Aus dem König- Ludwig- Haus Klinik für Orthopädie der Universität Würzburg
Direktor: Prof. Dr. med. Maximilian Rudert

Titel

Kniegelenknahe Osteotomie mit Plattenfixateur - Ergebnisse und prognostische Faktoren

Inaugural - Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius-Maximilians-Universität Würzburg

vorgelegt von

Malte Ohlmeier

aus Hamburg

Würzburg, Juli 2018
Referent: Priv.-Doz. Dr. med. Th. Barthel

Korreferent: Univ.-Prof. Dr. med. R. Meffert

Dekan: Prof. Dr. med. M. Frosch

Tag der mündlichen Prüfung: 31.07.2018

Der Promovend ist Arzt
Meinen Eltern gewidmet, die mir das Medizinstudium ermöglichten.
Inhalt

1. Einleitung und Fragestellung .. 1
 1.1. Gonarthrose .. 2
 1.1.1. Ätiologie ... 2
 1.1.2. Epidemiologie .. 3
 1.1.3. Risikofaktoren .. 3
 1.1.4. Symptome ... 4
 1.1.5. Klassifikationen des Arthroseausmaßes .. 4
 1.1.6. Therapieoptionen .. 5
 1.2. Entwicklung der kniegelenknahen Osteotomien ... 7
 1.2.1. Historie ... 7
 1.2.2. Ziele ... 9
 1.2.3. Osteotomiearten und Implantate .. 9
 1.3. Ziel der Studie .. 11

2. Material und Methoden .. 15
 2.1. Patientenkollektiv ... 15
 2.2. Art der Achsfehlstellung und knöchernen Deformität ... 16
 2.3. Art und Lokalisation der Osteotomien ... 17
 2.3.1. Femur ... 17
 2.3.2. Tibia ... 19
 2.3.3. Doppelosteotomie .. 21
 2.3.4. Definition der Operationsorte ... 22
 2.4. Verwendete Implantate .. 22
 2.4.1. Proximale Tibia ... 23
 2.4.2. Distaler Femur ... 24
 2.5. Die Osteotomie .. 25
 2.5.1. Ausmaß der Osteotomie ... 25
 2.5.2. Auffüllung des Osteotomiespaltes .. 25
 2.5.3. OP - Technik: medial aufklappende Tibiakopf-Osteotomie .. 26
 2.6. Prä- und Postoperative Analyse der Beinachse .. 30
 2.7. Knee and Osteoarthritis Outcome Score .. 33
 2.8. Statistische Auswertung ... 33

3. Ergebnisse .. 34
 3.1. Bewertung des klinischen Ergebnisses ... 34
<table>
<thead>
<tr>
<th>4.8.9. Zu H9</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.10. Zu H10</td>
<td>68</td>
</tr>
<tr>
<td>4.9. Kasuistik</td>
<td>70</td>
</tr>
<tr>
<td>4.9.1. Umstellungsosteotomie mit gleichzeitigem Knorpeldefekt</td>
<td>70</td>
</tr>
<tr>
<td>4.9.2. Umstellungsosteotomie mit gleichzeitiger Bandinstabilität</td>
<td>70</td>
</tr>
<tr>
<td>4.9.3. Doppelosteotomien</td>
<td>71</td>
</tr>
<tr>
<td>4.9.4. Prothesenimplantation nach Umstellungsosteotomie</td>
<td>72</td>
</tr>
<tr>
<td>4.10. Weiteres</td>
<td>73</td>
</tr>
<tr>
<td>4.10.1. Osteotomie vs. Schlitten</td>
<td>73</td>
</tr>
<tr>
<td>4.10.2. Sport nach Operation</td>
<td>73</td>
</tr>
<tr>
<td>4.10.3. Navigierte Umstellungsosteotomie</td>
<td>74</td>
</tr>
<tr>
<td>5. Zusammenfassung</td>
<td>76</td>
</tr>
<tr>
<td>6. Summary</td>
<td>77</td>
</tr>
<tr>
<td>7. Anhang</td>
<td>80</td>
</tr>
<tr>
<td>7.1. Abbildungsverzeichnis</td>
<td>80</td>
</tr>
<tr>
<td>7.2. Tabellenverzeichnis</td>
<td>81</td>
</tr>
<tr>
<td>7.3. Abkürzungsverzeichnis</td>
<td>82</td>
</tr>
<tr>
<td>7.4. KOOS</td>
<td>83</td>
</tr>
<tr>
<td>8. Literatur</td>
<td>89</td>
</tr>
<tr>
<td>8. Lebenslauf</td>
<td>99</td>
</tr>
<tr>
<td>9. Danksagung</td>
<td>100</td>
</tr>
<tr>
<td>10. Selbstständigkeitserklärung</td>
<td>101</td>
</tr>
</tbody>
</table>
1. Einleitung und Fragestellung

[1]
1.1. Gonarthrose

1.1.1. Ätiologie

Gonarthrose, M 17 nach ICD-10 Klassifikation, bezeichnet den vorzeitigen Verschleiß der knorpeligen Flächen des Kniegelenkes [31]. Die knorpeligen Flächen umfassen dabei im Femoropatellargelenk die Patellarückfläche mit Trochlea und im Femorotibialgelenk das mediale sowie laterale Gelenkkompartment jeweils mit femoraler und tibialer Gelenkfläche [133]. Kennzeichend sind degenerative Veränderungen an den Gelenken, die zur Zerstörung des Knorpels mit Gewebeverlust und Freilegung der Knochenoberfläche führen [87].

Ebenso lässt sich eine Pangonarthrose von einer Arthrose abgrenzen, die nur einzelne Kompartimente betrifft, z.B. medial, lateral oder femoropatellar. Ursachen des einseitigen Kniegelenkverschleifes können in einer Mehrbelastung des Kompartiments, z.B. bei
Achsfehlstellungen oder Instabilität, oder in einer Minderbelastbarkeit liegen, welche beispielsweise durch Osteonekrosen, Knochenmarksödemen oder osteologischen Grunderkrankungen) bedingt sein kann. Auch kann eine Fehlbelastung durch eine präarthrotische Deformität, wie Gelenkflächeninkongruenz nach Osteonekrose (M. Ahlbäck), oder nach Osteochondrosis dissecans bzw. posttraumatische Gelenkstufe Ursache eines einseitigen Gelenkverschleißes sein.

1.1.2. Epidemiologie

In Deutschland leiden etwa 17 Millionen Menschen an einer Arthrose [1, 30]. Es ist weltweit die häufigste Gelenkerkrankung [4]. Im Jahr 2013 war die Gonarthrose die am häufigsten gestellte Diagnose in Vorsorge- und Rehabilitationseinrichtungen in Deutschland [138]. Damit ist sie gleichzeitig der häufigste Behandlungsgrund in diesen Einrichtungen. In der Liste der häufigsten vollstationär behandelten Krankheiten in deutschen Krankenhäusern steht die Kniegelenksarthrose an 17. Stelle [138].

1.1.3. Risikofaktoren

1.1.4. Symptome

Klassischerweise äußert sie sich allerdings durch Belastungsschmerzen, Anlaufschmerzen, Morgensteifigkeit, Kreplationen oder Ruheschmerzen. Im fortgeschrittenen Stadium und im Rahmen von begleitenden entzündlichen Veränderungen (aktivierte Arthrose) kann es zu Verkürzungen von Muskeln und Sehnen, Bewegungseinschränkung, Schonhaltung, Gelenkerguss, Gelenkschwellungen, Kraftminderung und Instabilität des Gelenks kommen [150].

1.1.5. Klassifikationen des Arthroseausmaßes

Tabelle 1: Klinische Stadien der Arthroseentwicklung [6]

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>deutlicher Knorpelschaden, Verringerung des Gelenkspalts im Röntgenbild, Veränderungen am Knochen unter dem geschädigten Knorpel, Symptome können fehlen</td>
</tr>
<tr>
<td>II</td>
<td>Entzündungen im Gelenkbereich, Belastungs- und Anlaufschmerzen, tiefe Knorpelschäden bis zur Knorpelglatze, zeitweise Entzündungen (aktivierte Arthrose)</td>
</tr>
<tr>
<td>III</td>
<td>Knorpelflächen sind weitgehend zerstört, ganz erhebliche Entzündungen des Gelenks, Bildung von knochernen Auswüchsen (Osteophyten), Muskelverkürzungen und -verhärtungen, erhebliche Bewegungseinschränkungen bis zur Einseitigkeit des Gelenks</td>
</tr>
</tbody>
</table>
Die radiologische Klassifikation einer Gonarthrose erfolgt nach den Kellgren und Lawrence Kriterien [68].

Tabelle 2: Radiologische Arthroseklassifikation nach Kellgren & Lawrence [68]

<table>
<thead>
<tr>
<th>Grad</th>
<th>Radiologisches Korrelat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kein radiologischer Nachweis</td>
</tr>
<tr>
<td>I</td>
<td>ggf. Gelenkspaltverschmälerung und Osteophyten</td>
</tr>
<tr>
<td>II</td>
<td>ggf. Gelenkspaltverschmälerung, Osteophytennachweis</td>
</tr>
<tr>
<td>III</td>
<td>Gelenkspaltverschmälerung, multiple Osteophyten, Sklerosierung, ggf. knöcherne Deformitäten</td>
</tr>
<tr>
<td>IV</td>
<td>starke Gelenkspaltverschmälerung, große Osteophyten, ausgeprägte Sklerosierung mit knöcherner Deformität</td>
</tr>
</tbody>
</table>

Für die arthroskopische Einteilung des Schweregrades des Knorpelschadens hat sich die Klassifikation nach Outerbridge etabliert [105].

Tabelle 3: Arthroskopische Klassifikation der Knorpelschädigung nach Outerbridge [105]

<table>
<thead>
<tr>
<th>Grad</th>
<th>Knorpelschaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>normal</td>
</tr>
<tr>
<td>I</td>
<td>geschwollener, weicher Knorpel</td>
</tr>
<tr>
<td>II</td>
<td>Knorpeldefekte <1,5cm Durchmesser, Fissuren reichen nicht bis auf den Knochen</td>
</tr>
<tr>
<td>III</td>
<td>Knorpeldefekte >1,5cm Durchmesser, Fissuren reichen bis auf den Knochen</td>
</tr>
<tr>
<td>IV</td>
<td>freiliegender Knochen</td>
</tr>
</tbody>
</table>

1.1.6. Therapieoptionen

Als operative Maßnahmen stehen dabei die Arthroskopie, die kniegelenknahe Osteotomie, der Gelenkersatz oder die Arthrodese zur Auswahl. Arthroskopische Therapieansätze eignen sich dabei besonders bei Meniskuspathologien, im Rahmen derer es u.a. zu mechanischen Kniegelenksblockaden kommen kann. Eingriffe solcher Art, die lediglich zur Diagnostik mit ggf. Knorpelglättung, Lavage und Synovektomie durchgeführt werden, sind nicht mehr Bestandteil des Leistungskataloges der gesetzlichen Krankenversicherung.

Der endoprothetische Ersatz findet v.a. bei ausgeprägten, schweren uni- oder mehrkompartmentellen Gonarthrosen Anwendung. Die Patienten sind meist älter als 60 Jahre. Um unterschiedlichen Ausgangsbedingungen gerecht zu werden, unterscheidet man mindestens 3 Prothesentypen: unikondyläre Schlittenprothesen (z.B. bei medialer Gonarthrose), ungekoppelte bikondyläre Prothesen (bei Pangonarthrose mit stabilem Bandapparat) und achsgeführt Knieendoprothesen (z.B. bei schwerer Bandinstabilität). Eine Indikation zur Arthrodese kann z.B. nach septischer Implantatentfernung und Zerstörung des Streckapparates oder bei operativ sonst nicht zu behebender Instabilität gegeben sein [103].
1.2. Entwicklung der kniegelenknahen Osteotomien

1.2.1. Historie

Als in den achtziger Jahren die Oberflächenersatzendoprothesen für das Kniegelenk aufkamen und sich bezüglich Operationstechnik, Prothesendesign und Fallzahlen rasant entwickelten, wurde die KNO fast vollständig vom Markt verdrängt. Nach einiger Zeit zeichneten sich jedoch Fehlschläge der implantierten Prothesen ab, die vor allem
Patienten mit hohem Aktivitätsanspruch und/oder extraartikulären Achsfehlstellungen betraten [71].

Im letzten Jahrzehnt feierte die Umstellungsosteotomie daher eine Renaissance und erfreute sich zunehmender Beliebtheit [79]. Durch die Modifikation der Operationstechnik sowie die Einführung winkelstabilier Implantate erlangte dieses Verfahren wieder größere Aufmerksamkeit.

Während bis Anfang der 2000er Jahre zur Varisierung überwiegend die lateral schließende Tibiakopfosteotomie (CW-HTO) angewandt wurde, haben mittlerweile öffnende Operationstechniken am medialen Tibiakopf (OW-HTO) die schließende Technik weitgehend abgelöst [106]. Die intraoperativ erzielte Korrektur kann jetzt weichteilschonend, vor allem ohne Nervenläsion und Fibulamobilisation sowie ohne sekundären Korrekturverlust mittels winkelstabilier Plattenfixateure bis zur knöchernen Heilung fixiert werden [112]. Zudem lässt sich die Osteotomie nun stufenlos und präziser einstellen.

1.2.2. Ziele

1.2.3. Osteotomiearten und Implantate

Gemäß dem Grundsatz nach Paley muss eine Korrekturosteotomie am Ort der Deformität durchgeführt werden [107].

Die KNO umfasst daher prinzipiell 3 Variablen, aus denen sich die Vielfalt der Operationstechniken zusammensetzt, um eine Achsenkorrektur am Bein vorzunehmen. Diese sind: 1. Femur oder Tibia, 2. medial oder lateral und 3. öffnend oder schließend.
1.2.3.1. Osteotomiearten am Femur

Am Femur werden in der Mehrzahl Varisationsosteotomien durchgeführt. Diese dienen dazu, eine Valgusdeformität als Ursache einer lateralen monokompartimentellen Arthrose zu beseitigen, indem die mechanische Traglinie (Mikulicz-Linie) nach zentral verlagert wird.

Die laterale öffnende Osteotomie am Femur verläuft grundsätzlich analog, weshalb hier auf eine detaillierte Darstellung verzichtet wird.

1.2.3.2. Osteotomiearten an der Tibia

Die mediale valgisierende öffnende Umstellungsosteotomie der proximalen Tibia wurde bei diesem Patientenkollektiv am häufigsten angewandt. Argumente für diese Technik sind die Vermeidung von Schäden des Nervus peroneus, keine nötige Ablösung der Muskulatur sowie die Tatsache, dass lediglich ein Osteotomie-Schritt ohne Knochenkeilentnahme ausreichend ist. Zudem ist durch das langsame Aufspreizen des
Osteotomiespaltes eine sehr genaue intraoperative Achsenkorrektur möglich [60]. Auch hier folgen genauere Informationen zur Operation unter „2.4.“ und „2.5.“.

1.2.3.3. Implantate

Alle 110 Patienten haben eine TomoFix® Platte der Firma DePuySynthes erhalten.

Der TomoFix® Plattenfixateur ist eine überarbeitete Platte, die auf dem „Konzept der verriegelbaren Kompressionsplatte LCP (Locking Compression Plate)“ beruht. Durch ein Gewinde sowohl im Schraubenloch als auch im Schraubenkopf ermöglicht sie eine winkelstabile Verankerung. Dies wiederum gewährt eine sichere Fixation des Korrekturspaltes bei open-wedge Operationen, wodurch ein postoperativer Korrekturverlust minimiert werden soll.

Für den Fall der gebrochenen Gegenkortikalis soll durch die aufeinander folgende Besetzung der Schraubenlöcher ein Druck auf die Gegenkortikalis des Knochens und Zug auf die gleichseitige Kortikalis ausgeübt werden. Dies verspricht eine schnellere knöcherne Osteotomiespaltfüllung und höhere Stabilität der Gegenkortikalis [79].

Die verwendeten Implantate sind unter Ziffer 2.4. nach Art und Anwendungshäufigkeit im Kollektiv dargestellt.

1.3. Ziel der Studie

Die Wirksamkeit der KNO ist bei korrekter Indikationsstellung hinreichend belegt [66, 89, 106, 131]. Hinsichtlich des Patientenklientels können sich dabei allerdings breite Indikationspektren auftun. So können z.B. das Patientenalter, die Knorpelbeschaffenheit oder der Operationsort am Bein sehr variabel sein.

Folgende Hypothesen sollen bestätigt oder abgelehnt werden:

1. Bevor eine Beinachsenkorrektur durchgeführt werden darf, muss zuvor eine Planung der intraoperativ angestrebten Korrektur durchgeführt werden. Dazu dient die Software Medicad®, die eine Osteotomiespaltpflänge errechnet, um die gewünschte Beinachse zu erzielen. Intraoperativ wird dann auf eine röntgenologische Achsenkontrolle verzichtet. Die Hypothese lautet daher:
 Die Planung mit dem Medicad® System führt bei intraoperativer Umsetzung des geplanten Osteotomiespaltes ohne intraoperative röntgenologische Kontrolle der Beinachse zum gewünschten Korrekturergebnis.

2. Zur Beinachsenkorrektur gibt es unterschiedliche Kriterien. Derzeit werden die „Fujisawa“-Kriterien als „state-of-the-art“ gesehen. Diese besagen u.a., dass die angestrebte Beinachse zur Korrektur einer Varusgonarthrose das Tibiaplateau bei 60-70% der Breite (von medial gemessen) treffen sollte [47]. Die Hypothese lautet daher:
 Die Korrektur der Beinachse bei Varusgonarthrose nach den „Fujisawa“-Kriterien führt zum besten Ergebnis bei der subjektiven Patientenbewertung.

3. Ein Knorpelschaden kann Gonalgien auslösen. Wenn nun ein zunehmender Knorpelschaden mit dadurch bedingt stärkeren Schmerzen mittels HTO entlastet wird, nehmen wir an, dass auch die Patientenzufriedenheit postoperativ höher ist. Die Hypothese lautet daher:
Die Ergebnisse der subjektiven Patientenbewertung korrelieren mit dem Ausmaß des Knorpeldefektes im betroffenen Kompartiment.

4. Bei einer HTO ist nicht nur das betroffene Kniekompartiment für das Gelingen der Operation maßgeblich. Da durch eine Umstellungsosteotomie am Knie das nicht-betroffene Kompartiment stärker belastet wird, möchten wir wissen, inwieweit der Operationserfolg vom Knorpelschaden in diesem Gelenkanteil abhängig ist. Die Hypothese lautet daher:

Die Ergebnisse der subjektiven Patientenbewertung sind unabhängig vom Ausmaß des Knorpeldefektes im nicht-betroffenen Kniekompartiment.

5. Nicht nur ein Knorpelschaden, sondern auch eine knöcherne Deformität kann Kniegelenkschmerzen auslösen. Ob der Grad an Deformität mit den Schmerzen korreliert, möchten wir dabei herausarbeiten. Die knöcherne Deformität wird dabei mittels aMPTA (anatomischem, medialem, proximalem Tibiawinkel) gemessen. Die Hypothese lautet daher:

Die Verbesserung der subjektiven Patientenzufriedenheit nach der OP ist umso höher, je grösser die vor der OP bestehende knöcherne Deformität ist.

6. Gibt es einen Geschlechterunterschied bezüglich der postoperativen Patientenzufriedenheit nach HTO? Die Hypothese lautet daher:

Die Ergebnisse der Patientenzufriedenheit sind bei Männern und Frauen gleich.

7. Gibt es einen Altersunterschied bezüglich der postoperativen Patientenzufriedenheit nach HTO? Die Hypothese lautet daher:

Die Ergebnisse der Patientenzufriedenheit sind vom Alter der Patienten unabhängig.

Die Ergebnisse der Patientenzufriedenheit sind unabhängig vom Ort der Korrektur und der daraus resultierenden Art der Korrektur.

[13]

2. Material und Methoden

Die vorliegende Studie wurde nach Einholen einer Unbedenklichkeitsbescheinigung der Ethikkommission Würzburg durchgeführt.

2.1. Patientenkollektiv

1. Fehlende/unzureichende präoperative Planung
2. Nicht-Erscheinen zur postoperativen Wiedervorstellung in der Ambulanz
3. Keine Korrespondenz nach Versenden des Fragebogens
4. Versterben des Patienten

Das Patientenalter lag in diesem Kollektiv im Durchschnitt bei 38,9 Jahren, der jüngste Patient war 14 Jahre und der älteste Patient 58 Jahre alt. Der Body-Maß-Index lag durchschnittlich bei 26,8 kg/m², wobei der geringste BMI 17,0 kg/m² und der höchste...
BMI 40,2 kg/m² betrug. Von den 110 Patienten waren 39 Frauen und 71 Männern, 22 waren Raucher mit einem täglichen Zigarettenkonsum ≥ 10 Zigaretten.

2.2. Art der Achsfehlstellung und knöchernen Deformität

Abbildung 2: Häufigkeit und Verteilung der Deformität von distalem Femur und proximaler Tibia im Gesamtkollektiv (n=110)
2.3. Art und Lokalisation der Osteotomien

2.3.1. Femur

Die unter Ziffer 1.2.3.1. beschriebenen Therapieoptionen am Femur werden in Abb. 3 aufgezeigt. Die postoperativen Röntgenbilder der verschiedenen Osteotomiearten am Femur sind in Abb. 4 dargestellt.

Die am Femur auftretenden Deformitäten wurden auf folgende Weise therapiert: Die 7,3% Varusdeformitäten wurden zu 5,5% mit einer lateral schließenden- und zu 1,8% mit einer medial öffnenden Osteotomie versorgt.

Die 20% Valgusdeformitäten des Femur wurden zu 10% mit einer lateral öffnenden und zu 10% mit einer medial schließenden Osteotomie versorgt.

Abbildung 3: Osteotomiemöglichkeiten am Femur und Anwendungshäufigkeit im Gesamtkollektiv (n=110)
Abbildung 4 Beispiele der Osteotomiearten am distalen Femur
2.3.2. Tibia

Die unter Ziffer 1.2.3.2. beschriebenen Therapieoptionen an der Tibia werden in Abb. 5 aufgezeigt. Die postoperativen Röntgenbilder der verschiedenen Osteotomiearten an der Tibia sind in Abb. 6 dargestellt.

Die an der Tibia auftretenden Deformitäten wurden auf folgende Weise therapiert: Die 61,8% Varusdeformitäten wurden ausschließlich mittels medial öffnender Osteotomie versorgt.

Die 10,9% Valgusdeformitäten der Tibia wurden die 11 Patienten mit einer lateral öffnenden und bei einem Patienten mit einer medial schließenden Osteotomie versorgt.

Abbildung 5: Osteotomiemöglichkeiten an der Tibia und Anwendungshäufigkeit im Kollektiv (n=110)
Im Kollektiv nicht durchgeführt

Abbildung 6: Beispiele der Osteotomiearten an der proximalen Tibia
2.3.3. Doppelosteotomie

Bei 8 Patienten des Kollektivs (7.3%) wurde gleichzeitig eine Korrektur am distalen Femur sowie an der proximalen Tibia durchgeführt, s. Abb. 7. Die Indikation zur Doppelosteotomie bestand zum Beispiel, wenn die knöcherne Deformität sehr ausgeprägt und sowohl am Tibikopf als auch am distalen Femur lokalisiert war.

Abbildung 7: Postoperatives Röntgenbild nach Doppelosteotomie
2.3.4. Definition der Operationsorte

Um die Unterschiede der einzelnen Osteotomiearten herauszuarbeiten und im Rahmen der formulierten Hypothesen auswerten und besser darstellen zu können, wurden diese durch Zahlen definiert:

Operationsort 1: Tibia medial aufklappend
Operationsort 2: Tibia lateral aufklappend
Operationsort 3: Tibia medial zuklappend
Operationsort 5: Femur medial aufklappend
Operationsort 6: Femur lateral aufklappend
Operationsort 7: Femur medial zuklappend
Operationsort 8: Femur lateral zuklappend

2.4. Verwendete Implantate

In den Abbildungen 8 und 9 werden die verschiedenen Arten von TomoFix® Platten, die Indikationen und die Häufigkeit der Anwendung im Patienten klientel (n=110) aufgeschlüsselt. Die Darstellung der Implantatbilder erfolgt mit Genehmigung der Firma DePuySynthes.
2.4.1. Proximale Tibia

TomoFix Mediale
Proximale Tibiakopfplatte
440.834S

Indikation:
- Tibia medial aufklappend (n=68/110)
- Tibia medial zuklappend (n=1/110)

© Fa. DePuySynthes (Produktkatalog)

TomoFix Laterale
Proximale Tibiakopfplatte
440.843S

Indikation:
- Tibia lateral aufklappend (n=11/110)
- Tibia lateral zuklappend (n=0/110)

© Fa. DePuySynthes (Produktkatalog)

Abbildung 8: Implantate für Tibiakopfosteotomie - Indikation und Häufigkeit der Anwendung
2.4.2. Distaler Femur

TomoFix Mediale Distale
Femurplatte
440.885S

Indikation:
- Femur medial aufklappend (n=2/110)
- Femur medial zuklappend (n=11/110)

© Fa. DePuySynthes (Produktkatalog)

TomoFix Laterale Distale
Femurplatte
440.864S

Indikation:
- Femur lateral aufklappend (n=11/110)
- Femur lateral zuklappend (n=6/110)

© Fa. DePuySynthes (Produktkatalog)

Abbildung 9: Implantate für distale Femurosteotomie - Indikation und Häufigkeit der Anwendung

[24]
2.5. Die Osteotomie

2.5.1. Ausmaß der Osteotomie

Durchschnittlich wurde die Osteotomie bei den im König-Ludwig-Haus operierten Patienten um 8,8 mm auf- oder zugeklappt. Die minimale Osteotomiespaltgröße betrug dabei 5 mm und die maximale -spaltgröße 15 mm. Die Darstellung der Osteotomiespaltgrößen in Abhängigkeit der Häufigkeitsverteilung findet sich in Abbildung 10.

Abbildung 10: Grafische Darstellung der Osteotomiespaltgrößen sowohl auf- als auch zuklappend Osteotomien mit Häufigkeitsangabe im Patientenkollektiv (n=110)

2.5.2. Auffüllung des Osteotomiespaltes

Der Osteotomiespalt wurde - abhängig von der Spaltgröße - gemäß Abbildung 11 versorgt.
2.5.3. OP - Technik: medial aufklappende Tibiakopf-Osteotomie

Abbildung 11: Art und Häufigkeit der Osteotomiespaltfüllung, n=92 Patienten, die eine aufklappende Osteotomie erhalten haben
Mit Hilfe eines Raspatoriums wird das mediale Kollateralband von der Tibia abgehoben und die distal inserierenden Fasern durchtrennt, um einausreichendes mediales Release zu erzielen.

Ist ein Auffüllen des Gelenkspalts vorgesehen, wird nun Knochenersatzmaterial oder autologer Knochen in den Osteomiespalt eingebracht. Dorsal wird ein Kollagenflies eingelegt. Anschließend wird die TomoFix-Platte angelegt, welche proximal mittels Kirschnerdrähten fixiert wird. Es erfolgt eine röntgenologische Kontrolle, die den regulrechten Sitz der Platte bestätigt. Die proximalen Schraubenlöcher werden vorgebohrt und die proximalen Verriegelungsschrauben nach Längenbestimmung eingedreht.

Abbildung 13: sukzessives Aufklappen der Osteotomie mittels Spreizer

Abbildung 14: winkelstables Vorbohren der proximalen Verriegelungsschrauben

Abbildung 15: korrekter Sitz des TomoFix® Plattenfixateurs

Nun kann die Blutsperre geöffnet werden, es erfolgt die Spülung der Operationswunde, Blutstillung mit dem Elektrokauter sowie die Einlage einer Redondrainage. Es erfolgen der schichtweise Wundverschluss und eine intrakutan fortlaufende Hautnaht. Ein steriler Verband mit elastokompressiver Wickelung deckt die Wunde ab.
2.6. Prä- und Postoperative Analyse der Beinachse

Von allen 110 Patienten wurden die prä- und postoperativ im Stand angefertigten Röntgen Ganzbeinaufnahmen analysiert. Präoperativ wurden diese Röntgenaufnahmen zur Planung und postoperativ zur Kontrolle des erzielten Ergebnisses verwendet. Zusammen mit der Osteotomieplanung ergaben sich so pro Parameter und Patient drei Werte: Wert (A) präoperativ, Wert (A) geplant und Wert (A) postoperativ.

Folgende Winkel (W) und Linien (L) wurden anhand der Ganzbeinröntgenaufnahme gemessen:

Mikulicz L: bezeichnet die mechanische Beinachse, gemessen vom Hüftkopfzentrum zur Mitte der Talusrolle; physiologischer Verlauf (±2 mm) medial des Kniegelenkzentrums

aLDF W: anatomischer, lateraler, distaler Femurwinkel, physiologisch 81° ± 2° [79], Winkel zwischen anatomischer Femurachse und der Tangente an die Femurkondylen

mLDF W: mechanischer, lateraler, distaler Femurwinkel, physiologisch 88° (85°-90°), Winkel zwischen mechanischer Femurachse und Tangente an die Femurkondylen [79]

JLC W: Gelenklinien-Konvergenzwinkel, joint line convergence angle, Winkel zwischen Tangente an die Femurkondylen und an das Tibiaplateau

m/aMPT W: anatomischer ± mechanischer, medialer, proximaler Tibiawinkel, physiologisch 87° (85°-90°), Winkel zwischen anatomischer/mechanischer Tibiaachse und der Tangente an das Tibiaplateau

Kniebreite: Kniegelenkbreite gemessen in mm, notwendig, um den Schnittpunkt mit der Miculicz Linie zu bestimmen; der Schnittpunkt wird in Prozent der Tibiabreite gemessen von medial nach lateral angegeben
Abbildung 16 stellt die o.g. Winkel grafisch dar:

Abbildung 16: Physiologische Winkel & Achsen der unteren Extremität, © Maryland Center for Limb Lengthening and Reconstruction, Quelle: Paley Beschreibung der Winkel [107]

Folgende Schritte mussten dabei vollzogen werden:

1. Größenskalierung anhand einer 30 mm Messkugel
2. Bestimmen des Hüftkopfmittelpunktes
3. Von dort aus eine Horizontale zum Trochanter major verlegen
4. Einzeichnen der Tangenten an Femurkondylen und Tibiaplateau
5. Einzeichnen der Tangente an die Talusgelenkfläche
6. Bestimmen der Femur- und Tibiaschaftachse
7. Automatisches Einzeichnen der Mikulicz Linie durch die Medicad® Software
8. Simulieren und Festlegen der Osteotomie und des Ausmaßes der Korrektur
9. Höhe des Osteotomiepaltes bzw. des zu entnehmenden Keils bestimmen
In Abbildung 17 soll ein Vergleich zwischen präoperativem Befund und der in Medicad vorgenommenen Operationsplanung gegeben werden. Die dabei geänderte mechanische Belastungssache (Mikulicz-Linie) ist zur Verdeutlichung rot markiert.

Abbildung 17: links: präoperative Bemaßung; rechts: Planbemaßung; rot: Mikulicz Linie

Abbildung 18 zeigt die postoperative Überprüfung der zuvor in Medicad vorgenommenen Operationsplanung. Die geänderte mechanische Belastungssachse (Mikulicz-Linie) ist zur Verdeutlichung rot markiert.

Abbildung 18: postoperative Bemaßung; rot: Mikulicz Linie
2.7. Knee and Osteoarthritis Outcome Score

Zur Evaluation des subjektiven Outcomes erhielt jeder Patient den KOOS-Fragebogen (Knee and Osteoarthritis Outcome Score), German Version LK 1.01., der bei verschiedenen Kniefahrungen wie Bandverletzungen, nach reparativen Knorpelmaßnahmen oder nach endoprothetischem Ersatz, Umstellungsosteotomie, verwendet werden kann (s. 7.4.). Der Score besitzt 5 Subskalen: Symptome, Schmerz, alltägliche Aktivitäten, sportliche Aktivitäten und Lebensqualität.

Die Patienten wurden in einer retrospektiven Erhebung sowohl zu ihrem präoperativen als auch zum postoperativen Befinden befragt. Die Frage zum postoperativen Befund wurde dabei mit dem „Befinden der letzten Woche“ formuliert (s. 7.4.). Die Patientenevaluation beläuft sich auf einen Zeitraum von 9 bis 98 Monate postoperativ. Die durchschnittliche follow-up Zeitspanne beträgt 41,2; STABW. ± 26,3 Monate. Eine weitere Erklärung zum follow-up findet sich unter Ziffer 4.2.

2.8. Statistische Auswertung

Die deskriptive Statistik wird in Form von Häufigkeitsangaben mit absoluten und relativen Zahlen, Durchschnitten sowie der Standartabweichung und dem Wertebereich präsentiert. Das Signifikanzlevel wurde auf $\alpha = 0.05$ gesetzt. Alle Daten wurden mit einer statistischen Analysesoftware ermittelt (IBM SPSS Statistics Version 24, Armonk, NY, USA). Die Begründung der einzelnen Tests ist in der Auswertung der Hypothesen dargestellt.

3. Ergebnisse

3.1. Bewertung des klinischen Ergebnisses

3.1.1. Arthroskopischer Knorpel- und Meniskusbefund

In selbiger Sitzung der Umstellungsosteotomie wurde bei allen Patienten eine Arthroskopie durchgeführt, um die Indikation zu überprüfen, das Ausmaß des Knorpelschadens zu bestimmen und mögliche Begleitschäden therapieren zu können. Dabei wurden folgende Knieinnenstrukturen begutachtet:

1. Patella (Knorpelschaden I bis IV*)
2. Trochlea (Knorpelschaden I bis IV)
3. Mediale Kondyle (Knorpelschaden I bis IV)
4. Mediale Tibia (Knorpelschaden I bis IV)
5. Laterale Kondyle (Knorpelschaden I bis IV)
6. Laterale Tibia (Knorpelschaden I bis IV)
7. Meniskus (intakt vs. gerissen vs. reseziert)

* Klassifikation nach Outerbridge (s. Tabelle 3).

Die Tabellen 4 bis 6 veranschaulichen den bei der Arthroskopie bestimmten Schaden der einzelnen Kniestrukturen:

Tabelle 4: Knorpelschaden der einzelnen Kniegelenkanteile (n=110)

<table>
<thead>
<tr>
<th>Struktur</th>
<th>Knorpelschaden</th>
<th>Minimal</th>
<th>Maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patella</td>
<td>1,23</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Trochlea</td>
<td>0,96</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Mediale Kondyle</td>
<td>2,10</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Mediale Tibia</td>
<td>1,90</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Laterale Kondyle</td>
<td>0,82</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Laterale Tibia</td>
<td>0,90</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Tabelle 5: Meniskusverhältnisse im betroffenen Kompartiment im Patientenkollektiv (n=110)

<table>
<thead>
<tr>
<th></th>
<th>Nicht gerissen</th>
<th>gerissen</th>
<th>reseziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meniskus</td>
<td>37,0%</td>
<td>33,7%</td>
<td>29,3%</td>
</tr>
</tbody>
</table>

Aus der Summe der Knorpelschäden der einzelnen Kompartimente wurde die Arthrosesumme (\(\sum\) von 0 bis 24 Punkte, Tab. 6) für jeden Patienten bestimmt. Außerdem wurde jeweils eine Arthrosesumme des betroffenen und des nicht betroffenen Kompartiments errechnet (jeweils von 0 bis 8 Punkte). Entsprechend gibt die Arthrosesumme Kellgren den Durchschnitt des radiologischen Arthrosegrades im betroffenen Kniegelenk wieder. Auch minimal und maximal Werte sind angegeben.

Tabelle 6: Summe der Arthrose im Kollektiv (n=110)

<table>
<thead>
<tr>
<th></th>
<th>Durchschnitt</th>
<th>Minimal</th>
<th>Maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum) Arthrose gesamtes Knie</td>
<td>7,9</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>(\sum) Arthrose betroffenes Komp.</td>
<td>4,7</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>(\sum) Arthrose nicht betr. Komp.</td>
<td>0,9</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>(\sum) Arthrose Kellgren</td>
<td>2,3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

3.1.2. KOOS

Die Auswertung des KOOS Fragebogens erfolgt durch eine Punktevergabe für jedes Item. Geringe Symptome bzw. Einschränkungen werden mit 4, starke Symptome bzw. Einschränkungen mit 0 Punkten bewertet. Das Maximalergebnis beträgt somit 168 Punkte. Diese werden daraufhin in einen prozentualen Wert 0-100 % umgewandelt. Für die Berechnung des Gesamtscores müssen mindestens 50 % der Fragen beantwortet werden. 110 Patienten nahmen an dem oben dargestellten KOOS Fragebogen teil, um die bei ihnen durchgeführte Umstellungsosteotomie zu bewerten. 22 Patienten füllten den Fragebogen vollständig aus, 88 Patienten unvollständig, aber mit mindestens 50% der Fragen. Unter den 88 unvollständig ausgefüllten Fragebögen fand sich aber in 81 Fällen die Beantwortung der Abschlussfrage W1 „Wie schätzen Sie abschließend insgesamt den Erfolg der durchgeführten Operation ein?“, s.u.
Die durch die Operation erzielte durchschnittliche Veränderung der Patienten soll für die jeweiligen Subskalen im folgenden horizontalen Balkendiagramm dargestellt werden. Für folgende Kategorien wurde jeweils eine präoperative und eine postoperative Beurteilung ermittelt: Symptome (S), Schmerz (P), Aktivitäten des täglichen Lebens (A), Sport und Freizeit (SP) sowie Lebensqualität (Q). Der verwendete Fragebogen findet sich unter 7.4 angehängt.

Abbildung 19: KOOS prä- und postoperativ, Ergebnis in Subskalen (%) (n=110)

Symptome: Durchschnittliche Verbesserung von 17,10 ± 0,41 Punkte auf 20,82 ± 0,31 Punkte. Bei 28 erreichbaren Punkten ist dies eine Verbesserung um 13,3 Prozentpunkte (von 61,1% auf 74,4%).

Schmerz: Durchschnittliche Verbesserung von 18,28 ± 0,50 Punkte auf 27,18 ± 0,31 Punkte. Bei 36 erreichbaren Punkten ist dies eine Verbesserung um 24,7 Prozentpunkte (von 50,8% auf 75,5%).

Alltägliche Aktivität: Durchschnittliche Verbesserung von 36,30 ± 0,26 Punkte auf 53,60 ± 0,18 Punkte. Bei 68 erreichbaren Punkten ist dies eine Verbesserung um 25,4 Prozentpunkte (von 53,4% auf 78,8%).

Sportliche Aktivität: Durchschnittliche Verbesserung von 7,40 ± 0,14 Punkte auf 11,23 ± 0,24 Punkte. Bei 20 erreichbaren Punkten ist dies eine Verbesserung um 19,1 Prozentpunkte (von 37,0% auf 56,1%).
Lebensqualität: Durchschnittliche Verbesserung von 5,31 ± 0,45 Punkte auf 8,95 ± 0,12 Punkte. Bei 16 erreichbaren Punkten ist dies eine Verbesserung um 22,7 Prozentpunkte (von 33,2% auf 55,9%).

Gesamtscore: Durchschnittliche Verbesserung von 86,71 ± 0,49 Punkte auf 121,73 ± 0,42 Punkte. Bei 168 erreichbaren Punkten ist dies eine Verbesserung um 20,9 Prozentpunkte (von 51,6% auf 72,5%).

Abschließend wurden die Patienten im Rahmen des Evaluationsbogens aufgefordert, den Erfolg der Operation zu bewerten (W1, ebenfalls von 0 = sehr schlecht bis 4 = sehr gut). Dabei ließ sich ein Durchschnitt von 2,92 ± 1,06 (73%) erarbeiten. Das Ergebnis findet sich in Abbildung 20 dargestellt.

![Abbildung 20: subjektive Beurteilung des Operationserfolges (n=110)](image)

3.1.3. Kennzahlen der Patienten in tabellarischer Form

Darstellung der für die Beurteilung der einzelnen Hypothesen herangezogenen Patientenkollektive.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Anzahl Patienten</th>
<th>Verwendung in Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 1</td>
</tr>
<tr>
<td>2) Varusfehlstellung</td>
<td>76</td>
<td>Hypothese 2</td>
</tr>
<tr>
<td>3) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 3</td>
</tr>
<tr>
<td>4) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 4</td>
</tr>
<tr>
<td>5) HTO</td>
<td>68</td>
<td>Hypothese 5</td>
</tr>
<tr>
<td>6) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 6</td>
</tr>
<tr>
<td>7) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 7</td>
</tr>
<tr>
<td>8) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 8</td>
</tr>
<tr>
<td>9) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 9</td>
</tr>
<tr>
<td>10) Gesamtkollektiv</td>
<td>110</td>
<td>Hypothese 10</td>
</tr>
</tbody>
</table>
3.2. Hypothesen

3.2.1. Auswertung der Planungsgenauigkeit mittels Medicad Software

Abbildung 21: Häufigkeit der Korrekturabweichungen, n=94

In die hier gezeigte Auswertung liefen 94 Patienten ein. Die reduzierte Patientenanzahl lässt sich dadurch erklären, dass bei 16 Patienten des Kollektivs die präoperative Planung...
im Kliniksystem nicht auffindbar war. Die Aussagen bezüglich Über- oder Unterkorrektur wurden in Bezug auf die geplante Osteotomie getroffen. Die Daten sind normalverteilt.

Bei Patienten mit einer valgischen Beinachsendeformität wurde in 34,4% der Fälle der präoperativ geplante Korrekturgrad erzielt.

Bei Patienten mit einer varischer Beinachsendeformität wurde in 33,8% der Fälle der präoperativ geplante Korrekturgrad erzielt.

Abbildung 22: Verteilung der Korrekturergebnisse in Relation zum geplanten Wert (n=94)
3.2.2. Erfolgskontrolle der „Fujisawa“ Zielkriterien

Zur Beantwortung der Hypothese 2 gibt es zwei Voraussetzungen:

Abbildung 23: subjektive Patientenbewertung (Differenz aus post- und präoperativen Werten) in den Gruppen „Fujisawa getroffen“ (n=21) und „Fujisawa nicht getroffen“ (n=55)
In der Gruppe „Fujisawa getroffen“ ergab sich eine Verbesserung der subjektiven Patientenbewertung um 0,96 ± 1,22 Punkte.

In der Gruppe „Fujisawa nicht getroffen“ ergab sich eine Verbesserung der subjektiven Patientenbewertung um 0,67 ± 0,88 Punkte.

Da die Daten normal verteilt sind (s. Boxplot, Abb. 22) wurde ein T-Test für unabhängige Stichproben durchgeführt, um die beiden Gruppen zu vergleichen. Dabei ergab sich kein signifikanter Unterschied (p= 0,388) in der Veränderung der subjektiven Patientenbewertung.
3.2.3. Einfluss des Knorpelschadens im betroffenen Kompartiment auf die postoperative Patientenzufriedenheit

Es ergab sich ein Pearson-Korrelationskoeffizient von -0,407, der Signifikanztest war hochsignifikant (p< 0,001) bei 81 getesteten Patienten. Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 24: Postoperative Patientenzufriedenheit in Abhängigkeit des Knorpelschadens, betroffenes Kniegelenkkompartment (n=81)
3.2.4 Einfluss des Knorpelschadens im nicht-betroffenen Kompartiment auf die postoperative Patientenzufriedenheit

Es ergab sich ein Pearson-Korrelationskoeffizient von -0,333, der Signifikanztest war signifikant (p= 0,002) bei 81 getesteten Patienten. Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 25: Postoperative Patientenzufriedenheit in Abhängigkeit des Knorpelschadens, nicht betroffenes Kniegelenkkompartiment (n=81)

Es ergab sich ein Pearson- Korrelationskoeffizient von -0,058, der Signifikanztest war nicht signifikant (p= 0,296) bei 68 getesteten Patienten.

Abbildung 26: Subjektive Patientenbewertung in Abhängigkeit der präoperativen knöchernen Deformität (n=68)
3.2.6. Unterschiede von Frauen und Männern hinsichtlich der subjektiven Patientenbewertung

Hypothese 6 nimmt an, dass die Ergebnisse der subjektiven Patientenbewertung bei Männern und Frauen gleich sind. Zur Auswertung wurde die unter 3.1.3. genannte Gruppe 6 herangezogen.

In der Gruppe „Frauen“ ergab sich dabei Verbesserung der subjektiven Patientenzufriedenheit um 0,69 ± 0,73 Punkte bei 35 befragten Frauen.

In der Gruppe „Männer“ ergab sich dabei Verbesserung der subjektiven Patientenzufriedenheit um 0,90 ± 1,03 Punkte bei 75 befragten Männern.

Es konnte kein signifikanter Unterschied dargestellt werden (p=0,286).

Abbildung 27: Subjektive Patientenbewertung bei Frauen (n=35) & Männern (n=75)
3.2.7. Einfluss des Patientenalters auf die Patientenzufriedenheit

Hypothese 7 nimmt an, dass die Ergebnisse der Patientenzufriedenheit vom Alter der Patienten unabhängig sind. Zur Auswertung wurden die unter 3.1.3. genannte Gruppe 7 herangezogen.

Es ergab sich ein Pearson-Korrelationskoeffizient von -0,318, der Signifikanztest war signifikant (p= 0,002). Es wurden 81 Patienten getestet. Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 28: Postoperative Patientenzufriedenheit in Abhängigkeit vom Patientenalter (n=81)

Abbildung 29: In der Stichprobe erzielte Gruppe 1 die höchsten Zufriedenheitswerte. Gruppe 1 mit n=20, Gruppe 2 mit n=21, Gruppe 3 mit n=20 und Gruppe 4 mit n=20

Da der p-Wert bei p=0,002 liegt, muss die Nullhypothese (alle Gruppen sind gleich zufrieden) verworfen werden und die Gegenhypothese (die Gruppen sind unterschiedlich zufrieden) angenommen werden. Ein Tukey-Test zeigte, dass Gruppe 1 signifikant zufriedener ist, als Gruppe 3 (p=0,002), aber nicht signifikant zufriedener als Gruppen 2 (p=0,125) und 4 (p=0,818).
3.2.8. Unterschiede der einzelnen Osteotomieorte auf die Patientenzufriedenheit

Hypothese 8 nimmt an, dass die Ergebnisse der Patientenzufriedenheit vom Ort der Korrektur und der daraus resultierenden Art der Korrektur unabhängig sind. Die möglichen Umstellungsosteotomien sind in Abb. 3 (S. 15) und Abb. 5 (S. 17) dargestellt. Zur Auswertung wurde die unter 3.1.3. genannte Gruppe 8 herangezogen.

Hypothese 8 wurde in zwei Unterfragen gegliedert:

Oberschenkel vs. Unterschenkel: Es wurden zwei Gruppen gebildet: A) Osteotomielokalisation am Femur vs. B) an der Tibia und anhand der postoperativen Patientenzufriedenheit verglichen (s. 2.3.4.). Im T-Test für unabhängige Stichproben zeigte sich dabei kein signifikanter Unterscheid (p=0,246). In der Gruppe „Oberschenkel“ lag der Mittelwert der postoperativen Patientenzufriedenheit bei 2,82 ± 0,93 Punkten (N=19). In der Gruppe „Unterschenkel“ lag der Mittelwert der postoperativen Patientenzufriedenheit bei 3,09 ± 0,86 Punkten (N=62). Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 30: Postoperative Patientenzufriedenheit in Abhängigkeit vom Operationsort am Ober- (n=19) u. Unterschenkel (n=62)

Daraufhin wurden die Unterschiede der einzelnen Osteotomiemöglichkeiten der Valgusgonarthrose herausgearbeitet. Für die Varusgonarthrose war diese Untersuchung
nicht von Nöten, da in diesem Fall fast ausschließlich die tibial medial aufklappende Osteotomie gewählt wurde.

1. **Valgusgonarthrose-Osteotomien:** Lokalisationsorte 2 (Tibia lateral aufklappend), 6 (Femur lateral aufklappend) u. 7 (Femur medial zuklappend) sind Operationsoptionen bei Valgusgonarthrose. Um diese miteinander zu vergleichen, wurde eine einfaktorielle ANOVA durchgeführt. Dabei zeigte sich kein signifikanter Unterschied (p=0,056). In der Gruppe „Tibia lateral aufklappend“ lag der Mittelwert der postoperativen Patientenzufriedenheit bei 2,76 ± 0,96 Punkten (N=10). In der Gruppe „Femur lateral aufklappend“ lag der Mittelwert der postoperativen Patientenzufriedenheit bei 2,23 ± 1,35 Punkten (N=4). In der Gruppe „Femur medial zuklappend“ lag der Mittelwert der postoperativen Patientenzufriedenheit bei 3,42 ± 0,51 Punkten (N=11).

Abbildung 31: Postoperative Patientenzufriedenheit in Abhängigkeit vom Operationsort am Unterschenkel bei Valgusgonarthrose, Gruppe 2 n=10, Gruppe 6 n=4 und Gruppe 7 n=11
3.2.9. Einfluss der Meniskusbeschaffenheit auf die Patientenzufriedenheit

Hypothese 9 nimmt an, dass die Korrekturosteotomie bei Patienten mit bereits entferntem Meniskus zu einer geringeren postoperativen Zufriedenheit führt. Zur Auswertung wurde die unter 3.1.3. genannte Gruppe 9 herangezogen.

In der Gruppe A ergab sich eine postoperative Patientenzufriedenheit von 2,74 ± 0,90 Punkten, bei 55 befragten Patienten (gerissen: 30 Patienten; entfernt: 25 Patienten).

In der Gruppe B ergab sich dabei eine postoperative Patientenzufriedenheit von 3,11 ± 0,91 Punkten, bei 26 befragten Patienten. Es konnte kein signifikanter Unterschied dargestellt werden (p=0,086). Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 32: Postoperative Patientenzufriedenheit bei intakten (n=26) & nicht-intakten (n=55) Meniskusverhältnissen.
3.2.10. Einfluss des „Kellgren“ Röntgenbefundes auf die Patientenzufriedenheit

Zur Beantwortung der Hypothese 10 wurde eine Spearman-Korrelation mit Signifikanztest der postoperativen Patientenzufriedenheit und dem Kellgren Röntgenbefund der Patienten durchgeführt. Es wurden 81 Patienten untersucht. Dabei ergab sich ein signifikant positiver Zusammenhang (p=0,003, ρ=0,315). Die reduzierte Anzahl an final ausgewerteten Patienten zu dieser Frage lässt sich dadurch erklären, dass nicht alle Fragebögen vollständig auswertbar waren.

Abbildung 33: Postoperative Patientenzufriedenheit in Abhängigkeit des Kellgren-Röntgenarthrosebefundes (n=81)
Aus diesem Ergebnis stellte sich die Frage, ob Patienten mit fortgeschrittener radiologischer Arthrose im gleichen Ausmaß von einer Umstellungsosteotomie profitieren, wie Patienten mit geringer Befundausprägung. Daher wurde der Patientenbenefit bestimmt, welches die Differenz aus post- und präoperativen Zufriedenheitswerten darstellt. Es wurden 3 Patientengruppen hinsichtlich der Kellgren-Punktzahl verglichen: 1) 1 Kellgren-Punkt, 2) 2 Kellgren-Punkte und 3) 3 Kellgren-Punkte. Mit Hilfe einer einfaktoriellen ANOVA lässt sich sagen, dass es Unterschiede in den Gruppen gibt (p=0,014). Ein Tukey-Test zeigte, dass Gruppe 1 den signifikant geringsten Benefit hatte (p=0,015 zur Gruppe 2, p=0,023 zur Gruppe 3). Gruppen 2 und 3 unterscheiden sich nicht signifikant (p=0,98).

Abbildung 34: Gruppe 1 (n=15) mit signifikant geringerem Benefit als Gruppen 2 (n=32) & 3 (n=34)
3.3. Komplikationen und Besonderheiten

Bei zwei Patienten infizierte sich das Wundgebiet während des stationären Aufenthaltes, was folgenlos antibiotisch austerapiert wurde. In zwei anderen Fällen kam es zur verzögerten Osteotomiespaltfüllung. Dabei handelt es sich in einem der beiden Fälle um eine Doppelostotomie bei Nikotinkonsum von 15 Zigaretten pro Tag. Durch eine verlängerte postoperative Teilbelastungsphase kam es auch in diesen beiden Fällen im Verlauf zu einer vollständigen knöchernen Konsolidierung.

Im Rahmen dieser Arbeit wurden ebenfalls Patienten mit besonderen Osteotomiebedingungen operiert. Dazu gehören Fälle, welche eine Traumaanamnese, Voroperationen oder Knochengrundkrankungen aufwiesen. Es folgt eine tabellarische Auflistung in Tabelle 7:

Tabelle 7: Besonderheiten der Osteotomiebedingungen im Patientenkollektiv

<table>
<thead>
<tr>
<th>Besonderheit</th>
<th>Häufigkeit/Art der Besonderheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zustand nach Kreuzbandplastik</td>
<td>sieben</td>
</tr>
<tr>
<td>Zustand nach Fraktur im Operationsgebiet</td>
<td>Sechs, davon drei Mal Tibiakopffraktur</td>
</tr>
<tr>
<td>Dysplasien</td>
<td>Zwei Mal Trochleldysplasie, Rotationsfehlstellung der Tibia</td>
</tr>
<tr>
<td>Gleichzeitige Begleitoperationen</td>
<td>Kreuzbandplastik, Tuberositasversatz, Versatz der distalen Tibia gegenüber dem Tibiapfiff, drei Mal Chondrozytentransplantation</td>
</tr>
<tr>
<td>Knöcherne Grunderkrankungen</td>
<td>Zwei Mal Zustand nach Osteochondrosis dissecans, Morbus Ahlbäck</td>
</tr>
</tbody>
</table>
4. Diskussion

4.1. KOOS

Zum individuellen Operationserfolg vergaben die 110 befragten Patienten durchschnittlich 2,92 Punkte (± 1,06 Punkte bei max. 4 Punkten). Der Gesamtscore lag durchschnittlich bei 121,73 Punkten (± 0,42 Punkte bei max. 168 Punkten), was einer guten bis sehr guten Bewertung entspricht. Im Vergleich ist dieses Ergebnis gut. Schallberger et al. erzielten in einer Analyse von 54 Patienten, die eine Tibiakopfosteotomie sowohl in auf- als auch in zuklappende Weise erhielten, durchschnittlich 71 Punkte auf einer Skala von 9-100 Punkten [123]. Spahn et al. erreichten in ihrer Arbeit mit 84 Patienten, bei denen eine HTO durchgeführt wurde, durchschnittlich 120,3 Punkte bei maximal 168 erreichbaren Punkten [135]. In einer prospektiven Analyse mit 21 Fällen konnten Morin et al. eine Punkteverbesserung von durchschnittlich 41 auf 91 erzielen auf einer Skala bis 100 Punkte [99].

Eine besondere Stellung zur Fragebogenanalyse nehmen die breite follow-up Spanne und die Heterogenität des Patientenalters im Kollektiv ein. Diese Aspekte werden ausführlich unter 4.2. und 4.8.7. diskutiert.

4.2. Follow-Up

4.3. Komplikationsrate

Die Komplikationsrate von 3,5% stellt mit 2 Wundinfektionen und 2 verzögerten Knochenheilungen ein gutes Ergebnis dar. Vor allem hinsichtlich der langen klinischen Durchführung dieser Arbeit über 7 Jahre kann dies als erfolgreich gewertet werden. Auch im Vergleich mit Auswertungen anderer Häuser lässt sich dieses Fazit treffen. Hier werden Komplikationsraten von 10% bis 45% angegeben [67, 97,100, 149].

Um generell eine geringe Komplikationsrate zu erzielen, sind eine gute Implantatkenntnis und eine sorgfältige präoperative Planung zur Vermeidung von Über- bzw. Unterkorrekturen maßgeblich. Nach korrekter Platzierung des TomoFix-Plattenfixateurs am Tibiaschaft sind die spezifische Verriegelungstechnik mit richtigem Besetzen der winkelstabilen Schrauben und die Verlaufsrichtung der Kopfverriegelungsschrauben essentiell zum Gelingen des Eingriffs. Weitere Fehlerquellen können durch eine sensible Sägetechnik vermieden werden: so kann durch zu hohen Druck oder Hitze beim Sägen
eine Schädigung der Knochenfläche entstehen, welche wiederum die Knochenheilung verzögern kann. Fener birgt ein forsches Sägen bei einer HTO die Gefahr, die posteriore Tibiakortikalis zu durchtrennen, woraus eine Weichteilschädigung mit Verletzung der Poplitealgefäße resultieren kann. Bei Operationen ohne Blutsperre würde dies durch eine starke Blutung unmittelbar auffallen, sodass durch Zugangserweiterung unverzüglich interveniert werden könnte. Sofern eine Blutsperre verwendet wird, kann sich diese Blutung jedoch erst verzögert darstellen und sich z.B. durch ein ausgedehntes postoperatives Hämatom bis hin zum Kompartmentssyndrom demarkieren.

Natürlich gelten für die kniegelenknahen Osteotomien aber auch die generellen OP-Risiken, wie eine postoperative Weichteilschwellung mit Lymphödem oder tiefe Beinvenenthrombosen, die mittels Thrombembolieprophylaxe und manueller Lymphdrainage adressiert werden sollten.

4.4. OW-HTO vs. CW-HTO

Im Patientenkollektiv wurde zum überwiegenden Anteil (83,9%) eine öffnende Osteotomie durchgeführt. Auch wenn für die schließende Osteotomie speziell am distalen Femur mittlerweile gute Ergebnisse durch minimalinvasives Vorgehen erzielt werden können [35, 42] sind die öffnenden Verfahren v.a. an der Tibia derzeit häufiger angewandt und erzielen gute Resultate [72, 33]. Dennoch ist es so, dass Arbeiten, die schließende und öffnende Verfahren miteinander vergleichen, häufig eine Gleichwertigkeit beider Operationstechniken aufzeigen [134]. Auch in Bezug auf die Korrekturgenauigkeit lassen sich Arbeiten finden, die auf gleiche Genauigkeit kommen
[48]. Dass die OW-HTO das derzeit am häufigsten angewandte Verfahren für Umstellungsosteotomien darstellt, liegt mutmaßlich auch daran, dass Varusfehlstellungen wesentlich häufiger vorkommen, als Valgusdeformitäten [45].

4.5. Osteotomiespaltfüllung und Rauchen

Der bei OW-Osteotomien entstandene Spalt wurde entweder offen belassen, mit autologer Spongiosa oder mittels ChroNos® Keil versorgt (s. Abbildung 11: Art und Häufigkeit der Osteotomiespaltfüllung). Ein Osteotomiespalt <7mm wurde dabei offen belassen, von 7-10mm wurde ein ChroNos® Keil verwendet und bei Spaltgrößen >10mm erfolgte eine autologe Spaltauffüllung durch Entnahme eines Kortiko-spongiosen Beckenkamm-Spans.

Derzeit gibt es weder eine standardisierte Empfehlung wie der Osteotomiespalt gefüllt werden soll, noch ab welcher Größe eine Füllung notwendig ist. Unter den verschiedenen Implantaten wurde in dieser Arbeit überwiegend (44,3%) der ChroNos® Keil verwendet. Auf diese Art wurden gute Knochenheilungen erzielt, was auch anderweitig beschrieben wird [121].

In einem aktuellen Review von Slevin et al. wird allerdings postuliert, dass weder eine synthetische, noch eine autologe oder allogene Füllung des Osteotomiespaltes einen Vorteil gegenüber einer Nicht-Auffüllung des Spaltes ergeben [132]. Darunter zeigen synthetische Materialien tendenziell schlechtere Ergebnisse als autologe oder allogene Spongiosaplastiken. Im Fall, dass eine Spaltfüllung notwendig wird, wie z.B. bei erweiterten Osteotomiespaltgrößen, sollte dabei auf künstliche Knochenersatzstoffe verzichtet werden.

4.6. Osteotomie bei Übergewicht (BMI ≥ 30 kg/m²)

4.7. Belastung postoperativ

Die Belastung des operierten Beins ist ein maßgeblicher Faktor für den Erfolg einer Umstellungsosteotomie. Speziell in Bezug auf den Korrekturverlust ist es ein sehr umstrittenes Thema [58, 57, 125, 147]. Auch die Art der Osteotomiespaltfüllung kann einen Einfluss auf die postoperative Belastbarkeit haben [78]. Während es früher durch verfrühte Vollbelastung, materialbedingt oder mangelnde Compliance des Patienten zum Einsinken des Osteotomiespaltes kam, soll durch die heutigen winkelstabilen Implantate genau diese Komplikation verringert werden. Dazu zählt v.a. die hier eingebrachte TomoFix® Platte.

Im Rahmen des postoperativen stationären Aufenthaltes fand bereits ab dem 1. oder 2. Tag eine Teilbelastung von 20 kg statt. Dies wurde physiotherapeutisch assistiert. 6 Wochen lang fand keine Vollbelastung des operierten Beins statt. Um eine Aussage zum Korrekturverlust im Verlauf machen zu können, müsste man eine Ganzbeinstandaufnahme in zeitlich festgelegten Abständen (z.B. nach 2, 4 und 6 Wochen) im Kollektiv durchführen. Da es sich dabei um eine Strahlenbelastung handelt,
ist dies rein aus akademischen Gründen schwer zu rechtfertigen. Deshalb lässt sich nur sagen, dass die postoperative Röntgenkontrolle keinen Korrekturverlust aufweist.

4.8. Hypothesen

4.8.1. Zu H1

Da der präoperativ geplante Schnittpunkt der Miculicz-Linie mit dem Tibiaplateau nur in 34,4% (Valgus deformität) bzw. 33,8% (Varusdeformität) der Patientin im Kollektiv mit dem postoperativ gemessenen Schnittpunkt einhergeht, muss Hypothese 1 abgelehnt werden.

Aus dem Ergebnis der Hypothese 1 kann man ableiten, dass die Planung für die hier gesetzten Kriterien verbesserungswürdig ist. Im Mittel treffen die Planungen dennoch den postoperativen Korrekturgrad, wobei eine große individuelle Streuung festzustellen ist [19]. Tendenziell neigt die Planung zur Überkorrektur.

Dass die MediCad® Software für eine präoperative Osteotomieplanung geeignet ist, konnte bereits anderweitig nachgewiesen werden. Im Vergleich zweier Planungsprogramme (PreOPlan® und MediCad®) konnte eine hohe Korrelation in Bezug auf geometrische Maßeinheiten an den Extremitäten nachgewiesen werden [126].

Ein Grund für die hohe Streuungsbreite könnte im bewussten Verzicht auf intraoperative Röntgenkontrolle zwecks Minimierung der Strahlenexposition des Patienten liegen.

Die dargestellte Tendenz zur Überkorrektur ist insofern positiv zu werten, als dass eine Unterkorrektur einen negativen prädiktiven Parameter darstellt [36].
Da die Unterschiede zwischen den Gruppen „Fujisawa getroffen“ und „Fujisawa nicht getroffen“ nicht signifikant sind, muss Hypothese 2 abgelehnt werden. Die Korrektur gemäß den „Fujisawa“-Kriterien führt demnach nicht zum besten Ergebnis bei der subjektiven Patientenbewertung.

Als besonderer Umstand der vorliegenden Arbeit muss berücksichtigt werden, dass die Gruppen unterschiedlich groß sind (getroffen: 21 Patienten, nicht getroffen: 55 Patienten).

4.8.3. Zu H3

Da eine hoch signifikante negative Korrelation zwischen postoperativer Patientenzufriedenheit und Arthrosegrad im betroffenen Kompartment besteht, muss Hypothese 3 angenommen werden. Je höher der Arthrosegrad im betroffenen Kompartment ist, desto schlechter fällt die postoperative Patientenbewertung aus.

Die vorliegende Arbeit zeigt also, dass die individuelle Patientenbewertung vom Knorpeldefekt im betroffenen Kompartment abhängt und bei der Indikationsstellung beachtet werden sollte.

4.8.4. Zu H4

Da eine signifikante negative Korrelation zwischen postoperativer Patientenzufriedenheit und Arthrosesumme im nicht-betroffenen Kompartment besteht, muss Hypothese 4
abgelehnt werden. Die postoperative Patientenzufriedenheit ist abhängig vom Ausmaß des Arthrosegrades im nicht-betroffenen Kompartment.

Entsprechend der Erwartung muss diese Hypothese abgelehnt werden. Auch die Arthrose im nicht betroffenen Kompartment des Kniegelenks hat einen Einfluss auf die Patientenzufriedenheit.

Diese Hypothese belegt, dass eine Limitierung des Knorpeldefektes im nicht betroffenen Kompartment als Operationsindikation sinnvoll ist.

4.8.5. Zu H5

Da keine signifikante Korrelation besteht, muss Hypothese 5 abgelehnt werden. Die Verbesserung der subjektiven Patientenbewertung ist unabhängig vom Ausmaß der knöchernen Deformität.

Eine Achsendeformität soll bekanntlich am Ort des Entstehens korrigiert werden. Ein Maß für die tibiale Deformität ist der mediale proximale Tibiawinkel. Am Unterschenkel entspricht der mechanische auch dem anatomischen Winkel, da hier mechanische und anatomische Belastungslinie physiologischerweise übereinstimmen (s. Abb. 16: Physiologische Winkel & Achsen der unteren Extremität). Im Patientenkollektiv wurde zum Großteil die Technik der hohen Tibiaosteotomie (HTO) angewandt, da vorwiegend hier die Ursache der Deformität lag. Im Rahmen dieses Eingriffs lässt sich u.a. der MPT Winkel verändern, um die Kniegelenkskongruenz zu optimieren und damit den Gelenklinienkongruenzwinkel (JLCA: joint line congruence angle) zu verkleinern. Die vorliegende Arbeit konnte dabei aber keinen signifikanten Zusammenhang zwischen der

[62]
Patientenbewertung und dem Grad der knöchernen Deformität feststellen. Daraus lässt sich ableiten, dass die knöcherne Deformität in der klinischen Symptomatik (Schmerzen, alltägliche und sportliche Belastung, etc.) eine untergeordnete Rolle spielt. Diese Erkenntnis konnte bereits anderweitig bestätigt werden [38]. Man sollte eine fortgeschrittene knöcherne Deformität dennoch unter Berücksichtigung der übrigen Indikationskriterien korrigieren, da sie das Gelenkzusammenspiel verbessert und damit vermutlich das Risiko für eine konsekutive Gonarthrose senkt. Arbeiten zur Korrelation zwischen JLCA bzw MPTA und Gonarthrose sind allerdings noch ausstehend.

4.8.6. Zu H6

Da kein signifikanter Unterschied besteht, muss Hypothese 6 angenommen werden. Die Ergebnisse bei Frauen und Männern sind gleich.

Es lassen sich allerdings Arbeiten mit teils kontroversen Ergebnissen finden, in denen Frauen gegenüber Männern stärker von einer HTO profitieren [96]. Hier lassen sich aber häufig Gründe für beschriebene Unterschiede in teilweise abweichenden Behandlungsverfahren finden. In o.g. Studie wurden z.B. die Patienten auf verschiedene Weise operiert (Plattenfixateur vs. Fixateur externe), wodurch keine gleichen Voraussetzungen geschaffen wurden.
Da eine signifikante negative Korrelation zwischen postoperativer Patientenzufriedenheit und Patientenalter besteht, muss Hypothese 7 abgelehnt werden. Zudem ermöglicht diese Hypothese die Aussage, dass die jüngste Gruppe gegenüber Altersgruppe 3 signifikant zufriedener ist.

4.8.8. Zu H8

Da sich in der einfaktoriellen ANOVA kein signifikanter Unterschied der Gruppen ergibt, muss Hypothese 8 angenommen werden. Die Ergebnisse sind vom Ort der Osteotomie unabhängig.

Kniegelenknahe Umstellungosteotomien umfassen Eingriffe am Femur und an der Tibia. Diese können sowohl öffnend als auch schließend sowie von medial oder von lateral vorgenommen werden. Dadurch ergeben sich 8 mögliche Operationsorte. Die Eingriffe am Oberschenkel wurden den Zahlen 1-4 und die Operationsorte am Unterschenkel mit 5-8 definiert (s. 2.3.4. Definition der Operationsorte). Alle Patienten wurden mit dem TomoFix® Plattenfixateur versorgt. Zwischen Oberschenkel und Unterschenkel konnten hinsichtlich der Patientenzufriedenheit keine Unterschiede festgestellt werden.

4.8.9. Zu H9

Die Menisken spielen als intraartikulär liegende halbmondförmige Scheiben zwischen Femur und Tibia eine zentrale Rolle bei der Druck- und Kraftbelastung innerhalb dieses Gelenks [41]. Vor allem durch die Flexibilität des Außenmeniskus wird die Kontaktfläche zwischen Femur und Tibia erhöht. Zudem wird vermutet, dass die Menisken eine Rolle bei der Verteilung der Kniegelenksflüssigkeit spielen [31, 91]. Heute ist allgemein anerkannt, dass ein Schaden oder eine operative (Teil-)Entfernung der zu 90% aus Kollagen bestehenden Scheiben ein erhöhtes Arthroserisiko birgt [39]. Bei jungen Menschen kommt es häufig durch prädisponierende Sportarten wie Kontaktsportarten (Handball, Fußball, Rugby), Ballsportarten (Basketball, Volleyball)
oder Rückschlagspielen (Tennis, Squash, Badminton) zu Rissen im Meniskus. Vom Pathomechanismus her handelt es sich dabei meist um eine schnelle Rotationsbewegung von Femur und Tibia um die Längsachse des Kniegelenks, wie es auch beim Diskus- oder Speerwurf vorkommt. Häufig tritt ein Meniskusriss aber auch bei schneller Flexion-Extension um die Querachse des Kniegelenks auf, was z.B. beim alpinen Skifahren oder beim Paartanz auftreten kann. Im Alter beruht ein Meniskusriss eher auf degenerativen Prozessen. Auch berufliche Belastung bei knieenden Tätigkeiten (z.B. Pflasterer, Fliesenleger, etc.) kann Meniskusschäden provozieren.

Je nach Art (Längsriss [Korbhenkelriss], Radialriss, randständig, zentral oder Horizontalriss) und Alter des Risses (akut traumatisch oder chronisch degenerativ) gibt es die refixierende und resezierende Behandlungsoption: frische basisnahe Meniskusrisse bieten sich an, auf verschiedene Weise (z.B. inside-out vs. all-inside) genäht zu werden [17, 82, 27]. Idealerweise liegen diese in der sog. „red zone“, welche gut durchblutet ist und entsprechend gute Heilungschancen aufweist [74, 45]. Ältere degenerative, basisferne Rupturen in der sog. „white zone“ neigen auf Grund mangelnder Vaskularisierung zu einer schlechten Heilung, weshalb hier eine operative Resektion oder eine konservative Therapie im Vordergrund steht [98, 94, 152].

In der hier vorliegenden Arbeit wurde das Patientenkollektiv hinsichtlich des Meniskusstatus in zwei Gruppen gegliedert (A: gerissen/reseziert mit 55 Patienten und B: intakt mit 26 Patienten). Dabei zeigte sich in Bezug auf die Patientenzufriedenheit kein signifikanter Unterschied.

Ein weiterer Aspekt ist, ob die Menisken – insbesondere der Außenmeniskus – nach HTO durch die erhöhte Druckbelastung auf das laterale Kompartment vermehrt zu Rissen neigt. Studien konnten diese Frage verneinen [84, 85].

Der Kellgren Röntgenbefund ist ein Maß für den Arthrosegrad in einem Gelenk (s. Tabelle 2: Radiologische Arthroseklassifikation nach Kellgren & Lawrence [68][70]). Symptome der Arthrose sind u.a. Ruhe- und Belastungsschmerzen, sodass die Vermutung nahe liegt, dass mit steigendem Kellgrengrad die postoperative Zufriedenheit eines Patienten abnimmt.

Dass der Kellgrengrad mit der postoperativen Patientenzufriedenheit korreliert, lässt sich auch mittels Ergebnisse bei anderen etablierten Therapien der Orthopädie finden: so z.B. die Patientenzufriedenheit nach künstlicher Hüftgelenksimplantation. Hier ist es so, dass mit steigendem Arthrosegrad die postoperative Zufriedenheit steigt [124].

Hierzu zeigt sich, dass Gruppe 1 (Patienten mit Kellgrengrad 1) den geringsten Benefit hat.
Es ist wenig überraschend, dass Patienten mit geringem Arthrosegrad (Gruppe 1) weniger von der Operation profitieren, da sie bereits hohe Ausgangszufriedenheitswerte haben. Die ideale Zielgruppe für eine Beinachsenkorrektur ist also der Patient mit mittelgradiger Arthroseausprägung.
4.9. Kasuistik

4.9.1. Umstellungsosteotomie mit gleichzeitigem Knorpeldefekt

In Bezug auf die hier vorliegenden Fälle von Achsdeformitäten und umschriebenem Knorpeldefekt wird derzeit postuliert, dass der therapeutische Langzeiterfolg erst durch Korrektur der Achsdeformität und dem gleichzeitigen Beheben des Knorpeldefektes erzielt wird [73]. Einige Studien zeigen, dass eine knorpelregenerative Maßnahme positive Effekte erzielt [16, 128], sodass dieses Vorgehen derzeit empfohlen wird [102].

4.9.2. Umstellungsosteotomie mit gleichzeitiger Bandinstabilität

Bei einer Achsdeformität mit gleichzeitiger ACL-Ruptur sollte eine Bandrekonstruktion vorgenommen werden, da die Stabilität verbessert, eine mediale Kniegelenksarthrose verzögert und eine vorzeitige Rückkehr zum Sport erlaubt wird [59, 77, 141, 5].
In dieser Studie wurde in einem Fall begleitend zur Versorgung der Achsdeformität eine ACL-Rekonstruktion mittels Semitendinosusplastik durchgeführt. Dabei wird z.B. der M. Semitendinosus entnommen, dessen Sehne als vierfach-Transplantat an ursprünglicher Stelle des ACL auf verschiedene Weise fixiert.

Ein alternatives Vorgehen ist, zuerst die Umstellungsosteotomie vorzunehmen und ggf. in einer zweiten Sitzung, bei persistierender Instabilität, die Kreuzbandrekonstruktion durchzuführen. Lattermann et al. bevorzugen dieses Vorgehen mit dem Argument, dass ein kombinierter Eingriff von Umstellung und Bandrekonstruktion mit höherer Komplikationsrate einhergehe [76].

4.9.3. Doppelosteotomien

Bei starken Achsdeformitäten, die sowohl das distale Femur als auch die proximale Tibia betreffen, reicht eine einfache Osteotomie nicht aus. In diesen Fällen muss eine zwei-Etagen-Korrektur erfolgen, um die Deformität adäquat zu beheben [8]. Dabei stellt dieser Eingriff allerdings immer noch eine eher selten durchgeführte Operation dar, zu welcher es weniger Standards und Erfahrungen gibt, als z.B. zur HTO oder DFO.

Zu dieser Arbeit wurden bei 8 Patienten eine Doppelosteotomie durchgeführt (s. „2.3.3.”). Abgesehen von einem Fall mit verzögerter Knochenheilung wurden dabei zeitgerechte knöcherne Konsolidierungen erzielt. Bezüglich der subjektiven Patientenzufriedenheit ergab sich ein Durchschnittswert von 47,5% (1,9 ± 1,4 Punkten auf einer Skala von 0-4 Punkten) für die Abschlussfrage W1, was mit „neutral“ gemäß der Skala gewertet werden kann. Im Vergleich zum Kollektivdurchschnitt der Studie mit 73% (2,92 ± 1,06 Punkten) ist dieses Ergebnis schlechter.
Erklärungen für die geringere Zufriedenheit könnten in einer größeren knöchernen Veränderung und die damit einhergehende erhöhte Umstellung, einer längeren Operationszeit oder dem Problem einer 2-Etagen Operation mit größerem Trauma liegen. Verlässliche Vergleichsdaten zur Doppelosteo­tomie sind aktuell noch ausstehend.

4.9.4. Prothesenimplantation nach Umstellungs­osteotomie

Im Kollektiv kam es während des follow-up in einem Fall 2 Jahre nach HTO zur TKA. Im Fall der Indikation für eine TKA wird diskutiert, ob eine vorangegangene Umstellungs­osteotomie einen Einfluss auf die Prothesenimplantation hat. In der Literatur lassen sich beide Aussagen finden: auf der einen Seite sei eine Umstellungs­osteotomie kein Einflussfaktor für eine TKA [3, 9, 34, 92, 104, 115], selbst nicht im genauen Hinblick auf die verschiedenen Operationstechniken der Umstellung [13, 113]. Auf der anderen Seite verschlechtere eine Umstellungs­osteotomie das Outcome der Patienten bei TKA oder erhöhe das Risiko für Revisionseingriffe [10, 118].
4.10. Weiteres

4.10.1. Osteotomie vs. Schlitten

4.10.2. Sport nach Operation

Kniegelenksnahe Osteotomien sind Eingriffe, die vor allem für junge aktive Menschen geeignet sind. Als Operationsverfahren ohne dauerhaften Implantateinsatz im Kniegelenk verspricht diese Technik eine frühestmögliche Rückkehr zur sportlichen Aktivität und

Im Rahmen dieser Arbeit können die o.g. Ergebnisse unterstützt werden. In der Kategorie „sportliche Aktivität“ des KOOS Fragebogens widmen sich die Fragen Sp1-Sp5 explizit dieser Problematik. Hier kam es im prä- und postoperativen Vergleich durchschnittlich zu einer Verbesserung von 37% (7,40 ± 0,14 Punkte) auf 56,2% (11,23 ± 0,24 Punkte) (bei max. 20 Punkten). Auch wenn dieser Fragebogen nicht auf individuelle Sportarten eingeht, lässt sich hier ein klarer Positivtrend erkennen. Um diese Aussage näher einordnen zu können und konkrete patientenbezogene Veränderungen abzuleiten, sind hier weitere Untersuchungen vonnöten.

4.10.3. Navigierte Umstellungsosteotomie

In der hier vorliegenden Studie wurden alle Umstellungsosteotomien anhand einer präoperativen Ganzbeinröntgenaufnahme geplant. Während der Operation wurde auf eine weitere radiologische Ganzbeinkontrolle verzichtet. Zur Orientierung half viel mehr die zuvor geplante Größe des Osteotomiespaltes, welche intraoperativ streng kontrolliert wurde (s. Ziffer 2.9.1.).

Gebhard et al. konnten in einem Kollektiv von 51 Patienten zeigen, dass nur 7 Patienten außerhalb eines Achsabweichungsintervalls von ±3° lagen [50]. In weniger eindeutig positiven Studien konnte zumindest die Aussage getroffen werden, dass eine navigierte

Zuletzt bestätigte eine amerikanische Arbeitsgruppe um Chang et al. den Vorteil einer navigierten Umstellungsosteotomie für aufklappende HTO [26]. In ihrer Arbeit an 107 Patienten gaben sie an, das Korrekturziel in der Navigationsgruppe in 75,8% gegenüber 66,2% in der Kontrollgruppe zu treffen.

Weiterführend werden gute Operationsergebnisse bei navigierter Umstellungsosteotomie mit gleichzeitiger Kreuzbandplastik beschrieben: Demange et al. führten eine Studie mit 8 Patienten durch, im Rahmen welcher eine vordere Kreuzbandplastik mit gleichzeitiger HTO erfolgreich vorgenommen wurde [28].
5. Zusammenfassung

Mit Hilfe der vorliegenden Arbeit wurde eine retrospektive, standardisierte Auswertung der Operationstechnik von kniegelenknahen Osteotomien im König-Ludwig-Haus erreicht. Seit 2006 wird dieser Eingriff erfolgreich durchgeführt, was durch sehr gute Patientenzufriedenheitswerte belegt wird.

Im hier vorliegenden Kollektiv von 110 Patienten liegt der Altersdurchschnitt bei 38,9 Jahren, das follow-up bei 41,2 ± 26,3 Monaten und der BMI bei 26,8 kg/m².

Bei Varusfehlstellungen stellt sich die aufklappende Tibiaosteotomie von medialseitig als etabliertes und sicheres Verfahren dar. Diese Technik fand bei 61,8% aller hier erfassten Patienten Anwendung. Für Valgusgonarthrosen zeichnet sich bei zuklappenden Femurosteotomien von medialseitig eine Tendenz zu höheren Patientenzufriedenheitswerten ab.

6. Summary

M. Ohlmeier: „Osteotomies around the knee joint with plate fixation: results and prognostic factors“

Background

Osteotomies around the knee joint like the high tibial osteotomy (HTO) or the distal femoral osteotomy (DFO) are established surgical treatments for malalignment of the human leg [66, 89, 106, 131]. The purpose of this operation is – among others – to reduce the pressure of the stressed compartment by shifting the mechanical jointline. Since 2006 patients of the König-Ludwig-Haus in Wuerzburg have been treated with the new TomoFix® plate fixation system. To get an as precise indication as possible for this surgery, 110 patienten who underwent an osteotomy with the TomoFix® plate have been recruited.

Objective

Purposes of this study are first, to evaluate the level of satisfaction of the 110 patients regarding the osteotomy itself and the success of the performed operation in general. Second, the study aims at laying out the usefulness and profits to the clients discussed with the surgery. Therefore, hyotheses have been staled in order to clarify advantages as well as disadvantages on specific requirements which are necessary for the procedure. Further purpose is to underline in how far the benefit of osteotomies around the knee joint differs from that of competitive surgeries.

Methods

Preoperatively, the patient collective underwent an X-ray of the leg in order to plan the angle of correction. Before the surgery each patient underwent an arthroscopy for observation of the cartilage and ligament conditions. Afterwards the osteotomy was performed.

In the following, the different surgery techniques and their quantities are presented:
Tibia medial opening (TMO, 61.8%), tibia lateral opening (TLO, 10%), tibia medial closing (TMC, 0.9%), tibia lateral closing (TLC, 0%), femur medial opening (FMO, 1.8%), femur lateral opening (FLO, 10%), femur medial closing (FMC, 10%) and femur lateral closing (FLC, 5.5%). Furthermore, in the collective of 110 patients we had 8 double osteotomies that are split up in the two types of surgeries and are listed up in the analysis ahead.

Postoperatively, each patient received a modified KOOS questionnaire. In addition to the evaluation of postoperative satisfaction, this version of the KOOS questionnaire also allows for a comparison between the pre- and postoperative situation. The patients were advised to wear a 6 weeks partial weight-bearing of 20kg after surgery. As part of the 6-week-examination a clinical survey took place. The surgical success was measured by a postoperative X-ray of the leg. Both X-rays – the pre- as well as the postoperative one – were analyzed with the MediCad® software.

Patient collective: mean age is 38.9 years (minimum 14 years, maximum 58 years), mean BMI 26.8 kg/m² (minimum 17.0 kg/m², maximum 40.2 kg/m²), 22 smokers with a daily consume ≥ 10. The mean follow-up was 41.2 ± 26.3 months. Among the 110 patients, there were 34 valgus- and 76 varus malalignments.

Results

The KOOS questionnaire shows an improvement in each of the 6 categories. Mean improvement from 86.71 ± 0.49 points (preoperatively) to 121.73 ± 0.42 points (postoperatively).

Hypotheses:

H1) No satisfying accuracy of correction planned with MediCad® software.
H2) Corrections according to the Fujisawa point do not lead to the best outcome.
H3) Correlation between outcome and cartilage damage in stressed compartment.
H4) Correlation between outcome and cartilage damage in non-stressed compartment.
H5) No correlation between outcome and degree of deformity (aMPTA).
H6) Equal outcome between men and women.
H7) Best outcome for ages from 14 to 28.9 years.
H8) No significant difference in outcome between the techniques of surgery.
H9) No influence of different meniscus state on outcome.
H10) Correlation between outcome and osteoarthritis (Kellgren degree).

Conclusions

Outstanding results in patient satisfaction and surgery success. Extrapolating from these results, the ideal patient for an osteotomy with the TomoFix® plate fixation system has the following requirements: age from 14-28.9 years, as small cartilage damage as possible on the stressed and on the non-stressed compartment. The osteoarthritis grade according to the Kellgren scale should be as low as possible. Resection of the menisc does not influence the outcome as well as the grade of bone deformity (aMPTA) and patient’s gender.

In case of a varus-malalignment the OW-HTO with medial approach is a well established and safe operation, 61.8% of 110 patients were treated successfully this way. In case of valgus-malalignment, the CW-DFO with medial approach shows a tendency to give a better outcome.

Furthermore, the TomoFix® plate fixation system also leads to good results concerning complex malalignments with simultaneous injuries, e.g. ACL-deficiency or cartilage damage. In the context of special cases, there also were patients with altered anatomical requirements. Despite of alleged worse bone quality, there were no complications in these cases.

Concludingly, osteotomies around the knee joint for sure are a currently frequently discussed topic. New material and modified surgical techniques have lead the way to a standardized and minimal-invasive treatment for malalignments of the human leg. In the future the need of research especially concerns the DFO and double osteotomies. Not at least because of the lower prevalence of valgus-malalignments, more publications about experiences and also results of surgeries are necessary.
7. Anhang

7.1. Abbildungsverzeichnis

Abbildung 1: Laterale schließende Tibiakopfosteotomie mit Klammerfixation nach Coventry 8
Abbildung 2: Häufigkeit und Verteilung der Deformität von dist. Femur und prox. Tibia 16
Abbildung 3: Osteotomiemöglichkeiten am Femur & Anwendungshäufigkeit 17
Abbildung 4: Beispiele der Osteotomiearten am diastalen Femur .. 18
Abbildung 5: Osteotomiemöglichkeiten an der Tibia & Anwendungshäufigkeit 19
Abbildung 6: Beispiele der Osteotomiearten an der proximalen Tibia 20
Abbildung 7: postoperatives Röntgenbild nach Doppelosteotomie .. 21
Abbildung 8: Implantate für Tibiakopfosteotomie - Indikation und Häufigkeit der Anwendung 23
Abbildung 9: Implantate für dist. Femurosteotomie - Indikation & Häufigkeit der Anwendung 24
Abbildung 10: Grafische Darstellung der Osteotomiespaltgrößen ... 25
Abbildung 11: Art und Häufigkeit der Osteotomiespaltfüllung ... 26
Abbildung 12: Darstellen des Pes anserinus sowie des Innenbandes .. 27
Abbildung 13: sukzessives Aufklappen der Osteotomie mittels Spreizer 28
Abbildung 14: winkelstabiles Vorbohren der proximalen Verriegelungsschrauben 28
Abbildung 15: korrekter Sitz des TomoFix® Plattenfixateurs .. 29
Abbildung 16: physiologische Winkel & Achsen der unteren Extremität 31
Abbildung 17: links: präoperative Bemaßung; rechts: Planbemaßung; rot: Mikulicz Linie 32
Abbildung 18: postoperative Bemaßung; rot: Mikulicz Linie ... 32
Abbildung 19: KOOS prä- und postoperativ .. 36
Abbildung 20: subjektive Beurteilung des Operationserfolges .. 37
Abbildung 21: Häufigkeit der Korrekturabweichungen .. 38
Abbildung 22: Verteilung der Korrekturergebnisse in Relation zum geplanten Wert 39
Abbildung 23: subjektive Patientenbewertung .. 40
Abbildung 24: postop. Patientenzufriedenheit bei Knorpelschaden, betroffenes Kniegelenkkompartment ... 42
Abbildung 25: postoperative Patientenzufriedenheit in Abhängigkeit des Knorpelschadens, nicht betroffenes Kniegelenkkompartment ... 43
Abbildung 26: subjektive Patientenbewertung bei präop. knöchernen Deformität 44
Abbildung 27: subjektive Patientenbewertung bei Frauen & Männern 45
Abbildung 28: postoperative Patientenzufriedenheit in Abhängigkeit vom Patientenalter 46
Abbildung 29: In der Stichprobe erzielte Gruppe 1 die höchsten Zufriedenheitswerte 47
Abbildung 30: postoperative Patientenzufriedenheit in Abhängigkeit vom Operationsort am Ober- & Unterschenkel ... 48
Abbildung 31: postoperative Patientenzufriedenheit in Abhängigkeit vom Operationsort am Unterschenkel bei Valgusgonarthrose, Gruppe 2 n=10, Gruppe 6 n=4 und Gruppe 7 n=11 49
Abbildung 32: postop. Patientenzufriedenheit bei verschiedenen Meniskusverhältnissen 50
Abbildung 33: postop. Patientenzufriedenheit mit Röntgenarthrosebefundes 51
Abbildung 34: Gruppe 1 mit signifikant geringerem Benefit als Gruppen 2 & 3 52

Die Nutzung der in dieser Promotionsschrift verwendeten Abbildungen erfolgt nach Genehmigung durch die jeweiligen Urheber.

[80]
7.2. Tabellenverzeichnis

Tabelle 1: Klinische Stadien der Arthroseentwicklung ... 4
Tabelle 2: Radiologische Arthroseklassifikation nach Kellgren & Lawrence 5
Tabelle 3: Arthroskopische Klassifikation der Knorpelschädigung nach Outerbridge 5
Tabelle 4: Knorpelschaden der einzelnen Kniegelenkanteile .. 34
Tabelle 5: Meniskusverhältnisse im betroffenen Kompartiment im Patientenkollektiv 35
Tabelle 6: Summe der Arthrose im Kollektiv ... 35
Tabelle 7: Besonderheiten der Osteotomiebedingungen im Patientenkollektiv 53

Abkürzungverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO:</td>
<td>kniegelenknahe Osteotomie</td>
</tr>
<tr>
<td>HTO:</td>
<td>high tibial osteotomy, hohe Tibiaosteotomie</td>
</tr>
<tr>
<td>DFO:</td>
<td>distale Femurosteotomie</td>
</tr>
<tr>
<td>OW-HTO:</td>
<td>open-wedge high tibial osteotomy</td>
</tr>
<tr>
<td>CW-HTO:</td>
<td>closed-wedge high tibial osteotomy</td>
</tr>
<tr>
<td>Lig.:</td>
<td>Ligamentum</td>
</tr>
<tr>
<td>Ligg.:</td>
<td>Ligamenta</td>
</tr>
<tr>
<td>Abb.:</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ACL.:</td>
<td>vorderes Kreuzband, anterior crucial ligament</td>
</tr>
<tr>
<td>PCL.:</td>
<td>hinteres Kreuzband, posterior crucial ligament</td>
</tr>
<tr>
<td>Bzgl.:</td>
<td>bezüglich</td>
</tr>
<tr>
<td>Bzw.:</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>Ca.:</td>
<td>circa</td>
</tr>
<tr>
<td>z.B.:</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>ggf.:</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>max.:</td>
<td>maximal</td>
</tr>
<tr>
<td>etc.:</td>
<td>et cetera</td>
</tr>
<tr>
<td>s.g.:</td>
<td>so genannt/e/es</td>
</tr>
<tr>
<td>o.g.:</td>
<td>oben genannt/e/es</td>
</tr>
<tr>
<td>u.a.:</td>
<td>unter anderem</td>
</tr>
<tr>
<td>W.:</td>
<td>Winkel</td>
</tr>
<tr>
<td>L.:</td>
<td>Linie</td>
</tr>
<tr>
<td>M.:</td>
<td>Musculus</td>
</tr>
<tr>
<td>STABW.:</td>
<td>Standardabweichung</td>
</tr>
</tbody>
</table>
Nachuntersuchungsbogen Knie

Datum: _____ / _____ / _____

Name __________________________ Vorname __________________________ Geb. Datum _____ / _____ / _____

ANLEITUNG:

Symptome

Diese Fragen beziehen sich auf Beschwerden von Seiten Ihres Kniegelenkes in der vergangenen Woche bzw. vor der Operation.

51. Haben/Hatten Sie Schwellungen an Ihrem Knie?

Vor der OP

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Vergangene Woche

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

52. Fühlen/Fühlten Sie manchmal ein Mahlen, hören/hörten Sie manchmal ein Klicken oder irgendein Geräusch, wenn Sie Ihr Knie bewegen?

Vor der OP

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Vergangene Woche

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

53. Bleibt/Blieb Ihr Knie manchmal hängen, oder blockiert/e es, wenn Sie es bewegen/bewegten?

Vor der OP

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Vergangene Woche

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

54. Können/Konnten Sie Ihr Knie ganz ausstrecken?

Vor der OP

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Vergangene Woche

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

55. Können/Konnten Sie Ihr Knie ganz beugen?

Vor der OP

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Vergangene Woche

<table>
<thead>
<tr>
<th>Niemals</th>
<th>selten</th>
<th>manchmal</th>
<th>oft</th>
<th>immer</th>
</tr>
</thead>
</table>

Steifigkeit

Die nachfolgenden Fragen betreffen die Steifigkeit Ihres Kniegelenkes vor der Operation und während der letzten Woche. Unter Steifigkeit versteht man ein Gefühl der Einschränkung oder Verlangsamtung der Fähigkeit, Ihr Kniegelenk zu bewegen. Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, welche Sie durch Ihr Kniegelenk vor der Operation und innerhalb der letzten Woche erfahren haben.
Nachuntersuchungsbogen Knie

S6. Wie stark ist/war Ihre Kniestiffigkeit morgens direkt nach dem Aufstehen?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S7. Wie stark ist/war Ihre Kniestiffigkeit nachdem Sie saßen, lagen oder sich ausruhten im Verlauf des Tages?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schmerz

P1. Wie oft tut/tat Ihnen Ihr Knie weh?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>Niemals</th>
<th>monatlich</th>
<th>wöchentlich</th>
<th>täglich</th>
<th>immer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>Niemals</th>
<th>monatlich</th>
<th>wöchentlich</th>
<th>täglich</th>
<th>immer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wie ausgeprägt waren Ihre Schmerzen vor der Operation und in der vergangenen Woche als Sie sich z.B.

P2. im Knie drehten?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P3. Ihr Knie ganz ausstreckten?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P4. Ihr Knie ganz beugten?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P5. auf ebenem Boden gingen?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P6. Treppen herauf oder herunter gehen?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P7. nachts im Bett lagen?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nachuntersuchungsbogen Knie

P8. saßen oder lagen z.B. auf der Couch?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

P9. aufrecht standen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>schwach</th>
<th>mäßig</th>
<th>stark</th>
<th>sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Aktivitäten des täglichen Lebens

Die nachfolgenden Fragen beziehen sich auf Ihre körperliche Leistungsfähigkeit. Hierunter verstehen wir Ihre Fähigkeit, sich selbständig zu bewegen bzw. sich selbst zu versorgen. Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, welche Sie durch Ihr Knien innerhalb der letzten Woche und vor der Operation erfahren haben. Welche Schwierigkeiten hatten Sie vor der Operation und letzte Woche als Sie z.B.:

A1. Treppen herunterstiegen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A2. Treppen hinaufstiegen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A3. vom Sitzen aufstehen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A4. stehen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A5. sich bücken, um z.B. etwas vom Boden aufzunehmen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A6. auf ebenerm Boden gingen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
Nachuntersuchungsbogen Knie

A7. ins Auto ein- oder ausstiegen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A8. einkaufen gingen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A9. Strümpfe/Socken anzogen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A10. vom Bett aufstanden?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A11. Socken/Strümpfe auszogen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A12. im Bett lagern und sich drehen ohne das Knie dabei zu beugen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A13. in oder aus der Badewanne kamen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A14. saßen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A15. sich auf die Toilette setzen oder aufstanden?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nachuntersuchungbogen Knie

A16. schwere Hausarbeit verrichtet (schrubben, Garten umgraben, ...)?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A17. leichte Hausarbeit verrichtet (Staub wischen, kochen, ...)?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sport und Freizeit

Die nachfolgenden Fragen beziehen sich auf Ihre körperliche Belastbarkeit im Rahmen eher sportlicher Aktivitäten. Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, welche Sie durch Ihr Kniegelenk innerhalb der **letzten Woche** bzw. **vom der Operation** erfahren haben.

Hatten Sie Schwierigkeiten während der **letzten Woche** und **vom der Operation** als Sie z.B.:

SP1. in die Hocke gingen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SP2. rannten?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SP3. hüpfen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SP4. sich auf ihrem kranken Knie umdrehen?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SP5. sich hinknieten?

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>keine</th>
<th>wenige</th>
<th>einige</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor der OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergangene Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nachuntersuchungsbogen Knie

Q1. Wie oft spüren/spürten Sie Ihr erkranktes Knie?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>Nie</th>
<th>monatlich</th>
<th>wöchentlich</th>
<th>täglich</th>
<th>immer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>Nie</th>
<th>monatlich</th>
<th>wöchentlich</th>
<th>täglich</th>
<th>immer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q2. Haben/hatten Sie ihre Lebensweise geändert, um eventuell Ihrem Kniegelenk schadende Tätigkeiten zu vermeiden?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>Nicht</th>
<th>wenig</th>
<th>etwas</th>
<th>stark</th>
<th>vollständig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>Nicht</th>
<th>wenig</th>
<th>etwas</th>
<th>stark</th>
<th>vollständig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q3. Wie sehr machte/machte es Ihnen zu schaffen, dass Ihr Knie nicht stabil ist?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>gar nicht</th>
<th>wenig</th>
<th>einiges</th>
<th>schlimm</th>
<th>sehr schlimm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>gar nicht</th>
<th>wenig</th>
<th>einiges</th>
<th>schlimm</th>
<th>sehr schlimm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q4. Wie würden Sie insgesamt die Schwierigkeiten bewerten, die Sie durch das Knie haben?

<table>
<thead>
<tr>
<th>Vor der OP</th>
<th>keine</th>
<th>wenig</th>
<th>etwas</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergangene Woche</th>
<th>keine</th>
<th>wenig</th>
<th>etwas</th>
<th>große</th>
<th>sehr große</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W1. Wie schätzen Sie abschließend insgesamt den Erfolg der durchgeführten Operation ein?

<table>
<thead>
<tr>
<th>sehr schlecht</th>
<th>schlecht</th>
<th>neutral</th>
<th>gut</th>
<th>sehr gut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[88]
8. Literatur

[89]

Langenbeck B. (1854) Die sub kutane Osteotomie, 6. Aufl. Deutsche Klinik

doi:10.3238/arztebl.2010.0152
analysis following medial opening-wedge high tibial osteotomy. Knee Surg Sports
Traumatol Arthrosc. doi:10.1007/s00167-017-4421-1
arthroscopic findings after open-wedge high tibia osteotomty focusing on the posterior
doi:10.1016/j.arthro.2012.08.027
for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration"
of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Z Orthop Unfall
7. Aufl. DUALE REIHE Herausgegeben von Alexander Bob und Konstantin Bob. Thieme,
Stuttgart
104. Orban H, Mares E, Dragusanu M, Stan G (2011) Total knee arthroplasty following high
tibial osteotomy - a radiological evaluation. Maedica (Buchar) 6(1):23–27
106. P. Niemeyer1, G. Bode1, M.J. Feucht1, N.P. Südkamp1 (OUP 2013) Valgisation osteotomie
of the proximal tibia for joint preservation in unicomartimental knee arthritis. Deutscher
Ärzte-Verlag:1–7
to the knee. Effect on wedge volume and bony contact surface. Orthopade 43(11):966–
975. doi:10.1007/s00132-014-3029-0
PGLA/polydioxanone fleece. Orthopade 29(2):112–119
Pract Res Clin Rheumatol 16(5):741–760

150. Wirth, Carl Joachim et al. (2007) Praxis der Orthopädie und Unfallchirurgie. Thieme Verlag

8. Lebenslauf

Malte Ohlmeier

*15.08.1988 in Dorsten

Seit 04/2018 Assistenzarzt für Orthopädie & Unfallchirurgie, Helios Endo-Klinik, Hamburg

11/2015-03/2018 Assistenzarzt für Orthopädie & Unfallchirurgie, BG Universitätsklinikum Bergmannsheil, Bochum

05/2015 Mündlicher Teil des zweiten Staatsexamens Humanmedizin, Approbation

2014-2015 Praktisches Jahr

04/2014 Schriftlicher Teil des zweiten Staatsexamens Humanmedizin

03/2011 Erstes Staatsexamen Humanmedizin (Physikum)

04/2009 Beginn Studium der Humanmedizin, Julius-Maximilians-Universität, Würzburg

07/2008-03/2009 Zivildienstleistender als Rettungssanitäter, Feuerwehr Ahlen

06/2008 Allgemeine Fachhochschulreife (Abitur)

1999-2008 Albertus-Magnus Gymnasium, Beckum

1995–1999 Martingrundschule, Beckum
9. Danksagung

An dieser Stelle möchte ich mich ganz besonders bei jenen Personen bedanken, mit deren Hilfe ich diese Arbeit durchführen und schreiben konnte.

Mein Doktorvater **Herr PD Dr. med. Th. Barthel** aus dem König-Ludwig-Haus in Würzburg hat es stets möglich gemacht, mir neben dem klinischen Alltag die Zeit zu widmen, um Fragen zu klären und Tipps bezüglich Forschung und praktischer Umsetzung zu erteilen. Hervorzuheben ist dabei, dass er dies ohne einen mir zugeteilten Betreuer umsetzte, was sicherlich einen Mehraufwand darstellte.

Für tolle Hilfe bei der statistischen Auswertung möchte ich **Frau Dr. rer. nat. Sabine Karl** von der studentischen Statistikberatung in Würzburg nennen. Bemerkenswert ist, dass sie sich auch nach Auslaufen der lehrstuhlbezogenen Anstellung als wissenschaftliche Mitarbeiterin im Institut für Mathematik stets Zeit nahm und sich der hier verwendeten Auswertung widmete.

Benjamin Buchwitz verhalf mir mit seiner Expertise bezüglich der grafischen Darstellung zu einer optisch gelungenen Formatierung. Er gab mir wegweisende Hilfestellungen für ein einheitliches Erscheinungsbild dieser Arbeit.

Dr. med. vet. Lars Nethe stand mir als Kollege und Freund mit praktischen Ratschlägen und persönlichen Erfahrungen regelmäßig zur Seite.

Meiner **Familie** möchte ich für die Geduld und Unterstützung besonders während der Verschriftlichung meiner Dissertation danken.

Allen Mitwirkenden sei hier mein **besonderer Dank** ausgesprochen!
10. Selbstständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Würzburg, den …… 2018

Malte Ohlmeier