufnahme einiger Festkörper-NMR-Spektren danke ich zudem Herrn Dipl.-Chem. Konstantin Junold. Ebenso möchte ich mich bei Herrn Dr. Stefan Wagner, Frau Sabine Lorenzen und Herrn Christoph Mahler für die Durchführung und Auswertung einiger GC/MS-Messungen bedanken. Für die Durchführung der ESI-MS-Messungen danke ich Herrn Dr. Michael Büchner.

Für die Anfertigung zahlreicher Kristallstrukturanalysen bedanke ich mich ganz herzlich bei *Herrn Dr. Christian Burschka* und *Herrn Dipl.-Chem. Johannes Baus*, insbesondere für die rasche Bearbeitung meiner Kristalle in hektischen Zeiten.

Für die Durchführung der Elementaranalysen danke ich *Frau Liselotte Michels* und *Frau Sabine Timmroth*.

Herrn Berthold Fertig danke ich für die Anfertigung einer brandneuen Anlage in meinem Abzug, für die Reparatur diverser Glasgeräte und für die rasche Anfertigung einiger spezieller Glasgeräte. Mein Dank geht auch an alle Mitarbeiter der Werkstatt, allen voran Herrn Manfred Reinhart, sowie an Herrn Alfred Schertzer für die Hilfe bei allen technischen Problemen.

Für die Unterstützung bei allen organisatorischen Dingen bedanke ich mich bei *Frau Loretta Tietze* und *Frau Cornelia Walter*.

Für tatkräftige und engagierte Unterstützung bei den Synthesen danke ich meinen F-Praktikanten sowie Bachelor- und Masterstudenten *Katharina Sinner*, *Christian Possiel*, *Christine Schneider* und *Anja Belz*.

Für die Durchsicht dieser Arbeit möchte ich mich ganz herzlich bei *Herrn Dipl.-Chem. Konstantin Junold* bedanken.

Ganz besonderer Dank gilt meinen beiden Laborkollegen *Frau Dipl.-Chem. Claudia Kobelt* und *Herrn Dipl.-Chem. Konstantin Junold*, die mir eine sehr angenehme Arbeitsatmosphäre bereitet haben und mir stets mit hilfreichen Tipps zur Seite standen, auch wenn es einmal

wieder strenger im Labor gerochen hat. Zudem danke ich dem gesamten Arbeitskreis für das tolle Arbeitsklima und die vielen Diskussionen, auch nach einem anstrengenden Tag bei einem feierabendlichen Bier.

Meinen Eltern danke ich, dass sie mir das Studium überhaupt erst ermöglicht haben und mich auch immer finanziell während des Studiums unterstützt haben.

Ganz besonders möchte ich mich bei meiner Frau *Justyna* und meinen Kindern *Jacob* und *Jonathan* bedanken, die immer verständnisvoll waren und mich in jeglicher Beziehung unterstützt haben. Außerdem haben sie mich immer aufgeheitert, wenn die Chemie wieder einmal nicht geklappt hat oder ich länger als geplant im Labor arbeiten musste.