Einfluss zusätzlicher Glykoprotein IIb/IIIa-Rezeptorblockade auf postinterventionelle Troponin-Freisetzung und Inflammationsantwort bei elektiver perkutaner Koronarintervention am Menschen

Die doppelblind-randomisierte prospektive TOPSTAR-Studie

Inaugural – Dissertation
zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Bayerischen Julius-Maximilians-Universität zu Würzburg

vorgelegt von

Björn Daniel Lengenfelder
aus Würzburg

Würzburg, Oktober 2004
Referent: Professor Dr. W. Voelker

Koreferent: Priv.-Doz. Dr. A. Bonz

Dekan: Professor Dr. G. Ertl

Der Promovend ist Arzt
Meinen wunderbaren Eltern
in Liebe und Dankbarkeit
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>ACT</td>
<td>Activated clotting time</td>
</tr>
<tr>
<td>CK</td>
<td>Kreatinkinase</td>
</tr>
<tr>
<td>CK-MB</td>
<td>Kreatinkinase-MB</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>GP</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>MEDU</td>
<td>Medizinische Überwachungsstation</td>
</tr>
<tr>
<td>PAU</td>
<td>Platelet aggregation units</td>
</tr>
<tr>
<td>PCI</td>
<td>Perkutane Koronarintervention</td>
</tr>
<tr>
<td>PTT</td>
<td>Partial thromboplastin time</td>
</tr>
<tr>
<td>RCA</td>
<td>Rechte Koronararterie</td>
</tr>
<tr>
<td>RCX</td>
<td>Ramus circumflexus</td>
</tr>
<tr>
<td>RIVA</td>
<td>Ramus interventricularis anterior</td>
</tr>
<tr>
<td>RPFA</td>
<td>Rapid platelet function assay</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor-α</td>
</tr>
<tr>
<td>TnT</td>
<td>Troponin T</td>
</tr>
<tr>
<td>TOPSTAR</td>
<td>TrOponin in elective PTCA / STentimplantation with or without Aadministration of the glycoprotein IIb/IIIa Receptor antagonist Tirofiban</td>
</tr>
<tr>
<td>TVR</td>
<td>Target vessel revascularisation</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Troponin-Freisetzung nach elektiver PCI ... 1
 1.2 Entzündungsreaktion nach elektiver PCI .. 2
 1.3 Ziel der TOPSTAR-Studie .. 3
2 Patienten und Methoden ... 4
 2.1 Studiendesign .. 4
 2.2 Einschluss- und Ausschlusskriterien ... 5
 2.3 Definition von Komplikationen ... 5
 2.4 Patienten .. 6
 2.5 Patientencharakteristik und Ausgangsmedikation .. 7
 2.6 Patientenrandomisierung und Blutabnahmen .. 8
 2.7 Ultegra® rapid platelet function Assay (RPFA)-Thrombozytenfunktionsmessung ... 11
 2.8 Troponin T-Assay .. 12
 2.9 Zytokin-Detektions-Assay ... 13
 2.10 Follow-up-Abfrage .. 13
 2.11 Datenbank .. 14
 2.12 Statistische Analyse .. 14
3 Ergebnisse ... 15
 3.1 Angiographie- und Interventionsdaten ... 15
 3.2 Klinischer Verlauf und Komplikationen .. 16
 3.3 Thrombozytenfunktion ... 17
 3.4 Sekundärer Studienendpunkt .. 18
 3.5 Primärer Studienendpunkt .. 19
 3.5.1 Kardiale Ischämieparameter nach PCI .. 19
 3.5.1.1 Troponin T .. 19
 3.5.1.2 Kreatinkinase (CK)/Kreatinkinase-MB Isotyp (CK-MB) 21
 3.5.1.3 Laktatdehydrogenase ... 22
 3.5.2 Entzündungsparameter nach PCI ... 23
 3.5.2.1 C-reactives Protein .. 23
 3.5.2.2 Tumornekrosefaktor-α ... 25
 3.5.2.3 Interleukin-6 .. 27
 3.5.2.4 Interleukin-1ß .. 29
 3.5.3 Hämoglobin .. 30
 3.5.4 Gerinnungsparameter .. 30
4 Diskussion ... 32
 4.1 Vorbehandlung mit Aspirin und Clopidogrel .. 32
 4.2 Thrombozyten-Inhibition durch Aspirin, Clopidogrel und Tirofiban 34
 4.3 Korrelation zwischen Troponin T/CK-MB und Ergebnis 34
 4.4 Troponin-Freisetzung nach PCI .. 35
<table>
<thead>
<tr>
<th>Seite</th>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>4.5</td>
<td>Reduktion Troponin T-positiver Patienten durch Tirofiban</td>
</tr>
<tr>
<td>40</td>
<td>4.6</td>
<td>Entzündungsantwort nach PCI</td>
</tr>
<tr>
<td>46</td>
<td>5.1</td>
<td>Grenzen der Studie</td>
</tr>
<tr>
<td>46</td>
<td>5.2</td>
<td>Ischämieparameter</td>
</tr>
<tr>
<td>47</td>
<td>5.2</td>
<td>Entzündungsreaktion</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>Zusammenfassung</td>
</tr>
<tr>
<td>51</td>
<td>7</td>
<td>Schlussfolgerung</td>
</tr>
<tr>
<td>53</td>
<td>8</td>
<td>Anhang</td>
</tr>
<tr>
<td>53</td>
<td>8.1</td>
<td>Aufklärungsbogen</td>
</tr>
<tr>
<td>54</td>
<td>8.2</td>
<td>Einverständniserklärung</td>
</tr>
<tr>
<td>55</td>
<td>9</td>
<td>Finanzielle Unterstützung</td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>Literaturverzeichnis</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Troponin-Freisetzung nach elektiver PCI

Lange Zeit vertraute man im Streben nach einer optimalen Behandlung bei elektiven perkutanen Koronarinterventionen (PCI) auf die Gabe von Aspirin vor oder während der PCI. Mitte der neunziger Jahre wurden dann Daten veröffentlicht, die zeigten, dass bei Koronarinterventionen und Stentimplantationen eine Inhibition der Thrombozytenfunktion mit Aspirin und Clopidogrel als zusätzlichen Thrombozyten-Aggregationshemmern die Inzidenz von In-Stent-Thrombosen senken konnte1,2. Darüber hinaus konnte die CURE-Studie bei Patienten mit instabiler Angina pectoris eine signifikante Reduktion der Mortalität unter Kombinationstherapie mit Aspirin und Clopidogrel nachweisen3. Obwohl bekannt ist, dass zwischen Freisetzung des Herzmuskelenzymes Kreatinkinase bzw. dem herzspezifischen Troponin und klinischer Prognose ein Zusammenhang besteht, liegen bisher noch keine Daten vor, inwieweit diese Kombinationsbehandlung Einfluss auf die peri- und postinterventionelle Troponin-Freisetzung bei elektiven Interventionen hat4,5. Eine noch weitergehende Thrombozyteninhibition lässt sich durch Einsatz von Glykoprotein IIb/IIIa-Rezeptorantagonisten, welche die Endstrecke der Thrombozytenvernetzung regulieren, erreichen. Möglicherweise auch durch Verbesserung der koronaren Mikrozirkulation erwiesen sie sich bei interventioneller Therapie akuter Koronarsyndrome als sehr effektiv6,7,8,9,10. Bei elektiver PCI wurde der Einfluss von Glykoprotein IIb/IIIa-Rezeptorantagonisten auf Freisetzung ischämischer Parameter bisher allerdings ausschließlich im Rahmen von Subgruppenanalysen großer klinischer Studien analysiert. Dabei gibt es Hinweise, dass auch bei nicht-akuten perkutanen Koronarinterventionen Troponin freigesetzt wird11,12. Dies ist deshalb von Bedeutung, weil die Freisetzung kardialer Ischämieparameter mit der Kurz- und Langzeitprognose elektiver Patienten korreliert13,14.
1.2 Entzündungsreaktion nach elektiver PCI

Die Entzündungsreaktion ist eines der Schlüssereignisse während der Entstehung und dem Fortschreiten der koronaren Herzkrankheit15,16,17. Ein Anstieg entzündlicher Marker wie C-reaktives Protein (CRP) oder Zytokine wurde bei an Angina pectoris leidenden Patienten gefunden18. Noch deutlicher war der Anstieg der Entzündungswerte bei Patienten mit akuten Koronarsyndromen19,20. Es konnte gezeigt werden, dass die prä- und postinterventionellen Spiegel zirkulierender Entzündungsmarker Aussagekraft für die klinische Kurz- und Langzeitprognose bei akuten, aber ebenso bei elektiven Koronarinterventionen besitzen21,22. Nach Gabe des Glykoprotein IIb/IIla-Rezeptorantagonisten Abciximab wurde eine Suppression postinterventioneller Entzündungsparameter beschrieben23. Es blieb allerdings ungeklärt, auf welchem Mechanismus diese reduzierte Entzündungsreaktion beruht. So könnte dies auf einen Nebeneffekt des Fab-Antikörper-Fragmentes (c7E3) durch Blockade des Vitronektin (α\textsubscript{Ⅲb}β\textsubscript{3})-Rezeptors und des Mac-1 (αMβ\textsubscript{2})-Rezeptors auf Leukozyten zurückzuführen sein23. Aber auch eine Reduzierung von Mikroembolisation mit nachfolgend geringeren ischämisch bedingten Myokardnekrosen könnte für die beobachtete Abschwächung der Entzündungsantwort verantwortlich sein.
1.3 Ziel der TOPSTAR-Studie

Ziel der TOPSTAR-Studie war es,

1) die Inzidenz und den zeitlichen Verlauf einer Troponin-Freisetzung als Marker myokardialer Ischämie bei elektiven Interventionen unter Vorbehandlung mit Aspirin und Clopidogrel zu untersuchen,

2) den zusätzlichen Einfluss des peri- und postinterventionell verabreichten Glykoprotein IIb/IIIa-Rezeptor-antagonisten Tirofiban (Aggrastat®) auf die Freisetzung ischämischer Parameter nach elektiver PCI zu prüfen,

3) die Inzidenz und den zeitlichen Verlauf einer Entzündungsreaktion nach elektiver PCI zu analysieren und den postinterventionellen inflammatorischen Verlauf nach elektiver PCI sowie einen potenziellen Einfluss des Glykoprotein IIb/IIIa-Rezeptorantagonisten Tirofiban auf die Entzündungsreaktion zu untersuchen.

Primärer Endpunkt der Studie war die Inzidenz postinterventioneller Troponin-Freisetzung.
Sekundärer kombinierter Endpunkt war das Auftreten von Tod, Myokardinfarkt oder operativer Revaskularisation des Zielgefässes.
Ebenso wurde das inflammatorische Profil der beiden Gruppen nach PCI verglichen.
2 Patienten und Methoden

2.1 Studiendesign

Die die Studienkriterien erfüllenden Patienten wurden in der Zwischenzeit dem verantwortlichen Studienleiter gemeldet, der nun die Patienten über Inhalt und Durchführung der Topstar-Studie aufklärte. Nach ausreichender Bedenkzeit und

2.2 Einschluss- und Ausschlusskriterien

In die Studie wurden Patienten eingeschlossen, bei denen in der diagnostischen Koronarangiographie eine signifikante Lumeneinengung eines Koronargefäßes von > 70 % festgestellt und somit die Indikation zur elektiven Ballondilatation/ Stentimplantation gestellt wurde. Die Hauptausschlusskriterien definierten sich durch jegliche Art von akuten ischämischen kardialen Ereignissen (akutes Koronarsyndrom, subakuter oder akuter Myokardinfarkt, anhaltende pektanginöse Schmerzen während der letzten sieben Tage) und Stenosierungen in venösen oder arteriellen Bypass-Gefäßen.

Weiterhin waren Patienten von der Studie ausgeschlossen, wenn sie eine oder mehrere der folgenden Ausschlusskriterien erfüllten: Alter < 18 und > 81 Jahre, Niereninsuffizienz, gegenwärtige Ulcera ventriculi oder bereits frühere Blutungsanamnese, bekannte oder aktuell aufgetretene Thrombozytopenie, thrombolytische Therapie innerhalb der letzten 24 Stunden, Insult innerhalb der letzten zwei Jahre, unkontrollierbare Hypertonie, bekannte Neoplasmen und letztlich eine vorausgegangene oder aktuell geplante Gabe eines Glykoprotein IIb/IIIa-Rezeptorantagonisten.

2.3 Definition von Komplikationen

Bei Blutungen wurde zwischen kleineren und größeren Blutungen differenziert. Kleinere Blutungen waren definiert als verlängerter Punktionsstelle im Anschluss an das Entfernen der arteriellen Schleuse oder die Notwendigkeit einer verlängerten Kompression (FemoStop®). Größere Blutungen waren definiert durch Hämoglobin-Abfall um mehr als 5 g/dl sowie durch die Notwendigkeit einer Erythrozyten-Konzentrat-Transfusion.
Unter schweren Komplikationen des kardiovaskulären Systems wurden Tod, Myokardinfarkt sowie frühe Re-Intervention binnen 24 Stunden, das Auftreten eines akuten Koronarsyndroms mit charakteristischen EKG-Veränderungen, nicht-hämorrhagischer Insult oder intrakranielle Blutung verstanden.

2.4 Patienten

2.5 Patientencharakteristik und Ausgangsmedikation

Das durchschnittliche Alter der Patienten betrug 63,7 ± 1,5 Jahre in der Tirofiban-Gruppe und 65,5 ± 1,6 Jahre in der Placebo-Gruppe (n.s.). Bezüglich der übrigen Patientenbasisdaten wie Geschlecht, Gewicht, Größe sowie Body Mass Index (BMI) waren beide Gruppen ebenfalls nicht signifikant unterschiedlich.

<table>
<thead>
<tr>
<th></th>
<th>Tirofiban (n=50)</th>
<th>Placebo (n=46)</th>
<th>Signifikanz p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>63,7 ± 1,5</td>
<td>65,5 ± 1,6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Geschlecht (% männlich)</td>
<td>74,0</td>
<td>76,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>79,3 ± 1,8</td>
<td>80,0 ± 1,9</td>
<td>n.s.</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>171,0 ± 1,1</td>
<td>170,0 ± 0,9</td>
<td>n.s.</td>
</tr>
<tr>
<td>Body-Mass-Index (BMI)</td>
<td>27,1 ± 0,4</td>
<td>27,7 ± 0,6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Nikotinabusus (%)</td>
<td>40,0</td>
<td>34,8</td>
<td>n.s.</td>
</tr>
<tr>
<td>Arterielle Hypertonie (%)</td>
<td>74,0</td>
<td>76,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Familiäre Disposition (%)</td>
<td>74,0</td>
<td>87,0</td>
<td>n.s.</td>
</tr>
<tr>
<td>Hyperlipoproteinämie (%)</td>
<td>61,2</td>
<td>52,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>• LDL (mg/dl)</td>
<td>131,3 ± 4,1</td>
<td>134,0 ± 6,4</td>
<td>n.s.</td>
</tr>
<tr>
<td>• HDL (mg/dl)</td>
<td>49,9 ± 2,1</td>
<td>46,7 ± 1,7</td>
<td>n.s.</td>
</tr>
<tr>
<td>• Gesamtcholesterin (mg/dl)</td>
<td>216,4 ± 4,6</td>
<td>225,0 ± 7,6</td>
<td>n.s.</td>
</tr>
<tr>
<td>• Triglyzeride (mg/dl)</td>
<td>171,2 ± 11,6</td>
<td>221,8 ± 17,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>20,0</td>
<td>26,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Früherer Infarkt (%)</td>
<td>42,0</td>
<td>34,8</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 1: Tabellarische Übersicht über die Basisdaten sowie das Risikoprofil der Studienpatienten.

2.6 Patientenrandomisierung und Blutabnahmen

Die Patienten wurden durch eine unabhängige „study nurse“ im Gesamtverhältnis 1:1 randomisiert einer Studiengruppe (Tirofiban (T) vs. Placebo (P) [0,9% NaCl-Lösung]) zugeteilt. Die eigentliche Studienmedikation (Bolus und Erhaltungsinfusion) wurde unmittelbar vor dem geplanten Eingriff doppelblind durch die „study nurse“ zur Verfügung gestellt. Die Dosierung sowohl des Tirofiban/ Placebo Bolus (10 µg/ kg KG) als auch der anschließenden Infusion (0,15 µg/ kg KG/ min) wurde entsprechend der RESTORE-Studie gewählt. Nach Einbringen der arteriellen Schleuse wurde eine Citrat-Monovette® abgenommen, um die Ausgangstrombozytenfunktion unter Aspirin und Clopidogrel, jedoch noch vor Gabe der Studienmedikation zu bestimmen. Anschließend wurde über die punktierte Arterie 5000–10000 I.E. unfractioniertes Heparin verabreicht, wobei eine „aktivierte Koagulationszeit“ (ACT) von 250 Sekunden angestrebt wurde. Die mittlere Heparin-Dosis während der PCI betrug 8388 ± 228 I.E. in der Tirofiban-Gruppe und 9089 ± 308 I.E. in der Placebo–Gruppe (n.s.). Die ACT war in beiden Gruppen gleich hoch (T: 242 ± 7,9 s / P: 244 ± 9,1 s; n.s.). Nachdem der Führungsdraht erfolgreich über der Stenose platziert werden konnte, wurde der Studienbolus

Abb. 2: Übersicht der geplanten und tatsächlichen Zeitpunkte der Blutabnahme in beiden Randomisierungsgruppen.

Um den doppelblinden Studiencharakter aufrechtzuerhalten, wurden die im Katheterlabor ermittelten Thrombozyteninhibitionsraten durch die „study nurse“ analysiert und dem untersuchenden Arzt nicht mitgeteilt.
2.7 Ultegra® rapid platelet function Assay (RPFA)-Thrombozytenfunktionsmessung

Der Ultegra® rapid platelet function Assay zur automatisierten Thrombozytenfunktionsmessung einer Vollblut-Probe basiert auf der Fähigkeit aktivierter Thrombozyten, sich an Fibrinogen-besetzte Kügelchen zu binden.

![Diagram](image)

Abb. 4: Ultegra® rapid platelet function Assay zur automatisierten Thrombozytenfunktionsmessung. Die Thrombozytenfunktion wurde vor und unmittelbar nach Bolusgabe sowie nach 6h, 12h, 24h und 48h nach PCI gemessen.

Im Analyse-Well der Kartusche befindet sich eine Aktivatorsubstanz, die bei Thrombozyten eine Aktivierung und dadurch eine Konformationsänderung des Glykoprotein IIb/IIIa-Rezeptors hin zu einer Fibrinogen-bindenden Form bewirkt. Zusätzlich enthält das Detektions-Well Fibrinogen-besetzte Kügelchen, die sich an die aktivierten Glykoprotein IIb/IIIa-Rezeptoren binden. Da mehrere Thrombozyten sich gleichzeitig an ein Kügelchen binden können, kommt es in der Folge zu einem Aggregationszustand, der letztlich die Anzahl frei verteilter Kügelchen und Thrombozyten in der Kartusche verringert. Das Analysegerät misst die Lichtdurchlässigkeit der Blutprobe. Wenn nun die Mehrzahl der Glykoprotein IIb/IIIa-Rezeptoren auf den Thrombozyten der Blutprobe bereits
durch Tirofiban inhibiert sind, wird sich nur ein sehr kleiner Anteil der Fibrinogen-besetzten Kügelchen an die Rezeptoren anheften können. Folglich wird durch die hohe Anzahl freier Kügelchen und Thrombozyten die Lichtdurchlässigkeit der Probe nur sehr gering sein. Das Messergebnis wird als „platelet aggregation unit“ (PAU) bezeichnet und mit arbiträren Einheiten angegeben.

2.8 Troponin T-Assay

2.9 Zytokin-Detektions-Assay

2.10 Follow-up-Abfrage

Patienten wiederum persönlich befragt werden, in einem Fall informierte ein Angehöriger über den Tod eines Patienten.

2.11 Datenbank

2.12 Statistische Analyse

Da es sich bei Patientencharakteristik und Inzidenz der Ischämieparameter-Freisetzung um kategoriale (qualitativ-beschreibende) Variablen auf der Grundlage von unverbundenen Daten handelt, wurde für den statistischen Vergleich der Chi-Quadrat-Test angewendet. Ein Grenzwert von 3,84 entspricht dabei einem p-Level von $< 0,05$ und 6,63 entspricht einem p-Level von $< 0,01$. Beim Vergleich der beiden Randomisierungsgruppen untereinander handelt es sich dagegen um stetige (quantitativ-zählende) Variablen, die ebenfalls auf der Grundlage unverbundener Daten basieren. Da diese Variablen zusätzlich weder intervallskaliert noch nominalverteilt sind, wurde für die Analyse der beiden Randomisierungsgruppen der Mann-Whitneys U-Test eingesetzt. Ein P-Wert von $p < 0,05$ wird als Signifikanz erachtet.
3 Ergebnisse

3.1 Angiographie- und Interventionsdaten

Bei insgesamt 88 der 96 Studieneingriffe (91,7%) wurde ein Stent eingesetzt (T: 92,0% / P: 91,3%; n.s.).

<table>
<thead>
<tr>
<th></th>
<th>Tirofiban (n=50)</th>
<th>Placebo (n=46)</th>
<th>Signifikanz p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantierte Stents (%)</td>
<td>92</td>
<td>91,3</td>
<td>n.s.</td>
</tr>
<tr>
<td>Direktes Stenting (%)</td>
<td>32</td>
<td>17,4</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mittlerer Stent-Durchmesser (mm)</td>
<td>3,5 ± 0,2</td>
<td>3,6 ± 0,16</td>
<td>n.s.</td>
</tr>
<tr>
<td>Anzahl implantiert Stents</td>
<td>1,14 ± 0,08</td>
<td>1,04 ± 0,07</td>
<td>n.s.</td>
</tr>
<tr>
<td>Anzahl reine PTCA</td>
<td>1,26 ± 0,17</td>
<td>1,39 ± 0,17</td>
<td>n.s.</td>
</tr>
<tr>
<td>PTCA ohne Stentimplantation (%)</td>
<td>8</td>
<td>8,7</td>
<td>n.s.</td>
</tr>
<tr>
<td>Stenosierung in RCA (%)</td>
<td>25</td>
<td>22</td>
<td>n.s.</td>
</tr>
<tr>
<td>Stenosierung in RIVA (%)</td>
<td>45</td>
<td>46</td>
<td>n.s.</td>
</tr>
<tr>
<td>Stenosierung in RCX (%)</td>
<td>30</td>
<td>32</td>
<td>n.s.</td>
</tr>
<tr>
<td>Anzahl der Dilatationen</td>
<td>1,3 ± 0,2</td>
<td>1,4 ± 0,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Inflationszeit (sec)</td>
<td>77,2 ± 6,7</td>
<td>85,6 ± 6,9</td>
<td>n.s.</td>
</tr>
<tr>
<td>Inflationsdruck (atm)</td>
<td>12,1 ± 0,3</td>
<td>12,1 ± 0,3</td>
<td>n.s.</td>
</tr>
<tr>
<td>Seitenastokklusion (%)</td>
<td>2,1</td>
<td>4</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 3: Übersicht der angiographischen Daten der Studienpatienten unterteilt nach Randomisierungsgruppe.

Die Anzahl der implantierten Stents betrug in der Tirofiban-Gruppe 1,14 ± 0,08 bei einem mittleren Durchmesser von 3,5 ± 0,2 mm, in der Placebo-Gruppe kamen 1,04 ± 0,07 Stents mit einem mittleren Durchmesser von 3,6 ± 0,2 mm (n.s.) zum Einsatz. 32% (n=16) der Tirofiban-Patienten wurden ohne Vordilatation direkt gestentet. In der Placebo-Gruppe belief sich der Anteil der direkt gestenteten Patienten auf 17,4% (n=8). Bei zwei Patienten der Tirofiban-Gruppe und einem Patienten der Placebo-Gruppe wurde als Folge der Stentimplantation ein Seitenast verschlossen (n.s.). Eine PTCA ohne Stentimplantation wurde bei 8% (n=4) der Tirofiban-Patienten und bei 8,7% (n=4) der Placebo-Patienten durchgeführt (n.s.). Die Anzahl der reinen Ballondilatationen
(T: 1,26 ± 0,17 / P: 1,39 ± 0,17) sowie deren mittlerer Ballondurchmesser (T: 4,69 ± 0,43 mm / P: 4,43 ± 0,38 mm) unterschieden sich nicht signifikant. Bei Betrachtung der Mittelwerte von Stent incl. PTCA ergaben sich bezüglich der Inflationszeit (T: 77,2 ± 6,8 s / P: 85,6 ± 7,0 s) und des Inflationsdruckes (T: 12,1 ± 0,3 atm / P: 12,1 ± 0,3 atm) ebenfalls keine Unterschiede von signifikanter Relevanz zwischen Verum- und Placebo-Gruppe. Die Verteilung der Stenosen auf die einzelnen Koronargefäße gliederte sich wie folgt: Rechte Koronararterie (RCA, T: 25% / P: 22%; n.s.), Ramus interventricularis anterior (RIVA, T: 45% / P: 46%; n.s.) und Ramus circumflexus (RCX, T: 30% / P: 32%; n.s.).

3.2 Klinischer Verlauf und Komplikationen

Im Anschluss an die erfolgreiche perkutane Koronarintervention erreichten alle an der Studie teilnehmenden Patienten einen TIMI-III-Fluss. Es traten weder ischämisch bedingte Insulte noch intrakranielle Blutungen bei Studienpatienten während ihres Klinikaufenthaltes auf. Bei jeweils einem Patienten beider Gruppen musste aufgrund postinterventioneller Nachblutungen aus der Punktionsstelle der Arteria femoralis ein Erythrozyten-Konzentrat transfundiert werden (n.s.). Bei einem Patienten war man nach vier Stunden wegen mäßigem, jedoch kontinuierlich andauerndem Nasenbluten ohne signifikanten Hämoglobin-Abfall gezwungen, die Studieninfusion abzustellen. Der Patient wurde in der klinischen Auswertung als intention-to-treat Patient geführt. Häufiger als in der Placebo-Gruppe (8,7%) traten kleinere Blutungen in der Tirofiban-Gruppe (14,0%) auf (n.s.).
3.3 Thrombozytenfunktion

Allen Patienten wurde im Vorfeld der PCI entsprechend der „loading-dose“ Aspirin und Clopidogrel verabreicht. Unter dieser Medikation lagen die mittleren PAU-Werte unmittelbar vor Intervention bei PAU $142,6 \pm 5,5$ (Tirofiban) vs. PAU $146,3 \pm 7,3$ (Placebo); (n.s.).

![Diagramm zur Thrombozytenfunktion](image)

Abb. 5: Thrombozytenfunktion vor und im Zeitverlauf nach PCI. Während der Tirofiban-Infusion wurde die Thrombozytenfunktion auf unter 10% des Ausgangswertes gesenkt. Eine heparininduzierte Thrombozytenaktivierung wurde in der Placebo-Gruppe beobachtet (siehe Diskussion).

Unmittelbar nach Applikation des Studienbolus wurden die PAU-Werte abermals gemessen: in der Tirofiban-Gruppe waren die Werte nun auf PAU $10,8 \pm 1,4$ ($7,8 \pm 1,0\%$ des Ausgangswertes) abgesunken. Dagegen stiegen die PAU-Werte in der Placebo-Gruppe zum gleichen Zeitpunkt auf PAU $171,7 \pm 5,7$ ($128,5 \pm 7,9\%$ des Ausgangswertes; $p<0,001$ vs. Tirofiban). Bei weiteren Messungen während der Gabe der Studienmedikation wurden in der Tirofiban-Gruppe PAU-Werte von PAU $9,5 \pm 1,2$ ($7,0 \pm 0,9\%; p<0,001$ vs. Tirofiban) nach 6 Stunden und PAU $12,3 \pm 2,5$ ($9,8 \pm 2,3\%; p<0,001$ vs. Placebo) nach 12
Stunden erzielt. Nach 48 Stunden und damit 30 Stunden nach Ende der Studienmedikation hatten sich die Werte der Tirofiban-Gruppe mit PAU 112,6 ± 5,9 (83,3 ± 4,3%) wieder weitestgehend ihrem Ausgangsniveau angeglichen. Die Werte der Placebo-Gruppe betrugen PAU 129,5 ± 6,9 (98,7 ± 6,3%; n.s.) nach 48 Stunden.

3.4 Sekundärer Studienendpunkt

Als sekundärer kombinierter Studienendpunkt waren Tod, Myokardinfarkt sowie eine operative Revaskularisation des Zielgefässes definiert. Innerhalb der ersten 30 Tage nach PCI musste ein Patient aus der Placebo-Gruppe aufgrund eines Myokardinfarktes nach Stentverschluss rehospitalisiert werden. Im gleichen Zeitintervall wurde in der Tirofiban-Gruppe kein Ereignis registriert.

Nach 9 Monaten wurden ein Patient aus der Tirofiban-Gruppe (2,3%) und fünf Patienten aus der Placebo-Gruppe aufgrund von Myokardinfarkt bzw. operativer Revaskularisation wieder aufgenommen, zusätzlich starb ein Patient aus der Placebo-Gruppe (13,04%; p<0,05).
3.5 Primärer Studienendpunkt

3.5.1 Kardiale Ischämieparameter nach PCI

3.5.1.1 Troponin T

Positiver Troponinnachweis nach PCI

12 und 24 Stunden nach PCI zeigten sich signifikant weniger Troponin T-positive Patienten in der Tirofiban-Gruppe verglichen mit der Placebo-Gruppe (12h: T: 40% / P: 63%; p<0,05), (24h: T: 48% / P: 69%; p<0,05). Nach 48 Stunden zeigte sich noch ein Trend zugunsten von Tirofiban, ohne jedoch statistische Signifikanz zu erreichen (48h: T: 58% / P: 74%; n.s.).

[Diagramm: Abb. 7: Prozentsatz der Patienten mit positiven Troponin T-Werten nach erfolgreicher PCI innerhalb von 12h, 24h und 48h.]
Absolute Troponin T-Werte

Um beide Gruppen im Verlauf miteinander direkt zu vergleichen, wurden Mittelwerte über die Zeit als relativer Anstieg zum Ausgangswert angegeben. In der Tirofiban-Gruppe stiegen die Troponin T-Werte von 0,0112 ± 0,0034 µg/l nach 12 Stunden über 0,0258 ± 0,0090 µg/l nach 24 Stunden bis auf 0,0291 ± 0,0098 µg/l nach 48 Stunden. Vergleichsweise deutlicher, allerdings nicht-signifikant, war der Troponin-Verlauf in der Placebo-Gruppe. Dort erreichten die Werte 0,0200 ± 0,0065 µg/l nach 12 Stunden, 0,0348 ± 0,0088 µg/l nach 24 Stunden bis 0,0360 ± 0,0108 µg/l nach 48 Stunden.

Abb.8: Troponin T-Freisetzung im Zeitverlauf nach PCI unterteilt nach beiden Randomisierungsgruppen.
3.5.1.2 Kreatinkinase (CK)/ Kreatinkinase-MB Isotyp (CK-MB)

Die Mittelwerte der Kreatinkinase (CK) betrugen vor Intervention 37,9 ± 5,2 U/l in der Tirofiban-Gruppe und 36,4 ± 2,4 U/l in der Placebo-Gruppe (n.s.).

Im gesamten Zeitverlauf von 48 Stunden konnten keine signifikanten Unterschiede hinsichtlich CK oder Serum-CK-MB Isotyp zwischen beiden Gruppen festgestellt werden. Die höchsten Werte wurden in beiden Gruppen nach 48 Stunden gemessen (CK: T: 55,6 ± 9,0 U/l / P: 49,6 ± 5,6 U/l).

Abb. 9: Kreatinkinase (CK) und Kreatinkinase MB-Fraktion (CK-MB) im Zeitverlauf nach PCI unterteilt nach beiden Randomisierungsgruppen.
3.5.1.3 Laktatdehydrogenase

Die jeweiligen Ausgangswerte der Tirofiban- und der Placebo-Gruppe zeigten eine nur geringe und nicht-signifikante Differenz (T: 172,6 ± 6,8 mg/dl / P: 165,0 ± 4,5 mg/dl). Im weiteren Verlauf sanken die LDH-Werte beider Gruppen auf 153,5 ± 7,4 mg/dl nach 12 Stunden in der Tirofiban- bzw. auf 154,2 ± 4,5 mg/dl nach 6 Stunden in der Placebo-Gruppe. Anschließend stiegen die Werte beider Gruppen erneut in den Bereich der Ausgangswerte.

Abb. 10: Laktatdehydrogenase im Zeitverlauf nach PCI unterteilt nach beiden Randomisierungsgruppen.
3.5.2 Entzündungsparameter nach PCI

3.5.2.1 C-reaktives Protein

Tirofiban vs. Placebo

Ausgehend von annähernd gleichen CRP-Ausgangswerten beider Randomisierungsgruppen (T: 0,70 ± 0,10 mg/dl / P: 0,78 ± 0,17 mg/dl; n.s.) erreichten beide Gruppen nach 24 (T: 1,32 ± 0,19 mg/dl / P: 1,31 ± 0,24 mg/dl; p<0,01 vs. pra-PCI) sowie nach 48 Stunden (T: 1,47 ± 0,21 mg/dl / P: 1,93 ± 0,54 mg/dl; p<0,01 vs. pra-PCI) signifikant erhöhte CRP-Werte verglichen mit den jeweiligen präinterventionellen Ausgangswerten.

Zwischen den beiden Randomisierungsgruppen selbst erwiesen sich keine statistisch signifikanten Unterschiede.
Troponin T-positive (TnT p) vs. Troponin T-negative (TnT n) Patienten

Auch bei direktem Vergleich des Patientenkollektivs, welches im Verlauf der Blutabnahmen Troponin T-positiv konvertierte, mit dem Kollektiv, welches zu jedem Zeitpunkt Troponin T-negativ blieb, ergab sich ein statistisch signifikanter Anstieg der CRP-Werte verglichen mit dem jeweiligen Ausgangswert (24h: TnT p: 1,34 ± 0,17 mg/dl; p<0,001 / TnT n: 1,29 ± 0,27 mg/dl; p<0,05 und 48h: TnT p: 1,66 ± 0,20 mg/dl; p<0,001 / TnT n: 1.75 ± 0,70 mg/dl; p<0,05).

Abb. 12: C-reaktives Protein nach PCI unterteilt nach Troponin T-positiven und Troponin T-negativen Patienten.
3.5.2.2 Tumornekrosefaktor-α

Tirofiban vs. Placebo

Die Ausgangswerte vor Intervention betrugen 3,79 ± 0,27 pg/ml in der Gruppe der Tirofiban- und 4,15 ± 0,25 pg/ml bei Placebo-behandelten Patienten.

Die TNF-α Werte erreichten in beiden Gruppen ihren Spitzenwert nach 30 Minuten (T: 4,44 ± 0,57 pg/ml / P: 4,29 ± 0,29 pg/ml), um im weiteren gemessenen Zeitverlauf zwischen 6 und 48 Stunden unter das Ausgangsniveau zu sinken. Zwischen beiden Gruppen ergaben sich keine statistisch signifikanten Unterschiede.
Troponin T-positive (TnT p) vs. Troponin T-negative (TnT n) Patienten

Bei Messungen 30 Minuten (TnT p: 108,48 ± 3,30% / TnT n: 121,75 ± 14,85%) und 2 Stunden (TnT p: 102,60 ± 3,40% / TnT n: 116,40 ± 11,69%) nach Intervention waren die TNF-α Werte sowohl bei Troponin T-positiven als auch bei Troponin T-negativen Patienten prozentual zum Ausgangswert erhöht (n.s.). Zwischen 6 Stunden (89,50 ± 2,25%; p<0,001) und 48 Stunden (92,88 ± 2,81%; p<0,001) fielen die TNF-α Werte der Troponin T-positiven Patienten statistisch signifikant unter den Ausgangswert.

Diese Signifikanz konnte bei den Troponin T-negativen Patienten nicht erreicht werden. Beim direkten Vergleich zwischen Troponin T-positiven und Troponin T-negativen Patienten führten die in Prozent der jeweiligen Ausgangswerte angegebenen TNF-α Werte zu signifikanten Unterschieden nach 24 und 48
Stunden \((24h: \text{TnT } p: 85,76 \pm 2,55\% / \text{TnT } n: 95,12 \pm 2,85\%; p<0,05 \text{ und } 48h: \text{TnT } p: 92,88 \pm 2,81\% / \text{TnT } n: 102,63 \pm 2,91\%; p<0,05)\).

3.5.2.3 Interleukin-6

Tirofiban vs. Placebo

Die Ausgangswerte von Interleukin-6 (IL-6) betrugen \(10,06 \pm 1,46\) pg/ml in der Tirofiban-Gruppe und \(7,86 \pm 1,19\) pg/ml in der Placebo-Gruppe (n.s.). Erstmals nach 6 Stunden erreichten die IL-6 Werte beider Gruppen einen statistisch signifikanten Anstieg verglichen mit dem jeweiligen Ausgangswert. Die höchsten Werte wurden dabei nach 12 Stunden gemessen (T: \(19,18 \pm 1,86\) pg/ml / P: \(17,02 \pm 1,69\) pg/ml; \(p<0,001\)). Bei sinkender Tendenz blieben die IL-6 Werte beider Gruppen auch nach 24 und 48 Stunden noch signifikant gegenüber den jeweiligen Ausgangswerten erhöht (48h: T: \(13,81 \pm 1,68\) pg/ml; P: \(12,01 \pm 1,72\) pg/ml; \(p<0,001\)).

Abb. 15: Interleukin-6 im Zeitverlauf nach PCI unterteilt nach beiden Randomisierungsgruppen.
p<0,05 / P: 14,44 ± 1,95 pg/ml; p<0,001). Der direkte Vergleich beider Gruppen ergab zu keinem Zeitpunkt statistisch signifikante Unterschiede.

Troponin T-positive (TnT p) versus Troponin T-negative (TnT n) Patienten

Der Vergleich von IL-6 Werten zwischen Troponin T-positiven und Troponin T-negativen Patienten ergab folgende Ergebnisse: Troponin T-positiven Patienten hatten einen präinterventionellen Ausgangswert von 8,72 ± 1,19 pg/ml, Troponin T-negative Patienten einen Ausgangswert von 9,63 ± 1,57 pg/ml.

Nach 6 Stunden waren die IL-6 Werte beider Gruppen angestiegen und die Differenz zwischen dem höheren IL-6 Wert der Troponin T-positiven Gruppe gegenüber der Troponin T-negativen Gruppe erreichte ein signifikantes Niveau (TnT p: 15,89 ± 1,57 pg/ml / TnT n: 10,94 ± 1,46 pg/ml; p<0,005). Nach 12 Stunden waren die Werte der Troponin T-positiven Patienten mit 26,5 ± 4,96 pg/ml bereits um mehr als das dreifache angestiegen. Die Troponin T-negativen
Patienten erreichten nach 12 Stunden einen Wert von $15,2 \pm 1,7 \text{ pg/ml}$ (TnT p vs. TnT n: p<0,05).
Zu den Zeitpunkten 24 und 48 Stunden sanken die Werte beider Gruppen kontinuierlich und erreichten letztlich nach 48 Stunden noch Werte von $13,5 \pm 2,1 \text{ pg/ml}$ (TnT n) und $14,5 \pm 1,6 \text{ pg/ml}$ (TnT p); (n.s.).

3.5.2.4 Interleukin-1ß

Die ermittelten Werte von Interleukin-1ß befanden sich über den Messzeitraum nahe an der unteren Detektionsgrenze des verwendeten „High Sensitive Assay“.

![Diagramm Interleukin-1ß](image)

Abb. 17: Interleukin-1ß im Zeitverlauf nach PCI unterteilt nach beiden Randomisierungsgruppen.

Darüber hinaus konnten keine signifikanten Unterschiede sowohl zwischen den Gruppen Tirofiban versus Placebo, als auch zwischen den Gruppen Troponin T-positiv versus Troponin T-negativ bezüglich des Zeitverlaufes von IL-1ß beginnend vom Ausgangswert (T: $0,33 \pm 0,08 \text{ pg/ml}$ / P: $0,38 \pm 0,07 \text{ pg/ml}$; n.s.) bis einschließlich 48 Stunden nach PCI festgestellt werden.
3.5.3 Hämoglobin

Die Hämoglobin-Werte beider Gruppen verliefen nahezu parallel im Zeitverlauf nach PCI. Der Ausgangswert in der Tirofiban-Gruppe betrug 14,1 ± 0,2 g/dl und 14,2 ± 0,2 g/dl in der Placebo-Gruppe.

Nach 2 Stunden wurden in beiden Gruppen die jeweils niedrigsten Hämoglobin-Werte gemessen (T: 13,0 ± 0,2 g/dl / P: 13,2 ± 0,2 g/dl). Am Ende der Messperiode nach 48 Stunden hatten beide Gruppen mit 13,7 ± 0,2 g/dl in der Tirofiban-Gruppe und 14,0 ± 0,2 g/dl in der Placebo-Gruppe ihre jeweiligen Ausgangswerte bereits annähernd wieder erreicht. Ein signifikanter Unterschied zwischen beiden Gruppen bestand dabei zu keinem Zeitpunkt.

3.5.4 Gerinnungsparameter

Aus der Tirofiban-Gruppe entwickelten zwei Patienten eine medikamentösis-induzierte Thrombozytopenie, die nach regulärer Beendigung der
Studienmedikation vollständig reversibel war. Während der Blutabnahmen ergaben Messungen der PTT einen weitestgehend gleichen Verlauf in beiden Randomisierungsgruppen. Ausgehend von Basiswerten von PTT 30,99 ± 0,55 s in der Tirofiban- und PTT 30,47 ± 0,47 s in der Placebo-Gruppe stiegen die Werte während der PCI an (T: 142,37 ± 3,83 s / P: 147,87 ± 1,49 s; n.s.). Nachdem nach 2 Stunden bereits ein Abfall der Werte in beiden Gruppen zu sehen war (T: 102,27 ± 6,16 s / P: 115,21 ± 6,36 s), befanden sich die PTT-Werte nach sechs Stunden wieder im Bereich ihrer Ausgangswerte (T: 30,70 ± 0,68 s / P: 33,43 ± 1,43 s; n.s.).
4 Diskussion

4.1 Vorbehandlung mit Aspirin und Clopidogrel

Eine Thrombozyteninhibition mit niedrig dosiertem Aspirin (100 mg) ist Gold-Standard bei Patienten mit bekannter koronarer Herzerkrankung. Durch zusätzliche Gabe des Thrombozyteninhibitors Clopidogrel konnte ein weitergehender Effekt bezüglich einer signifikanten Reduzierung subakuter Stentthrombosen sowie der Mortalität bei akuten Koronarsyndromen gezeigt werden, welcher sich durch die additiven, unterschiedlichen Wirkmechanismen
der Thrombozytenfunktionshemmung durch Aspirin und Clopidogrel erklärt läßt^{1,2,3}.

Thrombozyteninhibition durch Vorbehandlung mit Aspirin und Clopidogrel hinausgeht.

4.2 Thrombozyten-Inhibition durch Aspirin, Clopidogrel und Tirofiban

In der GOLD-Studie\(^\text{24}\) konnte eine Korrelation zwischen Thrombozyteninhibitionsniveau und schweren kardialen Ereignissen gezeigt werden. So ist eine mindestens 90-prozentige Inhibition und ein möglichst homogenes Inhibitionsniveau über die Zeit notwendig, um kardiovaskuläre Ereignisse nach PCI zu reduzieren. In diesem Sinne wurde das negative Ergebnis der GUSTO IV-Studie\(^\text{25}\) zumindest teilweise mit dem von Chew und Molitero aufgezeigten inhomogenen Inhibitionslevel der Thrombozyten während der Verabreichung des GP IIb/IIIa-Inhibitors Abciximab interpretiert\(^\text{26}\). Eine inhomogene Thrombozyteninhibition im Verlauf der Anwendung kleinmolekularer Wirkstoffe wie Eptifibatide oder Tirofiban wurde nicht beobachtet\(^\text{27}\). Um den genannten Vorgaben gerecht zu werden, wurde im Rahmen der TOPSTAR-Studie die kontinuierliche Infusion der Studienmedikation unmittelbar nach Bolus-Gabe gestartet. Sie lief ohne Unterbrechung über einen Zeitraum von 18 Stunden. Dadurch konnte gewährleistet werden, dass das mit Hilfe des Ultegra®-RPFA-Systems gemessene Inhibitionsniveau zu den Messzeitpunkten direkt nach Bolusgabe sowie nach 6 und 12 Stunden Infusionsapplikation von Tirofiban über 90% auf der Basis der bereits durch Aspirin und Clopidogrel inhibitorer Thrombozyten lag. Ein bekanntes und bereits beschriebenes Phänomen ist die in der Placebo-Gruppe beobachtete Thrombozytenaktivierung durch unfractioniertes Heparin\(^\text{28}\).

4.3 Korrelation zwischen Troponin T/ CK-MB und Ergebnis

Troponin T ist eine Komponente des kontraktilen Apparates der quergestreiften Muskulatur. Wenngleich die Funktion von Troponin T in allen quergestreiften Muskeln identisch ist, unterscheidet sich das Troponin T, welches in der Herzmuskulatur vorkommt (kardiales cTnT), strukturell deutlich vom Troponin T

4.4 Troponin-Freisetzung nach PCI

Troponin kann durch mehrere verschiedene Ereignisse freigesetzt werden. Die folgende Abbildung gibt einen zusammenfassenden Überblick über mögliche Pathomechanismen einer Troponin-Freisetzung nach PCI:
Abb. 20: Überblick über potenzielle Ursachen einer Troponin T-Freisetzung nach PCI.
In der oberen Hälfte der Schemazeichnung finden sich mögliche Ursachen an der proximalen Dilatationsstelle, in der unteren Hälfte Ursachen in der distalen Gefäßperipherie. Die nummerierten Ereignisse werden im Text erläutert.

[Diagrams and text continue with detailed explanations and references]
aufbrechen. Dies kann an der proximalen Dilatationstelle zur Exposition thrombogener Substanzen wie Kollagenfasern oder dem von Willebrand-Faktor zur Lumenseite des Gefäßes hin führen.

Abb. 21 stabiler Plaque

Abb. 22 Plaque-Ruptur
4.5 Reduktion Troponin T-positiver Patienten durch Tirofiban

Sowohl eine Ballon-induzierte Gefäßokklusion mit vorübergehender Ischämie wie auch eine Debris-Embolisationsokklusion per se könnten einen gewissen Anteil zur Troponin-Freisetzung beisteuern. Da allerdings Tirofiban, wie aus Abb. 20 hervorgeht, auf beide Vorgänge keinen Einfluss hat, lässt sich die signifikante Reduzierung der Inzidenz Troponin T-positiver Patienten von 23% innerhalb der ersten 12 Stunden und 21% innerhalb der ersten 24 Stunden in der Tirofiban-Gruppe gegenüber der Placebo-Gruppe bei sonst gleichen Interventionsparametern durch keinen der beiden Vorgänge ausreichend erklären. Auf die Ausbildung eines wachsenden Thrombus dagegen kann Tirofiban im Stadium der Thrombozytenaggregation hemmend wirken, indem es die exprimierten GP IIb/IIIa-Rezeptoren reversibel blockiert und auf diese Weise eine Vernetzung und damit ein Anwachsen der Thrombozytenmasse verhindert. Interessant in diesem Zusammenhang ist die Beobachtung, dass in der TOPSTAR-Studie nach Beendigung der aggregationshemmenden Therapie 18 Stunden nach PCI weitere 10% der Tirofiban-behandelten Patienten noch zwischen 24 und 48 Stunden Troponin T-positiv wurden – zu einem Zeitpunkt also, als die Studieninfusion bereits abgesetzt war und Tirofiban aufgrund seiner kurzen Halbwertszeit (t_{1/2} ~ 1,5 h) keine ausreichende Thrombozyteninhibition (> 90%) mehr bewirken konnte. Passend dazu verliert der Unterschied in der Inzidenz Troponin T-positiver Patienten zum Zeitpunkt 48 Stunden nach PCI zwischen beiden Gruppen (Tirofiban vs. Placebo) seine statistische Signifikanz. Dies führt indirekt zu der Annahme, dass eine Thrombozytenanlagerung an abgeschwemmte thrombogene Substanzen während der Phase maximaler Thrombozyteninhibition unterdrückt werden kann, diese aber wieder auftreten kann, sobald die Thrombozyteninhibition nach Absetzen von Tirofiban auf die durch Aspirin und Clopidogrel erzielten Ausgangswerte gefallen ist. Jedoch kann dieser Signifikanzverlust nach 48 Stunden auch aufgrund des relativ kleinen Patientenkollektivs in beiden Armen der Studie aufgetreten sein. Eine weitere Erklärung hierfür könnte aber auch eine späte, von distalem Debris ausgehende sekundäre Thrombusbildung mit

4.6 Entzündungsantwort nach PCI

Zum einen könnte eine lokale Entzündung im Bereich der Endothelzellen (Plaque-assoziierte Entzündungsreaktion) direkt oder indirekt aus der Einwirkung der PCI resultieren. Ebenso wäre Mikroembolisation ausgehend von der Dilatationsstelle mit konsekutiven peripheren ischämischen Mikroarealen als Inflammationsquelle denkbar:

Plaque-assoziierte Entzündungsreaktion

Atheromatöse vulnerable Plaques enthalten Makrophagen, die in der Lage sind, TNF-α, IL-6, IL-1β und CRP zu synthetisieren und freizusetzen53,54. Des

Mikroembolisation

Das Herz ist eigenständig in der Lage, lokal Zytokine wie TNF-α, IL-6 und IL-1β zu produzieren. So wurde nach myokardialer Ischämie, die zu mRNA-Expression und Protein-Expression führte, von erhöhten TNF-α-Levels berichtet. Außerdem führt TNF-α-Freisetzung in einer frühen Phase des akuten Myokardinfarktes zu Myokardverletzungen und myokardialer Dysfunktion. Da bei allen Patienten in der TOPSTAR-Studie eine elektive PCI durchgeführt wurde, kann eine durch einen länger andauernden Gefäßverschluss induzierte Ischämie als Ursache der beobachteten Zytokin-Antwort weitestgehend ausgeschlossen werden. Die signifikant veränderte Zytokin- und CRP-Reaktion auf PCI unter Troponin T-positiven Patienten macht eine Mikroembolisation in die periphere Strombahn als Ursache einer
Entzündungsreaktion wahrscheinlich. Unter Berücksichtigung der Befunde, dass 1.) Tirofiban die Inzidenz Troponin T-positiver und damit von Mikroembolisation betroffener Patienten signifikant senkt und dass 2.) Troponin T-positive Patienten eine verglichen mit Troponin T-negativen Patienten signifikant erhöhte Zytokin- und CRP-Antwort nach elektiver PCI aufweisen, kann folgender Mechanismus der Zytokin-Freisetzung als wahrscheinlich erachtet werden:

Mikroembolisation von Thromben führt zu multiplen, peripher-distalen „Infarktlets“. Durch ischämisch bedingte Myonekrosen kommt es im Infarkt-Areal zur Invasion von neutrophilen Granulozyten und Makrophagen, welche ihrerseits durch Sekretion proinflammatorischer Zytokine wie TNF-α, IL-6 und IL-1β die Entzündungsreaktion in Gang bringen (siehe Abb. 23). Dabei ist IL-6 in der Lage, die Produktion von CRP und anderer prokoagulatorischer Akut-Phase-Proteine in der Leber zu stimulieren. Prä- und postinterventionelle IL-6- und CRP-Werte korrelieren dabei mit späten Restenosenn nach PCI und besitzen Aussagekraft bezüglich zukünftiger kardialer Ereignisse bei Patienten mit stabiler Angina pectoris nach perkutanen Koronarinterventionen. Erhöhte IL-6-Werte bei augenscheinlich gesunden Männern waren prognostisch signifikant bezüglich des Auftretens zukünftiger Myokardinfarkte. Korrespondierend dazu zeigten sich in der TOPSTAR-Studie nach elektiver PCI höhere IL-6-Werte bei Troponin T-positiven Patienten verglichen mit Troponin T-negativen Patienten. IL-6 wiederum selbst kann durch prokoagulatorische Effekte die Bildung von Mikrothromben unterstützen und somit die Makro- und Mikrozirkulation beeinträchtigen. In die gleiche Richtung weisen Untersuchungen, wonach bei Patienten mit akutem Myokardinfarkt in kardialen, arteriellen Thromben erhöhte Spiegel an proinflammatorischen Zytokinen (IL-6, IL-8) entdeckt wurden.
Abb. 23: Energiestoffwechsel einer Herzmuskelzelle unter physiologischen (grün) sowie ischämischen Verhältnissen (gelb und rot). Hervorgehoben ist die Freisetzung von Troponin T sowie inflammatorischer Entzündungsmediatoren (CRP, IL-1ß, IL-6 und TNF-α) als Folge von irreversiblen Zellschaden (modifiziert nach S. Silbernagl).

5 Grenzen der Studie

5.1 Ischämieparameter

5.2 Entzündungsreaktion

Tatsache allerdings, dass bei allen Patienten eine Modulation der Zytokinantwort aufgetreten ist, welche aber nur im Vergleich Troponin T-positiver mit Troponin T-negativen Patienten statistische Signifikanz erreichte, lässt diese Hypothese als sehr wahrscheinlich erscheinen.
6 Zusammenfassung

Das Ziel der TOPSTAR-Studie war es,
1.) die Inzidenz und den zeitlichen Verlauf einer Troponin-Freisetzung bei elektiven Koronarinterventionen unter Vorbehandlung mit Aspirin und Clopidogrel zu untersuchen sowie
2.) den zusätzlichen Einfluss von Tirofiban (Aggrastat®) auf die Freisetzung ischämischer kardialer Parameter zu prüfen und
3.) die Inzidenz und den zeitlichen Verlauf einer Entzündungsreaktion nach elektiver PCI zu analysieren und der Frage nachzugehen, ob eine postinterventionelle Zytokinantwort direkt von einer selektiven Glykoprotein IIb/IIIa-Rezeptorinhibition durch Tirofiban beeinflusst wird oder ob ein derartiger Effekt auf postinterventionelle, durch Troponin-Freisetzung charakterisierte, ischämische Ereignisse zurückzuführen ist.

Die TOPSTAR-Studie ist eine monozentrische, doppelblind-randomisierte prospektive Studie, in deren Verlauf bei 109 Patienten mit stabiler Angina pectoris eine perkutane Koronarintervention durchgeführt wurde. Alle Patienten waren mit Aspirin und Clopidogrel vorbehandelt. An die Bolus-Gabe schloss sich eine 18-stündige Infusion des Studienmedikamentes Tirofiban bzw. Placebo (NaCl 0,9%) an. Primärer Endpunkt der Studie war die Inzidenz postinterventioneller Troponin-Freisetzung. Sekundärer kombinierter Endpunkt war die Inzidenz von Tod, Myokardinfarkt oder operativer Revaskularisation des Zielgefässes. Die Thrombozytenfunktion wurde durch Verabreichung des Glykoprotein IIb/IIIa-Rezeptorantagonisten Tirofiban beginnend vor der Intervention bis 18 Stunden nach PCI um 90% inhibiert. Blutabnahmen wurden vor sowie 30 min, 2h, 6h, 12h, 24h und 48h nach PCI durchgeführt. Innerhalb der ersten 12 Stunden nach PCI wurde eine Troponin-Freisetzung bei 40% der Tirofiban-behandelten Patienten (T) und bei 63% der Placebo-behandelten Patienten (P) gefunden (p<0,05), innerhalb der ersten 24 Stunden bei 48% (T) bzw. 69% (P) (p<0,05) sowie nach 48 Stunden bei 58% (T) bzw. 74% (P) (p<0,08). Signifikant in beiden Gruppen stieg das CRP im Verlauf der ersten 48
Stunden kontinuierlich an. IL-6 erreichte 12 Stunden nach PCI seinen Höchstwert (p<0,01). Bei TNF-α wurden die Höchstwerte bereits nach 30 Minuten gemessen. Zwischen Tirofiban- und Placebo-behandelten Patienten konnte bezüglich der Entzündungsantwort kein signifikanter Unterschied festgestellt werden. Jedoch wurde in einer Subgruppenanalyse beim Vergleich Troponin T-positiver versus Troponin T-negativer Patienten ein signifikanter Unterschied bei CRP, TNF-α und IL-6 gefunden. IL-1ß zeigte in beiden Gruppen keinen signifikant unterschiedlichen Verlauf. Etwaige größere Blutungen, intrakranielle Blutungen sowie nicht-hämorrhagische Insulte differierten zwischen den Gruppen nicht. Nach 9 Monaten konnte ein reduziertes Auftreten der Inzidenz von Tod, Myokardinfarkt und operativer Revascularisation des Zielgefässes in der Tirofiban-Gruppe (2,3%) gegenüber der Placebo-Gruppe (13,0%) beobachtet werden (p<0,05).
7 Schlussfolgerung

Schlussfolgernd lässt sich bezüglich der Ischämieparameter und der Entzündungsreaktion bei Patienten der TOPSTAR-Studie nach elektiver, nicht-akuter PCI aussagen:

Bezüglich der postinterventionellen Entzündungsantwort zeigen die vorliegenden Daten neben einer indirekten Bestätigung einer Abciximab-spezifischen Inflammations-Suppressions-Hypothese deutliche Hinweise auf eine Induktion der Inflammationsantwort nach PCI bei stabiler Angina pectoris. Es ließ sich quantitativ eine charakteristische Modulation des Zytokins TNF-α, der Interleukine IL-6 und IL-1β sowie des C-reaktiven Proteins feststellen. Es zeigte sich, dass Inflammation und Myonekrose eng miteinander verflochten sind. So war die Modulation von IL-6 und CRP signifikant ausgeprägter bei Patienten mit Troponin-Freisetzung nach PCI als bei Patienten ohne Troponin-Freisetzung. Diese Daten führen zu der Annahme, dass hauptsächlich im Bereich der downstream mikroembolisierten Myokard-Areale die Zytokin- und Interleukin-Produktion nach elektiver, nicht-akuter PCI stattfindet.

Der selektive Glykoprotein IIb/IIIa-Rezeptor-Antagonist Tirofiban führt somit zu einer niedrigeren Inzidenz an Troponin T-positiven Patienten nach elektiver
Koronarintervention mit einer konsekutiv geringeren inflammatorischen Antwort bei Troponin T-negativen Patienten.
8 Anhang

8.1 Aufklärungsbogen

Aufklärungsbogen

Sehr geehrte Frau,
sehr geehrter Herr...................................

Bei Ihnen ist eine Aufdehnung / Stentimplantation eines Herzkrankgefäßes geplant. Wir bieten Ihnen an, an einer Studie (TOPSTAR) teilzunehmen, die nach unserer Einschätzung zu einer Verbesserung der Ergebnisse führen kann.

Hintergrund und Ziel der Studie:

Im Rahmen der bei Ihnen dringend erforderlichen Aufdehnung einer Herzkranzarterie kann es bei der Aufdehnung zu einer Verschleppung von kleinen Teilchen kommen (z.B. Thromben), die zu Verstopfungen kleinster Mikrogefäße führen kann. Dieses ist in der Regel für den Patienten nicht merkbar und nur anhand empfindlicher Laboruntersuchungen nachweisbar.

Unser Ziel ist es mit dieser Studie nun diese „Verstopfungen“ zu minimieren, indem Ihnen ein Medikament bei und nach der Untersuchung zugeführt wird, welches eine Entstehung dieser Thromben deutlich reduziert.

Wenn Sie an der Studie teilnehmen möchten, so bitten wir Sie die dafür erforderliche Einverständniserklärung zu unterschreiben. Selbstverständlich können Sie zu jedem Zeitpunkt Ihr Einverständnis zur Teilnahme an der Studie ohne persönliche Nachteile widerrufen.

Prof. Dr. W. Voelker Dr. A. W. Bonz
Leitender Oberarzt Assistenzarzt
Med. Univ.-Klinik Würzburg Med. Univ.-Klinik Würzburg
Einverständniserklärung

Ich bin mit der Teilnahme an der TOPSTAR-Studie einverstanden.

Ich bin über den Ablauf sowie über die Risiken der Studie für mich ausreichend aufgeklärt worden.

O Über die geplante Studie hat mich Frau/Herr Dr. in einem Aufklärungsgespräch ausführlich informiert.
Dabei konnte ich alle mir wichtig erscheinenden Fragen über Art und Bedeutung der Untersuchung stellen.

O Ich habe den Inhalt dieses Aufklärungsbogens sowie die mündliche Aufklärung verstanden.

O Ich habe keine weiteren Fragen, fühle mich ausreichend aufgeklärt und willige hiermit nach ausreichender Bedenkzeit in die Teilnahme an der geplanten Studie (TOPSTAR) ein.

Ort, Datum: ______________________________

________________________ _________________________
Unterschrift der Patientin/ des Patienten Unterschrift der Ärztin/ des Arztes
9 Finanzielle Unterstützung

Unser besonderer Dank gilt Frau Dr. Carmen Walbert, die an der finanziellen Unterstützung und Umsetzung der Studie durch die Firma MSD Sharp & Dohme maßgeblichen Anteil hatte.
10 Literaturverzeichnis

1 Hall P, Nakamura S, Maiello L et al.
A randomized comparison of combined ticlopidine and aspirin therapy versus aspirin therapy alone after successful intravascular ultrasound-guided stent implantation.

2 Urban P, Macaya C, Rupprecht HJ et al (for the MATTIS Investigators)
Randomized evaluation of anticoagulation versus antiplatelet therapy after coronary stent implantation in high-risk patients: the multicenter aspirin and ticlopidine trial after intracoronary stenting (MATTIS).
Circulation. 1998; 98:2126-32

3 The CURE-Investigators
Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation.

4 Wu KC, Zerhouni EA, Judd RM et al.
Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction.
Circulation. 1998; 97:765-72

5 Ito H, Maruyama A, Iwakura K et al.
Clinical implications of the „no reflow“ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction.
Circulation. 1996; 93:223-28

6 Topol EJ for the EPISTENT-Investigators
Randomized placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade.
Lancet. 1998; 352:87-92
Cannon PC for the TACTICS-Thrombolysis in Myocardial infarction 18 Investigators

Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor Tirofiban.

King SB for the RESTORE Investigators

Effects of platelet glycoprotein IIb/IIIa blockade with Tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty.

Circulation. 1997; 96:1445-53

Lincoff AM, Harrington RA, Califf RM et al.

Management of patients with acute coronary syndromes in the United States by platelet glycoprotein IIb/IIIa inhibition. Insights from the platelet glycoprotein IIb/IIIa in unstable angina: receptor suppression using Integrilllin therapy (PURSIUT) trial.

Circulation. 2000; 102:1093-1100

The ESPRIT-investigators

Novel dosing regimen of eptifibatide in planned coronary stent implantation (ESPRIT): a randomized, placebo-controlled trial.

Lancet. 2000; 356:2037-44

Shyu KG, Kuan PL, Cheng JJ et al.

Cardiac troponin T, creatine kinase and its isoform release after successful percutaneous transluminal coronary angioplasty with or without stenting.

Am Heart J. 1998; 135:862-67

Karim MA, Shinn M, Oskarsson H et al.

Significance of cardiac troponin release after percutaneous transluminal coronary angioplasty.

Am J Cardiol. 1995; 76:521-23
13 Tardiff BE, Califf RM, Tcheng JE et al. (for the IMPACT-II Investigators)
Clinical outcome after detection of elevated cardiac enzymes in patients undergoing percutaneous intervention.
J Am Coll Cardiol. 1999; 33:88-96

14 Ohman EM, Armstrong PW, Christenson RH et al. (for the GUSTO IIa Investigators)
Cardiac troponin T levels for risk stratification in acute myocardial ischemia.

15 Yarnell JW, Baker IA, Sweetnam PM et al.
Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease.
Circulation. 1991; 83:836-44

16 Van der Wal AC, Becker AE, van der Loos CM et al.
Site of intimal rupture or erosion of thrombosed coronary arterosclerotic plaque is characterized by an inflammatory process irrespective of the dominant plaque morphology.
Circulation. 1994; 90:36-44

17 Ross R
Atherosclerosis: an inflammatory disease.

18 Ikonomidis I, Andreotti F, Economou E et al.
Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin.
Circulation. 1999; 100:793-98

Elevated levels of Interleukin-6 in unstable angina.
Circulation. 1996; 94:874-877

20 Liuzzo G, Buffon A, Biasucci L et al.
Enhanced inflammatory response to coronary angioplasty in patients with severe unstable angina.
Circulation. 1998; 98:2370-76
21 **Gaspardone A, Crea F, Versaci F et al.**
Predictive value of C-reactive protein after successful coronary artery stenting in patients with stable angina.
Am J Cardiol. 1998; 82:515-18

22 **Versaci F, Gaspardone A, Tomai F**
Predictive value of C-reactive protein in patients with unstable angina pectoris undergoing coronary artery stent implantation.
Am J Cardiol. 2000; 85:92-95

23 **Lincoff AM, Kereiakes DJ, Mascelli MA et al.**
Abciximab suppresses the rise in levels of circulating inflammatory markers after percutaneous coronary revascularisation.
Circulation. 2001; 104:163-67

24 **Steinhubl SR, Talley JD, Braden GA et al.**
Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD multicenter study.
Circulation. 2001; 103:2572-78

25 **The GUSTO IV-ACS Investigators**
Effect of glycoprotein IIb/IIIa receptor blocker abciximab on outcome in patients with acute coronary syndromes without early coronary revascularisation: the GUSTO IV-ACS randomised trial.
Lancet. 2001; 357:1915-24

26 **Chew DP, Moliterno DJ**
A critical appraisal of platelet glycoprotein IIb/IIIa inhibition.
J Am Coll Cardiol. 2000; 36:2028-35

27 **Kereiakes DJ, Broderic TM, Roth EM et al.**
Time course, magnitude, and consistency of platelet inhibition by abciximab, tirofiban, or eptifibatide in patients with unstable angina pectoris undergoing percutaneous coronary interventions.
Am J Cardiol. 1999; 84:391-95
28 Bode AP, Lust RM
Masking of heparin activity in the activated coagulation time (ACT) by platelet procoagulant activity.
Thromb Res. 1994; 73:285-300

29 Troponin T STAT Elecsys® 2010 online

30 Abdelmeguid A, Topol EJ, Whitlow PL et al.
Significance of mild transient release of creatin-kinase-MB fraction after percutaneous coronary interventions.
Circulation. 1996; 94:1528-36

31 Hillis WS, Birnie D, Cocherty A
Troponin T and myocardial damage.
Br J Cardiol. 1993; 1:16-21

32 Gerhardt W, Ljungdahl L
Troponin T: a sensitive and specific diagnostic and prognostic marker of myocardial damage.

33 Abdelmeguid AE, Topol EJ
The myth of the myocardial „infarctlet“ during percutaneous coronary revascularization procedures.
Circulation. 1996; 94:3369-75

34 Gerhardt W, Katus HA, Rauklide J et al.
S-troponin-T as a marker of ischemic myocardial injury.

35 Simoons ML, van den Brand M, Lincoff M et al.
Minimal myocardial damage during coronary intervention is associated with impaired outcome.
Eur Heart J. 1999; 20:1112-19

36 Kelly D, Arora R
Prognostic significance of myocardial enzyme release after coronary interventions.
Kong TQ, Davidson CJ, Meyers SN et al.
Prognostic implication of creatine kinase elevation following elective coronary artery interventions.
JAMA. 1997; 277:461-66

Ravklide J, Nissen H, Mickley H et al.
Cardiac troponin T and CK-MB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pectoris.
Am Heart J. 1994; 127:13-20

La Vecchia L, Bedogni F, Finocchi G et al.
Troponin T, troponin I and creatine kinase-MB mass after elective coronary stenting.
Coron Artery Dis. 1996; 7:535-40

Joint European Society of Cardiology/American College of Cardiology committee
Myocardial infarction redefined.
J Am Coll Cardiol. 2000; 36: 959-69

Johansen O, Brekke M, Stromme JH et al.
Myocardial damage during percutaneous transluminal coronary angioplasty as evidenced by troponin T measurements.

Gawaz M, Neumann FJ, Ott I et al.
Platelet function in acute myocardial infarction treated with direct angioplasty.
Circulation. 1996; 93:229-37

Skyschally A, Erbel R, Heusch G
Coronary microembolisation.
Circ J. 2003; 67: 279-286

Douglas JS Jr
Percutaneous interventions in patients with prior bypass surgery.
Davies MJ, Thomas AC, Knapman PA et al.
Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death.
Circulation. 1986; 73:418-27

Frink RJ, Ostrach LH, Rooney PA et al.
Coronary thrombosis, ulcerated atheriosclerotic plaques and platelet/fibrin microemboli in patients dying with acute coronary disease: a large autopsy study.

Herrmann J, Haude M, Lerman A et al.
Abnormal coronary flow velocity reserve after coronary intervention is associated with cardiac marker elevation.
Circulation. 2001; 103:2339-45

Antoniucci D, Valenti R, Migliorini A et al.
Direct infarct artery stenting without predilation and no-reflow in patients with acute myocardial infarction.
Am Heart J. 2001; 142:684-90

Lele M, Sajid M, Wajih N et al.
Eptifibatide and 7E3, but not Tirofiban, inhibit \(\alpha_\text{v}\beta_3 \) integrin-mediated binding of smooth muscle cells to thrombospondin and prothrombin.
Circulation. 2001; 104:582-87

Gawaz M, Neumann FJ, Dickfeld T et al.
Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells.
Circulation. 1998; 98:1164-71

Tam SH, Sassoli PM, Jordan RE et al.
Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and alpha(v)beta3 integrins.
Circulation. 1998; 98:1085-91

Simon DI, Xu H, Ortlepp S et al.
7E3 monoclonal antibody directed against the platelet glycoprotein
IIb/IIIa cross-reacts with the leukocyte integrin Mac-1 and blocks adhesion to fibrinogen and ICAM-1.

53 Hanson GK, Jonason L, Seifert PS et al.
Immune mechanism in atherosclerosis.
Atherosclerosis. 1989; 9:567-78

54 Bataille R, Klein B
C-reactive protein levels as a direct indicator of interleukin 6 levels in humans in vivo.
Arthritis Rheum. 1992; 35:982-84

55 Nawroth PP, Stern DM
Modulation of endothelial cell hemostatic properties by tumor necrosis factor.

56 Herskowitz A, Choi S, Ansari AA et al.
Cytokine mRNA expression in postischemic / reperfused myocardium.
Am J Pathol. 1995; 146:419-28

57 Serrano CV Jr, Ramires JA, Venturinelli M et al.
Coronary angioplasty results in leucocyte and platelet activation with adhesion molecule expression. Evidence of inflammatory responses in coronary angioplasty.
J Am Coll Cardiol. 1997; 29:1276-83

58 Blum A, Sclarovsky S, Shohat B
T lymphocyte activation in stable angina pectoris and after percutaneous transluminal coronary angioplasty.

59 Neumann FJ, Ott I, Gawaz M et al.
Cardiac release of cytokines and inflammatory responses in acute myocardial infarction.
Circulation. 1995; 92:748-55

60 Gurevitch J, Frolkis I, Yuhas Y et al.
Anti-tumor necrosis factor-alpha improves myocardial recovery after ischemia and reperfusion.
Li D, Zhao L, Liu M et al.
Kinetics of tumor necrosis factor alpha in plasma and the cardioprotective effect of a monoclonal antibody to tumor necrosis factor alpha in acute myocardial infarction.
Am Heart J. 1999; 137:1145-52

Akira S, Hirano T, Taga T et al.
Biology of multifunctional cytokines: IL 6 and related molecules (IL-1 and TNF-α).
FASEB J. 1990; 4:2860-70

Hojo Y, Ikeda U, Katsuki TA et al.
Interleukin 6 expression in coronary circulation after coronary angioplasty as a risk factor for restenosis.
Heart. 2000; 84:83-7

Plasma levels of C-reactive protein after coronary stent implantation.
Eur Heart J. 2000; 21:1152-58

Ridker PM, Rifai N, Stampfer MJ et al.
Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.
Circulation. 2000; 101:1767-72

Kato K, Matsubara T, Ida K et al.
Elevated levels of proinflammatory cytokines in coronary artery thrombi.

Arras M, Strasser R, Mohri M et al.
Tumor necrosis factor-alpha is expressed by monocytes / macrophages following cardiac microembolization and is antagonized by cyclosporine.
Basic Res Cardiol. 1998; 93:97-107

Schindler R, Mancilla J, Endres S et al.
Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF.
Blood. 1990; 75(1):40-7

69 Nossuli TO, Lakshminarayanan V, Baumgarten G et al.
A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies.

70 The Joint European Society of Cardiology/ American College of Cardiology Committee
Myocardial infarction redefined - a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.
J Am Coll Cardiol. 2000; 36(3):959-69

71 Quinn MJ, Plow EF, Topol EJ
Platelet glycoprotein IIb/IIIa inhibitors: recognition of a two-edged sword?
Circulation. 2002; 106:379-85

72 Merino A, Artaiz M, Vidal B et al.
Eptifibatide blocks the increase in C-reactive protein concentrations by coronary angioplasty.
Circulation. 2001; 104:11-56
Danksagung

Besonderen Dank möchte ich weiterhin an alle Ärzte und Pflegekräfte im Herzkatheterlabor, der medizinischen Intensiv- und Überwachungsstation sowie den peripheren Stationen richten, ohne deren engagierte und professionelle Hilfe die Durchführung der Studie nicht möglich gewesen wäre.

Dem Direktor der Medizinischen Klinik, Herrn Professor Dr. med. Georg Ertl danke ich, dass er mir die Möglichkeit gegeben hat, die Studie an seiner Klinik durchzuführen.
Lebenslauf

Björn Daniel Lengenfelder
geboren am 26.05.1976 in Nürnberg

schulischer Werdegang

1987–1995 Besuch des Neuen Gymnasiums Nürnberg
1995–1996 Besuch des Gymnasium Carolinum Ansbach
30.05.1996 Erlangung der Allgemeinen Hochschulreife (Abitur)

vor Aufnahme des Studiums

1996–1997 Grundwehrdienst bei der Luftwaffe (Sanitätsdienst)

universitärer Werdegang

01.04.1997 Aufnahme des Studiums der Medizin an der Bayerischen Julius-Maximilians-Universität Würzburg
23.03.1999 Ärztliche Vorprüfung
23.03.2000 Erster Abschnitt der Ärztlichen Prüfung
10.09.2002 Zweiter Abschnitt der Ärztlichen Prüfung
28.10.2003 Dritter Abschnitt der Ärztlichen Prüfung
01.12.2003 Arzt im Praktikum in der Medizinischen Klinik der Universität Würzburg
01.10.2004 Assistentarzt in der Medizinischen Klinik der Universität Würzburg

Würzburg, 11. Oktober 2004

[Unterschrift]

Björn Daniel Lengenfelder