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Abstract. Using coherent two-dimensional (2D) electronic spectroscopy in
fully noncollinear geometry, we observe the excitonic coupling of 8,8’-linked
bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited
state. The results for two states in the Soret band originating from an excitonic
splitting are explained by population transfer with approximately 100 fs from the
energetically higher to the lower excitonic state. This interpretation is consistent
with exemplary calculations of 2D spectra for a model four-level system with
coupling.
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1. Introduction

The molecular class of tetrapyrroles has been a focus of research for a long time because
they are relevant for many functions in nature. Famous examples are chlorophylls and
bacteriochlorophylls, which are based on the fundamental structure of tetrapyrroles performing
effective light and electron transfer [1, 2]. Furthermore, tetrapyrroles and their derivates
have shown a variety of possible applications [3] including photodynamic therapy [4],
chemical and biological sensors [5], molecular logic devices [6], optoelectronics [7] and
their usage as synthetic light-harvesting and storage systems [8]. Many such applications
require an understanding of the excited-state dynamics of porphyrins; for instance, light signal
transmission in molecular photonic wires proceeds through excited-state energy transfer [9].
A powerful tool to investigate these dynamics is coherent two-dimensional (2D) electronic
spectroscopy, as it separates signal contributions into excitation and detection frequencies [10],
as shown, for example, in a conformation-dependent study for a porphyrin dimer in a
fluorescence-based approach [11]. This separation allows for an intuitive understanding of
population and energy transfer in complex photoactive systems [12—14].

In this study, we examine the excitonic dynamics of the directly 8,8’-linked porphyrin
dimer bis[tetraphenylporphyrinato-zinc(Il)] [(ZnTPP);] in the Soret or B-band. As a result
of the direct B,8’-linkage, the insertion of Zn, which rigidifies the molecular backbone, and
steric hindrance because of the large phenyl substituents, (ZnTPP), exhibits intrinsic axial
chirality. Figure 1 shows the molecular structure (inset), steady-state absorption (black solid)
of (ZnTPP), [15, 16] dissolved in ethanol and the pump-pulse spectrum used for the 2D
experiments (red dashed). The steady-state spectrum consists of the weaker absorption in the
Q-band with maxima at 563 and 601 nm and the typical stronger absorption in the Soret band
with its maxima at 428 and 443 nm resulting from excitonic Davydov splitting [17, 18]. A
third state in the Soret band, which is higher in energy but weaker than the other two excitonic
states, is located at 421 nm. As our pump pulses do not excite or detect this state, it will not
be considered hereafter. We recently investigated the relaxation dynamics of (ZnTPP), and its
monomeric unit and compared them with different covalently linked porphyrins, using transient-
absorption spectroscopy that covered the ultrafast dynamics from femtoseconds up to hundreds
of microseconds and in a spectral range from 415 to 700 nm [19]. One of the results of that study
was the variation of dynamical behavior across the Soret band. The absorption change of the
energetically higher lying state decreased on a timescale of ~100 fs; in contrast, the absorption
change linked to the energetically lower lying state decreased on the microsecond timescale
(=50 us).
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Figure 1. Linear absorption spectrum of (ZnTPP), (black solid) and pump-
pulse spectrum (red dashed) covering the excitonic states in the Soret band.
The inset shows the molecular structure of one of the two enantiomers (with
P-configuration; * marks the configurationally stable, chiral biaryl axis).

Similar relaxation timescales were observed for other covalently linked porphyrin systems,
e.g. by Hochstrasser [20] and Kim [21]. Hochstrasser and co-workers studied ethylene-bridged
meso, meso’- and B,B’-linked dimers. They explained the photodynamics of the meso, meso’-
linked dimer within a model comprising two conformers that differ in the dihedral angle between
the porphyrin subunits. Kim and co-workers, who studied many porphyrin oligomers [22],
adapted the two-conformer model by additionally including monomeric localized-excitation
states and delocalized-excitonic states. The latter model was adapted for (ZnTPP), in [19], and
an alternative completely excitonic model was proposed to describe the relaxation dynamics,
completely abstaining from monomeric localized-excitation states. Whereas the transient-
absorption measurements gave a conclusive picture of the underlying processes, the states
connected by coupling could only be inferred indirectly in the analysis. Therefore, in this work,
we use 2D spectroscopy in order to directly visualize the predicted excitonic coupling in the
Soret band.

2. Materials and methods

Spectroscopic experiments were performed by using a commercial steady-state absorption
spectrometer (V 670, Jasco), a home-built femtosecond transient-absorption spectrometer setup
and a 2D setup in fully noncollinear box geometry optimized for pulses in the ultraviolet
regime [23].

In brief, laser pulses from a commercial Ti:sapphire regenerative-amplifier laser system
(Spitfire Pro, Spectra-Physics, 800 nm, 1 kHz) were used to generate pulses centered at 870 nm
in a commercial noncollinear optical parametric amplifier (TOPAS-White, Light Conversion).
These pulses were afterwards frequency doubled in a 65 um S-barium borate crystal leading
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to pulses centered at 435nm with 12nm full-width at half-maximum and finally used for
coherent 2D spectroscopy in an all-reflective, diffractive-optics-based, noncollinear four-wave
mixing setup in phase-matched box geometry. The time resolution of approximately 50 fs was
determined by transient grating measurements of pure ethanol at the sample position. Time
delays were performed by a pairwise beam manipulation [23, 24] with a linear motorized
delay stage (MFA CC, Newport) and piezo actuators (PX 200CAP, Piezosystem Jena). The
obtained third-order signal was completely characterized by spectral interferometry with the
help of a heterodyning local oscillator pulse [25] delayed by 1.8 ps and then detected with
a charge-coupled device (CCD)-array spectrometer (Acton SpectraPro 25001 with PIXIS 2K,
Princeton Instruments). The spectrum of the local oscillator was additionally recorded and then
subtracted. Experimental artifacts caused by sample imperfections were removed by recording
and subtracting two different scattering contributions [26]. For any population time 7, the
coherence time v was scanned in 1.4fs steps from —125 to +125 fs, moving excitation pulse
1 (2) in the second (first) half of the scanning period. Data analysis by Fourier transformation
yielded the desired 2D traces, whose absolute phase was obtained by means of the projection-
slice theorem and by comparison with separately recorded spectrally resolved pump—probe
data [10, 26]. The absolute phase of the 2D traces for each population time was adjusted to
the last measurement of each scan of 7 before averaging over several (2-5) T scans, thus
minimizing contributions from a drift of the absolute phase over different scans. To avoid solvent
effects and different signal contributions for short waiting times, the 7= 500 fs 2D traces and
pump—probe data were chosen for the phasing procedure.

The transient-absorption data were obtained by splitting the 435 nm pulses into two pulses
via a 2mm thick beamsplitter, resulting in a pump pulse with an energy of 4nJ and a much
weaker probe pulse, in mutual parallel polarization. Both pulses were focused onto the sample
with spherical mirrors with the pump pulse traveling over an additional delay stage. The change
in optical density was detected by measuring the spectrally dispersed probe with the CCD
camera by a shot-to-shot technique and by blocking consecutive pump pulses. Comparability of
the pump—probe and 2D measurements was achieved by avoiding dispersive elements with the
sole exception being the thin beamsplitter. Data analysis was performed by obtaining lifetimes
and spectral amplitudes with global parallel and sequential fitting routines [27] performed with
the graphical interface GloTarAn [28] based on the statistical fitting package TIMP [29].

The measured porphyrin dimer (ZnTPP), was synthesized according to the literature
[15, 16], additionally purified by preparative gel permeation chromatography and analyzed by
UV /Vis spectroscopy before and after optical experiments to exclude photodegradation. The
molecule was dissolved in pure ethanol directly prior to time-resolved measurements with a
concentration corresponding to an optical density of 0.3 at 443 nm in a 200 um flow cell.

3. Results

Transient absorption data after direct excitation into and probing of the Soret band are shown
in a contour plot in figure 2(a). Whereas the lower energetic peak shows only a small shift and
nearly no decay with time, the higher energetic peak decreases and no spectral shift is visible.
Two exemplary transients at the positions of the absorption peaks (compare figure 1) are shown
in figure 2(b). The transient at 427 nm (blue) decreases after ~100fs, whereas the transient
at 443 nm (red) shows almost no decay with time. The data shown here after excitation with
435 nm pulses are in accord with the 400 nm excitation used in the previous study [19].
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Figure 2. (a) Transient-absorption data of (ZnTPP), covering the Soret band.
(b) Transients reflecting the higher-energetic (blue) and lower-energetic (red)
states together with the corresponding fits from global analysis (black).

The results from 2D spectroscopy are shown in figure 3 for several population times 7
in terms of absolute (Abs), absorptive real (Re) and refractive imaginary (Im) parts. Excitation
corresponds to the horizontal v, wavenumbers, and detection corresponds to the vertical v, axis.
As a consequence of the limited spectral width of the employed laser pulses, the dynamics of
the two excitonic Soret states are visible as 2D line-shape modifications rather than clearly
separated peaks. For the population time 7" = 0fs, signal contributions of the solvent have
to be taken into account. These signal contributions can be neglected for higher population
times, as verified by transient grating and 2D measurements of the pure solvent. Furthermore,
‘phase twist’ contributions originating from the temporal overlap of the third pulse with the first
two [30] may occur at T = Ofs.

Considering the absolute and real parts, we observe a similar signal evolution over time.
At the beginning (7 = 0 fs) the signal containing both excitonic states is elongated along the
diagonal of the spectra. In addition to the decrease of the signal intensity, the shape changes after
a given time 7' from the diagonal orientation to a more circular and vertical shape. Along with
the change in shape the signal contributions relax from higher to lower detection wavenumbers.
The imaginary parts of the 2D spectra exhibit a change in sign. The connecting nodal plane
changes from a diagonal to a vertical alignment with increasing 7.

To obtain further insight into the dynamics, we show in figure 4(a) transient difference
spectra for two pump-pulse frequencies corresponding to the two excitonic absorption maxima,
labeled o and B. The difference spectra (DS;), with i = «, B of the real parts with respect
to the population time 7 =0fs, i.e. I(T, ﬁi, v)—I1(T =0, ﬁi, v,) are evaluated and the
cuts along v, for those v’ values corresponding to the linear absorption peaks (V¢ = —v, =
—2.26 x 10*em™" and V¥ = —V5 = —2.34 x 10* cm™") are displayed. The combined GSB and
SE signal of DS,, (red) decreases progressively at lower wavenumbers of v,. For DSy (blue) the
GSB and SE contributions change their magnitude with increasing population time; thus the
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Figure 3. 2D data consisting of absolute (Abs), real valued (Re) and imaginary
(Im) spectra for population times 7" in 50 fs steps and additionally for 7" = 500 fs.
Contour lines from 5 to 95% of the maximum signal amplitude of the 7 =0 fs
data are drawn in steps of 10%. The color code is chosen to cover intensive
positive (red) to negative (black) signal amplitudes; for example, the red and
orange parts of the real 2D spectra indicate strong ground-state bleach (GSB) or
stimulated emission (SE) signals.

difference spectrum shifts to lower wavenumbers. Additionally, a positive signal, indicative of
increased absorption, at the lower energetic spectral region emerges after 7 = 50 fs and relaxes
analogously.

In order to get a better impression of the different signal amplitude progressions in the
2D spectra, we chose four square regions of interest (ROI) with side lengths of 188 cm™!
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Figure 4. (a) Difference spectra with respect to 7'=0fs at vy = —2.26 x
10*cm™" (red) and v# = —2.34 x 10* cm™! (blue) for T = 50fs (dashed) and
T = 250fs (solid) as marked in the inset. (b) Development of diagonal and off-
diagonal signal amplitudes for four ROI marked in the inset.

(corresponding to ~3.5 nm) around the diagonal and off-diagonal wavenumbers corresponding
to the linear absorption maxima. The signal evolution of these ROIs is shown in figure 4(b) as
a function of population time for diagonal contributions at Sy, = (—Vy, Vy), Sgg = (—Vg, Vg)
and off-diagonal signals at Spg = (—V,, Vg) and Sg, = (—Vg, V,). Starting at 7 = Ofs, only the
diagonal signals (solid) show a significant positive amplitude. With increasing waiting time T
both diagonal contributions decrease, reducing the amount of SE, although the signal amplitude
of Sgg decreases faster than S,,,. Considering the off-diagonal evolution (dashed), S, is positive
at first, then shows a slight decay during the first femtoseconds and then remains close to zero.
On the other hand, Sg, increases rapidly during the first 100fs and subsequently decreases,
remaining positive at the end.

4. Discussion

In our experiments, we excite and detect the dynamics of excitonic states in the Soret band of
(ZnTPP),. Looking at the transient-absorption data in figure 2, a slight Stokes shift in the lower-
energetic band can be seen since the main absorption wavelength shifts from 441 nm (2.268 x
10*cm™! > 1) to 443 nm (2.257 x 10*cm~! & 1,)) within 250 fs. This time also corresponds
well to the lifetime of the Soret band in porphyrins as previously shown by Hochstrasser and
co-workers [20] and confirmed for (ZnTPP), by us [19]. This shift is evident considering the
behavior on both sides of the absorption band and how the spectral position changes with time.
The observed shift corresponds to a wavenumber difference of roughly 100 cm™'. By contrast,
no such feature can be found for the higher-energetic Soret band corresponding to vg. Looking
at the 2D spectra in figure 3, this relaxation has to be considered in the interpretation of the data.
However, it is presumably not the main reason for the change in signal amplitude shown in the
ROIs corresponding to the absorption at vg (Sgg, Sga, figure 4(b)) since vg is well above the
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observed maximum frequency shift; thus the changes at vg indicate the participation of other
processes.

To discuss our results further, we chose a simple four-level model shown in figure 5(a)
consisting of the ground state |g), the exciton states |«) and | 8) corresponding to the splitting in
the Soret band and the two-exciton state | f) which implies that |«) and |8) are both excited [18]
(for a more elaborate modeling of similar systems, see, e.g., [31, 32]). The depicted transition
wavenumbers V,, correspond to the energy difference between the states |x) and |y) referring
to the absorption maxima in the linear spectrum.

A look at the transient absorption data in figure 2 reveals a signal decay in |8) on a
timescale of 100 fs. The product state is not unambiguously identified but |g) can be excluded,
since then |o) would need to show a similar signal decay: a populated ground state would
enable reexcitation into both |«) and |B) [19]. A reasonable assumption within the model is a
population transfer from |B8) to |«), which would lead to an increased excited-state absorption
into the two-exciton state | f). Looking at the behavior in |«), only a small Stokes shift or
a vanishing SE signal on a femtosecond timescale is directly observable, but the amount of
bleaching stays roughly the same over the entire delay time. This evidences that the ground
state is not repopulated during the experiment.

By considering the development of the signal amplitude and the simultaneous change
in shape to lower energies in the real-valued 2D spectra in figure 3, the relaxation process
is also evident. Besides the simple overall relaxation observable in all spectra into the lower
Q-band [19] (as also known for similar systems [20, 21]) which manifests itself only indirectly
in this study, since then no SE from S, is possible anymore, the signal amplitude for high
excitation v, and low detection v, wavenumbers changes with time. This indicates a relaxation
by solvent effects such as a Stokes shift or by a population transfer from |8) to |«), as
the change mainly appears as an off-diagonal signal between the corresponding excitonic
states.

The changes in the signal amplitude are more precisely seen in the difference
spectra (compare figure 4(a)) relative to T = 0 fs. For DS, a weaker decrease of signal amplitude
compared to DSy can be observed, which confirms the different dynamics already seen in
transient absorption and the higher stability of |«). Comparing the difference spectra for T = 50
and 250 fs, a progressive decrease to lower wavenumbers of the combined SE and GSB signal
can be observed. At 7 =0 the signal consists of GSB and SE contributions. After a given
population time (7" = 50 fs) the signal shifts to lower wavenumbers as the SE contribution is
influenced by a Stokes shift. As the lifetime in the Soret band is &~ 150 fs [20] the Stokes-shifted
SE vanishes for 7 > 150 fs while the GSB is still maintained, leading to the observed stronger
signal decrease at lower wavenumbers. The most important additional feature is an increasing
signal amplitude for DSz at wavenumbers corresponding to the lower energetic state |o), which
is a consequence of a coupling between |8) and |«). This signal is indicative of relaxation from
|B) into |or) since molecules excited into |8) now show absorption at frequencies corresponding
to the state |«) while at the same time the SE signal for |8) decreases.

The same dynamics can be seen in the development of the signal amplitudes at the chosen
ROIs in figure 4(b). The decreasing amplitudes S,, and Sgg, which monitor the number of
molecules that stay in their excited state, mirror the observation of the transient absorption study
and show an overall decrease again much faster for Sgs than for S,,. After a given population
time the dynamics are dominated by population relaxation processes from |8) to |«). As this
relaxation gives rise to contributions to the excited-state absorption for Sgg and to the SE for
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Figure 5. (a) Four-level model consisting of the ground state |g), excitonic states
la), |B) and biexcitonic state |f). (b) Fit with two Lorentzians (blue) to the
measured linear absorption spectrum (dashed red) and Gaussian fit (green) to
the experimental pump pulse spectrum (dashed black). (c) Calculated real-valued
2D spectra in an excitonic system without coupling (left), with coupling (middle)
and corresponding experimental data (right) for T = 50 fs (top) and T = 250 fs
(bottom).

Sgq. it explains the time evolution of the related signal amplitudes, an increase for Sg, and a
decrease for Sgg as long as this transfer takes place.

Furthermore, in order to separate this contribution from relaxation processes such as a
Stokes shift, we calculated the real-valued 2D spectra in the four-level system (figure 5(a)). In
the simulated data, the corresponding excitonic states were fitted by Lorentzian functions to the
linear absorption spectrum and the excitation and detection pulses were treated by Gaussian
functions (figure 5(b)). The calculations were performed with and without the inclusion
of a coupling between the excitonic states to compare these with the experimental results
(figure 5(c)), whereas no additional environmental and inhomogeneous broadening effects
were considered. Moreover, to keep the model as simple as possible we did not include a
relaxation to S; states (Q-bands) or triplet states as will occur in porphyrins. The coupling
was taken into account by an exponential population transfer from |8) to |«) with a time
constant of 114 fs [19]. Considering the simulated spectra without coupling, the signal starts
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in a diagonal orientation and changes slightly to lower detection frequencies with evolving
time. This qualitative behavior is not a good match for the experimental observations. On the
other hand, the coupled calculation shows a shift of intensity for high excitation wavenumbers
going from higher to lower detection wavenumbers with time, i.e. a growth of contributions
below the diagonal. In addition, the diagonal orientation for small 7 becomes horizontally
symmetric with time. Compared with the experiment the development of the spectral shape
resembles the calculated coupled 2D spectra qualitatively, especially a shift of the center of
gravity to regions below the diagonal is evident. Hence, regarding both the measurements and
the simulated model spectra, we consider population transfer within the excited Soret band to
be a reasonable explanation for the observed effects.

5. Conclusions

In this study, we have presented the ultrafast excitonic dynamics in the Soret band of the directly
B,B’-linked porphyrin dimer (ZnTPP),, analyzed by transient absorption and coherent 2D
spectroscopy. In the transient-absorption experiments the relaxation dynamics of the excitonic
states clearly differ, but only an indirect assignment of the involved states is possible. We
investigate these relaxation dynamics in more detail and assign them using coherent 2D
spectroscopy. Data analysis shows that these dynamics cannot result from a Stokes shift alone,
but off-diagonal contributions in the experimental and qualitatively modeled 2D spectra provide
an explanation: population transfer occurs between the corresponding excitonic states as a
result of electronic coupling. This population transfer is in accord with previous studies of
different covalently linked porphyrins [20, 21] and was directly observed here, substantiating the
interpretation in the framework of excitonic coupling [18]. (ZnTPP), may serve as an exemplary
system exhibiting excitonic dynamics that are directly reflected in off-diagonal contributions in
2D spectra of electronically coupled chromophores [31, 32]. Moreover, this study contributes
to a deeper understanding of the processes happening in the strongly absorbing yet very short-
lived Soret bands of porphyrins, which may prove beneficial for some of the versatile porphyrin
applications ranging from catalysis to biomimicry of electron transfer [16].
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