Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity

Christian Rene Röhrich1, Che Julius Ngwa3, Jochen Wiesner1,*, Henrike Schmidtberg1, Thomas Degenkolb2, Christian Kollew1, Rainer Fischer1, Gabriele Pradel3 and Andreas Vilcinskas1

1Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresource Project Group, Sachsenringstrasse 2, 35394 Gießen, Germany
2Institute of Phytopathology and Applied Zoology at the Interdisciplinary Research Center, Justus-Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
3Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
*Author for correspondence (jochen.wiesner@ime.fraunhofer.de)

The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine (17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity.

Keywords: Harmonia axyridis; insect immunity; harmonine; antimicrobial activity

1. INTRODUCTION
Harmonia axyridis, known as the Asian lady beetle or the harlequin ladybird, is a ladybird beetle native to continental, temperate and subtropical parts of East and Central Asia. Since the beginning of the twentieth century, this species has been introduced as a biological control agent against aphid and/or coccid pests into North America, Europe and the Soviet Union. In addition, H. axyridis has been commercially available as a biological control agent for greenhouses and urban ecosystems since the mid-1990s. Over the last two decades, H. axyridis has become an invasive species in many countries. In Europe, H. axyridis populations have been growing rapidly since the turn of the millennium, threatening populations of native ladybird species [1]. Its invasive success has been attributed to its enduring resistance against diverse pathogens, which allows it to outperform and therefore dominate the most abundant native European ladybirds, Coccinella septempunctata and Adalia bipunctata [2]. Besides antimicrobial peptides encoded by small genes and synthesized on ribosomes [3], many insects synthesize low-molecular mass defence compounds, or sequester such compounds from their diet. Ladybirds exude droplets of haemolymph containing deterrent alkaloids through their leg joints when threatened or attacked, a behaviour known as reflex bleeding [4]. In the present study, harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene) was identified as the principal antimicrobial compound of H. axyridis haemolymph.

2. MATERIAL AND METHODS
(a) Origin and rearing of ladybirds
Adults of H. axyridis subsequently used for captive breeding were collected in and around Gießen and Ober-Mörlen, Germany. Adults of the two-spot ladybird (C. septempunctata) and eggs of the two-spot ladybird (A. bipunctata) were obtained from Kath Biotech AG (Baruth, Germany). All ladybird species were reared in cages at 26°C and 60 per cent relative humidity under a 16:8 photoperiod. Bean plants (Phaseolus vulgaris) infested by pea aphids (Acarosiphon pisum) were provided as a food source.

(b) Purification, structure determination and synthesis of harmonine
Haemolymph released by reflex bleeding was collected from 500 H. axyridis beetles. Groups of five beetles were vortexed for 10 s in 0.2 ml water in a 1.5 ml tube, and the combined liquid was heated to 95°C for 1 h and the precipitated material removed by centrifugation. The supernatant was supplemented with acetonitrile to a final concentration of 20 per cent (v/v) and passed over a strong anion exchange column (ISOLUTE SAX 100 mg/3 ml, Biotage). The flow-through was loaded onto a strong cation exchange column (Mono S 5/50 GL, GE Healthcare) and eluted with a linear gradient of NaCl (0–1 M in water containing 20% acetonitrile). Fractions containing active compounds from the radial diffusion assay eluted at approximately 700 mM NaCl. After removal of excess acetonitrile by vacuum evaporation, final purification was achieved by chromatography on a reversed-phase column (Acclaim 120, C18, 3 μm, 4.6 × 150 mm; Dionex) by applying a gradient of 8–80% acetonitrile in water containing 0.1% per cent formic acid. The activity was recovered at approximately 45 per cent acetonitrile. Structure determination was performed on a microTOF-Q II mass spectrometer (Bruker Daltonics). Harmonine was synthesized following the protocol of Enders & Bartzen [5].

(c) Antibacterial activity
For radial diffusion assays, beetles were homogenized in 20 per cent acetonitrile (10 μl mg−1 beetle weight), and 5 μl of the supernatant was applied to yeast extract and tryptone agar test plates (well diameter 3 mm) containing Escherichia coli DE 31. Minimal inhibitory concentration (MIC) values were determined in triplicate with 1 : 2 serial dilutions. Activity against Mycobacterium tuberculosis was determined using the BACTEC MGIT 960 system (Becton Dickinson).

(d) Antimalarial activity
Synchronized cultures containing Plasmodium falciparum ring forms were plated in 96-well plates at a parasitaemia of 1 per cent in the presence of 1 : 2 serial dilutions of harmonine. After incubating the plates for 72 h, the viability of the parasites was assessed using the Malstat assay [6]. Gametocytocidal activity was determined by plating stage II P. falciparum gametocytes in triplicate in 24-well plates in the presence of harmonine [7]. The cultures were incubated with harmonine for 48 h and then for another 5 days without the compound. The numbers of stage IV and V gametocytes in 1000 red blood cells were counted. Inhibition of microgametogenesis was determined by adding harmonine to mature gametocyte cultures for 15 min at 37°C prior to activation with 100 μM xanthurenic acid. After another 15 min, the numbers of exflagellation centres were
In initial experiments, the antimicrobial activity of haemolymph from ladybirds was assessed using a radial diffusion assay.

Harmonia axyridis haemolymph from three individual beetles from each of the three ladybird species were tested in radial diffusion assays against *Escherichia coli*. The activity of the **Harmonia axyridis** samples corresponds to 499, 473 and 535 μg ml⁻¹ gentamycin, respectively. (b) Chemical structure of harmonine. (c) The haemolymph samples used for the radial diffusion assays were analysed for the presence of harmonine by liquid chromatography–mass spectrometry. Extracted ion chromatograms were recorded at m/z 283 ± 0.5. Synthetic harmonine was analysed as a control.

![Harmonine structure](image)

3. RESULTS

(a) **Bioactivity guided purification of harmonine**

In initial experiments, the antimicrobial activity of haemolymph from ladybirds was assessed using a radial diffusion assay. *Harmonia axyridis* haemolymph generated an inhibition zone that was not observed with haemolymph from **C. septempunctata** or **A. bipunctata** (figure 1a). The active compound was purified by collecting haemolymph released by reflex bleeding from 500 **H. axyridis** beetles. Applying the radial diffusion assay for the detection of active fractions, a purification procedure by heat denaturation, anion exchange chromatography (activity in flow-through), cation exchange chromatography and reversed-phase high-performance liquid chromatography resulted in a single compound, which was identified as harmonine (17R,9Z)-1,17-diamino-octadec-9-ene (figure 1b) by electrospray ionization quadrupole time-of-flight (ESI-Qq-TOF) mass spectrometry. Using synthetic harmonine as standard, the amount of harmonine contained in an individual **H. axyridis** beetle was determined to be 160 ± 44 μg. With an estimated haemolymph volume of 21 ± 4 μl (determined by weight loss on drying), this corresponds to a harmonine concentration of approximately 27 mM. Harmonine was neither detectable in **C. septempunctata** nor in **A. bipunctata** haemolymph (figure 1c).

(b) **Antibacterial activity**

Synthetic harmonine displayed activity against 12 bacterial strains and the yeast *Candida albicans* with MIC
parasite (malarial parasite) inhibition. The antimalarial activity of harmonine was tested against the human erythrocyte-stage parasite P. falciparum. Harmonine inhibited the growth of the parasite with IC50 values of 4.8 and 7.6 nM for the chloroquine-sensitive strain 3D7 and the chloroquine-resistant strain Dd2, respectively (table 2). Harmonine also showed significant reduction in parasite transmission in mosquito assays, with a 50% decrease in transmission observed in mosquitoes fed on gametocyte cultures containing harmonine compared to controls.

(c) Antimicrobial activity

Harmonine exhibited broad-spectrum antimicrobial activity against various microbial strains. MIC values were recorded for harmonine against bacteria such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium tuberculosis. For instance, MIC values of 89 μM and 177 μM were observed against E. coli and P. aeruginosa, respectively. Harmonine was also tested against fungi such as Candida albicans, with an MIC of 354 μM. The activity was compared to standard antibiotics (e.g., chloroquine) for reference.

(d) Antiproliferative and cytotoxic activity

Harmonine demonstrated antiproliferative and cytotoxic activity against cancer cell lines. Proliferation of human cell lines HUVEC and K-562 was inhibited by harmonine at low concentrations. At remarkably low concentrations, harmonine inhibited the growth of five human solid tumour cell lines (e.g., H37). Cytotoxicity was observed in lepidopteran cell lines Sf9 and High Five, indicating potential for use in pest control.

When A. stephensi mosquitoes were fed on gametocyte cultures containing either 10 μM harmonine or 1% DMSO, only 45% of the mosquitoes were found to be infected in the harmonine group compared with 91% in the control group, indicating a significant reduction in parasite transmission (p < 0.05, Mann–Whitney test). The mean oocyte numbers were 1.0 ± 1.6 and 5.1 ± 5.3% in the harmonine and control groups, respectively.

4. DISCUSSION

Harmonine had previously been isolated by Braconier et al. [8] based on its reactivity with Dragendorff’s reagent. The compound acted as a feeding deterrent against the common red ant, Myrmica rubra [9]. Alam et al. [10] reported cytotoxicity against five human solid tumour cell lines and moderate inhibition of the enzymes acetylcholinesterase, prolyl endopeptidase and neuraminidase. The broad-spectrum antimicrobial activity observed in the present study demonstrates that harmonine is an important factor in beetle immunity and may explain the invasive success of H. axyridis. Although harmonine was less active than standard antibiotics, the MIC values were significantly below the estimated harmonine concentration in H. axyridis haemolymph.

At antibacterial concentrations, harmonine also displayed antiproliferative and cytotoxic activity against human and lepidopteran cell lines. How H. axyridis is able to resist the cytotoxic potential of harmonine remains unknown. The pronounced activity of harmonine against mycobacteria together with activity against an MRSA strain is indicative for a novel mode of action, which might be exploited by the development of derivatives less toxic to human cells. At remarkably low concentrations, harmonine inhibited the growth of the malaria parasite P. falciparum and prevented transmission of sexual parasite stages to the mosquito. Therefore, further studies may provide a base for the development of novel anti-malarial drugs with both parasitocidal and transmission-blocking activities.
This study was supported by the German Federal State of Hessen as part of the LOEWE-Schwerpunkt Insektenbiotechnologie. G.P. acknowledges funding from the DFG Emmy Noether programme and the MALSIG consortium of the EU 7th framework programme. C.J.N. received a fellowship from the GSLS of the University of Würzburg. Support from the Erwin-Stein-Foundation (Gießen, Germany) which provided a habilitation grant to T.D. is also acknowledged.

