Aus der Klinik und Poliklinik für Anästhesiologie
der Universität Würzburg
Direktor: Univ.-Prof. Dr. med. Dr. h.c. N. Roewer

Ist die Anwendung lungenprotektiver Beatmungsmuster mit Tidalvolumina von 6 ml/kg Körpergewicht bei mehr als 90% aller beatmeten Patienten Fakt oder Fiktion?

Inaugural - Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius-Maximilians-Universität Würzburg

vorgelegt von
Heiko Benthin
aus Wuppertal

Würzburg, März 2015
Referent: Univ.-Prof. Dr. med. C. Wunder
Korreferent: apl. Prof. Dr. med. M. Schmidt
Dekan: Univ.-Prof. Dr. Matthias Frosch

Tag der mündlichen Prüfung: 10.08.2015

Der Promovend ist Arzt
Inhaltsverzeichnis

1. Einleitung .. 1

1.1 ARDS - Das Acute Respiratory Distress Syndrome .. 1

1.2 Beatmungs- und Weaningkonzepte .. 6

1.2.1 Beatmungskonzepte .. 6

1.2.2 Weaningkonzepte .. 8

1.3 6ml-Kampagne ... 13

1.4 Ziel der Arbeit ... 13

2. Material und Methoden ... 15

3. Ergebnisse .. 20

3.1 Biometrische Daten des Patientenkollektives ... 20

3.2 Beatmungsparameter ... 30

3.2.1 Abweichung von den vorgesehenen Beatmungsparametern 30

3.2.2 Selbsteinschätzung ... 34

3.2.3 Objektive Beurteilung der Einhaltung der vorgesehenen Beatmungsparameter 36

3.3 Weaningfehler .. 40

3.4 Zusammenfassung der Ergebnisse .. 45

4. Diskussion .. 46

4.1 Biometrische Daten ... 46

4.2 Abweichungen von den vorgesehenen Beatmungsparametern. 47

4.3 Weaningversager ... 51

4.4 Ausblick .. 53

4.5 Fazit .. 54

5. Zusammenfassung ... 56

6. Literatur ... 59

7. Abkürzungs- und Abbildungsverzeichnis .. 68

7.1 Abkürzungsverzeichnis ... 68

7.2 Abbildungsverzeichnis ... 70

8. Anhang ... 73

8.1 Kick Off Flyer der Kampagne „Jetzt lassen wir die Luft raus…“ 73
1. Einleitung

1.1 ARDS - Das Acute Respiratory Distress Syndrome

unter 200mmHg, unabhängig vom angewandten PEEP [9]. Die künstliche Beatmung von ARDS-Patienten wurde traditionell mit Tidalvolumina von 10-15ml/kgKG durchgeführt. Auf eine Begrenzung der Beatmungsdrücke und die Anwendung eines adäquaten PEEP wurde nicht geachtet. Da aber die Mortalität des ARDS weiterhin 40-50% betrug und es nur wenig Progress in der Therapie des ARDS gab, wurde im Jahr 2000 die „ARDS net Studie“ ins Leben gerufen [82]. In der „ARDS net Studie“, die als randomisierte Multicenterstudie angelegt war, wurden folgende Beatmungsregime miteinander verglichen:

- Tidalvolumen 12 ml/kgKG bis zu einem maximalen Beatmungsdruck von 50 cmH₂O
- Tidalvolumen 6 ml/kgKG bis zu einem maximalen Beatmungsdruck von 30 cmH₂O

Die Patienten wurden in zehn universitären Zentren in den USA rekrutiert. Als first primary outcome wurde der Tod des Patienten vor Entlassung bzw. erfolgreichen Weaning definiert, als second primary outcome die Anzahl der Tage ohne Beatmung im Beobachtungszeitraum von 28 Tagen. Die Mortalität der Patienten in der 12 ml/kgKG Tidalvolumen-Gruppe lag signifikant über der Mortalität der 6 ml/kgKG Tidalvolumen-Gruppe (39,8% v. 31,0%, P=0,007). Auch bei den beatmungsfreien Tagen schnitt die 6ml-Gruppe signifikant besser als die 12ml-Gruppe ab (10 +/- 11 vs. 12 +/- 11 beatmungsfreie Tage in der ersten vier Wochen, P=0,007). Das Tidalvolumen in den ersten drei Tagen betrug in der 6ml-Gruppe 6,2 +/- 0,8 ml/kgKG idealisiertes Körpergewicht und in der 12 ml-Gruppe bei 11,8 +/- 0,8 ml/kgKG. Der Beatmungsdruck betrug in der Gruppe mit einem Tidalvolumen von 6 ml/kgKG 25 +/- 6 cmH₂O und in der Gruppe 12 ml/kgKG Tidalvolumen 33 +/- 8 cmH₂O. Bedingt durch die signifikant höhere Mortalität in der 12 ml-Gruppe und die signifikant niedrigeren notwendigen Beatmungstage in der 6 ml-Gruppe wurde die Studie nach 861 Patienten abgebrochen.

Auslöser des ARDS können verschiedene Noxen sein, die jedoch alle ein ähnliches klinisches Bild mit Hypoxie, Tachypnoe und bilateralen Infiltraten hervorrufen. Dabei kommen vor allem Infektionen/Sepsis, Traumata, Massivtransfusionen, Inhalationstraumata, Magensaftaspiration und
metabolische Ursachen zum Tragen [14]. Unabhängig von der Genese ist die Schwere der Grundkrankung hauptverantwortlich für die Mortalität des ARDS [9]. Daher ist die Behandlung der Erkrankung, die für die Entstehung des ARDS verantwortlich zeichnet, der wichtigste Behandlungsbau­stein [17, 43].

Nach der ARDS-Definition Task Force, einer internationalen Expertenkommission, ist beim milden ARDS (Stand 2012) mit einer Letalität von 27%, beim moderaten ARDS von 32% und beim schweren ARDS von 45% zu rechnen, wobei weniger als 20% der Patienten direkt am respiratorischen Versagen versterben, sondern in der Regel am Multiorganversagen [83]. Die bisherigen Untersuchungen lassen nur eine Schätzung der Inzidenz von ca. 60 Fällen pro 100.000 Einwohnern zu [9, 73]. Ohne eine schlüssige Erklärung scheint es insgesamt einen Rückgang der Erkrankung zu geben [91]. Bei allen invasiv beatmeten Patienten kann es auch zu einem, dem ARDS ähnlichen, beatmungsinduzierten akuten Lungenversagen (Ventilator induced Lung Injury, VILI) kommen. Durch hohe Spitzenbeatmungsdrücke (P_{Peak}) kommt es entweder zu einer Schädigung der Lunge mit konsekutivem Lungenversagen oder durch die künstliche Überdruckbeatmung zu Barotraumen (z.B. Pneumothorax durch Verletzungen des Lungengewebes). Ein drittes Schädigungsmuster sind Volutraumata, die sich mit Verletzungen durch
Scherkräfte im Lungengewebe bei hohen Tidalvolumina manifestieren [13, 45, 50, 67, 85].

2012 wurde durch die ARDS-Definition Task Force eine neue Einteilung, die Berlin Definition des ARDS erarbeitet [83]:

- Entwicklung innerhalb einer Woche
- Bilaterale Infiltrate in der Röntgenübersichtsaufnahme des Thorax oder in der thorakalen Computertomografie (CT)
- Kein Hinweis auf eine kardiale Ursache des Lungenödems

Die Einteilung des ARDS erfolgt nach der Schwere der Oxygenierungsstörung:
- Mildes ARDS (p\(_a\)O\(_2\)/F\(_i\)O\(_2\) ≤300mmHg, aber > 200mmHg mit PEEP oder CPAP ≥5 kPa*100) (CPAP = Continuous positive airway pressure; Kontinuierlicher positiver Atemwegsdruck)
- Moderates ARDS (p\(_a\)O\(_2\)/F\(_i\)O\(_2\) ≤200mmHg, aber >100mmHg mit PEEP ≥5 kPa*100)
- Schweres ARDS (p\(_a\)O\(_2\)/F\(_i\)O\(_2\) ≤100mmHg mit PEEP >5kPa*100)

(Pulse Contour Cardiac Output, Pulsion Medical Systems, München) zum Einsatz. Das extravasale Lungenwasser kann als Parameter für die Wahrscheinlichkeit eines Lungenödems herangezogen werden, ferner kann dieser Wert bei der Entscheidung helfen, dem Patienten weitere Infusionen zukommen zu lassen oder mittels kontinuierlicher Hämodialyse zu entziehen [54, 59].

Die Behandlung des ARDS erfolgt durch eine differenzierte lungenprotektive Beatmung, ein möglichst restriktives Flüssigkeitsmanagement und vor allem durch die Behandlung der Grundkrankheit [17, 43]. Zur Reduktion von Ventilator assoziierten Pneumonien gilt es, das folgende Maßnahmenbündel anzuwenden [56]:

- tägliche Sedierungspause,
- täglicher Spontanatmungsversuch,
- 45° Oberkörperhochlage,
- selektiven oralen Dekontamination mit Chlorhexidin
- supraglottische Absaugung mittels Spezialtubus

- Venovenöse extrakorporale Membranoxygenierung (vv-ECMO): Bei diesem pumpengetriebenen Verfahren ist in Abhängigkeit vom
erreichbaren Membranlungenblutfluß ein kompletter pulmonaler Organersatz erreichbar [41, 47]

- Arteriovenöse pumpenlose extrakorporale Lungenassistenz (pECLA oder av-ECLA): Bei diesem pumpenlosen Verfahren, das einen ausreichenden Blutdruck und ein suffizientes HZV voraussetzt, ist lediglich eine hocheffektive CO₂-Elimination zu erreichen [41, 47]
- Venoarterielle ECMO (va-ECMO): Dieses pumpengetriebene Verfahren dient der kombinierten Herz-Lungen-Unterstützung insbesondere bei Rechtsherzversagen [41, 47, 66]

1.2 Beatmungs- und Weaningkonzepte

1.2.1 Beatmungskonzepte

Bei der Intermittend Positive Pressure Ventilation (IPPV), einem volumenkontrollierten Beatmungsverfahren, wird über die Beatmungsmaschine ein vorgegebenes Tidalvolumen in der vorgegebenen Frequenz konstant appliziert. Bei der Synchronized Intermittend Mandatory Ventilation (SIMV), ebenfalls ein volumenkontrolliertes Beatmungsverfahren mit konstanten Tidalvolumina, kann der Patient spontane Atemzüge durchführen, die mit der Beatmungsmaschine synchronisiert werden. Diese spontanen Atemzüge werden durch das Assisted Spontaneous Breathing (ASB) unterstützt, sofern der Patient in der Lage ist, den Respirator zu triggern, d.h. einen ausreichenden Sog (Volumen pro Zeiteinheit) im Beatmungstubus zu erzeugen [44, 49].

Ziel der Beatmung sind eine ausreichende Oxygenierung und Decarboxylierung des Patienten und sowie eine adäquate Protektion der Lunge. Die Zielwerte für die Oxygenierung sind in Abhängigkeit vom Lebensalter und der Grundkrankheit ein arterieller Sauerstoffpartialdruck (paO₂) von 55-80 mmHg und eine periphere pulsoxymetrische Sättigung (SpO₂) von 88-95%. Wird die Beatmung mit kleinen Tidalvolumina, einer möglichst geringen Beatmungsdruckamplitude und einem ausreichenden PEEP-Niveau durchgeführt, wird sie als lungenprotektiv bezeichnet. Den volumenkontrollierten Beatmungsverfahren ist im Rahmen der lungenprotektiven Beatmung der Vorzug zu geben, da nur hier die kontinuierliche Applikation gleichmäßiger Tidalvolumina garantiert werden kann und es bisher keine Studien gibt, die eine Verbesserung des Outcomes bei druckkontrollierter Beatmung belegen. Bei der druckkontrollierten Beatmung (z.B. BIPAP) kann es durch Complianceveränderungen zur Ventilation mit niedrigeren Atemminutenvolumina kommen, wodurch der arterielle Kohlendioxidpartialdruck (paCO₂) im Blut ggf. ansteigen kann. Liegen keine Kontraindikationen vor, wie z.B. ein erhöhter intrakranieller Druck, wird dieser erhöhte Kohlendioxidspiegel (Hyperkapnie) im arteriellen Blut toleriert [82, 83]. Die ggf. entstehende respiratorische Azidose wird bis zu einem pH von 7,2 toleriert („permissive Hyperkapnie“). Eine Erhöhung der Atemfrequenz als primäre Maßnahme zur Verbesserung der CO₂-Elimination ist nur innerhalb gewisser Grenzen möglich, da sonst die Totraumventilation überproportional zunimmt. Danach kann das Tidalvolumen auf 8 ml/kgKg erhöht werden.

1.2.2 Weaningkonzepte

Jede Deeskalation der Beatmungsintensität dient primär dem Ziel, den Patienten vom Respirator zu entwöhnen. Dieser Vorgang wird als Weaning
bezeichnet. Das Weaning von beatmeten Patienten kann man in drei Gruppen einteilen [12]:

- **Unkompliziertes Weaning (60-70%)**: Diese Patienten werden zeitnah extubiert.
- **Schwieriges Weaning (25%)**: Diese Patienten benötigen bis zu sieben Tage bzw. bis zu drei Spontanatmungsversuche bis zur Extubation.
- **Langwieriges Weaning (bis 15%)**: Diese Patienten benötigen länger als sieben Tage bzw. mehr als drei Spontanatmungsversuche bis zur Extubation und haben dabei eine dreifach höhere Mortalität.

<table>
<thead>
<tr>
<th>Wert</th>
<th>Bezeichnung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>Streitlustig</td>
<td>Offenkundig aggressives und gewalttätiges Verhalten, unmittelbare Gefahr für das Personal</td>
</tr>
<tr>
<td>+3</td>
<td>Sehr agitiert</td>
<td>Zieht oder entfernt Schläuche oder Katheter, aggressiv</td>
</tr>
<tr>
<td>+2</td>
<td>Agitiert</td>
<td>Häufige ungezielte Bewegung, atmet gegen das Beatmungsgerät</td>
</tr>
<tr>
<td>+1</td>
<td>Unruhig</td>
<td>Angstlich aber Bewegungen nicht aggressiv oder lebhaft</td>
</tr>
<tr>
<td>0</td>
<td>Aufmerksam und ruhig</td>
<td>Nicht ganz aufmerksam, aber erwacht (Augen öffnen/Blickkontakt) anhaltend bei Ansprache (> 10 Sekunden)</td>
</tr>
<tr>
<td>-1</td>
<td>Schlafriß</td>
<td>Erwacht kurz mit Blickkontakt bei Ansprache (< 10 Sekunden)</td>
</tr>
<tr>
<td>-2</td>
<td>Leichte Sedierung</td>
<td>Bewegung oder Augenöffnung bei Ansprache (aber ohne Blickkontakt)</td>
</tr>
<tr>
<td>-3</td>
<td>Mäßige Sedierung</td>
<td>Keine Reaktion auf Ansprache, aber Bewegung oder Augenöffnung durch körperlichen Reiz</td>
</tr>
<tr>
<td>-4</td>
<td>Tiefe Sedierung</td>
<td>Keine Reaktion auf Ansprache oder körperlichen Reiz</td>
</tr>
<tr>
<td>-5</td>
<td>Nicht erweckbar</td>
<td>Keine Reaktion auf Ansprache oder körperlichen Reiz</td>
</tr>
</tbody>
</table>

Tab. 1.1. Richmond-Agitation and Sedation Scale [65]

Diese tägliche Sedierungspause beschleunigt ein späteres Weaning [65]. Während dieser Pause können die Patienten neurologisch beurteilt werden. Dies geschieht unabhängig vom Weaningpotential. Gibt es keine Kontraindikation für eine geplante Extubation (Tab. 1.2), erfolgt ein täglicher Spontanatmungsversuch. Anzeichen für ein Versagen des Spontanatmungsversuches sind:

- Tachypnoe (>35/min)
- Tachykardie (>140/min)
- Hypertonie ($p_{syst} >180\text{mmHg}$)
- Hypotonie ($p_{syst} <90\text{mmHg}$)
- SaO_2-Abfall (<90%) [20, 23]
Kontraindikationen für die Extubation

| GCS <10 |
| Hochdosierte Katecholamine |
| PEEP ≥ 8 kPa*100 |
| F₁O₂ ≥ 0,5 |
| Fieber >39°C |

Tab. 1.2 Kontraindikationen für die Extubation (GCS = Glasgow Coma Scale, PEEP = positiv endexspiratorischer Druck, F₁O₂ = inspiratorische Sauerstoffkonzentration)

<table>
<thead>
<tr>
<th>Wach?</th>
<th>Ziel Ja!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlucken?</td>
<td>Nein!</td>
</tr>
<tr>
<td>Kräftiger Husten?</td>
<td>Nein!</td>
</tr>
<tr>
<td>Viel Sekret?</td>
<td>Nein!</td>
</tr>
<tr>
<td>Anatomische Veränderungen?</td>
<td>Nein!</td>
</tr>
<tr>
<td>(z.B. Tumor, Verletzungen)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.3 Abfrage der adäquaten Sicherung der Atemwege [20, 46]

Für eine erfolgversprechende Extubation brauchen die Patienten folgende Voraussetzungen [12, 22, 24, 46, 79]:

- Es muss eine ausreichende Oxygenierung vorliegen (paO₂ ≥60mmHg bei F₁O₂ ≤0,4, PEEP ≤8kPa*100).
- Eine ausreichende Spontanventilation mit niedriger Druckunterstützung ohne Erschöpfung über mehrere Stunden
- Anwendung eines Weaningprotokolls (Abb.1.1)
- ausreichende Leistungsfähigkeit der Atemmuskulatur.
- Adäquate Sicherung der Atemwege durch den Patienten. Dabei hilft die Checkliste in Tabelle 1.3
- Tägliche Sedierungspause
- Beachtung der Kontraindikationen (Tab.1.2)

Gelingt der Spontanatmungsversuch nicht, wird der Patient weiter künstlich beatmet und je nach Sedierungsniveau (RASS) ggf. wieder analgosediert.
HELIOS - Weaningprotokoll

<table>
<thead>
<tr>
<th>Datum:</th>
<th>Pat. ID</th>
</tr>
</thead>
</table>

Protokollanwendung ärztlich freigegeben?
- Ja ☐ Nein ☐

Bei Nein - Begründung:

1. Bereit für einen Aufwachversuch?
- Ja ☐ Nein ☐
 - Hirndruckhöhung > 25mmHg?
 - Küh lungsphase bei Z.n. Reanimation?
 - Hypothermie < 30°C?
 - Sedierung aus anderen Gründen erforderlich?

| Alle Fragen mit Nein beantwortet: Aufwachversuch: |
| Stop aller Sedativa, bzw. Dosisanpassung bis Ramsay Score ≤ 2 |
| Weiter mit 2. |

Mindestens eine Frage mit Ja beantwortet:
- *Weaning-Stop!*

2. Bereit für einen Spontanatemversuch?
- Ja ☐ Nein ☐
 - Ramsay ≤ 2?
 - \(F_{iO_2} \leq 0.40 \)?
 - PEEP ≤ 8mbar?
 - Temperatur > 36 °C?

| Alle Fragen mit Ja beantwortet: Spontanatemversuch: |
| Über Tubus 60 min CPAP/ASB (PEEP = 5mbar, ASB = 5mbar) |
| Bei Trachealkanüle 60 min „feuchte Nase“ |
| Weiter mit 3. |

Mindestens eine Frage mit Nein beantwortet:
- *Kein Spontanatemversuch!*

3. Abbruchkriterien des Spontanatemversuches:
- Ja ☐ Nein ☐
 - HF-Änderung > 20% des Ausgangswertes bzw. > 140/min?
 - AF > 35/min o. < 8/min länger als 5 min?
 - \(SaO_2 < 90\% \)?
 - RRystolisch anhaltend > 180mmHg oder < 90mmHg?
 - Hirndruck anhaltend > 25mmHg?

| Alle Fragen mit Nein beantwortet: |
| (nach 60 min) |
| Extubation |
| Ja ☐ Nein ☐ |

Bei Nein - Begründung:

(bei Trachealkanüle Fortführung der Spontanatmung = Entscheidung über Dekanülierung im Verlauf)

Mindestens eine Frage mit Ja beantwortet:
- *Abbruch des Spontanatemversuches!*

| War eine protokollgerechte Durchführung möglich? |
| Ja ☐ Nein ☐ |

Bei Nein (=Abweichungen von den Vorgaben) - Begründung:

| Am Folgetag: |
| Ausschließlich Spontanatmung seit Spontanatemversuch des Vortages? |
| Ja ☐ Nein ☐ |

Bei wiederholtem Weaning-Versagen, Ursachenforschung! Weaningzentrum?

Abb. 1.1 Beispiel eines Weaningprotokolls zur täglichen Anwendung (\(F_{iO_2} \) = inspiratorische Sauerstoffkonzentration, PEEP = positiv endexspiratorischer Druck, CPAP = Continuous Positive Airway Pressure, ASB = Assisted Spontaneous Breathing, HF = Herzfrequenz, AF = Atemfrequenz, \(SaO_2 \) = arterielle Sauerstoffsättigung)
1.3 6ml-Kampagne

1.4 Ziel der Arbeit

In der „6ml Kampagne“ wurde die Umsetzung der lungenprotektiven Beatmung bei allen beatmeten Patienten der teilnehmenden Intensivstationen an den Beatmungstagen eins bis sieben untersucht. Ziel war die Einhaltung einer lungenprotektiven Beatmung bei mehr als 90% der Beatmungspatienten bzw. der Beatmungstage. Untersucht wurde auch, aus welchen Gründen ein Abweichen von den festgelegten Beatmungsparametern notwendig war. Ferner wurde untersucht, warum bei Patienten, die nach dem Protokoll alle Kriterien für ein Weaning vom Beatmungsgerät erfüllten, kein Weaning stattfand und welche
2. Material und Methoden

Die ärztlichen und pflegerischen Mitarbeiter von 50 Intensivstation (davon 14 in Kliniken der Maximalversorgung und 36 in Kliniken der Grund-, Regel- und Schwerpunktversorgung) wurden in der Anwendung eines lungenprotectiven Beatmungsregimes geschult (Abb. 8.1). Die Schulung erfolgte im Jahr 2007 Individuell in den Kliniken unter Zuhilfenahme der Respiratoreinstillungshilfen in den Abbildungen 2.1 und 2.2, sowie weiterführennder Informationen des „Kick off Flyers“ der Kampagne „Jetzt lassen wir die Luft raus…“ (Abb. 8.1). Danach sollte die Beatmung mit einem optimalen Tidalvolumen (V_T) erfolgen, welches nach Körpergröße und Geschlecht zugeordnet wurde (Abb. 2.1). Dieses Tidalvolumen entsprach 6ml/kg idealisiertem Körpergewicht (6ml/kgKG). Die Einstellung des PEEP erfolgte über eine Tabelle, die jeder $F_{\text{r}O_2}$ einen spezifischen PEEP zuordnet (Abb. 2.1) [82]. Als Ziel für eine adäquate Sauerstoffversorgung der Patienten wurde entsprechend der „ARDS net Studie“ ein $p_{a}O_2$ in der arteriellen Blutgasanalyse von $55-80 \text{mmHg}$ und eine $S_{p}O_2$ von $88-95\%$ als unterer Grenzwert vorgegeben [75]. Die Atemfrequenz der kontrollierten Beatmung sollte zwischen 6 und 35 Atemzügen pro Minute liegen, das Verhältnis von Inspiration zu Exspiration (I:E) zwischen 1:1 und 1:3. Der Plateaudruck der Beatmung sollte unter 30kPa*100 liegen und der pH größer als 7,3 bleiben. Der Beatmungsmodus konnte mit kontrolliert (z.B. IPPV, BIPAP) oder assistiert (z.B. CPAP/ASB) den Bedürfnissen der Patienten angepasst gewählt werden. (Abb. 2.1). Die Art ggf. notwendiger Rekrutierungsmanöver wurde nicht vorgegeben. Litten die Patienten unter einer respiratorischen Azidose mit einem pH zwischen 7,20 und 7,25 sollte zunächst das Atemminutenvolumen über die Atemfrequenz angepasst werden. Konnte durch diese Maßnahme kein ausreichender Effekt erzielt werden, sollte das inspiratorische Tidalvolumen auf 8ml/kgKG erhöht werden. Eine medikamentöse Korrektur der Azidose war nicht vorgesehen. Eine Entwöhnung von der Beatmung (Weaning) sollte, sofern keine medizinischen Gründe dagegen sprachen, bei einer $F_{r}O_2 \leq 40\%$ und einem PEEP $\leq 8 \text{kPa*100}$ gestartet werden.
Die Datenerhebung erfolgte zwischen Januar und September 2009. Auf den teilnehmenden Stationen wurden die Daten aller beatmeten Patienten anonymisiert über einen Zeitraum von drei Monaten erhoben. Am ersten Beatmungstag erfolgte die Aufnahme der Patienten mit den Biometrischen Daten, der Diagnose die zur Beatmungspflichtigkeit geführt hatte und der Zuordnung zu einer Patientengruppe (Tab. 2.1). Die Patienten wurden bei Aufnahme in die Studie drei Gruppen mit folgenden Diagnosen zugeordnet:

- Chirurgisch
 - Trauma
 - operativ abdominell
 - operativ thorakal
 - operativ sonstige

- Neurologisch / Neurochirurgisch
 - intrakranielle Blutung (ICB)
 - Apoplex

- Internistisch
 - Sepsis
 - Pneumonie
 - COPD

An jedem Beatmungstag wurden folgende Daten erfasst:

- Die Beatmungsparameter
 - Ggf. der Grund für die Abweichung vom idealen Tidalvolumen
 - Ggf. Gründe für ein Unterlassen des Weanings (Tab. 2.1)

- War eine 45° Oberkörperhochlagerung erfolgt?

auf Normalverteilung und Varianzhomogenität untersucht. Wurde

die "Kriterien erfüllt, kam der t-Test zum Einsatz. Lag keine

Verzierung

Varianzhomogenität vor, so wurde der Mann-Whitney-U Test als

nicht parametrische Alternative gewählt. Es wurden der empirische

Mittelwert (MW) und die einfache Standardabweichung (SD) berechnet.

Beatmungseinstellung für Patienten mit akutem Lungenversagen (ALI/ARDS) entsprechend der ARDSnet Studie (NEJM 2000; 342:1301-8)

<table>
<thead>
<tr>
<th>Beatmungsmodus</th>
<th>Assistierte oder kontrolliert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atemzugvolumen</td>
<td>6 ml/kg errechnetes Körpergewicht</td>
</tr>
<tr>
<td>Plateaudruck</td>
<td>< 30 cm H₂O</td>
</tr>
<tr>
<td>Atemfrequenz und pH Ziel</td>
<td>6–33 / min, pH > 7,3 wenn möglich</td>
</tr>
<tr>
<td>I:E Verhältnis</td>
<td>1:1 – 1:3</td>
</tr>
<tr>
<td>Oxygenierungsziel</td>
<td></td>
</tr>
<tr>
<td>PaO₂, SpO₂</td>
<td>55–80 mmHg 88–95%</td>
</tr>
<tr>
<td>Entwöhnung von der Beatmung</td>
<td>Spontanatmungsversuch mittels PS wenn FiO₂ ≤ 0,4; PEEP ≤ 8 cm H₂O</td>
</tr>
</tbody>
</table>

Tabelle zur PEEP Einstellung in Kombination mit der FiO₂

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0,3</th>
<th>0,4</th>
<th>0,5</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>0,9</th>
<th>0,9</th>
<th>1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Abb. 2.1 Beatmungseinstellung für Patienten mit akutem Lungenversagen (paO₂ = arterieller Sauerstoffpartialdruck, SpO₂ = periphere Sauerstoffsättigung, FiO₂ = inspiratorische Sauerstoffkonzentration, PEEP = positiv endexspiratorischer Druck)
Einstellhilfe des Atenzugvolumens für das errechnete Körpergewicht und das resultierende Atenzugvolumen (V_T) nach der Formel:

$50 + 0,91 \times (\text{Körpergröße} - 152,4)$ bei Männern
$45,5 + 0,91 \times (\text{Körpergröße} - 152,4)$ bei Frauen

<table>
<thead>
<tr>
<th>Körpergröße [cm]</th>
<th>V_T bei Männern [ml]</th>
<th>V_T bei Frauen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>287</td>
<td>260</td>
</tr>
<tr>
<td>152</td>
<td>298</td>
<td>271</td>
</tr>
<tr>
<td>154</td>
<td>309</td>
<td>282</td>
</tr>
<tr>
<td>156</td>
<td>320</td>
<td>293</td>
</tr>
<tr>
<td>158</td>
<td>331</td>
<td>304</td>
</tr>
<tr>
<td>160</td>
<td>341</td>
<td>314</td>
</tr>
<tr>
<td>162</td>
<td>352</td>
<td>325</td>
</tr>
<tr>
<td>164</td>
<td>363</td>
<td>336</td>
</tr>
<tr>
<td>166</td>
<td>374</td>
<td>347</td>
</tr>
<tr>
<td>168</td>
<td>385</td>
<td>358</td>
</tr>
<tr>
<td>170</td>
<td>396</td>
<td>369</td>
</tr>
<tr>
<td>172</td>
<td>407</td>
<td>380</td>
</tr>
<tr>
<td>174</td>
<td>418</td>
<td>391</td>
</tr>
<tr>
<td>176</td>
<td>429</td>
<td>402</td>
</tr>
<tr>
<td>178</td>
<td>440</td>
<td>413</td>
</tr>
<tr>
<td>180</td>
<td>451</td>
<td>424</td>
</tr>
<tr>
<td>182</td>
<td>462</td>
<td>435</td>
</tr>
<tr>
<td>184</td>
<td>473</td>
<td>446</td>
</tr>
<tr>
<td>186</td>
<td>483</td>
<td>456</td>
</tr>
<tr>
<td>188</td>
<td>494</td>
<td>467</td>
</tr>
<tr>
<td>190</td>
<td>505</td>
<td>478</td>
</tr>
<tr>
<td>192</td>
<td>516</td>
<td>489</td>
</tr>
<tr>
<td>194</td>
<td>527</td>
<td>500</td>
</tr>
<tr>
<td>196</td>
<td>538</td>
<td>511</td>
</tr>
<tr>
<td>198</td>
<td>549</td>
<td>522</td>
</tr>
<tr>
<td>200</td>
<td>560</td>
<td>533</td>
</tr>
<tr>
<td>202</td>
<td>571</td>
<td>544</td>
</tr>
<tr>
<td>204</td>
<td>582</td>
<td>555</td>
</tr>
<tr>
<td>206</td>
<td>593</td>
<td>566</td>
</tr>
<tr>
<td>208</td>
<td>604</td>
<td>577</td>
</tr>
<tr>
<td>210</td>
<td>614</td>
<td>587</td>
</tr>
<tr>
<td>212</td>
<td>625</td>
<td>598</td>
</tr>
<tr>
<td>214</td>
<td>636</td>
<td>609</td>
</tr>
<tr>
<td>216</td>
<td>647</td>
<td>620</td>
</tr>
<tr>
<td>218</td>
<td>658</td>
<td>631</td>
</tr>
<tr>
<td>220</td>
<td>669</td>
<td>642</td>
</tr>
</tbody>
</table>

Abb. 2.2 Einstellhilfe für das vorgesehene Tidalvolumen [ml] (V_T = Tidalvolumen, Körpergröße [cm])
<table>
<thead>
<tr>
<th>Biometrische Daten</th>
<th>Diagnosegruppe</th>
<th>Patientengruppe</th>
<th>Grund Abweichung vom vorgegebenen Tidalvolumen</th>
<th>Oberkörperhochlagerung 45° erfolgt</th>
<th>Beatmungs-parameter</th>
<th>Grund kein Weaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>Sepsis</td>
<td>Chirurgisch</td>
<td>Keine Abweichung</td>
<td>Ja</td>
<td>VT_soll</td>
<td>Kein Weaning lt. Plan</td>
</tr>
<tr>
<td>Alter</td>
<td>Pneumonie</td>
<td>Neurologisch / Neurochirurgisch</td>
<td>COPD</td>
<td>Nein, ohne Erklärung</td>
<td>VT_ist</td>
<td>Weiterbeatmung ohne ersichtlichen Grund</td>
</tr>
<tr>
<td>Größe</td>
<td>COPD</td>
<td>Internistisch</td>
<td>Erhöhter Hirndruck</td>
<td>Nein, mit Erklärung</td>
<td>F,O₂</td>
<td>Weaning</td>
</tr>
<tr>
<td>Gewicht</td>
<td>ICB</td>
<td></td>
<td>Spontanatmung</td>
<td></td>
<td>PEEP/F,O₂ nach Vorgabe</td>
<td>Weiterbeatmung, weil Weaning gescheitert</td>
</tr>
<tr>
<td>BMI (Berechnet aus Größe und Gewicht)</td>
<td>Chirurgisch Abdominell</td>
<td>Hyperkapnie</td>
<td></td>
<td>PEEP</td>
<td>Keine Extubation möglich</td>
<td></td>
</tr>
<tr>
<td>VT_soll (berechnet aus Größe und Geschlecht)</td>
<td>Chirurgisch Thorakal</td>
<td>Andere Gründe</td>
<td></td>
<td>paO₂ / F,O₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beatmungsstunden am Erfassungstag</td>
<td>Trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chirurgisch Sonstige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab.2.1 Erfasste Parameter der untersuchten Patienten (VT_soll = errechnetes Tidalvolumen, VT_ist = tatsächliches Tidalvolumen, COPD = chronisch obstruktive Lungenerkrankung, ICB = erhöhter intrakranieller Druck, BMI = Body Mass Index, F,O₂ = inspiratorische Sauerstoffkonzentration, PEEP = positiver endexspiratorischer Druck, paO₂ = arterieller Sauerstoffpartialdruck)
3. Ergebnisse

3.1 Biometrische Daten des Patientenkollektives

Über einen Zeitraum von drei Monaten wurden alle beatmeten Patienten auf 24 Intensivstation, davon 10 in Kliniken der Maximalversorgung und 14 in Kliniken der Grund-, Regel- und Schwerpunktversorgung, in die Studie aufgenommen. In die Auswertung wurden alle Patienten (N=851) aufgenommen, die ein bis sieben Tage beatmet wurden. Die Patienten wurden in die drei Patientengruppen Chirurgisch, Neurologisch/Neurochirurgisch und Internistisch aufgeteilt, wobei die internistischen Patienten mit 41,3% (N=351) die größte Gruppe ausmachten, gefolgt von der Gruppe chirurgisch (35%, N=298) und der Gruppe neurologische/neurochirurgisch (23,7%, N=202). Unterschieden wurde außerdem nach männlichen und weiblichen Patienten. Die Patienten der drei Patientengruppen zeigten bei den Parametern Größe (Tab. 3.1), exspiratorisches Tidalvolumen (Tab. 3.5), Gewicht (Tab. 3.2) und dem Body Mass Index (Tab. 3.4) keine geschlechtsspezifischen Unterschiede. Jedoch wurden internistische Patienten unabhängig vom Geschlecht signifikant kürzer beatmet (Tab. 3.6). Männliche und weibliche Patienten (Tab. 3.3) sind mit 70 Jahren im Durchschnitt gleich alt, jedoch sind die Patienten der chirurgischen Gruppe (73,3Jahre) älter als die der internistischen (68,9 Jahre) und der neurologisch/neurochirurgischen Patientengruppe (68,1 Jahre).
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>176,1</td>
<td>165,2</td>
<td>172,1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,7</td>
<td>6,4</td>
<td>8,9</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>176,4</td>
<td>164,1</td>
<td>171,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,3</td>
<td>9,9</td>
<td>9,8</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>175,9</td>
<td>164,3</td>
<td>171,7</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,7</td>
<td>7,1</td>
<td>9,3</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>176,1</td>
<td>164,6</td>
<td>171,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,4</td>
<td>7,6</td>
<td>9,3</td>
</tr>
</tbody>
</table>

Tab.3.1 Größe [cm] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>85,2</td>
<td>71,7</td>
<td>80,2</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>18,4</td>
<td>16,8</td>
<td>18,9</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>81,5</td>
<td>68,2</td>
<td>76,6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>13,9</td>
<td>15,9</td>
<td>16,0</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>81,7</td>
<td>73,7</td>
<td>78,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>15,9</td>
<td>21,8</td>
<td>18,6</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>82,8</td>
<td>71,6</td>
<td>78,8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>16,4</td>
<td>18,9</td>
<td>18,1</td>
</tr>
</tbody>
</table>

Tab.3.2 Körpergewicht [kg] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>73,4</td>
<td>73,2</td>
<td>73,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>53,8</td>
<td>15,0</td>
<td>43,6</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>69,0</td>
<td>66,4</td>
<td>68,1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>13,9</td>
<td>18,7</td>
<td>15,8</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>67,9</td>
<td>70,8</td>
<td>68,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>14,6</td>
<td>15,6</td>
<td>15,0</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>70,1</td>
<td>70,6</td>
<td>70,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>33,7</td>
<td>16,3</td>
<td>28,6</td>
</tr>
</tbody>
</table>

Tab.3.3 Alter [Jahre] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>26,3</td>
<td>23,8</td>
<td>25,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>8,1</td>
<td>9,3</td>
<td>8,7</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>25,0</td>
<td>23,9</td>
<td>24,6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,8</td>
<td>7,5</td>
<td>7,1</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>25,9</td>
<td>22,4</td>
<td>24,6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,1</td>
<td>12,3</td>
<td>9,1</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>25,8</td>
<td>23,3</td>
<td>24,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,0</td>
<td>10,3</td>
<td>8,5</td>
</tr>
</tbody>
</table>

Tab.3.4 Body Mass Index (BMI) nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
Abb. 3.1 Body Mass Index (BMI) nach Fachrichtung und Geschlecht
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>428,8</td>
<td>342,4</td>
<td>396,5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>41,7</td>
<td>34,8</td>
<td>57,4</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>430,5</td>
<td>336,8</td>
<td>396,5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>34,5</td>
<td>54,4</td>
<td>62,1</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>427,2</td>
<td>337,5</td>
<td>395,2</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>41,9</td>
<td>38,8</td>
<td>59,3</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>428,5</td>
<td>339,1</td>
<td>395,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>40,2</td>
<td>41,6</td>
<td>59,2</td>
</tr>
</tbody>
</table>

Tab.3.5 Exspiratorisches Tidalvolumen [ml] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
Abb. 3.2 Exspiratorisches Tidalvolumen [ml] nach Fachrichtung und Geschlecht
<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Statistik</th>
<th>männlich</th>
<th>weiblich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>chirurgisch</td>
<td>Anzahl</td>
<td>187</td>
<td>111</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>204,0</td>
<td>179,6</td>
<td>195,1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>382,3</td>
<td>384,0</td>
<td>382,2</td>
</tr>
<tr>
<td>Neurologisch/Neurochirurgisch</td>
<td>Anzahl</td>
<td>128</td>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>23,7</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>221,5</td>
<td>182,0</td>
<td>207,5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>274,7</td>
<td>197,0</td>
<td>250,1</td>
</tr>
<tr>
<td>Internistisch</td>
<td>Anzahl</td>
<td>226</td>
<td>125</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>155,6</td>
<td>157,7</td>
<td>156,4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>208,5</td>
<td>189,3</td>
<td>200,9</td>
</tr>
<tr>
<td>Total</td>
<td>Anzahl</td>
<td>541</td>
<td>310</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>63,6</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>188,1</td>
<td>170,2</td>
<td>181,4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>292,0</td>
<td>266,3</td>
<td>282,6</td>
</tr>
</tbody>
</table>

Tab.3.6 Beatmungsdauer [Stunden (h)] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)
Abb. 3.3 Beatmungsdauer [Stunden (h)] nach Fachrichtung und Geschlecht
3.2 Beatmungsparameter

3.2.1 Abweichung von den vorgesehenen Beatmungsparametern

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistik</th>
<th>Korrekte Einstellung</th>
<th>COPD</th>
<th>ICP</th>
<th>Spontanatmung</th>
<th>Hyperkapnie</th>
<th>andere</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT [ml]</td>
<td>Beatmungstage</td>
<td>2677</td>
<td>189</td>
<td>292</td>
<td>799</td>
<td>78</td>
<td>311</td>
<td>4346</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61,6</td>
<td>4,4</td>
<td>6,7</td>
<td>18,4</td>
<td>1,8</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>311,6</td>
<td>410,3</td>
<td>471,8</td>
<td>450,4</td>
<td>496,7</td>
<td>456,6</td>
<td>365,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>198,4</td>
<td>190,0</td>
<td>112,3</td>
<td>194,7</td>
<td>127,1</td>
<td>124,7</td>
<td>199,7</td>
</tr>
<tr>
<td>PEEP [100*kPa]</td>
<td>Beatmungstage</td>
<td>2677</td>
<td>189</td>
<td>292</td>
<td>799</td>
<td>78</td>
<td>311</td>
<td>4346</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61,6</td>
<td>4,4</td>
<td>6,7</td>
<td>18,4</td>
<td>1,8</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>7,9</td>
<td>7,9</td>
<td>8,1</td>
<td>7,1</td>
<td>9,7</td>
<td>9,1</td>
<td>7,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2,4</td>
<td>2,5</td>
<td>3,3</td>
<td>2,4</td>
<td>2,8</td>
<td>2,7</td>
<td>2,6</td>
</tr>
<tr>
<td>F_iO_2</td>
<td>Beatmungstage</td>
<td>2677</td>
<td>189</td>
<td>292</td>
<td>799</td>
<td>78</td>
<td>311</td>
<td>4346</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>61,6</td>
<td>4,4</td>
<td>6,7</td>
<td>18,4</td>
<td>1,8</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>44,2</td>
<td>42,2</td>
<td>41,0</td>
<td>38,1</td>
<td>54,9</td>
<td>47,9</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>14,8</td>
<td>11,3</td>
<td>12,1</td>
<td>8,9</td>
<td>24,0</td>
<td>16,4</td>
<td>14,3</td>
</tr>
</tbody>
</table>

Tab.3.7 Gründe für die Abweichung vom Beatmungsprotokoll (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, F_iO_2 = inspiratorische Sauerstoffkonzentration, COPD = chronisch obstruktive Lungenerkrankung, ICP = erhöhter intrakranieller Druck)

Bei den 851 Patienten wurden 4346 Beatmungstage (Durchschnittliche Beatmungsdauer 5,00 Tage) untersucht. Bei der Beurteilung, ob die vorgesehenen Beatmungsparameter eingehalten wurden, zeigte sich an 61,6% (2677 Tage) der Beatmungstage eine korrekte Einstellung des exspiratorischen Tidalvolumens. An 4,4% (189 Tage) der Beatmungstage wurde ein signifikant erhöhtes exspiratorisches Tidalvolumen auf Grundlage einer COPD dokumentiert, an 6,7% (292 Tage) der Tage wegen eines erhöhten Hirndruckes, an 1,8% (78 Tage) der Tage auf Grund einer Hyperkapnie und an 7,2% (311 Tage) der Tage wurden andere Gründe für ein erhöhtes VT_{exp} angeführt. Spontanatmung führte an 18,4% (799 Tage) der Tage zu einem erhöhten exspiratorischen Tidalvolumen. Eine korrekte Einstellung des PEEP...
wurde an 61,6% der Beatmungstage dokumentiert. COPD (4,4%), ICP (6,7%), Hyperkapnie (1,8%) und andere Gründe (7,2%) führten zu einer Erhöhung des PEEP, lediglich die Spontanatmung (18,4%) zu einer Senkung des PEEP.

Abb. 3.4 Gründe für die Abweichung vom Beatmungsprotokoll beim exspiratorischen Tidalvolumen [ml] (COPD = chronisch obstruktive Lungenerkrankung, ICP = erhöhter intrakranieller Druck)

Die korrekte Einstellung der F\textsubscript{2}O\textsubscript{2} wurde an 61,6% der Beatmungstage dokumentiert, COPD (4,4%), ICP (6,7%) und Spontanatmung (18,4%) führten zu einer Verringerung der F\textsubscript{2}O\textsubscript{2}. Lediglich Hyperkapnie (1,8%) und andere Gründe (7,2%) führten zu einer Erhöhung der F\textsubscript{2}O\textsubscript{2}.
Abb. 3.5 Gründe für die Abweichung vom Beatmungsprotokoll beim PEEP [100*kPa] (PEEP = positiv endexspiratorischer Druck, COPD = chronisch obstruktive Lungenerkrankung, ICP = erhöhter intrakranieller Druck)
Abb. 3.6 Gründe für die Abweichung vom Beatmungsprotokoll bei der F_{iO_2}
(F_{iO_2} = inspiratorische Sauerstoffkonzentration, COPD = chronisch obstruktive Lungenerkrankung, ICP = erhöhter intrakranieller Druck)
3.2.2 Selbsteinschätzung

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistik</th>
<th>Protokoll nicht eingehalten</th>
<th>Protokoll eingehalten</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT [ml]</td>
<td>Beatmungstage</td>
<td>1661</td>
<td>2685</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>38,2</td>
<td>61,8</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>489,5</td>
<td>404,4</td>
<td>436,9</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>174,5</td>
<td>83,9</td>
<td>132,9</td>
</tr>
<tr>
<td>PEEP [100*kPa]</td>
<td>Beatmungstage</td>
<td>1639</td>
<td>2707</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>37,7</td>
<td>62,3</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>8,0</td>
<td>7,7</td>
<td>7,9</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>2,9</td>
<td>2,4</td>
<td>2,6</td>
</tr>
<tr>
<td>F\textsubscript{i}O\textsubscript{2}</td>
<td>Beatmungstage</td>
<td>1643</td>
<td>2703</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>37,8</td>
<td>62,2</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>43,2</td>
<td>43,2</td>
<td>43,2</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>14,2</td>
<td>14,8</td>
<td>14,6</td>
</tr>
</tbody>
</table>

Tab. 3.8 Selbsteinschätzung der Einhaltung des Beatmungsprotokolls (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, F\textsubscript{i}O\textsubscript{2} = inspiratorische Sauerstoffkonzentration)

In der Selbsteinschätzung wurde das Protokoll beim exspiratorischen Tidalvolumen an 61,8% der Beatmungstage (2685 Tage) eingehalten, beim PEEP in 62,3% (2707 Tage) und bei der inspiratorischen Sauerstoffkonzentration in 62,2% der Beatmungstage (2703 Tage). Wurde das exspiratorische Tidalvolumen eingehalten, betrug es in Schnitt 404ml, wurde es nicht eingehalten, 489ml. Wurde der PEEP nach Beatmungsprotokoll eingestellt, betrug er im Schnitt 7,7 kPa*100, wurde das Protokoll nicht eingehalten 8 kPa*100. Die F\textsubscript{i}O\textsubscript{2} betrug bei eingehaltenem und bei nicht eingehaltenem Protokoll 0,43.
Abb. 3.7 Selbsteinschätzung der Einhaltung des Beatmungsprotokolls beim exspiratorischen Tidalvolumen [ml]
3.2.3 Objektive Beurteilung der Einhaltung der vorgesehenen Beatmungsparameter

Bei allen in die Studie eingeschlossenen Patienten wurden die Beatmungstage eins bis sieben ausgewertet. Wurden die vorgegebenen Beatmungsparameter eingehalten (0 in Tab. 3.9 bzw. Abb. 3.8), was an 19,9% oder 864 der Tage im Beobachtungszeitraum der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 232ml, der PEEP 9,7 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,55. Waren die Patienten im Weaning (1 in Tab. 3.9 bzw. Abb. 3.8), was an 46,5% oder 2023 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 439ml, der PEEP 6,5 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,36. War das exspiratorische Tidalvolumen laut Protokoll zu hoch (2 in Tab. 3.9 bzw. Abb. 3.8), was an 5,2% oder 226 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 490ml, der PEEP 9,8 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,55. War laut Protokoll der PEEP zu hoch (4 in Tab. 3.9 bzw. Abb. 3.8), was an 1,5% (65) der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 413ml, der PEEP 13,1 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,6. Waren laut Protokoll das exspiratorische Tidalvolumen und der PEEP zu hoch (6 in Tab. 3.9 bzw. Abb. 3.8), was an 1% oder 45 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 511ml, der PEEP 13,4 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,55. War der PEEP laut Protokoll zu niedrig gewählt (8 in Tab. 3.9 bzw. Abb. 3.8), was an 2,5% oder 110 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 399ml, der PEEP 8,9 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,75. Waren laut Protokoll der PEEP zu niedrig und das exspiratorische Tidalvolumen zu hoch (10 in Tab. 3.9 bzw. Abb. 3.8), was an 1,8% oder 78 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 506ml, der PEEP 7,9 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,7. War das Verhältnis von inspiratorischer Sauerstoffkonzentration zu PEEP nicht korrekt (16 in Tab. 3.9 bzw. Abb. 3.8), was an 5,7% oder 247 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 402ml, der PEEP 9,4 kPa*100 und die F\textsubscript{O\textsubscript{2}} 0,45. War das Verhältnis von inspiratorischer
Sauerstoffkonzentration zu PEEP nicht korrekt und das exspiratorische Tidalvolumen zu hoch (18 in Tab. 3.9 bzw. Abb. 3.8), was an 5,6% oder 243 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 520ml, der PEEP 9,9 kPa*100 und die F\textsubscript{O2} 0,41.

Wurden die Patienten nichtinvasiv beatmet (32 in Tab. 3.9 bzw. Abb. 3.8), was an 10,2% oder 445 der beobachteten Beatmungstage der Fall war, betrug das exspiratorische Tidalvolumen im Durchschnitt 76ml, der PEEP 7,7 kPa*100 und die F\textsubscript{O2} 0,46.

Abb. 3.8 Objektive Beurteilung Tidalvolumen [ml] Legende in Tab.3.10
<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistik</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>16</th>
<th>18</th>
<th>32</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT [ml]</td>
<td>Beatmungstage</td>
<td>864</td>
<td>2023</td>
<td>226</td>
<td>65</td>
<td>45</td>
<td>110</td>
<td>78</td>
<td>247</td>
<td>243</td>
<td>445</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>19,9</td>
<td>46,5</td>
<td>5,2</td>
<td>1,5</td>
<td>1,0</td>
<td>2,5</td>
<td>1,8</td>
<td>5,7</td>
<td>5,6</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>232,9</td>
<td>439,9</td>
<td>490,9</td>
<td>413,4</td>
<td>511,5</td>
<td>399,2</td>
<td>506,0</td>
<td>402,8</td>
<td>520,3</td>
<td>76,1</td>
<td>367,0</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>205,7</td>
<td>103,3</td>
<td>106,8</td>
<td>53,4</td>
<td>80,3</td>
<td>66,5</td>
<td>120,7</td>
<td>65,5</td>
<td>110,8</td>
<td>258,7</td>
<td>199,3</td>
</tr>
<tr>
<td>PEEP [100*kPa]</td>
<td>Beatmungstage</td>
<td>864</td>
<td>2023</td>
<td>226</td>
<td>65</td>
<td>45</td>
<td>110</td>
<td>78</td>
<td>247</td>
<td>243</td>
<td>445</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>19,9</td>
<td>46,5</td>
<td>5,2</td>
<td>1,5</td>
<td>1,0</td>
<td>2,5</td>
<td>1,8</td>
<td>5,7</td>
<td>5,6</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>9,7</td>
<td>6,5</td>
<td>9,7</td>
<td>13,1</td>
<td>13,5</td>
<td>8,9</td>
<td>7,9</td>
<td>9,4</td>
<td>9,9</td>
<td>7,7</td>
<td>7,9</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>2,0</td>
<td>1,4</td>
<td>1,6</td>
<td>2,1</td>
<td>4,2</td>
<td>2,7</td>
<td>2,8</td>
<td>2,6</td>
<td>2,9</td>
<td>4,3</td>
<td>2,6</td>
</tr>
<tr>
<td>F_iO_2</td>
<td>Beatmungstage</td>
<td>864</td>
<td>2023</td>
<td>226</td>
<td>65</td>
<td>45</td>
<td>110</td>
<td>78</td>
<td>247</td>
<td>243</td>
<td>445</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>19,9</td>
<td>46,5</td>
<td>5,2</td>
<td>1,5</td>
<td>1,0</td>
<td>2,5</td>
<td>1,8</td>
<td>5,7</td>
<td>5,6</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td>54,5</td>
<td>35,7</td>
<td>54,9</td>
<td>60,4</td>
<td>55,5</td>
<td>74,9</td>
<td>70,2</td>
<td>44,9</td>
<td>41,3</td>
<td>45,5</td>
<td>43,3</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>11,8</td>
<td>6,4</td>
<td>8,7</td>
<td>10,9</td>
<td>7,0</td>
<td>20,8</td>
<td>19,1</td>
<td>14,1</td>
<td>12,2</td>
<td>12,2</td>
<td>14,5</td>
</tr>
</tbody>
</table>

Tab. 3.9 Objektive Beurteilung der Einhaltung des Protokolls (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, F_iO_2 = inspiratorische Sauerstoffkonzentration, Legende in Tab. 3.10)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ok laut Protokoll</td>
</tr>
<tr>
<td>1</td>
<td>Weaning</td>
</tr>
<tr>
<td>2</td>
<td>VT zu hoch</td>
</tr>
<tr>
<td>4</td>
<td>PEEP zu hoch</td>
</tr>
<tr>
<td>6</td>
<td>VT zu hoch + PEEP zu hoch</td>
</tr>
<tr>
<td>8</td>
<td>PEEP zu niedrig</td>
</tr>
<tr>
<td>10</td>
<td>PEEP zu niedrig + VT zu hoch</td>
</tr>
<tr>
<td>16</td>
<td>F_iO_2/PEEP nicht nach Protokoll</td>
</tr>
<tr>
<td>18</td>
<td>F_iO_2/PEEP nicht nach Protokoll + VT zu hoch</td>
</tr>
<tr>
<td>32</td>
<td>NIV</td>
</tr>
</tbody>
</table>

Tab.3.10 Legende zu Tab.3.9, Abb.3.8 (VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, F_iO_2 = inspiratorische Sauerstoffkonzentration, NIV = nichtinvasive Beatmung)
3.3 Weaningfehler

War eine Weiterbeatmung laut Protokoll indiziert (an 52,1% oder 2264 der beobachteten Tage,) betrug das exspiratorische Tidalvolumen im Durchschnitt 305ml, der PEEP 9,4 kPa*100 und die F\textsubscript{2}O\textsubscript{2} 0,51. Gab es laut Protokoll keinen Grund für eine Weiterbeatmung (an 0,2% oder 10 der beobachteten Tage), betrug das exspiratorische Tidalvolumen im Durchschnitt 388ml, der PEEP 5,2 kPa*100 und die F\textsubscript{2}O\textsubscript{2} 0,33. Waren die Patienten im Weaning (an 19,9% oder 866 der beobachteten Tage), betrug das exspiratorische Tidalvolumen im Durchschnitt 448ml, der PEEP 6,8 kPa*100 und die F\textsubscript{2}O\textsubscript{2} 0,38. Gab es ein Weaningversagen (an 11,1% oder 482 der beobachteten Tage), betrug das exspiratorische Tidalvolumen im Durchschnitt 424ml, der PEEP 6,7 kPa*100 die F\textsubscript{2}O\textsubscript{2} 0,38. Sprachen medizinische Gründe gegen eine Extubation (an 16,7% oder 724 der beobachteten Tage), betrug das exspiratorische Tidalvolumen im Durchschnitt 424ml, der PEEP 6,8 kPa*100 und die F\textsubscript{2}O\textsubscript{2} 0,38.
Abb. 3.9 Weaningfehler Tidalvolumen [ml]
Abb. 3.10 Weaningfehler PEEP [100*kPa] (PEEP = positiv endexspiratorischer Druck)
Abb. 3.11 Weaningfehler FIO_2 (FIO_2 = inspiratorische Sauerstoffkonzentration)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistik</th>
<th>Weiterbeatmung laut Protokoll Ok</th>
<th>Kein Grund für Weiterbeatmung</th>
<th>Weaning</th>
<th>Weaning-versagen</th>
<th>Medizinische Gründe gegen Extubation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT [ml]</td>
<td>Beatmungstage</td>
<td>2264</td>
<td>10</td>
<td>866</td>
<td>482</td>
<td>724</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td>52,1</td>
<td>0,2</td>
<td>19,9</td>
<td>11,1</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>305,1</td>
<td>388,3</td>
<td>448,6</td>
<td>424,4</td>
<td>424,7</td>
<td>367,0</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>236,9</td>
<td>163,2</td>
<td>110,9</td>
<td>127,2</td>
<td>108,7</td>
<td>199,3</td>
<td></td>
</tr>
<tr>
<td>PEEP [100* kPa]</td>
<td>Beatmungstage</td>
<td>2264</td>
<td>10</td>
<td>866</td>
<td>482</td>
<td>724</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td>52,1</td>
<td>0,2</td>
<td>19,9</td>
<td>11,1</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>9,4</td>
<td>5,2</td>
<td>6,8</td>
<td>6,7</td>
<td>6,8</td>
<td>7,9</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2,9</td>
<td>0,6</td>
<td>1,6</td>
<td>1,7</td>
<td>1,8</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{O}2</td>
<td>Beatmungstage</td>
<td>2264</td>
<td>10</td>
<td>866</td>
<td>482</td>
<td>724</td>
<td>4346</td>
</tr>
<tr>
<td>%</td>
<td>52,1</td>
<td>0,2</td>
<td>19,9</td>
<td>11,1</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>50,7</td>
<td>33,5</td>
<td>37,7</td>
<td>37,6</td>
<td>38,1</td>
<td>43,3</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>14,7</td>
<td>4,1</td>
<td>14,1</td>
<td>8,5</td>
<td>9,8</td>
<td>14,5</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.11 Weaningfehler (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, F\textsubscript{O}2 = inspiratorische Sauerstoffkonzentration)
3.4 Zusammenfassung der Ergebnisse

Über einen Zeitraum von drei Monaten wurden alle beatmeten Patienten (N=851) von 24 Intensivstationen, für die Beatmungstage eins bis sieben, in die Studie aufgenommen. Sie wurden in die Behandlungsgruppen chirurgisch, neurologisch/neurochirurgisch und internistisch eingeteilt. Internistische Patienten hatten insgesamt eine kürzere Beatmungsdauer. Die Patienten, männlich wie weiblich waren im Durchschnitt 70 Jahre alt. Bei der Einstellung der Beatmungsparameter Tidalvolumen, PEEP und FiO2 fand sich an 61,6% der Beatmungstage eine korrekte Einstellung. Ein erhöhtes Tidalvolumen fand sich bei Patienten mit COPD, Spontanatmung, Hyperkapnie und erhöhten intrakraniellen Drücken. In der täglich geforderten Selbsteinschätzung über die korrekte Einstellung der Beatmungsparameter wurde beim Tidalvolumen von 61,8% der Anwender eine korrekte Einhaltung der Parameter angegeben. Dies konnte aber in der objektiven Beurteilung der Beatmungsparameter nicht verifiziert werden. Nur bei wenigen Patienten (0,2%) gab es keinen Grund für eine weitere Beatmung, 19,9% befanden sich im Weaning, 11,1% wurden als Weaningversager eingestuft und bei 68,8% der Patienten gab es medizinische Gründe, die gegen ein Weaning bzw. eine Extubation sprachen.
4. Diskussion

In der „ARDS net Studie“ wird die Anwendung einer lungenprotektiven Beatmung empfohlen [82]. Um die Umsetzung zu forcieren, wurde in einem privaten Klinikkontzern die Kampagne „6ml-Jetzt lassen wir die Luft raus“ ins Leben gerufen. Ziel war die Anwendung der lungenprotektiven Beatmung an mehr als 90% der Beatmungstage. Das Tidalvolumen wurde nach dem auf Geschlecht und Körpergröße idealisierten Körpergewicht mit 6ml/kgKG berechnet (Abb. 2.2). Der PEEP und die FIO₂ wurden nach den Empfehlungen der „ARDS net Studie“ (Abb. 2.1) justiert.

4.1 Biometrische Daten

Zum Vergleich der von uns untersuchten Patienten mit dem Bundesdurchschnitt wurde der Mikrozensus der Bundesregierung vom Jahr 2009 herangezogen [75]. Der Mikrozensus ist eine amtliche Repräsentationsstatistik über die Bevölkerung und den Arbeitsmarkt, die alle vier Jahre das Zusatzprogramm „Fragen zur Gesundheit“ enthält. 2009 wurden 340.000 Haushalte mit 700.000 Personen, was ca. 1% der Bundesdeutschen Bevölkerung entspricht, befragt. Im Mikrozensus hatten Männer im Alter von 70-75 Jahren eine durchschnittliche Größe von 176 cm, im untersuchten Kollektiv lag die Größe ebenfalls bei 176cm. Bei den Frauen waren es 163 cm im Bundesdurchschnitt vs. 164 cm bei den untersuchten Patienten [75]. Männer wogen im Bundesdurchschnitt 83,3 kg vs. 82,8 kg bei den untersuchten Patienten, Frauen 71,3 kg vs. 71,6 kg. Beim BMI lagen die untersuchten Männer bei 25,8 vs. 27,4 im Mikrozensus, die Frauen bei 23,3 vs. 26,8. Es gibt keine Hinweise auf ein selektiertes Patientenkollektiv und damit auch keine Erklärung für den niedrigeren BMI der von uns untersuchten Patienten. Bei der Betrachtung von ARDS-Patienten mit der Co-Morbidität Adipositas rechnet man mit einem schlechteren Outcome gegenüber normalgewichtigen Patienten. Solange bei diesen Patienten mit einem BMI >30 ein singuläres Organversagen der Lunge auftritt, haben sie kein schlechteres Outcome als Patienten mit einem „normalen“ BMI. Sobald aber zwei und mehr Organsysteme betroffen sind, wird das Outcome adipöser Patienten schlechter [7, 8, 40, 60, 74]. Es zeigt sich zudem, dass adipöse
Frauen ein besseres Outcome haben als adipöse Männer [92]. Es scheint, dass nicht der BMI, sondern vielmehr die Hip-Waist-Ratio den Hinweis auf die Morbidität der Patienten gibt [62, 93]. Erwähnenswert ist auch das „Obesity Paradoxon“, welches besagt, dass Patienten mit einem BMI bis 30 ein besseres Outcome haben, als Patienten mit einem BMI<20 [76]. Auch gibt es keine Erklärung für die kürzeren Beatmungszeiten von Frauen in der chirurgischen und der neurologisch/neurochirurgischen Gruppe (chirurgisch 179 vs. 204 Std. bzw. neurologisch/neurochirurgisch 197 vs. 274 Std.). In der internistischen Gruppe sind Männer und Frauen gleich lang beatmet (155 vs. 157 Std.), aber insgesamt deutlich kürzer als die beiden anderen Gruppen. Hier könnte die vermehrte Anwendung nichtinvasiver Beatmung bei medizinischen Krankheitsbildern (z.B. COPD) zum Tragen kommen.

4.2 Abweichungen von den vorgesehenen Beatmungsparametern.
Bei 851 Patienten wurden 4346 Beatmungstage untersucht. Bei der Beurteilung, ob die vorgesehenen Beatmungsparameter eingehalten wurden, zeigte sich an 61,6% oder 2677 der Beatmungstage eine korrekte Einstellung des exspiratorischen Tidalvolumens mit durchschnittlich 311ml. An 4,4% oder 189 der Beatmungstage wurde ein erhöhtes exspiratorisches Tidalvolumen von 410ml auf Grundlage einer COPD dokumentiert, an 6,7% oder 292 der Tage wegen eines erhöhten Hirndruckes (VT = 471ml), an 1,8% oder 78 der Tage auf Grund einer Hyperkapnie (VT = 496ml) und an 7,2% oder 311 der Tage wurden andere Gründe für ein erhöhtes Tidalvolumen (VT = 456ml) angeführt. Spontanatmung führte an 18,4% oder 799 der Tage zu einem erhöhten exspiratorischen Tidalvolumen von 450ml. Es gibt einige nachvollziehbare Gründe für Abweichungen von den im Protokoll vorgesehenen Beatmungsparametern, die sich auf ein idealisiertes Körpergewicht beziehen und ein Tidalvolumen von 6ml/kg KG vorsehen [17, 43]. Dies sind ein erhöhter Hirndruck, eine Hyperkapnie mit einem pH zwischen 7,2 und 7,3, und spontan atmende Patienten (NIV oder CPAP/ASB). Haben die Patienten eine Erhöhung des intrakraniellen Druckes muss der paCO₂ im Normbereich gehalten werden. Ein erhöhter paCO₂ geht über die Weitstellung der Hirngefäße und das daraus
resultierende erhöhte intrakranielle Blutvolumen mit einer Erhöhung des Hirndruckes einher. Bei diesen Patienten muss das Atemminutenvolumen, unter Inkaufnahme höherer Tidalvolumina (VT = 471ml), angepasst werden [82, 83]. Eine Hyperkapnie wurde bis zu einem pH ≥7,25 toleriert, sofern keine Kontraindikationen für die Erhöhung des paCO₂ vorlagen [34]. Sank der pH-Wert z.B. auf Grund der Hyperkapnie auf Werte zwischen 7,20 und 7,25 wurde das Tidalvolumen laut Beatmungsprotokoll auf 8 ml/kg KG erhöht (VT bei Hyperkapnie = 496ml). Es galt aber, bei dieser Erhöhung des Tidalvolumens auf die Begrenzung des Beatmungsdruckes ≤30 kPa*100 zu achten, um eine beatmungsinduzierte Schädigung der Lunge zu vermeiden [13, 45, 50]. Die Anpassung von PEEP und FiO₂ erfolgte nach den Vorgaben im Beatmungsprotokoll (Abb. 2.1) [43]. Atmeten die Patienten in einem druckunterstützten Modus spontan, steuerten sie ihre Tidalvolumina in einem gewissen Rahmen selbst. Denn auch bei einer entsprechend niedrigen Druckunterstützung fanden sich höhere Volumina (VT = 450ml), die aber mit Spitzendrücken unter 30 kPa*100 einhergingen. Die „ARDS net Studie“ bezieht sich aber nur auf die kontrolliert beatmeten Patienten, daher sollten die Patienten im Spontanatemmodus (NIV oder CPAP/ASB) nicht nach den Kriterien der lungenprotektiven Beatmung bewertet werden.

In der Selbsteinschätzung wurde das Beatmungsprotokoll beim exspiratorischen Tidalvolumen an 61,8% oder an 2685 von 4346 Beatmungstagen eingehalten, beim PEEP in 62,3% oder an 2707 von 4346 Beatmungstagen und bei der inspiratorischen Sauerstoffkonzentration in 62,2% der Beatmungstage bzw. an 2703 von 4346 Tagen. Wurde das exspiratorische Tidalvolumen eingehalten betrug es im Schnitt 404ml, wurde es nicht eingehalten 489ml. Wurde der PEEP nach Beatmungsprotokoll eingestellt, betrug er im Schnitt 7,7 kPa*100, wurde das Protokoll nicht eingehalten 8 kPa*100. Die F_iO₂ betrug bei eingehaltenem und bei nicht eingehaltenem Protokoll 0,43. Die Selbsteinschätzung über die protokollgemäße Einstellung der Beatmungsparameter traf in den meisten Fällen zu. War die Einstellung in der Selbsteinschätzung in Ordnung (an 61,8% der 4346 untersuchten Beatmungstage) fand sich ein durchschnittliches Tidalvolumen von 404ml. An
1661 (38,2%) der Beatmungstage entsprach die Einstellung des Tidalvolumens nicht dem Protokoll (VT = 489ml). Nimmt man nun die Werte aller Patienten an den 4346 Beatmungstagen fanden sich mit einem Tidalvolumen von 436ml, einem PEEP von 7,86 kPa*100 und einer F\textsubscript{O}\textsubscript{2} von 0,4. Diese Patienten hatten eine niedrige F\textsubscript{O}\textsubscript{2}, einen entsprechend niedrigen PEEP und eine adäquate Oxygenierung in der arteriellen Blutgasanalyse. Wenn sie außerdem im Spontanatemversuch keine Zeichen der Erschöpfung zeigten, ausreichende Schutzreflexe und eine Körpertemperatur unter 38,5°C (Tab. 1.3) hatten und keine medizinischen Gründe gegen eine Extubation sprachen (Tab. 1.2), war bei diesen Patienten ein Weaning indiziert [12, 20, 22, 24, 46]. Warum das Weaning nicht bei allen diesen Patienten durchgeführt wurde, ist nicht nachvollziehbar.

Im Rahmen der durchgeführten Untersuchung wurden die täglich erhobenen Beatmungswerte objektiv, EDV-gestützt, untereinander (F\textsubscript{O}\textsubscript{2} und PEEP) und mit dem vorgegeben Tidalvolumen der Patienten verglichen. Betrachtet man hier zuerst das laut Beatmungsprotokoll fehlerhafte Verhältnis von F\textsubscript{O}\textsubscript{2} zu PEEP, so musste dies kein Grund für ein fehlerhaft hohes Tidalvolumen sein (war F\textsubscript{O}\textsubscript{2}/PEEP nicht nach Protokoll entsprach das Tidalvolumen an 5,7% der Beatmungstage dem Protokoll und an 5,6% nicht dem Protokoll). Bei dieser Betrachtung der Beatmungsdaten der ein bis sieben Tage beatmeten Patienten fanden sich aber im Gegensatz zur Selbsteinschätzung über die protokollgemäße Einhaltung der Beatmungsparameter nur an 38,3% der Beatmungstage eine protokollgemäße Beatmung der Patienten. Von den 61,7% der Patienten, die nicht nach dem vorgegebenen Beatmungsprotokoll beatmet wurden befanden sich aber 46,5% im Weaning. Hier wurden, in Gegensatz zu den anderen Ergebnissen, Patienten mit einer Nichtinvasiven Beatmung (NIV) gesondert betrachtet. Die ausschließliche Darstellung der nichtinvasiv beatmeten Patienten in der Rubrik „Objektive Beurteilung der Einhaltung der vorgesehenen Beatmungsparameter“ ist als Fehler im Studiendesign zu werten.

Bei weiterführenden Untersuchungen müssen sowohl Patienten mit einer nichtinvasiven Beatmung als auch Patienten mit Spontanatmung (z.B. CPAP/ASB) gesondert betrachtet werden. Fasst man die Ergebnisse aus der
Tabelle 3.9 zusammen fand man an 788 (18,1%) von 4346 Beatmungstagen ein nicht dem Beatmungsprotokoll entsprechendes Verhältnis von \(F_i O_2 \) und PEEP. An 366 (8,4%) der Tage mit einem zu hohen Tidalvolumen und an 422 (9,7%) Beatmungstagen mit einem dem Beatmungsprotokoll entsprechenden Tidalvolumen. Differieren die eigene Einschätzung über die Einhaltung der im Protokoll vorgegebenen Beatmungsparameter im Gegensatz zur objektiven Überprüfung weiterhin in diesem Maße, muss eine entsprechende Kontrollinstanz im klinischen Alltag eingeführt werden.

Im Rahmen der Kampagne „6ml-Jetzt lassen wir die Luft raus“ war als Ziel definiert, die Einhaltung der vorgegebenen Beatmungsparameter bei mehr als 90% der Beatmungspatienten bzw. an mehr als 90% der Beatmungstage zu erreichen.

Nach der täglichen Selbsteinschätzung über die Einhaltung der vorgesehenen Beatmungsparameter wurde das Kampagnenziel beim Tidalvolumen an 61,8% (2685 von 4346 Tagen) der Beatmungstage, beim PEEP an 62,3% (2707 von 4346 Tagen) und bei der \(F_i O_2 \) an 62,2% (2703 von 4346 Tagen) der Beatmungstage erreicht. Bei der objektiven Beurteilung wurde nur an 19,9% (864 von 4346 Tagen) der Beatmungstage das vorgegebene Beatmungsziel erreicht, jedoch befanden sich die Patienten an 46,5% (2023 von 4346 Tagen) der Beatmungstage im Weaning und wurden an 10,2% (445 von 4346 Tagen) der Beatmungstage nichtinvasiv beatmet (NIV) [15].

4.3 Weaningversager

Erfüllten die beatmeten Patienten keine Weaningkriterien und die Weiterbeatmung war damit laut Protokoll medizinisch indiziert (an 52,1% der Beatmungstage), entsprach auch das Tidalvolumen mit durchschnittlich 305ml den Vorgaben [12, 20, 22, 24, 46]. Gab es jedoch laut Beamtungsprotokoll keinen Grund für eine Weiterbeatmung, dies war nur an 0,2% der untersuchten Beatmungstage der Fall, war auch hier das Tidalvolumen mit 388ml protokollgerecht. Patienten im Weaning (an 19,9% der Beatmungstage) hatten, bedingt durch die zum Teil angewandten Spontanbeatmungsmuster, ein durchschnittliches Tidalvolumen von 418ml. Wurden die Patienten aus medizinischen Gründen weiter beatmet (16,7%), hierzu zählen unter anderem ein erhöhter intrakranieller Druck, Fieber, eine FIO₂ ≥ 0,4 und ein PEEP > 8kPa*100, war das durchschnittliche Tidalvolumen mit 424ml leicht erhöht. Grund für die erhöhten Tidalvolumina könnte eine Hyperkapnie gewesen sein, die nur mit einem erhöhten Tidalvolumen (8 ml/kg KG) therapiert

4.4 Ausblick

Zuletzt bleibt die Frage, welche Therapieoptionen bleiben beim ARDS? Die Hämodialfiltration kann helfen, das interstitielle Lungenödem zu reduzieren und die Oxygenierung zu verbessern. Die dorsoventrale Wechsellagerung ist eine adäquate Therapie, die hilft das Outcome des ARDS zu verbessern [19, 31, 77, 87]. Extrakorporale Lungenersatzverfahren können die Regeneration der ARDS-geschädigten Lunge unterstützen [41]. Da es keine neuen revolutionären Behandlungsmethoden des ARDS gibt, bleibt es bei der bisherigen Erkenntnis, dass die zum ARDS führende Grunderkrankung forciert therapiert werden muss [68].

4.5 Fazit

Solange die flächendeckende Anwendung der lungenprotectiven Beatmung nicht durch eine adäquate Schulung des Personals und durch eine regelhafte Kontrolle unterstützt wird, kann der Vorteil für die Patienten nicht ausgeschöpft werden. Es müssen tägliche Sedierungspausen, ein täglich re-evaluierter Weaningprotokoll und eine protokollgerechte Einstellung der Beatmungs-

In der Beatmung des ARDS-Patienten selbst gibt es keine relevanten neuen Therapiemöglichkeiten [68]. Die lungenprotektive Beatmung ist auch weiterhin anzuwenden. Die Anwendung bei mehr als 90% aller beatmeten Patienten ist nicht zu erreichen. Das Ziel muss zukünftig sein, dass mehr als 90% aller kontrolliert beatmeten Patienten lungenprotektiv beatmet werden. Um dieses Ziel zu erreichen, müssen die Anwender auf den Intensivstationen erneut geschult werden und das Ergebnis muss im Rahmen einer erneuten Studie überprüft werden.

5. Zusammenfassung

Um die Einführung der flächendeckend angewandten lungenprotektiven Beatmung in einem privaten Klinikkonzern zu unterstützen, wurde die Kampagne „6ml – die Luft muss raus“ ins Leben gerufen. Das Ziel war die Anwendung der lungenprotektiven Beatmung bei mehr als 90% der beatmeten Patienten. Zu Beginn der Studie wurden alle ärztlichen und pflegerischen Mitarbeiter der Intensivstationen in der korrekten Anwendung der lungenprotektiven Beatmung geschult. Über einen Beobachtungszeitraum von drei Monaten wurden alle beatmeten Patienten für die Beatmungstage eins bis sieben in die Studie eingeschlossen. Die Patienten wurden einer der drei Patientengruppen (chirurgisch, neurologisch/neurochirurgisch oder internistisch) zugeordnet. Insgesamt wurden 851 Patienten mit 4346 Beatmungstagen in die Studie eingeschlossen, davon waren 63,6% männlich und 36,4% weiblich. 35% der Patienten wurden chirurgisch, 23,7% neurologisch/neurochirurgisch und 41,2% internistisch eingruppiert.
In Punkto Tidalvolumen und BMI gab es keine signifikanten geschlechtsbezogenen Unterschiede zwischen den Patientengruppen. Lediglich bei der Beatmungsdauer waren die Patienten der neurologisch/neurochirurgischen Gruppe geschlechtsunabhängig länger beatmet, als die Patienten der chirurgischen und der internistischen Gruppe. Bei den in der Datenerhebung dokumentierten Gründen für die Abweichung von den vorgegebenen Beatmungsparametern fand sich beim Grund „Hyperkapnie“ ein erhöhtes Tidalvolumen, eine erhöhte F\textsubscript{O\textsubscript{2}} und ein erhöhter PEEP. Das Tidalvolumen ist zudem bei den Gründen COPD und erhöhter intrakranieller Druck erhöht.

Bei der täglichen Erfassung der Studiendaten wurden die Mitarbeiter der Intensivstationen aufgefordert eine Selbsteinschätzung abzugeben, ob die erhobenen Werte den im Studienprotokoll geforderten entsprachen. An 62% der Beatmungstage wurde eine Übereinstimmung mit den vorgegebenen Parametern angegeben. Bei einer objektiven Auswertung der Daten zeigte sich aber nur an 20% der Beatmungstage eine protokollgerechte Einstellung der Beatmungsparameter. Die Patienten wurden jedoch an 10% der Beatmungstage nichtinvasiv beatmet und waren an 46,5% der Tage im Weaning. Bei diesen Patienten ist kein Tidalvolumen mit 6 ml/kg KG zu erwarten, sie müssen gesondert betrachtet werden. War laut Selbsteinschätzung bei den Patienten kein Weaning indiziert, waren das Tidalvolumen, der PEEP und die F\textsubscript{O\textsubscript{2}} protokollgerecht.

Die Selbsteinschätzung der behandelnden Ärzte und Pflegekräfte bezüglich einer protokollgerechten und damit einer lungenprotektiven Beatmung traf nur in

Wesentlich bleibt aber die grundlegende und regelmäßige Schulung aller Anwender im Beatmungsregime. Hier ist Bedarf für weitere Schulungen gegeben.

Schließlich ergeben sich folgende Fragen:
Ist bei jedem Patienten ein Weaning möglich oder gibt es prädiktive Faktoren, die das Weaningversagen sicher vorher sagen? Sollte man alle Patienten mit einer hohen Wahrscheinlichkeit des Weaningversagens direkt in eine Einrichtung der Beatmungspflege verlegen? Oder sollte man das bisherige Modell beibehalten und weiterhin annähernd alle Patienten aus der Akutklinik in eine Weaningklinik verlegen?

Als Fazit bleiben zwei wesentliche Aussagen:
Die wichtigste Therapie des ARDS ist die Therapie der zur respiratorischen Insuffizienz führenden Grunderkrankung.
Der wichtigste Faktor in der Anwendung lungenprotektiver Beatmungsformen ist die Schulung der Ärzte und Intensivpflegekräfte, sowie die Kontrolle der korrekten Anwendung.
6. Literatur

22. Epstein SK "Narrow" thinking about difficult Weaning: Don't forget the endotracheal tube. Respiratory Care 2012;57(12):2130-32
27. Frutos-Vivar F, Ferguson ND, Esteban A, et.al. Risk Factors for Extubation Failure in Patients Following a Successful Spontaneous Breathing Trial. Chest 2006;130;1664-71
42. Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992;18:319-321
44. Larsen R/ Ziegenfuß (Hrsg.) 2013 Alternative Beatmungsformen: IRV, APRV, BIPAP; ASV, PAV, ATC, ILV. Aus Beatmung. Berlin/ Heidelberg Springer Verlag, S. 253-283
47. Larsen R/ Ziegenfuß (Hrsg.) 2013 Hochfrequenzbeatmung, CFT, ECMO, IVOX. Aus Beatmung. Berlin/ Heidelberg Springer Verlag, S. 285-296

68. Petrucci N De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database of Systematic Reviews 2013, Issue 2. Art. No.: CD003844

77. Sud S, Friedrich JO, Adhikari NKJ, et.al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis

86. Valente Barbas CS, Janot Matos GF, Passos Amato MB, et.al. Goal-Oriented Respiratory Management for Critically Ill Patients with Acute
Respiratory Distress Syndrome. Critical Care Research and Practice 2012, Article ID 952168, 13 pages

7. Abkürzungs- und Abbildungsverzeichnis

7.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Übersetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECC</td>
<td>Amerikanisch-Europäische Konsensus Konferenz</td>
</tr>
<tr>
<td>AF</td>
<td>Atemfrequenz</td>
</tr>
<tr>
<td>ALI</td>
<td>Acute lung injury</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute respiratory distress Syndrome</td>
</tr>
<tr>
<td>ASB</td>
<td>Assisted spontaneous Breathing</td>
</tr>
<tr>
<td>av-ECLA</td>
<td>arteriovenöse extrakorporale Lungenassistenz</td>
</tr>
<tr>
<td></td>
<td>(arteriovenous ECLA)</td>
</tr>
<tr>
<td>BIPAP</td>
<td>Biphasic Positive Airway Pressure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronisch obstruktive Lungenerkrankung</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>ECLA</td>
<td>extrakorporal lung assist</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extrakorporale Membranoxygenierung</td>
</tr>
<tr>
<td>EDV</td>
<td>elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>F₉O₂</td>
<td>inspiratorische Sauerstoffkonzentration</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>HFOV</td>
<td>Hochfrequenzbeatmung</td>
</tr>
<tr>
<td>I:E</td>
<td>Verhältnis Inspiration zu Expiration</td>
</tr>
<tr>
<td>ICP</td>
<td>intrakranieller Druck</td>
</tr>
<tr>
<td>ILA</td>
<td>Interventional Lung Assist</td>
</tr>
<tr>
<td>IPPV</td>
<td>Intermittend Positive Pressure Ventilation</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascal</td>
</tr>
<tr>
<td>LVEDP</td>
<td>linksventrikulärer enddiastolischer Druck</td>
</tr>
</tbody>
</table>
Min Minute
ml Milliliter
mmHg Millimeter Quecksilbersäule
MW Mittelwert
NIV Nichtinvasive Beatmung
paCO₂ arterieller Kohlendioxidpartialdruck
paO₂ / FIO₂ Oxygenierungsindex / Horowitzindex
paO₂ arterieller Sauerstoffpartialdruck
PDMS Patientendatenmanagementsystem
pECLA pumpenlose extrakorporale Lungenassistenz
PEEP Positiv endexspiratorischer Druck
PiCCO® Pulse Contour Cardiac Output
Pₛₚₛₚₚ systolischer Blutdruck
RASS Richmond Agitation and Sedation Scale
SaO₂ arterielle Sauerstoffsättigung
SD einfache Standardabweichung (standard deviation)
SIMV Synchronisierte intermittierende
 mandatorische Ventilation
SpO₂ periphere Sauerstoffsättigung
va-ECMO venoarterielle extrakorporale Membranoxygentierung
VILI Ventilator induced lung injury
VT Tidalvolumen
VTₑₓₛₑᵢₛₑ exspiratorisches Tidalvolumen
VTᵢₜₛᵢₜₑᵢᵦᵦ tatsächstiges Tidalvolumen
VTₛₒₒₒₒ₁ᵦ_o

vv-ECMO venovenöse extrakorporale Membranoxygentierung

69
7.2 Abbildungsverzeichnis

Tab. 1.1 Richmond-Agitation and Sedation Scale [65]

Tab. 1.2 Kontraindikationen für die Extubation (GCS = Glasgow Coma Scale, PEEP = positiv endexspiratorischer Druck, \(F_{iO_2} \) = inspiratorische Sauerstoffkonzentration)

Tab. 1.3 Abfrage der adäquaten Sicherung der Atemwege [18, 42]

Tab. 2.1 Erfasste Parameter der untersuchten Patienten (\(VT_{soll} \) = errechnetes Tidalvolumen, \(VT_{ist} \) = tatsächliches Tidalvolumen, COPD = chronisch obstruktive Lungenerkrankung, ICB = erhöhter intrakranieller Druck, BMI = Body Mass Index, \(F_{iO_2} \) = inspiratorische Sauerstoffkonzentration, PEEP = positiver endexspiratorischer Druck, \(paO_2 \) = arterieller Sauerstoffpartialdruck)

Tab. 3.1 Größe [cm] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.2 Körpergewicht [kg] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.3 Alter [Jahre] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.4 Body-Maß-Index (BMI) nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.5 exspiratorisches Tidalvolumen [ml] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.6 Beatmungsduer [Stunden (h)] nach Fachrichtung und Geschlecht (MW = Mittelwert, SD = Standardabweichung)

Tab. 3.7 Gründe für die Abweichung vom Beatmungsprotokoll (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, \(F_{iO_2} \) = inspiratorische Sauerstoffkonzentration, COPD = chronisch obstruktive Lungenerkrankung, ICP = erhöhter intrakranieller Druck)

Tab. 3.8 Selbsteinschätzung der Einhaltung des Beatmungsprotokolls (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP =
positiv endexspiratorischer Druck, \(F_i O_2 \) = inspiratorische Sauerstoffkonzentration

Tab. 3.9
Objektive Beurteilung der Einhaltung des Protokolls (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, \(F_i O_2 \) = inspiratorische Sauerstoffkonzentration, Legende in Tab. 3.10)

Tab. 3.10
Legende zu Tab.3.9, Abb.3.8 (VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, \(F_i O_2 \) = inspiratorische Sauerstoffkonzentration, NIV = nichtinvasive Beatmung)

Tab. 3.11
Weaningfehler (MW = Mittelwert, SD = Standardabweichung, VT = Tidalvolumen, PEEP = positiv endexspiratorischer Druck, \(F_i O_2 \) = inspiratorische Sauerstoffkonzentration)

Abb. 1.1
Beispiel eines Weaningprotokolls zur täglichen Anwendung (\(F_i O_2 \) = inspiratorische Sauerstoffkonzentration, PEEP = positiv endexspiratorischer Druck, CPAP = Continuous Positive Airway Pressure, ASB = Assisted Spontaneous Breathing, HF = Herzfrequenz, AF = Atemfrequenz, \(SaO_2 \) = arterielle Sauerstoffsättigung)

Abb. 2.1
Beatmungseinstellung für Patienten mit akutem Lungenversagen (\(paO_2 \) = arterieller Sauerstoffpartialdruck, \(SpO_2 \) = periphere Sauerstoffsättigung, \(F_i O_2 \) = inspiratorische Sauerstoffkonzentration, PEEP = positiv endexspiratorischer Druck)

Abb. 2.2
Einstellhilfe für das vorgesehene Tidalvolumen [ml] (VT = Tidalvolumen, Körpergröße [cm])

Abb. 3.1
Body-Maß-Index (BMI) nach Fachrichtung und Geschlecht

Abb. 3.2
exspiratorisches Tidalvolumen [ml] nach Fachrichtung und Geschlecht

Abb. 3.3
Beatmungsdauer [Stunden (h)] nach Fachrichtung und Geschlecht

Abb. 3.4
Gründe für die Abweichung vom Beatmungsprotokoll beim exspiratorischen Tidalvolumen [ml] (COPD = chronisch obstruktive Lungenkrankung, ICP = erhöhter intrakranieller Druck)
Abb. 3.5 Gründe für die Abweichung vom Beatmungsprotokoll beim PEEP [100*kPa] (PEEP = positiv endexspiratorischer Druck, COPD = chronisch obstruktive Lungenkrankung, ICP = erhöhter intrakranieller Druck)

Abb. 3.6 Gründe für die Abweichung vom Beatmungsprotokoll bei der F\textsubscript{i}O\textsubscript{2} (F\textsubscript{i}O\textsubscript{2} = inspiratorische Sauerstoffkonzentration, COPD = chronisch obstruktive Lungenkrankung, ICP = erhöhter intrakranieller Druck)

Abb. 3.7 Selbsteinschätzung der Einhaltung des Beatmungsprotokolls beim exspiratorischen Tidalvolumen [ml]

Abb. 3.8 Objektive Beurteilung Tidalvolumen [ml] Legende in Tab.3.10

Abb. 3.9 Weaningfehler Tidalvolumen [ml]

Abb. 3.10 Weaningfehler PEEP [100*kPa] (PEEP = positiv endexspiratorischer Druck)

Abb. 3.11 Weaningfehler F\textsubscript{i}O\textsubscript{2} (F\textsubscript{i}O\textsubscript{2} = inspiratorische Sauerstoffkonzentration)

Abb. 8.1 Kick Off Flyer der Kampagne „Jetzt lassen wir die Luft raus…“
Seite 1 und Seite 2
8. Anhang

8.1 Kick Off Flyer der Kampagne „Jetzt lassen wir die Luft raus…“

Wir empfehlen den Ausschluss des Qualitätssicherndienstes als Quotienten der protokollgerecht beatmeten Patienten gemessen an der Gesamtzahl der beatmeten Patienten in einer der entsprechenden Grafik.

Wir hoffen anhand dieser geringen Zusatzdokumentation eines möglichen Zusammenhang mit den konzeptionellen Routinedaten aufgenommenen Massnahmen bezüglich der Beatmung zu analysieren.

Wir würden uns freuen, Sie und Ihr Intensivteam zur Mitarbeit an der Kampagne gewogen zu können und sind überzeugt, dass wir hiermit eine Optimierung der Beatmung bei Patienten mit akutem Lungenschaden erreichen können.

Wir dürfen uns nochmals für Ihre Mitarbeit bedanken und stehen für Rückfragen jederzeit zur Verfügung.

Die aktuelle Grafik sollte auf der Station ausgedruckt und an die verantwortlichen Ärzte verteilt werden. Bitte führen Sie umgehend eine Überprüfung der Daten und verfeinern Sie die Grafik entsprechend.

(Abb.8.1 Kick Off Flyer der Kampagne „Jetzt lassen wir die Luft raus…” Seite 1)
Jetzt lassen wir die Luft raus…

Trotz dieser Datenlage wird diese einfache Intervention nach wie vor bei weniger als 50% der wegen ALI/ARDS beatmeten Patienten genutzt.

Die Kampagne „Jetzt lassen wir die Luft raus…“ hat sich zum Ziel gesetzt, den Verbreitungsgrad der protektiven Beatmungsstrategie auf über 50% anzuleiten.

Um dieses Ziel zu erreichen, muss die Tabelle zur Beatmungseinstellung gut sichtbar an jedem Beatmungsplatz angebracht werden. Darüber hinaus sollten die Hilfsmittel aus der Arbeitsmappe zum Einsatz kommen.

Die Arbeitsmappe
Hier findest du:
- den Einstellalgorithmus für die maschinelle Beatmung bei ALI/ARDS
- eine Tabelle, in der die Körpergröße eines Menschen mit dem errechneten Körpergewicht und dem daraus resultierenden Atemzugvolumen in Beziehung gesetzt ist
- das Visitenprotokoll
- den Qualitätsindikator für die protektive Beatmung: Hiermit wird messbar, wie viele der wegen ALI/ARDS beatmeten Patienten tatsächlich eine protektive Beatmungsstrategie erhalten.

Die ersten beiden Tabellen gut sichtbar an jedem Beatmungsgerät anhängen. Hiermit ist gewährleistet, dass an jedem Beatmungsplatz die Vorgabe für eine protokollgerechte Einstellung der Ventilation verfügbar ist.

Sie sollten die Einführung dieser Tabellen unbedingt mit geeigneten Maßnahmen zur Fortbildung Ihrer Mitarbeiter begleiten.

Seminar „Jetzt lassen wir die Luft raus“
31.08. – 01.09.07
Seminar Beatmungsoptimierung
Grundlagen der Beatmung
24. – 25.06.2007
29. – 30.09.2007
21. – 22.10.2007
10. – 11.11.2007
06. – 09.12.2007
Mehr Infos zu allen Seminaren unter: www.helios-akademie.de

Abb.8.1 Kick Off Flyer der Kampagne „Jetzt lassen wir die Luft raus…” Seite 2)
Danksagung

Ich danke meiner Frau Melanie, sowie meinen Kindern Philipp und Tabea für die Unterstützung und die Freiräume.
Ich danke Prof. Dr. med. Jörg Brederlau für die immer konstruktive und aufmunternde Betreuung.
Ich danke Univ.-Prof. Dr. med. Christian Wunder für die Betreuung der Arbeit.
Ich danke Prof. Dr. med. Ralf Kuhlen für die tatkräftige Unterstützung bei der Auswertung der Daten.
Ich danke der HELIOS Forschungsförderung für die Unterstützung der Arbeit (grant ID 004700).
Lebenslauf

Heiko Benthin geb. Sehrt

1975-1988 Allgemeine Hochschulreife

1988-1990 Zivildienst
1991 Ausbildung zum Rettungsassistenten

1990-1999 Studium der Medizin, Georg-August-Universität Göttingen
1999 Erlaubnis für die Tätigkeit als Arzt im Praktikum 29.04.1999

1999-2003 Wissenschaftlicher Mitarbeiter der Klinik und Poliklinik für Anästhesiologie der Julius-Maximilians-Universität Würzburg (Direktor: Univ.-Prof. Dr. med. N. Roewer)
2005 Facharzt für Anästhesie: 03.12.2005
2006-2010 Assistenzarzt im Zentrum Anästhesie, Schmerztherapie und Notfallmedizin im HELIOS Klinikum Wuppertal (Prof. Dr. med. L. Brandt)
2006 Zusatzbezeichnung Notfallmedizin: 27.04.2006
Seit 2010 Oberarzt der Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie im HELIOS Klinikum Schwelm (Dr.med. C. Mork)
2010 Zusatzbezeichnung Intensivmedizin: 04.12.2010
2013 Fachkunde Strahlenschutz: 19.04.2013
2013 ATLS Provider: 22.06.2013