Die Rolle des mitochondrialen Kalzium-abhängigen Kalium-Kanals mit großer Leitfähigkeit bei der Desfluran-induzierten Postkonditionierung

Inaugural – Dissertation
zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Julius-Maximilians-Universität Würzburg
vorgelegt von
Andreas Beck
aus Würzburg
Würzburg, September 2013
Referent: Priv.-Doz. Dr. med. Markus Lange
Koreferent: Prof. Dr. med. Rainer Leyh
Dekan: Prof. Dr. med. Matthias Frosch

Tag der mündlichen Prüfung: 05. August 2014

Der Promovend ist Arzt.
Meinen Eltern gewidmet.
Inhalt

1 Einleitung .. 1
 1.1 Konditionierung ... 1
 1.1.1 Ischämische Präkonditionierung .. 2
 1.1.2 Anästhetika-induzierte Präkonditionierung .. 3
 1.1.3 Reperfusionsschaden und Postkonditionierung 5
 1.2 Signaltransduktion der Anästhetika-induzierten Postkonditionierung 7
 1.2.1 Rolle mitochondrialer Kalium-Kanäle .. 7
 1.2.2 Rolle der mitochondrialen Permeabilitätsspore ... 10
 1.3 Fragestellung ... 12

2 Material und Methoden .. 13
 2.1 Versuchsgenehmigung ... 13
 2.2 Durchführung der Versuche ... 13
 2.2.1 Versuchstiere .. 13
 2.2.2 Narkose und Beatmung ... 13
 2.2.3 Präparation ... 14
 2.2.4 Induktion der myokardialen Ischämie ... 14
 2.2.5 Bestimmung der Größe des Ischämieareals und des Myokardinfarkts 15
 2.3 Experimentelles Protokoll .. 16
 2.3.1 Rolle der mBK_{Ca} bei der Desfluran-induzierten Postkonditionierung 16
 2.3.2 Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung 18
 2.3.3 Interaktion von mBK_{Ca} und mPTP ... 20
 2.4 Auswertung und Statistik .. 20

3 Ergebnisse ... 22
 3.1 Körpergewicht und Planimetrie ... 22
 3.2 Hämodynamik .. 23
 3.3 Myokardiale Infarktgrößen ... 24
 3.3.1 Die Rolle des mBK_{Ca} bei der Desfluran-induzierten Postkonditionierung .. 24
Inhalt

3.3.2 Die Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung ... 26
3.3.3 Interaktion von mBK\textsubscript{Ca} und mPTP ... 26

4 Diskussion ... 28

5 Zusammenfassung ... 38

6 Literaturverzeichnis ... 40

Abbildungsverzeichnis

Abb. 1: Nomenklatur der Konditionierung ... 2
Abb. 2: Reperfusionsschaden und Postkonditionierung ... 6
Abb. 3: Schematische Darstellung der Signaltransduktion der APOST ... 10
Abb. 4: Schematische Darstellung der Signaltransduktion der APOST ... 17
Abb. 5: Experimentelles Protokoll, Rolle der mBK\textsubscript{Ca}-Kanäle bei der Desfluran-induzierter Postkonditionierung ... 18
Abb. 6: Experimentelles Protokoll, Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung ... 19
Abb. 7: Experimentelles Protokoll, Interaktion von mBK\textsubscript{Ca} und mPTP. OKK: Okklusion der Koronararterie ... 20
Abb. 8: Myokardiale Infarktgröße als prozentualer Anteil des Ischämischen Myokardareals ... 25
Abb. 9: Myokardiale Infarktgröße als prozentualer Anteil des Ischämischen Myokardareals ... 27
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Area at risk, ischämisches Myokardareal</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analyse der Varianz</td>
</tr>
<tr>
<td>APC</td>
<td>Anästhetika-induzierte Präkonditionierung</td>
</tr>
<tr>
<td>APOST</td>
<td>Anästhetika-induzierte Postkonditionierung</td>
</tr>
<tr>
<td>ATRA</td>
<td>Atractylosid, Öffner der mPTP</td>
</tr>
<tr>
<td>CYC A</td>
<td>Cyclosporin A, Inhibitor der mPTP</td>
</tr>
<tr>
<td>DES</td>
<td>Desfluran</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IbTx</td>
<td>Iberiotoxin, Inhibitor des mBK$_{\text{Ca}}$</td>
</tr>
<tr>
<td>IPC</td>
<td>Ischämische Präkonditionierung</td>
</tr>
<tr>
<td>IS</td>
<td>Infarct size, Infarktgröße</td>
</tr>
<tr>
<td>LAD</td>
<td>Left anterior descending coronary artery, vorderer absteigender Ast der linken Koronararterie</td>
</tr>
<tr>
<td>MAC</td>
<td>Minimal alveolar concentration, minimale alveolare Konzentration</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure, Mittlerer arterieller Blutdruck</td>
</tr>
<tr>
<td>mBK$_{\text{Ca}}$</td>
<td>Mitochondrialer Kalzium-abhängiger Kalium-Kanal mit großer Leitfähigkeit</td>
</tr>
<tr>
<td>mK$_{\text{ATP}}$</td>
<td>Mitochondrialer ATP-regulierter Kalium-Kanal</td>
</tr>
<tr>
<td>mPTP</td>
<td>mitochondrial permeability transition pore, mitochondriale Permeabilitätspore</td>
</tr>
<tr>
<td>NZ</td>
<td>Normal zone, nicht ischämisches Myokardareal</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoff Spezies</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Konditionierung

Einleitung

1.1.1 Ischämische Präkonditionierung

In einer richtungsweisenden Arbeit von 1986 beschrieben Murry et al. erstmals das Phänomen der Ischämischen Präkonditionierung (IPC). In dieser Studie konnte demonstriert werden, dass vier jeweils fünfminütige Okklusions- und Reperfusionsperioden einer Koronararterie vor einer 40-minütigen Koronarokklusion ein um 75% verringertes Infarktareal zur Folge haben.

Inzwischen wurde die IPC in allen untersuchten Spezies nachgewiesen und erlangte, auch wegen der breiten Reproduzierbarkeit der Ergebnisse, Anerkennung als effektive Maßnahme im Sinne der Kardioprotektion. Der zeitliche Verlauf der IPC erweist sich als biphasisch. Je nach Spezies dauert das erste Fenster der Präkonditionierung, auch frühe Präkonditionierung
genannt, 1-2 Stunden16. Nach einer anschließenden Phase fehlender Protektion beginnt das zweite Fenster der Präkonditionierung, welches auch als späte Präkonditionierung bezeichnet wird. Diese schützt das Myokard in einem Zeitraum von 24 – 72 Stunden nach Ende des präkonditionierenden Stimulus17-19.

Die intrazellulären Signalmechanismen sind Gegenstand intensiver Forschung. Nach gegenwärtigem Wissensstand wird IPC über kaskadenartige Signaltransduktionsketten vermittelt. Daran sind u.a. G-Protein-gekoppelte Rezeptoren, wie z.B. β-adrenerge Rezeptoren20 oder Adenosin-Rezeptoren13,21 und Proteinkinasen wie u.a. PI3K22 und Erk1/223 beteiligt. Diese werden unter dem Begriff \textit{RISK-Pathway}24 zusammengefasst. Auch die endotheliale Stickstoffmonoxid-Synthase25 und reaktive Sauerstoffspezies (ROS)26 sind im Rahmen dieses Pathways an der Präkonditionierung beteiligt27. Für zahlreiche weitere Proteinkinasen, wie z.B. Proteinkinase A28, wurde ebenfalls eine Beteiligung an der IPC nachgewiesen. Als Endeffektor der IPC wird gegenwärtig die mitochondriale permeability-transition-Pore (mPTP) angesehen29.

Weiterhin scheinen die frühe und späte Präkonditionierung Unterschiede in der Art der Beeinflussung der Signalwege zu zeigen. Hierbei wird angenommen, dass bei der späten Präkonditionierung eine erhöhte Transkription bestimmter Proteine im Vordergrund steht30. Bei der frühen Präkonditionierung hingegen besteht die Annahme, dass die posttranskriptionelle Veränderung existenter Proteine vorherrscht31.

1.1.2 Anästhetika-induzierte Präkonditionierung

Einleitung

während einer Kardioplegie33 besitzt. Den Transfer zur IPC konnten Kersten et al. in einer Arbeit von 1997 herstellen14. Sie zeigten, dass die IPC oder die Gabe des volatilen Anästhetikums Isofluran vor Koronararterienokklusion das Infarktareal signifikant und in vergleichbarem Ausmaß verringern können. Desweiteren konnten die Autoren nachweisen, dass die präkonditionierende Wirkung des Isofluran durch den unspezifischen K\textsubscript{ATP}-Kanal-Blocker Glibenclamid aufgehoben wird14. Dies wurde als Hinweis für die Beteiligung von K\textsubscript{ATP}-Kanälen an der Signaltransduktion der APC interpretiert.

Inzwischen konnte die APC in verschiedenen Spezies und verschiedenen Organen nachgewiesen werden34-36. In diesem Zusammenhang konnten im Tiermodell für weitere volatile Anästhetika, wie Halothan37,38, Enfluran38, Isofluran37,38, Sevofluran37 und Desfluran37 präkonditionierende Eigenschaften gezeigt werden. Vergleichende Untersuchungen stellten jedoch Unterschiede in der präkonditionierenden Wirkung verschiedener volatiler Anästhetika fest37,39.

Für die APC konnte eine Dosisabhängigkeit beobachtet werden. Kehl et al.40 zeigten, dass das Herz bereits von einer subanästhetischen Isofluran-Dosis von 0,25 minimaler alveolärer Konzentration (MAC) präkonditioniert wird. Der kardioprotektive Effekt nahm mit erhöhter Konzentration nicht zu, wurde aber zunehmend unabhängig vom kollateralen koronaren Blutfluss. Lange et al. konnten einen Schwellenwert zwischen 0,5 und 1,0 MAC für die APC mit Desfluran bestimmen41. Dieser konnte durch repetitive Gabe des volatilen Anästhetikums auf die subanästhetische Konzentration von 0,5 MAC reduziert werden.

Auch die APC zeigt, ähnlich der IPC, einen biphasischen Verlauf42. Smul et al. untersuchten dieses Phänomen ausführlich für Desfluran43. Sie zeigten am Kaninchen-Modell in vivo, dass die Applikation von Desfluran 0,5 – 2 Stunden und 24 – 72 Stunden vor Koronarokklusion die Infarktgröße verringert. Die Desfluran-Gabe 3, 12 oder 96 Stunden vor Koronarokklusion hingegen bewirkte keine Infarktgrößen-reduzierende Effekte.
Für die zellulären Mechanismen der APC nimmt man größtenteils eine Ähnlichkeit zu den Mechanismen der IPC an44. Auch bei der APC wird der kardioprotektive Effekt über G-Protein gekoppelte Rezeptoren, wie Adenosin-Rezeptoren45 oder β2-Rezeptoren41, vermittelt. Des Weiteren gelten, in Analogie zur IPC, die Öffnung mitochondrialer Kalium-Kanäle46,47 und die verminderte Öffnungswahrscheinlichkeit der mPTP48 als Endeffekten. Redel et al.47 konnten in diesem Zusammenhang zeigen, dass die Desfluran-induzierte Präkonditionierung über die Aktivierung mitochondrialer Calcium-abhängiger Kalium-Kanäle mit großer Leitfähigkeit (mBK\textsubscript{Ca}) vermittelt wird. Die Aktivierung der mBK\textsubscript{Ca} wurde dabei über die Proteinkinase A vermittelt47.

1.1.3 Reperfusionsschaden und Postkonditionierung

Die frühzeitige und vollständige Reperfusion des ischämischen Myokards ist die effektivste Intervention zur Reduktion des ischämischen Myokardschadens49. Die Reperfusion selbst kann jedoch paradoxerweise zusätzlichen Schaden zur Ischämie verursachen (siehe Abb. 2). Dieses Phänomen bezeichnet der Begriff Reperfusionsschaden. Rosenkranz50 definiert diesen als irreversible Schädigung des Myokards, welche durch Veränderung der Reperfusionsbedingungen verhindert werden kann. Auch für IPC51 und APC48 wurde gezeigt, dass sie während der Reperfusion ihre Wirkung entfalten und somit den Reperfusionsschaden verringern.
Zhao et al. nahmen 2003 den Gedanken der Intervention während der Reperfusionsphase auf53. In ihrer wegweisenden Untersuchung demonstrierten sie die Infarktgrößenreduktion durch kurze Episoden der Korronararterienokklusion und Reperfusion nach einer längeren Phase der Ischämie. Die Reduktion der Infarktgröße war vergleichbar mit der bei IPC. Dieses Phänomen wurde ischämische Postkonditionierung (IPOST) genannt53.

Hierbei scheint vor allem der Zeitpunkt der protektiven Intervention von Bedeutung zu sein. Nur die Intervention in der frühen Reperfusionsphase53,54 erweist sich als kardioprotaktiv56,57. Kin et al.[Kin, 2004 #14] konnten zeigen, dass eine verzögerte Intervention keinen reduzierenden Einfluss auf die Infarktgröße hat. Eine verlängerte Applikationsdauer scheint jedoch keinen Vorteil im Sinne kleinerer Infarktgrößen zu bewirken57. Daneben spielt auch die Anästhetika-Konzentration eine Rolle. Obal et al.58 zeigten, dass die 15-minütige Applikation von 0,75 MAC Sevofluran während Reperfusionsbeginn die Infarktgröße nicht verringerte. Erhöhten sie die Konzentration auf 1 MAC, ergab sich jedoch eine deutliche Infarktgrößenreduktion. Weitere Konzentrationserhöhungen jenseits dieses Schwellenwertes zeigten keine additiven Effekte bezüglich der Verringerung der Infarktgröße. Die Kombination von APOST in unterschwelliger Konzentration und IPOST in unterschwelliger Applikationsdauer verringern hingegen die Infarktgröße59.

\subsection*{1.2 Signaltransduktion der Anästhetika-induzierten Postkonditionierung}

Die Mechanismen der Signaltransduktion der APOST sind komplex und bisher nicht vollständig verstanden. Es wird angenommen, dass, zumindest teilweise, eine Ähnlichkeit zu denen der APC besteht. Diese Annahme wird durch die Tatsache bestätigt, dass APC62 und APOST63 u.a. über die Öffnung mitochondrialer ATP-regulierter Kalium-Kanäle (mK\textsubscript{ATP}) vermittelt werden.

\subsubsection*{1.2.1 Rolle mitochondrialer Kalium-Kanäle}

Für mitochondriale ATP-regulierte Kalium-Kanäle (mK\textsubscript{ATP}) konnte bisher eine Beteiligung an APC14,62 sowie APOST63 nachgewiesen werden. Des Weiteren
wurde demonstriert, dass die Öffnung von mK\textsubscript{ATP} die mPTP inhibiert59,62. Über welchen Mechanismus mK\textsubscript{ATP} die mPTP-Inhibition induziert, ist umstritten64.

Morin64 et al. postulieren in diesem Zusammenhang drei Hypothesen zur Interaktion zwischen mK\textsubscript{ATP} und mPTP. Die Autoren erwägen eine mPTP-Inhibition durch:

1. Eine marginale Verringerung des mitochondrialen Membranpotentials durch einen Kalium-Einstrom über den mK\textsubscript{ATP}65. Dies hätte einen verringerten Ca2+-Overload zur Folge66. Hierdurch wäre auch die mPTP-Öffnung verringert.

2. Eine veränderte ROS-Produktion67. Da erhöhte ROS zur mPTP-Öffnung beitragen, wäre eine Inhibition der mPTP über eine Verringerung von ROS denkbar. Kontroverserweise zeigten Costa et al.68, dass für die Inhibition der mPTP durch mK\textsubscript{ATP} ROS notwendig sind.

3. Die Regulation des Mitochondrium-Volumens. Durch Öffnung der mK\textsubscript{ATP} käme es zu einer geringfügigen Schwellung des Mitochondriums, welches die Struktur des intermembranösen Raums erhalten und die ATP-Aufnahme in das Mitochondrium verringern würde. Die somit erhöhte ADP-Konzentration im Mitochondrium würde die mPTP geschlossen halten.

Trotz intensiver Beschäftigung mit den Auswirkungen seiner Effekte, ist die genaue Zusammensetzung des mK\textsubscript{ATP} bisher unbekannt69. Anders stellt sich die Erkenntnis für einen weiteren mitochondrialen Kalium-Kanal dar.

Der mitochondriale Kalzium-abhängige Kalium-Kanal mit großer Leitfähigkeit (mBK\textsubscript{Ca}) wurde ursprünglich in der menschlichen Gliom-Zell-Linie LN299 beschrieben70. Durch patch-clamp-Techniken konnten Xu et al.71 feststellen, dass mBK\textsubscript{Ca} durch den Kalium-Kanal-Aktivator NS1619 stimuliert und durch Iberiotoxin (IbTx) inhibiert werden kann. Weiterhin bewiesen sie durch Immunoblots myokardialer Mitochondrien die Existenz eines 55-kDa-Proteins, welches mit Antikörpern gegen Kalzium-abhängige Kalium-Kanäle mit

Im Rahmen der Kardioprotektion konnte für den mBKCa bereits eine Beteiligung an IPC und IPOST gezeigt werden. Auch für die pharmakologische Präkonditionierung durch Sildenafil und den Tumor-Nekrose-Faktor α wurde eine Beteiligung des mBKCa nachgewiesen. Redel et al. demonstrierten, dass der mBKCa an der APC durch Desfluran beteiligt ist und durch Protein-Kinase A reguliert wird. Wie in Abb. 3 gezeigt, ist der mBKCa über die Protein-Kinase A in den β-adrenergen Signalweg eingebettet. Inwiefern eine Beteiligung des mBKCa an APOST besteht, wurde bislang nicht untersucht.
1.2.2 Rolle der mitochondrialen Permeabilitäts pore

Da sich die protektive Wirkung der APOST in der Reperfusionsphase vollzieht, stellt sich die Frage nach den Mechanismen des Reperfusionsschadens. Hierbei spielen die myokardialen Mitochondrien eine zentrale Rolle. Sie leiten während der Reperfusion den Zelltod durch Nekrose oder Apoptose ein79. Dies kann durch Öffnung der mPTP80 geschehen. Hierdurch wird das mitochondriale Membranpotential aufgehoben81, die oxidative Phosphorylierung unterbrochen, mitochondriale Schwellung hervorgerufen und die Freisetzung proapoptotischer Proteine wie Cytochrom c82 ermöglicht83-86. Insofern nimmt die mPTP bzw. die inhibierte Öffnung der mPTP eine Schlüsselrolle in der Postkonditionierung ein87.
Die mPTP wird als Spannungs- und Kalzium-abhängiger Ionenkanal mit großer Leitfähigkeit beschrieben, welcher in der inneren Mitochondrienmembran liegt\(^86\). Die Öffnung der mPTP kann durch Cyclosporin A (CYCA) inhibiert werden. Proteine bis zu einem Molekulargewicht von 1500 Da können die mPTP passieren. Interessanterweise ist die genaue molekulare Zusammensetzung der mPTP bisher nicht bekannt. Es wird angenommen, dass die mPTP aus 3 Hauptkomponenten besteht: Einem spannungsabhängigen Anionenkanal (VDAC), einer Adenin-Nucleotid-Translokase (ANT) und Cyclophillin D, einer cis/trans Peptidyl-Propyl-Isomerase in der inneren Mitochondrienmembran\(^79\). Es konnte jedoch gezeigt werden, dass Knock-out-Mäuse für verschiedene Formen von ANT\(^88\) und VDAC\(^89\) bei höheren Schwellenwerten für Ca\(^{2+}\)-induziertem Zelltod trotzdem eine Poren-Öffnung zeigten. Dies weist auf eine verzichtbare Rolle von ANT und VDAC beim mPTP-vermittelten Zelltod hin. Für Cyclophilin D konnte gezeigt werden, dass Knock-out-Mäuse, welchen diese Isomerase fehlte, gegen einen Zelltod durch Reperfusion resistent sind. Weiterhin ist bekannt, dass CYC A seine Wirkung an der mPTP über eine Bindung an Cyclophilin D entfaltet\(^90\). Weitere Studien legen eine Beteiligung von Komplex 1 der Atmungskette an der mPTP-Funktion nahe\(^91,92\).

Erhöhtes mitochondrialotes Membranpotential, niedriger intrazellulärer pH und hohe ADP-Konzentrationen halten die mPTP geschlossen\(^86\). Diese Bedingungen herrschen während der Ischämie vor und überwiegen gegenüber mPTP-öffnenden Faktoren wie erhöhte Ca\(^{2+}\)-Konzentration, erhöhte freie Sauerstoffradikale (ROS) und Vermehrung anorganischen Phosphats\(^52\). Während der Reperfusion kommt es jedoch zur schnellen Normalisierung des pHs, weiterem Anstieg der Ca\(^{2+}\)-Konzentration und einer explosionsartiger Anhäufung von ROS (dem sogenannten ROS-Burst). Unter diesen Voraussetzungen öffnet sich die mPTP trotz des sich wieder normalisierenden Membranpotentials\(^93\).

Schon für die APC wurde gezeigt, dass deren kardioprotektive Wirkung über eine verzögerte Öffnung der mPTP vermittelt wird\(^48\). Jedoch erweist sich wie oben angeführt die mPTP-Öffnung als ein Phänomen der
Reperfusionsphase80. Somit erscheint es nicht verwunderlich, dass für die APOST eine Beteiligung der mPTP an der Signalvermittlung bestätigt werden konnte63,94. Über welche zellulären Mechanismen die inhibierte Öffnung der mPTP durch APOST vermittelt wird ist noch nicht ausreichend beleuchtet. Bisher wurde eine Inhibierung der mPTP über den Akt-GSK3β-Signalweg nachgewiesen94. Die Aktivierung dieses Signalwegs, sowie des ERK 1/2 Signalwegs in der Reperfusionsphase scheinen zu einem verminderten myokardialen Zelltod zu führen. Daher sind beide Signalwege unter dem Begriff Reperfusion Injury Salvage Kinase (RISK) Pathway bekannt95. Krolikowski et al.63 konnten zeigen, dass APOST und mPTP-Inhibierung durch Cyclosporin A vergleichbare Reduzierungen der Infarktgröße auslösen. Des Weiteren wurde in dieser Untersuchung APOST durch Inhibierung mitochondrialer ATP-regulierter Kalium-Kanäle (mK\textsubscript{ATP}) aufgehoben. Dies weist auf eine Beteiligung mitochondrialer Kaliumkanäle bei der verhinderten mPTP-Öffnung im Rahmen der Signalvermittlung der APOST hin.

1.3 Fragestellung

In der vorliegenden Arbeit wurde die bisher unbekannte Rolle des mBK\textsubscript{Ca} in der APOST durch Desfluran untersucht. Darüber hinaus wurde ein Zusammenhang in der Signalvermittlung der APOST zwischen mBK\textsubscript{Ca} und mPTP getestet. Für die Untersuchungen wurde ein in-vivo-Mausmodell des akuten Myokardinfarkts verwendet. Hierbei wurden die Auswirkungen der pharmakologischen Aktivierung bzw. Blockade der zu untersuchenden Kanäle analysiert. Ziel der vorliegenden Arbeit war es, die Hypothesen zu testen, dass

1. die Desfluran-induzierte Postkonditionierung über mBK\textsubscript{Ca} vermittelt wird,
2. die Desfluran-induzierte Postkonditionierung über die mPTP vermittelt wird und
3. eine Interaktion von mBK\textsubscript{Ca} und mPTP bei der Desfluran-induzierten Postkonditionierung besteht.
2 Material und Methoden

2.1 Versuchsgenehmigung

Die Versuchsgenehmigung der Regierung von Unterfranken lag unter der Genehmigungsnummer 75/08 zum Beginn der Untersuchung vor.

2.2 Durchführung der Versuche

2.2.1 Versuchstiere

2.2.2 Narkose und Beatmung

Durch eine intraperitoneale (i.p.) Injektion von 60 µg/g Natrium-Pentobarbital (Narcoren®, Merial, Hallbergmoos, Deutschland) wurden die Tiere anästhesiert. Zur Aufrechterhaltung der Narkose wurde die Gabe von Natrium-Pentobarbital i.p. bei Bedarf wiederholt. Die Narkosetiefe wurde anhand des Kornealreflexes und des Flexorenreflexes der Beine nach Druckreiz auf die Zehen überprüft. Zur Verhinderung einer Hypothermie wurden die Tiere auf ein temperaturkontrolliertes Wärmeoperationsfeld (Föhr Medical Instruments GmbH, Seeheim, Deutschland) gelegt und die Körpertemperatur über eine rektale Sonde gemessen. Über einen Regelkreis wurde die Körpertemperatur konstant auf 37,0 ±0,1 °C gehalten. Mit einer 22G Braunüle (Becton Dickinson GmbH, Heidelberg, Deutschland) wurden die Tiere intubiert und mit einem Beatmungsgerät für Kleintiere (SAR-P 830, CWE Inc., Ardmore, PA, USA) druckkontrolliert mit einer Frequenz von 130/Minute beatmet. Der maximale Druck in den Atemwegen belief sich auf 30 cm H₂O, bei einem positiven endexspiratorischen Druck von 1-3 cm H₂O. Das zugeführte Gasgemisch enthielt...

2.2.3 Präparation

Nach Sicherung der Atemwege wurde die rechte Vena jugularis interna dargestellt. Anschließend wurde zur kontinuierlichen Flüssigkeitssubstitution (20 ml·Sterofundin kg⁻¹·h⁻¹, B.Braun, Melsungen, Deutschland) ein Venenverweilkatheter (A. Hartenstein Laborbedarf GmbH, Würzburg, Deutschland) eingebracht. Auch in die rechte Arteria carotis wurde für das arterielle Blutdruckmonitoring ein PE-10 Katheter (A. Hartenstein Laborbedarf GmbH, Würzburg, Deutschland) eingebracht. Dieser wurde mit einer 0,9%-NaCl-Lösung gefüllt. Der Blutdruck wurde über einen Druckabnehmer (Combitrans Einweg Transducer, B.Braun, Melsungen, Deutschland) gemessen und an das Monitorprogramm weitergeleitet.

2.2.4 Induktion der myokardialen Ischämie

Die Enden des den LAD umschlingenden Fadens wurden mit Eppendorf Reaktionsgefäßen (Safe Seal 1,5 ml, Eppendorf, Sarstedt, Nümbrecht, Deutschland) versehen. Anschließend wurden die Reaktionsgefäße jeweils mit 1 ml Wasser gefüllt und übten über ein Halterungssystem (B.Braun, Melsungen,

2.2.5 Bestimmung der Größe des Ischämieareals und des Myokardinfarkts

Material und Methoden

(Adobe Photoshop Elements 7.0, Adobe Systems Inc., San Jose, CA) an einem Personal Computer (Fujitsu Siemens Esprimo P7935, Augsburg, Deutschland) gravitoplanimetrisch ausgewertet.

2.3 Experimentelles Protokoll

Jeder experimentellen Gruppe wurden randomisiert sieben Tiere zugeordnet. Nach der Umschlingung des LAD durchliefen die Tiere eine 30minütige Äquilibrierungsphase. Im Anschluss wurde eine 45-minütige Koronararterienokklusion (OKK) durchgeführt. Darauf folgte eine 3-stündige Reperfusionsphase. Das Experiment wurde mit der oben beschriebenen Bestimmung der Infarktgröße und des Ischämieareals beendet. Im Verlauf wurden die hämodynamischen Parameter Herzfrequenz (HF) und mittlerer arterieller Blutdruck (MAP) gemessen: Während der Äquilibrierungsphase (Baseline), vor dem Verschluss der Koronararterie, während der Okklusionsphase, nach Beendigung der Okklusion, sowie 1, 2 und 3 Stunden nach Ende der Okklusionsphase.

Die Kontrollgruppe (CON) wurde außer dem geschilderten Vorgehen keiner weiteren Intervention unterzogen. Eine weitere Gruppe (DMSO) erhielt das Lösungsmittel der verwendeten Pharmaka Dimethylsulfoxid (DMSO, Sigma-Aldrich Corp., St. Louis, MO, USA) 10 Minuten vor Ende der Koronararterienokklusion.

2.3.1 Rolle der mBKCa-Kanäle bei der Desfluran-induzierten Postkonditionierung

Zur Induktion einer Defluran-induzierten Postkonditionierung erhielten die Tiere einer weiteren Gruppe (DES) im Anschluss an die Koronararterienokklusion für 18 Minuten 1,0 MAC (minimal alveolar concentration) Desfluran (Baxter Deutschland, Unterschleißheim, Deutschland). Dies entspricht bei Mäusen einer endtidalen Konzentration von 7,5 Vol-%\(^97\).
Material und Methoden

Abb. 4: Schematische Darstellung der Signaltransduktion der APOST. Die Aktivierung von Beta-Adrenorezeptoren führt über stimulierendes G-Protein zur Erhöhung des Spiegels von zyklischem Adenosinmonophosphat, welches die Aktivierung der Proteinkinase A zur Folge hat, welche wiederum den mBK$_{Ca}$ aktiviert47,78. G_s: stimulierendes G-Protein; cAMP: zyklisches Adenosinmonophosphat; PKA: Proteinkinase A; mBK$_{Ca}$: mitochondrialer Kalzium-abhängiger Kalium-Kanal mit großer Leitfähigkeit; Iberiotoxin: mBK$_{Ca}$-Inhibitor; NS1619: mBK$_{Ca}$-Aktivator; mPTP: mitochondriale permeability-transition-Pore; Atractylosid: mPTP-Aktivator; Cyclosporin A: mPTP-Inhibitor.

Bereits 3 Minuten vor Ende der OKK wurde mit der Desflurangabe begonnen. Da die frühe Reperfusionsphase eine wichtige Rolle in der Postkonditionierung spielt56, wurde dieses Verfahren gewählt, um sicherzustellen, dass zum Zeitpunkt der Wiedereröffnung der Koronararterie eine ausreichende Konzentration Desfluran in den Alveolen der Tiere vorhanden war. Weitere Tiere erhielten 15 Minuten vor Ende der OKK den selektiven mBK$_{Ca}$-Aktivator NS161947,98 (1µg/g Körpergewicht, 100µg gelöst in 1ml DMSO, Sigma-Aldrich Corp., St. Louis, MO, USA) i.p. Die Applikation von NS1619 erfolgte entweder alleine (NS1619) oder in Kombination mit einer 18minütigen Desflurangabe mit 1,0 MAC (DES+NS1619) analog der Gruppe DES. Der selektive mBK$_{Ca}$-Inhibitor Iberiotoxin47,99 (0,05µg/g Körpergewicht, 5µg gelöst in 1 ml H$_2$O, Bachem Americas Inc, Torrance, CA, USA) wurde Tieren weiterer
Versuchsgruppen i.p. 15 Minuten vor Ende der OKK appliziert. Dieser wurde entweder alleine (IbTx) oder in Kombination mit 1,0 MAC Desfluran (DES+IbTx) gegeben (Abb. 5). Die Dosen für NS1619 und Iberiotoxin wurde entsprechend der Ergebnisse von Redel et al. gewählt. Diese konnten zeigen, dass bei selbiger Konzentration eine Präkonditionierung durch Aktivierung bzw. Inhibierung der mBKCa-Kanäle erzielt bzw. aufgehoben werden kann.

Abb. 5: Experimentelles Protokoll, Rolle der mBKCa-Kanäle bei der Desfluran-induzierter Postkonditionierung. CON: Kontrollgruppe. OKK: Okklusion der Koronararterie. DMSO: Dimethylsulfoxid. DES: 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend. NS1619: mBKCa-Aktivator NS1619 (1 µg/g) i.p. 15 Minuten vor Ende der OKK. DES+NS1619: mBKCa-Aktivator NS1619 (1 µg/g) i.p. 15 Minuten vor Ende der OKK in Kombination mit 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend. IbTx: mBKCa-Inhibitor Iberiotoxin (0,05 µg/g) i.p. 15 Minuten vor Ende der OKK. DES+IbTx: mBKCa-Inhibitor Iberiotoxin 15 Minuten vor Ende der OKK in Kombination mit 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend. ▲: Messzeitpunkte der hämodynamischen Parameter

2.3.2 Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung

Zur Untersuchung der Einflüsse der mitochondrialen permeability transition pore (mPTP) auf eine Desfluran-induzierte Postkonditionierung wurde Tieren einer zusätzlichen Gruppe der selektive Aktivator der mPTP Atractylosid (ATRA,
Material und Methoden

25µg/g Körpergewicht, 2,5mg gelöst in 1ml H₂O, Sigma-Aldrich Corp., St. Louis, MO, USA) 10 Minuten vor Ende der OKK i.p. verabreicht. Diesen erhielten sie entweder alleine (ATRA) oder in Kombination mit 1,0 MAC DES (DES+ATRA) (Abb. 6). Die Dosis für ATRA wurde analog der Ergebnisse von Wang et al. gewählt. Wang konnte zeigen¹⁰², dass ein kardioprotaktiver Effekt durch Stickstoffmonoxid über die mPTP vermittelt wird und dieser Effekt durch eine ATRA-Dosis von 25mg/kg (entsprechend 25µg/g) aufgehoben werden kann.

Zur selektiven pharmakologischen Blockade der mPTP wurde der Inhibitor Cyclosporin A¹⁰³ (CYC A, 10µg/g Körpergewicht, 1mg gelöst in 1ml DMSO, Tocris Bioscience, Ellisville, Missouri, USA) einer weiteren Gruppe 10 Minuten vor Ende der OKK i.p. appliziert, entweder alleine (CYC A) oder zusammen mit DES (DES+CYC A) (Abb. 6). Die Dosis für CYC A wurde anhand der Ergebnisse von Boengler et al.¹⁰⁴ gewählt, welche zeigen konnten, dass bei einer Dosis von 10mg/kg (entsprechend 10µg/g) für CYC A eine signifikante Reduktion der Infarktgröße erzielt werden kann.

Abb. 6: Experimentelles Protokoll, Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung: OKK: Okklusion der Koronararterie. DES: 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend. ATRA: mPTP-Aktivator Atractylosid (25µg/g) i.p. 10 Minuten vor Ende der OKK. DES+ATRA: mPTP-Aktivator Atractylosid (25µg/g) i.p. 10 Minuten vor Ende der OKK in Kombination mit 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend. CYC A: mPTP-Inhibitor Cyclosporin A (10µg/g) i.p. 10 Minuten vor Ende der OKK. DES+CYC A: mPTP-Inhibitor CYC A (10µg/g) i.p. 10 Minuten vor Ende der OKK in Kombination mit 1,0 MAC Desfluran für 18 Minuten, 3 Minuten vor Ende der OKK beginnend.
2.3.3 Interaktion von mBK\textsubscript{Ca} und mPTP

Des Weiteren wurden, zur Untersuchung einer möglichen Interaktion von mBK\textsubscript{Ca} und mPTP, zwei abschließende Gruppen behandelt (Abb. 7). Eine Gruppe (NS1619+ATRA) erhielt i.p. den mBK\textsubscript{Ca}-Aktivator NS161947,98 (1\textmu g/g, 100\textmu g gelöst in 1ml DMSO, Sigma-Aldrich Corp., St. Louis, MO, USA) 15 Minuten vor Ende der OKK und den Aktivator der mPTP Atractylosid100,101 (ATRA, 25mg/kg, Sigma-Aldrich Corp., St. Louis, MO, USA) 10 Minuten vor Ende der OKK. Den Tieren der zweiten Gruppe (IbTx+CYC A) wurde 15 Minuten vor Ende der OKK der Inhibitor des mBK\textsubscript{Ca} Iberiotoxin47,99 (IbTx, 0,05\textmu g/g Körpergewicht, 5\textmu g gelöst in 1 ml H\textsubscript{2}O, Bachem Americas Inc, Torrance, CA, USA) und 10 Minuten vor Ende der OKK der mPTP-Inhibitor Cyclosporin A103 (CYC A, 10\mu g/g Körpergewicht, 1mg gelöst in 1ml DMSO, Tocris Bioscience, Ellisville, Missouri, USA) i.p. appliziert.

![Diagramm zur Interaktion von mBK\textsubscript{Ca} und mPTP]

Abb. 7: Experimentelles Protokoll, Interaktion von mBK\textsubscript{Ca} und mPTP. OKK: Okklusion der Koronararterie. NS1619+ATRA: mBK\textsubscript{Ca}-Aktivator NS1619 (1\textmu g/g) i.p. 15 Minuten vor Ende der OKK in Kombination mit mPTP-Aktivator Atractylosid (25\textmu g/g) i.p. 10 Minuten vor Ende der OKK. IbTx+CYC A: mBK\textsubscript{Ca}-Inhibitor Iberiotoxin (0,05\textmu g/g) i.p. 15 Minuten vor Ende der OKK in Kombination mit mPTP-Inhibitor Cyclosporin A (10\mu g/g) i.p. 10 Minuten vor Ende der OKK.

2.4 Auswertung und Statistik

Die hämodynamischen Parameter Herzfrequenz und mittlerer arterieller Blutdruck, sowie EKG- und Temperaturwerte, wurden mittels eines analog-digital-Konverters (Föhr Medical Instruments GmbH, Seeheim, Deutschland) auf einen Personal Computer (Fujitsu Siemens Scenic, Fujitsu Siemens, Augsburg, Deutschland) übertragen. Die erhobenen Daten wurden mithilfe einer kommerziellen Software (Notocord hem 3.5, Croissy sur Seine, Frankreich)
kontinuierlich aufgezeichnet und mit Microsoft Exel (Microsoft Exel 2003, Microsoft Corporation, USA) analysiert.

Aufgrund der Ergebnisse vorangehender Untersuchungen mit dem identischen experimentellen Modell \(^{47,96}\) wurde von einer myokardialen Infarktgröße von 50% (IS/AAR) ausgegangen. Um eine mittlere Reduktion der Infarktgröße von 50% auf 30% mit einer statistischen Power von 0,8 bei einem Signifikanzniveau \(\alpha\) von 0,05 zu erreichen, wurde in der Poweranalyse eine Gruppengröße von \(n=7\) ermittelt. Da bei dem verwendeten Modell biologische Prozesse untersucht werden, wurde von einer Normalverteilung der Daten ausgegangen. Die statistische Analyse der Daten innerhalb und zwischen den experimentellen Gruppen wurde mittels einer einfaktoriellen bzw. zweifaktoriellen Varianzanalyse (ANOVA) durchgeführt. Im Falle eines Auftretens signifikanter Effekte wurde ein post-hoc Duncan-Test bzw. eine post-hoc einfaktorielle ANOVA durchgeführt. Mithilfe des Programms SPSS 17.0 (The Apache Software Foundation, Forest Hill, MD, USA) wurden alle statistischen Untersuchungen der Daten durchgeführt. Unterschiede in den Mittelwerten wurden als statistisch signifikant erachtet, wenn sich \(p < 0,05\) erwies. Alle Daten sind als Mittelwert ± Standardfehler des Mittelwertes angegeben.
3 Ergebnisse

In der vorliegenden Untersuchung über die Rolle der mBKCₐ-Kanäle und der mPTP bei der Desfluran-induzierten Postkonditionierung wurden 101 Mäuse instrumentiert. Davon gingen 91 erfolgreiche Experimente in die Untersuchung ein. Insgesamt 7 Tiere wurden wegen eines Pumpversagens während der OKK ausgeschlossen (1 in der DES-Gruppe, 1 in der NS1619-Gruppe, 2 in der DES+IbTx-Gruppe, 1 in der DES+ATRA-Gruppe, 1 in der IbTx+CYC A-Gruppe und 1 in der DES+CYC A-Gruppe). Weitere 3 Tiere wurden wegen eines zu kleinen ischämischen Myokardareals (AAR < 20%) nicht in die Untersuchung mit einbezogen (1 in der DES+ATRA-Gruppe, 1 in der NS1619+ATRA-Gruppe und 1 in der CYC A-Gruppe).

3.1 Körpergewicht und Planimetrie

Die Gabe von DES, des mBKCₐ-Aktivators (NS1619) oder deren Kombination (DES+NS1619), sowie die Gabe des mPTP-Inhibitors (CYC A), dessen Kombinationen mit dem mBKCₐ-Inhibitor (IbTx+CYC A) oder mit DES führten zu einer signifikanten Verringerung der Infarktgröße (IS), sowie des Quotienten aus Infarktgröße und LV (IS/LV) im Vergleich zur Kontrollgruppe. Auch die Kombination von mBKCₐ-Aktivator und mPTP-Aktivator (NS1619+ATRA) reduzierte den Quotienten IS/LV signifikant zur Kontrollgruppe. Die Kombination des mPTP-Aktivators mit DES (DES+ATRA) oder dem mBKCₐ-Aktivator (NS1619+ATRA) reduzierten IS und IS/LV signifikant zur alleinigen Gabe des mPTP-Aktivators (ATRA). Weiterhin zeigte sich in den beiden letztgenannten Kombinationen (DES+ATRA, NS1619+ATRA) IS/LV signifikant größer als bei alleiniger Gabe von DES bzw.
mBK$_{Ca}$-Aktivator (NS1619). Die kombinierte Gabe von mBK$_{Ca}$-Inhibitor und mPTP-Inhibitor (IbTx+CYC A) zeigte eine signifikante Verringerung von IS/LV im Vergleich zur alleinigen Gabe des mBK$_{Ca}$-Inhibitors (IbTx).

3.2 Hämodynamik

Wie in Tabelle 2 ersichtlich, zeigten sich während der Untersuchung keine signifikanten Unterschiede zwischen den Gruppen bezüglich HF und MAP.

<table>
<thead>
<tr>
<th>Tabelle 1: Körpergewicht und Planimetrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CON</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>DES</td>
</tr>
<tr>
<td>NS1619</td>
</tr>
<tr>
<td>DES+NS1619</td>
</tr>
<tr>
<td>IbTx</td>
</tr>
<tr>
<td>DES+IbTx</td>
</tr>
<tr>
<td>ATRA</td>
</tr>
<tr>
<td>DES+ATRA</td>
</tr>
<tr>
<td>NS1619+ATRA</td>
</tr>
<tr>
<td>CYC A</td>
</tr>
<tr>
<td>IbTx+CYC A</td>
</tr>
<tr>
<td>DES+CYC A</td>
</tr>
</tbody>
</table>

Alle Daten sind als Mittelwert ± SEM angegeben. *Signifikanter (p<0,05) Unterschied zu CON. †Signifikanter (p<0,05) Unterschied zu ATRA. ‡Signifikanter (p<0,05) Unterschied zu DES. ††Signifikanter (p<0,05) Unterschied zu NS1619. ‡‡Signifikanter (p<0,05) Unterschied zu IbTx. LV: linker Ventrikel, AAR: ischämisches Myokardareal, IS: Infarktgröße. CON: Kontrolle, DMSO: Dimethylsulfoxid, DES: Desfluran, IbTx: Iberiotoxin, ATRA: Atractylosid, CYC A: Cyclosporin A.
Ergebnisse

Tabelle 2: Systemische hämodynamische Parameter während des Versuchsprotokolls.

<table>
<thead>
<tr>
<th>HF (min⁻¹)</th>
<th>BL</th>
<th>PräOKK</th>
<th>OKK</th>
<th>POST</th>
<th>Reperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 min</td>
</tr>
<tr>
<td>CON</td>
<td>488 ± 18</td>
<td>492 ± 19</td>
<td>492 ± 17</td>
<td>484 ± 13</td>
<td>471 ± 12</td>
</tr>
<tr>
<td>DMSO</td>
<td>474 ± 19</td>
<td>477 ± 12</td>
<td>484 ± 13</td>
<td>493 ± 17</td>
<td>469 ± 11</td>
</tr>
<tr>
<td>DES</td>
<td>464 ± 10</td>
<td>456 ± 8</td>
<td>460 ± 15</td>
<td>450 ± 3</td>
<td>449 ± 11</td>
</tr>
<tr>
<td>NS1619</td>
<td>482 ± 15</td>
<td>504 ± 20</td>
<td>469 ± 15</td>
<td>493 ± 17</td>
<td>485 ± 16</td>
</tr>
<tr>
<td>DES+NS1619</td>
<td>466 ± 13</td>
<td>469 ± 19</td>
<td>459 ± 14</td>
<td>448 ± 13</td>
<td>460 ± 10</td>
</tr>
<tr>
<td>IbTx</td>
<td>452 ± 12</td>
<td>471 ± 17</td>
<td>470 ± 13</td>
<td>439 ± 9</td>
<td>474 ± 14</td>
</tr>
<tr>
<td>DES+IbTx</td>
<td>475 ± 19</td>
<td>476 ± 14</td>
<td>464 ± 21</td>
<td>448 ± 14</td>
<td>473 ± 18</td>
</tr>
<tr>
<td>ATRA</td>
<td>475 ± 17</td>
<td>478 ± 13</td>
<td>465 ± 23</td>
<td>443 ± 24</td>
<td>449 ± 14</td>
</tr>
<tr>
<td>DES+ATRA</td>
<td>498 ± 14</td>
<td>490 ± 19</td>
<td>451 ± 32</td>
<td>483 ± 7</td>
<td>469 ± 9</td>
</tr>
<tr>
<td>NS1619+ATRA</td>
<td>482 ± 11</td>
<td>486 ± 11</td>
<td>478 ± 16</td>
<td>500 ± 11</td>
<td>472 ± 21</td>
</tr>
<tr>
<td>CYC A</td>
<td>478 ± 9</td>
<td>494 ± 14</td>
<td>484 ± 19</td>
<td>469 ± 9</td>
<td>484 ± 14</td>
</tr>
<tr>
<td>IbTx+CYC A</td>
<td>488 ± 19</td>
<td>491 ± 17</td>
<td>485 ± 11</td>
<td>494 ± 12</td>
<td>486 ± 17</td>
</tr>
<tr>
<td>DES+CYC A</td>
<td>492 ± 12</td>
<td>481 ± 14</td>
<td>458 ± 6</td>
<td>472 ± 14</td>
<td>473 ± 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Alle Daten sind als Mittelwert ± SEM angegeben. n = 7 pro Gruppe. HF: Herzfrequenz, MAP: Mittlerer arterieller Blutdruck. CON: Kontrolle, DMSO: Dimethylsulfoxid, DES: Desfluran, IbTx: Iberiotoxin, ATRA: Atracylosid, CYC A: Cyclosporin A.

Alle Daten wurden am Ende der Baseline (BL), vor (PräOKK) und während (OKK) der Okklusion der Koronararterie, während der frühen Reperfusionsphase (POST) und 60, 120 und 180 Minuten nach Beginn der Reperfusion analysiert. Siehe auch: Dreiecke in Abb. 5Abb. 7.

3.3 Myokardiale Infarktgrößen

3.3.1 Die Rolle des mBK Ca bei der Desfluran-induzierten Postkonditionierung

In der Gruppe der Kontrolltiere (CON) fand sich eine Infarktgröße (IS/AAR) von 48 % ± 2 % (Abb. 8). Tiere, welche das Lösungsmittel DMSO (DMSO, 49 % ± 4
Ergebnisse

% einiger verwendeter Substanzen erhielten, zeigten gegenüber den Kontrolltieren keine veränderte IS.

Abb. 8: Myokardiale Infarktgröße als prozentualer Anteil des ischämischen Myokardareals. Angegeben sind Mittelwert ± SEM. n = 7 pro Gruppe. IS: Herzinfarktgröße. AAR: Ischämisches Myokardareal. CON: Kontrollgruppe. DMSO: Lösungsmittel Dimethylsulfoxid. DES: Desfluran. NS1619: m\textsubscript{BKCa}-Aktivator. IbTx: m\textsubscript{BKCa}-Inhibitor Iberiotoxin. ATRA: m\textsubscript{PTP}-Aktivator Atractylosid. CYC A: m\textsubscript{PTP}-Inhibitor Cyclosporin A. *signifikanter (p<0,05) Unterschied zu CON. #signifikanter (p<0,05) Unterschied zu DES. ‡signifikanter (p<0,05) Unterschied zu ATRA.

Die Gabe von 1,0 MAC Desfluran (DES, 19 % ± 5 %, p < 0,05 gegenüber CON) während der frühen Reperfusionsphase reduzierte die IS signifikant im Vergleich zur Kontrollgruppe. In einem ähnlichen Ausmaß verringerte sich signifikant die IS durch die pharmakologische Aktivierung der m\textsubscript{BKCa}-Kanäle mittels NS1619 (NS1619, 20 % ± 2 %, p < 0,05 gegenüber CON). Die Kombination von 1,0 MAC DES und pharmakologischer m\textsubscript{BKCa}-Aktivierung mittels NS1619 (DES+NS1619, 20 % ± 3 %, p < 0,05 gegenüber CON) zeigte eine signifikante Verringerung der IS im Vergleich zur CON. Jedoch waren keine signifikanten Unterschiede im Vergleich zur alleinigen Desfluran-Gabe (DES) festzustellen. Die Inhibition der m\textsubscript{BKCa}-Kanäle durch IbTx (IbTx, 44 % ± 3 %) beeinflusste die IS nicht. Die m\textsubscript{BKCa}-Inhibition mittels IbTx hob den
3 Ergebnisse

Infarktgrößen-verringernden Effekt von DES (DES+IbTx, 46 % ± 3 %) komplett auf.

3.3.2 Die Rolle der mPTP bei der Desfluran-induzierten Postkonditionierung

Die alleinige, pharmakologisch induzierte Öffnung der mPTP durch Atractylosid (ATRA, 50 % ± 3 %) änderte die IS im Vergleich zur Kontrollgruppe nicht (Abb. 8 Fehler! Verweisquelle konnte nicht gefunden werden.). Die Kombination von mPTP-Öffnung mittels Atractylosid und Gabe von 1,0 MAC DES (DES+ATRA, 40 % ± 4 %, p < 0,05 gegenüber ATRA) zeigte eine signifikante Reduktion der IS im Vergleich zur alleinigen Gabe von Atractylosid. Diese IS-Reduktion war jedoch signifikant geringer (p < 0,05 gegenüber DES) als die der alleinigen DES-Gabe.

Durch die Inhibition der mPTP mittels Cyclosporin A (CYC A, 20 % ± 4 %, p < 0,05 gegenüber CON) konnte eine signifikante Verringerung der IS im Vergleich zur Kontrollgruppe erzielt werden. Diese CYC-A-induzierte IS-Reduktion zeigte ein vergleichbares Niveau zur Verringerung der IS durch DES alleine. Ein ebenfalls vergleichbare IS-Verringerung zeigte die Kombination von mPTP-Inhibition durch CYC A und 1,0 MAC DES (DES+CYC A, 20 % ± 2 %, p < 0,05 gegenüber CON). Es konnten jedoch keine synergistischen Effekte im Sinne einer additiven IS-Reduktion im Vergleich zur alleinigen DES-Gabe festgestellt werden.

3.3.3 Interaktion von mBK Ca und mPTP

Zur Untersuchung einer Interaktion von BK Ca und mPTP wurden mBK Ca-Kanäle mittels NS1619 aktiviert und parallel dazu die mPTP durch Atractylosid geöffnet (Abb. 9). Hierbei (NS1619+ATRA, 31 % ± 3 %, p < 0,05 gegenüber CON und ATRA) konnte eine signifikante IS-Verringerung im Vergleich zur Kontrollgruppe und im Vergleich zur alleinigen Öffnung der mPTP beobachtet werden. Jedoch erwies sich die IS als signifikant größer als bei alleiniger Öffnung der mBK Ca-Kanäle (p < 0,05 gegenüber NS1619). Des Weiteren wurde bei der parallelen Inhibition der mBK Ca-Kanäle durch Iberiotoxin und Inhibition der mPTP mittels CYC A (IbTx+CYC A, 28 % ± 6 %, p < 0,05 gegenüber CON und IbTx) eine
signifikante Reduktion der IS gegenüber der Kontrollgruppe und der alleinigen mBKCa-Inhibition festgestellt.

Abb. 9: Myokardiale Infarktgröße als prozentualer Anteil des ischämischen Myokardareals. Angegeben sind Mittelwert ± SEM. n = 7 pro Gruppe. IS: Herzinfarktgröße. AAR: Ischämisches Myokardareal. CON: Kontrollgruppe. NS1619: mBKCa-Aktivator NS1619. ATRA: mPTP-Aktivator Atractylosid. IbTx: mBKCa-Inhibitor Iberiotoxin. CYC A: mPTP-Inhibitor Cyclosporin A. *signifikanter (p < 0,05) Unterschied zu CON. †signifikanter (p < 0,05) Unterschied zu NS1619. ‡signifikanter (p < 0,05) Unterschied zu ATRA. §signifikanter (p < 0,05) Unterschied zu IbTx. Die Daten der Versuchsgruppen CON, NS1619, ATRA, IbTx, und CYC A entsprechen denjenigen aus Abb. 8
4 Diskussion

Die Beteiligung mitochondrialer ATP-abhängiger Kalium-Kanäle (mK$_{ATP}$) an der Anästhetika-induzierten Prä- und Postkonditionierung ist seit einiger Zeit bekannt und nachgewiesen. Jedoch häufen sich Belege für eine Beteiligung weiterer Kalium-Kanäle an den genannten Phänomenen. So konnte für mitochondriale Kalzium-abhängige Kalium-Kanäle mit großer Leitfähigkeit (mBK$_{Ca}$) bereits ein Beitrag zur Signalvermittlung der IPC und IPOST nachgewiesen werden. Des Weiteren ist der mBK$_{Ca}$ beteiligt an der pharmakologischen Präkonditionierung durch Sildenafil und Tumor-Nekrose-Faktor α, der Präkonditionierung durch Helium und der Kardioprotektion durch 17β-Estradiol, Angiotensin-convertizing-enzyme-Inhibitoren und chronischer Hypoxie. Auch an der Morphin-induzierten und Adenosin-induzierten Postkonditionierung ist der mBK$_{Ca}$ beteiligt. Xu et al. wiesen nach, dass mBK$_{Ca}$ in Myozyten auf der inneren Mitochondrienmembran lokalisiert ist. Die Autoren zeigten außerdem, dass die pharmakologische Öffnung von mBK$_{Ca}$ in der Reperfusionsphase die Infarktgröße in vergleichbarem Ausmaß zur mK$_{ATP}$-Aktivierung reduziert. Für die Anästhetika-induzierte Präkonditionierung (APC) durch Desfluran konnten Redel et al. eine Beteiligung von mBK$_{Ca}$ und Protein-Kinase A nachweisen.

In der vorliegenden Studie konnte gezeigt werden, dass mBK$_{Ca}$ die Desfluran-induzierte Postkonditionierung vermittelt. Die Gabe des mBK$_{Ca}$-Aktivators NS1619 15 Minuten vor Reperfusionsbeginn verringert die Infarktgröße signifikant. Diese Infarktgrößenreduktion ist mit der Reduktion durch die Desfluran-induzierte Postkonditionierung vergleichbar. Es zeigen sich jedoch keine additiven Effekte bei der gleichzeitigen Applikation von NS1619 und Desfluran. Dies weist auf einen gemeinsamen Signalweg von mBK$_{Ca}$ und Desfluran bei der Desfluran-induzierten Postkonditionierung bei Mäusen in-vivo hin. Als Bestätigung dessen hebt die Gabe des mBK$_{Ca}$-Inhibitors Iberiotoxin (IbTx) die APOST durch Desfluran auf.

Im Gegensatz zu den in dieser Arbeit erhobenen Ergebnissen beobachteten Wang et al. keine signifikante Infarktgrößenreduktion nach der Gabe von NS1619 in der Reperfusionsphase. In ihrem Modell des isolierten Maus-Herzens applizierten sie den mBK$_{Ca}$-Aktivator kontinuierlich mit einer

Als möglicher End-Effektor der IPOST und APOST wird die mitochondrial permeability-transition-pore (mPTP) angesehen15,84. Baines beschreibt die mPTP als „unspezifischen Kanal, von dem man annimmt, dass er sich in der inneren Mitochondrienmembran aufspannt“84. Weiterhin wird die mPTP als permeabel bis 1,5 kDa und als Calcium-, Spannungs- und pH-sensibel beschrieben. Durch Öffnung der mPTP kommt es zum Verlust des mitochondrialen Membranpotentials und somit zur Unterbrechung der oxidativen Phosphorylierung83-86. Des Weiteren kommt es zur Schwellung des Mitochondriums, welche zur Ruptur der mitochondrialen Membran und im weiteren Verlauf zur Freisetzung proapoptotischer Proteine wie Cytochrom C führt. Als Resultat mündet die mPTP-Öffnung in Nekrose und Apoptose und somit in den Zelltod15,113.

Durch Blockade der mPTP-Öffnung mittels Cyclosporin A (CYC A) konnte in Studien dem Zelltod entgegengewirkt und somit der

Es bleibt jedoch anzumerken, dass für die genannten Effekte eine Dosisabhängigkeit vermutet wird. Krolikowski et al.63 zeigten einen Schwellenwert für Isofluran und CYC A in der APOST. Unterhalb einer Schwellendosis konnte für keine der beiden Interventionen eine Myokardinfarktgrößenreduktion erkannt werden. Bei der Kombination unterschiedlicher Dosen von Isofluran und CYC A hingegen reduzierten sich die Myokardinfarkte. Das Ausmaß der Myokardinfarktreduktion bei kombinierter unterschiedlicher Applikation war mit der Reduktion bei Gabe eines Pharmakons in überschwelliger Dosierung vergleichbar. Ferner konnte in früheren Studien die Beteiligung der mPTP an der APOST für weitere volatile Anästhetika, wie Isofluran63,94,121 und Sevofluran120,122,123, jedoch nicht Desfluran, gezeigt werden.
werden. Demzufolge erweitern unsere Ergebnisse die Erkenntnis über die Beteiligung der mPTP an der APOST um Desfluran.

Bisher ist noch nicht hinreichend geklärt, inwiewein eine Interaktion zwischen mitochondrialen Kalium-Kanälen und der mPTP während der APOST besteht. Darüber hinaus ist auch die Form der Interaktion disputabel. Für mK\textsubscript{ATP} zeigten Hausenloy et al.29 an isolierten Mitochondrien, dass die pharmakologische Aktivierung von mK\textsubscript{ATP} mittels Diazoxid die Kalzium-induzierte Öffnung der mPTP inhibiert und die Infarktgröße verringert. Die kardioprotektive Wirkung von Diazoxid wurde durch die Öffnung der mPTP durch ATRA aufgehoben. Daraus postulierten die Autoren eine Interaktion von mK\textsubscript{ATP} und mPTP, wobei die Lokalisation von mK\textsubscript{ATP} in der Signalkette upstream von mPTP angenommen wurde. Diese Erkenntnis konnte durch die Untersuchungen von Piriou. et al62 erweitert werden. Sie bestätigten gleiche Signalkaskaden bei der APC durch Desfluran. Im Gegensatz dazu zeigten Krolikowski et al., dass die Blockade des mK\textsubscript{ATP} mittels 5-HD den kardioprotectiven Effekt der Inhibition der mPTP mittels CYC A aufhebt. Folglich bleiben die genauen Abhängigkeiten der Signalkette weiter zu eruieren.

Analog zu den Erkenntnissen über den mK\textsubscript{ATP} wurde für den mBK\textsubscript{Ca} die Hypothese aufgestellt, dass ein geöffneter mBK\textsubscript{Ca} die mPTP geschlossen hält124. So wurde in der Einzelkanal-patch-clamp-Technik gezeigt, dass die Blockade der mPTP mittels CYC A die Kalzium-Toleranz der Mitochondrien erhöht124. Durch anschließende Gabe des mBK\textsubscript{Ca}-Inhibitors IbTx konnte die Kalzium-Toleranz wieder verringert werden.

In der vorliegenden Untersuchung hebt die pharmakologische Blockade des mBK\textsubscript{Ca} mittels IbTx den kardioprotektiven Effekt der Blockade der mPTP durch CYC A teilweise auf. In Übereinstimmung dessen zeigt das Gegenexperiment eine ebenfalls nur teilweise Aufhebung des kardioprotectiven Effekts der mBK\textsubscript{Ca}-Aktivierung mittels NS1619 durch die Öffnung der mPTP mittels ATRA. Dies deutet auf einen, zumindest teilweise, mPTP-unabhängigen Signalweg des mBK\textsubscript{Ca} bei der Vermittlung der APOST hin.
Im Kontrast dazu zeigten Cao et al.125 und Gao et al.77 in ihren Arbeiten am isolierten Rattenherzen eine vollständige Aufhebung des kardioprotektiven Effekts der mBK\textsubscript{Ca}-Aktivierung mittels NS1619 durch mPTP-Öffnung mittels ATRA. Weiterhin konnten die Autoren demonstrieren, dass der Infarktgrößen-verringernende Effekt der Blockade der mPTP mittels CYC A durch mBK\textsubscript{Ca}-Blockade mittels Paxillin nicht beeinflusst wurde. Hierbei ist anzumerken, dass erstens unterschiedliche Pharmaka bei der Blockade des mBK\textsubscript{Ca} verwendet wurden. Unter Berücksichtigung möglicher Nebeneffekte der verwendeten Substanzen erschwert dies den direkten Vergleich der Effekte. Zweitens applizierten die Autoren mBK\textsubscript{Ca}-betreffende Pharmaka vor der Ischämie, während mPTP-betreffende Pharmaka gegen Ende der Ischämie und während der Reperfusion gegeben wurden. Zum gegenwärtigen Zeitpunkt ist die genaue Wirkdauer der am mBK\textsubscript{Ca} wirkenden Pharmaka NS1619 und Paxillin \textit{in vivo} nicht nachgewiesen. Daher lässt sich vermuten, dass möglicherweise zum Zeitpunkt der Reperfusion die Wirkung von NS1619 und Paxillin bereits abgeklungen war und einzig die mPTP-wirksamen Pharmaka ihren Effekt entfalteten. Dies würde die von Cao et al. differierenden Effekte in der vorliegenden Arbeit bei kurz aufeinanderfolgenden Applikationen der Pharmaka erklären. Analog zu den zitierten Arbeiten wurden in der vorliegenden Untersuchung keine direkten Messungen zum Öffnungsstatus von mBK\textsubscript{Ca} und mPTP durchgeführt. Daher ist die Aussagekraft der Ergebnisse in beiden Fällen von der Selektivität der verwendeten Pharmaka abhängig.

Die Erklärung der Mechanismen der Signalvermittlung von mBK\textsubscript{Ca} auf mPTP bleibt spekulativ. Wie eingangs diskutiert existieren verschiedene Hypothesen. Ein Erklärungsansatz bezieht sich auf einen Kalium-Einstrom, welcher über den mBK\textsubscript{Ca} erfolgt. Daher wären Effekte, welche über einen Kalium-Einstrom vermittelt würden, wie leichte Depolarisierung der Mitochondrienmembran oder Schwellung des Mitochondriums, auch für den mBK\textsubscript{Ca} denkbar. Es konnte gezeigt werden, dass die Öffnung des mBK\textsubscript{Ca} die Mitochondrienmembran depolarisiert126,127 und ein Kalzium-Overload des Mitochondriums verhindert126. Somit erscheint diese Hypothese nicht unwahrscheinlich. Zusätzlich konnten Stowe et al.128, wie für den mK\textsubscript{ATP}68, auch
Diskussion

für den mBK\textsubscript{Ca} ein notwendiges Vorhandensein von ROS für die Signalvermittlung zeigen. Die Autoren postulieren, dass der Kalium-Einstrom über den mBK\textsubscript{Ca} zu einer erhöhten Protonen-Konzentration über den K+/H+-Austauscher führt. Dies hätte zum Einen eine pH-Erniedrigung der Mitochondrienmatrix zur Folge, welche als Voraussetzung für eine verschlossene mPTP angesehen wird86. Weiterhin wäre das Membranpotential und damit die Zellatmung erhalten und somit die Bildung von ROS begünstigt. Diese ROS, so Stowe et al., würden weitere Effekte im Rahmen der Konditionierung vermitteln. Somit kann auch die zweite Hypothese nicht ausgeschlossen werden. Versuche zur Bestätigung einer dritten Hypothese zur mBK\textsubscript{Ca}-induzierten Schwellung des Mitochondriums scheiterten an unspezifischen Effekten der verwendeten Pharmaka129. In Zusammenschau der Erkenntnisse erscheinen die leichte Depolarisierung der inneren Mitochondrienmembran und die ROS-Bildung als mögliche Signalvermittler zwischen mBK\textsubscript{Ca} und mPTP. Jedoch bedarf es weiterer Untersuchungen zur eindeutigen Klärung der Mechanismen der Interaktion von mBK\textsubscript{Ca} und mPTP im Rahmen der APOST.

Zur Aktivierung bzw. Blockade von mBK\textsubscript{Ca} und mPTP wurden Substanzen verwendet, für die eine hohe Selektivität gezeigt werden konnte. Dennoch können für pharmakologische Wirkstoffe mögliche Nebeneffekte nie gänzlich ausgeschlossen werden. Cao et al.125 konnten eine Wirkung von NS1619 auf den mK\textsubscript{ATP} ausschließen. In ihrer Untersuchung konnte die Blockade von mK\textsubscript{ATP} mittels 5-HD den Infarktgrößen-verringernden Effekt von NS1619 nicht aufheben. Somit wirkt NS1619 unabhängig von mK\textsubscript{ATP}.

Cancherini et al. zweifeln in ihrer Arbeit133 an der Spezifität von NS1619 für den mBK\textsubscript{Ca}. Die Autoren beobachteten an isolierten Mitochondrien eine mBK\textsubscript{Ca}-unabhängige, unselective Ionenpermeabilität der Mitochondrienmembran und Auswirkungen auf die zelluläre Respiration. Allerdings konnten andere Autoren zeigen, dass Wirkungen von NS1619 auf die Infarktgröße47,125,128, die Laktatdehydrogenase-Freisetzung112, die Polarisation der inneren Mitochondrienmembran126, die Verringerung des Kalzium-Overload des Mitochondriums134, Änderungen im Redox-Status128 und die Respiration135.
durch mBKCa-Inhibitoren aufgehoben werden konnten. Weiterhin demonstrierte Chmielewska127, dass die zytoprotektive Wirkung von NS1619 jeweils durch die mBKCa-Inhibitoren Paxillin und Iberiotoxin aufgehoben werden konnte. Somit werden die genannten Effekte von NS1619 mit hoher Wahrscheinlichkeit über den mBKCa vermittelt. Jedoch ist für NS1619 bekannt, dass es den Komplex 1136 der Atmungskette inhibiert. Auch Chmielewska fand in ihrer Untersuchung127 Auswirkungen von NS1619 auf die Atmungskette, die durch Konzentrationen von Paxillin und Iberiotoxin, welche die zytoprotektive Wirkung von NS1619 blockierten, nicht aufgehoben werden konnten. Somit muss möglicherweise differenziert werden zwischen der zytoprotektiven Wirkung von NS1619 auf der einen Seite - diese wird mit großer Wahrscheinlichkeit über den mBKCa vermittelt - und andererseits mBKCa-unabhängiger Effekte von NS1619 auf die Atmungskette. Allerdings verbleibt es zukünftigen Arbeiten, dies genauer zu eruieren.

Zusammenfassend ergeben sich vier Haupt-Erkenntnisse aus der vorliegenden Untersuchung.

1. Desfluran induziert eine Postkonditionierung gegen Myokardinfarkt in Mäusen \textit{in vivo}
2. Die Desfluran-induzierte Postkonditionierung wird über den mitochondrialen Kalzium-abhängigen Kalium-Kanal mit großer Leitfähigkeit (mBKCa) vermittelt. Hierbei führt die Aktivierung des mBKCa zur Verringerung der Infarktgröße.
3. Die mitochondrial permeability-transition Pore (mPTP) ist ebenfalls an der Desfluran-induzierten Postkonditionierung beteiligt. Die geschlossene mPTP wirkt in diesem Zusammenhang kardioprotektiv.
4. Bezüglich der Interaktion von mBKCa und mPTP ist ein, zumindest teilweise, mPTP-unabhängiger Signalweg für die Vermittlung der Desfluran-induzierten Postkonditionierung über den mBKCa denkbar.

Demzufolge konnte durch die vorliegende Arbeit ein weiterer Beitrag zur Klärung der intrazellulären Signaltransduktionsmechanismen der Anästhetika-
induzierten Postkonditionierung geleistet werden. Jedoch bleibt die genaue Interaktion von mBK\textsubscript{Ca} und mPTP unklar. Darüber hinaus sind zum speziellen kardioprotektiven Einsatz volatiler Anästhetika weitere Untersuchungen bezüglich der APOST notwendig. Auch die Übertragbarkeit der gewonnenen Ergebnisse in die klinische Praxis bleibt zu klären. Ziel weiterführender Studien wird es sein, ein pharmakologisches Target zu finden, welches zur gezielten postexpositionellen Verringerung der Myokardininfarktfolgen benutzt werden kann.
5 Zusammenfassung

Zur Untersuchung der genannten Phänomene wurde ein etabliertes in vivo-Mausmodell des akuten Myokardinfarkts verwendet. Hierbei reduzierte die Gabe von 1,0 MAC Desfluran in der frühen Reperfusionsphase die Infarktgröße signifikant. Somit konnte eine Desfluran-induzierte Postkonditionierung beobachtet werden. Die pharmakologische Aktivierung des mBK$_{Ca}$ mittels NS1619 reduzierte die Infarktgröße in einem vergleichbaren Ausmaß wie Desfluran. Weiterhin zeigten sich keine additiven Effekte bei der Kombination beider Interventionen. Als Bestätigung dessen hob die Blockade des mBK$_{Ca}$ mittels Iberiotoxin die APOST auf. Diese Ergebnisse lassen auf eine Beteiligung des mBK$_{Ca}$ bei der Desfluran-induzierten Postkonditionierung schließen. Durch Pharmakologische Aktivierung der mPTP mittels Atractylosid wurde die APOST aufgehoben. Das Gegenexperiment zeigte keine additiven Effekte bei gleichzeitiger Desflurangabe und Inhibierung der mPTP mittels Cyclosporin A. Die alleinige mPTP-Inhibition resultierte in Infarktgrößen, welche mit denen bei Desflurangabe vergleichbar waren. Folglich erscheint eine Beteiligung der mPTP an der Desfluran-induzierten Postkonditionierung wahrscheinlich. Die Aktivierung der mPTP konnte die kardioprotektiven Auswirkungen der mBK$_{Ca}$-Öffnung nicht vollständig aufheben. Ebenso wurde durch Inhibition der mPTP der Effekt der mBK$_{Ca}$-Blockierung nur teilweise aufgehoben. Demzufolge
scheint die Signalvermittlung der APOST über den mBK$_{Ca}$, zumindest teilweise, mPTP-unabhängig zu sein.

Die Ergebnisse der vorliegenden Studie demonstrieren eine Beteiligung des mBK$_{Ca}$ und der mPTP an der Desfluran-induzierten Postkonditionierung in Mäusen \textit{in vivo}. Weiterhin legen sie die Vermutung nahe, dass die Signalvermittlung der APOST über den mBK$_{Ca}$ teilweise unabhängig von der mPTP erfolgt.
6 Literaturverzeichnis

3. Bein B, Meybohm P: [Organ protection by conditioning]. Anesthesiol Intensivmed Notfallmed Schmerzther 2010; 45: 254-61; quiz 262

myocardial infarct size with an acute memory phase. Anesthesiology 1997; 87: 361-70
19. Marber MS, Latchman DS, Walker JM, Yellon DM: Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264-72
24. Murphy E, Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88: 581-609
30. Rizvi A, Tang XL, Qiu Y, Xuan YT, Takano H, Jadoon AK, Bolli R: Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning. Am J Physiol 1999; 277: H874-84

70. Siemen D, Loupatatzis C, Borecky J, Gubins E, Lang F: Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochemical and biophysical research communications 1999; 257: 549-54
73. Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP: Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett 2010; 584: 2033-42
77. Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q: The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosis factor-alpha. Cytokine 2005; 32: 199-205
82. Machida K, Osada H: Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann N Y Acad Sci 2003; 1010: 182-5
97. Sonner JM, Gong D, Li J, Eger El, 2nd, Laster MJ: Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 1999; 89: 1030-4
permeability transition as a novel principle of hepatorenal toxicity in vivo.
Apoptosis 2002; 7: 395-405
125. Cao CM, Xia Q, Gao Q, Chen M, Wong TM: Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 2005; 312: 644-50
127. Chmielewska L, Malinska D: Cytoprotective action of the potassium channel opener NS1619 under conditions of disrupted calcium homeostasis. Pharmacol Rep 2011; 63: 176-83
128. Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT: Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+
channel opening requires superoxide radical generation. American journal of physiology. Heart and circulatory physiology 2006; 290: H434-40
131. Reimer KA, Jennings RB: The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Laboratory investigation; a journal of technical methods and pathology 1979; 40: 633-44
Danksagung

Herzlich danken möchte ich meinem Doktorvater Privatdozent Dr. Markus Lange für die Überlassung des Themas, sowie die Unterstützung bei der Erstellung dieser wissenschaftlichen Arbeit.

Ein weiterer, besonders herzlicher Dank gebührt meinem Betreuer Herrn Dr. Jan Stumpner für das Heranführen an die wissenschaftliche Arbeitsweise. Er stand bei Fragen jederzeit zur Verfügung und unterstützte mich in konstruktiven Gesprächen bei der Interpretation und kritischen Auseinandersetzung der gewonnenen Ergebnisse.

Herzlich danken möchte ich weiterhin Prof. Dr. Norbert Roewer für die Ermöglichung der Anfertigung dieser Arbeit in seiner Klinik.

Die vorliegende Promotionsarbeit widme ich meinen Eltern, welche mir mein Studium und damit auch diese Arbeit ermöglicht haben, wofür ich ihnen sehr dankbar bin.
Curriculum vitae

Persönliche Daten:

<table>
<thead>
<tr>
<th>Name</th>
<th>Andreas Beck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geboren</td>
<td>am 08.04.1986 in Fulda</td>
</tr>
</tbody>
</table>

Schulbildung:

<table>
<thead>
<tr>
<th>Periode</th>
<th>Schule</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/1992 - 06/1996</td>
<td>Rauschenberg-Grundschule Petersberg</td>
</tr>
<tr>
<td>09/1996 – 06/1997</td>
<td>Freiherr-von-Stein-Gymnasium Fulda</td>
</tr>
<tr>
<td>09/1997 - 06/2005</td>
<td>Wieland-Gymnasium Biberach an der Riss, Abschluss: Allgemeine Hochschulreife</td>
</tr>
</tbody>
</table>

Freiwilliges Soziales Jahr:

<table>
<thead>
<tr>
<th>Periode</th>
<th>Stelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/2005 – 03/2006</td>
<td>Kreisklinik Biberach, Pflegeheim und urologische Klinik</td>
</tr>
</tbody>
</table>

Studium:

<table>
<thead>
<tr>
<th>Periode</th>
<th>Studium</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/2006 – 11/2012</td>
<td>Studium der Humanmedizin Julius-Maximilians-Universität, Würzburg</td>
</tr>
<tr>
<td>04/2008</td>
<td>Erster Abschnitt der Ärztlichen Prüfung</td>
</tr>
<tr>
<td>11/2012</td>
<td>Zweiter Abschnitt der Ärztlichen Prüfung, Approbation als Arzt</td>
</tr>
</tbody>
</table>

Beruflicher Werdegang:

<table>
<thead>
<tr>
<th>Periode</th>
<th>Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seit 02/2013</td>
<td>Arzt in Weiterbildung an der Klinik für Urologie und Kinderurologie des Leopoldina Krankenhauses, Schweinfurt</td>
</tr>
</tbody>
</table>

Würzburg, den 6. September 2014