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Abstract. We calculate two-dimensional (2D) spectra reflecting the time-
dependent electronic predissociation of a diatomic molecule. The laser-excited
electronic state is coupled non-adiabatically to a fragment channel, leading to
the decay of the prepared quasi-bound states. This decay can be monitored by
the three-pulse configuration employed in optical 2D spectroscopy. It is shown
that in this way it is possible to state-selectively characterize the time-dependent
population of resonance states with different lifetimes. A model of the Nal
molecule serves as a numerical example.
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1. Introduction

In 1988, Zewail and co-workers performed the first femtosecond time-resolved spectroscopic
study of a molecular predissociation process [1-3]. In these experiments, the electronic
excitation of Nal molecules initiates a quasi-bound wave-packet motion. The excited
state—which is non-adiabatically coupled to a dissociation continuum—falls apart and
the decay (or, alternatively, the production of fragments) was monitored by pump-probe
fluorescence spectroscopy. This important decay dynamics has been studied extensively both
experimentally [4-10] and theoretically [11-20].

In another key experiment on Nal which was also performed in the Zewail group [21], it
was shown that the long-time transient signals exhibit the so-called ‘revival’ structures [22],
which are well known from experiments on atomic and molecular bound-state systems [23-30].
In the case of Nal, these features are related to the excitation of long-lived resonance states
which have been characterized theoretically using semiclassical mechanics [31]. In the latter
study, it was shown that the system possesses resonances with lifetimes which vary periodically
as a function of energy. As a consequence, the wave packet initially prepared by the femtosecond
pump pulse decays into the fragment channel where components belonging to short-lived
states enter first, whereas the components belonging to the long-lived resonances decay later,
a behavior that has been documented theoretically [32]. In this work, we propose to use two-
dimensional (2D) optical spectroscopy to monitor such a predissociation dynamics.

2D spectroscopy, which is a standard technique in nuclear magnetic resonance
experiments [33, 34], is now also frequently used in the infrared region [35-37]. The technique
was extended to light sources acting in the optical regime [38—42] and more and more
applications have appeared in recent years [43-50]. Although the potential of optical 2D
spectroscopy lies in the analysis of coupled systems in dissipative environments, it is also
possible to apply this technique to gas-phase systems [51-53] where coherence is not destroyed
by system-bath interactions. This situation can then be described theoretically using a wave-
function approach [54-56] instead of adopting the powerful description in terms of the density-
matrix formalism [57-67].

In what follows, we present wave-packet calculations on the gas-phase 2D spectroscopy of
a predissociation process. In section 2 we summarize the details of the model and the calculation
of the 2D spectra. Numerical results are presented in section 3, which also contains a short
conclusion.

2. Theory

2.1. The model

For our numerical simulations, we use potential energy curves of two electronic states of the
Nal molecule [68, 69], which are displayed in figure 1. Shown are diabatic curves V¢(R) which
cross at a distance of about 7 A and also adiabatic potentials V*(R) which show an avoided
crossing. The diabatic bound state |0) (which is ionic in character) and the excited dissociative
state |1) (being covalent in character) interact via a coupling element V.(R) [12]. Neglecting
rotations, the molecular Hamiltonian is

1
Hy= " |n)(Tg + V{(R))(n| +10) Ve(R){1] + 1) Ve(R) (O], ey

n=0
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Figure 1. Potential energy curves of the Nal molecule: shown are diabatic curves
which cross at a distance of about 7 A and also the adiabatic curves which
exhibit an avoided crossing. Excitation by a femtosecond pulse (k;) leads to a
predissociative wave-packet motion. The decay dynamics is monitored by the
interaction with time-delayed laser pulses (k», k3) which interact simultaneously
at time t. The left-hand panel illustrates the preparation of the second-order
state |y ®(k,, Kk, ¢")) and the right-hand panel that of the first-order state
|V (K3, t')). These states determine the third-order time-dependent polarization
(equation (6)).

where Tk denotes the kinetic energy operator. In order to facilitate the numerical calculations,
we first work with a reduced mass that is a factor of 5 smaller than that of the Nal molecule.
This has the consequence that the vibrational period of the quasi-bound motion at an excitation
energy of 3.6eV is Ty, =~ 0.4 ps, as compared to =~ 1 ps in Nal.

The interaction of three ultrashort laser pulses which is relevant for 2D spectroscopic
measurements is taken within the rotating-wave approximations as

W) =—[IHrE® @0 +0)wE (1)(11], 2)

with the projection p of the transition dipole moment on the laser polarization vector. This
projection is taken to be constant and the same for all pulses. Because all radiative transitions
take place in the vicinity of the ground-state equilibrium position, this approximation (Condon
approximation) is valid. The fields that induce an absorption (+) or emission (—) process are
defined as

3
EQ@ =) EF )

n=1

13
— E Z g}’l (t _ Tn) el[:F‘Un(t—Tn):tknx] (3)

n=1

and are characterized by their frequencies w,,, wave vectors (k,) and pulse envelopes g, (t — T},).
The times 7, denote the center of the envelope functions. We use a pulse configuration where a
first pulse (k;) interacts at time 77 = 0, whereas pulses (k;, k3) act simultaneously at the delay
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time T = T, = T3. All pulse envelopes are Gaussians with a width (full-width at half-maximum)
of 30 fs and possess the same photon energy of iw = 3.6eV.

The initial state of our calculations is the vibrational ground state ¥(R) in |0) and wave
functions that enter the spectra are determined within the dipole approximation and time-
dependent perturbation theory [70, 71]. The propagation is performed with the split-operator
technique [72]. We use a grid ranging from R = 1 to 20 A with 1024 grid points. The time step
for the propagation is 0.5 fs. The outgoing wave packets in the dissociation channel are smoothly
removed by a cut-off function of the form

1.0 (R<Ro),

cos’[(R— R)m/L] (R > R.). @

F(R)= {
The parameters R, = 15 A and L = 10 A are chosen such that f(R) vanishes at the end of the
numerical grid.

2.2. Two-dimensional spectra

The 2D spectra are calculated from the third-order time-dependent polarization [73]
3

PO, 1) =Y (™ O)luly ™ ®), )

m=0

with wave functions |1/ /) determined from time-dependent perturbation theory of order (). In
a typical 2D experiment, the detection direction selects only those terms where the field wave
vectors fulfill the equation k; = —k; +k; + k3. In what follows, we regard only times when the
pulse (k;) does not overlap with the pulses (k;, k3). It can then be shown that from all the terms
appearing in equation (5) only two remain that are identical [56] and we have

PO, 1) =2 (Y P (ka, ki, ) | V(ks, 7). (6)

Here, a new time variable ¢’ enters which is measured with respect to the delay time 7. The
polarization is now determined for several equidistant values of the delay time 7 in an interval
starting at time 7', as indicated by the subscript in equation (6).

The second-order state |y® (k,, ki, )) appearing in the last equation results from two
interactions: an excited-state wave packet is prepared by the first laser pulse, and this packet is
dumped down to the ground state by pulse (k) at the delay time 7, see figure 1. The polarization
is determined by the overlap of this state with the first-order state |1 (ks, ¢t')) that results from
absorption of a photon from pulse (k3) at time .

For the purpose of illustration, we regard the case of two field-coupled bound molecular
states in the impulsive limit where all three pulses are taken as §-functions in time (note,
however, that the numerical calculation involves Gaussian pulses of 30 fs width). In this case,
the polarization can be written as [56]

PO, )~ 333 alio, n1, o, my)eEn =i el En ) ihey (r T, %
ny  ng m

Here, E;, is the energy of the initial state and the ground (excited) state vibrational energies
are denoted by E,, (E,,, E,,), respectively. The coefficients a(iy, n;, ng, m;) contain dipole
matrix elements between the ground- and excited-state vibrational wave functions, and the
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Heaviside ®-function is introduced to mark the origin of the time interval for the delay time
7. Thus, the polarization contains coherences between the excited and ground-state energies
of the system. In the present case, the excited state is predissociative and no bound states
exist. Phenomenologically, we may adopt equation (7) in replacing the energy levels (Ey,) by
(Ex, —1hyi/2), where y; denotes the inverse lifetime of the resonance state with energy Ej,:

ny  ng mp
()

The particular values of the lifetimes will determine the appearance of the 2D spectrum as
discussed below.
The 2D spectrum itself is obtained by Fourier transformation [64] as

Sr(Ey, E;) =i f dr / dt’ er B ~ED pO ' 1y, 9)

From the expression for the polarization (equation (7)) it is then obvious that along the energy
axis E,, peaks appear which correspond to differences between excited and ground-state levels,
whereas along the E;-axis the peak positions occur at differences between excited-state levels
and the vibronic ground state, i.e. the initial state of the system. In the here treated situation, the
excited states are resonance states but it will be shown that a ‘vibrational’ structure can still be
seen in the spectra but critically depends on the sampling interval for the delay time 7.

3. Results

We first study the predissociation for a model system where the potential curves of Nal are
employed but the molecular mass is reduced by a factor of 5. As is mentioned in the introduction,
the absorption spectrum consists of a progression of lines, which correspond to long- and short-
lived resonance states. This is documented in figure 2, which shows the spectrum calculated as
the Fourier transform of the autocorrelation function [74, 75]

Uabs(E)=fdt e (wiole ™" o) w (1), (10)

with the vibronic ground-state wave function 1. Spectra are determined for different window
functions defined as
2
() = {cos () /)] (1] < 1) an
0 (|t] > t,).

The times t,, which are indicated in the panel of figure 2, determine the spectral resolution.
Many lines can be seen in the spectra. In going from the low-resolution (at #,, = 1 ps) to the
high-resolution spectrum (at t,, = 14 ps), groups of resonances with different lifetimes can be
distinguished where the low-/high-intensity peaks correspond to short-/long-lived states.

We now turn to the 2D spectra. They are calculated via the Fourier transform of the time-
dependent polarization (equation (6)). The latter is determined for discrete times ¢, taken in
the interval [7, T + fi,ax], With f,,x = 2.4 ps. Likewise, the interval for the second time-variable
7, is chosen as [T, T + t.x]. The number of equidistant sampling points is Ny = 4800 in each
direction. Because we are interested in the relative decay of resonance states with different
lifetimes, all spectra shown are normalized to the most intense line.
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Figure 2. Absorption spectra for the predissociation model (a factor of 5 smaller
mass of Nal). Spectra are shown for different resolutions as characterized by the
times t,, which enter the calculation of the spectra (equation (10)).

Let us first discuss the case where we close the predissociation channel and take the excited-
state potential as the adiabatic bound-state potential V*(R). Then, the laser pulses couple the
ground- and excited-state vibrational states, which leads to the carpet-like structure seen in
figure 3 (upper panel). There, we show the spectrum only in a limited region of energy space.
The intensity of the single peaks depends on the Franck—Condon factors, on the one hand,
and on the spectral distribution of the laser pulses, on the other. As motivated in section 2.2,
each peak belongs to a difference between the excited and ground-state vibrational energies. If
the coupling to the dissociation channel is included and the initial sampling time is chosen as
T = 0fs, the spectrum contains information about the short-time evolution of the system. We
note that, for 7 =0, there is an overlap of the three laser pulses which was excluded in the
considerations presented in section 2.2. This, however, is unsubstantial for the numerical results
which are not altered if 7 = 0 is changed to a time of 7 = 100 fs, where no overlap exists.

Figure 3 (lower panel) shows the spectrum obtained if the non-adiabatic coupling is
included. If compared to the ‘adiabatic’ case (upper panel), it is seen that the two spectra are
very similar. This is due to the fact that the non-adiabatic coupling is rather small so that, at
early times, the fragmentation channel is only weakly populated and, to a first approximation,
the dynamics proceeds adiabatically in the upper bound-state potential.

In figure 4, we show 2D spectra calculated for times 7' =1, 2 and 6 ps, respectively. In
increasing the sampling origin 7', we probe the dynamics in the delay-time variable at later and
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Figure 3. Modulus of 2D spectra at T = 0. Upper panel: the predissociation
channel is not included in the calculation (adiabatic motion). Lower panel:
spectrum from a calculation where the coupling to the dissociation channel is
taken into account. The sampling interval for the delay time covers times from
0 to 2.4 ps (short-time dynamics).

later times. This can be seen from the expression for the polarization equation (8). For states
with a lifetime which is much shorter than the sampling origin T, the exponential factor e "1 7/2
damps out the corresponding term in the sum so that it no longer appears. States with a much
longer lifetime, however, contribute to the spectrum. Accordingly, the 2D spectrum will exhibit
intensity only at energy differences where the energies of resonance states that possess much
longer lifetimes enter. Note that this is not necessarily true along the E,-direction. The levels
with quantum numbers m; are populated by the kj-interaction initiating in the ground-state.
Their time dependence (carrying an exponential damping with the factor e *»1"/?) is probed
only for the sampling length 7., 1.e. the short-time dynamics is probed. On the other hand, the
ground-state levels with energies E,, are populated by stimulated emission by the pulse (k;),
originating from the moving wave packet in the upper state which has already evolved in time
until 7. Thus the transitions occur only from still populated levels. Obviously, there are so many
energy differences between the excited and ground-state vibrational states available so that no
regions of low intensity appear along the E,-axis.

In comparing the 2D spectra for the three values of 7', we see that at certain values of E;
they lose intensity significantly faster. As a consequence, stripes parallel to the E,-axis appear
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Figure 4. Modulus of the 2D spectra for different delay-time sampling origins
T, as indicated. With increasing the time 7', the decay of short-lived resonances
leads to an intensity loss at the respective energies E .
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Figure 5. Integrated spectra o7 (E,) for different delay-time sampling origins 7,
as indicated.

which become sharper as time goes along. This trend continues for larger values of 7' (not
shown). From what has been said above, this means that the intensity loss corresponds to the
decay of resonance states of certain energies. For example, resonances with short lifetimes occur
around energies of 3.54 and 3.62 eV, see figure 4 (lower panel). This is, as expected, consistent
with the features of the absorption spectrum. Although, for the laser pulse parameters employed,
a different energy range is probed, the resonances are found at the same energies (figure 2). The
connection becomes even clearer if we regard the energy integrated 2D spectra:

GT(EI)=/dEw |ST(Er, E7)I, (12)

which are displayed in figure 5 for the same sampling times 7" as regarded in figure 4.

At the shortest time 7 =1ps, a vibrational structure is visible but the characteristic
resonance structure becomes more pronounced with increasing 7. Here, the clear gaps in the
spectrum at the longest time 7" = 6 ps correspond to the stripes of missing intensity in figure 4
(lower panel). The decrease of the intensity directly monitors the decay of the resonance states.

To extract resonance lifetimes, it is possible to regard single peaks of the 2D spectra and
monitor the decay of the peak height as a function of the time 7'. In figure 6 we show this
for two peaks at energies E, = E, = 3.581 and 3.614 eV, respectively. The figure documents
the different decay behaviors. For the shown curves we used a fixed energy in each case and
numerical fluctuations are seen. In order to obtain accurate decay rates, the spectra should be
integrated over energy to eliminate fluctuation.

Let us now regard the Nal system, taking the correct molecular mass into account. This
leads to a much larger density of resonance- and ground-state levels. To show that the behavior
here is no different from the one illustrated in the example given above, we calculate low-
resolution spectra. Therefore, the sampling intervals are chosen to have a length of 0.512 ps. This
means that the quasi-bound motion in the excited state is probed for only about half a vibrational
period, so that no vibrational sub-structure is to be expected. In figure 7 we compare spectra for
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Figure 6. Decay of resonance peaks at two (diagonal, E; = E,/) energies, as
indicated. The resonance corresponding to the energy of 3.581eV decays on a
much slower time scale than the short living state at 3.614 eV.

the initial sampling times of 7 = 0 and 6 ps. At the earlier time, a structureless spectrum is found
which mainly reflects the smoothed-out Franck—Condon distribution. This resembles the case
where the upper state is purely dissociative [76]. Increasing the time to 7 = 6 ps, we again find
the characteristic stripes parallel to the E,-axis which tell us that resonance states of particular
energies already decayed whereas others are longer lived.

To conclude, we demonstrate the power of 2D-vibronic spectroscopy in monitoring
predissociation processes by performing time-dependent quantum calculations. It is seen that
spectra determined for delay times sampled at early times differ from those obtained at later
times. In particular, the decay of resonances with different resonance energies and lifetimes
can be mapped state selectively and decay rates can be obtained from the 2D spectra. In our
numerical example, the particular resonance structure of the Nal molecule is revealed where the
lifetimes of quasi-bound states vary periodically as a function of energy (figure 7).

Let us finally comment on the detection of the resonance decay by other measurements.
The evidence for the existence of long- and short-lived resonances was already deduced from
the early pump—probe fluorescence experiments by Zewail and co-workers [21]. In the latter
work, however, because of the spectrally broad pulses, groups of resonances are excited so
that only an average lifetime can be inferred. As another technique, one may consider transient
absorption measurements. Because in these experiments ground- and excited-state levels are as
well coherently coupled, the technique should also be able to detect the state-selective decay. As
for energy-resolved experiments, an absorption spectrum, if recorded with sufficient resolution
(such spectra were taken for Nal [77-79]), exhibits the line shapes of the single resonances
and the lifetimes could, by a proper analysis, be extracted. The appealing thing of vibronic
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Figure 7. Modulus of 2D spectra of Nal for two sampling times 7', as indicated.
The spectrum at early times resembles the one of a purely dissociative state. For
longer times, the resonance structure of the quasi-bound system is visible.

2D spectroscopy is, of course, the picture of a decay recorded simultaneously in the time and
energy domains.
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