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The FactorizationMethod is a noniterative method to detect the shape and position of conductivity anomalies inside an object.The
method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT) by Brühl
and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The
necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize
this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular,
we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs.

1. Introduction

Electrical impedance tomography (EIT) aims to reconstruct
the spatial conductivity distribution inside an imaging sub-
ject Ω ⊆ R𝑛 from current-voltage measurements on a part
of its surface Σ ⊆ 𝜕Ω. Mathematically, this leads to the
problem of recovering the coefficient 𝜎(𝑥) in the elliptic
partial differential equation

∇ ⋅ 𝜎∇𝑢
𝑔

𝜎
= 0 in Ω, 𝜎𝜕]𝑢

𝑔

𝜎
|
𝜕Ω

= {
𝑔 on Σ,

0 else
(1)

fromknowledge of the correspondingNeumann-to-Dirichlet
operator (NtD)

Λ (𝜎) : 𝑔 󳨃󳨀→ 𝑢
𝑔

𝜎
|
Σ
, (2)

where 𝑢
𝑔

𝜎
is the solution of (1). We describe the precise

mathematical setting in Section 2.1.
In several applications, EIT is used to determine the posi-

tion of conductivity changes.This includes anomaly detection
problems, where Λ(𝜎) is compared to a reference NtD Λ(𝜎

0
)

in order to determine, if and where 𝜎 differs from a known
background conductivity 𝜎

0
. This problem also appears in

time-difference EIT, where measurements at different times
are compared to monitor temporal conductivity changes.

These applications lead to the shape reconstruction problem
of determining the support of 𝜎 − 𝜎

0
from Λ(𝜎) and Λ(𝜎

0
).

A prominent noniterative shape reconstruction method
is the Factorization Method. It was introduced by Kirsch [1]
for inverse scattering problems and extended to EIT by Brühl
and Hanke [2–4]. In its original form (cf. [4]), the method
assumes that

𝜎
0
(𝑥) = 1, 𝜎 (𝑥) = 1 + 𝜅 (𝑥) 𝜒

𝐷
(𝑥) , (3)

where𝐷 ⊆ Ω is a union of separated, smoothly bounded, and
simply connected domains, on which there is a conductivity
jump of at least 𝜖 > 0; that is,

𝜅 (𝑥) ≥ 𝜖 ∀𝑥 ∈ 𝐷, or 𝜅 (𝑥) ≤ −𝜖 ∀𝑥 ∈ 𝐷. (4)

The method then characterizes the unknown shape 𝐷 by a
range criterion. For all unit vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧 ∈ 𝐷 iff Φ
𝑧,𝑑
|
Σ
∈ R (|Λ (𝜎) − Λ (1)|

1/2

) , (5)

whereΦ
𝑧,𝑑

is the so-called dipole function, that is, the solution
of

ΔΦ
𝑧,𝑑

= 𝑑 ⋅ ∇𝛿
𝑧

in Ω, 𝜕]Φ𝑧,𝑑|𝜕Ω = 0. (6)

The range criterion (5) can be implemented numerically, so
that each point 𝑧 ∈ Ω can be tested whether it belongs to the
unknown inclusion or not.
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Substantial progress has been made on the Factorization
Method since the original works of Kirsch, Brühl, andHanke.
In the following, we restrict ourselves to progress in the
context of EIT. Overviews on the FM for EIT have been
given by Hanke and Brühl [5], in the book of Kirsch and
Grinberg [6], and in a recent chapter of Hanke and Kirsch in
Scherzer’s Handbook of Mathematical Methods in Imaging
[7].The FM for EIT has been treated as a special case of more
general elliptic problems by Kirsch [8], the author [9], and
by Nachman, Päivärinta and Teirilä [10]. A half-space setting
has been considered by Hanke and Schappel [11]. Electrode
models have been covered in the works of Brühl, Lechleiter,
Hakula, Hanke, Hyvönen and Pursiainen [5, 12–15]. The FM
has been extended to the complex conductivity case arising
in frequency-difference EIT by Seo, Woo and the author
[16, 17]. A priori separated indefinite inclusions have been
treated by Schmitt [18], and Schmitt and Kirsch discussed
the determination of the contrast level in the context of the
FM for EIT in [19]. Hyvönen and the author have removed
the assumptions on the inclusion contrast and boundary
regularity in [20], and [21] discusses the relation of the FM
to localized potentials.

In this work, we aim to summarize the theoretical
progress and present a state-of-the-art formulation of the
Factorization Method for EIT with continuous data. In
particular, wewill formulate themethod for general piecewise
analytic conductivities and give short and self-contained
proofs.

2. Setting and Auxiliary Results

2.1.The Setting. We start by making the mathematical setting
precise. Let Ω ⊆ R𝑛, 𝑛 ≥ 2, denote a bounded domain
with smooth boundary 𝜕Ω and outer normal vector ]. Let
Σ ⊆ 𝜕Ω be an open part of the boundary. 𝐿∞

+
(Ω) denotes the

subspace of 𝐿∞(Ω)-functions with positive essential infima.
𝐻
1

⬦
(Ω) and 𝐿2

⬦
(Σ) denote the spaces of𝐻1- and 𝐿2-functions

with vanishing integral mean on 𝜕Ω (resp., Σ).
For 𝜎 ∈ 𝐿

∞

+
(Ω) and 𝑔 ∈ 𝐿

2

⬦
(Σ), there exists a unique

solution 𝑢
𝑔

𝜎
∈ 𝐻

1

⬦
(Ω) of the elliptic partial differential

equation

∇ ⋅ 𝜎∇𝑢
𝑔

𝜎
= 0 in Ω, 𝜎𝜕]𝑢

𝑔

𝜎
|
𝜕Ω

= {
𝑔 on Σ,

0 else,
(7)

so that we can define the Neumann-to-Dirichlet operator
(NtD)

Λ (𝜎) : 𝐿
2

⬦
(Σ) 󳨀→ 𝐿

2

⬦
(Σ) , 𝑔 󳨃󳨀→ 𝑢
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|
Σ
, (8)

where 𝑢𝑔
𝜎
∈ 𝐻

1

⬦
(Ω) solves (7). Λ(𝜎) is a self-adjoint, compact

linear operator.
Let 𝜎

0
∈ 𝐿

∞

+
(Ω) be piecewise analytic. For each point 𝑧 ∈

Ω that has a neighborhood in which 𝜎
0
is analytic, and each

unit vector 𝑑 ∈ R𝑛, ‖𝑑‖ = 1, let Φ
𝑧,𝑑

be the solution of

∇ ⋅ 𝜎
0
∇Φ

𝑧,𝑑
= 𝑑 ⋅ ∇𝛿

𝑧
in Ω, 𝜎

0
𝜕]Φ𝑧,𝑑|𝜕Ω = 0. (9)

Φ
𝑧,𝑑

is called a dipole function.

2.2. Auxiliary Results. Our presentation of the Factorization
Method in the next section relies on the following four
lemmas. The first lemma is frequently called a monotony
lemma since it shows that a larger conductivity leads to a
smaller NtD. More precisely, it shows a relation between
the difference of two NtDs and the difference of the corre-
sponding conductivities and the interior energy of an electric
potential. The second lemma shows that this energy term is
the image of the adjoint of an auxiliary virtual measurement
operator that is defined on a subregion ofΩ.The third lemma
is a functional analytic relation between the norm of an
image of an operator and the range of its adjoint. Together
with the first two lemmas, it implies that the range of the
auxiliary virtual measurement operator can be calculated
from the NtDs. Finally, using the previous dipole functions,
the last lemma shows that the range of the auxiliary virtual
measurement operator determines the region on which they
are defined.

We start with the monotony lemma.

Lemma 1. Let 𝜎
1
, 𝜎
0
∈ 𝐿
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+
(Ω). Then, for all 𝑔 ∈ 𝐿
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(10)

where we abbreviated Λ
𝑗
:= Λ(𝜎

𝑗
), 𝑗 = 0, 1, and 𝑢

0
:= 𝑢

𝑔

𝜎0

.

Proof. The lemma seems to go back to Ikehata, Kang, Seo, and
Sheen [22, 23], cf. also the similar arguments inKirsch [8], Ide
et al. [24], and in the works of Seo and the author [16, 25]. For
the sake of completeness, we copy the short proof from [25].
For all 𝑔 ∈ 𝐿

2

⬦
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Hence, from
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we obtain that

∫
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1
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0
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1
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(13)

which already yields the first asserted inequality.
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By interchanging 𝜎
1
and 𝜎

0
, we conclude that
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and, hence, obtain the second inequality.

Given a reference conductivity 𝜎
0

∈ 𝐿
∞

+
(Ω) and a

measurable subset𝐷 ⊆ Ω, we define the virtual measurement
operator 𝐿

𝐷
by

𝐿
𝐷
: 𝐿
2

(𝐷)
𝑛

󳨀→ 𝐿
2

⬦
(Σ) , 𝐹 󳨃󳨀→ V|

Σ
, (15)

where V ∈ 𝐻
1

⬦
(Ω) solves

∫
Ω

𝜎
0
∇V ⋅ ∇𝑤d𝑥 = ∫

𝐷

𝐹 ⋅ ∇𝑤d𝑥 ∀𝑤 ∈ 𝐻
1

⬦
(Ω) . (16)

The energy term |∇𝑢
0
|
2 in Lemma 1 can be identified with the

norm of the adjoint of this virtual measurement operator.

Lemma 2. The adjoint operator of 𝐿
𝐷
is given by

𝐿
∗

𝐷
: 𝐿
2

⬦
(Σ) 󳨀→ 𝐿

2

(𝐷)
𝑛

, 𝑔 󳨃󳨀→ ∇𝑢
0
|
𝐷
, (17)

where 𝑢
0
∈ 𝐻

1

⬦
(Ω) solves

∇ ⋅ 𝜎
0
∇𝑢

0
= 0 𝑖𝑛 Ω, 𝜎

0
𝜕]𝑢0|𝜕Ω = {

𝑔 𝑜𝑛 Σ,

0 𝑒𝑙𝑠𝑒.
(18)

Proof. For all 𝑔 ∈ 𝐿
2

⬦
(Σ) and 𝐹 ∈ 𝐿

2

(𝐷)
𝑛, we have that

∫
𝐷

(𝐿
∗

𝐷
𝑔) ⋅ 𝐹 d𝑥 = ∫

Σ

𝑔 (𝐿
𝐷
𝐹) d𝑥 = ∫

Σ

𝑔V|
Σ
d𝑥

= ∫
Ω

𝜎
0
∇𝑢

0
⋅ ∇V d𝑥 = ∫

𝐷

∇𝑢
0
⋅ 𝐹 d𝑥,

(19)

which shows the assertion.

The following functional analytic lemma uses bounds on
the image of an operator to characterize the range of its dual
operator.

Lemma 3. Let 𝑋 and 𝑌 be real Hilbert spaces with inner
products (⋅, ⋅)

𝑋
and (⋅, ⋅)

𝑌
, respectively. Let 𝐴 ∈ L(𝑋; 𝑌) and

𝑥
󸀠

∈ 𝑋. Then,

𝑥
󸀠

∈ R (𝐴
∗

) iff ∃𝐶 > 0 :
󵄨󵄨󵄨󵄨󵄨
(𝑥
󸀠

, 𝑥)
𝑋

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 ‖𝐴𝑥‖ ∀𝑥 ∈ 𝑋.

(20)

In particular, if𝑋,𝑌
1
, and𝑌

2
are three real Hilbert spaces,𝐴

𝑖
∈

L(𝑌
𝑖
, 𝑋), 𝑖 = 1, 2, and if there exists 𝐶 > 0 with

󵄩󵄩󵄩󵄩𝐴
∗

1
𝑥
󵄩󵄩󵄩󵄩 ≤ 𝐶

󵄩󵄩󵄩󵄩𝐴
∗

2
𝑥
󵄩󵄩󵄩󵄩 ∀𝑥 ∈ 𝑋, (21)

thenR(𝐴
1
) ⊆ R(𝐴

2
).

Proof. The assertion can be generalized to Banach spaces,
and, in that context, it is called the “14th important property
of Banach spaces” in Bourbaki [26]. For the sake of complete-
ness, we rewrite the proof from [27] to Hilbert spaces.

If 𝑥󸀠 ∈ R(𝐴
∗

), then there exists 𝑦󸀠 ∈ 𝑌 such that 𝑥󸀠 =
𝐴
∗

𝑦
󸀠. Hence,
󵄨󵄨󵄨󵄨󵄨
(𝑥
󸀠

, 𝑥)
𝑋

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝐴

∗

𝑦
󸀠

, 𝑥)
𝑋

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(𝑦
󸀠

, 𝐴𝑥)
𝑌

󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
󸀠
󵄩󵄩󵄩󵄩󵄩
‖𝐴𝑥‖ ∀𝑥 ∈ 𝑋,

(22)

so that the assertion holds with 𝐶 = ‖𝑦
󸀠

‖.
Now let 𝑥󸀠 ∈ 𝑋 be such that there exists 𝐶 > 0 with

|(𝑥
󸀠

, 𝑥)
𝑋
| ≤ 𝐶‖𝐴𝑥‖ for all 𝑥 ∈ 𝑋. We define

𝑓 (𝑦) := (𝑥
󸀠

, 𝑥)
𝑋

for every 𝑦 = 𝐴𝑥 ∈ R (𝐴) . (23)

Then, 𝑓 is a well-defined, continuous linear functional on
R(𝐴). By setting it to zero on R(𝐴)

⊥, we can extend 𝑓 to a
continuous linear functional on 𝑌. Using the Riesz theorem,
it follows that there exists 𝑦󸀠 ∈ 𝑌 with

(𝑦
󸀠

, 𝑦)
𝑌

= 𝑓 (𝑦) ∀𝑦 ∈ R (𝐴) . (24)

Hence, for all 𝑥 ∈ 𝑋, we have

(𝐴
∗

𝑦
󸀠

, 𝑥)
𝑋

= (𝑦
󸀠

, 𝐴𝑥)
𝑌

= 𝑓 (𝐴𝑥) = (𝑥
󸀠

, 𝑥)
𝑋

, (25)

so that 𝑥󸀠 = 𝐴
∗

𝑦
󸀠

∈ R(𝐴
∗

).

The last lemma shows that the range of the virtual
measurement operator 𝐿

𝐷
determines the region𝐷 onwhich

it is defined. We state the lemma for a simple special case,
a generalized version of the lemma will be formulated in
Section 3.2.

Lemma 4. Let 𝜎
0
= 1, 𝐷 ⊆ Ω be open, and 𝐷 ⊆ Ω have a

connected complement Ω \ 𝐷.
Then, for all unit vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1, and every point

𝑧 ∈ Ω \ 𝜕𝐷, it holds that

𝑧 ∈ 𝐷 iff Φ
𝑧,𝑑
|
Σ
∈ R (𝐿

𝐷
) . (26)

Proof. The proof is similar to the one of [21, Lemma 2.9].
First, let 𝑧 ∈ 𝐷 and 𝜖 > 0 be such that 𝐵

𝜖
(𝑧) ⊆ 𝐷. We

choose

𝑓
1
∈ 𝐻

1

(𝐵
𝜖
(𝑧)) with 𝑓

1
|
𝜕𝐵𝜖(𝑧)

= Φ
𝑧,𝑑
|
𝜕𝐵𝜖(𝑧)

,

𝑓
2
∈ 𝐻

1

(𝐵
𝜖
(𝑧)) with Δ𝑓

2
= 0,

𝜕]𝑓2|𝜕𝐵𝜖(𝑧)
= 𝜕]Φ𝑧,𝑑|𝜕𝐵𝜖(𝑧)

,

(27)

and let 𝐹 ∈ 𝐿
2

(𝐷)
𝑛 be the zero continuation of ∇(𝑓

1
− 𝑓

2
) to

𝐷.
Then, the function

V := {
Φ
𝑧,𝑑

in Ω \ 𝐵
𝜖
(𝑧),

𝑓
1

in 𝐵
𝜖
(𝑧)

(28)
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fulfills V ∈ 𝐻
1

⬦
(Ω), and, for all 𝑤 ∈ 𝐻

1

⬦
(Ω),

∫
Ω

∇V ⋅ ∇𝑤d𝑥

= ∫
Ω\𝐵𝜖(𝑧)

∇Φ
𝑧,𝑑

⋅ ∇𝑤d𝑥 + ∫
𝐵𝜖(𝑧)

∇𝑓
1
⋅ ∇𝑤d𝑥

= −∫
𝜕𝐵𝜖(𝑧)

𝜕]Φ𝑧,𝑑 𝑤|𝜕𝐵𝜖(𝑧)
d𝑠 + ∫

𝐵𝜖(𝑧)

∇𝑓
1
⋅ ∇𝑤d𝑥

= ∫
𝐵𝜖(𝑧)

∇ (𝑓
1
− 𝑓

2
) ⋅ ∇𝑤d𝑥 = ∫

𝐷

𝐹 ⋅ ∇𝑤d𝑥.

(29)

This shows thatΦ
𝑧,𝑑
|
Σ
= V|

Σ
= 𝐿

𝐷
(𝐹) ∈ R(𝐿

𝐷
).

Now let Φ
𝑧,𝑑
|
Σ
∈ R(𝐿

𝐷
). Let V ∈ 𝐻

1

⬦
(Ω) be the function

from the definition of 𝐿
𝐷
. Then,

V|
Σ
= Φ

𝑧,𝑑
|
Σ
, 𝜕]V|Σ = 0 = 𝜕]Φ𝑧,𝑑|Σ, (30)

so that it follows by unique continuation that V = Φ
𝑧,𝑑

in the
connected setΩ \ (𝐷 ∪ {𝑧}).

If 𝑧 ∉ 𝐷, then 𝑑 ⋅ ∇𝛿
𝑧
∉ 𝐻

−2

(Ω \ 𝐷), and thus Φ
𝑧,𝑑

∉

𝐿
2

(Ω \ 𝐷), which contradicts that V = Φ
𝑧,𝑑

in Ω \ (𝐷 ∪ {𝑧}).
Hence, 𝑧 ∈ 𝐷.

3. The Factorization Method

Nowwe will formulate the FactorizationMethod and charac-
terize a region where a conductivity 𝜎 differs from a reference
conductivity 𝜎

0
by a range criterion. Before we turn to a

new general formulation of the method, we first state it for
a special case that is similar to the one that was treated in the
original works of Brühl and Hanke [3, 4].

3.1. The Factorization Method for a Simple Special Case

Theorem 5. Let 𝜎
0
= 1 and 𝜎 = 1 + 𝜒

𝐷
, where 𝐷 ⊆ Ω is an

open set so that 𝐷 ⊆ Ω has a connected complement Ω \ 𝐷.
Then, for all 𝑧 ∈ Ω, 𝑧 ∉ 𝜕𝐷, and all dipole directions 𝑑 ∈ R𝑛,
‖𝑑‖ = 1,

𝑧 ∈ 𝐷 iff Φ
𝑧,𝑑

󵄨󵄨󵄨󵄨Σ
∈ R (|Λ (𝜎) − Λ (1)|

1/2

) . (31)

Proof. Themonotony Lemma 1 yields that for all𝑔 ∈ 𝐿
2

⬦
(𝜕Ω),

∫
𝐷

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 ≥ ∫
Σ

𝑔 (Λ (1) − Λ (𝜎)) 𝑔d𝑠 ≥ ∫
𝐷

1

2

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥.

(32)

Hence, |Λ(𝜎) −Λ(1)| = Λ(1) −Λ(𝜎), and, using Lemma 2, we
can restate this in the form

󵄩󵄩󵄩󵄩𝐿
∗

𝐷
𝑔
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩󵄩
|Λ (𝜎) − Λ (1)|

1/2

𝑔
󵄩󵄩󵄩󵄩󵄩

2

≥
1

2

󵄩󵄩󵄩󵄩𝐿
∗

𝐷
𝑔
󵄩󵄩󵄩󵄩

2

. (33)

Using the functional analytic Lemma 3, this implies that

R (𝐿
𝐷
) = R (|Λ (𝜎) − Λ (1)|

1/2

) , (34)

and thus the assertion follows from the relation between 𝐷

andR(𝐿
𝐷
) in Lemma 4.

Obviously, the same arguments can be used to treat the
case 𝜎(𝑥) = 1 + 𝜅(𝑥)𝜒

𝐷
(𝑥), when there exists a conductivity

jump 𝜖 > 0 so that either

𝜅 (𝑥) ≥ 𝜖 ∀𝑥 ∈ 𝐷 or 𝜅 (𝑥) ≤ −𝜖 ∀𝑥 ∈ 𝐷. (35)

3.2. The Factorization Method for the General Piecewise
Analytic Case. Now we drop the assumptions that the back-
ground is constant, that there is a clear conductivity jump,
and that the complement of the inclusions is connected. We
will merely assume that the reference conductivity 𝜎

0
is a

piecewise analytic function and that either 𝜎 − 𝜎
0
≥ 0 or

𝜎 − 𝜎
0
≤ 0. Roughly speaking, under this general assumption,

the Factorization Method then characterizes the support of
𝜎 − 𝜎

0
up to holes in the support that have no connections to

Σ. For a precise formulation, we use the concept of the inner
and outer support from [28] that has been inspired by the use
of the infinity support of Kusiak and Sylvester [29]; see also
[25, 30].

Definition 6. A relatively open set 𝑈 ⊆ Ω is called connected
to Σ if 𝑈 ∩ Ω is connected and 𝑈 ∩ Σ ̸= 0.

For a measurable function 𝜅 : Ω → R, we define

(a) the support supp(𝜅) as the complement (in Ω) of the
union of those relatively open𝑈 ⊆ Ω, for which 𝜅|

𝑈
≡

0,
(b) the inner support inn supp 𝜅 as the union of those

open sets 𝑈 ⊆ Ω, for which ess inf
𝑥∈𝑈

|𝜅(𝑥)| > 0,
(c) the outer support out

Σ
supp 𝜅 as the complement (in

Ω) of the union of those relatively open 𝑈 ⊆ Ω that
are connected to Σ and for which 𝜅|

𝑈
≡ 0.

The interior of a set𝑀 ⊆ Ω is denoted by int𝑀 and its closure
(with respect toR𝑛) by𝑀. If𝑀 is measurable, we also define

(d) out
Σ
𝑀 = out

Σ
supp𝜒

𝑀
.

It is easily checked that out
Σ
(supp 𝜅) = out

Σ
supp 𝜅.

With this concept, we can extend the range characteriza-
tion in Lemma 4 to a general setting (see also Remark 9 later).

Lemma 7. Let 𝜎
0
∈ 𝐿

∞

+
(Ω) be piecewise analytic. Let 𝐷 ⊆ Ω

be measurable.
Then, for all unit vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1, and every point

𝑧 ∈ Ω that has a neighborhood in which 𝜎
0
is analytic,

𝑧 ∈ int𝐷 implies Φ
𝑧,𝑑

󵄨󵄨󵄨󵄨Σ
∈ R (𝐿

𝐷
) , (36)

and

Φ
𝑧,𝑑

󵄨󵄨󵄨󵄨Σ
∈ R (𝐿

𝐷
) implies 𝑧 ∈ out

Σ
𝐷. (37)

Proof. If 𝑧 ∈ int𝐷, then there exists a small ball 𝐵
𝜖
(𝑧) ⊆ 𝐷,

and the first assertion follows as in the proof of Lemma 4.
To show the second assertion, letΦ

𝑧,𝑑
|
Σ
∈ R(𝐿

𝐷
), and let

V ∈ 𝐻
1

⬦
(Ω) be the function from the definition of 𝐿

𝐷
, so that

(as in the proof of Lemma 4)

V|
Σ
= Φ

𝑧,𝑑
|
Σ
, 𝜕]V|Σ = 0 = 𝜕]Φ𝑧,𝑑|Σ. (38)
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Assume that 𝑧 ∉ out
Σ
𝐷. Then, there exists a relatively

open 𝑈 ⊆ Ω that is connected to Σ and contains 𝑧.
Hence, by unique continuation, it follows that V|

𝑈
= Φ

𝑧,𝑑
|
𝑈
,

and we obtain the same contradiction as in the proof of
Lemma 4.

Now, we can formulate and prove the Factorization
Method for general piecewise analytic conductivities.

Theorem 8. Let 𝜎 ∈ 𝐿
∞

+
(Ω), and let 𝜎

0
∈ 𝐿

∞

+
(Ω) be a

piecewise analytic function. Let either

𝜎 (𝑥) ≥ 𝜎
0
(𝑥) ∀𝑥 ∈ Ω or 𝜎 (𝑥) ≤ 𝜎

0
(𝑥) ∀𝑥 ∈ Ω.

(39)

Then, for all 𝑧 ∈ Ω that have a neighborhood in which 𝜎
0
is

analytic, as well as all unit vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧∈ innsupp (𝜎 − 𝜎
0
) implies Φ

𝑧,𝑑

󵄨󵄨󵄨󵄨Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) ,

(40)

and

Φ
𝑧,𝑑

󵄨󵄨󵄨󵄨Σ
∈R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) implies 𝑧∈ out
Σ
supp (𝜎 − 𝜎

0
) .

(41)

Proof. Let 𝑧 ∈ Ω have a neighborhood in which 𝜎
0
is analytic,

and let 𝑑 ∈ R𝑛 be a unit vector with ‖𝑑‖ = 1. We only
prove the assertions for 𝜎 ≥ 𝜎

0
. The other case is completely

analogous.
First, let 𝑧 ∈ inn supp (𝜎 − 𝜎

0
). Then there exists a small

ball 𝐵
𝜖
(𝑧) and 𝛿 > 0 so that 𝜎 − 𝜎

0
≥ 𝛿 on 𝐵

𝜖
(𝑧). Using the

monotony Lemma 1, it follows that, for all 𝑔 ∈ 𝐿
2

⬦
(𝜕Ω),

∫
Σ

𝑔 (Λ (𝜎
0
) − Λ (𝜎)) 𝑔d𝑠

≥ ∫
Ω

𝜎
0

𝜎
(𝜎 − 𝜎

0
)
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨

2d𝑥

≥ 𝛿
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
∫
𝐵𝜖(𝑧)

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

≥ 𝛿
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄩󵄩󵄩󵄩󵄩
𝐿
∗

𝐵𝜖(𝑧)
𝑔
󵄩󵄩󵄩󵄩󵄩

2

.

(42)

Using the functional analytic Lemma 3, we obtain that

R (𝐿
𝐵𝜖(𝑧)

) ⊆ R (
󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎

0
)
󵄨󵄨󵄨󵄨

1/2

) , (43)

and Lemma 7 yields that

Φ
𝑧,𝑑
|
Σ
∈ R (𝐿

𝐵𝜖(𝑧)
) ⊆ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) . (44)

On the other hand, with 𝐷 := supp(𝜎 − 𝜎
0
), the monotony

Lemma 1 shows that for all 𝑔 ∈ 𝐿
2

⬦
(𝜕Ω),

∫
Σ

𝑔 (Λ (𝜎
0
) − Λ (𝜎

1
)) 𝑔d𝑠 ≤ ∫

Ω

(𝜎
1
− 𝜎

0
)
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨

2d𝑥

≤
󵄩󵄩󵄩󵄩𝜎1 − 𝜎

0

󵄩󵄩󵄩󵄩𝐿∞(Ω)
∫
𝐷

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

≤
󵄩󵄩󵄩󵄩𝜎1 − 𝜎

0

󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄩󵄩󵄩󵄩𝐿
∗

𝐷
𝑔
󵄩󵄩󵄩󵄩

2

,

(45)

so that we obtain from the functional analytic Lemma 3

R (
󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎

0
)
󵄨󵄨󵄨󵄨

1/2

) ⊆ R (𝐿
𝐷
) . (46)

Hence, Lemma 7 yields that

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) ⊆ R (𝐿
𝐷
) implies

𝑧 ∈ out
Σ
(supp (𝜎 − 𝜎

0
)) = out

Σ
supp (𝜎 − 𝜎

0
) .

(47)

Remark 9. Theorem 8 shows that the Factorization Method
is able to detect the support of a conductivity difference up to
the difference between the outer and the inner support, that
is, roughly speaking, up to holes in the support that have no
connections to the boundary. It leaves openwhether points in
such holes will fulfill the range criterion of the Factorization
Method or not.

A result of Hyvönen and the author [30, Lemma 2.5]
shows that for every smooth domain𝐷with𝐷 ⊂ Ω and every
unit vector 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) ∀𝑧 ∈ 𝜕𝐷 (48)

implies

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
)
󵄨󵄨󵄨󵄨

1/2

) ∀𝑧 ∈ 𝐷. (49)

In that sense, we can expect that holes in the support will
be filled up and that the set detected by the Factorization
Method is essentially the outer support of the conductivity
difference.

3.3. The Factorization Method for the Indefinite Case. It is a
long standing open theoretical problem whether the range
criterion of the Factorization Method holds true without
the definiteness assumption that 𝜎 ≥ 𝜎

0
on Ω or 𝜎 ≤

𝜎
0
on Ω. However, Grinberg, Kirsch, and Schmitt [18, 31]

showed how to exclude a region 𝐸 ⊆ Ω from Ω, in
such a way that the Factorization Method only requires the
definiteness assumption onΩ\𝐸. In this subsection, we show
how their idea can be incorporated into our formulation of
the method.

To point out the main idea, we first formulate the result
for a simple special case. Let us stress that, for 𝜎 = 1 + 𝜒

𝐷
+ −

(1/2)𝜒
𝐷
− , it is not known whether

𝑧 ∈ 𝐷
+

∪ 𝐷
− iff Φ

𝑧,𝑑
|
Σ
∈ R (|Λ (𝜎) − Λ (1)|

1/2

) . (50)

However, we can still use the FactorizationMethod if we have
some a priori knowledge that separates 𝐷+ and 𝐷

−. More
precisely, if we know a subset 𝐸 that contains 𝐷− without
intersecting 𝐷

+, then we can use the Factorization Method
to find𝐷+ ∪ 𝐸 (and thus𝐷+).
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Theorem 10. Let 𝜎
0
= 1 and 𝜎 = 1 + 𝜒

𝐷
+ − (1/2)𝜒

𝐷
− , where

𝐷
+

, 𝐷
−

⊆ Ω are open. Let 𝐸 ⊆ Ω be an open set.

(a) If 𝐷+ ⊆ 𝐸 and 𝐷− ∪ 𝐸 ⊆ Ω has a connected
complement, then for all 𝑧 ∈ Ω, 𝑧 ∉ 𝜕(𝐷

−

∪𝐸), and all
dipole directions 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧 ∈ 𝐷
−

∪ 𝐸 iff Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (1) + 𝐿
𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) .

(51)

(b) If 𝐷− ⊆ 𝐸 and 𝐷+ ∪ 𝐸 ⊆ Ω has a connected
complement, then for all 𝑧 ∈ Ω, 𝑧 ∉ 𝜕(𝐷

+

∪𝐸), and all
dipole directions 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧 ∈ 𝐷
+

∪ 𝐸 iff Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (1) − 𝐿
𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) .

(52)

Proof. Themonotony Lemma 1 yields that for all𝑔 ∈ 𝐿
2

⬦
(𝜕Ω),

1

2
∫
𝐷
−

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 − ∫
𝐷
+

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

≤ ∫
Σ

𝑔 (Λ (𝜎) − Λ (1)) 𝑔d𝑠

≤ ∫
𝐷
−

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 −
1

2
∫
𝐷
+

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥.

(53)

Since (cf. Lemma 2)

∫
Σ

𝑔 (𝐿
𝐸
𝐿
∗

𝐸
) 𝑔d𝑠 = 󵄩󵄩󵄩󵄩𝐿

∗

𝐸
𝑔
󵄩󵄩󵄩󵄩

2

= ∫
𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥, (54)

it follows for case (a) that

1

2
∫
𝐷
−
∪𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 ≤ ∫
Σ

𝑔 (Λ (𝜎) − Λ (1) + 2𝐿
𝐸
𝐿
∗

𝐸
) 𝑔d𝑠

≤ ∫
𝐷
−
∪𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥.
(55)

Using the functional analytic Lemma 3, this implies that

R (𝐿
𝐷
−
∪𝐸
) = R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (1) + 2𝐿
𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) , (56)

so that the assertion (a) follows from Lemma 4.
In case (b), we obtain that

3

2
∫
𝐷
+
∪𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 ≥ ∫
Σ

𝑔 (Λ (1) − Λ (𝜎) + 2𝐿
𝐸
𝐿
∗

𝐸
) 𝑔d𝑠

≥
1

2
∫
𝐷
+
∪𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥,
(57)

and the same arguments as above yield the assertion.

We can also extend these ideas to the general setting of
Section 3.2.

Theorem 11. Let 𝜎 ∈ 𝐿
∞

+
(Ω) and let 𝜎

0
∈ 𝐿

∞

+
(Ω) be a

piecewise analytic function. Let 𝐸 ⊆ Ω be a measurable set.
Choose 𝛼, 𝛽 ∈ R such that

𝛼 >
󵄩󵄩󵄩󵄩𝜎 − 𝜎

0

󵄩󵄩󵄩󵄩𝐿∞(Ω)
, 𝛽 >

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜎
0

𝜎
(𝜎
0
− 𝜎)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
. (58)

(a) If 𝜎 ≤ 𝜎
0
on Ω \ 𝐸, then for all 𝑧 ∈ Ω that have a

neighborhood in which 𝜎
0
is analytic, as well as all unit

vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧 ∈ inn supp (𝜎 − 𝜎
0
) ∪ 𝐸 implies

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎)−Λ (𝜎
0
)+𝛼𝐿

𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) ,

(59)

and

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
) + 𝛼𝐿

𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) implies

𝑧 ∈ out
Σ
(supp (𝜎 − 𝜎

0
) ∪ 𝐸) .

(60)

(b) If 𝜎 ≥ 𝜎
0
on Ω \ 𝐸, then for all 𝑧 ∈ Ω that have a

neighborhood in which 𝜎
0
is analytic, as well as all unit

vectors 𝑑 ∈ R𝑛, ‖𝑑‖ = 1,

𝑧 ∈ inn supp (𝜎 − 𝜎
0
) ∪ 𝐸, implies

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
) − 𝛽𝐿

𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

)

(61)

and

Φ
𝑧,𝑑
|
Σ
∈ R (

󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎
0
) − 𝛽𝐿

𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) implies

𝑧 ∈ out
Σ
(supp (𝜎 − 𝜎

0
) ∪ 𝐸) .

(62)

Proof. For every 𝑧 ∈ inn supp(𝜎−𝜎
0
)with 𝑧 ∉ 𝐸, there exists

a small ball 𝐵
𝜖
(𝑧) and 𝛿 > 0 so that 𝜎

0
−𝜎 ≥ 𝛿 on 𝐵

𝜖
(𝑧). Using

the monotony Lemma 1, it follows that, for all 𝑔 ∈ 𝐿
2

⬦
(𝜕Ω),

∫
Σ

𝑔 (Λ (𝜎) − Λ (𝜎
0
) + 𝛼𝐿

𝐸
𝐿
∗

𝐸
) 𝑔d𝑠

≥ ∫
Ω

(𝜎
0
− 𝜎

1
)
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨

2d𝑥 + 𝛼∫
𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

≥ 𝛿∫
𝐵𝜖(𝑧)

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥+(𝛼 −
󵄩󵄩󵄩󵄩𝜎 − 𝜎

0

󵄩󵄩󵄩󵄩𝐿∞(Ω)
)∫
𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥.

(63)
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As in the previous proofs, we obtain from Lemmas 2 and 3
that

R (
󵄨󵄨󵄨󵄨Λ (𝜎) − Λ (𝜎

0
) + 𝛼𝐿

𝐸
𝐿
∗

𝐸

󵄨󵄨󵄨󵄨

1/2

) ⊇ R (𝐿
𝐵𝜖(𝑧)∪𝐸

) , (64)

so that the first implication of (a) follows from Lemma 7.
The monotony Lemma 1 also implies that

∫
Σ

𝑔 (Λ (𝜎) − Λ (𝜎
0
) + 𝛼𝐿

𝐸
𝐿
∗

𝐸
) 𝑔d𝑠

≤ ∫
Ω

𝜎
0

𝜎
(𝜎
0
− 𝜎)

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥 + 𝛼∫
𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜎
0

𝜎
(𝜎
0
− 𝜎)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
∫
supp(𝜎−𝜎0)

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥

+ 𝛼∫
𝐸

󵄨󵄨󵄨󵄨∇𝑢0
󵄨󵄨󵄨󵄨

2d𝑥,

(65)

so that the second implication of (a) follows from Lemmas 2,
3, and 7. Assertion (b) can be proven analogously.

Remark 9 also applies to this case.

4. Conclusions and Remarks

The Factorization Method can be used to detect regions
in which a conductivity differs from a known reference
conductivity. In this work, we summarized the progress
on the method’s theoretical foundation. We formulated the
method for general piecewise analytic conductivities and
gave comparatively simple and self-contained proofs.We also
showed how the idea of excluding a part of the imaging region
can be incorporated into this formulation.

The regularity assumptions can beweakened even further.
Our proofs only require unique continuation arguments for
the reference conductivity 𝜎

0
and the existence of the dipole

functions.
Two major open theoretical questions still exist in the

context of the FactorizationMethod.The theoretical justifica-
tion of the method requires a definiteness condition (on the
whole domain or after excluding an a priori known part of the
domain). It is unknownwhether themethod’s range criterion
holds without such a definiteness condition.The second open
question concerns the numerical stability of the method’s
range criterion. So far, there are no rigorous convergence
results for numerical implementations of this range criterion
(see, however, Lechleiter [32] for a first step in this direction).
As a promising approach to overcome both problems, we
would like to point out the recent work on monotony-based
methods [28].
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