Aus der Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke
der Universität Würzburg

Direktor: Prof. Dr. med. Rudolf Hagen

Bedeutung des Passivrauchens für Erkrankungen der oberen Atemwege
und für die genetoxische Belastung von Kindern

Inaugural-Dissertation

zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Corinna Ilse Roberta Siegel (geb. Kopp)
aus München

Würzburg, November 2006
Referent: Priv.-Doz. Dr. Gerald Baier

Koreferentin: Prof. Dr. Helga Stopper

Dekan: Prof. Dr. Matthias Frosch

Tag der mündlichen Prüfung: 30. März 2007

Die Promovendin ist Ärztin
1. EINLEITUNG

1.1 Tabakkonsum und gesundheitliche Konsequenzen

1.2 Chemie des Tabakrauches

1.3 Passivrauchen und seine Auswirkung bei Kindern

1.4 Biomonitoring und Methoden

1.5 Ziel

2. METHODEN UND MATERIAL

2.1 Patienten-/Untersuchungsgruppe

2.2 Fragebogen (Datenerhebung und Auswertung)

2.3 Human-Biomonitoring

2.4 Biochemische Methoden/Verfahren

2.4.1 Biomarker: Hämoglobinaddukte

2.4.1.1 Gewinnung von Hämoglobin

2.4.1.2 Probenaufarbeitung

2.4.1.2.1 Alkalische Hydrolyse

2.4.1.2.2 Festphasenextraktion

2.4.1.2.3 Derivatisierung, Einengung und Aufnahme der Proben

2.4.1.3 GC/MS-Analyse

2.4.1.3.1 Tag-zu-Tag-Empfindlichkeit

2.4.1.3.2 GC/MS-Bedingungen

2.4.1.3.3 Single Ion Monitoring (SIM)

2.4.1.4 Quantifizierungsberechnung

2.4.2 Biomarker: Cotinin

2.5 Geräte und Chemikalien

2.5.1 Substanzen

2.5.2 Chemikalien

2.5.3 Säulen

2.5.4 Testkit

2.5.5 Geräte
3. ERGEBNISSE ... 29

3.1 Biomonitoring ... 29

3.1.1 GC/MS-Analyse ... 29

3.1.2 Hämoglobinadduktspiegel ... 32

3.1.3 Graphische Darstellungsweise: Box-Whisker-Plots ... 34

3.1.4 Unterteilung Nichtraucher-/Raucherhaushalt ... 35

3.1.4.1 Vergleich nach Altersklassen .. 36

3.1.4.2 Vergleich nach Geschlecht ... 37

3.1.4.3 Vergleich von Geschwisterpaaren .. 38

3.1.4.4 Vergleich nach Kraftstoffart/elterliches Kfz .. 39

3.1.4.5 Vergleich nach Wohnort/Aufenthaltsdauer im Straßenverkehr 40

3.1.4.6 Vergleich nach bestimmten Ernährungsgewohnheiten ... 42

3.1.5 Unterteilung nach Rauchgewohnheiten der Eltern ... 43

3.1.5.1 Vergleich nach der Anzahl täglich konsumierter Zigaretten 43

3.1.5.2 Vergleich nach im Haushalt rauchenden Personen ... 44

3.1.5.3 Vergleich nach überwiegendem Ort des Zigarettenkonsums 45

3.2 Allergien, Atemwegs- und Hauterkrankungen ... 46

3.2.1 Allergien ... 46

3.2.2 Lungen- und Bronchialerkrankungen ... 47

3.2.3 Hauterkrankungen (Neurodermitis) .. 47

3.3 Fragebogenanalyse .. 48

3.3.1 Subjektive Beschwerdesymptomatik .. 48

3.3.2 Nahrungsmittel-Unverträglichkeit .. 52

3.3.3 Hyperreagibilität nach Insektenstich .. 52
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4</td>
<td>Allergien</td>
<td>53</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Art der Allergien (Einfach-, Mehrfach-, Milbenallergie)</td>
<td>54</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Vergleich nach Alter und Geschlecht</td>
<td>55</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Hals-, Nasen- und Ohrenerkrankungen oder -Operationen</td>
<td>56</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Lungen- und Bronchialerkrankungen</td>
<td>59</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Vergleich nach Alter</td>
<td>60</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>Vergleich nach Geschlecht</td>
<td>62</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Hautkrankheiten</td>
<td>63</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Stillgewohnheiten und -dauer</td>
<td>64</td>
</tr>
<tr>
<td>3.3.8.1</td>
<td>Allergische Erkrankungen (Allgemein)</td>
<td>64</td>
</tr>
<tr>
<td>3.3.8.2</td>
<td>Lungen- und Bronchialerkrankungen</td>
<td>65</td>
</tr>
<tr>
<td>3.3.8.3</td>
<td>Neurodermitis</td>
<td>66</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Rauchgewohnheiten der Eltern</td>
<td>67</td>
</tr>
<tr>
<td>3.3.9.1</td>
<td>Vergleich nach der Anzahl täglich konsumierter Zigaretten</td>
<td>67</td>
</tr>
<tr>
<td>3.3.9.1.1</td>
<td>Allergische Erkrankungen (Allgemein)</td>
<td>67</td>
</tr>
<tr>
<td>3.3.9.1.2</td>
<td>Lungen- und Bronchialerkrankungen</td>
<td>68</td>
</tr>
<tr>
<td>3.3.9.1.3</td>
<td>Hauterkrankungen (Neurodermitis)</td>
<td>69</td>
</tr>
<tr>
<td>3.3.9.2</td>
<td>Einteilung nach der im Haushalt rauchenden Person</td>
<td>70</td>
</tr>
<tr>
<td>3.3.9.2.1</td>
<td>Allergische Erkrankungen (Allgemein)</td>
<td>70</td>
</tr>
<tr>
<td>3.3.9.2.2</td>
<td>Lungen- und Bronchialerkrankung</td>
<td>71</td>
</tr>
<tr>
<td>3.3.9.2.3</td>
<td>Hauterkrankungen (Neurodermitis)</td>
<td>72</td>
</tr>
<tr>
<td>3.3.9.3</td>
<td>Einteilung nach dem Ort des Zigarettenkonsums</td>
<td>73</td>
</tr>
<tr>
<td>3.3.9.3.1</td>
<td>Allergische Erkrankungen (Allgemein)</td>
<td>73</td>
</tr>
<tr>
<td>3.3.9.3.2</td>
<td>Lungen- und Bronchialerkrankungen</td>
<td>74</td>
</tr>
<tr>
<td>3.3.9.3.3</td>
<td>Hauterkrankungen (Neurodermitis)</td>
<td>75</td>
</tr>
<tr>
<td>4.</td>
<td>DISKUSSION</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Biochemisches Effektmonitoring</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Allergien, Atemwegs- und Hautkrankheiten</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Fragebogenanalyse</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Bedeutung des Passivrauchens für das kindliche Risiko</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Prävention</td>
<td>85</td>
</tr>
</tbody>
</table>
1. EINLEITUNG

1.1 Tabakkonsum und gesundheitliche Konsequenzen

Der Zigaretten- und Tabakkonsum wird als Folge eines seit Mitte des 19. Jahrhunderts weit verbreiteten und hohen Verbrauchs von Zigaretten in Industrielandern zunehmend als das bedeutendste einzelne Gesundheitsrisiko sowie als führende Ursache frühzeitiger Sterblichkeit beurteilt [DKFZ 2003].

Statistiken zufolge sterben allein in Deutschland 110.000 bis 140.000 Personen jährlich an den unmittelbaren Folgen des Tabakkonsums [DKFZ 2003, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit 2004]. Im Dezember 2005 hat das Deutsche Krebsforschungszentrum Heidelberg (DKFZ) neue Zahlen veröffentlicht, die erstmals die Gesamttopferzahl durch Passivrauchen für Deutschland wissenschaftlich verbürgt ausweisen. Den konservativen Berechnungen der Koautoren der Studie, der Epidemiologen Prof. Dr. Ulrich Keil der Universität Münster und Prof. Dr. Heiko Becher der Universität Heidelberg zufolge versterben derzeit jährlich mehr als 3300 Nichtraucher an den Folgen des Passivrauchens. Der Hauptanteil ist mit ca. 65%, entsprechend 2148 Todesfällen pro Jahr, auf die passivrauchbedingte koronare Herzkrankheit zurückzuführen, rund 23 Prozent (774 Todesfälle) versterben an Schlaganfall. 263 Todesfälle sind durch Lungenkrebs, 56 durch chronisch obstruktive Lungenerkrankungen zu verzeichnen. Etwa 60 Säuglinge versterben im ersten Lebensjahr aufgrund häuslicher sowie vorgeburtlicher Tabakrauchbelastung [DKFZ 2005]. Die Ausgaben für tabakkonsumbezogene Gesundheitsleistungen in Deutschland haben sich bereits Anfang der Neunzigerjahre auf nahezu 17,5 Milliarden Euro bzw. rund 1 Prozent des Bruttolandsproduktes belaufen [Welte R et al. 2000].

Gemäß neueren Befragungen zum Rauchverhalten sind in der Altersklasse der 20- bis 50-Jährigen in Deutschland ca. 30% der Frauen und 40% der Männer Raucher (Global: 34% Frauen, 70% Männer) [Dekant W et al. 2001, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit 2004]. Vor allem

Der Tabakkonsum wird als eine bedeutsame Ursache von mehr als 40, zum Teil schwerwiegenden und tödlich verlaufenden Krankheiten beurteilt. Rauchen wird als bedeutsamster einzelner Risikofaktor für eine Reihe weit verbreiteter chronischer Erkrankungen angesehen, insbesondere für chronisch obstruktive Lungenerkrankungen (COPD)/-emphyseme und Bronchitis, Herz-Kreislauferkrankungen sowie Krebskrankheiten [DKFZ 2002].

Statistiken zufolge sind 70-90% der durch Lungenkrebs bedingten Todesfälle auf Tabakkonsum zurückzuführen [Keseberg U 2000]. Auch Krebsentstehun-
gen im Mund-, Nasen- und Rachenraum, in Kehlkopf, Speiseröhre sowie in Magen, Bauchspeicheldrüse, Leber und Niere wie auch in Harnblase und Gebärmutternhals werden in ursächlichem Zusammenhang zum Tabakkonsum gesehen [DKFZ 2002].

In Verbindung mit anderen Risikofaktoren wie Diabetes mellitus, Fettstoffwechselstörungen, Übergewicht und Stress erhöht sich die Gefahr von Herz-Kreislauf-Krankheiten wie koronare Herzkrankheiten, Myokardinfarkte, Schlaganfälle, Aortenaneurysmen und obstruktive Gefäßerkrankungen um ein Vielfaches [Dekant W et al. 2001].
1.2 Chemie des Tabakrauches

Die bei der Verbrennung des Tabaks entstehenden bzw. freigesetzten flüchtigen und partikelförmigen Substanzen in Haupt- und Nebenstrom sind qualitativ identisch, unterscheiden sich jedoch quantitativ aufgrund unterschiedlicher Verbrennungstemperaturen [Bayerisches Landesamt für Gesundheit und Le-

Im Tabakrauch konnten bisher ca. 4.800 Substanzen identifiziert werden, 69 von ihnen sind anerkannte Kanzerogene, eine Vielzahl toxisch oder hoch reaktiv [Richer E, Scherer G 2004].

Neben Nikotin sind im Tabakrauch verschiedene gasförmige Verbindungen mit akut schleimhautreizender Wirkung auf Augen und Atemwege (Formaldehyd, Acrolein, Ammoniak) enthalten, des Weiteren auch einige Atemgifte, darunter Kohlenmonoxid (CO) und Blausäure (HCN). Als karzinogene Verbindungen konnten u.a. tabakspezifische Nitrosamine (NNK), polyzyklische aromatische Kohlenwasserstoffe (PAK), wie z.B. Benz(a)pyren, aromatische Amine (z.B. 4-ABP) und Schwermetalle wie As, Cd, Cr identifiziert werden [Dekant W et al 2001] (Tab.1).
<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Hauptstrom (µg/Zigarette)</th>
<th>Nebenstrom/Hauptstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Aminobiphenyll</td>
<td>0,003-0,005</td>
<td>31</td>
</tr>
<tr>
<td>Acetaldehyd</td>
<td>500-1200</td>
<td>keine Angabe</td>
</tr>
<tr>
<td>Aceton</td>
<td>100-250</td>
<td>2-5</td>
</tr>
<tr>
<td>Acrolein</td>
<td>60-100</td>
<td>8-15</td>
</tr>
<tr>
<td>Ameisensäure</td>
<td>210-490</td>
<td>1,4-1,6</td>
</tr>
<tr>
<td>Ammoniak</td>
<td>50-130</td>
<td>3,5-5,1</td>
</tr>
<tr>
<td>Anilin</td>
<td>0,36</td>
<td>29,7</td>
</tr>
<tr>
<td>Benz(a)anthrazen</td>
<td>0,003-0,05</td>
<td>2,7</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>0,038</td>
<td>2,1-3,5</td>
</tr>
<tr>
<td>BenzoI</td>
<td>12-48</td>
<td>5-10</td>
</tr>
<tr>
<td>1,3-Butadien</td>
<td>69</td>
<td>3-6</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0,1-0,12</td>
<td>3,6-7,2</td>
</tr>
<tr>
<td>Cyanwasserstoff</td>
<td>400-500</td>
<td>0,1-0,25</td>
</tr>
<tr>
<td>Diethylnitrosamin</td>
<td>0,025</td>
<td><40</td>
</tr>
<tr>
<td>Dimethylamin</td>
<td>7,8-10</td>
<td>3,7-5,1</td>
</tr>
<tr>
<td>Dimethylnitrosamin</td>
<td>0,01-0,04</td>
<td>20-100</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>330-810</td>
<td>1,9-3,6</td>
</tr>
<tr>
<td>Ethylnitrosamin</td>
<td>0,001-0,002</td>
<td>10-20</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td>70-100</td>
<td>0,1-50</td>
</tr>
<tr>
<td>Hydrazin</td>
<td>0,32</td>
<td>3</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>13000-22000</td>
<td>2,5-4,7</td>
</tr>
<tr>
<td>Kohlenoxidsulfid</td>
<td>12-42</td>
<td>0,03-0,13</td>
</tr>
<tr>
<td>Methyliamin</td>
<td>11-29</td>
<td>4,2-6,4</td>
</tr>
<tr>
<td>Methylchlorid</td>
<td>150-600</td>
<td>1,7-3,3</td>
</tr>
<tr>
<td>2-Naphthylamin</td>
<td>0,001-0,022</td>
<td>30</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,02-0,08</td>
<td>12-31</td>
</tr>
<tr>
<td>Nikotin</td>
<td>1330-1830</td>
<td>2,6-3,3</td>
</tr>
<tr>
<td>Nitrosoppyrrolid</td>
<td>0,006-0,03</td>
<td>6-30</td>
</tr>
<tr>
<td>Pyridin</td>
<td>16-40</td>
<td>6,5-20</td>
</tr>
<tr>
<td>Stidkstoffmonoxid</td>
<td>100-600</td>
<td>4-10</td>
</tr>
<tr>
<td>2-Toluidin</td>
<td>0,03-0,2</td>
<td>19</td>
</tr>
<tr>
<td>Toluol</td>
<td>100-200</td>
<td>5,6-8,3</td>
</tr>
</tbody>
</table>

1.3 Passivrauchen und seine Auswirkung bei Kindern

Wenn gleich rund zwei Drittel der Bevölkerung Nichtraucher sind, nehmen Millionen Nichtraucher die im Tabak enthaltenen Schadstoffe täglich im Haushalt bzw. in der Wohnung, in öffentlichen Einrichtungen oder am Arbeitsplatz auf.

Die ursächliche Beteiligung des Passivrauchens für eine Reihe von Krankheiten und Todesursachen wurde anhand zahlreicher Studien untersucht und gilt zum Teil als bereits nachgewiesen, unter anderem für Lungenkrebs [EPA 1993, Wichmann HE et al. 1999], akute und chronische Herzkrankheiten [Law MR,

Hinsichtlich eines kausalen Zusammenhangs zwischen der kindlichen Tabakrauch-Exposition und der Entstehung allergischer Erkrankungen existieren bislang noch kontroverse Daten [Strachan DP, Cook DG 1998b], wobei sich Hinweise mehren, dass einer vermehrten Passivrauchexposition ausgesetzte Kinder eine erhöhte Allergiebereitschaft zeigen.
1.4 Biomonitoring und Methoden

Schädliche oder toxische Einflüsse auf den Menschen (sog. äußere Belastungen) werden zum Schutz der menschlichen Gesundheit durch Feststellung wie auch Kontrolle der Konzentrationen (z.B. in mg/m³, mg/l) chemischer Stoffe in der Umwelt gemessen („Umwelt-Monitoring“). Im Falle quantitativ nachweisbarer Beziehungen zwischen äußerer Exposition und Gesundheitsgefährdung werden in der Regel präventive Schutzmaßnahmen in Form der Festlegung maximal duldbarer Konzentrationen (Grenzwerte) ergriffen (z.B. MAK-Werte/Arbeitsplatz, Feinstaubausstoß/Ballungszentren).

Anknüpfend an die Bestimmung der Konzentration von Fremdstoffen (Schadstoffen/Metaboliten) im Körper (d.h. der inneren Belastung/Schadstoffdosis) werden im Rahmen des sog. „Effekt-Monitorings“ Interaktionen, Reaktionen und gegebenenfalls Mutationen der Fremdstoffe (z.B. Abweichungen biologischer Messgrößen von der Norm, Reaktionsprodukte mit Biomaterialien) im Körper untersucht und gemessen (sog. innere Beanspruchung).

<table>
<thead>
<tr>
<th>UMWELT-MONITORING</th>
<th>ÄUSSERE BELASTUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stoff in der Umgebungsluft (mg/m³ Luft)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMAN-BIOMONITORING</th>
<th>INNERE BELASTUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belastungs-Monitoring</td>
</tr>
<tr>
<td></td>
<td>Konzentration eines Stoffes oder dessen Metaboliten in Blut, Harn oder Ausatemluft (z.B. mg/l)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INNERE BEANSPRUCHUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemisches Effekt-Monitoring</td>
</tr>
<tr>
<td>DNA-Addukte, Protein-Addukte (z.B. mg/g Hb)</td>
</tr>
<tr>
<td>Biologisches Effekt-Monitoring</td>
</tr>
<tr>
<td>Mutationen, Mikrokerne, SCE, CA (target dose: M x h)</td>
</tr>
</tbody>
</table>

Abb. 2: Expositionskontrolle durch Monitoring (modifiziert nach HG Neumann; Lehrbuch der Toxikologie: Biomonitoring).

Methoden

Der Nachweis im Körper aufgenommener Fremdstoffe ist in einer möglichst leicht zugänglichen Matrix durchzuführen, wobei eine Gewinnung mit möglichst geringem Aufwand und in für die Probanden zutunbarer Weise erfolgen sollte.

Die Auswahl des Biomonitoring-Parameters hat sich an der spezifisch toxischen Wirkung des Fremdstoffes zu orientieren und muss unter Beachtung von Halbwertszeiten eine Expositionsabschätzung ermöglichen [Umweltmedizinische Leitlinien der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e.V. 2004].

Biochemisches Effekt-Monitoring (chemisch-analytische Methoden)

Hämoglobin-Bindung

Soweit ein reaktiver Fremdstoff mit Aminosäurebestandteilen des Hämoglobins (z.B. mit Cystein, Histidin oder N-termalem Valin) reagiert, erfolgt eine Adduktbildung mit Hämoglobin.

Zur Messung der inneren Beanspruchung durch einen Fremdstoff wird das aus Vollblut isolierte Hämoglobin hydrolysiert und der zu bestimmende Stoff als Spaltprodukt abgetrennt, angereichert und mittels Gaschromatographie/Massenspektrometrie quantitativ (Addukte/Menge der gebildeten Reaktionsprodukte) bestimmt (Abb. 3).
Abb. 3: Entstehung von Arylamin-Hämoglobin-Addukten am Beispiel des 4-Aminobiphenyls.
Serumalbumin-Bindung

Alternativ zu Hämoglobin kann auch die Menge gebildeter Reaktionsprodukte mit Serumalbumin zur Messung der inneren Beanspruchung durch einen Fremdstoff ermittelt werden. Dabei entstehen bei bestimmten Substanzen, z.B. bei Aflatoxin B1-Epoxid, höhere Adduktspiegel, die ein gegebenenfalls empfindlicherees Monitoring ermöglichen.

DNA-Addukte

Reaktive Stoffe gehen auch mit den Basen der DNA kovalente Bindungen ein, deren Addukte zur Messung der inneren Beanspruchung herangezogen werden können. Da kovalente Bindungen an die DNA häufig im Zusammenhang mit der Entstehung von Tumoren auftreten, wurden bereits zahlreiche Methoden zur Ermittlung von Expositionen gegenüber gentoxischen Umweltstoffen mit DNA-Addukten als Biomarker entwickelt.

Hierbei können Schäden an der DNA sichtbar gemacht werden, was diese Form der Adduktbildung zu einem ebenfalls geeigneten Biomarker macht. Als Quelle fungieren Leukozyten aus dem peripheren Blut. Der Nachweis gelingt mit immunologischen Methoden wie RIA oder ELISA, die jedoch weitgehend von der 32P-Postlabeling-Methode abgelöst wurden.

Biologisches Effekt-Monitoring (molekularbiologische Methoden)

Schwesternchromatidaustausch (SCE)

Beim Schwesternchromatidaustausch wird der reziproke Austausch zwischen Schwesterchromatiden untersucht (SCE-Test).

Als Quelle dienen Lymphozyten im peripheren Blut, die mit Bromdesoxyuridin (BrdU) inkubiert werden. Während der folgenden Replikationsphasen wird BrdU anstelle des Thymins eingebaut. Fluoreszierende Farbstoffe dienen dazu, in der zweiten Metaphase diesen Einbau sichtbar zu machen und damit den Austausch zwischen den Schwesterchromatiden anhand des Farbwechsels innerhalb der Chromosomen kenntlich zu machen.
Als normale Austauschrate werden 7 bis 10 SCE/Zelle angesehen, während der Austausch bei gentoxischen Expositionen ausgesetzten Zellen zunimmt. Der SCE-Test ist daher als äußerst sensitiver Parameter im biologischen Effekt-Monitoring zu beurteilen.

Mikrokerne (MN)

Mikrokerne sind chromatinhaltige Strukturen im Cytoplasma der Zellen, die zur einen Hälfte azentrische Chromosomenfragmente, zur anderen ganze Chromosomen enthalten. Definitionsgemäß besteht zwischen ihnen und dem Zellkern keine Kern-Plasmabrücke und ihre Größe umfasst dabei weniger als ein Drittel der Zellkerngröße. Spontan werden 3 bis 23 Mikrokerne pro 1000 Zellen beobachtet.

Bei Exposition gegenüber gentoxischen Substanzen nimmt die Zahl der Mikrokerne zu, was Ursache für die Etablierung als Biomarker auch für Tabakrauch-Expositionen ist.

Methodisch werden periphere Lymphozyten mittels Phytohämagglutinin zur Zellteilung angeregt und durch Zugabe des Cytokineseinhibitors Cytochalsin B während ihrer Zellteilung arretiert. Ausgezählt und untersucht werden mindestens 1000 doppelkernige Zellen auf die Anwesenheit von Mikrokernen.

Comet-Assay (Einzelzell-Gel-Elektrophorese, SCGE)

Analysematerial/Biomarker für die ETS-Exposition

Die Kommission Human-Biomonitoring des Umweltbundesamtes empfiehlt vor diesem Hintergrund nachdrücklich den Einsatz von Hämaglobinaddukten als Effektbiomarker zum Nachweis von Gefahrstoffbelastungen und der Bewertung innerer Beanspruchung [Kommission Human-Biomonitoring des Umweltbundesamtes].

Biologisches Effekt-Monitoring zur Erfassung der genotoxischen Belastung durch Passivrauchen (z.B. Mikrokernstest, Schwesternchromatidaustausch und Comet-Assay) ist auf der Kaskade der Tumorentstehung dem Endpunkt zwar am nächsten anzuweisen und repräsentiert direkt genotoxische Läsionen, war allerdings nicht zuletzt aufgrund der Komplexität der Mechanismen im Körper wie auch der Anforderungen an das Monitoring-Verfahren und die Ergebnisanalyse bisher lediglich eingeschränkt Gegenstand wissenschaftlicher Studien.
1.5 Ziel

2. METHODEN UND MATERIAL

2.1 Patienten-/Untersuchungsgruppe

2.2 Fragebogen (Datenerhebung und Auswertung)

In die Auswertung gingen Fragebögen zu 211 Probanden ein.

Ausgehend hiervon erfolgte, in Abhängigkeit vom Rauchverhalten der Eltern, eine Einteilung in die Gruppen nicht ETS-belastet (Eltern/-teil = Nichtraucher; n=89), ehemals ETS-belastet (Eltern/-teil = ehemalige/r Raucher; n = 17) und ETS-belastet (Eltern/-teil = aktive/r Raucher; n = 105).

Kinder, deren Eltern/-teil nach der Geburt länger als 3 Monate aktiv Tabak konsumiert haben, wurden bei Auswertung der Fragebögen (als ehemals ETS-belastet) der ETS-belasteten Gruppe zugeteilt, da eine bereits erfolgte Sensibi-
lisierung infolge ETS-Exposition hinsichtlich Allergieentstehung oder Erkrankungen der oberen Atemwege nicht ausgeschlossen werden konnte. Des Weitern erfolgte eine Unterteilung nach Alter und Geschlecht (Tab. 2).

<table>
<thead>
<tr>
<th>Zahl der untersuchten Kinder</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>89</td>
<td>122</td>
</tr>
</tbody>
</table>

davon

| 2-8 Jahre | 59 | 60 |
| 9-16 Jahre | 30 | 62 |

davon

| männlich | 56 | 62 |
| weiblich | 33 | 60 |

<table>
<thead>
<tr>
<th>Altersstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersspanne (Jahre)</td>
</tr>
<tr>
<td>Mittleres Alter (Jahre)</td>
</tr>
</tbody>
</table>

Tab. 2: Patientenkollektiv/Fragebogen.

Mittels Fragebogen wurden neben gegebenenfalls ETS-relevanten, subjektiv empfundenen Beschwerdesymptomatiken (z.B. häufiger Schnupfen, fieberhafte Erkältungskrankheiten, bronchiale Infekte) auch ärztlich diagnostizierte Erkrankungen (z.B. Allergien, chronische Bronchitis und Asthma, Neurodermitis) sowie Erkrankungen aus dem HNO-Bereich erfasst.

2.3 Human-Biomonitoring

Ehemals ETS-belastete Kinder, deren Eltern länger als 4 Monate nicht mehr rauchten (n=7), wurden aufgrund der begrenzten Lebensdauer von Erythrozyten (120 Tage) – anders als bei der Auswertung der Fragebögen (vgl. 2.2) – der Gruppe nicht ETS-belastet zugeordnet, da eine Belastung durch das Rauchverhalten der Eltern/eines Elternteils jeweils länger als 4 Monate (120 Tage) zurücklag (Tab. 3).

<table>
<thead>
<tr>
<th>Zahl der untersuchten Kinder</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>davon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-8 Jahre</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>9-16 Jahre</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>davon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>weiblich</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

Tab. 3: Patientenkollektiv/Biomonitoring.
2.4 Biochemische Methoden/Verfahren

2.4.1 Biomarker: Hämoglobinaddukte

2.4.1.1 Gewinnung von Hämoglobin

Das den Patienten entnommene hepariniserte Vollblut (5 ml) wurde in einem fünfminütigen Zentrifugationsschritt bei 4000 rpm in Erythrozyten, Leukozyten und Plasma getrennt. Plasma und die Leukozytenzwischenschicht wurden anschließend abpipettiert, die verbleibenden Erythrozyten dreimal mit 0.9%iger NaCl gewaschen. In diesem Status war eine Aufbewahrung bei –20 °C möglich.

2.4.1.2 Probenaufarbeitung

Alle Proben wurden doppelt sowie in zeitlich voneinander unabhängigen Serien aufgearbeitet und zum Teil mehrfach massenspektrometrisch quantifiziert.

2.4.1.2.1 Alkalische Hydrolyse

100 mg Hämoglobin wurden mit einem internen Standard (je 100 pg \(d_5\)-Anilin, \(d_9\)-4-ABP, \(d_9\)-2AF) versetzt. Nach Zugabe von 0.5 ml 0.5%iger SDS-Lösung und 5 ml 1 molarer NaOH erfolgte die alkalische Hydrolyse für ca. 30 Minuten im Ultraschallbad und anschließenden 15 Minuten auf dem Rührgerät.
2.4.1.2.2 Festphasenextraktion

2.4.1.2.3 Derivatisierung, Einengung und Aufnahme der Proben

Um die Proben für die GC/MS-Analyse zugängig zu machen, wurden die Proben mit 100 µl Pentafluorpropionsäureanhydrid versetzt und für 30 Minuten bei Raumtemperatur derivatisiert. Mittels Vakuumzentrifuge (SpeedVac) erfolgte die Einengung der Derivate bis zur Trockene. Der verbliebene Rückstand wurde in 50 µl Ethylacetat aufgenommen. Bis zur GC/MS-Messung wurden die Proben bei −20 °C erneut zwischengelagert.

2.4.1.3 GC/MS-Analyse

2.4.1.3.1 Tag-zu-Tag-Empfindlichkeit

Zum Ausgleichen von Schwankungen sowie zur Kalibrierung des Meßgerätes erfolgte an jedem Messtag eine Kalibrierung der Empfindlichkeit des Massenspektrometers mittels eines Standards in den Konzentrationen 1 pg/µl und 100 fg/µl. Der verwendete Standard enthielt folgende PFPA-Derivate als Reinsubstanzen:

- d_5-Anilin (m/z 224)
- 4-Aminobiphenyl (m/z 295)
- d_9-4-Aminobiphenyl (m/z 304)
- d_9-2-Aminofluoren (m/z 316)
Jeweils 1 µl der Standardkonzentrationen wurden injiziert, die Peakflächen der einzelnen Massenfragmente als Geraden graphisch dargestellt und die Steigungen berechnet. Der Steigungsquotient aus den Geraden 4-ABP/d9-4-ABP ergab für den jeweiligen Messtag einen Kalibrierungsfaktor, der in die Berechnung der Messergebnisse einging.

2.4.1.3.2 GC/MS-Bedingungen

Zur GC/MS-Analyse wurden 1 µl Probe mit einer 10 µl-Hamilton®-Spritze on column injiziert. Um Injektorkontaminationen zu vermeiden, wurde die Kanüle vor dem Einspritzen jeweils in Ethylacetat eingetaucht. Zur Vermeidung einer möglichen Verfälschung der Messwerte aufgrund von Säulenverschmutzungen wurde die Säule nach fünf erfolgten Messungen um ca. 30 cm gekürzt.

GC-Bedingungen

Im Gaschromatographen erfolgte die Probenauf trennung nach Siedepunktunterschieden, woraus sich verschiedene Retentionszeiten der Substanzen ergaben.

Säule:

RTX®-5 MS w/Integra-Guard *(Crossbond® 5% diphenyl-, 95% dimethylpolysiloxane)*

- Länge: 30 m
- Außendurchmesser: 0,25 mm ID
- Filmdicke: 0,25 µm df

Temperaturprogramm:

- Ofentemperatur: 50 °C
- Injektortemperatur: 100 °C
- Trägergas: Helium
- Flussrate: 50 ml/min
- Säulenvordruck: 22 psi
- Injektionstechnik: on column
- Starttemperatur: 50 °C für 1 Minute
- Heizrate: 15 °C/Minute
- Endtemperatur: 270 °C für 1 Minute
- Transferline: 280 °C
- Gesamtlaufzeit: 17 Minuten
Retentionszeiten:

- d₅-Anilin: 6.472 min
- 4-Aminobiphenyl: 12.803 min
- d₉-4-Aminobiphenyl: 12.777 min
- d₉-2-Aminofluoren: 14.282 min

MS-Bedingungen

Die Fragmentation der Substanzen erfolgte im NCI („negative chemical ionisation“) Modus mittels folgender Parameter:

- Reaktandgas: Methan
- Ionenquellendruck: 1 torr
- Ionenquellentemperatur: 240 °C
- Analysator: Quadrupol
- Elektronenemission: 300 µA
- Elektronenenergie: 230 eV
- Dwell-time: 50

2.4.1.3.3 Single Ion Monitoring (SIM)

Die Substanzen wurden im SIM („single ion monitoring“) detektiert und quantifiziert. Das intensivste Fragment der Verbindungen wurde im NCI-Scan bestimmt (Abb. 4).

- d5-Anilin: 224 m/z
- 4-Aminobiphenyl: 295 m/z
- d9-4-Aminobiphenyl: 304 m/z
- d9-2-Aminofluoren: 316 m/z
Zur Identifikation konnten somit die Retentionszeiten der Substanzen in den Proben im Vergleich zu denjenigen der Standardgemische sowie die Massen der Peaks herangezogen werden.

2.4.1.4 Quantifizierungsberechnung

Zur Berechnung der absoluten Menge an 4-Aminobiphenyl in der Probe wurden die Flächen unter den Kurven (area) bestimmt. Das deuterierte 4-ABP diente als Bezugsgröße bekannter Konzentration, der Gehalt an 4-ABP bezogen auf 1 g Hämoglobin wurde nach folgender Formel berechnet (Abb. 5):

\[
[4-ABP] \text{ in pg/g Hb} = \frac{\text{Area 4-ABP (Peak An)}}{\text{Area 4-ABP-d9 (Peak IS)}} \times \frac{1000}{a}
\]

2.4.2 Biomarker: Cotinin

Als weiterer Expositionsmarker wurde der Nikotin-Metabolit Cotinin verwendet, wobei für diesen ein Radioimmunoassay (RIA) etabliert werden sollte.

Die Radioaktivität in der Probe wurde für 1 Minute im Gamma-Counter gemessen. Die Quantifizierung erfolgte über eine Eichreihe bekannter Standard-Konzentrationen.

Neben logistischen Schwierigkeiten bei der Probenentnahme und -aufarbeitung aufgrund der geringen Halbwertszeit des Cotinins (ca. 19 h) hat sich die Methodik mit Cotinin als Biomarker in der vorliegenden Versuchsreihe als zu insensitiv erwiesen, um einen signifikanten Unterschied zwischen Kindern aus Nichtraucherhaushalten und ETS-exponierten Kindern bestimmen zu können.

Auf einen Radioimmunoassay wurde vor diesem Hintergrund im weiteren Verlauf der Versuchsreihe verzichtet.
2.5 Geräte und Chemikalien

2.5.1 Substanzen
- d5-Anilin (Aldrich)
- d9-4-Aminobiphenyl (Aldrich)
- d9-2-Aminofluoren (Aldrich)
- 4-Aminobiphenyl, CAS-Nr. [92-67-1] (Aldrich)
- Cotinin, CAS-Nr. [486-56-6] (Aldrich)

2.5.2 Chemikalien
- Diethylether p.a. (Merck)
- Ethanol für die Spektroskopie (J.T. Baker)
- Ethylacetat SupraSolv® (Merck)
- Hexan (Merck)
- Methanol LiChrosolv® (Merck)
- Na-EDTA (Merck)
- Natriumdodecylsulfat (SERVA)
- Natriumsulfat, wasserfrei, gekörnt p.a. (Merck)
- Natronlauge 1N, p.a. (ROTH)
- Pentafluorpropionsäureanhydrid (Aldrich) CAS-Nr.[356-42-3]
- 2-Propanol (Merck)
- Wasser (aqua bidest)
- Wasserstoffperoxid 35% (Baker)

2.5.3 Säulen

Festphasen-Extraktionssäulen
Polysorb MP-1 (Interaction Chromatography)

Säulen für die Gaschromatographie
RTX-5MS w/Integra-Guard (Restek)
30 m l, 0,25 mm i.d., 0,25 µm df

2.5.4 Testkit

Nikotin-Metabolit-RIA (DPC Biermann, Bad Nauheim, D)
2.5.5 Geräte

Kleingeräte

- Zentrifuge: Labofuge 400 (HARAEUS, Hanau, D)
- Extraktionskammer
- Vakuumzentrifuge (SpeedVac SVS 100, SAVANT/THERMOQUEST, Egelsbach, D)
- Vortexer: Vibrox VXR (IKA, Staufen, D)
- \(\gamma \)-Counter: 1480 Wizard TM3' Automatic Gamma Counter (WALLAC, Wizard, FIN)

Analysengerät

HP 5988A-Quadrupol-MS mit HP 5890-GC (HEWLETT-PACKARD, Waldbronn, D)
3. ERGEBNISSE

3.1 Biomonitoring

3.1.1 GC/MS-Analyse

Zur Bestimmung der inneren Belastung wurde der Hämoglobinadduktspiegel bei insgesamt 82 Blutproben biochemisch untersucht und analysiert. Alle Proben wurden doppelt in zeitlich voneinander unabhängigen Serien aufgearbeitet und anhand des mitgeführten internen Standards (4-ABP-d9 bekannter Konzentration) quantifiziert. Vor jedem Messtag erfolgte eine Kalibrierung mittels zweier Standardkonzentrationen.

Die folgenden Abbildungen zeigen das Beispiel-Chromatogramm eines aus einem Nichtraucher- und einem Raucherhaushalt stammenden Kindes. Bestimmt wurde das Ion 295 (4-ABP-PFPA) und 304 (4-ABP-d9-PFPA). Zum Vergleich wurde das Chromatogramm der 1 pg-Standardlösung dieses Messstages vorangestellt (Abb. 6-10).

Abb. 6: Chromatogramm der 1 pg-Standardlösung (4-Aminobiphenyl, m/z = 295, Retentionszeit: 12,832 min; d9-4-Aminobiphenyl, m/z = 304, Retentionszeit: 12,808 min).
Abb. 7: Beispielchromatogramm (analysierte Masse m/z = 295, Retentionszeit: 12,821 min) eines aus einem Nichtraucher-Haushalt stammenden Kindes (Probe O04, zweite Messreihe) im single ion mode.

Abb. 8: Chromatogramm des in der Probe O04 mitgeführten internen Standards d9-4-Aminobiphenyl (m/z = 304, Retentionszeit: 12,798 min).
Abb. 9: Beispielchromatogramm (analysierte Masse m/z = 295, Retentionszeit: 12,805 min) eines aus einem Raucher-Haushalt stammenden Kindes (Probe 59, zweite Messreihe) im single ion mode.

Abb. 10: Chromatogramm des in der Probe 59 mitgeführten internen Standards d9-4-Aminobiphenyl (m/z = 304, Retentionszeit: 12,781 min).
3.1.2 Hämoglobinaduktspiegel

Im Anschluss an die Bestimmung des Hämoglobinaduktspiegels (pg/g Hb) aller 82 Blutproben erfolgte eine Decodierung und Zuteilung der Proben nach Maßgabe der Angaben der Eltern zu den Rauchgewohnheiten im umweltmedizinisch-allergologischen Fragebogen.

Ausgehend von einer Unterteilung nicht ETS-belastet (Nichtraucherhaushalt), ETS-belastet (Raucherhaushalt) und ehemals ETS-belastet (Eltern oder Elternteil haben/hat länger als 4 Monate zurückliegend nach eigenen Angaben aktiv geraucht) erfolgte jeweils eine Mittelwertbildung aus beiden Probenserien, wobei bei signifikanten Abweichungen Kontroll-/Mehrfachmessungen zur Gewährleistung repräsentativer und vergleichbarer Messergebnisse durchgeführt wurden (Tab. 4).
<table>
<thead>
<tr>
<th>Proband-Nr.</th>
<th>4-ABP (pg/g Hb)</th>
<th>Proband-Nr.</th>
<th>4-ABP (pg/g Hb)</th>
<th>Proband-Nr.</th>
<th>4-ABP (pg/g Hb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 08</td>
<td>42,9</td>
<td>E 32</td>
<td>74,2</td>
<td>E 30</td>
<td>107,9</td>
</tr>
<tr>
<td>O 09</td>
<td>44,3</td>
<td>E 17</td>
<td>65,8</td>
<td>E 10</td>
<td>167,6</td>
</tr>
<tr>
<td>O 18</td>
<td>43,5</td>
<td>E 20</td>
<td>60,9</td>
<td>E 21</td>
<td>46,5</td>
</tr>
<tr>
<td>O 19</td>
<td>56,5</td>
<td>E 3</td>
<td>117,9</td>
<td>E 22</td>
<td>50,6</td>
</tr>
<tr>
<td>O 05</td>
<td>66,3</td>
<td>E 19</td>
<td>117,2</td>
<td>E 16</td>
<td>106,3</td>
</tr>
<tr>
<td>O 01</td>
<td>71,3</td>
<td>E 15</td>
<td>34,3</td>
<td>E 14</td>
<td>73,3</td>
</tr>
<tr>
<td>O 02</td>
<td>42,5</td>
<td>E 21</td>
<td>43,4</td>
<td>E 15</td>
<td>51,0</td>
</tr>
<tr>
<td>O 03</td>
<td>33,9</td>
<td></td>
<td></td>
<td>E 08</td>
<td>84,3</td>
</tr>
<tr>
<td>O 04</td>
<td>68,8</td>
<td></td>
<td></td>
<td>O 09</td>
<td>79,0</td>
</tr>
<tr>
<td>O 05</td>
<td>74,7</td>
<td></td>
<td></td>
<td>O 16</td>
<td>42,8</td>
</tr>
<tr>
<td>O 06</td>
<td>47,3</td>
<td></td>
<td></td>
<td>O 67</td>
<td>92,2</td>
</tr>
<tr>
<td>O 07</td>
<td>38,0</td>
<td></td>
<td></td>
<td>O 07</td>
<td>72,7</td>
</tr>
<tr>
<td>O 08</td>
<td>30,1</td>
<td></td>
<td></td>
<td>O 28</td>
<td>36,6</td>
</tr>
<tr>
<td>O 09</td>
<td>27,9</td>
<td></td>
<td></td>
<td>O 10</td>
<td>96,1</td>
</tr>
<tr>
<td>O 10</td>
<td>35,9</td>
<td></td>
<td></td>
<td>O 77</td>
<td>62,7</td>
</tr>
<tr>
<td>O 11</td>
<td>52,1</td>
<td></td>
<td></td>
<td>O 02</td>
<td>127,7</td>
</tr>
<tr>
<td>O 12</td>
<td>58,8</td>
<td></td>
<td></td>
<td>O 06</td>
<td>32,6</td>
</tr>
<tr>
<td>O 13</td>
<td>43,6</td>
<td></td>
<td></td>
<td>O 41</td>
<td>41,3</td>
</tr>
<tr>
<td>O 14</td>
<td>53,1</td>
<td></td>
<td></td>
<td>O 17</td>
<td>72,9</td>
</tr>
<tr>
<td>O 15</td>
<td>41,8</td>
<td></td>
<td></td>
<td>O 44</td>
<td>83,9</td>
</tr>
<tr>
<td>O 16</td>
<td>39,8</td>
<td></td>
<td></td>
<td>O 13</td>
<td>80,4</td>
</tr>
<tr>
<td>O 17</td>
<td>59,8</td>
<td></td>
<td></td>
<td>O 14</td>
<td>101,8</td>
</tr>
<tr>
<td>O 18</td>
<td>54,2</td>
<td></td>
<td></td>
<td>O 04</td>
<td>82,4</td>
</tr>
<tr>
<td>O 19</td>
<td>30,0</td>
<td></td>
<td></td>
<td>O 88</td>
<td>128,5</td>
</tr>
<tr>
<td>O 20</td>
<td>60,1</td>
<td></td>
<td></td>
<td>O 79</td>
<td>60,8</td>
</tr>
<tr>
<td>O 21</td>
<td>54,0</td>
<td></td>
<td></td>
<td>O 75</td>
<td>72,8</td>
</tr>
<tr>
<td>O 22</td>
<td>92,2</td>
<td></td>
<td></td>
<td>O 65</td>
<td>46,9</td>
</tr>
<tr>
<td>O 23</td>
<td>75,1</td>
<td></td>
<td></td>
<td>O 21</td>
<td>76,7</td>
</tr>
<tr>
<td>O 24</td>
<td>64,3</td>
<td></td>
<td></td>
<td>O 73</td>
<td>40,0</td>
</tr>
<tr>
<td>O 25</td>
<td>34,3</td>
<td></td>
<td></td>
<td>O 15</td>
<td>48,3</td>
</tr>
<tr>
<td>O 26</td>
<td>79,7</td>
<td></td>
<td></td>
<td>O 70</td>
<td>111,4</td>
</tr>
<tr>
<td>O 27</td>
<td>54,0</td>
<td></td>
<td></td>
<td>O 71</td>
<td>85,7</td>
</tr>
<tr>
<td>O 28</td>
<td>58,4</td>
<td></td>
<td></td>
<td>O 26</td>
<td>48,1</td>
</tr>
<tr>
<td>O 29</td>
<td>46,6</td>
<td></td>
<td></td>
<td>O 02</td>
<td>76,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102,9</td>
</tr>
</tbody>
</table>

Tab. 4: mittlerer Hämoglobinadduktspiegel (4-APB) bei Kindern aus Nichtraucherhaushalten (nicht-ETS-belastet) und Raucherhaushalten (ETS-belastet) sowie aus Haushalten, in denen Eltern oder ein Elternteil länger als 4 Monate zurückliegend aktiv geraucht haben (ehemals-ETS-belastet).
3.1.3 Graphische Darstellungsweise: Box-Whisker-Plots

Die graphische Darstellung der Messergebnisse sowie der Probenverteilung erfolgt mittels Box-Whisker-Plot (Boxplots).

Die individuellen Messergebnisse der jeweiligen Probanden werden als Punkt dargestellt. In der „Box“ (im Bereich zwischen den Perzentilen 25 und 75) werden 50% der Messergebnisse (Werte) dargestellt, der ermittelte arithmetische Mittelwert wird durch einen Querbalken gekennzeichnet. Die Einkerbung bildet den Medianwert, d.h. die Halbierung der Messreihe bei aufsteigender Sortierung der Messergebnisse (50% der Messwerte liegen über dem Median, 50% unterhalb des Medians). Der Bereich zwischen Box und 5. bzw. 95. Perzentile („Whisker“) wird mittels einer Linie dargestellt (Abb. 11).

Abb. 11: Darstellungsweise Box-Whisker-Graphik.
3.1.4 Unterteilung Nichtraucher-/Raucherhaushalt

Die Hämoglobin-Adduktspiegel von 4-ABP, unterteilt in eine Tabakrauchbelastete und eine nicht belastete Gruppe, waren bei Kindern aus Raucherhaushalten bei einem Mittelwert von 80,0 pg/g Hb (Median: 78,4 pg/g Hb) gegenüber einem Mittelwert von 55,8 pg/g Hb (Median: 54,0 pg/g Hb) bei Kindern aus Nichtraucherhaushalten signifikant erhöht (p=0,0001) (Abb. 12, Tab. 5).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Probanden</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Median</td>
<td>54,0</td>
<td>78,4</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>55,8</td>
<td>80,0</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>167,6</td>
</tr>
<tr>
<td>Min</td>
<td>27,9</td>
<td>32,6</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±20,7</td>
<td>±30,3</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p = 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5: Messergebnisse bei Kindern aus Nichtraucher- und Raucherhaushalten.
3.1.4.1 Vergleich nach Altersklassen

Wurden die Messergebnisse nach Altersklassen (3-8 Jahre vs. 9-16 Jahre) weiter unterteilt, waren auch hier die Mittelwerte der jeweils entsprechenden Altersklasse signifikant unterschiedlich. Bei ETS-exponierten Kindern der Altersklasse 3 bis 8 Jahre lag der Mittelwert bei 75,9 pg/g Hb gegenüber 52,6 pg/g Hb in der Nicht-ETS-Gruppe (p=0,001) und bei Kindern der Altersklasse von 9-16 Jahren bei 84,7 pg/g Hb (ETS-Gruppe) gegenüber 59,3 pg/g Hb (Nicht-ETS-Gruppe) (p=0,01) (Abb. 13, Tab. 6).

<table>
<thead>
<tr>
<th>Altersklasse (Jahre)</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>21 20</td>
<td>22 19</td>
</tr>
<tr>
<td>Median</td>
<td>54,0 50,8</td>
<td>77,5 79,0</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>52,6 59,3</td>
<td>75,9 84,7</td>
</tr>
<tr>
<td>Max</td>
<td>75,1 117,9</td>
<td>128,5 167,6</td>
</tr>
<tr>
<td>Min</td>
<td>27,9 30,0</td>
<td>32,6 41,3</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±13,3 ±26,3</td>
<td>±27,5 ±33,5</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p=0,001 (3-8 Jahre) bzw. 0,01 (9-16)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6: Messwerte bei Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Altersgruppen.
3.1.4.2 Vergleich nach Geschlecht

Analysiert man die Hämoglobinadduktspiegel (4-APB) nach Geschlecht, zeigten sich sowohl in der männlichen (Mittelwert: 52,0 pg/g Hb bzw. 74,5 pg/g Hb; p=0,003) wie auch in der weiblichen Gruppe (Mittelwert: 63,3 pg/g Hb bzw. 85,8 pg/g Hb; p= 0,02) signifikant unterschiedliche Mittelwerte. Bei Mädchen konnte zudem eine Tendenz zu höheren Adduktspiegel und eine größere Variabilität in der jeweiligen Gruppe festgestellt werden (Abb. 14, Tab. 7).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>weiblich</td>
<td>männlich</td>
</tr>
<tr>
<td>Anzahl</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>Median</td>
<td>62,2</td>
<td>47,3</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>63,3</td>
<td>52,0</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>117,2</td>
</tr>
<tr>
<td>Min</td>
<td>34,3</td>
<td>27,9</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±22,8</td>
<td>±18,8</td>
</tr>
</tbody>
</table>

Signifikanz p=0,003 (männlich) bzw. 0,02 (weiblich)

Tab. 7: Messwerte bei Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Geschlecht.

Abb. 14: Hämoglobin-Adduktspiegel (4-Aminobiphenyl, pg/g Hb) von Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Geschlecht.
3.1.4.3 Vergleich von Geschwisterpaaren

Bei Vergleich von Geschwisterpaaren aus Nichtraucher- und Raucherhaushalten zeigten sich ähnlich hohe Adduktspiegel innerhalb der Geschwisterpaare (Tab. 8).

<table>
<thead>
<tr>
<th>Nichtraucherhaushalt (Alter)</th>
<th>Hämoglobinadduktspiegel (4-ABP, pg/g Hb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschwisterpaar</td>
<td></td>
</tr>
<tr>
<td>Schwester (6)</td>
<td>42,9</td>
</tr>
<tr>
<td>Bruder (8)</td>
<td>44,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raucherhaushalt (Alter)</th>
<th>Hämoglobinadduktspiegel (4-ABP, pg/g Hb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschwisterpaar 1</td>
<td></td>
</tr>
<tr>
<td>Schwester (6)</td>
<td>84,3</td>
</tr>
<tr>
<td>Schwester (9)</td>
<td>79,0</td>
</tr>
<tr>
<td>Geschwisterpaar 2</td>
<td></td>
</tr>
<tr>
<td>Bruder (12)</td>
<td>76,2</td>
</tr>
<tr>
<td>Bruder (16)</td>
<td>67,5</td>
</tr>
<tr>
<td>Geschwisterpaar 3</td>
<td></td>
</tr>
<tr>
<td>Bruder (7)</td>
<td>100,5</td>
</tr>
<tr>
<td>Schwester (9)</td>
<td>96,1</td>
</tr>
</tbody>
</table>

Tab. 8: Hämoglobin-Adduktspiegel von 4-Aminobiphenyl (pg/g Hb) bei Geschwisterpaaren.
3.1.4.4 Vergleich nach Kraftstoffart/elterliches Kfz

Um einen möglichen Einflussfaktor auf die Höhe der Adduktspiegel zu ermitteln, wurden die Messwerte nach Kraftstoffart (Benzin/Diesel) des von den Eltern laut umweltmedizinisch-allergologischem Fragebogen betriebenen Kraftfahrzeuges unterteilt. Kinder, deren Eltern angabegemäß ein Dieselfahrzeug unterhielten, wiesen mit 58,2 pg/g Hb (Nicht-ETS-Gruppe) bzw. 76,8 pg/g Hb (ETS-Gruppe) gegenüber Kindern von Eltern mit Benzin-betriebenen Kraftfahrzeugen (49,0 pg/g Hb – Nicht-ETS-Gruppe bzw. 41,5 pg/g Hb – ETS-Gruppe) im Mittel niedrigere Adduktspiegel auf (Abb. 15, Tab. 9).

Abb. 15: Hämoglobin-Adduktspiegel (4-Aminobiphenyl, pg/g Hb) von Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Art der von den Eltern betriebenen/unterhaltenen Kraftfahrzeuge (Benziner/Diesel).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftstoff</td>
<td>Benzin</td>
<td>Diesel</td>
</tr>
<tr>
<td>Anzahl</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Median</td>
<td>54,1</td>
<td>47,8</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>58,2</td>
<td>49,0</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>71,3</td>
</tr>
<tr>
<td>Min</td>
<td>27,9</td>
<td>30,1</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±22,0</td>
<td>±13,8</td>
</tr>
</tbody>
</table>

Tab. 9: Messwerte bei Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Art der von den Eltern betriebenen/unterhaltenen Kraftfahrzeuge (Benziner/Diesel).
3.1.4.5 Vergleich nach Wohnort/Aufenthaltsdauer im Straßenverkehr

Die Hämoglobin-Adduktspiegel (4-APB) wurden auf eine Abhängigkeit von Lebens- und Wohnverhältnissen (Wohnen in der Stadt oder in ländlich geprägten Gebieten) analysiert. Dabei zeigten Kindern aus Raucherhaushalten Hb-Adduktkonzentrationen, unabhängig von den Lebens-/Wohnverhältnissen (Stadt/Land), in Höhe von jeweils 81,6 pg/g Hb als Mittelwert, während sich bei der Nicht-ETS-Gruppe mit Mittelwerten von 58,4 pg/g Hb (Land) bzw. 51,1 pg/g Hb (Stadt) leichte Unterschiede nach dem Wohnumfeld ergaben (Abb. 16, Tab.10).

![Diagram](https://via.placeholder.com/150)

Abb. 16: Hämoglobin-Adduktspiegel (4-Aminobiphenyl, pg/g Hb) von Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Lebens-/Wohnverhältnissen bzw. Umfeld (Stadt/Land).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnsitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Median</td>
<td>56,5</td>
<td>77,9</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>58,4</td>
<td>81,6</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>167,6</td>
</tr>
<tr>
<td>Min</td>
<td>27,9</td>
<td>40,0</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±22,7</td>
<td>±30,5</td>
</tr>
</tbody>
</table>

Tab. 10: Messwerte bei Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach Lebens-/Wohnverhältnissen bzw. Umfeld (Stadt/Land).
Gegenübergestellt wurden auch die Adduktspiegel in Abhängigkeit von der im umweltmedizinisch-allergologischen Fragebogen angegebenen gewöhnlichen Aufenthaltsdauer im bzw. in der Nähe zum öffentlichen Straßenverkehr. Die mittlere Hb-Adduktkoncentration bei Kindern aus Nichtraucherhaushalten (Nicht-ETS-Gruppe), deren Eltern Aufenthaltsdauern der Kinder von mehr als 1 Std./Tag im öffentlichen Straßenverkehr angaben, war mit 50,8 pg/g Hb gegenüber Kindern aus Nichtraucherhaushalten mit kürzeren Aufenthaltsdauern (Mittelwert 56,7 pg/g Hb) geringer. Im Gegensatz hierzu waren bei Kindern aus Raucherhaushalten deutlich höhere Adduktspiegel zu beobachten (Mittelwerte von 90,7 pg/g Hb und 73,7 pg/g Hb) (Abb. 17, Tab. 11).

Abb. 17: Hämoglobin-Adduktspiegel (4-Aminobiphenyl, pg/g Hb) von Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach der gewöhnlichen Aufenthaltsdauer im bzw. in der Nähe zum öffentlichen Straßenverkehr.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straßenverkehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>Median</td>
<td>53,5</td>
<td>50,3</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>56,7</td>
<td>50,8</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>75,0</td>
</tr>
<tr>
<td>Min</td>
<td>27,9</td>
<td>30,0</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±22,0</td>
<td>±15,5</td>
</tr>
</tbody>
</table>

Tab. 11: Messwerte bei Kindern aus Nichtraucher- und Raucherhaushalten, unterteilt nach der gewöhnlichen Aufenthaltsdauer im bzw. in der Nähe zum öffentlichen Straßenverkehr.
3.1.4.6 Vergleich nach bestimmten Ernährungsgewohnheiten

Ausgehend von den im umweltmedizinisch-allergologischen Fragebogen angegebenen Ernährungsgewohnheiten ergab lediglich der Verzehr von geräuchertem und/oder gegrilltem Fleisch einen möglichen Einfluss auf die Höhe der Hämoglobin-Adduktspiegel (4-APB). Bei häufigerem Verzehr (mehr als 1mal/Woche) haben sich bei Kindern aus Nichtraucher-/Raucherhaushalten mit 62,6 bzw. 99,6 pg/g Hb im Mittel höhere Adduktconcentrationen ergeben als bei seltenerem Verzehr (54,8 bzw. 73,7 pg/g Hb). Die Mittelwerte der ETS-exponierten Kinder waren signifikant unterschiedlich (p=0,02) (Abb. 18, Tab. 12).

![Graph showing hemoglobin adduct levels in children from non-smoking and smoking households, divided by frequency of consumption of smoked grilled meat.](image)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>nicht ETS-belastet</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernährung: gegrilltes/geräuchertes Fleisch</td>
<td>< 1 mal</td>
<td>> 1 mal</td>
</tr>
<tr>
<td>Anzahl/Woche</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>Median</td>
<td>53,1</td>
<td>59,2</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>54,8</td>
<td>62,6</td>
</tr>
<tr>
<td>Max</td>
<td>117,9</td>
<td>117,2</td>
</tr>
<tr>
<td>Min</td>
<td>29,9</td>
<td>34,3</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±19</td>
<td>±29,6</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>keine Signifikanz</td>
<td>p=0,02</td>
</tr>
</tbody>
</table>

3.1.5 Unterteilung nach Rauchgewohnheiten der Eltern
3.1.5.1 Vergleich nach der Anzahl täglich konsumierter Zigaretten

Die Gruppe der passivrauchbelasteten Kinder wurde hinsichtlich des Rauchverhaltens der Eltern, unterteilt nach der Anzahl der täglich konsumierten Zigaretten (mehr/weniger als 20 Zigaretten/Tag), analysiert. In beiden Gruppen ließen sich mit 78,9 (weniger als 20 Zig./Tag) bzw. 79,7 pg/g Hb (mehr als 20 Zig./Tag) ähnliche mittlere Hb-Adduktkonzentrationen ermitteln (Abb.19, Tab.13).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Abb_19.png}
\caption{Hämoglobin-Adduktspiegel (4-Aminobiphenyl, pg/g Hb) von Kindern aus Raucherhaushalten, unterteilt nach der Anzahl der von den Eltern/dem rauchenden Elternteil konsumierten Zigaretten/Tag.}
\end{figure}

\begin{table}
\centering
\begin{tabular}{|l|c|c|}
\hline
Gruppe & ETS-belastet & \\
\hline
Zigarettenanzahl/Tag & < 20 Zig. & ≥ 20 Zig. \\
\hline
Anzahl der Probanden & 20 & 20 \\
Median & 81,2 & 74,8 \\
Mittelwert & 78,9 & 79,7 \\
Max & 140,2 & 167,6 \\
Min & 32,8 & 41,3 \\
Standardabweichung & ±27,7 & ±33,5 \\
\hline
\end{tabular}
\caption{Messwerte bei Kindern aus Raucherhaushalten, unterteilt nach der Anzahl der von den Eltern/dem rauchenden Elternteil konsumierten Zigaretten/Tag.}
\end{table}
3.1.5.2 Vergleich nach im Haushalt rauchenden Personen

In Raucherhaushalten, in denen beide Elternteile oder aber lediglich der Vater rauchte, war der mittlere Hämoglobin-Adduktspiegel mit 76,8 pg/g Hb (Eltern=Raucher) bzw. 78,0 pg/g Hb (Vater=Raucher) annähernd gleich, während die mittlere Hb-Adduktkonzentration von Kindern rauchender Mütter mit 82,5 pg/g Hb einen höheren Mittelwert aufwies (Abb. 20, Tab. 14).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rauchender Elternteil</td>
<td>Vater</td>
</tr>
<tr>
<td>Anzahl der Probanden</td>
<td>14</td>
</tr>
<tr>
<td>Median</td>
<td>75,8</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>78,0</td>
</tr>
<tr>
<td>Max</td>
<td>128,5</td>
</tr>
<tr>
<td>Min</td>
<td>40,0</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±25,7</td>
</tr>
</tbody>
</table>

3.1.5.3 Vergleich nach überwiegendem Ort des Zigarettenkonsums

In Abhängigkeit von den Angaben der Eltern im umweltmedizinisch-allergologischen Fragebogen zu den örtlichen Rauchgewohnheiten ergaben sich bei überwiegendem Tabakkonsum im Haus/häuslichen Umfeld mit 81,6 pg/g Hb eine im Mittel höhere Hb-Adduktkonzentration als bei Kindern rauchender Eltern, die nach eigenen Angaben überwiegend in örtlicher/räumlicher Distanz zu Kleinkindern/Kindern („außer Haus“) rauchten (Mittelwert 76,7 pg/g Hb) (Abb. 21, Tab. 15).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ETS-belastet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ort des Zigarettenkonsums</td>
<td>außer Haus</td>
</tr>
<tr>
<td>Anzahl der Probanden</td>
<td>23</td>
</tr>
<tr>
<td>Median</td>
<td>76,7</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>76,7</td>
</tr>
<tr>
<td>Max</td>
<td>167,6</td>
</tr>
<tr>
<td>Min</td>
<td>40,0</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>±28,8</td>
</tr>
</tbody>
</table>

Tab. 15: Messwerte bei Kindern aus Raucherhaushalten, unterteilt nach den örtlichen/räumlichen Rauchgewohnheiten der Eltern.
3.2 Allergien, Atemwegs- und Hauterkrankungen

Separat ausgewertet wurden die Fragebögen der Kinder, deren Blutproben mittels Biomonitoring analysiert wurden.

3.2.1 Allergien

Kinder aus Raucherhaushalten (ETS-Gruppe; n=46) wiesen mit 21,7% eine höhere Erkrankungsrate an Allergien als Kinder aus Nichtraucherhaushalten (Nicht-ETS-Gruppe; n=31) mit 19,4% auf. Unter Berücksichtigung einer genetischen Prädisposition (ein Elternteil/Eltern und/oder Großeltern selbst betroffen) war zudem der Anteil genetisch Prädisponierter in der ETS-Gruppe (40%) niedriger als in der Nicht-ETS-Gruppe (50%) (Abb. 22).

3.2.2 Lungen- und Bronchialerkrankungen

Bei Kindern aus Raucherhaushalten wurden chronische Bronchitiden (15,6%) sowie Asthma bronchiale (11,1%) häufiger diagnostiziert als bei Kindern aus Nichtraucherhaushalten (chron. Bronchitis/6,3%; Asthma bron./3,1%) (Abb. 23).

![Graph](image)

Abb. 23: Häufigkeit von Lungen- und Bronchialerkrankungen bei Kindern aus Nichtraucher- und Raucherhaushalten.

3.2.3 Hauterkrankungen (Neurodermitis)

Innerhalb der ETS-Gruppe (n=46) wurde Neurodermitis mit 23,9% gegenüber einer Erkrankungsquote von 9,7% bei Kindern aus Nichtraucherhaushalten (n=31) häufiger festgestellt. Jedoch war die genetische Prädisposition in der ETS-Gruppe (42,7%) ebenfalls höher (Nicht-ETS-Gruppe: 33,4%) (Abb. 24).

![Graph](image)

3.3 Fragebogenanalyse

Die Daten aus 211 Fragebögen, unterteilt in eine ETS/ehemals ETS-belastete (n=122; 57,8%) und eine nicht belastete Gruppe (n=89; 42,2%), wurden analysiert.

3.3.1 Subjektive Beschwerdesymptomatik

An subjektiven, nicht ärztlich diagnostizierten Beschwerden, wurden folgende Symptome, Symptomkomplexe und Erkrankungen abgefragt (Tab. 16).

<table>
<thead>
<tr>
<th></th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Milchschorf, häufige Hautentzündungen im Windelbereich, Ekzem</td>
</tr>
<tr>
<td>2.</td>
<td>Urtikaria, Quaddeln und Rötungen der Haut, Juckreiz</td>
</tr>
<tr>
<td>3.</td>
<td>Schwellung der Augenlider, der Augenpartie, des Mundbereichs</td>
</tr>
<tr>
<td>4.</td>
<td>Häufiger Husten als Säugling/Kleinkind, Bronchitis, Krupphusten</td>
</tr>
<tr>
<td>5.</td>
<td>Pfeifen und Röcheln in den Bronchien, Atemnot, Asthma</td>
</tr>
<tr>
<td>6.</td>
<td>Häufiger Schnupfen, verstopfte Nase, Heuschnupfen</td>
</tr>
<tr>
<td>7.</td>
<td>Niesanfälle (mehr als dreimal hintereinander)</td>
</tr>
<tr>
<td>8.</td>
<td>Stockschnupfen</td>
</tr>
<tr>
<td>9.</td>
<td>Polypen im Nasenrachenraum</td>
</tr>
<tr>
<td>10.</td>
<td>Tonsillenhyperplasie</td>
</tr>
<tr>
<td>11.</td>
<td>Tonsillitis, mehr als zweimal pro Jahr</td>
</tr>
<tr>
<td>12.</td>
<td>Mehr als sechsmal fieberhafte Erkältungskrankheiten pro Jahr</td>
</tr>
<tr>
<td>13.</td>
<td>Magen-Darmbeschwerden, Durchfälle mehr als sechsmal pro Jahr</td>
</tr>
<tr>
<td>14.</td>
<td>bestehende oder bestandene Wurmerkrankungen</td>
</tr>
</tbody>
</table>

Tab. 16: Symptome, Symptomkomplexe und Erkrankungen.
Dabei führten drei der abgefragten Symptome/Symptomkomplexe bzw. Erkrankungen zu größeren Unterschieden. 30,6% der Kinder aus Nichtraucher-Haushalten (n=89) gaben an, an Stockschnupfen (Abb.25, Punkt 8) zu leiden. 58,3% litten an Polypen im Nasenrachenraum (Abb.25, Punkt 9). Rezidivierende, fieberhafte Infekte (Abb.25, Punkt 12) beschrieben 23,0%.

Im Vergleich hierzu litten 22,9% der passivrauchenden Kinder (n=122) an Stockschnupfen, 45,1% an vergrößerte Gaumenmandeln. Eine erhöhte Infektanfälligkeit konnte bei 13,9% der exponierten Kinder ermittelt werden (Abb. 25).

\[\text{Abb. 25: Subjektive Beschwerdesymptomatik bei ETS-exponierten und nicht-exponierten Kindern in Prozent.}\]
Vergleich nach Alter

In der Gruppe der 2-8-Jährigen ließen sich ähnliche Verteilungen beobachten. Stockschnupfen (Abb. 26, Punkt 8) zeigten 28,6% der nicht ETS-exponierten Kinder (n=59), Gaumenmandelhyperplasien (Abb. 26, Punkt 9) beschrieben 72,7%. 50% der Befragten gaben Tonsillenhyperplasien (Abb. 26, Punkt 10) an, 31,6% eine erhöhte Infektanfälligkeit (Abb. 26, Punkt 12).

ETS-belastete Kinder (n=60) zeigten vergleichsweise niedrigere Werte. 19,6% klagten über Stockschnupfen, über Polypen 44,6%. 39,7% der passivrauchenden Kinder zeigten vergrößerte Rachenmandeln und nur 18,3% litten an rezidivierenden, fieberhaften Erkältungskrankheiten (Abb. 26).

Abb. 26: Unterteilung der subjektiven Beschwerdesymptomatik bei ETS-exponierten und nicht-exponierten Kindern in zwei Altersklassen: 2-8-Jährige.
In der Gruppe der 9-16-Jährigen konnten einige Beschwerdekomplexe gehäuft in der ETS-belasteten Gruppe (n=62) beobachtet werden. Hier gaben 37,1% an, in der frühen Kindheit an Milchschorf, häufigen Entzündungen im Windelbereich und Ekzemen (Abb. 27, Punkt 1) gelitten zu haben. 22,6% beschrieben asthmatische Beschwerden (Abb. 27, Punkt 5), 45,6% Polypen im Nasenrachenraum (Abb. 27, Punkt 9). Hyperplastische Tonsillen (Abb. 27, Punkt 10) beklagten 36,2%, häufige Tonsillitiden (Abb. 27, Punkt 11) 27,4%.

26,7% Kinder nichtrauchender Eltern gleicher Altersklasse (n=30) bejahten Milchschorf, gehäufte Windeldermatitis, sowie Ekzeme in früher Kindheit. An asthmatischen Beschwerden litten 13,3%. 31,0% gaben vergrößerte Gaumenmandeln an, 20,7% Tonsillenhyperplasien. Rezidivierende Tonsillitiden beklagten 20,7% der nicht exponierten Kinder (Abb. 27).

![Diagramm](image-url)
3.3.2 Nahrungsmittel-Unverträglichkeit

Nahrungsmittel-Unverträglichkeiten fanden sich mit 17,7% häufiger in der nicht ETS-exponierten Gruppe (n=85) als bei ETS-exponierten Kindern mit 12,0% (n=85) (Abb. 28).

3.3.3 Hyperreagibilität nach Insektenstich

Eine vermehrte Reaktion nach Insektenstich zeigten 28,6% der nicht ETS-exponierten Kinder (n=84), während bei 21,7% der ETS-exponierten Kinder (n=115) Überreaktionen zu beobachten waren (Abb. 29).
3.3.4 Allergien

22,7% der ETS-belasteten Kinder (n=122) litten an Allergien gegenüber 15,9% in der nicht ETS-exponierten Gruppe (n=89). Zudem lag der prozentuale Anteil genetisch Prädisponierter in der ETS-Gruppe (37,0%) niedriger als bei unbela-
teten Kindern (42,9%) (Abb. 30).

Abb. 30: Allergische Erkrankungen bei ETS-exponierten und nicht-exponierten Kindern in Prozent.
3.3.4.1 Art der Allergien (Einfach-, Mehrfach-, Milbenallergie)

Nach Unterteilung in Einfach- und Mehrfachallergien konnten in der ETS-exponierten Gruppe (n=87) 11,9% Einfachallergien ermittelt werden gegenüber 10,4% in der nicht ETS-exponierten Gruppe (n=118).

Verglichen mit den nicht-exponierten Kindern (4,6%) war die Rate an Mehrfachallergien in der passivrauchenden Gruppe mit 10,2% deutlich erhöht.

Betrachtet man isoliert die Entwicklung von Milbenallergien, so konnte diese ebenfalls häufiger bei ETS-exponierten (n=118; 10,2%) als bei nicht ETS-exponierten Kindern (n=87; 4,6%) diagnostiziert werden. (Abb. 31).

![Diagramm der Allergien bei ETS-exponierten und nicht-exponierten Kindern](image)

Abb. 31: Unterteilung der Allergien bei ETS-exponierten und nicht-exponierten Kindern in Einfach-, Mehrfach- und Milbenallergien.
3.3.4.2 Vergleich nach Alter und Geschlecht

Unterteilt man die Hauptgruppe in zwei Altersklassen (2-8 Jahre und 9-16 Jahre), so war sowohl in der ETS-exponierten wie auch in der nicht ETS-exponierten Gruppe der überwiegende Anteil an Allergien in der höheren Altersklasse zu finden.

Während in der Gruppe der 2-8-jährigen 6,9% der nicht ETS-belasteten und 14,4% der ETS-belasteten Kinder an Allergien litten, waren dies in der Gruppe der 9-16-jährigen 33,3% (Nicht-ETS-Gruppe) bzw. 30,7% (ETS-Gruppe).

Die Unterteilung nach Geschlecht ergab eine höhere Allergierate zugunsten der männlichen Kinder.

In der Nicht-ETS-Gruppe zeigten 18,2% der männlichen gegenüber 12,1% der weiblichen Kinder Allergien. Die gleichen Ergebnisse haben sich in der ETS-Gruppe ergeben. Hier litten 30% der männlichen und 15,3% der weiblichen Kinder an Allergien (Abb. 32).

Abb. 32: Unterteilung der Allergien bei ETS-exponierten und nicht-exponierten Kindern nach Alter und Geschlecht.
3.3.5 Hals-, Nasen- und Ohrenerkrankungen oder -Operationen

10,3% der ETS-belasteten Kinder (n=116) litten an Sinusitis, 23,3% an Tonsillitis. Hingegen wurde bei 2,3% der nicht ETS-exponierten Kinder (n=87) Sinusitiden, bei 18,4% Tonsillitiden diagnostiziert.

Tubenfunktionsstörungen wurden häufiger in der nicht ETS-exponierten Gruppe beobacht. 40,2% litten an Paukenergüssen, 26,4% der Kinder mussten operativ mit einer Paukendrainage versorgt werden. Im Vergleich hierzu fanden sich in der ETS-exponierten Gruppe 18,1% mit Paukenergüssen, drainiert wurden 22,4%.

Einer Adenotomie mussten sich häufiger Kinder aus Nichtraucher- (54,0%) als Kinder aus Raucherhaushalten (40,5%) unterziehen (Abb. 33).

Vergleich nach Alter

Eine weitere Unterteilung in Altersklassen zeigt eine ähnliche prozentuale Verteilung der Erkrankungen bzw. Operationen im HNO-Bereich bei den 2-8-Jährigen.

In der nicht ETS-exponierten Gruppe (n=59) wurden 50,9% 2-8-Jährige mit Paukenergüssen beobachtet, paukendrainiert wurden 28,8%. Otitiden konnten bei 35,6% ermittelt werden.

ETS-exponierte Kinder gleicher Altersklasse (n=57) zeigten zu 26,3% Paukenergusse, 19,3% erhielten eine Drainage. 29,8% dieser Gruppe litten an Otitis.

Sinusitis wurde bei 3,5%, Tonsillitis bei 21,1% der Kinder aus Raucherhaushalten diagnostiziert, im Vergleich zu 0% bzw. 17,0% bei Kindern aus Nichtraucherhaushalten (Abb. 34).

![Diagramm der HNO-Erkrankungen und -Operationen bei ETS-exponierten und nicht-exponierten Kindern in zwei Altersklassen: 2-8-Jährige.](image)

Abb. 34: Unterteilung der HNO-Erkrankungen und -Operationen bei ETS-exponierten und nicht-exponierten Kindern in zwei Altersklassen: 2-8-Jährige.
In der höheren Altersklasse (9-16-Jährige) nahm die Zahl der Paukenergüsse in beiden Gruppen ab. 17,9% zeigten dies in der nicht ETS-exponierten (n=28), 10,2% in der ETS-exponierten Gruppe (n=59).

Hingegen litten 42,4% der älteren, passivrauchbelasteten Kinder häufiger an Otitiden, gegenüber 28,6% der unbelasteten Kinder.

Sinusitiden und Tonsillitiden wurden sowohl in der ETS- (17,0% bzw. 25,4%), wie auch in der Nicht-ETS-Gruppe (7,1% bzw. 21,4%) häufiger bei 9-16- als bei 2-8-Jährigen diagnostiziert (Abb. 35).

3.3.6 Lungen- und Bronchialerkrankungen

12,2% der ETS-exponierten Kinder (n=115) litten an einer chronischen Bronchitis gegenüber 14,0% in der nicht exponierten Gruppe (n=86). Asthma wurde bei 8,7% der Kinder aus Raucherhaushalten diagnostiziert, im Vergleich zu 2,3% bei Kindern aus Nichtraucherhaushalten (Abb. 36).

Abb. 36: Lungen- und Bronchialerkrankungen bei ETS-exponierten und nicht-exponierten Kindern in Prozent.
3.3.6.1 Vergleich nach Alter

Nach Unterteilung in zwei Altersklassen stieg der Anteil an chronischen Bronchitiden bei 2-8-Jährigen nicht ETS-exponierten Kindern an (n=58; 17,2%), während er bei ETS-exponierten Kindern abnahm (n=54; 9,3%). Asthmatische Kinder fanden sich häufiger in der ETS-belasteten Gruppe (7,1%) als bei nicht ETS-belasteten Kindern (1,7%) (Abb. 37).
In der höheren Altersklasse (9-16 Jahre) wurde die größere Anzahl an Kindern mit chronischer Bronchitis in der ETS-exponierten Gruppe (n=61) gefunden. Hier litten 14,8% an chronischer Bronchitis, aber nur 7,1% der nicht ETS-exponierten Kinder (n=28). Ebenso wurde Asthma bronchiale häufiger in der ETS-belasteten (9,8%) als in der nicht belasteten Gruppe (3,6%) diagnostiziert (Abb. 38).

3.3.6.2 Vergleich nach Geschlecht

Die Unterteilung nach Geschlecht ergab bei den männlichen wie bei den weiblichen Kindern eine ähnliche Werteverteilung, wobei der höhere Anteil an Asthmakern jeweils in der Gruppe mit Passivrauchbelastung und chronische Bronchitiden häufiger bei Kindern nichtrauchender Eltern beobachtet wurden.

Asthma wurde sowohl in der ETS- wie auch in der Nicht-ETS-Gruppe häufiger bei männlichen (ETS: n=59, 10,2%; Nicht-ETS: n=54, 3,7%) als bei weiblichen Kindern (ETS: n=56, 7,1%; Nicht-ETS: n=32, 0%) festgestellt, während chronische Bronchitiden häufiger bei weiblichen (ETS: 12,5%; Nicht-ETS: 15,6%) als bei männlichen Kindern (ETS: 11,9%; Nicht-ETS 3,7%) vorkamen (Abb. 39, 40).

![Abb. 39: Unterteilung der Lungen- und Bronchialerkrankungen bei ETS-exponierten und nicht-exponierten männlichen Kindern.](image1)

![Abb. 40: Unterteilung der Lungen- und Bronchialerkrankungen bei ETS-exponierten und nicht-exponierten weiblichen Kindern.](image2)
3.3.7 Hautkrankheiten

An Neurodermitis erkrankte Kinder waren in ähnlich hohen Prozentzahlen sowohl in der ETS-exponierten (n=114, 14,9%) wie auch in der nicht exponierten Gruppe (n=80; 13,8%) zu finden. Darüber hinaus war auch die genetische Prädisposition in beiden Gruppen (ETS: 35,3%; Nicht-ETS: 36,4%) annähernd gleich hoch (Abb. 41).

Abb. 41: Neurodermitis bei ETS-exponierten und nicht-exponierten Kindern in Prozent.
3.3.8 Stillgewohnheiten und -dauer

3.3.8.1 Allergische Erkrankungen (Allgemein)

Kein Zusammenhang konnte zwischen der Stilldauer und der Rate an Allergien hergestellt werden. Hier zeigten in beiden Gruppen die nicht gestillten Kinder prozentual die niedrigsten Werte.

In der Gruppe der Mütter, die ihre Kinder nicht gestillt hatten (nicht ETS-exponiert: n=16; ETS-exponiert: n=37), wurden bei 13,5% der Kinder mit Passivrauchbelastung Allergien beobachtet, gegenüber 12,5% in der nicht ETS-exponierten Gruppe.

Wurden die Kinder weniger als 6 Monate gestillt (nicht ETS-exponiert: n=22; ETS-exponiert: n=42), litten 31,7% der exponierten Kinder an Allergien, ohne Tabakrauchexposition lag die Allergierate bei 18,2%.

Bei einer Stilldauer von mehr als 6 Monaten (nicht ETS-exponiert: n=46; ETS-exponiert: n=41) entwickelten 17,4% der unbelasteten und 20,5% der ETS-belasteten Kinder Allergien (Abb. 42).

![Diagramm zur Veranschaulichung der Daten]

Abb. 42: Einfluss der Stilldauer bei ETS-exponierten und nicht-exponierten Kindern auf die Entstehung von Allergien in Prozent.
3.3.8.2 Lungen- und Bronchialerkrankungen

Hinsichtlich der Entwicklung chronischer Bronchitiden zeigten Kinder aus Nichtraucherhaushalten bei einer Stilldauer von mehr als 6 Monaten (n=46) die niedrigste Erkrankungsrate (8,7%) gegenüber nicht (n=16; 18,8%) bzw. kürzer gestillten Kindern (n=21; 23,8%).

Ebenso wurde Asthma bronchiale häufiger bei nicht gestillten (n=16; 6,3%) als bei gestillten Kindern (<6 Mo: n=21, 0%; >6 Mo: n=46, 2,2%) beobachtet.

Demgegenüber war bei Kindern rauchender Eltern keine niedrigere Erkrankungsrate durch mütterliches Stillen zu erkennen. Während 8,6% der nicht gestillten Kinder (n=35) an chronischer Bronchitis litten, wurde dies bei 12,2% (<6 Mo: n=41) bzw. 10,5% (>6 Mo: n=38) der gestillten Kinder diagnostiziert.

An Asthma bronchiale erkrankten 8,82% der nicht gestillten Kinder (n=34) verglichen mit 4,88% (<6 Mo: n=41) bzw. 13,16% (>6 Mo: n=38) der gestillten Kinder (Abb. 43, 44).

![Diagram](image-url)

Abb. 43: Einfluss der Stilldauer auf die Entstehung von chronischer Bronchitis in Prozent.
3.3.8.3 Neurodermitis

18,8% der nicht ETS-exponierten Kinder, die nicht gestillt wurden (n=16), entwickelten Neurodermitis, während bei gestillten Kindern (<6 Mo: n=20, 5%; >6 Mo: n=42, 11,9%) eine niedrigere Erkrankungsraten zu beobachten war.

In der Gruppe der ETS-belasteten Kinder fand sich mit 26,2% der höchste Anteil an Neurodermitis Erkrankten bei den am längsten gestillten Kindern (n=38), während nicht (n=35; 11,4%) bzw. kürzer gestillte Kinder (n=40; 10%) weniger häufig an Neurodermitis litten (Abb. 45).
3.3.9 Rauchgewohnheiten der Eltern

3.3.9.1 Vergleich nach der Anzahl täglich konsumierter Zigaretten

3.3.9.1.1 Allergische Erkrankungen (Allgemein)

Die Kinder aus Raucherhaushalten wurden nach der Anzahl der konsumierten Zigaretten pro Tag in drei Gruppen aufgeteilt.

Rauchten beide Elternteile weniger als 15 Zigaretten pro Tag (n=38), lag der Anteil allergisch erkrankter Kinder bei 23,7%. Ähnliche Werte ergaben sich mit 23,1% bei einem täglichen Zigarettenkonsum von 15 bis 39 Zigaretten (n=39). Den niedrigsten prozentualen Anteil an Kindern mit Allergien wurden in der mit 40 bis 79 Zigaretten pro Tag (n=21) am höchsten belasteten Gruppe gefunden. (Abb. 46).

![Diagramm](image-url)

3.3.9.1.2 Lungen- und Bronchialerkrankungen

In der Gruppe der Kinder, deren Eltern bis zu 14 Zigaretten täglich rauchten (n=39), lag der Anteil an chronischen Bronchitiden bei 2,6%. Bei 15 bis 39 pro Tag gerauchten Zigaretten (n=37) konnte bei 10,8% eine chronische Bronchitis festgestellt werden. Der höchste prozentuale Anteil an chronischer Bronchitis erkrankter Kinder lag mit 26,3% in der am höchsten belasteten Gruppe mit einem täglichen Konsum von 40 bis 79 Zigaretten (n=19).

Demgegenüber zeigten Kinder bei einem elterlichen Zigarettenkonsum von 15-39 Zigaretten pro Tag die niedrigste Erkrankungsrate an Asthma bronchiale, im Vergleich zu 15,4% bzw. 15,8% in der Gruppe mit weniger als 14 bzw. mehr als 40 Zigaretten pro Tag (Abb. 47).

3.3.9.1.3 Hauterkrankungen (Neurodermitis)

Kein Zusammenhang ergab sich zwischen der Anzahl der täglich konsumierten Zigaretten und der Erkrankungsrate an Neurodermitis. Während 20,5% der Kinder bei einem elterlichen Zigarettenkonsum von bis zu 14 Zigaretten pro Tag (n=39) an Neurodermitis litten, erkrankten 10,8% bei 15 bis 39 (n=37) bzw. 20% bei 40 bis 79 Zigaretten pro Tag (n=20) (Abb. 48).

3.3.9.2 Einteilung nach der im Haushalt rauchenden Person

3.3.9.2.1 Allergische Erkrankungen (Allgemein)

ETS-exponierte Kinder wurden weiter in Hinblick auf das Rauchverhalten der Eltern analysiert und in drei Gruppen, je nach rauchendem Elternteil (Vater, Mutter, beide), unterteilt.

Allergien wurden bei 30,8% der Kinder beobachtet, deren Väter rauchten (n=39). Rauchte nur die Mutter (n=15), entwickelten 20% der Kinder Allergien. Waren beide Elternteile Raucher (n=37), fanden sich 16,2% allergisch erkrankte Kinder (Abb. 49).

3.3.9.2.2 Lungen- und Bronchialerkrankung

Lag die Passivrauchbelastung allein väterlicherseits (n=39), wurde bei 7,7% der Kinder eine chronische Bronchitis diagnostiziert, 10,3% erkrankten an Asthma bronchiale. War nur die Mutter Raucherin (n=15), litten 6,7% an Asthma bronchiale, chronische Bronchitis wurde nicht beobachtet. Trugen Vater und Mutter zur Passivrauchexposition bei (n=34), lag der prozentuale Anteil an chronischer Bronchitis bei 17,7%, an Asthma bronchiale bei 8,8% (Abb. 50).

3.3.9.2.3 Hauterkrankungen (Neurodermitis)

An Neurodermitis erkrankten 18,4\% der Kinder, deren Väter rauchten (n=38), während 13,3\% eine rauchende Mutter (n=15) hatten. Waren beide Elternteile Raucher (n=35), betrug der Anteil an Neurodermitis erkrankter Kinder 14,3\% (Abb. 51).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Einfluss der elterlichen Rauchgewohnheiten bei ETS-exponierten Kindern auf die Entstehung von Neurodermitis in Prozent. Unterteilung nach den im Haushalt rauchenden Personen.}
\end{figure}
3.3.9.3 Einteilung nach dem Ort des Zigarettenkonsums

3.3.9.3.1 Allergische Erkrankungen (Allgemein)

Eine weitere Unterteilung der tabakrauchbelasteten Kinder erfolgte nach dem Ort des Zigarettenkonsums in zwei Gruppen (im oder außerhalb des Haushaltes).

Wurde im elterlichen Haushalt geraucht (n=38), litten 18,4% der Kinder an Allergien im Vergleich zu 22,6% der Kinder, deren Eltern angaben, außerhalb des Haushaltes (n=53) zu rauchen (Abb. 52).

![Bar Diagram](image.png)

3.3.9.3.2 *Lungen- und Bronchialerkrankungen*

Wurden die Zigaretten außerhalb des Haushaltes geraucht (n=53), war die Erkrankungsrate an chronischer Bronchitis (13,2%) und Asthma bronchiale (15,1%) höher als in der Gruppe mit Passivrauchbelastung im häuslichen Bereich (8,3% bzw. 2,8%) (Abb. 53).

![Bar Diagram](image-url)
3.3.9.3.3 Hauterkrankungen (Neurodermitis)

An Neurodermitis erkrankte Kinder fanden sich häufiger in Haushalten in denen nicht geraucht wurde (n=53; 24,3%) als bei Kindern, die einer häuslichen Passivrauchbelastung (n=37; 5,4%) ausgesetzt waren (Abb. 54).

4. DISKUSSION

4.1 Biochemisches Effektmonitoring

Aufgrund der weltweit verbreiteten Gewohnheit des Zigarettenrauchens zählt die Exposition durch Tabakrauchkomponenten zu einer der wichtigsten gesundheitsschädigenden chemischen Noxen des kindlichen Organismus. Allein in Deutschland sind mindestens 50% aller Kinder bis zum Alter von 13 Jahren den Belastungen des Tabakrauchs ausgesetzt [DKFZ 2003].

Ziel des biochemischen Effektmonitorings war es nun, einen Zusammenhang zwischen der äußeren Exposition durch Tabakrauch und der tatsächlichen inneren Belastung und Beanspruchung herzustellen und zur Risikoabschätzung zu quantifizieren.

Als Expositionsmarker für Passivrauchen dienten Hämoglobinaddukte von 4-Aminobiphenyl, ein kanzerogener Stoff, der im Nebenstromrauch etwa 30fach höher konzentriert vorkommt als im Hauptstromrauch [Richter E, Scherer G 2004].

Bei Vergleich der Hämoglobinadduktspiegel von 4-ABP bei Kindern aus Raucher- und Nichtraucher-Haushalten zeigten die Kinder aus Raucher-Haushalten signifikant höhere Adduktspiegel (p=0,0001).

Aufgrund dieser Ergebnisse bestätigte sich der Einsatz von 4-ABP-Hämoglobinaddukten als geeigneter biochemischer Marker.

Um den Einfluss des Alters auf die Höhe der Adduktspiegel zu ermitteln, wurde die Gesamtgruppe in zwei Altersklassen (3-8 Jahre vs. 9-16 Jahre) unterteilt. Auch hier waren die Mittelwerte der jeweils entsprechenden Altersklasse signifikant unterschiedlich (p=0,001 bzw. p=0,01). Bei Betrachtung der Werteverteilung fiel dieser Unterschied vor allem in der Kleinkindgruppe auf, die den überwiegenden Teil des Tages in Innenräumen sowie in der Nähe ihrer Eltern verbringen. In der Jugendgruppe kam es zu einer größeren Streuung, bedingt durch vereinzelt sehr hohe Messwerte. Diese kamen möglicherweise dadurch zustande, dass die Jugendlichen ohne Wissen der Eltern selbst rauchten.

Geschlechtsspezifische Unterschiede wurden nach Unterteilung der Gruppe in männliche und weibliche Kinder deutlich. Insgesamt zeigten Mädchen tendenziell höhere 4-ABP-Adduktspiegel sowie eine größere Streubreite der Messwerte an, was auf eine möglicherweise vermehrte Empfindlichkeit des weiblichen Organismus hindeutet. Anhand eines Tiermodells konnte beispielsweise beobachtet werden, dass weibliche Ratten nach oraler Gabe von 4-Aminobiphenyl höhere Adduktspiegel aufwiesen als männliche Tiere [Zwirner-Baier I 2000].

Das ubiquitäre Vorkommen von 4-Aminobiphenyl in der Umwelt macht es unverzichtbar, nach Faktoren zu fahnden, die als sogenannte Hintergrundbelastung die Höhe der Adduktspiegel zu beeinflussen mögen. Dies wird z.B. dadurch deutlich, dass auch die aus Nichtraucher-Haushalten stammenden Kinder eine Belastung durch 4-Aminobiphenyl aufweisen.

Dieselabgase kommen als möglicher Faktor für eine erhöhte Hintergrundbelastung in Betracht. Es konnte jedoch kein Zusammenhang zwischen der Benutzung eines Diesel- oder Benzinfahrzeuges in der Familie und der Höhe der 4-Aminobiphenyl-Werte gefunden werden.

sich bei Kindern aus München 1,5- bis 2fach höhere 4-ABP-Adduktspiegel als bei Kindern aus Eichstätt und Augsburg (p<0,001), während Tabakrauch nur zu einer leichten, aber nicht signifikanten Erhöhung führte. Aufgrund methodischer Mängel (unterschiedliche Patientenrekrutierung und -kollektiv, Fragebögen, Probennahme und Blutaufarbeitung) sind die Ergebnisse der Studie jedoch kritisch zu hinterfragen. Im Gegensatz dazu ließ sich in der vorliegenden Arbeit weder bei Vergleich des Wohnsitzes (Stadt bzw. Land) noch nach der Aufenthaltsdauer im Straßenverkehr ein Unterschied in der Höhe der 4-ABP-Adduktspiegel feststellen.

Lediglich die Ernährungsgewohnheiten zeigten sich als möglicher Einflussfaktor. Sowohl in der Gruppe der ETS-exponierten Kinder als auch in der unbelasteten Gruppe fielen erhöhte Einzelwerte bei Kindern auf, die angaben, einen erhöhten Verzehr an gegrilltem oder geräuchertem Fleisch zu haben. Allerdings war die Gruppengröße zu gering, um dies statistisch weitgehend untermauern zu können.

Unter Berücksichtigung der im Haushalt rauchenden Person zeigte sich eine Tendenz zu höheren Adduktspiegeln bei Kindern rauchender Mütter. Dabei waren die mittleren Adduktspiegel (n=11, Mittelwert 82,5 pg/g Hb) vergleichsweise höher als bei Kindern mit rauchenden Vätern (n=14, Mittelwert 78,0 pg/g Hb), was durch den größeren Kontakt des Kindes zur Mutter erklärbar wäre. Waren
jedoch beide Elternteile Raucher, konnte dieser Effekt nicht beobachtet werden. Vielmehr wurde in dieser Gruppe der niedrigste Mittelwert erzielt (n=15, Mittelwert: 76,8 pg/g Hb). Möglicherweise könnte hier eine größere Stichprobe eine genauere Erklärung liefern.

Die Frage nach der äußeren Exposition beinhaltete auch die Frage nach dem Ort des Zigarettenkonsums. 62% der Eltern gaben an, außerhalb des Hauses zu rauchen, nur 38% der Eltern bejahten auch innerhalb des häuslichen Bereiches zu rauchen. In der Gruppe der Kinder, deren Eltern im häuslichen Umfeld rauchten, konnten gering höhere Werte (n=14, Mittelwert 81,6 pg/g Hb) als in der Gruppe, deren Eltern angaben, nur außerhalb zu rauchen (n=23, Mittelwert 76,7 pg/g Hb), gemessen werden. Zwei Studien [Mascola MA et al. 1998, Bahcceciler NN et al. 1999] untersuchten anhand von Cotinin-Messungen die Effektivität dieser „Sicherheitsmaßnahme“. Die Ergebnisse zeigten ebenfalls keine signifikanten Unterschiede, ob die Eltern innerhalb oder nur außerhalb rauchten.

So konnten bei Geschwisterpaaren bei gleicher äußerer Exposition ähnlich hohe Adduktspiegel gemessen werden, ein Tatbestand, der den Einfluss genetisch bedingter Unterschiede stützt.
4.2 Allergien, Atemwegs- und Hautkrankheiten

Zumeist wurden die Daten allein durch Befragung der Eltern erhoben. Ziel der vorliegenden Arbeit war es, die äußere Exposition durch einen objektiven Parameter als Ausdruck der inneren Belastung zu unterlegen.

Prozentual entwickelten Kinder aus Raucher-Haushalten (n=45) häufiger chronische Bronchitiden (15,6%) sowie Asthma bronchiale (11,1%) als Kinder aus Nichtraucher-Haushalten (n=32; 6,3% bzw. 3,1%). Diese Ergebnisse decken sich mit denen der Literatur.

Auch konnte ein erhöhtes Auftreten von Neurodermitis (23,9%) in der ETS-belasteten Gruppe (n=46) im Vergleich zu den nicht ETS-belasteten Kindern (n=31, 9,7%) gefunden werden. Geschmälert wird dieser Effekt durch das erhöhte Vorliegen einer genetischen Vorbelastung in der ETS-Gruppe, was heißt, dass Eltern bzw. Großeltern bereits Atopiker waren. Als Atopie wird dabei die erbliche Neigung, Allergien vom Soforttyp zu entwickeln, bezeichnet.

Somit scheint ETS eine allergische Sensibilisierung eines normalerweise harmlosen Antigens induzieren zu können, wenngleich der vollständige Mechanismus noch nicht komplett verstanden ist.

4.3 Fragebogenanalyse

Ein gesonderter Ergebnisteil beruht allein auf den erhobenen Daten der von den Eltern ausgefüllten Fragebögen. Dabei gingen 211 Fragebögen in die Auswertung ein, unterteilt in eine ETS-belastete mit 122 und eine unbelastete Gruppe mit 89 Kindern der Altersklasse 2-16 Jahre.
Zusammenfassend zeigen die gewonnenen Ergebnisse eine auffällige Häufung an subjektiv empfundenen Beschwerden (Milchschorf/Ekzeme, Husten/Bronchitis, Polypen, Tonsillenhyperplasien, rezidivierenden Tonsilitiden), HNO-Erkrankungen und -Operationen (Otitiden, Schwerhörigkeit, Sinusitiden, Tonsillektomien) sowie chronischen Bronchitiden bei passivrauchbelasteten älteren Kindern, was auf eine möglicherweise längere Expositionszeit zurückzuführen ist. Jedoch muss kritisch angemerkt werden, dass es bei der Altersunterteilung zu unterschiedlichen Gruppengrößen kam.

Nahrungsmittel-Unverträglichkeiten und Überreaktionen nach Insektenstichen ließen keinen Zusammenhang mit Passivrauchen erkennen. Vielmehr zeigte die unbelastete Gruppe ein tendenziell vermehrtes Vorkommen. Im Gegensatz hierzu zeigten die Daten einer 1999 veröffentlichten Studie von Kulig et al., dass Kinder, die vor und nach Geburt Tabakrauch exponiert waren, während der ersten drei Lebensjahre ein signifikant erhöhtes Risiko einer Sensibilisierung auf Nahrungsmittelallergene hatten im Vergleich zu nicht exponierten Kindern [Kulig M et al. 1999].

Waren Kinder zu Hause gegenüber Tabakrauch exponiert, konnte ein erhöhtes Auftreten von Asthma bronchiale, unabhängig vom Alter der Kinder, nicht je-

Eine Korrelation der Anzahl der gerauchten Zigaretten mit der Rate an Allergien, Asthma bronchiale und Neurodermitis konnte nicht gefunden werden, wobei die Gruppe der am höchsten belasteten Kinder die kleinste Fallzahl aufwies und somit den größten Schwankungen unterlag. Lediglich hinsichtlich der Häufigkeit chronischer Bronchitiden ließ sich eine Zunahme bei steigendem Zigarettenkonsum erkennen.

Unterschiedliche Gruppengrößen beeinflussten auch die Ergebnisse bei der Frage nach der im Haushalt rauchenden Person. Während Kinder rauchender
Väter häufiger Allergien, Asthma bronchiale und atopische Ekzeme aufwiesen, traten chronische Bronchitiden häufiger auf, wenn beide Elternteile rauchten.

Insgesamt muss die Beurteilung der aus den Fragebögen erhobenen Daten kritisch hinterfragt werden, da in einigen Fällen eine gleichmäßige Verteilung in Untergruppen nicht möglich war, was eine Verfälschung der erhobenen Daten hervorgerufen haben könnte.

4.4 Bedeutung des Passivrauchens für das kindliche Risiko

Angesichts der zunehmenden Tabakrauchbelastung im häuslichen Bereich, sollte auf die Auswirkungen auf den kindlichen Organismus ein besonderes Augenmerk gerichtet werden, zumal der kindliche Organismus eine erhöhte Empfindlichkeit für genotoxische Belastungen sowie für die Einwirkung schädigender Substanzen aufweist.

Dies begründet sich darauf, dass Organe und Immunsystem noch nicht voll ausgereift bzw. entwickelt sind. Es existieren somit weniger Möglichkeiten zur Entgiftung von Schadstoffen. Zudem weist der kindliche Organismus eine höhere Stoffwechselrate auf, die ihn anfälliger für Schadstoffe macht. Auch ist die Atemfrequenz sowie das Atemminutenvolumen pro Kilogramm Körpergewicht höher, so dass im Verhältnis zum Körpergewicht mehr schädigende Substanzen eingeatmet werden [DKFZ 2003].

Somit belegen die signifikant höheren Adduktspiegel der Kinder aus Raucherhaushalten nicht nur eine erhöhte Belastung des kindlichen Organismus mit einem kanzerogenen Inhaltsstoff des Tabakrauchs durch Passivrauchen, sondern zeigen auch einen biochemischen Effekt und somit molekularen Schaden an, was ein möglicherweise erhöhtes Risiko für eine spätere Krebserkrankung darstellt.

4.5 Prävention

Die anerkannten gesundheitsschädlichen Wirkungen des Rauchens haben bereits zu umfassenden Maßnahmen zur Reduzierung des Tabakkonsums in der Bevölkerung geführt (Erhöhung der Tabaksteuer, Tabakwerbeverbote, Maßnahmen zur Produktregulation/Warnhinweise auf Zigarettenpackungen, Verkaufsbeschränkungen, Kontrollen) und spiegeln sich jüngst in der forcierten Durchsetzung des Nichtraucherschutzes wider (Rauchverbote in öffentlichen Einrichtungen und Restaurants etc.).

Bei gesetzlichen Maßnahmen muss wie für alle Kanzerogene das Vorsorgeprinzip gelten, d.h. eine möglichst weitgehende Vermeidung der Tabakrauchexposition. Vor allem für Kinder ist dies bedeutsam, da sie eine lange Lebenszeit vor sich haben, in der sich gentoxische Schäden anhäufen können.

Die gewonnenen Erkenntnisse verdeutlichen die durch Tabakrauch entstehenden Risiken für die kindliche Gesundheit und sind für erfolgreiche Aufklärungskampagnen und präventivmedizinischen Maßnahmen von nicht zu unterschätzendem Vorteil.
5. ZUSAMMENFASSUNG

Der Zigaretten- und Tabakkonsum wird zunehmend als das bedeutendste einzelne Gesundheitsrisiko sowie als führende Ursache frühzeitiger Sterblichkeit beurteilt. Statistiken zufolge sterben allein in Deutschland 110.000-140.000 Personen jährlich an den unmittelbaren Folgen des Tabakkonsums. Neben dem Gesundheitsrisiko für den Raucher wird zunehmend auch die Tabakrauchbelastung von Nichtrauchern als Gesundheitsrisiko erkannt und stellt inzwischen die bedeutendste Quelle von Luftverschmutzung in Innenräumen dar. Vor allem Kinder sind mangels Vermeidbarkeit dem Tabakrauch weitgehend schutzlos ausgesetzt. In Deutschland lebt etwa jedes zweite Kind in einem Haushalt, in dem mindestens eine Person raucht, jedes fünfte Kind ist bereits im Mutterleib durch Tabakrauch gefährdet.

Das untersuchte Patientenkollektiv setzt sich aus 211 Kindern der Altersklasse 2-16 Jahre zusammen, die 1999/2000 ambulant oder stationär in der Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke der Universität Würzburg behandelt wurden. Mittels eines umweltmedizinischen Fragebogens wurden neben relevanten Krankheitserscheinungen, Ernährung, Familien- und Wohnumfeld insbesondere die Rauchgewohnheiten der Eltern als Maß für die äußere Exposition erfasst. Zur Bestimmung der inneren Belastung wurde bei 82 Kindern Hämoglobinaddukte von 4-Aminobiphenyl bestimmt, einem humankanzeroge-
nen aromatischen Amin. Dieses Amin kommt im Nebenstromrauch etwa 30fach höher konzentriert vor als im Hauptstromrauch.

Die signifikant höheren Adduktspiegel der Kinder aus Raucherhaushalten belegen nicht nur eine erhöhte Belastung des kindlichen Organismus mit einem kanzerogenen Inhaltsstoff des Tabakrauchs durch Passivrauchen, sondern zeigen auch einen biochemischen Effekt und somit molekularen Schaden an, was ein möglicherweise erhöhtes Risiko für eine spätere Krebserkrankung darstellt.

Angesichts der zunehmenden Tabakrauchbelastung im häuslichen Bereich, sollte auf die Auswirkungen auf den kindlichen Organismus ein besonderes Augenmerk gerichtet werden. Zumal der kindliche Organismus eine erhöhte Emp-
findlichkeit für gentoxische Belastungen sowie für die Einwirkung schädigender Substanzen aufweist, sollte Tabakrauch so weit wie möglich reduziert und vermieden werden.
Fragebogen
Allergologie und Umweltmedizin

Bitte beantworten Sie die Fragen möglichst genau und vollständig.
Ihre Angaben unterliegen der ärztlichen Schweigepflicht; die
datenschutzrechtlichen Bestimmungen werden streng eingehalten.

Personalausweis:
Name: ..
Geb.-Datum: ..
Vornamen: ..
Schule: ..
Geschlecht: ...
Beiliefern: Berufabschluß von Vater und / oder Mutter: ..
Jetztige Tätigkeit: ...

1 Leiternamnese

1.1 Aufgrund welcher Beschwerden ist Ihr Kind in der Klinik? Geben Sie bitte mit eigenen Worten eine kurze
Beschreibung der jetzigen Beschwerden
..
..
..

Bestehen oder bestanden folgende Krankheitserscheinungen:

1.1.1	Milchschorf, häufige Hautentzündungen am Windelbereich, Ekzem	□ ja □ nein
1.1.2	Nieselnsucht, Qadzein und Rötungen der Haut, Juckreiz	□ ja □ nein
1.1.3	Schwellung der Augenlider, der Augenpartie, des Mundbereichs	□ ja □ nein
1.1.4	Häufiger Husten als Säugling/Kleinkind, Bronchitis, Krupp husten	□ ja □ nein
1.1.5	Pfeifen und Röcheln in den Bronchien, Atemnot, Asthma	□ ja □ nein
1.1.6	Häufiger Schnupfen, verstopte Nase, Heuschnupfen	□ ja □ nein
1.1.7	Niesanfälle (mehr als 3 mal hintereinander)	□ ja □ nein
1.1.8	Stocksnupfen (verstopfte Nase)	□ ja □ nein
1.1.9	Polypen im Nasenrachenraum	□ ja □ nein
1.1.10	Vergrößerte Mandeln	□ ja □ nein
1.1.11	Mandelentzündungen / mehr als 2 mal pro Jahr	□ ja □ nein
1.1.12	Mehr als 6 mal fiebrige Erkältungskrankheiten pro Jahr	□ ja □ nein
1.1.13	Magen- Darmsbeschwerden, Durchfälle mehr als 6 mal pro Jahr	□ ja □ nein
1.1.14	Bestehen oder bestanden Wurmerkrankungen	□ ja □ nein
1.2 Wann sind die Beschwerden am ausgeprägtesten? (mehrere Antworten möglich)
1. Frühjahr
☐ morgens
☐ abends
2. Sommer
☐ morgens
☐ abends
3. Herbst
☐ morgens
☐ abends
4. Winter
☐ morgens
☐ abends

☐ in geschlossenen Räumen? Wenn ja: in welchen?
☐ bei bestimmten Tätigkeiten? Wenn ja: bei welchen?

1.3 Wie verlaufen die Beschwerden?
☐ besten dauernd
☐ haben sich verschlechtert seit:
☐ verlaufen schubweise
☐ an bestimmte Tätigkeiten gebunden:
☐ haben sich gebessert seit:

1.4 Besteht zeitweilige oder völlige Beschwerdefreiheit?
☐ ja
☐ nein

☐ in bestimmten Zimmern:
☐ in bestimmten Gebäuden:
☐ an der See
☐ im Hochgebirge
☐ bei Regen
☐ bei längerer Trockenheit

1.5 Bestehen regelmäßige Tierkontakte?
☐ ja
☐ nein

Wenn ja, welche:

1.6 Treten bei oder nach Tierkontakten deutliche Beschwerden auf?
☐ ja
☐ nein

1.7 Bestehen Unverträglichkeiten gegen bestimmte Nahrungsmittel?
☐ ja
☐ nein

Wenn ja, welche:

1.8 Gab es vermehrt Schwellungen / Rötungen / Jucken bei insektenstichen?
☐ ja
☐ nein

2 Anamnese

2.1 Welche der folgenden Erkrankungen sind bei Ihrem Kind ärztlich festgestellt worden?

2.1.1 Allergien
☐ ja
☐ nein

2.1.1.1 Wenn ja, welche:

2.1.2 Hals-, Nasen- und Ohrenkrankungen oder Operationen
☐ ja
☐ nein

1. Ohrfeuchtigkeitsinfekt
☐ Paukenerguß
☐ Ohrentzündung
☐ Ohrenkatarrh
☐ Ohrenschmerzen
☐ Ohrschmerzen
☐ Ohrenknistern

2. Ohrentzündung
☐ Adenotomie (Polymerinfekt)
☐ Operation
☐ Tonsillektomie (Mandellentfernung)
☐ Operation
☐ Tonsillektomie (Mandellentfernung)
☐ Operation
☐ Tonsillektomie (Mandellentfernung)

3. Schmerzhaftigkeit
☐ Ulkus
☐ Geschwür
☐ Geschwır

2.1.3 Lungen- und Bronchialerkrankungen
☐ ja
☐ nein

1. chronische Bronchitis
☐ Asthma
☐ andere

2.1.4 Hautkrankheiten
☐ ja
☐ nein

1. Neurodermitis
☐ Nesselsucht (Urticaria)
☐ andere

2.1.5 Hatte Ihr Kind Unfälle, sonstige schwere Erkrankungen oder Operationen?
☐ ja
☐ nein

2.1.5.1 Wenn ja, geben Sie bitte Art des Unfalls der Erkrankung bzw. der Operation und den Zeitpunkt an:

© G. Baier, Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke der Universität Würzburg
2.2 Nimmt Ihr Kind Medikamente/Vitamine oder Sonstiges ein? □ ja □ nein
2.2.1 Wenn ja, geben Sie bitte den Namen, die Dosis und die Einnahmedauer an:

2.3 Wie groß ist Ihr Kind? ... cm

2.4 Wie viel wiegt Ihr Kind? ... kg

2.5 Ist Ihr Kind gestillt worden? □ ja □ nein
Wenn ja, wie lange: ... (Monate)

2.6 Besucht / besuchte Ihr Kind einen Kindergarten □ ja □ nein

3 Familienanamnese

3.1 Hat Ihr Kind Geschwister? □ ja □ nein Brüder/.... Schwester/in

3.2 Haben andere Mitglieder Ihrer Lebensgemeinschaft ähnliche Beschwerden wie Ihr Kind? □ ja □ nein

3.2.1 Wenn ja, bitte nähere Angaben ..

3.3 Sind in Ihrer Familie folgende Erkrankungen aufgetreten?

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>ja</th>
<th>nein</th>
<th>wer?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 chronische Bronchitis/Lungenkrankheiten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Allergien/Neurodermitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 sonstige</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Wohnbereich

4.1 Geben Sie bitte Ihren derzeitigen Wohnhaustyp an:

1) 1-2 Familienhaus 3) Hochhaus
2) Mehrfamilienhaus 9) sonstiges

4.2 In welcher Etage wohnen Sie? Etage
4.3 Wie groß ist die Wohnung, in der Sie leben? ca.qm
4.4. Wie viele Räume hat Ihre Wohnung? Räume
4.5 Wie alt ist das Gebäude? ca. Jahre

4.6 Seit wieviel Jahren leben Sie dort? Mo./Jahre

4.7 In welchem Wohnumfeld liegt Ihre Wohnung?

1) Stadt (mehr als 10000 Einwohner) 2) auf dem Land (weniger als 10000 Einwohner)

4.8 Gibt es in Ihrem Wohnumfeld...

<table>
<thead>
<tr>
<th>Gewerbe</th>
<th>Entfernung (km)</th>
<th>□ ja</th>
<th>□ nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hauptverkehrsstraßen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Autobahnen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Grundlagen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Landwirtschaftliche Nutzflächen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Industrie?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Tankstellen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Müllverbrennungsanlage?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.9 Wie viele Stunden hält sich Ihr Kind durchschnittlich pro Tag in Ihrer Wohnung auf?

4.10 Fühlen Sie sich in Ihrer Wohnung belästigt (z.B. Lärm, Gerüche, Staub)? □ ja □ nein
4.10.1 Wenn ja, geben Sie bitte an wodurch: ..
4.11 Wie wird Ihre Wohnung beheizt?

1☐ Fernheizung 2☐ Zentralheizung 3☐ Etagen-/Einzelraumheizung

4.11.1 Bei Etagen- oder Einzelraumheizung:

4.11.1.1 Womit heizen Sie (mehrere Kreuze möglich)?

1☐ Koks/Kohle/Briketts/Holz 3☐ Öl 9☐ Sonstiges

2☐ Strom 4☐ Gas

4.11.1.2 Betreiben Sie in Ihrer Wohnung einen offenen Kamin/ Kaminofen? ☐ ja ☐ nein

4.12 Angaben zum Raumklima

4.12.1 Kinderzimmer 1☐ eher warm 2☐ eher kalt 3☐ indifferent 1☐ im Winter ganzjährig geheizt

4.12.2 Schimmelbildung, Stockflecken ☐ ja ☐ nein

Wenn ja; wo:..

4.13 Hat Ihr Kind Kontakt mit Tieren (auch außerhalb des Haushalts)? .. ☐ ja ☐ nein

Wenn ja, mit welchen:...

4.14 Haben Sie Grün-/Blühpflanzen in dem Kinderzimmer? ☐ ja ☐ nein

4.14.1 Wenn ja; wie viele/ welche:..

4.15 Bitte beschreiben Sie die Ausstattung Ihrer Räume

4.15.1 Wohnzimmer

1 ☐ Fußboden: 1☐ Holz 2☐ Linoleum 3☐ Fliesen 4☐ Teppichboden

2 Sonstige Einrichtungen: 1☐ Holz massiv 2☐ Holzimitat(Spanplatten, Kunststoff)

4.15.2 Kinderzimmer

1 ☐ Fußboden: 1☐ Holz 2☐ Linoleum 3☐ Fliesen 4☐ Teppichboden

2 Sonstige Einrichtungen: 1☐ Holz massiv 2☐ Holzimitat(Spanplatten, Kunststoff)

3 Matratzen: 1☐ Federkern 2☐ Latex 3☐ Schaumstoff 4☐ Rollmatratze

4 Bettdecke/Kopfkissen: 1☐ Feder 2☐ Kunststoff 3☐ Seide 4☐ Wolle

5 Freizeit

5.1 Welchen Freizeitaktivitäten/Hobbies geht/ging Ihr Kind nach (auch Musikgenuß, Gartenarbeit)?
...

5.2 Wie lange ist Ihr Kind in etwa - auch als Fußgänger oder Radfahrer - im Straßenverkehr Autoabgasen ausgesetzt?

☐ Weniger als 1 Stunde täglich ☐ Mehr als 1 Stunde täglich

5.3 Besitzen Sie ein Auto? ☐ ja ☐ nein Falls ja, welcher Typ? ☐ Benziner ☐ Diesel

6 Rauchverhalten der Eltern und weiterer im Haushalt lebender Personen

6.1 Wer raucht in Ihrem Haushalt?

6.1.1 Vater ☐ ja ☐ nein

6.1.1.1 Wenn ja: seit wieviel Jahren rauchen Sie?Jahre

Was und durchschnittlich wieviel rauchen Sie?

1☐ Zigaretten:Stück/ täglich 2☐ Zigarren:Stück/ täglich 3☐ Pfeifen:Stück täglich

6.1.1.2 Wenn nein:

1wie lange sind Sie Nichtraucher/-in 2☐ schon immer 2☐ Raucher/-in vonbis

2was haben Sie damals geraucht? ..

3wieviel haben Sie geraucht? .. Stück täglich
6.1.2 Mutter

6.1.2.1 Wenn ja: seit wieviel Jahren rauchen Sie?
Was und durchschnittlich wieviel rauchen Sie?
1 □ Zigaretten: Stück/ täglich 2 □ Zigarren: Stück/ täglich 3 □ Pfeifen: Stück täglich
6.1.2.2 Wenn nein:
1 wie lange sind Sie Nichtraucher/in? 1 □ schon immer 2 □ Raucher/in von bis
2: was haben Sie damals geraucht? ...
3: wieviel haben Sie geraucht? ...

6.1.3 Sonstige Personen (Großeltern, Geschwister, Freunde, etc.)

6.1.3.1 Wenn ja:
Was und durchschnittlich wieviel rauchen diese Personen in Ihrem Haushalt?
1 □ Zigaretten: Stück/ täglich 2 □ Zigarren: Stück/ täglich 3 □ Pfeifen: Stück täglich

6.2 Wie viele Zigaretten werden insgesamt durchschnittlich pro Tag bei Ihnen zu Hause geraucht? Stück

6.3 Wird in Ihrem Auto geraucht? ...

7 Ernährung

7.1 Trinkt Ihr Kind Milch?
7.2 Wieviel trinkt es im Durchschnitt täglich davon?
1 □ keine 2 □ wenig (bis 0,5 l) 3 □ viel (ab 0,5 l)

7.3 Wieviel Mineralwasser trinkt Ihr Kind im Durchschnitt täglich?
1 □ keine 2 □ wenig (bis 0,5 l) 3 □ viel (ab 0,5 l)

7.4 Wieviel Fruchtsaft trinkt Ihr Kind im Durchschnitt täglich?
1 □ keine 2 □ wenig (bis 0,5 l) 3 □ viel (ab 0,5 l)

7.5 Wie viel Eier (auch in zubereiteten Speisen; Rührei usw.) isst es im Durchschnitt?
1 □ keine 2 □ wenig (1-3 Eier/Monat) 3 □ viel (mehr als 3 Eier/Woche)

7.6 Wie oft in der Woche isst Ihr Kind Salat und Gemüse?
1 □ nie 2 □ 1-3 mal 3 □ fast täglich

7.7 Ernähren Sie sich vegetarisch, d.h. ohne Fleisch, Wurst, Fisch?

7.8 Nimmt Ihr Kind Fleisch, Wurst zu sich? 1 □ wenig (1-2 mal pro Woche) 2 □ viel (täglich)

7.9 Nimmt Ihr Kind Fisch zu sich?
1 □ wenig (1-2 mal pro Woche) 2 □ viel (täglich)

7.10 Nimmt Ihr Kind Geflügel zu sich?
1 □ wenig (1-2 mal pro Woche) 2 □ viel (täglich)

7.11 Nimmt Ihr Kind Käse zu sich?
1 □ wenig (1-2 mal pro Woche) 2 □ viel (täglich)

7.12 Ist Ihr Kind viel gegrilltes Wurst/ Fleisch (mehr als 1 x pro Woche)?

7.13 Ist Ihr Kind viel geräucherte Wurst/ Fleisch, Fisch (mehr als 1 x pro Woche)?

7.14 Welche der folgenden Nahrungsmittel nimmt Ihr Kind zu sich?

7.14.1 Süßwasserfische
1 □ gar nicht 2 □ etwa einmal die Woche 3 □ einmal im Monat oder seltener

7.14.2 Meeresfische
1 □ gar nicht 2 □ etwa einmal die Woche 3 □ einmal im Monat oder seltener

7.14.3 Pilze
1 □ gar nicht 2 □ etwa einmal die Woche 3 □ einmal im Monat oder seltener

© G. Baier, Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke der Universität Würzburg
7. LITERATUR

Adair-Bischoff CE, Sauve RS (1998)

Anderson HR, Cook DG (1997)

Andres RL, Day MC (2000)

Bahceciler NN, Barlan IB, Nuhoglu Y, Basaran MM (1999)
Parental smoking behaviour and the urinary cotinine levels of asthmatic children. J. Asthma, 36: 171-175

Batra A, Fagerström KO (1997)
Neue Aspekte der Nikotinabhängigkeit und Raucherentwöhnung. Sucht, 43: 277-282

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (Hrsg.)

Benowitz NL (1990)

Passive smoking as well as active smoking increases the risk of acute stroke. Tob. Control, 8: 156-160
Children’s exposure to parental smoking in West Germany. Int. J. Epidemiol., 22: 818-823

Bryant MS, Skipper PL, Tannenbaum SR, Maclure M (1987)

Bundesministerium für Gesundheit (Hrsg.)

Clark SJ, Warner JO, Dean TP (1994)

Cook DG, Strachan DP (1997)
Health effects of passive smoking. 3. Parental smoking and prevalence of respiratory symptoms and asthma in school age children. Thorax, 52: 1081-1094

Cook DG, Strachan DP (1999)
Health effects of passive smoking. 10. Summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax, 54: 357-366

Dehnen W, Unfried K
Dekant W, Vamvakas S, Henschler D

Deutsche Forschungsgemeinschaft (Hrsg.)

Deutsches Krebsforschungszentrum (Hrsg.)

Deutsches Krebsforschungszentrum (Hrsg.)

Deutsches Krebsforschungszentrum (Hrsg.)

Environmental Protection Agency (Hrsg.)
Effects of environment and passive smoking on the respiratory health of children. Int. J. Epidemiol., 21: 66-73

Modulation of DNA and protein adducts in smokers by genetic polymorphisms in GSTM1, GSTT1, NAT1 and NAT2. Pharmacogenetics, 11: 389-398

Hammond SK, Coghlin J, Gann PH, Paul M, Taghizadeh K, Skipper PL, Tannenbaum SR (1993)

Rauchverhalten von Schwangeren und Müttern mit Kleinkindern. Sozial- und Präventivmedizin, 43: 51-58

Janson C, Chinn S, Jarvis D, Zock JP, Toren K, Burney P; European Community Respiratory Health Survey (2001)
Junge B

Junge B, Nagel M (1999)
Das Rauchverhalten in Deutschland. Gesundheitswesen, Sonderheft, 61: S121-125

Keseberg U

Kommission Human-Biomonitoring des Umweltbundesamtes (Hrsg.) (2003)

Effect of pre- and postnatal tobacco smoke exposure on specific sensitization to food and inhalant allergens during the first 3 years of life. Allergy, 54: 220-228

Law MR, Hackshaw AK (1996)

Martinez FD, Cline M, Burrows B (1992)
Increased incidence of asthma in children of smoking mothers. Pediatrics, 89: 21-26

Nationale Stillkommission (Hrsg.) (2002)
Stillen und Rauchen – Empfehlungen der nationalen Stillkommission. Frauenarzt, 43: 733-734

Neumann HG

Richter E, Scherer G

Ronco G, Vineis P, Bryant MS, Skipper PL, Tannenbaum SR (1990)

Rumold R, Jyrala M, Diaz-Sanchez D (2001)

Saarinen UM, Kajosaari M (1995)
Breastfeeding as prophylaxis against atopic disease: prospective follow-up study until 17 years old. Lancet, 346: 1065-1069

Gender differences in the allergic response of mice neonatally exposed to environmental tobacco smoke. Dev. Immunol., 9: 47-54

Statistisches Bundesamt (Hrsg.)

Statistisches Bundesamt (Hrsg.)

Strachan DP, Cook DG (1997)
Health effects of passive smoking. 1. Parental smoking and lower respiratory illness in infancy and early childhood. Thorax, 52: 905-914

Strachan DP, Cook DG (1998a)
Health effects of passive smoking. 4. Parental smoking, middle ear disease and adenotonsillectomy in children. Thorax, 53: 50-56

Strachan DP, Cook DG (1998b)
Health effects of passive smoking. 5. Parental smoking and allergic sensitisation in children. Thorax, 53: 117-123

Strachan DP, Cook DG (1998c)
Health effects of passive smoking. 6. Parental smoking and childhood asthma: longitudinal and case-control studies. Thorax, 53: 204-212
Talaska G, Al-Juburi AZ, Kadlubar FF (1991)

Thefeld W (2002)

US Department of Health and Human Services (1988)

Passivrauchen des Kindes. Oekoskop, 6-8
The costs of health damage and productivity losses attributable to cigarette smoking in Germany. Eur. J. Public Health, 10: 31-38

Wichmann HE, Jöckel KH, Becher H (1999)

Does breast feeding prevent asthma and allergies? Results of the Munich asthma and allergy study. Monatsschr. Kinderheilkd., 140: 769-774

Zwirner-Baier I (2000)
Hemoglobin adducts of nitro- and amino-PAHs are suitable biomarkers in human biomonitoring. Arch. Pharm., Suppl. to 361: R170
DANKSAGUNG

Danken möchte ich zuallererst meinen Eltern, die mich während meiner gesamten Studienzeit, mit all ihren Prüfungen und Examina, unterstützt haben und mir immer zur Seite standen.

Mein größter Dank gilt meinem Mann Stefan, der mich unermüdlich vorangetrieben und an der Fertigstellung dieser Arbeit nie gezweifelt hat sowie unserer kleinen Tochter Louisa, die mit ihrem sonnigen Gemüt und Kinderlachen die Welt verzaubert und damit so manchen trüben Gedanken vertrieben hat.

Zuletzt möchte ich natürlich auch meinen Doktor"eltern" Frau Dr. Iris Zwirner-Baier und Herrn Priv.-Doz. Dr. Gerald Baier ein Dankeschön aussprechen, die bei auftauchenden Fragen und Problemen als Ansprechpartner jederzeit bereit standen und mir in fachlichen Diskussionen hilfreiche Anregungen für die Arbeit gaben sowie Frau Prof. Dr. Helga Stopper für die freundliche Übernahme des Koreferats.
LEBENSLAUF

Angaben zur Person
Corinna Ilse Roberta Siegel (geb. Kopp) geboren am 15. Juli 1971 in Würzburg verheiratet deutsch

Beruflicher Werdegang

Studium/Berufsausbildung
November 1997 – Juni 2004 Studium der Humanmedizin (Julius-Maximilians-Universität Würzburg)

Schulausbildung

Corinna Siegel