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Generation of single photons has been demonstrated in several systems. However, none of them satisfies all
the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as
required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on
intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor
manufacturing technology in combination with high-energy electron irradiation. The room temperature
electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared
(NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be
generated at a low or even single defect level, our approach can be used to realize electrically driven single
photon source for quantum telecommunication and information processing.

obust and cheap light sources emitting single photons on demand are at the heart of many demanding

optical technologies'*. Single photon emission has been demonstrated in a variety of systems, including

atoms®, ions*, molecules®”’, quantum dots (QDs)*” and color centers in diamond'®"'. The most significant
progress has been achieved for QDs">'*, however, the necessity to use cryogenic temperatures and high inhomo-
geneity (the emission wavelength is individual for each QD) make this system impractical. Electrically driven
single photon sources in the visible spectral range have also been demonstrated using nitrogen-vacancy (NV)
centers in diamond'>'%, but the compatibility of this system with the present-day integrated circuits manufac-
turing is not obvious.

The operation principle of single photon sources is based on the quantum mechanical properties of a single
two-level system. When a single photon is desired, this system is put into the excited state by an external stimulus,
and a single photon is emitted upon relaxation into the ground state. A perspective approach to fabricate an
efficient, room temperature single photon source based on this principle is to use color centers in semiconductors.
In our work, we exploit two defect centers in SiC, the so-called D; defect'” and the silicon vacancy (V;) defect',
making two-color LED [Fig. 1(a)].

Remarkably, the V; defects in SiC comprise the technological advantages of semiconductor quantum dots and
the unique quantum properties of the NV defects in diamond". In particular, Vg; spin qubits can be optically
initialized and read out'®", and, therefore, our demonstration of room temperature EL from Vg; defects is an
important step towards realization of all-electrical control of V; spins. Further, the V; EL reveals a broad-band
emission spectrum in NIR (850 - 1050 nm), where the absorption of silica glass optical fibers is relatively weak.
While this spectrum range is still below the telecom window (1.3 um), it can be changed in the direction of longer
wavelengths by proper choosing over family of deep defect centers in different SiC polytypes®. Alternatively, the
frequency conversion of NIR photons to a telecom wavelength can be applied*"*>. Therefore, the integration of
defect-based SiC LEDs with existing telecommunication infrastructure seems feasible.

SiC with highly developed device technologies (e.g. MOSFETS, MEMS, sensors) is a very attractive material
for practical applications. SiC is also known as the material on which the first LED has been created®. Until
the 90’s, SiC was used for commercial yellow and blue LEDs, but later it was replaced with GaN. One of the
disadvantages of SiC for opto-electronics is its indirect bandgap. As a consequence, direct band-to-band (BB)
radiative recombination is inefficient, compared to recombination via subgap states [Fig. 1(b)]. Engineering
and isolating single defects with proper transition energy on demand can open a route for an efficient
electrical single photons source.

| 3:1637 | DOI: 10.1038/srep01637 1



a S

Al tact
Light \/ contac
Emission p-type SiC
(VIS & NIR)

n-type SiC

6H-SiC substrate
Cu plate

CB

n-type SiC

p-type SiC

VB

Figure 1| SiC LED with intrinsic defects. (a) A scheme of the SiC LED. (b) Electron-hole recombination through the D; and V; defects results in the
550 nm and 950 nm emission bands, respectively. The radiative band-to-band recombination (BB) at 400 nm is inefficient because SiC is an indirect

bandgap semiconductor.

Results

A scheme of the SiC LED structure, consisting of a single p-n junc-
tion, is presented in Fig. 1(a). Intrinsic defects in these structures
were generated by electron irradiation. We mount LED samples on a
Cu plate serving as the back electrode. Upon applying voltage
between one of the Al contacts and the Cu plate the luminescence
glow is seen by the naked eye [Fig. 2(a)]. The room temperature EL
spectrum of one of our LEDs is presented in Fig. 2(b). It consists of
two broad emission bands, labeled as D; and Vy;. The corresponding
recombination processes at the p-n junction are schematically shown
in Fig. 1(b).

We now discuss the EL bands of Fig. 2(b) in details. The emission
energies are seen to be significantly smaller than the bandgap of 6H-
SiC (3.05 eV). We, therefore, ascribe them to the defects in SiC. The
emission in the spectral range 450 — 650 nm is characteristic of the
D, zero-phonon lines (ZPLs) and their phonon replicas*, merging
together at room temperature. The nature of this defect is still not
clear - several models have been proposed, including a bound-
exciton-like center* and a first-neighbor antisite pair Sic - Cg;™.
The second emission band in the NIR spectral range 850 -
1050 nm coincides with the photoluminescence (PL) spectrum of
the silicon vacancy defects V;*° in the reference 6H-SiC bulk sample.
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Figure 2 | Room-temperature electroluminescence of intrinsic

defects in SiC. (a) An image of the luminous LED around an Al contact.
(b) Electroluminescence (EL) spectrum of the SiC LED and
photoluminescence (PL) spectrum of the reference SiC sample recorded at
room temperature. The PL spectrum is excited by a He-Ne laser with E,,. =
1.96 eV (633 nm). The bandgap of 6H-SiC is E,(SiC) = 3.05 eV.

To prove this interpretation we repeat the experiment of Fig. 2(b)
at a temperature of 77 K [see Fig. 3(a)], when the spectroscopic
features, individual for each defect, can be resolved. The results are
summarized in Fig. 3 and below we discuss them in detail.

Discussion

First, we demonstrate the presence of Vg; defects in our LED struc-
tures. Figure 3(b) shows photoluminescence (PL) spectrum recorded
under excitation with the energy E,,. = 1.96 eV, which is below the
D; emission energy. Three ZPLs at 1.368 eV, 1.398 eV and 1.434 eV
are the well known fingerprint of the Vy; defects in 6H-SiC*". These
three ZPLs originate from three nonequivalent crystallographic sites
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Figure 3 | EL and PL spectra of SiC LED recorded at 77 K.
(a) Comparison of the EL (shaded area) and PL spectra under excitation
with an energy E,,. = 2.62 ¢V (473 nm). Inset: The same, but shown in the
spectral range where the strongest Vg; ZPL (V1) is expected. (b) PL
spectrum obtained under excitation with a He-Ne laser with E,,. = 1.96 eV
(633 nm). The V1, V2 and V3 ZPLs characteristic for the Vg; defects in SiC
are clearly seen. (c) Integral intensity of the V5; and D, emission bands [the
shaded areas in (a)] as a function of LED current. The solid line is a fit (see
text for details).
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in this SiC polytype and are frequently labeled as V3, V2, and V1,
respectively. The highest ZPL intensity is observed for Vg;(V1).

Second, we demonstrate that the V;(V1) defect can be electrically
driven. Figure 3(a) shows EL spectrum recorded at T = 77 K. In
contrast to room temperature [Fig. 2(b)], the D; emission dominates
in the spectrum. The reason is the much higher concentration of D,
defects than of Vy; defects. However, at room temperature most of the
D, defects are ionized due to the thermal activation of the defect-
bound electrons in the conduction band. This is consistent with a small
activation energy (about 60 meV>**’) of the D, defect in a different
polytype 4H. With lowering temperature, the activation process
becomes inefficient and EL (PL) intensity increases. On the other hand,
the activation energy of the Vg; defects is much larger and their intens-
ity weakly depends on temperature. Indeed, we observe the character-
istic Vi(V1) ZPL at 1.434 eV in the EL spectrum [the inset of
Fig. 3(a)]. The larger ZPL spectral width in EL compared to PL is most
probably caused by current-induced charge fluctuations in the vicinity
of Vg; defects, leading to an increase of inhomogeneous broadening.

Third, we verify that the electrical excitation of the Vg;(V1) defect
shown in the inset of Fig. 3(a) is not due to the re-emission process via
D;. We excite into the maximum of the D; band (2.62 eV), leading to
the Stokes shift of the D, emission spectrum [Fig. 3(a)]. The laser
intensity per area is several orders of magnitude higher than that of
the D; emission, but no significant enhancement of the Vg;(V1) PL s
observed. This means that while the reemission may potentially take
place, it is inefficient as compared to electrical excitation. Therefore,
we conclude, the recombination of electrically injected electrons and
holes is responsible for the V; EL, as schematically shown in Fig. 1(b).

Finally, we present an input-output characteristic of one of our
LED devices [Fig. 3(c)]. A clear tendency to saturation of the emis-
sion intensity P with injection current I is seen. This behavior can be
reasonably well described by the equation P oc I/(I + I,), corres-
ponding to the simple model when the carrier capturing rate by the
defects is proportional to the injection current. From this fit we
estimate the characteristic saturation current I, = 10 mA. It is higher
than that in QD-based single photon LEDs* and comparable to that
in NV-based single photon LEDs".

In conclusion, we generated intrinsic defects in SiC devices and
demonstrated that these defects can be electrically driven, resulting
in the efficient EL with emission energies well below the SiC bandgap.
Our LEDs are two-color in a sense that they show two spectrally
different emission bands associated with different defects. The D,
defects show EL in visible, which is intense at low temperatures but
quenches with rising temperature. The Vg; defects emit in NIR even
at room temperature. By varying the irradiation dose one can control
defect concentration, which should allow to isolate single defects,
similar to single NV centers in diamond or single semiconductor
QDs. Because isolated defects are ideal single photon emitters, our
findings open a new way to fabricate cheap and robust LEDs emitting
single photons on demand.

Methods

The LED structures used in our experiments were grown on a n-type 6H-polytype SiC
substrate. First, an epitaxial 15-um-thick SiC layer was grown by the sublimation
method. It is n-type and contains N (3 X 10" cm™) and Ga (2 X 10" cm™>). The
layer is followed by a p-type SiC layer of thickness 5 um grown at a temperature of
2300°C in Ar atmosphere in the presence of Al vapors (pressure 100 Pa). This results
in the concentration of Al acceptors of ca. 10*° cm™>. In order to generate intrinsic
defects at the p-n junction the samples were irradiated with 0.9 MeV electrons to a
dose of 10"® cm ™. After irradiation, the samples were annealed for 1 minute in Ar
atmosphere at a temperature of 1700°C. At the final stage, 0.4 X 0.4 mm” Al contacts
were deposited on the top of the p-type SiC layer.

EL and PL were recorded using LabRAM system for microscopy (Horiba Scientific)
equipped with a CCD camera. In low temperature experiments, the samples were
inserted in liquid nitrogen and the Cu back electrode plate was also used as a cold
finger.
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