Einfluss der erfolgreichen Trabekulektomie auf Fluktuation und Spitzenwerte des intraokularen Druckes im Tag-Nacht-Vergleich

Inaugural – Dissertation

zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Julius-Maximilians-Universität Würzburg

vorgelegt von
Stefanie Praetorius
aus Würzburg

Würzburg, Januar 2010
Referent: Priv.-Doz. Dr. Klink
Koreferent: Professor Dr. med. Dr. h.c. F. Grehn
Dekan: Prof. Dr. M. Frosch

Tag der mündlichen Prüfung: 11.05.2010

Die Promovendin ist Ärztin
meinem Mann und meinen Eltern
Inhaltsverzeichnis

1 Einleitung und Fragestellung .. 1
 1.1 Grundlagen Glaukom .. 1
 1.2 Intraokularer Druck ... 4
 1.3 Operative Glaukomtherapie ... 6
 1.4 Fragestellung ... 7

2 Material und Methoden ... 9
 2.1 Das Patientengut .. 9
 2.2 Methodisches Vorgehen ... 11

3 Ergebnisse .. 15
 3.1 Patientengut .. 15
 3.1.1 Alter .. 15
 3.1.2 Geschlechterverteilung .. 15
 3.1.3 Anzahl der untersuchten Augen ... 15
 3.1.4 Diagnosen .. 15
 3.1.5 Intraokulare Voroperationen / Lasertherapie ... 16
 3.1.6 Pseudophakie .. 16
 3.1.7 Follow up .. 17
 3.2 Operative und medikamentöse Therapie .. 18
 3.2.1 Operationstechnik .. 18
 3.2.2 Antimetabolite ... 18
 3.2.3 Antiglaukomatöse Medikation .. 19
 3.3 Intraokularer Druck .. 21
 3.3.1 Präoperativer intraokulärer Maximaldruck ... 21
 3.3.2 Postoperativer intraokulärer Maximaldruck ... 22
 3.3.3 Postoperativer Kontrollwert ... 24
 3.4 Bivariante Statistik ... 25
 3.4.1 Senkung des maximalen intraokularen Druckes ... 25
 3.4.1.1 Prozentuale Senkung im Tagesprofil ... 25
3.4.1.2 Prozentuale Senkung im Nachtprofil .. 27
3.4.1.3 Zieldruckkategorien im Tagesprofil .. 30
3.4.1.4 Zieldruckkategorien im Nachtprofil .. 33
3.4.1.5 Zieldruckkategorien und postoperativer Kontrollwert 37
3.4.2 Nivelliert die funktionierende Trabekulektomie Fluktationen? 39
 3.4.2.1 Fluktuation im Tagesprofil ... 39
 3.4.2.2 Fluktuationen im Nachtprofil der Untergruppe 42
 3.4.2.3 Fluktuationen im Tagprofil der Untergruppe 44
3.4.3 Tag-Nacht-Vergleich ... 47
 3.4.3.1 Prozentuale Senkung im Tag-Nacht-Vergleich 47
 3.4.3.2 Tag-Nacht-Vergleich der Zielwertkategorien 53
 3.4.3.3 Tag-Nacht-Vergleich der Fluktuation 55
3.4.4 Antimetabolite ... 61
 3.4.4.1 Die gemittelten Messwerte ... 62
 3.4.4.2 Zieldruckkategorien ... 63
4 Diskussion .. 65
5 Zusammenfassung .. 79
6 Literaturverzeichnis .. 81
7 Verzeichnis der Abkürzungen .. 86
1 Einleitung und Fragestellung

1.1 Grundlagen Glaukom

Im folgenden Kapitel werden Grundlagen der Erkrankung Glaukom erläutert, die Inhalte dieses Kapitels orientieren sich im wesentlichen an den Quellen [1, 2]. Das Glaukom belegt mit 18% den zweiten Platz der drei häufigsten Erblindungszursachen der Menschen der westlichen Welt (nach altersbezogener Makuladegeneration 50% und vor diabetischer Retinopathie 17%) und mit 12,3% den zweiten Platz der häufigsten Erblindungzursachen weltweit (nach Katarakt 47,8% und vor altersbezogener Makuladegeneration 8,7%) [3]. Etwa ein Drittel aller Patienten, die in Augenkliniken vorstellig werden, leiden an einem Glaukom [4]. Im Laufe der Glaukomerkrankung werden ca. 23% der Patienten an einem Auge und 12% der Patienten an beiden Augen einer operativen Therapie (Trabekulektomie) unterzogen [5]. Damit hat die Krankheit Glaukom und ihre Therapie einen großen Stellenwert innerhalb des Fachgebiets der Ophthalmologie.

Als Glaukom wird im Allgemeinen eine progressive Schädigung der Papille und des Gesichtsfeldes bezeichnet, die meist im pathogenetischen Zusammenhang mit einem individuell zu hohen intraokularen Druck (IOD) steht. Der physiologische IOD liegt zwischen 10-21 mmHg (15 +/- 5,5 mmHg). Er wird durch das Kammerwasser, welches vom Ziliarkörper gebildet wird, erzeugt und aufrecht erhalten. Das Kammerwasser durchfließt das Auge von der Hinterkammer, entlang der Linse, durch die Pupille in die Vorderkammer. Dort verlässt etwa 85% des Kammerwassers das Auge durch das Trabekelwerk in den Schlemmschen-Kanal, von dem es in das Venensystem des Auges eingespeist wird (trabekulärer Abfluss). Ein kleiner Teil des Kammerwassers (15%) gelangt durch die ZiliarmuskelSepten in das Gefäßsystem der Chorioidea (uveoskleraler Abfluss). Der erhöhte IOD, der beim Glaukom durch Behinderung des Kammerwasserabflusses entsteht, führt auf Dauer zu mechanischer und vaskulärer Sehnervfaserschädigung der Papille. Dies stellt sich ophthalmoskopisch als Papillenexkavation dar. Risiko-

Man unterscheidet zwischen primären und sekundären Glaukomen. Bei primären Glaukomen resultiert die Augeninnendrucksteigerung spontan aus einer trabekulären Abflussbehinderung, es liegen keine weiteren Augen- oder Allgemeinerkrankungen vor. Primäre Glaukome werden in primäre Offenwinkelglaukome (90%), primäre Winkelblockglaukome (5%) und primäre kongenitale Glaukome des Säuglings/Kleinkindes unterteilt.

Das primäre Offenwinkelglaukom (POWG) entsteht durch eine Widerstandserhöhung im Trabekelwerk, die zu einer Abflussbehinderung mit erhöhtem IOD bei offenem Kammerwinkel führt. Symptome wie Gesichtsfeldausfälle treten erst im Stadium eines bereits erfolgten Verlustes von 40-50% der Sehnervenfasern auf und sind irreversibel.

Treten trotz innerhalb des statistisch ermittelten IOD-Normbereichs liegenden IOD-Werten fortschreitende Papillenschädigungen mit entsprechenden Gesichtsfeldausfällen auf, so wird von einem individuell zu hohen IOD ausgegangen und die Erkrankung als Normal- oder Niedrigdruckglaukom bezeichnet. Therapeutisch steht beim POWG die IOD-Senkung im Vordergrund.

Die primären Winkelblockglaukome (5%) entstehen bei anlagemäßig engem Kammerwinkel und/oder Verklebung des Kammerwinkels (Goniosynechien) verursacht durch die Verlegung des Kammerwinkels durch die Irisbasis. Winkelblockglaukome können sich akut als Glaukomanfall mit plötzlichem Anstieg des IODs auf Werte bis 50-70 mmHg, starken Schmerzen und Sehstörungen durch ein Hornhautödem oder chronisch durch Goniosynechienbildung manifestieren. Der akute Winkelverschluss ist ein Notfall und Bedarf chirurgischer Intervention im Sinne einer Iridektomie.

Ein primäres kongenitales Glaukom des Säuglings/Kleinkindes ist selten und entsteht durch Fehlentdifferenzierung des Trabekelwerks mit nachfolgender Erhöhung des IODs.

Ein Glaukom wird durch die Messung des IODs (Applanationstonometrie, Non-Contact-Tonometrie, Pascal-Tonometrie), durch Ophthalmoskopie der Papille und durch eine Untersuchung des Gesichtsfeldes (Perimetrie) diagnostiziert und kontrolliert. Spaltlampenuntersuchungen, Gonioskopie und weitere Methoden ergänzen die Glaukomdiagnostik.

1.2 Intraokularer Druck

Der intraokulare Druck (IOD) ist in der Pathogenese, Diagnostik und Therapie des Glaukoms von zentraler Bedeutung (siehe Kapitel 1.1). Ein gleichbleibender Augeninnendruck ist die Voraussetzung für eine stabile Augapfelform, die wiederum für die Qualität der optischen Abbildung im Auge wichtig ist. Der intraokulare Druck wird durch die Kammerwassersekretionsrate, den Kammerwasserabflusswiderstand und den episkleralen Venendruck bestimmt [6]. Der mittlere Normaldruck bei Applanationstonometer-Messungen beträgt 15,5 ± 5,5 mmHg (10-21 mmHg) [2].

Die Studien, die den intraokularen Druck außerhalb der Wachphase untersuchten, lieferten zum Teil fast gegensätzliche 24-Stunden-Druckprofile. In einigen Studien wurde

Es wurde zusätzlich beobachtet, dass sich die 24 h - Druckprofile von Glaukompatienten wesentlich von 24 h - Druckprofilen von normotensiven Testpersonen unterscheiden [22, 23]. Trotz der unterschiedlichen Studienergebnisse kann mit Sicherheit festgehalten werden, dass der IOD Schwankungen unterworfen ist und dass die maximalen intraokularen Druckspitzen zu verschiedenen Tages- und Nachtzeiten, besonders auch außerhalb der augenärztlichen Sprechzeiten auftreten können [24-26]. Für das Vorkommen von nächtlichen Druckspitzen spricht der erhöhte intraokulare Druck in der Nacht [19].

Erhöhte intraokulare Druckwerte sind ursächlich für glaukomatóse Papillenschäden [27, 28], maximale intraokulare Druckspitzen scheinen aber auch unabhängig vom mittleren intraokularen Druckniveau für Gesichtsfeldverlust verantwortlich zu sein [29]. Bei gesunden Testpersonen wurden Fluktuationen des IODs am Tag von im Mittel 5,0 ± 2,7 mmHg beschrieben. Bei Patienten mit Offenwinkelglaukom lagen die Fluktuationen dagegen bei 5,8 ± 2,9 mmHg [15]. Die Fluktuationen des intraokularen Druckes scheinen bei Glaukompatienten größer als bei gesunden Testpersonen zu sein [23]. Einige Studien nehmen an, dass das Ausmaß der Fluktuationen des IODs an sich ein Risikofaktor für die Progression des Gesichtsfeldverlustes darstellt [30, 31]. Daraus ist zu schließen, dass das Monitoring des IODs essentiell ist, um das Druckniveau des IODs und intraokulare Druckspitzen sowie das Ausmaß der Fluktuation erfassen zu können [32]. So sollte bei jedem Glaukompatienten eine Tagesdruckkurve angefertigt werden, die bei Verdacht auf nächtliche intraokulare Druckspitzen um Nachtmessungen
ergänzt werden sollte. Auf Grundlage der Tages- (Nacht-) Druckkurve sollten Entschei-
dungen bezüglich der Diagnose und der weiteren Therapie des Glaukoms getroffen,
sowie der Therapieerfolg beurteilt werden.

1.3 Operative Glaukomtherapie

Fistulierende Operationen schaffen einen neuen Kammerwasserabflussweg von der
Vorderkammer unter die Bindehaut. Über dieser Fistel bildet sich bei erfolgreicher
Operation ein sogenanntes Sickerkissen aus, welches Anschluss an die konjunktivalen
Lymphgefäße und Venen besitzt. Somit funktioniert der neu geschaffene Kammerab-
flussweg als eine Art „Bypass“, mit dem der erhöhte IOD erheblich gesenkt werden
kann. Das präparierte Sickerkissen übernimmt die Funktion eines Überdruckventils,
wendurch das Auftreten von ausgeprägten intraokularen Hyper- wie Hypotonien vermin-
dert werden kann. Auf diesem Wirkmechanismus beruhen die Trabekulektomie sowie
die Goniotrepanation. Seitdem die Technik der Trabekulektomie 1967 erstmals be-
schrieben wurde, hat sie sich zu einer der meist genutzten operativen Therapiemetho
der unterschiedlichen Glaukomformen entwickelt [1, 28, 33-35] und stellt nach wie vor
die wirksamste drucksenkende Maßnahme im Vergleich zu anderen Therapieformen des
Glaukoms dar [36]. Der erhöhte IOD ist der Hauptrisikofaktor für die Entstehung und
die Progression von Glaukomen und seine Senkung ist die beste Methode, um das Ri-
siko für Progression der Gla
ukomerkran
kung zu vermindern. Indem der IOD unter eine
individuelle Zielgrenze gesenkt wird, schützt man die Sehnervenfasern vor weiteren
Schäden und verhindert damit weitere Gesichtsfeldschäden [28]. Die operative
Drucksenkung scheint bei kurzfristig entstandenen Sehverlusten für eine Verbesserung
der visuellen Funktion zu sorgen, während langfristig vorbestehende Gesichtsfeldaus-
fälle irreversibel sind [37].

Indikationskriterien für die Trabekulektomie sind die Progression von Gesichtsfeldaus-
fällen trotz medikamentöser Therapie, die Entwicklung von limitierenden Nebenwir-
kungen der medikamentösen Therapie, das Versagen der medikamentösen Therapie in
Bezug auf Senkung des IODs oder ein stetig steigender Bedarf an antiglaukomatöser
Medikation [35]. Die Rate an postoperativen Komplikationen ist bei korrekter Technik
gering und rechtfertigt den Einsatz der Trabekulektomie bei allen Patienten, die nicht auf niedrigdosierte medikamentöse Therapie ansprechen [35].

Ein Problem stellt jedoch die natürliche Wundheilung dar, die bei ca. 50% der Patienten für einen partiellen oder vollständigen Verschluss des Sickerkissens sorgt. Daraufhin steigt der IOD wieder an. Zur Abmilderung der natürlichen Vernarbungstendenz werden intraoperativ Antimetabolite (Mitomycin C, 5-Fluorouracil) subkonjunktival appliziert [38].

Die postoperative Nachbehandlung mit Kortikosteroiden und evtl. Wiederholung der Antimetabolitenapplikation (5-Fluorouracil) bei fortbestehender Vernarbungstendenz reduziert zusätzlich die Auswirkungen der natürlichen Wundheilung. Studien konnten nicht nur zeigen, dass durch die Verwendung von Antimetaboliten die Vernarbungstendenzen geringfügiger und damit die Erfolgsraten der Trabekulektomie höher waren [39, 40], sondern es ergaben sich auch Hinweise, dass die intraoperative Gabe von Antimetaboliten an sich den intraokularen Druck reduziert [41, 42].

1.4 Fragestellung

Ziel der vorliegenden Arbeit ist die Erfassung von Veränderungen des maximalen intraokularen Druckes (intraokulare Druckspitzen) nach erfolgreicher Trabekulektomie bei medikamentös nicht kontrollierbarer Glaukomerkrankung im Tag-Nacht-Vergleich. Neben der Beurteilung des Ausmaßes der Senkung des maximalen IODs wurde besondere Aufmerksamkeit auf die Veränderung der Tag-Nacht-Fluktuation des IODs nach erfolgreicher Trabekulektomie gelegt. Folgende Fragen wurden gestellt und beantwortet:

1. Senkt die funktionierende Trabekulektomie (mit postoperativ intakten Sickerkissen) den maximalen IOD und vermindert damit intraokulare Druckspitzen im Tag- und im Nachtprofil?
2. Nivelliert die funktionierende Trabekulektomie Fluktuationen des IODs im Tag- und im Nachtprofil?
3. Ergeben sich für Fragestellung 1 und 2 Unterschiede im Tag-Nacht-Vergleich?
4. Kann für intra- und/oder postoperativ applizierte Antimetabolite ein Einfluss auf den postoperativen IOD nachgewiesen werden?
2 Material und Methoden

2.1 Das Patientengut

laren Druckes ab 6:00 bis 24:00 Uhr, die Messungen erfolgten im Sitzen mittels Applationstonometrie nach Goldmann. Pro Patient wurde stets nur ein Auge in die Studie eingeschlossen, was bedeutet, dass die Patientenzahl der Zahl der untersuchten Augen entspricht. Erfüllten beide Augen des Patienten die oben genannten Aufnahmekriterien, so wurde dasjenige ausgewählt, bei dem die postoperative Tages-Nacht-Druckkurve dem gewünschten Nachbeobachtungsintervall von 365 Tagen besser entsprach.

ausschlusskriterien der Studien waren die Diagnose kongenitales, bzw. juveniles Glaukom, intraokulare Entzündungen, Traumen des Auges, ein nicht funktionierendes Sickerkissen zum Zeitpunkt der postoperativen Tages-Nacht-Druckkurve sowie andere druckreduzierende Laser- oder operative Eingriffe am untersuchten Auge zwischen den prä- und postoperativen Tages-Nacht-Druckkurven.

Die gesamten Daten wurden bis einschließlich 17.04.2007 erfasst.

2.2 Methodisches Vorgehen

Die Patientenakten wurden retrospektiv nach folgenden Studienparametern zur Beschreibung des Patientenkollektivs ausgewertet: Alter, Geschlecht, Glaukomdiagnose, rechtes oder linkes Auge, intraokulare Voroperationen, Pseudophakie, präoperative Glaukommedikation, Operationstechnik, intra- und postoperative Antimetabolitapplikation, Nachbeobachtungszeit (Follow up), postoperative Glaukommedikation. Die folgenden Studienparameter waren Grundlage der Aussagen über das Verhalten des intraokularen Druckes: Der präoperativen Tages-Nacht-Druckkurve wurden der höchste gemessene intraokulare Druck des Tagesprofils (IOD\textsubscript{max,T,prä}), der niedrigste gemessene intraokulare Druck des Tagesprofils (IOD\textsubscript{min,T,prä}), der höchste gemessene intraokulare Druck in des Nachtprofils (IOD\textsubscript{max,N,prä}) und der niedrigste gemessene intraokulare Druck des Nachtprofils (IOD\textsubscript{min,N,prä}) entnommen. Aus der postoperativen Tag-Nacht-Druckkurve, die im Mittel 2,1 ± 1,7 Jahre nach der Operation entstand, wurden analog der IOD\textsubscript{max,T,post}, der IOD\textsubscript{min,T,post}, der IOD\textsubscript{max,N,post} und der IOD\textsubscript{min,N,post} bestimmt. Der Patientenakte wurde zusätzlich für jedes Auge der letzte gemessene und dokumentierte postoperative intraokulare Druckwert entnommen, der meist im Rahmen eines Kontrolltermins in der Poliklinik der Universitätsklinik für Augenheilkunde in Würzburg nach einem Follow up von im Mittel 3 ± 2,3 Jahre gemessen wurde. Dieser Wert wurde als letzter postoperativer Kontrollwert in die Studie aufgenommen (IOD\textsubscript{pk}). Alle erhobenen intraokularen Druckwerte wurden unabhängig von antiglaukomatöser Medikation ermittelt. Die maximalen intraokularen Druckwerte sind somit die höchsten in der Tag-Nacht-Druckkurve erfassten Werte des medikamentös nicht kontrollierbaren Glaukoms.

Im Kapitel 3.4 Bivariante Statistik wurden zum Vergleich der prä- und postoperativen maximalen intraokularen Druckwerte Differenzen für das Tag- und das Nachtprofil gebildet (z.B. IOD\textsubscript{max,T,prä} - IOD\textsubscript{max,T,post} = ΔIOD\textsubscript{max,T}), anhand derer man die Drucksenkung durch die erfolgreiche Trabekulektomie im Tag-Nacht-Vergleich beurteilen konnte.
Die Senkung des maximalen intraokularen Druckes durch die erfolgreiche Trabekulektomie wurde erstens prozentual und zweitens anhand des Erreichens von folgenden Zielluckkategorien beurteilt: Das Zielkriterium $\leq 21 + 20$ galt als erreicht, wenn der maximale Augeninnendruck postoperativ unter oder bei 21 mmHg lag und zusätzlich eine Drucksenkung von mindestens 20% des präoperativen Wertes vorlag. Das Zieldruckkriterium < 18 galt als erreicht, wenn der maximale postoperative Augeninnendruck unter 18 mmHg lag. Es wurde geprüft wie viel Prozent der Patienten nach erfolgreicher Trabekulektomie die Zielkriterien erreichten. Damit konnte man die Qualität der Drucksenkung durch die erfolgreiche Trabekulektomie beurteilen und anschließend im Tag-Nacht-Vergleich betrachten, um Unterschiede erkennen zu können. Daher wurden alle Fragestellungen jeweils für den maximalen intraokularen Druck im Tagesprofil und für den maximalen intraokularen Druck im Nachtprofil getrennt betrachtet.

Der postoperative Kontrollwert des intraokularen Druckes (IOD$_{pK}$) wurde als Einzelmesswert nicht mit den maximalen intraokularen Druckwerten (IOD$_{max}$), die aus einer vollständigen Tag-Nacht-Druckkurve ermittelt wurden, verglichen. Das Langzeitergebnis der funktionierenden Trabekulektomie wurde jedoch anhand dieses Wertes, nach einem mittleren Follow up von 3 ± 2,3 Jahren, durch das Erreichen des Zielkriteriums < 18 abgeschätzt.

Die Fluktuation des intraokularen Druckes wurde durch die Differenz der maximalen und minimalen intraokularen Druckwerte für das Tag- und das Nachtprofil bestimmt (z.B. IOD$_{max,T,prä}$ - IOD$_{min,T,prä}$ = Fluktuation$_{T,prä}$). Die Differenz der prä- und postoperativen Fluktuation zeigt die Veränderung der Fluktuation durch die funktionierende Trabekulektomie (z.B. Fluktuation$_{T,prä}$-Fluktuation$_{T,post}$ = Fluktuation$_T$). Um die Fluktuation des Nachtprofils zu bestimmen, musste eine Untergruppe gebildet werden (Fluktuation$_U$), da nur bei einem Teil der Gesamtgruppe (sieben Patienten) die Bestimmung und der Vergleich der prä- und postoperativen nächtlichen Fluktuation mittels jeweils mindestens zweier existierender Messungen möglich war. Im Tages-Nacht-Vergleich wurden die Tageswerte der jeweiligen Patienten in der Untergruppe zum Vergleich herangezogen.

Die Tag- und Nacht-Ergebnisse der Kapitel 3.4.1 und 3.4.2 wurden im Kapitel 3.4.3 miteinander verglichen um mögliche Unterschiede des Verhaltens des intraokularen Druckes im Tages- bzw. Nachtprofil erkennen zu können.
Im Kapitel 3.4.4 wurde die Frage geprüft, ob die intra- und/oder postoperative Applikation von Antimetaboliten Einfluss auf das Niveau des postoperativen intraokularen Drucks hat. Dazu wurden die Patienten des Gesamtkollektivs in vier Gruppen eingeteilt. Die erste Gruppe (fünf Patienten) erhielt weder intraoperativ noch postoperativ Antimetabolite. Die zweite Gruppe (zwölf Patienten) erhielt nur intraoperativ Antimetabolite, die dritte Gruppe (zwei Patienten) nur postoperativ. Die vierte Gruppe (16 Patienten) erhielt intra- und postoperativ Antimetabolite. Als Antimetabolite wurden hierbei intraoperativ Mitomycin 0,01 % oder 0,02 % oder 5-Fluorouracil verwendet. Postoperativ wurden subconjunktivale Injektionen mit 5 mg 5-Fluorouracil durchgeführt. Geprüft wurde, ob durch die erfolgreiche Trabekulektomie bei Verteilung der maximalen intraokularen Druckwerte auf die Zielwertkategorien (Zielkriterium \(<21 \pm 20 \) und Zielkriterium \(<18 \)) zwischen den Gruppen statistisch signifikante Unterschiede bestanden bezüglich der Niveaus der maximalen postoperativen intraokularen Druckwerte (IOD\(_{\text{max,post}}\)) und des Ausmaßes der Senkung des maximalen intraokularen Druckes (\(\Delta \text{IOD}_{\text{max}} \)). Außerdem wurden die vier Gruppen auf statistisch signifikante Unterschiede bezüglich des Niveaus der postoperativen Kontrollwerte des intraokularen Druckes (IOD\(_{\text{pk}}\)) und der Verteilung der postoperativen Kontrollwerte des intraokularen Druckes auf die Zielkriterien untersucht. Diese Fragestellungen wurden jeweils für das Tag- und das Nachtprofil der Patienten getrennt beantwortet.

In den Tabellen werden die Mittelwerte mit den dazugehörigen Standardabweichungen (Mittel ± Stabw) angegeben. Die Histogramme und Kreisdiagramme zeigen die Verteilungen der Studienparameter. In den Histogrammen, welche die Veränderung der Studienparameter für die einzelnen Patienten zeigen, sind die entsprechenden Veränderungen (z.B. \(\Delta \text{IOD}_{\text{max}} \)) über dem jeweiligen nummerierten Patienten aufgetragen, die Nummerierung erfolgt hierbei nach der Anschaulichkeit des Histogramms (z.B. der Größe von \(\Delta \text{IOD}_{\text{max}} \)). Bei Box-Plot-Grafiken wird der Median (Linie in der Box), die 25%- und die 75% Perzentile (untere und obere Begrenzung der Box), die 10%- und die 90%-Perzentile (T-Balken) und alle Werte, die außerhalb der 10%-90%-Perzentile lagen (mit * markiert), als Symbole dargestellt. Die statistische Auswertung der erhobenen Daten erfolgte mit SPSS 16.0 (für Windows).
Tab. 2-1 gibt einen Überblick über die verwendeten statistischen Verfahren. Die explorativ berechneten statistischen Signifikanz wurden stets mittels sogenannter p-Werte gekennzeichnet. P-Werte $\leq 0,05$ wurden als signifikant bezeichnet und als wesentlich interpretiert.

<table>
<thead>
<tr>
<th>Test</th>
<th>Zielsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapiro-Wilk-Test</td>
<td>Test auf Normalverteilung der Messwerte.</td>
</tr>
<tr>
<td>T-Test für gepaarte Stichproben</td>
<td>Überprüfung der Hypothese, ob zwei unabhängige Stichproben den gleichen Mittelwert aufweisen.</td>
</tr>
<tr>
<td>Wilcoxon-Test</td>
<td>Überprüfung ob zwei abhängige (zusammengehörende) Messungen aus der gleichen Grundgesamtheit stammen.</td>
</tr>
<tr>
<td>McNemar-Test</td>
<td>Überprüfung der Hypothese, dass die Häufigkeiten in der Grundgesamtheit für beide Messungen nicht unterschiedlich sind.</td>
</tr>
<tr>
<td>Chi²-Test</td>
<td>Prüfung von zwei Merkmalen (=Variablen) auf deren Unabhängigkeit voneinander.</td>
</tr>
<tr>
<td>Univariate Varianzanalyse</td>
<td>Überprüfung der Hypothese, ob mehrere, unabhängige Stichproben den gleichen Mittelwert aufweisen.</td>
</tr>
</tbody>
</table>

Tab. 2-1: Die explorativ verwendeten statistischen Verfahren.
3 Ergebnisse

3.1 Patientengut

3.1.1 Alter
Das Alter der Patienten lag zum Zeitpunkt der Messung der postoperativen Tag-Nacht-
Druckkurve zwischen 42 und 86 Jahren, im Mittel bei 67 ± 9,4 Jahren (Tab. 3-1).
Insgesamt zeigt das Kollektiv einen deutlichen Altersgipfel zwischen 60-79 Jahren, 83%
der Patienten fallen in diese Kategorie.

<table>
<thead>
<tr>
<th>Alter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>42</td>
<td>86</td>
<td>66,7</td>
<td>9,2</td>
</tr>
</tbody>
</table>

Tab. 3-1: Das Alter des Gesamtkollektivs in Jahren.

3.1.2 Geschlechterverteilung
Das Gesamtkollektiv enthält 15 Männer (43 %) und 20 Frauen (57 %). Damit liegt das Verhältnis Männer zu Frauen bei 3:4.

3.1.3 Anzahl der untersuchten Augen
Es wurden 23 rechte (66 %) und 12 linke Augen (34 %) untersucht.

3.1.4 Diagnosen
Bei 60 % (21 Patienten) lautete die Diagnose Primäres Offenwinkelglaukom. Bei 11 %
(vier Patienten) lag ein Primäres Offenwinkelglaukom mit Niederdruckkomponente, bei
9 % (drei Patienten) ein Primäres Offenwinkelglaukom mit Engwinkelkomponente vor.
Bei 14 % (fünf Patienten) lautete die Diagnose Pseudoexfoliationsglaukom. Bei 3%
(einem Patient) lag ein Pigmentdispersionsglaukom, bei weiteren 3 % (einem Patienten)
ein chronisches Winkelblockglaukom vor.
3.1.5 Intraokulare Voroperationen / Lasertherapie

Von 35 Augen waren 63 % (22 Augen) zum Zeitpunkt der präoperativen Tages-Nacht-Druckkurve bereits mit Lasertherapie oder intraokulärer Chirurgie vorbehandelt. 37 % (13 Augen) waren zu diesem Zeitpunkt ohne intraokulare Voroperationen oder Lasertherapie.

37 % (13 Augen) waren mit einer Argonlasertrabekuloplastik (ALT) behandelt worden. Bei 6 % (zwei Augen) erfolgte zusätzlich zur ALT eine Laser-Iridotomie. Bei 3 % (ein Auge) wurde eine isolierte Laser-Iridotomie durchgeführt. Bei weiteren 3 % (ein Auge) war eine ALT, eine Laser-Iridotomie und eine Kataraktooperation erfolgt. Bei 3 % (ein Auge) war eine ALT, zwei Zyklokryokoagulationen und eine Kataraktooperation durchgeführt worden. Bei 11 % (vier Augen) war eine Kataraktooperation durchgeführt worden.

Zusammenfassend kann man feststellen, dass bei 37 % (13 Augen) keine, bei 46 % (16 Augen) ausschließlich Glaukom-Lasertherapien, bei 11 % (vier Augen) ausschließlich Kataraktoperationen und bei 6% (zwei Augen) Glaukom-Lasertherapie/Glaukomchirurgie sowie Kataraktoperationen präoperativ durchgeführt worden waren.

3.1.6 Pseudophakie

69 % der Patienten (24 Augen) waren im gesamten Verlauf der Studie phak, bei 31 % (11 Augen) wurde vor oder im Verlauf der Studie eine Kataraktooperation mit Kunstlinsenimplantation durchgeführt.

Bei 17 % (sechs Augen) war eine Kataraktooperation mit Implantation einer Kunstlinse bereits vor der präoperativen Messung erfolgt. Bei 6 % (zwei Augen) wurde eine kombinierte Trabekulektomie mit Phakoemulsifikation und Implantation einer Hinterkammerlinse durchgeführt. Bei weiteren 6 % (zwei Augen) erfolgte eine Kataraktoperation mit Kunstlinsenimplantation nach der Trabekulektomie und vor der postoperativen Messung. Bei 3 % (einem Auge) wurde eine Kunstlinse nach der postoperativen Messung implantiert.
3.1.7 Follow up

Die Zeit zwischen Operation und der postoperativen Tages-Nacht-Druckkurve (Follow up) betrug im Mittel 749 ± 616 Tage (2,1 ± 1,7 Jahre), hier lag der kürzeste Zeitraum bei 313 Tagen (0,9 Jahre) und der längste bei 3733 Tagen (10,2 Jahre). Der Median lag bei 594 Tagen (1,6 Jahre). 11 % (vier Patienten) der Patienten wurden 0,8 – 1 Jahr nachbeobachtet, 60% (21 Patienten) wurden 0,8 - 2 Jahre nachbeobachtet, 89 % (31 Patienten) wurden 0,8 - 3 Jahre nachbeobachtet, 94 % (33 Patienten) wurden 0,8 - 4 Jahre nachbeobachtet 97 % (34 Patienten) wurden 0,8 – 6 Jahre nachbeobachtet und 100% (35 Patienten) wurden 0,8 – 11 Jahre nachbeobachtet.

Betrachtet man dies ohne die zwei längsten Werte (3733d, 1869d), so ergibt sich ein Nachbeobachtungsintervall im Mittel von 625 ± 264 Tagen (1,7 +/- 0,7 Jahren).

Schränkte man die Studie auf ein Nachbeobachtungsintervall von maximal 3 Jahren ein, so ergäbe dies ein Follow up im Mittel von 585 ± 217 Tagen (1,6 +/- 0,6 Jahre).

Die Zeit zwischen Operation und den postoperativen Kontrollwerten des intraokularen Druckes (IODpk) lag im Mittel bei 1104 ± 827 Tagen (3 ± 2,3 Jahre), der kürzeste Wert betrug 316 Tage (0,9 Jahre) der längste 3736 Tage (10,2 Jahre).
3.2 Operative und medikamentöse Therapie

3.2.1 Operationstechnik

Bei 91 % (32 Patienten) wurde eine Trabekulektomie durchgeführt. Bei 6 % (zwei Patienten) wurde die Trabekulektomie mit einer Extrakapsulären Kataraktextraktion kombiniert durchgeführt. Bei 3 % (einem Patient) erfolgte eine Goniotrepanation.

3.2.2 Antimetabolite

Intraoperativ wurden bei 80 % (28 Patienten) Antimetabolite appliziert, die restlichen 20 % (sieben Patienten) bekamen intraoperativ keine Antimetabolite appliziert.

Von den 80% wurde bei 34 % (12 Patienten) Mitomycin C 0,01 %, bei 23 % (acht Patienten) Mitomycin C 0,02 % und bei weiteren 23 % (acht Patienten) 5-Fluorouracil appliziert (Tab. 3-2).

<table>
<thead>
<tr>
<th>Antimetabolit</th>
<th>Patienten/Augen</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>keiner</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Mitomycin C 0,01 %</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Mitomycin C 0,02 %</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

Tab. 3-2: Die Verteilung der intraoperativ verwendeten Antimetaboliten.

Insgesamt erhielten 51 % (18 Patienten) eine postoperative Nachbehandlung mit 5-Fluorouracil, 49 % (17 Patienten) erhielten keine postoperativen Antimetabolitinjektionen.
17 % (sechs Patienten) erhielten insgesamt 40 mg 5-Fluorouracil (acht Injektionen). Jeweils 6 % (zwei Patienten) erhielten 15 mg (drei Injektionen), 20 mg (vier Injektionen), 25 mg (fünf Injektionen), 30 mg (sechs Injektionen), 35 mg (sieben Injektionen). 3 % (eins Patient) erhielt 45 mg 5-Fluorouracil (neun Injektionen) und weitere 3 % (ein Patient) 55 mg (elf Injektionen). Im Mittel erhielten die 18 Patienten, die eine Nachbehandlung mit 5-Fluorouracil erhielten 32,8 ± 11,0 mg 5-Fluorouracil (7,0 ± 2,7 Injektionen) (Tab. 3-3).

<table>
<thead>
<tr>
<th>5-Fluorouracil (mg)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augenzahl</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 3-3: Die Verteilung sowie Dosierung des postoperativ applizierten Antimetabolits 5-Fluorouracil.

3.2.3 Antiglaukomatóse Medikation

Zum Zeitpunkt der präoperativen Tages-Nacht-Druckkurve (TNDK_{prä}) wurden im Mittel 2,0 ± 1,2 Glaukommedikamente pro Patient appliziert und dokumentiert. Insgesamt bekamen 83 % (29 Patienten) zum Zeitpunkt der TNDK_{prä} 1-4 antiglaukomatóse Medikamente appliziert.

Zum Zeitpunkt der postoperativen Tages-Nacht-Druckkurve (TNDK_{post}), nach einem mittleren Follow up von 2,1 ± 1,7 Jahren, wurden durchschnittlich 0,14 ± 0,4 drucksenkende Medikamente verwendet. 89 % (31 Patienten) benötigten zu diesem Zeitpunkt keine drucksenkende Medikation, 9 % (drei Patienten) verwendeten einen drucksenkenden Wirkstoff, 3 % (ein Patient) verwendeten zwei drucksenkende Wirkstoffe.

Zum Zeitpunkt der postoperativen Kontrollwerte des intraokularen Druckes (IOD_{pk}), nach einem mittleren Follow up von 3 ± 2,3 Jahren, wurden durchschnittlich 0,3 ± 0,7 drucksenkende Medikamente verwendet. 83 % (29 Patienten) benötigten hierbei kein drucksenkendes Medikament, 9 % (drei Patienten) ein drucksenkendes Medikament, 6 % (zwei Patienten) zwei drucksenkende Medikamente und 3 % (ein Patient) drei drucksenkende Medikamente (Tab. 3-4; Tab. 3-5).
<table>
<thead>
<tr>
<th></th>
<th>Mittelwert ± Stabw.</th>
<th>Mini-Maxi</th>
<th>Augen</th>
<th>Prozent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>präoperativ</td>
<td>2,0 ± 1,2</td>
<td>0-4</td>
<td>29 von 35</td>
<td>83</td>
</tr>
<tr>
<td>postoperativ</td>
<td>0,1 ± 0,4</td>
<td>0-2</td>
<td>4 von 35</td>
<td>11</td>
</tr>
<tr>
<td>postoperative Kontrolle</td>
<td>0,3 ± 0,7</td>
<td>0-3</td>
<td>6 von 35</td>
<td>17</td>
</tr>
</tbody>
</table>

Tab. 3-4: Anzahl der applizierten Medikamente.

<table>
<thead>
<tr>
<th>Medikamentenzahl</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>bei TNDK\textsubscript{prä}</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>bei TNDK\textsubscript{post}</td>
<td>31</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>postop Kontrolle</td>
<td>29</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 3-5: Verteilung der applizierten Medikamente auf die untersuchten Augen.
3.3 Intraokularer Druck

Die erhobenen intraokularen Druckwerte sind die Grundlage der weiteren Fragestellungen. Im Folgenden sollen sie kurz vorgestellt und ihre Verteilung dargestellt werden.

3.3.1 Präoperativer intraokulaler Maximaldruck

Der präoperative maximale intraokulare Druck (IOD_{max,T,prä}) wurde den präoperativ angefertigten Tages-Nacht-Druckkurven entnommen. Die Zeit zwischen der präoperativen Tages-Nacht-Druckkurve und der Operation betrug im Mittel 10 ± 18 Tage. Der IOD_{max,T,prä} betrug am Tag im Mittel 26,5 ± 5,9 mmHg. Es wurden Werte zwischen 17 und 40 mmHg gemessen (Abb. 3-1). Die Messwerte sind nach Shapiro-Wilk-Test normalverteilt.

Abb. 3-1: Die Verteilung der präoperativen maximalen IOD-Tageswerte (IOD_{max,T,prä}).
In der Nacht betrug der präoperative intraokulare Maximaldruck (IOD_{max,N,prä}) im Mittel 23,4 ± 5,2 mmHg. Es wurden Werte zwischen 12 und 33 mmHg gemessen (Abb. 3-2). Die Shapiro-Wilk-Testung zeigt eine Normalverteilung der Messwerte.

Abb. 3-2: Die Verteilung der präoperativen maximalen IOD-Nachtwerte (IOD_{max,N,prä}).

3.3.2 Postoperativer intraokularer Maximaldruck

Die postoperativen intraokularen Maximaldrücke wurden der postoperativen Tages-Nacht-Druckkurve entnommen, die nach einem mittleren Follow up von 2,1 ± 1,7 Jahren nach der Operation gemessen wurde.

Der mittlere postoperative intraokulare Maximaldruck am Tag (IOD_{max,T,post}) betrug 16 ± 4,4 mmHg. Es wurden Werte zwischen 6 und 23 mmHg gemessen, der Modalwert betrug 20 mmHg (fünf Patienten) (Abb. 3-3). Die Messwerte sind nach Shapiro-Wilk-Test normalverteilt.

In der Nacht betrug der mittlere postoperative maximale intraokulare Druck (IOD_{max,N,post}) 16 ± 5,4 mmHg. Es wurden Werte zwischen 4 und 28 mmHg gemessen (Abb. 3-4). Die Shapiro-Wilk-Testung zeigt eine Normalverteilung der Messwerte.
Abb. 3-3: Die Verteilung der postoperativen maximalen IOD-Tageswerte (IOD_{max,T,post}).

Abb. 3-4: Die Verteilung der postoperativen maximalen IOD-Nachtwerte (IOD_{max,N,post}).
3.3.3 Postoperativer Kontrollwert

Der letzte in der Akte dokumentierte postoperative Kontrollwert des intraokularen Druckes (IOD_{pk}) ist ein Einzelmesswert, der meist im Rahmen einer Nachuntersuchung in der Augenpoliklinik zu den üblichen Sprechzeiten erhoben wurde. Er kann aus diesem Grunde nicht mit den aus einer vollständigen Tages-Nacht-Druckkurve erhobenen maximalen IOD-Werten verglichen werden, aber er zeigt das postoperative Outcome der Patienten durchschnittlich 1 ± 1,8 Jahre nach der postoperativen Tages-Nacht-Druckkurve an. Das Follow up für diesen Wert beträgt im Mittel 3 ± 2,3 Jahre. Der IOD_{pk} beträgt im Mittel 13,1 ± 4,3 mmHg. Es wurden Werte zwischen 3 und 24 mmHg gemessen (Abb. 3-5).

![Diagramm der Verteilung der postoperativen Kontrollwerte des intraokularen Druckes (IOD_{pk})](image_url)

Abb. 3-5: Die Verteilung der postoperativen Kontrollwerte des intraokularen Druckes (IOD_{pk}).
3.4 Bivariante Statistik

3.4.1 Senkung des maximalen intraokularen Druckes

In diesem Kapitel wird die Senkung des maximalen intraokularen Druckes durch die erfolgreiche Trabekulektomie prozentual und anhand des Erreichens der beiden Zieldruckkategorien beurteilt. Postoperativ zeigt sich der Prozentsatz der Patienten, die nach erfolgreicher Trabekulektomie die Zielkriterien erreichen. Dieses Ergebnis zeigt somit die Qualität der Drucksenkung durch die erfolgreiche Trabekulektomie, welches anschließend einem Tag-Nacht-Vergleich unterzogen wird. Der postoperative Kontrollwert des intraokularen Druckes (IOD<pk>) soll das Langzeitergebnis der funktionierenden Trabekulektomie nach einem mittleren Follow-up von 3 ± 2,3 Jahren anhand des Zielkriteriums<18 verdeutlichen.

3.4.1.1 Prozentuale Senkung im Tagesprofil

Der maximale präoperative intraokulare Druck der Tagesmessungen (IOD_{max,T,prä}) betrug im Mittel 26,5 ± 5,9 mmHg (17-40 mmHg). Der maximale postoperative intraokulare Druck der Tagesmessungen (IOD_{max,T,post}), der nach einer mittleren Nachbeobachtungszeit von 2,1 ± 1,7 Jahren bestimmt wurde, betrug im Mittel 16,0 ± 4,4 mmHg (6-23 mmHg) (Tab. 3-6; Abb. 3-6).

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOD<sub>max,T,prä</sub></td>
<td>17</td>
<td>40</td>
<td>26,5</td>
<td>5,9</td>
</tr>
<tr>
<td>IOD<sub>max,T,post</sub></td>
<td>6</td>
<td>23</td>
<td>16,0</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Tab. 3-6: Der maximale prä- und postoperative intraokulare Druck der Tagesmessungen.
Die mittlere Senkung des maximalen intraokularen Druckes zwischen prä- und postoperativer Tagesmessung (IOD_{max,T,prä} - IOD_{max,T,post} = ΔIOD_{max,T}) betrug 10,6 ± 6,9 mmHg ((-2)-28 mmHg), das entspricht einer statistisch signifikanten Senkung (p<0.001, T-Test) von 40% gegenüber dem präoperative Wert (Tab. 3-7).

Berechnet man die Drucksenkung (ΔIOD_{max,T}) für jeden Patienten und trägt sie über den jeweiligen Patienten auf, ergibt sich das in Abb. 3-7 gezeigte Bild. Dabei stellt man fest, dass nur bei 3 % (ein Patient) eine Druckerhöhung im Vergleich präoperativ zu postoperativ stattfand, bei weiteren 3 % (ein Patient) blieb der IOD_{max,T} postoperativ unverändert, während bei 94 % (33 Patienten) der maximale intraokulare Druck der Tagesmessungen um Werte zwischen 2 und 28 mmHg gesenkt wurde. Der Shapiro-Wilk-Test zeigt eine Normalverteilung der berechneten Drucksenkungen im Tagesprofil.
3.4.1.2 Prozentuale Senkung im Nachtprofil

Der maximale präoperative intraokulare Druck der Nachtmessungen (IOD_{max,N,prä}) betrug im Mittel 23,4 ± 5,2 mmHg (12-33 mmHg). Der maximale postoperative intraokulare Druck der Nachtmessungen (IOD_{max,N,post}), der nach einer mittleren Nachbeobachtungszeit von 2,1 ± 1,7 Jahren bestimmt wurde, betrug im Mittel 16,0
mmHg ± 5,4 mmHg (4-28 mmHg) (Tab. 3-8). Die Verteilung der maximalen prä- und postoperativen intraokularen Druckwerte der Nachtmessungen ist in Abb. 3-8 dargestellt.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOD_{max,N,prä}</td>
<td>12</td>
<td>33</td>
<td>23,4</td>
<td>5,2</td>
</tr>
<tr>
<td>IOD_{max,N,post}</td>
<td>4</td>
<td>28</td>
<td>16,0</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Tab. 3-8: Der maximale prä- und postoperative intraokulare Druck der Nachtmessungen.

Abb. 3-8: Die Verteilung der maximalen prä- und postoperativen intraokularen Druckwerte der Nachtmessungen.
Die mittlere Senkung des maximalen intraokularen Druckes der Nachtmessungen zwischen prä- und postoperativer Nachtmessung (\(\text{IOD}_{\text{max,N,prä}} - \text{IOD}_{\text{max,N,post}} = \Delta\text{IOD}_{\text{max,N}}\)) betrug im Mittel 7,4 \(\pm\) 7,7 mmHg ((-7)-23mmHg). Diese Senkung ist statistisch signifikant \((p< 0,001, \text{T-Test})\), (Tab. 3-9). Prozentual bedeutet das eine Senkung von 32\% des maximalen präoperativen intraokularen Druckes der Nachtmessungen.

Berechnet man die Drucksenkung \((\Delta\text{IOD}_{\text{max,T}})\) für jeden Patienten und trägt sie über den jeweiligen Patienten auf, ergibt sich das in Abb. 3-9 gezeigte Bild. Dabei stellt man fest, dass bei 20\% (sieben Patienten) eine Druckerhöhung im Vergleich präoperativ zu postoperativ stattfand, bei 3\% (ein Patient) trat weder eine Erhöhung noch eine Senkung des maximalen intraokularen Drucks auf, während bei 77\% (27 Patienten) der maximale intraokulare Druck der Nachtmessungen um Werte zwischen 1 und 23 mmHg gesenkt wurde. Der Shapiro-Wilk-Test zeigt eine Normalverteilung der berechneten Drucksenkungen im Nachtprofil.

<table>
<thead>
<tr>
<th>(\Delta\text{IOD}_{\text{max,N}})</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Prozent (%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-7)-23</td>
<td>7,4</td>
<td>7,7</td>
<td>32</td>
<td>(< 0,001)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3-9: Die mittlere Senkung der maximalen intraokularen Druckwerte der Nachtmessung \((\Delta\text{IOD}_{\text{max,N}})\).
3.4.1.3 Zieldruckkategorien im Tagesprofil

Das Zielkriterium $\leq 21 \pm 20$ setzt einen postoperativen Zieldruck von kleiner oder gleich 21 mmHg mit Drucksenkung von mind. 20 % gegenüber dem präoperativen Wert voraus. Für die maximalen intraokularen Druckwerte der Tagesmessungen ($\text{IOD}_{\text{max,T,post}}$) ergab sich für das Zielkriterium $\leq 21 \pm 20$ folgende Konstellation: Die funktionierende Trabekulektomie senkte bei 80 % (28 Patienten) nach einem Follow up von im Mittel 2,1 ± 1,7 Jahren den maximalen intraokularen Druck am Tag auf Werte bis 21 mmHg, verbunden mit einer Drucksenkung um mindestens 20%. Davon benötigten 71 % (25 Patienten) keine zusätzliche antiglaukomatöse Medikation (complete success), während bei 9 % (drei Patienten) das Zielkriterium $\leq 21 \pm 20$ nur mit zusätzlicher Glaukommedikation erreicht werden konnte (qualified success).
Insgesamt 20 % (sieben Patienten) konnten das Zielkriterium \(\leq 21 + 20 \) nicht erfüllen. Von diesen Patienten konnte bei 11 % (vier Patienten) der maximale intraokulare Druck auf Werte unter 21 mmHg gesenkt werden, jedoch ohne eine zusätzliche Drucksenkung von mindestens 20 % zu erzielen. Bei 9 % (drei Patienten) wurde weder ein ausreichend niedriger postoperativer Druck noch eine Senkung von mindestens 20 % erreicht (no success). Abb. 3-10 zeigt die Verteilung der Ergebnisse.

Abb. 3-10: Die Verteilung des Gesamtkollektivs in Bezug auf Erreichen des Zielkriteriums \(\leq 21 + 20 \), mit einem postoperativen Zieldruck von \(\leq 21 \) mmHg verbunden mit einer Drucksenkung von mindestens 20 % des präoperativen Wertes, bezogen auf die maximalen intraokularen Druckwerte der Tagesmessungen (IOD\(_{\text{max,T,post}}\)).

Das Zielkriterium \(<18 \) setzt einen postoperativen Zieldruck von \(<18 \) mmHg voraus. Für die maximalen intraokularen Druckwerte der Tagesmessungen (IOD\(_{\text{max,T,post}}\)) zeigte sich hierbei folgende Verteilung: Die funktionierende Trabekulektomie senkt bei insgesamt 60 % (21 Patienten), nach einem Follow up von im Mittel 2,1 ± 1,7 Jahren, den maximalen intraokularen Druck am Tag auf Werte unter 18 mmHg. 54 % (19 Patienten) be-
nötigen dabei keine und 6 % (zwei Patienten) benötigen dabei zusätzliche antiglaukomatóse Medikation (complete bzw. qualified success).

Bei 40 % (14 Patienten) konnte keine ausreichende IOD-Senkung erzielt werden (no success) (Abb. 3-11).

Abb. 3-11: Die Verteilung des Gesamtkollektivs in Bezug auf Erreichen des Zielkriteriums<18, mit einem postoperativen Zieldruck von <18mm Hg, bezogen auf die maximalen intraokularen Druckwerte der Tagesmessungen (IOD_{max,T,post}).

Um Unterschiede zwischen den zwei Zielkriterien festzustellen, wird die Verteilung der Patienten auf das Zielkriterium\(\leq 21+20\) und das Zielkriterium\(<18\) miteinander verglichen. Ein „complete success“ wird beim Zielkriterium\(\leq 21+20\), nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren, von 71 % (25 Patienten) erreicht, beim Zielkriterium\(<18\) von 54 % (19 Patienten). 9% (drei Patienten) erreichen beim Zielkriterium\(\leq 21+20\) ein „qualified success“ und 6 % (zwei Patienten) beim Zielkriterium\(<18\). Die Misserfolgsquote („no success“) beträgt beim Zielkriterium\(\leq 21+20\) insgesamt 20 % (sieben Patienten), wobei davon 11 % (vier Patienten) zumindest einen Teil des Zielkriterium\(\leq 21+20\) erfüllen kön-
nen. Die Misserfolgsquote beim Zielkriterium<18 beträgt 40 % (14 Patienten) (Abb. 3-12).

Im statistischen Vergleich konnte kein signifikanter Unterschied (p>0,05, McNemar-Test) zwischen der Verteilung der Patienten auf die Zielkriterien im Tagesprofil festgestellt werden (Tab. 3-10).

Abb. 3-12: Die Verteilung der Patienten auf das Zielkriterium≤21+20 und das Zielkriterium<18 der Tagesmessungen.

<table>
<thead>
<tr>
<th>P-Wert</th>
<th>0,065</th>
</tr>
</thead>
</table>

Tab. 3-10: Der statistische Vergleich der Zielkriterien im Tagesprofil.

3.4.1.4 Zieldruckkategorien im Nachtprofil

Das Zielkriterium≤21+20 setzt einen postoperativen Zieldruck von ≤21 mmHg mit Drucksenkung von mind. 20 % gegenüber dem präoperativen Wert voraus. Für die maximalen intraokularen Druckwerte der Nachtmessungen (IOD_{max,N,post}) ergibt sich für das Ziel-
kriterium $\leq 21+20$ folgende Konstellation: Die funktionierende Trabekulektomie senkt bei insgesamt 69 % (24 Patienten) nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren den maximalen intraokularen Druck in der Nacht auf Werte bis 21 mmHg, verbunden mit einer Drucksenkung um mindestens 20 %. 63 % (22 Patienten) benötigen dabei keine zusätzliche antiglaukomatóse Medikation (complete success) und 6 % (zwei Patienten) benötigen dabei zusätzliche antiglaukomatóse Medikation (qualified success). Insgesamt 31 % (elf Patienten) können das Zielkriterium $\leq 21+20$ nicht erreichen (no success). Davon wird der maximale intraokulare Druck bei 14 % (fünf Patienten) auf Werte bis 21 mmHg gesenkt, jedoch ohne eine zusätzliche Drucksenkung von mindestens 20 %. Bei 17 % (6 Patienten) konnte weder ein ausreichend niedriger maximaler intraokulärer Druck noch die vorgeschriebenen 20 % Drucksenkung erzielt werden. Abb. 3-13 zeigt die Verteilung der Ergebnisse.

Abb. 3-13: Die Verteilung des Gesamtkollektivs in Bezug auf Erreichen des Zielkriteriums $\leq 21+20$ mit einem postoperativen Zieldruck von ≤ 21 mmHg verbunden mit einer Drucksenkung von mindestens 20 % des präoperativen Wertes, bezogen auf die maximalen intraokularen Druckwerte der Nachtmessungen ($\text{IOD}_{\text{max,N,post}}$).
Das Zielkriterium setzt einen postoperativen Zieldruck von <18 mmHg voraus. Für die maximalen intraokularen Druckwerte der Nachtmessungen (IOD\textsubscript{max,N,post}) zeigte sich hierbei folgende Verteilung: Die funktionierende Trabekulektomie senkte bei insgesamt 63 % (22 Patienten) nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren den maximalen intraokularen Druck der Nachtmessungen auf Werte unter 18 mmHg. Davon konnte der postoperative maximale intraokulare Druck bei 57 % (20 Patienten) ohne zusätzliche antiglaukomatóse Medikation auf Werte unter 18 mmHg gesenkt werden (complete success), während dies bei 6 % (zwei Patienten) mit zusätzlicher antiglaukomatóser Medikation erreicht wurde (qualified success).

Bei 37 % (13 Patienten) konnte keine ausreichende Senkung des maximalen intraokularen Druckes erzielt werden (no success) (Abb. 3-14).

Abb. 3-14: Die Verteilung des Gesamtkollektivs in Bezug auf Erreichen des Zielkriteriums setzt einen postoperativen Zieldruck von <18 mmHg, bezogen auf die maximalen intraokularen Druckwerte der Nachtmessungen (IOD\textsubscript{max,N,post}).
Um Unterschiede zwischen den zwei Zielkriterien festzustellen, wird die Verteilung der Patienten auf das Zielkriterium $\leq 21+20$ und das Zielkriterium <18 miteinander verglichen. 63 % (22 Patienten) erreichten beim Zielkriterium $\leq 21+20$, nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren, die Kategorie „complete success“, beim Zielkriterium <18 waren es 57 % (20 Patienten). Mit antiglaukomatöser Medikation konnte bei beiden Zielkriterien von 6 % (zwei Patienten) ein „qualified success“ erzielt werden. Die Misserfolgsquote („no success“) liegt beim Zielkriterium $\leq 21+20$ bei 31 % (elf Patienten), wovon 14 % (fünf Patienten) zumindest einen Teil des Zielkriteriums $\leq 21+20$ erfüllen konnten, und beim Zielkriterium <18 bei 37 % (13 Patienten) (Abb. 3-15).

Im statistischen Vergleich konnte kein signifikanter Unterschied ($p > 0,5$, McNemar-Test) zwischen der Verteilung der Patienten auf die Zielkriterien im Nachtprofil festgestellt werden, (Tab. 3-11).

Abb. 3-15: Die Verteilung der Patienten auf das Zielkriterium $\leq 21+20$ und das Zielkriterium <18 der Nachtmessungen.
Zielkriterien und postoperativer Kontrollwert

Das Zielkriterium \(\leq 21 + 20 \) setzt eine Drucksenkung von mind. 20 % gegenüber dem präoperativen Wert voraus. Da jedoch kein verwendbarer präoperativer Wert für den postoperativen Kontrollwert des intraokularen Druckes, anhand dessen man die Drucksenkung bestimmen könnte, existiert, muss hier auf dieses Zielkriterium verzichtet werden.

Der statistische Vergleich der Zielkriterien in den zwei vorausgehenden Kapiteln zeigt jedoch, dass zwischen den beiden Zielkriterien kein signifikanter Unterschied weder bezüglich der Tag- noch bezüglich der Nachtmessungen besteht.

Das Zielkriterium \(< 18 \) setzt einen postoperativen Zieldruck unter 18 mmHg voraus. Für die postoperativen Kontrollwerte des intraokularen Druckes zeigte sich folgende Verteilung: Nach einem Follow up im Mittel von 3 ± 2,3 Jahren (0,9 - 10,2 Jahre) nach funktionierender Trabekulektomie liegen die postoperativen Kontrollwerte des intraokularen Druckes bei insgesamt 89 % (31 Patienten) unter 18 mmHg. Bei 74 % (26 Patienten) wird dies ohne zusätzliche antiglaukomatóse Medikation erreicht (complete success). Bei 14 % (fünf Patienten) liegen die postoperativen Kontrollwerte des intraokularen Druckes mit zusätzlicher drucksenkender Medikation unter 18 mmHg (qualified success).

Bei 12 % (4 Patienten) liegen die postoperativen Kontrollwerte bei oder über 18 mmHg (no success), dabei erhalten 9 % (drei Patienten) keine zusätzliche antiglaukomatóse Medikation und 3 % (ein Patient) zusätzliche antiglaukomatóse Medikation (Abb. 3-16).
Abb. 3-16: Die Verteilung des Gesamtkollektivs in Bezug auf Erreichen des Zielkriteriums, mit einem postoperativen Zieldruck von <18 mmHg, bezogen auf den postoperativen Kontrollwert des intraokularen Druckes (IODpk)
3.4.2 Nivelliert die funktionierende Trabekulektomie Fluktationen?

Es ist bekannt, dass Fluktuationen des intraokularen Drucks im Tag- bzw. Nachtverlauf ein Risikofaktor für die Entstehung von Glaukomen darstellen [27, 28]. Um die Auswirkung der erfolgreichen Trabekulektomie auf diese Fluktuationen zu zeigen, vergleicht diese Studie die prä- und postoperativ ermittelten Fluktationen miteinander. Die Fluktuation wurde hierbei durch die Differenz der aus den Tag-Nacht-Druckkurven entnommen maximalen und minimalen intraokularen Druckwerten bestimmt (IOD\textsubscript{max} - IOD\textsubscript{min} = Fluktuation). Von den auf diese Weise bestimmten prä- und postoperativen Fluktationen wurde wiederum die Differenz gebildet (Fluktuation\textsubscript{prä} - Fluktuation\textsubscript{post} = ΔFluktuation). Anhand dieser Differenz (ΔFluktuation) kann eine Aussage über das Verhalten der Fluktuationen des IODs nach funktionierender Trabekulektomie getroffen werden. Wiederum wird die Auswertung der Fluktuation für Tag und Nacht getrennt durchgeführt.

3.4.2.1 Fluktuation im Tagesprofil

Die Fluktuation des intraokularen Tagesdrucks ergab präoperativ (Fluktuation\textsubscript{T,prä}) im Mittel einen Wert von 12,1 ± 4,2 mmHg (4-24 mmHg). Postoperativ, nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren, lag die gemittelte Fluktuation (Fluktuation\textsubscript{T,post}) bei 5,6 ± 2,2 mmHg (2-10 mmHg) (Tab. 3-12). Abb. 3-17 zeigt die Verteilung der prä- und postoperativen Fluktuation, welche nach Shapiro-Wilk-Test normalverteilt sind.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluktuation\textsubscript{T,prä}</td>
<td>35</td>
<td>4</td>
<td>24</td>
<td>12,1</td>
<td>4,2</td>
</tr>
<tr>
<td>Fluktuation\textsubscript{T,post}</td>
<td>35</td>
<td>2</td>
<td>10</td>
<td>5,6</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Tab. 3-12: Die Fluktuation des intraokularen Druckes des Tagesprofils prä- und postoperativ.
Abb. 3-17: Die Verteilung der Fluktuation des Tagesprofils prä- und postoperativ. * markiert einen Ausreißer.

Es ergibt sich eine signifikante Minderung (p < 0,001, T-Test) der Tagesfluktuationen zwischen prä- und postoperativer Messung (ΔFluktuation$_T$) von im Mittel 6,5 ± 4,6 mmHg. Das entspricht einer Minderung der Fluktuation um 54 % des präoperativen Wertes (Tab. 3-13).

Trägt man die Verminderung der Fluktuation (ΔFluktuation$_T$) durch die erfolgreiche Trabekulektomie über den jeweiligen Patienten auf, so zeigt sich das in Abb. 3-18 gezeigte Bild. Bei 91 % (32 Patienten) vermindert sich die Fluktation zwischen prä- und postoperativer Tagesmessung. Bei 6 % (zwei Patienten) bleibt die Fluktuation unverändert bestehen und nur bei 3 % (ein Patient) ist die postoperative Fluktuation höher als die präoperative Fluktuation.
Tab. 3-13: Die Fluktuationsminderung des Tagesprofils.

<table>
<thead>
<tr>
<th>ΔFluktuation_T</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Prozent (%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-3)-17</td>
<td>6,5</td>
<td>4,6</td>
<td>54</td>
<td><0,001</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 3-18: Die Fluktuationsdifferenz im Tagesprofil zwischen prä- und postoperativ für die entsprechenden nummerierten Patienten.
3.4.2.2 Fluktuationen im Nachtprofil der Untergruppe

Im Nachtprofil ergab sich nur bei 7 Patienten die Konstellation mit präoperativ und postoperativ jeweils mindestens zwei erhobenen Werten (Maximal- und Minimalwert). Im Folgenden werden die Fluktuationen dieser Untergruppe (Fluktuation\textsubscript{UG,N}) im Vergleich zwischen prä- und postoperativ dargestellt.

Die präoperative Fluktuation des IODs des Nachtprofils in der Untergruppe (Fluktuation\textsubscript{UG,N,prä}) betrug im Mittel 7,1 ± 4,5 mmHg (2-13 mmHg). Postoperativ, nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren, lag die gemittelte Fluktuation (Fluktuation\textsubscript{UG,N,post}) bei 3,9 ± 4,1 mmHg (1-13 mmHg) (Tab. 3-14).

Abb. 3-19 zeigt die Verteilung der prä- und postoperativen Fluktuation. Der Boxplot zeigt eine starke präoperative Fluktuation die postoperativ bis auf einen größeren Ausreißer (*) deutlich gemindert ist, wobei dieser Ausreißer in einer Studie mit größeren Fallzahlen an Einfluss verlieren würde. Trotz des Ausreißers ist die Tendenz der Fluktuationverminderung der funktionierenden Trabekulektomie hier klar zu erkennen. Der Shapiro-Wilk-Test zeigt eine Normalverteilung der Messwerte für die präoperative Fluktuation, während sich die postoperative Fluktuation als nicht normalverteilt erweist.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluktuation\textsubscript{UG,N,prä}</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>7,1</td>
<td>4,5</td>
</tr>
<tr>
<td>Fluktuation\textsubscript{UG,N,post}</td>
<td>7</td>
<td>1</td>
<td>13</td>
<td>3,9</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Tab. 3-14: Die Fluktuation des intraokularen Druckes in der Untergruppe im Nachtprofil prä- und postoperativ.

Die Minderung der Fluktuation zwischen prä- und postoperativ (ΔFluktuationUG,N) betrug gemittelt 3,3 ± 6,8 mmHg ((-9)-11 mmHg), also 46 % der präoperativen Fluktuation. Diese Minderung ist statistisch aufgrund der hohen Standardabweichung (bedingt durch den Ausreißer) nicht signifikant (p > 0,05, Wilcoxon-Test) (Tab. 3-15).

Trägt man die prä- und postoperativen Fluktuationen des Nachtprofils der Untergruppe über den entsprechenden Patienten der Untergruppe auf, sortiert nach Größe der präoperativen Fluktuation, so erhält man das in Abb. 3-20 gezeigte Bild. Bei 71 % (fünf Patienten) ist die postoperative Fluktuation geringer als die präoperative Fluktuation. Bei 29 % (zwei Patienten) ist die postoperative Fluktuation dagegen größer als die präoperative Fluktuation. Der mit drei nummerierte Patient zeigt dabei den bereits angesprochenen postoperativen Ausreißer.
Tab. 3-15: Die Fluktuationsminderung des Nachtprofils in der Untergruppe.

<table>
<thead>
<tr>
<th>ΔFluktuation_{UG,N}</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Prozent (%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-9)-11</td>
<td>3,3</td>
<td>6,8</td>
<td></td>
<td>46</td>
<td>0,270</td>
</tr>
</tbody>
</table>

Abb. 3-20: Die Fluktuationsdifferenz zwischen prä- und postoperativ für die entsprechenden, nummerierten Patienten in der Untergruppe im Nachtprofil.

3.4.2.3 Fluktuationen im Tagprofil der Untergruppe

Im Folgenden werden die Fluktuationen des Tagesprofils der Untergruppe im Vergleich zwischen prä- und postoperativ dargestellt.

Die präoperative Fluktuation des intraokularen Druckes des Tagesprofils in der Untergruppe (Fluktuation_{UG,T,prä}) betrug gemittelt 12,0 ± 6,1 mmHg (4-24 mmHg). Postoperativ, nach einem Follow up von 2,1 ± 1,7 Jahren, lag die gemittelte Fluktuation
des Tagesprofils in der Untergruppe (Fluktuation_{UG,T,post}) bei 6,1 \pm 1,6 \text{ mmHg} (3-8 \text{ mmHg}) (Tab. 3-16). Abb. 3-21 zeigt die Verteilung der pré- und postoperativen Fluktuation, welche nach Shapiro-Wilk-Test normalverteilt sind.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluktuation_{UG,T,prä}</td>
<td>7</td>
<td>4</td>
<td>24</td>
<td>12,0</td>
<td>6,1</td>
</tr>
<tr>
<td>Fluktuation_{UG,T,post}</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6,1</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tab. 3-16: Die Fluktuation des intraokularen Druckes in der Untergruppe im Tagesprofil pré- und postoperativ.

Die Minderung der Fluktuation durch die funktionierende Trabekulektomie betrug im Tagesprofil der Untergruppe (ΔFluktuation$_{UG,T}$) im Mittel 5,9 ± 6,2 mmHg ((-3)-17 mmHg). Das entspricht einer prozentualen Minderung der Fluktuation von 49 % der präoperativen Fluktuation. Diese Minderung ist statistisch grenzwertig signifikant ($p < 0,05$, T-Test) (Tab. 3-17).

Bei der Tagesgesamtgruppe (Kapitel 3.4.2.1) zeigte sich eine gemittelte Minderung der Fluktuation (ΔFluktuation$_T$) von 6,5 ± 4,6 mmHg ((-3)-17 mmHg). Das entspricht einer Minderung der Fluktuation um 54 %, wobei die Signifikanz eindeutig ist ($p < 0,001$, T-Test). Auffällig ist, dass die höchste Fluktuationsminderung der Tagesgesamtgruppe (17 mmHg) und die einzige Fluktuationserhöhung (-3 mmHg) beide in der Tages-Untergruppe enthalten sind, jedoch die mittleren Werte durch die kleinere Gruppengröße vermindert sind. Das erklärt die grenzwertige Signifikanz ($p < 0,05$) der Fluktuationsminderung in der Tages-Untergruppe im Vergleich zur eindeutigen Signifikanz in der Tages-Gesamtgruppe.

Trägt man die Differenzen der prä- und postoperativen Fluktuationen der Tagesprofile der Untergruppe (ΔFluktuation$_{UG,T}$) über den entsprechenden Patienten der Untergruppe auf, sortiert nach Größe der präoperativen Fluktuation, so erhält man das in Abb. 3-22 gezeigte Bild. Bei 86 % (sechs Patienten) ist die postoperative Fluktuation geringer als die präoperative Fluktuation. Bei 14 % (ein Patient) ist die postoperative Fluktuation dagegen größer als die präoperative Fluktuation. Man erkennt die beiden Extremwerte ((-3 mmHg), 17 mmHg) der Fluktuationsminderung/-vergrößerung aus der Tagesgesamtgruppe, die ohne die Menge der mittleren Werte aus der Tagesgesamtgruppe für die grenzwertige Signifikanz in der Tages-Untergruppe sorgen.

<table>
<thead>
<tr>
<th>ΔFluktuation$_{UG,T}$</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Prozent (%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-3)-17</td>
<td>5,9</td>
<td>6,2</td>
<td>49</td>
<td>0,047</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3-17: Die Fluktuationsminderung des Tagesprofils in der Untergruppe.
3.4.3 Tag-Nacht-Vergleich

Im folgenden Kapitel sollen die Tag- und Nacht-Ergebnisse der Kapitel 3.4.1 und 3.4.2 jeweils miteinander verglichen werden um mögliche Unterschiede des Verhaltens des intraokularen Druckes im Tages- bzw. Nachtprofil zu erkennen.

3.4.3.1 Prozentuale Senkung im Tag-Nacht-Vergleich

Die präoperativen maximalen intraokularen Druckwerte des Tagesprofils (IOD_{max,T,prä}) betrugen im Mittel 26,5 ± 5,9 mmHg (17-40 mmHg), während die präoperativen maximalen intraokularen Druckwerte des Nachtprofils (IOD_{max,N,prä}) im Mittel bei 23,4 ± 5,2
mmHg (12-33 mmHg) lagen (Tab. 3-18). Abb. 3-23 zeigt die Verteilung der präoperativen maximalen intraokularen Druckwerte des Tag- und des Nachtprofils.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOD_{max,T,prä}</td>
<td>17</td>
<td>40</td>
<td>26,5</td>
<td>5,9</td>
</tr>
<tr>
<td>IOD_{max,N,prä}</td>
<td>12</td>
<td>33</td>
<td>23,4</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Tab. 3-18: Die präoperativen maximalen intraokularen Druckwerte des Tag- und des Nachtprofils.

Abb. 3-23: Die Verteilung der maximalen präoperativen intraokularen Druckwerte der Tag- und Nachtmessungen.
Vergleicht man beide Werte miteinander, so erhält man eine gemittelte Differenz ($\Delta \text{IOD}_{\text{max,T,prä}} \text{IOD}_{\text{max,N,prä}} = \Delta \text{IOD}_{\text{max,prä}}$) von $3,1 \pm 6,1$ mmHg, die statistisch als signifikant einzuordnen ist ($p < 0,005$, T-Test) (Tab. 3-19). Der Vergleich der präoperativen Tages- und Nachtmessungen zeigt, dass der $\text{IOD}_{\text{max,N,prä}}$ signifikant um 12 % niedriger ist als der entsprechende maximale Tageswert.

<table>
<thead>
<tr>
<th>$\Delta \text{IOD}_{\text{max,prä}}$</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Prozent (%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-6)-17</td>
<td>3,1</td>
<td>6,1</td>
<td></td>
<td>12</td>
<td>0,004</td>
</tr>
</tbody>
</table>

Tab. 3-19: Die Differenz zwischen den maximalen präoperativen intraokularen Druckwerten des Tag- und des Nachtprofils.

Die postoperativen maximalen intraokularen Druckwerte des Tagesprofils ($\text{IOD}_{\text{max,T,post}}$) lagen im Mittel bei $16 \pm 4,4$ mmHg (6-23 mmHg), die postoperativen maximalen intraokularen Druckwerte des Nachtprofils ($\text{IOD}_{\text{max,N,post}}$) betrugen im Mittel $16 \pm 5,4$ mmHg (4-28 mmHg) (Tab. 3-20). Abb. 3-24 zeigt die Verteilung der postoperativen maximalen intraokulare Druckwerte des Tag- und des Nachtprofils.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{IOD}_{\text{max,T,post}}$</td>
<td>6</td>
<td>23</td>
<td>16</td>
<td>4,4</td>
</tr>
<tr>
<td>$\text{IOD}_{\text{max,N,post}}$</td>
<td>4</td>
<td>28</td>
<td>16</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Tab. 3-20: Die postoperativen maximalen intraokularen Druckwerte des Tag- und des Nachtprofils.
Die gemittelte Differenz ($\Delta IOD_{\text{max,post}} = IOD_{\text{max,T,post}} - IOD_{\text{max,N,post}}$) betrug 0,0 ± 3,7 mmHg. Hier ergibt sich im statistischen Vergleich der gemittelten postoperativen maximalen intraokularen Druckwerte des Tag- und Nachtprofils kein signifikanter Unterschied ($p = 1,000$, T-Test) (Tab. 3-21). Auffällig ist im Gegenteil, dass beide gemittelten postoperativen Werte nahezu identisch sind und sich nur durch eine größere Verteilungsbreite der postoperativen maximalen intraokularen Druckwerte des Nachtprofils von 4-28 mmHg im Vergleich zu der Verteilungsbreite der postoperativen maximalen intraokularen Druckwerte des Tagesprofils von 6-23 mmHg unterscheiden, (Abb. 3-24).
Die Senkung der maximalen intraokularen Druckwerte zwischen prä- und postoperativer Tagesmessung (ΔIOD$_{\text{max,T}}$) betrug im Mittel 10,6 ± 6,9 mmHg, (Tab. 3-7, Abb. 3-7). Das entspricht einer Senkung von 40 % der postoperativen Werte gegenüber den präoperativen Werten.

Die Senkung der maximalen intraokularen Druckwerte zwischen prä- und postoperativer Nachtmessung (ΔIOD$_{\text{max,N}}$) betrug im Mittel 7,4 ± 7,7 mmHg, (Tab. 3-9, Abb. 3-9). Das entspricht einer Senkung von 32 % der postoperativen Werte gegenüber den präoperativen Werten.

Im Tag-Nacht-Vergleich dieser Werte ergab sich eine gemittelte Differenz (ΔIOD$_{\text{max},\text{post}}$) von 3,1 ± 6,6 mmHg, dieser Unterschied ist statistisch signifikant (p < 0,05, T-Test) (Tab. 3-22). Es besteht also ein Unterschied zwischen der Senkung der maximalen intraokularen Druckwerte des Tagesprofils und der Senkung der maximalen intraokularen Druckwerte des Nachtprofils. Dabei senkt die funktionierende Trabekulektomie die maximalen intraokularen Druckwerte des Tagesprofils um genau die 3,1 mmHg mehr, um die der präoperative maximale Druckwert des Tagesprofils über dem entsprechenden präoperativen maximalen Wert des Nachtprofils liegt. In Prozent bedeutet das eine um 30 % stärkere Senkung der maximalen postoperativen intraokularen Druckwerte des Tagesprofils.

<table>
<thead>
<tr>
<th>ΔIOD$_{\text{max,post}}$</th>
<th>(-10)-6</th>
<th>0,0</th>
<th>3,7</th>
<th>0</th>
<th>1,000</th>
</tr>
</thead>
</table>

Tab. 3-21: Die Differenz zwischen den maximalen postoperativen intraokularen Druckwerten des Tages- und des Nachtprofils.

<table>
<thead>
<tr>
<th>ΔIOD$_{\text{max}}$</th>
<th>(-10)-20</th>
<th>3,1</th>
<th>6,6</th>
<th>30</th>
<th>0,008</th>
</tr>
</thead>
</table>

Tab. 3-22: Der Tages-Nacht-Vergleich der Senkung der maximalen intraokularen Druckwerte.
Somit kann man sagen, dass die präoperativen maximalen intraokularen Druckwerte im Tagesprofil im Mittel um 3,1 mmHg (12 %) signifikant höher liegen als die entsprechenden Werte des Nachtprofils. Postoperativ werden sowohl der mittlere maximale intraokulare Druck des Tagprofils wie auch der des Nachtprofils im Mittel auf 16 mmHg gesenkt. Verständlicherweise ist die Senkung der maximalen intraokularen Druckwerte des Tagesprofils damit ebenfalls um genau die 3,1 mmHg (30 %) signifikant größer, um die die präoperativen Tagwerte über den präoperativen Nachtwerten liegen.

Abb. 3-25 zeigt die Verteilung der Senkung der maximalen intraokularen Druckwerte durch die erfolgreiche Trabekulektomie jeweils für das Tag- und das Nachtprofil.

![Diagramm](image)

Abb. 3-25: Die Verteilung der Senkung der maximalen intraokularen Druckwerte durch die erfolgreiche Trabekulektomie im Überblick. * markiert einen Ausreißer.
3.4.3.2 Tag-Nacht-Vergleich der Zielwertkategorien

Das Zielkriterium $\leq 21+20$ wurde erreicht, wenn der postoperative maximale intraokulare Druck kleiner oder bei 21 mmHg lag und eine Drucksenkung von mindestens 20 % gegenüber dem präoperativen maximalen intraokularen Druckwert vorlag. Vergleicht man die Verteilung der Patienten bezüglich des Erreichens des Zielkriterium $\leq 21+20$ des Tages- und des Nachtprofils miteinander, so ergibt sich die in Abb. 3-26 gezeigte Konsellation: Insgesamt erreichten im Tagprofil 80 % (28 Patienten) das Zielkriterium $\leq 21+20$ und in der Nacht 69 % (24 Patienten). Während im Tagesprofil 71 % (25 Patienten) das Zielkriterium $\leq 21+20$ postoperativ ohne zusätzliche antiglaukomatóse Medikation erreichten (complete success), waren es in der Nacht nur 63 % (22 Patienten). Im Tagesprofil erreichen 9 % (drei Patienten) das Zielkriterium $\leq 21+20$ mit zusätzlicher antiglaukomatóser Medikation (qualified success), im Nachtprofil 6 % (zwei Patienten).

Das Zielkriterium $\leq 21+20$ konnte im Tagesprofil von insgesamt 20 % (sieben Patienten) gar nicht erreicht werden (no success) und im Nachtprofil von insgesamt 31 % (elf Patienten). Von diesen Patienten erfüllten am Tage 11 % (vier Patienten) jeweils einen Teil des Zielkriteriums $\leq 21+20$ und in der Nacht 14 % (fünf Patienten).

In der statistischen Auswertung dieser Daten besteht kein signifikanter Unterschied im Tag-Nacht-Vergleich ($p > 0,05$, McNemar Test) (Tab. 3-23).
Abb. 3-26: Die Verteilung des Zielkriterium $≤ 21+20$ am Tag und in der Nacht.

<table>
<thead>
<tr>
<th>Zielkriterium $≤ 21+20$</th>
<th>Tag & Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Wert</td>
<td>0,289</td>
</tr>
</tbody>
</table>

Tab. 3-23: Die statistische Auswertung des Tag- und Nachtvergleichs der Verteilung der Patienten auf das Zielkriterium $≤ 21+20$.

Das Zielkriterium < 18 wurde erreicht, wenn der postoperative maximale intraokulare Druck unter 18 mmHg lag. Im Tages-Nacht-Vergleich ergab sich für dieses Kriterium die in Abb. 3-27 gezeigte Konstellation: Während am Tag 54 % (19 Patienten) das Zielkriterium < 18 postoperativ vollständig erreichten (complete success), waren es in der Nacht 57 % (20 Patienten). Jeweils 6 % (2 Patienten) erreichte das Zielkriterium < 18 mit Hilfe antiglaukomatöser Medikation (qualified success).
Am Tag konnten 40 % (14 Patienten) das Zielkriterium < 18 nicht erreichen (no success), in der Nacht waren es 37 % (13 Patienten).

Statistisch zeigt sich kein signifikanter Unterschied ($p = 1,000$, McNemar Test) im Vergleich der Tages- und der Nachtgruppe (Tab. 3-24).
Abb. 3-27: Die Verteilung des Zielkriterium<18 am Tag und in der Nacht.

<table>
<thead>
<tr>
<th>Zielkriterium<18</th>
<th>Tag & Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Wert</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tab. 3-24: Die statistische Auswertung des Tag- und Nachtvergleichs der Verteilung der Patienten auf das Zielkriterium<18.

3.4.3.3 Tag-Nacht-Vergleich der Fluktuation

Im Nachtprofil ergab sich nur bei 7 Patienten die Konstellation mit präoperativ und postoperativ mindestens zwei erhobenen Werten (Maximal- und Minimal-Wert). Diese Patienten bilden die Untergruppe. Um die Tages- und Nacht-Fluktuation vergleichen zu können, müssen die Werte der Untergruppe miteinander verglichen werden um eine einheitliche Fallzahl zu bewahren. Daher wurden die Tag-Fluktuationswerte dieser sieben Patienten herausgesucht und als Untergruppe Tag definiert (s. Kapitel 3.4.2.3). Im Folgenden werden die Fluktuationen der Untergruppen des Tages- und des Nachtprofils miteinander verglichen, jedoch gelten zwei Einschränkungen: Der statistische Vergleich der nächtlichen Fluktuation prä- und postoperativ ist, wie in Kapitel
3.4.2.2 besprochen, aufgrund eines größeren Ausreißers nicht signifikant (Tab. 3-15). Der Einfluss dieses einen Ausreißers zeigt außerdem, dass die Werte der Untergruppe aufgrund der geringen Patientenzahl nur bedingte statistische Aussagekraft besitzen. Dennoch sind diese Ergebnisse in der Lage, Tendenzen aufzuzeigen, die in Studien mit größerer Fallzahl belegt werden könnten. Deswegen wird hier der Tag-Nacht-Vergleich der Fluktuationen trotz eingeschränkter Signifikanz vorgenommen.

Präoperativ betrug die gemittelte Fluktuation der Untergruppe am Tag (FluktuationUG,T,prä) 12,0 ± 6,1 mmHg (4-24 mmHg), in der Nacht (FluktuationUG,N,prä) betrug sie 7,1 ± 4,5 mmHg (2-13 mmHg) (Tab. 3-25). Die Abb. 3-28 zeigt die Verteilung der präoperativen Fluktuationen des Tag- und des Nachtprofils.

![Abbildung 3-28: Die Verteilung der präoperativen Fluktuation des Tag- und des Nachtprofils in der Untergruppe. * markiert Ausreißer.](image-url)
Tab. 3-25: Die präoperativen Fluktuationen des Tag- und Nachtprofils.

Es ergibt sich eine gemittelte Differenz (Fluktuation_{UG,T,prä} - Fluktuation_{UG,N,prä} = ΔFluktuation_{UG,prä}) von 4,9 ± 5,6 mmHg ((-4)-11 mmHg), die statistisch nicht signifikant ist (p > 0,05, T-Test) (Tab. 3-26).

Postoperativ betrug die gemittelte Fluktuation des Tagesprofils der Untergruppe (Fluktuation_{UG,T,post}) 6,1 ± 1,6 mmHg (3-8 mmHg), diejenige des Nachtprofils (Fluktuation_{UG,N,post}) betrug im Mittel 3,9 ± 4,1 mmHg (1-13 mmHg) (Tab. 3-27). Abb. 3-29 zeigt die Verteilung der postoperativen Fluktuationen des Tag- und des Nachtprofils.

Es ergibt sich eine Differenz der postoperativen Fluktuation des Tag- und des Nachtprofils (Fluktuation_{UG,T,post} - Fluktuation_{UG,N,post} = ΔFluktuation_{UG,post}) von im Mittel 2,3 ± 4,5 mmHg, die statistisch nicht signifikant ist (p > 0,05, Wilcoxon Test) (Tab. 3-28).

Tab. 3-26: Der Vergleich der präoperativen Fluktuation des Tages- und Nachtprofils.

<table>
<thead>
<tr>
<th></th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔFluktuation_{UG,prä}</td>
<td>(-4)-11</td>
<td>4,9</td>
<td>5,6</td>
<td>0,061</td>
</tr>
</tbody>
</table>

Tab. 3-27: Die postoperativen Fluktuationen des Tag- und Nachtprofils.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluktuation_{UG,T,post}</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6,1</td>
<td>1,6</td>
</tr>
<tr>
<td>Fluktuation_{UG,N,post}</td>
<td>7</td>
<td>1</td>
<td>13</td>
<td>3,9</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Tab. 3-28: Die postoperativen Fluktuationen des Tag- und Nachtprofils.

57

<table>
<thead>
<tr>
<th>ΔFluktuation_{UG,post}</th>
<th>Mini-Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-7)-6</td>
<td>2,3</td>
<td>4,5</td>
<td>0,344</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3-28: Der Vergleich der postoperativen Fluktuation des Tages- und Nachtprofils.
Die Fluktuationsreduktion des Tagesprofils in der Untergruppe (ΔFluktuation$_{UG,T}$) betrug im Mittel 5,9 ± 6,2 mmHg, dabei wurden Werte zwischen (-3)-17 mmHg dokumentiert. Das entspricht einer statistisch grenzwertig signifikanten Fluktuationsreduktion von 49 % (p < 0,05, T-Test) (Tab. 3-29).

In der Nacht zeigte sich eine Fluktuationsreduktion (ΔFluktuation$_{UG,N}$) in der Untergruppe von im Mittel 3,3 ± 6,8 mmHg ((-9)-11mmHg), das entspricht einer Minderung von 46 % des präoperativen Werts. Diese Fluktuationsminderung ist nicht statistisch signifikant (p > 0,05, Wilcoxon Test) (Tab. 3-29). Die Abb. 3-30 zeigt die Verteilung der Fluktuationsminderungen (ΔFluktuation$_{UG}$) des Tag- und des Nachtprofils.

Abb. 3-30: Die Verteilung der Fluktuationsreduktion (Delta-Fluktuation$_{UG}$) des Tag- und des Nachtprofils, * markiert Ausreißer.
Tab. 3-29: Die Fluktuationsreduktion des Tag- und Nachtprofils in der Untergruppe.

Es ergibt sich eine gemittelte Differenz zwischen der Fluktuationsreduktion im Tagprofil in der Untergruppe (\(\Delta \text{Fluktuation}_{\text{UG,T}}\)) und der Fluktuationsreduktion im Nachtprofil in der Untergruppe (\(\Delta \text{Fluktuation}_{\text{UG,N}}\)) von 2,6 ± 7,8 mmHg. Diese Differenz (\(\Delta \Delta \text{Fluktuation}_{\text{UG}}\)) ist statistisch nicht signifikant (p>0,05, T-Test) ist (Tab. 3-30).

Trägt man die Fluktuationsreduktion (\(\Delta \text{Fluktuation}_{\text{UG}}\)) des Tages- und des Nachtprofils über den entsprechenden, nummerierten Patienten auf, so erhält man das in Abb. 3-31 dargestellte Bild. Auffällig ist die große Streubreite der Werte. Im Tagesprofil wurde die Fluktuation bei 86 % (sechs Patienten) reduziert und bei 14 % (ein Patient) erhöht. Im Nachtprofil wurde die Fluktuation bei 71 % (fünf Patienten) reduziert und bei 29 % (zwei Patienten) erhöht. Eine Überschneidung der Patienten, bei denen eine postoperative Fluktuationserhöhung festgestellt wurde, gab es nicht.

Tab. 3-30: Der Vergleich der Fluktuationsreduktionen am Tag und in der Nacht.

| \| \(\Delta \text{Fluktuation}_{\text{UG,T}}\) \| \(\Delta \text{Fluktuation}_{\text{UG,N}}\) \| Mini-Maximum \| Mittelwert \| Standardabweichung \| Prozent (%) \| P-Wert |
|---|---|---|---|---|---|---|
| \(-3\)-17 \| \(-9\)-11 \| \(\Delta \text{Fluktuation}_{\text{UG,T}}\) \| \(\Delta \text{Fluktuation}_{\text{UG,N}}\) \| \(\text{Mini-Maximum}\) \| \(\text{Mittelwert}\) \| \(\text{Standardabweichung}\) \| \(\text{Prozent}\) \| \(\text{P-Wert}\) |
| \(5,9\) \| \(6,2\) \| \(6,9\) \| \(6,8\) \| \(6,2\) \| \(3,3\) \| \(6,8\) \| \(49\) \| \(46\) \| \(0,047\) \| \(0,270\) |

Tab. 3-29: Die Fluktuationsreduktion des Tag- und Nachtprofils in der Untergruppe.
3.4.4 Antimetabolite

In diesem Kapitel soll die Frage geprüft werden, ob die intra- und/oder postoperative Applikation von Antimetaboliten Einfluss auf das Niveau des postoperativen intraokularen Drucks hat. Dazu werden die Patienten des Gesamtkollektivs in vier Gruppen eingeteilt. Die erste Gruppe (fünf Patienten) erhielt weder intraoperativ noch postoperativ Antimetabolite. Die zweite Gruppe (zwölf Patienten) erhielt nur intraoperativ Antimetabolite, die dritte Gruppe (zwei Patienten) nur postoperativ. Die vierte Gruppe (16 Patienten) erhielt intra- und postoperativ Antimetabolite. Als Antimetabolite wurden hierbei intraoperativ Mitomycin 0,01 % oder 0,02 % oder 5-Fluorouracil verwendet. Postoperativ wurden subkonjunktivale Injektionen mit 5 mg 5-Fluorouracil durchgeführt. Geprüft wird nun, ob durch die erfolgreiche Trabekulektomie und die Verteilung der maximalen intraokularen Druckwerte auf die Zielwertkategorien (Zielkriterium<21±20 und Zielkriterium<18) zwischen den Gruppen statistisch signifikante Unterschiede beste-
nen bezüglich der Niveaus der maximalen postoperativen intraokularen Druckwerte (IOD_{max,post}) und des Ausmaßes der Senkung des maximalen intraokularen Druckes (ΔIOD_{max}). Außerdem werden die vier Gruppen auf statistisch signifikante Unterschiede bezüglich des Niveaus der postoperativen Kontrollwerte des intraokularen Druckes (IOD_{pk}) und der Verteilung der postoperativen Kontrollwerte des intraokularen Druckes auf die Zielkriterien untersucht.

Diese Fragestellungen werden jeweils für das Tag- und das Nachtprofil der Patienten getrennt beantwortet.

3.4.4.1 Die gemittelten Messwerte

Die vier Gruppen wurden auf Unterschiede des Niveaus der maximalen postoperativen Druckwerte (IOD_{max,post}), die im Mittel nach 2,1 ± 1,7 Jahren nach der erfolgreichen Trabekulektomie gemessen wurden, untersucht. Tab. 3-31 zeigt die gemittelten maximalen postoperativen intraokularen Druckwerte innerhalb der Gruppen für das Tag- und für das Nachtprofil.

Die vier Gruppen wurden ebenfalls auf Unterschiede in der Senkung der maximalen intraokularen Druckwerte durch die erfolgreiche Trabekulektomie untersucht. Tab. 3-31 zeigt die gemittelten Senkungen der maximalen postoperativen intraokularen Druckwerte (ΔIOD_{max}) innerhalb der Gruppen für das Tag- und für das Nachtprofil.

Die vier Gruppen wurden auf Unterschiede des Niveaus der postoperativen Kontrollwerte des intraokularen Druckes (IOD_{pk}), die im Mittel nach 3 ± 2,3 Jahren nach der erfolgreichen Trabekulektomie gemessen wurden, untersucht. Tab. 3-31 zeigt die gemittelten postoperativen Kontrollwerte des intraokularen Druckes innerhalb der Gruppen für das Tages- und für das Nachtprofil.

In der statistischen Analyse ergab sich weder für das Niveau der maximalen postoperativen intraokularen Druckwerte, noch für die Senkung der maximalen intraokularen Druckwerte, noch für das Niveau der postoperativen Kontrollwerte des intraokularen Druckes ein signifikanter Unterschied zwischen den vier Gruppen (p > 0,05, Univariate Varianzanalyse) (Tab. 3-32).
3.4.4.2 Zieldruckkategorien

Um Unterschiede zwischen den Gruppen zu erfassen, die sich nur in der Kombination des Niveaus der maximalen intraokularen Druckwerte und dem Ausmaß der Senkung der maximalen intraokularen Druckwerte bemerkbar machen, wird im Folgenden die Verteilung auf die Zielwertkategorien des Zielkriteriums $\leq 21 + 20$ auf Unterschiede zwischen den vier Gruppen untersucht. Das Zielkriterium $\leq 21 + 20$ gilt als erreicht, wenn der postoperative maximale intraokulare Druck kleiner oder gleich 21 mmHg ist und zusätzlich eine Senkung des maximalen postoperativen intraokularen Druckes von mindestens 20 % gegenüber den präoperativen Werten vorliegt.

Am Tag erreichten 80 % der Patienten (vier Patienten) in Gruppe 1 das Zielkriterium $\leq 21 + 20$, in Gruppe 2 waren es 75 % (neun Patienten), in Gruppe 3 100 % (zwei Patienten) und in Gruppe 4 waren es 81 % (13 Patienten) (Tab. 3-33).

In der Nacht wurde in Gruppe 1 das Zielkriterium $\leq 21 + 20$ von 40 % (zwei Patienten) erreicht, in der Gruppe 2 von 58 % (sieben Patienten) und in der Gruppe 3 von 100 % (zwei Patienten) und in Gruppe 4 von 81 % (13 Patienten) (Tab. 3-33).
Im statistischen Vergleich der Gruppen konnte jedoch weder für den Tag, noch für die Nacht ein signifikanter Unterschied für das Zielkriterium $\leq 21+20$ festgestellt werden ($p > 0,05$, Chi²-Test) (Tab. 3-34).
Somit ist insgesamt keine Beeinflussung des intraokularen Druckes durch Antimetabolitenapplikation feststellbar.

<table>
<thead>
<tr>
<th>Antimetabolite</th>
<th>keine</th>
<th>nur intraoperativ</th>
<th>nur postoperativ</th>
<th>intra- & postoperativ</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erreicht</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>nicht erreicht</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Gesamt</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Nacht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erreicht</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>nicht erreicht</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Gesamt</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>16</td>
<td>35</td>
</tr>
</tbody>
</table>

Tab. 3-33: Die Verteilung der Patienten auf die Kategorien des Zielkriteriums $\leq 21+20$ für die vier Gruppen im Tag- und im Nachtprofil.

<table>
<thead>
<tr>
<th></th>
<th>Zielkriterium $\leq 21+20$, Tag</th>
<th>Zielkriterium $\leq 21+20$, Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Wert</td>
<td>0,872</td>
<td>0,205</td>
</tr>
</tbody>
</table>

Tab. 3-34: Der statistische Vergleich für das Zielkriterium $\leq 21+20$ im Tag- und Nachtprofil auf Unterschiede zwischen den vier Gruppen.
4 Diskussion

In der oben genannten Studie von Marquardt, Lieb und Grehn wurde ein Druck bis 21 mmHg als Erfolg bezeichnet, wenn zusätzlich eine Drucksenkung von mindestens 20%
gegenüber dem präoperativen Wert vorlag (Zielkriterium ≤21+20). Die Erfolgsquote nach einem Follow up von 4, 5 Jahren lag bei 94% mit Medikation und bei 64% ohne Medikation.

In der vorliegenden Studie betrug der letzte erfasste IOD-Wert, der sogenannte postoperative Kontrollwert (IODpk), welcher im Mittel nach 3 ± 2,3 Jahren nach erfolgreicher Trabekulektomie erfasst wurde, gemittelt 13,1 ± 4,3mmHg. Insgesamt 89% (31 Patienten) erreichten damit zum Zeitpunkt der postoperativen Kontrolle einen IOD kleiner als 18 mmHg. Davon benötigten 74% keine zusätzliche antiglaukomatóse Medikation, während 14% einen IOD kleiner als 18 mmHg zum Zeitpunkt der postoperativen Kontrolle mittels zusätzlicher antiglaukomatóser Medikation erreichten. Statistisch ergab sich kein Unterschied in der Verteilung der Patienten auf das Zielkriterium <18 und auf das Zielkriterium ≤21+20. Damit sind diese Ergebnisse vergleichbar.

Jedoch wurde in dieser Studie besonderes Augenmerk auf die maximalen intraokularen (Spitzen-) Druckwerte gelegt. Zeimer et al. konnten einen signifikanten Zusammenhang zwischen dem Auftreten von intraokularen Druck spitzen und progressiven Gesichtsfeldverlusten bei Glaukompatienten feststellen, die einen mittleren IOD von kleiner/gleich 22 mmHg während den Sprechzeiten aufwiesen [29]. Einige Jahre davor berichteten Wilensky et al. in einer Studie mit 24 Glaukompatienten, deren IOD innerhalb der Sprechzeiten stets bei oder unter 22 mmHg lag, dass bei einem sechstägigen Tagesmonitoring Druckspitzen über 22 mmHg auftreten und zwar 50% dieser Spitzen außerhalb der Sprechzeiten [25]. Desweiteren zeigte sich, dass bei Patienten mit progressiven Gesichtsfeldausfällen häufiger Druckspitzen auftraten als bei Patienten mit stabilen Gesichtsfeldern. Generell können Druckspitzen zu jeder Tag- und Nachtzeit auftreten [32]. Einige Studien beschreiben in der Nacht einen höheren IOD als am Tag [11, 16-18]. So beschreiben beispielsweise Liu et al. bei 24 Glaukompatienten einen signifikanten Unterschied zwischen den mittleren IOD-Werten am Tag (19,6 ± 0,7 mmHg) und den mittleren IOD-Werten der Nacht (22,3 ± 0,7 mmHg). Das höhere nächtliche Druckniveau ist hierbei auch in der gesunden Kontrollgruppe signifikant nachweisbar [22]. In einer zweiten Studie weist er nach, dass das höhere nächtliche Druckniveau unabhängig von der Körperposition detektierbar ist [17]. Um Unterschiede des Effekts der erfolgreichen Trabekulektomie auf die maximalen IOD-Werte zwischen dem Tag- und dem
Nachtprofil erfassen zu können, werden in der vorliegenden Studie Tag und Nacht getrennt beurteilt. Konstas et al. berichten in einer Studie mit 30 Glaukompatienten von einem postoperativen maximalen IOD sechs Monate nach Trabekulektomie von im Mittel 13,4 ± 2,3 mmHg in einem 24-Stunden-Intervall [26]. In einer ähnlichen Studie von Medeiros et al. [44] liegt der postoperative mittlere maximale IOD drei Monate nach Trabekulektomie bei 12,9 ± 2,2 mmHg. Beide Studien berichten nur die postoperativen Druckwerte, somit ist ein Vergleich mit den Ergebnissen der vorliegenden Studie erschwert. In einer ähnlichen Studie von Greenidge et al., die die Veränderung des maximalen IODs in einem 24-Stunden-Intervall vor und acht Wochen nach Laser-Trabekuloplastik bei 32 Glaukompatienten untersucht, beträgt der maximale präoperative IOD 26,3 ± 6,5 mmHg, der maximale postlaser IOD 21,5 ± 7,4 mmHg und die Senkung 4,8 mmHg (18%) [45]. Die Ausgangsdrucklage der maximalen IOD-Werte in der Studie von Greenidge ist mit der Ausgangsdrucklage der maximalen IOD-Werte der vorliegenden Studie vergleichbar.

In der vorliegenden Studie betrug der mittlere maximale IOD (IOD_{max}) 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie im Tagesprofil 16,0 ± 4,4 mmHg, das entspricht einer signifikanten gemittelten Senkung des IODs von 40 % (10,6 ± 6,9 mmHg) gegenüber dem präoperativem Wert (26,5 ± 5,9 mmHg). Der mittlere maximale IOD betrug 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie im Nachtprofil 16,0 ± 5,4 mmHg. Das entspricht einer signifikanten gemittelten Senkung des IODs von 32 % (7,4 ± 7,7 mmHg) gegenüber dem präoperativen Wert (23,4 ± 5,2 mmHg).

Die Senkung der maximalen IOD-Werte unter einen Zielwert von kleiner/gleich 21 mmHg verbunden mit einer Drucksenkung von mindestens 20 % gegenüber dem präoperativem Wert gelang nach einer Nachbeobachtungszeit von 2,1 ± 1,7 Jahren im Tagesprofil bei 80 % und im Nachtprofil bei 69 % der Patienten. Eine Drucksenkung der maximalen intraokularen Druckwerte unter einen Zielwert von 18 mmHg erreichten nach einer Nachbeobachtungszeit von 2,1 ± 1,7 Jahren im Tagprofil 60 % und im Nachtprofil 63 % der Patienten.

Damit erreichen die Ergebnisse dieser Studie nicht das niedrige Druckniveau der maximalen postoperativen IOD-Werte beider oben genannten Studien [26, 44], diese verwenden jedoch Ergebnisse nach einer erheblich kürzeren Nachbeobachtungszeit (sechs Monate, drei Monate) als die vorliegende Studie (2,1 ± 1,7 Jahre). Die Studie von
Greenidge hat ebenfalls eine deutlich kürzere Nachbeobachtungszeit (acht Wochen), trotzdem zeigt sie, dass die Senkung der maximalen IOD-Werte durch die erfolgreiche Trabekulektomie stärker ist, als die Senkung durch die Laser-Trabekuloplastik.

Der IOD ist Schwankungen unterworfen und abhängig von verschiedenen Einflussfaktoren (s. Kapitel 1.2). Die Größe der daraus resultierenden Fluktuationen des IODs wird in bisherigen Studien unterschiedlich angegeben.

Die Fluktuation des IODs bei nicht pathologischen Augen wird im Durchschnitt mit 3-6 mmHg angegeben [6]. Liu et al. haben in einer Studie den IOD bei 90 gesunden Personen alle zwei Stunden für das linke und rechte Auge gemessen und die Fluktuationenrange (IODmax - IODmin) für bestimmte Zeitintervalle berechnet [11]. Die Fluktuationen zu Sprechstundenzeiten betrugen 3,1 ± 1,5 bis 3,4± 1,8 mmHg, im Tagprofil 4,9 ± 1,8 bis 5,7 ± 2,4 mmHg, im Nachtprofil 3,8 ± 1,9 bis 4,5 ± 2,5 mmHg und im 24-Stunden-Intervall 9,6 ± 3,2 bis 10,2 ± 2,6 mmHg. Die Fluktuation des IODs scheint in glaukomatösen Augen höher als in gesunden Augen zu sein [23]. David et al. berichteten in einer Studie mit 690 Tages-Druck-Kurven mit Messungen im Zeitintervall von 8:00 bis 18:30 Uhr von einer mittlere Fluktuationenrange (IODmax - IODmin) von 5,0 ± 2,7 mmHg bei gesunden Testpersonen, 5,8 ± 2,9 mmHg bei Patienten mit primärem Offenwinkelglaukom und 6,8 ± 3,2 mmHg bei Patienten mit okulärer Hypertension [15].

Asrani et al. untersuchten in einer Studie 105 Augen mit primärem Offenwinkelglaukom, die in der Nachbeobachtungszeit von 5 Jahren einen IOD von unter 25 mmHg aufwiesen [31]. Die Fluktuation dieser Patienten wurde als Range aus einem 5 Tages-Intervall mit jeweils fünf Tagesmessungen mit einem Selbstmessungstonometer durch die Patienten bestimmt und betrug 10,0 ± 2,9 mmHg. Die Autoren machen keine Angabe über medikamentöse Therapie. In Studien mit einem medikamentös maximal austherapierten Glaukompatientenkollektiv kurz vor einer Intervention wird die Fluktuation deutlich höher angegeben. Greenidge et al. berichten von einer durchschnittlichen 24-Stunden Fluktuationsrange von 10,3 ± 4,9 mmHg bei medikamentös austherapierten Patienten mit primärem Offenwinkelglaukom vor Argon-Laser-Trabekuloplastik [45]. Bei einer ähnlichen Studie von Guzey et al. wird bei 36 medikamentös austherapierten
Augen mit primärem Offenwinkelglaukom vor der Argon-Laser-Trabekuloplastik eine Tages-Fluktuationsrange von 14,17 ± 3,2 mmHg angegeben [46].

Mathematisch wird die Fluktuation meist als Differenz zwischen der intraokularen Druckspitze und dem Tiefpunkt bestimmt (Range der Fluktuation), in anderen Studien aber auch als Standardabweichung des mittleren IODs. Hinzu kommen noch Einflüsse verschiedener Therapien (antiglaukomatóse Medikation, Lasertherapien, Operationen und Kombination verschiedener Therapieoptionen), die Compliance der Patienten bezüglich des Studiendesigns und unterschiedliche Nachbeobachtungszeiträume.

Für das Tagprofil ergab sich in der Gesamtgruppe eine gemittelte präoperative IOD-Fluktuation von 12,1 ± 4,2 mmHg (4-24 mmHg). Im Nachtprofil musste eine Untergruppe aus sieben Patienten gebildet werden. Die mittlere präoperative Fluktuation betrug 7,1 ± 4,5 mmHg (2-13 mmHg). Die niedrigere Fluktuation im Nachtprofil wird massgeblich durch die geringere Anzahl an Messungen bestimmt.

Das Interesse an den Fluktuationen des IODs stieg in den letzten Jahren, als die Vermutung über einen Zusammenhang von Fluktuationen und progressiven Gesichtsfeldausfällen geäußert wurde. Seitdem wurde die Bedeutung der Fluktuationen des IODs als möglicher unabhängiger Risikofaktor für Gesichtsfeldverlustprogression kontrovers diskutiert [47, 48].

Ein von Lee et al. veröffentlichter Fallreport demonstrierte signifikante Veränderungen in der Papillentopographie durch Fluktuationen des IODs [30]. Die Papillenparameter (Exkavation) verbesserten sich signifikant bei einem Tiefpunkt des IODs und verschlechterten sich signifikant bei einem intraokularen Spitzendruck innerhalb einer 24-Stunden-Periode. Bergea et al. waren unter den ersten, die den Einfluss der Fluktuation des IODs als einen unabhängiger Risikofaktor untersuchten [49]. Sie führten eine prospektive Studie mit 82 Glaukompatienten vornehmlich mit Pseudoexfoliativglaukomen über 2 Jahre durch, in der regelmäßige Messungen des IODs und Gesichtsfelduntersuchungen erfolgten und stellten fest, dass der mittlere IOD und auch Fluktuationen desselben unabhängige Voraussagewerte für die Progression der Glaukomerkrankung waren. Asrani et al. berichten, dass in einer Studie mit 64 Patienten mit Primärem Offenwinkelglaukom (105 Augen), bei denen der mit dem Hometonometer durch die Patienten gemessene IOD im Tagprofil innerhalb eines 5 Jahres Follow up stets Werte kleiner als 25 mmHg aufwies, größere Fluktuationen des IODs ein signifikanter, unabhängiger Risikofaktor für Gesichtsfeldschadenprogression sind [31]. NouriMahdavi et al. untersuchten in einer post hoc Analyse der Daten der Advanced Glaucoma Intervention Study den Zusammenhang zwischen der Standardabweichung aller
Messungen des IODs und Gesichtsfeldschadenprogression mit einer mittleren Nachbeobachtungszeit von 7,4 ± 1,7 Jahren und stellte fest, dass die als Standardabweichung ermittelte Fluktuation des IODs ein unabhängiger Vorhersagewert für die Progression von Gesichtsfeldverlust ist [50]. Hong et al. vergleichen in einer retrospektiven Studie mit 480 Augen, welche einer Dreifachoperation (Phakoemulsifikation, Hinterkameralinse-Implantation und Trabekulektomie) unterzogen wurden und einen postoperativen IOD von unter 18 mmHg aufwiesen, über ein Follow up von 13 Jahren die Standardabweichung aller postoperativen IOD-Werte mit der Progression von Gesichtsfeldschäden und berichten, dass größere Langzeit-Fluktuationen bei Patienten mit Glaukomerkrankung und niedrigen IOD-Werten mit Progression von Gesichtsfeldschäden assoziiert waren [51].

Jedoch nicht alle Studien in den vergangenen Jahren konnten die Bedeutung der Fluktuationen des IODs als unabhängigen Risikofaktor für die Progression des Gesichtsfeldverlustes bei einer Glaukomerkrankung bestätigen.

Bengtsson et al. werteten die Daten der Malmo Ocular Hypertension Treatment Study von 90 Patienten mit okulärer Hypertension in Bezug auf die Fragestellung, ob die Fluktuation des IODs ein Risikofaktor für die Entwicklung von Glaukomen bei Patienten mit okulärer Hypertension sei, mit einer Nachbeobachtungszeit von 17 Jahren aus [52]. Dabei erwies sich die Fluktuation des IODs nicht als signifikanter Risikofaktor für die Entwicklung von Gesichtsfeldausfällen im Gegensatz zum mittleren intraokularen Druck, welcher sich eindeutig als signifikanter Risikofaktor darstellte. Dieselben Autoren veröffentlichten 2007 eine post hoc Analyse der Early Manifest Glaucoma Trial mit 255 Glaukompatienten, welche die vorangegangene Studienergebnisse bestätigten [53]. Medeiros et al. untersuchten anhand der Daten der Diagnostic Innovations in Glaucoma Study mit 252 Augen (126 Patienten) ähnlich wie Bengtsson et al., ob Langzeit-Fluktuationen des IODs ein Risikofaktor für die Entstehung von Glaukomen bei Patienten mit unbehandelter okulärer Hypertension sind [54]. In dieser Analyse, in der die Entstehung von einem Glaukom als Gesichtsfeldausfall oder als struktureller Sehnervschaden definiert wurde, wurde die Fluktuation des IODs weder in der univarianten noch in der multivarianten Analyse als signifikanter Risikofaktor für die Entstehung bestätigt. Wiederum im Gegensatz zum mittleren IOD, welcher in der uni- und in der multivarianten Analyse als ein signifikanter Risikofaktor für
Glaucomenstehung bestätigt wurde. Caprioli et al. veröffentlichten eine weitere post
core Analyse mit den Daten der Advanced Glaucoma Intervention Study mit 301
glaucomenpatienten, die an einem Auge mittels Trabekulektomie und/oder Argon-Laser-
-Trabekuloplastik behandelt wurden [55]. Hier zeigte sich eine signifikante Assoziation
von Langzeit-Fluktuationen des IODs mit progressiven Gesichtsfeldausfällen bei
Patienten mit niedrigen mittleren IOD-Werten, nicht jedoch bei Patienten mit hohen
mittleren IOD-Werten. Die Autoren schlussfolgerten daraus, dass die Fluktuation des
IODs bei Patienten mit niedrigem mittleren IOD ein wichtigerer Vorhersagewert für die
Progression von Gesichtsfeldausfällen ist und der mittlere IOD vielleicht bei Patienten
mit höheren IOD-Werten als Vorhersagewert wichtiger ist.

Die Studienlage liefert somit unterschiedliche Aussagen zur Bedeutung der Fluktuationen
des IODs und darüber, welche Parameter als Vorhersagewerte zur Progression von
glaucomenösen Gesichtsfeldausfällen bedeutend sind, wobei der mittlere IOD allgemein
als ein wichtiger Vorhersagewert für die Entstehung und Progression von Glaucome-
krankungen angesehen wird. Welchen Wert die Fluktuation des IODs diesbezüglich hat,
wird sich erst in weiteren Studien belegen lassen, wenn die oben genannte Problematik
reduziert wird und damit verlässliche Ergebnisse produziert werden können. Ein
wichtiger Fortschritt wäre in diesem Sinne die kontinuierliche Erfassung des IODs.

Mit der Frage nach der Bedeutung der Fluktuation des IODs stellt sich auch die Frage,
wie die Fluktuation durch die verschiedenen Therapien, insbesondere durch die Tra-
bekelektomie, beeinflusst wird.

Bereits 1960 konnten Kandori et al. zeigen, dass verschiedene operative Glaucomer-
therapien die Fluktuation des IODs im Tagesprofil mit einem Nachbeobachtungsintervall
von 2 Monaten unterschiedlich stark reduzieren [56]. Einige Jahre später berichteten
Saiz et al. in einer prospektiven Studie bei 21 Augen mit Primärem Offenwinkelglau-
kom mit einjährigem Follow up von einer signifikanten Reduktion der Fluktuation im
Tagesprofil begleitet von einer signifikanten Reduktion des maximalen IODs durch die
subsklerale Scheie Operation [57].

Die Fluktuationsreduktion durch die Argon-Laser-Trabekuloplastik wurde mehrfach
untersucht. Greenidge et al. demonstrierten in einer prospektiven Studie mit 25 Patien-
ten mit primären Offenwinkelglaukomen und einer Nachbeobachtungszeit von acht
Wochen eine signifikante Reduktion der Fluktuationsrange (IOD_{max} - IOD_{min}) um im
Mittel 30 % (-3,3 mmHg) von dem mittleren präoperativen Fluktuationswert von 10,3 ± 4,4 mmHg auf 7,0 ± 4,4 mmHg über ein 24-Stunden-Zeitraum [45]. Elsas et al. berichteten in einer Studie mit 20 Glaukompatienten, die erfolgreich mit Argon-Laser-Trabekuloplastik behandelt wurden, von einer signifikanten Reduktion der intra- und interindividuellen Fluktuation (Standardabweichung aller post-Laser Messungen) im Tagprofil [58]. Guzey et al. erreichten bei 36 Augen (30 Patienten) mit primären Offenwinkelglaukomen durch die Argon-Laser-Trabekuloplastik eine signifikante Reduktion der Fluktuationsrange von 50% (7,3 ± 3,8 mmHg) von dem Ausgangswert von 14,2 ± 3,2 auf 7,1 ± 3,2 mmHg im Tagesprofil nach einer Nachbeobachtungszeit von zwölf Wochen [46].

Die Trabekulektomie ist bekannt als die Operation mit dem stärksten drucksenkenden Effekt, ihre Auswirkung auf die Fluktuation des IODs ist bisher allerdings wenig untersucht. 1994 veröffentlichten Wilensky et al. eine Studie, in der die Fluktuation des IODs bei neun Patienten durch die erfolgreiche Trabekulektomie nicht nur im Vergleich zum präoperativen Wert sank, sondern sie auch unter das Niveau der nicht operierten Glaukompatienten-Vergleichsgruppe reduzierte [59]. Die Aussagekraft dieser Studie ist jedoch durch die geringe Patientenzahl als eingeschränkt zu betrachten.

In einem kürzlich veröffentlichten Review untersuchten Sit et al. die Wirksamkeit medikamentöser Therapien in Bezug auf Reduktion der Fluktuation und die Wirksamkeit von filtrierenden Operationen und stellten die These auf, dass filtrierende Operationen den IOD stärker senken und Fluktuationen besser reduzieren als maximale medikamentöse Therapie [60]. Medeiros et al. berichteten in diesem Zusammenhang von einem signifikanten Unterschied der Fluktuation von 2,2 ± 1,7 mmHg drei Monate nach Trabekulektomie versus einer Fluktuation von 3,2 ± 1,5 mmHg bei maximaler medikamentöser Therapie bei jeweils 30 Glaukompatienten, sowie von einem signifikanten Unterschied zwischen der Veränderung des intraokularen Druckes beim Wasser-Trink-Test dieser Patienten (1,4 ± 0,4 mmHg versus 3,7 ± 0,4 mmHg) [44]. Konstas et al. verglichen in einer ähnlichen Studie die 24-Stunden-Fluktuation von jeweils 30 Patienten nach erfolgreicher Trabekulektomie mit der Fluktuation von maximal medikamentösem therapierten Glaukompatienten, dabei erwies sich die Fluktuation der operierten Patienten als signifikant niedriger (2,3 ± 0,8 mmHg versus 4,8 ± 2,3 mmHg) [26]. Mansouri et al. dagegen konnten keine signifikanten Unterschiede bezüglich der Fluktuation des
IODs bei medikamentös behandelten oder operierten Glaukompatienten (Trabekulektomie oder Tiefe Sklerotomie) finden, jedoch einen signifikant größeren Anstieg des IODs beim Wasser-Trink-Test bei den medikamentös behandelten Patienten sowie einen signifikant niedrigeren mittleren IOD in der Gruppe der trabekulektomierten Patienten im Vergleich zu den anderen Gruppen [61].

In der vorliegenden Arbeit wurde die Veränderung der Fluktuation vor und nach erfolgreicher Trabekulektomie verglichen. Die Fluktuation wurde als Range-Wert zwischen dem höchsten und dem niedrigsten IOD für das Tagprofil und das Nachtprofil bestimmt. Für das Tagprofil ergab sich in der Gesamtgruppe eine gemittelte präoperative IOD-Fluktuation von 12,1 ± 4,2 mmHg (4-24 mmHg), die nach einem gemittelten Follow up von 2,1 ± 1,7 Jahren (0,9-10,2 Jahre) nach erfolgreicher Trabekulektomie bei im Mittel 5,6 ± 2,2 mmHg lag. Das entspricht einer signifikanten Reduktion der Fluktuation (p < 0,001) von 54 % (mittlere Senkung pro Patient 6,5 ± 4,6 mmHg).

Im Nachtprofil musste eine Untergruppe aus sieben Patienten gebildet werden. Die mittlere präoperative Fluktuation betrug 7,1 ± 4,5 mmHg (2-13 mmHg). 2,1 ± 1,7 Jahren (0,9-10,2 Jahre) nach erfolgreicher Trabekulektomie lag die gemittelte Fluktuation bei 3,9 ± 4,1 mmHg (1-13 mmHg). Die gemittelte Reduktion der Fluktuation betrug 46 % (mittlere Senkung pro Patient 3,3 ± 6,8 mmHg). Diese Reduktion war statistisch aufgrund der hohen Standardabweichung (bedingt durch einen Ausreißer) nicht signifikant (p>0,05).

Der Einfluß der erfolgreichen Trabekulektomie auf die Fluktuation des IODs wird durch die bisherige Literatur wenig beleuchtet. Die Vergleichbarkeit der prä- und postoperativen Fluktuationen wird durch die Gleichartigkeit der Rahmenbedingungen unter denen sie ermittelt wurden erhöht. Die lange Nachbeobachtungszeit in dieser Studie unterstreicht zusätzlich die Besonderheit der Ergebnisse.

Der circadiane Rhythmus des IODs ist vielfach untersucht und beschrieben worden (s. Kapitel 1.2). In einigen Studien ergaben sich Hinweise auf signifikante Unterschiede im Tag-Nacht-Verhalten [6, 11-18, 20-23]. Einige Studien berichten von einem höheren nächtlichen IOD mit einem Unterschied von 8,2 ± 1,4 mmHg in gesunden Augen [19]. Von Bedeutung sind intraokulare Druckspitzen, die mit Progression von Gesichtsfeldschäden in Zusammenhang gebracht werden [29, 32]. Untersuchungen dieser

In die vorliegenden Studie wurden nur Patienten eingeschlossen, die mindestens eine prä- und eine postoperative Nachtmessung des IODs innerhalb der jeweiligen Druckkurven aufwiesen. Ein wichtiger Grund für die Nachtmessungen bei diesen Patienten war sicherlich die Progression von Gesichtsfeldausfällen. Es lag aber nur bei 11% (vier Patienten) ein in der Patientenakte dokumentiertes Normaldruckglaukom vor.

Um Unterschiede im Verhalten des IODs im Tag-Nacht-Vergleich zu erkennen, wurden alle Fragestellungen zum Vergleich des IODs vor und nach erfolgreicher Trabekulektomie für das Tag- und das Nachtprofil getrennt beantwortet.

Im Tagprofil betrug der präoperative mittlere maximale IOD 26,5 ± 5,9 mmHg und im Nachtprofil 23,4 ± 5,2 mmHg. Damit lag der maximale Tageswert im Mittel um 3,1 ± 6,1 mmHg höher als der maximale Nachtwert, das entspricht einem signifikanten Unterschied von 12 %. Diese Verteilung spiegelt nicht das von Liu et al. mehrfach gemessene erhöhte Druckniveau in der Nacht wieder. Jedoch muss man bedenken, dass in dieser Studie die maximalen Tageswerte aus einer größeren Anzahl an Messungen bestimmt werden konnten als die maximalen Nachtwerte, damit haben die Nachtmessungen insgesamt eine kleinere Wahrscheinlichkeit, Druckspitzen zu detektieren.

2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie betrug der mittlere maximale IOD 16,0 ± 4,4 mmHg im Tagprofil und 16,0 ± 5,4 mmHg im Nachtprofil. Zwischen diesen Werten ist mathematisch und statistisch kein Unterschied feststellbar.

Die Senkung der maximalen IOD-Werte durch die erfolgreiche Trabekulektomie betrug im Mittel 40 % (10,6 ± 6,9 mmHg) im Tagprofil und 32 % (7,4 ± 7,7 mmHg) im Nachtprofil. Damit ist die gemittelte Senkung im Tagprofil um 3,1 ± 6,6 mmHg größer als die entsprechende Senkung im Nachtprofil, das entspricht einem statistisch signifikanten Unterschied von 30 %. Zusammenfassend kann man sagen, dass die präoperativen maximalen IOD-Werte im Tagprofil im Mittel mit 3,1 mmHg (12 %) signifikant höher liegen als die entsprechenden IOD-Werte des Nachtprofils. Postoperativ wird sowohl
der mittlere maximale IOD des Tagprofils wie auch der des Nachtprofils im Mittel auf 16 mmHg gesenkt. Verständlicherweise ist die Senkung der maximalen IOD-Werte des Tagprofils damit ebenfalls um genau die 3,1 mmHg (30 %) signifikant größer, um die die präoperativen IOD-Tag-Werte über den präoperativen IOD-Nacht-Werten liegen. Die Senkung des maximalen IOD auf einen fast identischen Wert von 16 mmHg im Tag- wie im Nachtprofil, kann als Hinweis auf eine postoperativ reduzierte Fluktuation gedeutet werden, wie es sich im Kapitel 3.4.2 bestätigt.

Der Tag-Nacht-Vergleich der Verteilung auf die Zielwertekategorien der beiden Ziel-druckkriterien ergab keinen signifikanten Unterschied. Der Vergleich der prä- und postoperativen Fluktuationen des IODs sowie der Vergleich der Reduktion der Fluktuation im Tag- und Nachtprofil zeigte ebenfalls keine signifikanten Unterschiede.

Ein großes Problem bei der Beantwortung der Fragestellung ob Unterschiede im Verhalten des IODs zwischen dem Tag- und dem Nachtprofil existieren ist, dass es bisher nicht möglich ist den IOD kontinuierlich zu erfassen. Die Ergebnisse dieses Tag-Nacht-Vergleiches sind aufgrund ihres Stellenwertes als Einzelmessungen des kontinuierlichen IODs in ihrer Aussagekraft eingeschränkt.

Antimetabolite werden in der Glaukomchirurgie zur Reduktion der natürlichen Wundheilung und damit zur Erhöhung der Erfolgsrate der Trabekulektomie intra- und postoperativ eingesetzt [39]. Die Wirksamkeit der Antimetabolite ist von der Dosierung und Frequenz der Applikation abhängig, jedoch treten bei höherer Dosierung ebenso vermehrt Nebenwirkungen wie Ruptur des Sickerkissens oder intraokulare Hypotonien auf [40]. Da die Manifestation des Glaukoms bei verschiedenen Patienten variiert und jedes Individuum unterschiedlich stark auf Antimetabolite reagiert, ist die Dosierung und Frequenz der Antimetabolitenapplikation individuell auf den Patienten abzustimmen, um Konsequenzen der Überdosierung wie ein dünnwandiges, avaskularisiertes Sickerkissen oder intraokulare Hypotonien zu vermeiden. Dies ist besonders erfolgreich im Rahmen eines Intensified Postoperative Care Programmes [36]. Das Auftreten von intraokularen Hypotonien bei Antimetabolitenapplikation veranlasste Gandolfi et al. [41] den Effekt von subkonjunktivalen Mitomycin C Injektionen auf den IOD in einer prospektiven Studie zu untersuchen. Einen Tag nach Mitomycin C Injektion zeigte sich eine signifikante Senkung des IODs (7,2 ± 1,5 mmHg), die auch nach einem Follow up
von 60 Tagen signifikant blieb (5,7 ± 1,6 mmHg), während sich der IOD im nicht behandelten Partnerauge nicht signifikant veränderte. In einer weiteren prospektiven Studie konnten Gandolfi et al. [42] zeigen, dass postoperative subkonjunktivale 5-Fluorouracil-Injektionen nach kombinierter Trabekulektomie und clear-cornea Phakonemulsification mit Hinterkammerlinsenimplantation nach einem Jahr zu einer höheren Erfolgsrate führen als bei Patienten ohne 5-Fluorouracil-Injektionen.

In dieser Studie wurde der Einfluss von intra- und postoperativer Antimetabolitenapplikation auf das postoperative Endergebnis des IODs im Mittel 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie untersucht. Dazu wurden die Patienten in vier Gruppen eingeteilt. Die erste Gruppe (fünf Patienten) erhielt weder intraoperativ noch postoperativ Antimetabolite. Die zweite Gruppe (zwölf Patienten) erhielt nur intraoperativ Antimetabolite, die dritte Gruppe (zwei Patienten) nur postoperativ. Die vierte Gruppe (16 Patienten) erhielt intra- und postoperativ Antimetabolite. Intraoperativ wurde Mitomycin 0,01 % oder 0,02 % oder 5-Fluorouracil verwendet. Postoperativ wurden subkonjunktivale Injektionen mit 5mg 5-Fluorouracil durchgeführt.

Es wurde nicht unterschieden, ob Mitomycin C oder 5-Fluorouracil verwendet wurde. Palanca-Capistrano et al. zeigt jedoch in einer prospektiven Studie mit 115 Trabekulektomien, dass nach einer Nachbeobachtungszeit von 1,6 - 6,8 Jahren kein signifikanter Unterschied der Erfolgsraten zwischen der Applikation von 5-Fluorouracil oder Mitomycin C existierte [63].

Die Konzentration der verwendeten Antimetaboliten hat laut Lee et al. [40] Einfluss auf den nach einer mittleren Nachbeobachtungszeit von 3 Monaten gemessenen mittleren IOD. In der vorliegenden Studie wurde die Konzentration unberücksichtigt gelassen. Insgesamt konnte in dieser Arbeit kein signifikanter Unterschied zwischen den Patientengruppen bezüglich des gemittelten postoperativen maximalen IODs, der gemittelten Senkung des maximalen IODs, der Verteilung der Patienten auf das Zielkriterium \(\leq 21 \pm 20 \) oder der postoperativen IOD-Kontrollwerte festgestellt werden. Die Nachbeobachtungszeit betrug hierbei im Mittel 2,1 ± 1,7 Jahre (bzw. 3 ± 2,3 Jahre). In den oben genannten Studien, die eine Senkung des IODs durch Antimetabolite vermuteten, betrug die Nachbeobachtungszeit 60 Tage bis ein Jahr. Damit überschreitet die Nachbeobachtungszeit in dieser Studie deutlich die Zeiträume, in der ein möglicher
Einfluss von Antimetabolitapplikation in bisherigen Studien angenommen wurde. Falls Antimetabolite einen senkenden Effekt auf den IOD besitzen, ist er in dieser Studie nach einer mittleren Nachbeobachtungszeit von 2,1 ± 1,7 Jahren nicht mehr detektierbar.
5 Zusammenfassung

Glaukomerkrankungen verlaufen progressiv und sind weltweit die zweithäufigste Ursache für Erblindung. Die einzig wirksame Therapie ist bisher die Senkung des IODs unter eine individuelle Grenze. Dabei ist die Trabekulektomie diejenige Therapie mit dem stärksten drucksenkenden Effekt. Intraokulare Druckspitzen scheinen im Zusammenhang mit progressiven Gesichtsfeldverlusten zu stehen. Die erfolgreiche Trabekulektomie senkt in dieser Arbeit den maximalen IOD nach einem Nachbeobachtungsintervall von 2,1 ± 1,7 Jahre auf durchschnittlich 16,0 ± 4,4 mmHg im Tagprofil und 16,0 ± 5,4 mmHg im Nachtprofil. Im Tagprofil bewirkt sie eine signifikante Senkung des maximalen IODs von 40 % vom präoperativen maximalen IOD (26,5 ± 5,9 mmHg), im Nachtprofil eine signifikante Senkung von 32 % des entsprechenden präoperativen Werts (23,4 ± 5,2 mmHg).

Damit liegt der maximale IOD nach 2,1 ± 1,7 Jahren im Tagprofil bei 80 % der Patienten (bei 71 % ohne Medikamente) und im Nachtprofil bei 69 % (63 % ohne Medikamente) unter oder bei 21 mmHg mit einer Reduktion gegenüber dem präoperativen IOD-Wertes von mindestens 20 %.

Bei 60 % (54 % ohne Medikamente) im Tagprofil und bei 63 % (57 %) im Nachtprofil liegt der maximale IOD 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie unter 18 mmHg.

Der erhöhte IOD ist nachweislich ein Risikofaktor für die Entstehung und die Progression von Glaukomen. In den letzten Jahren zeigten einige Studien, dass die Fluktuation des IODs ein unabhängiger Risikofaktor für die Progression von Gesichtsfeldausfällen zu sein scheint. Die Auswirkung der erfolgreichen Trabekulektomie auf die Fluktuation ist bisher wenig untersucht. Die präoperative Fluktuation von 12,1 ± 4,2 mmHg im Tagesprofil beträgt 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie 5,6 ± 2,2 mmHg, das entspricht einer signifikanten Senkung von 54 % (6,5 ± 4,6 mmHg).

Im Nachtprofil wurde eine Untergruppe betrachtet. Die präoperative Fluktuation von 7,1 ± 4,5 mmHg im Nachtprofil beträgt 2,1 ± 1,7 Jahre nach erfolgreicher Trabekulektomie 3,9 ± 4,1 mmHg, das entspricht einer nicht signifikanten Senkung von 46 % (3,3 ± 6,8 mmHg).
mmHg). Die Signifikanz in der Untergruppe wurde durch die geringe Fallzahl in der Untergruppe beeinträchtigt.

Der IOD folgt einem circadianen Rhythmus. Einige Studien berichten von Unterschieden im Tag-Nacht-Verhalten, weshalb in der vorliegenden Arbeit das Tagprofil und das Nachtprofil getrennt ausgewertet wurden. Der präoperative maximale IOD des Tagprofils lag 3,1 ± 6,1 mmHg (12 %) signifikant höher als der des Nachtprofils und wurde durch die erfolgreiche Trabekulektomie um 3,1 ± 6,6 mmHg (30 %) signifikant stärker gesenkt als der des Nachtprofils. Der postoperative maximale IOD war im Tag- und Nachtprofil im Durchschnitt fast identisch. In allen weiteren Auswertungen konnte kein signifikanter Unterschied im Tag-Nacht-Verhalten des IODs festgestellt werden.

Diese Studie liefert interessante Erkenntnisse zum Verhalten des IODs, insbesondere der Fluktuation des IODs nach erfolgreicher Trabekulektomie bei einer relativ langen Nachbeobachtungszeit. Über die Auswirkung der Trabekulektomie in Bezug auf die Fluktuation des IODs ist bisher wenig bekannt. Die Signifikanz der Ergebnisse könnte durch eine prospektive Studie mit größeren Fallzahlen erhöht werden. Eine wichtige Beschränkung der Aussagekraft der Ergebnisse liegt darin, dass das Verhalten des IODs bisher nicht an einem kontinuierlich erfassten IOD untersucht werden kann.
6 Literaturverzeichnis

7 Verzeichnis der Abkürzungen

IOD: Intraokularer Druck
TET: Trabekulektomie
POWG: Primäres Offenwinkelglaukom
PEX: Pseudoexfoliationsglaukom
TNDK-prä: präoperative Tag-Nacht-Druckkurve
TNDK-post: postoperative Tag-Nacht-Druckkurve
IOD_{max,T,prä}: maximaler präoperativer intraokularer Druck des Tagprofils
IOD_{max,T,post}: maximaler postoperativer intraokularer Druck des Tagprofils
\Delta IOD_{max,T}: IOD_{max,T,prä} - IOD_{max,T,post}
IOD_{max,N,prä}: maximaler präoperativer intraokularer Druck des Nachtprofils
IOD_{max,N,post}: maximaler postoperativer intraokularer Druck des Nachtprofils
\Delta IOD_{max,N}: IOD_{max,N,prä} - IOD_{max,N,post}
IOD_{pK}: postoperativer Kontrollwert des intraokularen Druckes
Fluktuation_{T,prä}: IOD_{max,T,prä} - IOD_{min,T,prä}
Fluktuation_{T,post}: IOD_{max,T,post} - IOD_{min,T,post}
\Delta Fluktuation_{T}: Fluktuation_{T,prä} - Fluktuation_{T,post}
Fluktuation_{UG,N,prä}: IOD_{max,UG,N,prä} - IOD_{min,UG,N,prä}
Fluktuation_{UG,N,post}: IOD_{max,UG,N,post} - IOD_{min,UG,N,post}
\Delta Fluktuation_{UG,N}: Fluktuation_{UG,N,prä} - Fluktuation_{UG,N,post}
Fluktuation_{UG,T,prä}: IOD_{max,UG,T,prä} - IOD_{min,UG,T,prä}
Fluktuation_{UG,T,post}: IOD_{max,UG,T,post} - IOD_{min,UG,T,post}
\Delta Fluktuation_{UG,T}: Fluktuation_{UG,T,prä} - Fluktuation_{UG,T,post}
\Delta Fluktuation_{UG,prä}: Fluktuation_{UG,T,prä} - Fluktuation_{UG,N,prä}
\Delta Fluktuation_{UG,post}: Fluktuation_{UG,T,post} - Fluktuation_{UG,N,post}
\Delta \Delta Fluktuation_{UG}: \Delta Fluktuation_{UG,T} - \Delta Fluktuation_{UG,N}
Danksagung

Für die freundliche Übernahme des Koreferats möchte ich mich bei Herrn Prof. Dr. med. Dr. h.c. F. Grehn bedanken.

Herrn J. Hain, Lehrstuhl für Statistik, Institut für Mathematik der Universität Würzburg, danke ich für die Hilfe bei der statistischen Auswertung,

Für die Unterstützung in jeder Hinsicht möchte ich mich bei meinen Eltern und meinem Mann bedanken.