Molekularbiologische Untersuchungen des probiotischen \textit{Escherichia coli} Stammes DSM 6601 und Entwicklung der stammeigenen Plasmide als Klonierungsvektoren

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Sibylle Oswald aus Würzburg

Würzburg, 2006
Eingereicht am:

Mitglieder der Promotionskommission:

Vorsitzender:
Erstgutachter: Prof. Dr. Dr. h. c. mult. Jörg Hacker
Zweitgutachter: Prof. Dr. Joachim Reidl

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.
Diese Dissertation wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt.
Des Weiteren erkläre ich, dass ich bisher keine akademischen Grade erworben oder zu erwerben versucht habe.

Würzburg, den 17. August 2006

Sibylle Oswald
Vielen Dank...

An erster Stelle danke ich Herrn Prof. Dr. Dr. h. c. mult. Jörg Hacker für die Möglichkeit, diese Arbeit am Institut für Molekulare Infektionsbiologie durchführen zu können, für seine Unterstützung sowie für sein stetes Interesse am Fortgang und Erfolg meiner Arbeit. Bei Herrn Prof. Dr. Joachim Reidl möchte ich mich für die freundliche Übernahme des Zweitgutachtens dieser Arbeit bedanken.

Daneben gilt mein Dank Frau Dr. Inge Mühldorfer und Herrn Dr. Tobias Ölschläger für die Betreuung dieser Arbeit, ihre wissenschaftliche Anleitung und Unterstützung sowie ihre ständige Diskussionsbereitschaft.

Ganz besonders danke ich Frau Dr. Gabriele Blum-Oehler für die Möglichkeit zur Zusammenarbeit im Rahmen ihrer Projekte, das Interesse an meiner Arbeit und vor allem für ihre Geduld, Unterstützung und Freundschaft.

Der Firma Ardeypharm GmbH, der Bayerischen Forschungsstiftung sowie dem Europäischen Graduiertenkolleg bin ich für die finanzielle Unterstützung dankbar. Weiterhin gilt mein Dank all jenen, die zum Gelingen dieser Arbeit durch die Bereitstellung von Stämmen, Plasmiden und Antikörpern beigetragen haben, insbesondere der Firma Ardeypharm GmbH, Dr. Marian Wachtel (Bethesda, Maryland, USA), Dr. Wieland Schrödl (Universität Leipzig) und Dr. Salam Khan (Universität Würzburg).

Bei Prof. Dr. Levente Emödy (Universität Pécs, Ungarn), unter dessen Anleitung ich die tierexperimentellen Versuche durchgeführt habe, bedanke ich mich herzlich für die Möglichkeit, in seinem Labor arbeiten zu dürfen, und für seine hilfreiche Unterstützung.

Des Weiteren danke ich Dr. Jean-Marc Ghigo (Institut Pasteur, Paris, Frankreich) für die Durchführung der Biofilmstudien.

Zuletzt bedanke ich mich herzlich bei meinen Eltern und der ganzen Familie für die Unterstützung während des Studiums und der Promotion.
Inhaltsverzeichnis

1 ZUSAMMENFASSUNG .. 1
1 SUMMARY .. 3
2 EINLEITUNG .. 5
 2.1 Infektionsabwehrsysteme des Intestinaltrakts ... 5
 2.1.1 Die Mikroflora des Gastrointestinaltrakts ... 6
 2.1.2 Die mukosale Barriere ... 8
 2.1.3 Das lokale intestinale Immunsystem .. 10
 2.2 Einsatz von Lebendimpfstoffen .. 14
 2.3 Probiotika ... 16
 2.4 Der probiotische E. coli Stamm DSM 6601 .. 21
 2.5 Zielsetzung dieser Arbeit .. 23
3 MATERIAL .. 25
 3.1 Verwendete Bakterienstämmen und Plasmide .. 25
 3.1.1 Bakterienstämmen .. 25
 3.1.2 Plasmide .. 29
 3.2 Oligonukleotide .. 30
 3.3 Chemikalien und Enzyme ... 32
 3.4 Geräte und Sonstiges ... 32
 3.5 Medien und Nährböden .. 34
 3.5.1 LB- (Luria-Bertani-) Medium ... 34
 3.5.2 X-Gal-Medium ... 34
 3.5.3 Saccharose-Medium ... 34
 3.5.4 MacConkey-Agar .. 34
 3.5.5 M63B1-Minimalmedium ... 35
 3.5.6 Antibiotikazusätze .. 35
 3.5.7 Nährmedium für INT407-Zellen ... 35
 3.6 Patientenstuhlnproben .. 36
 3.7 Zelllinien .. 36
Inhaltsverzeichnis

3.8 Versuchstiere .. 36
3.9 Puffer und Lösungen.. 36
3.10 Antikörper .. 36
3.11 Größenmarker.. 37
 3.11.1 DNA-Größenmarker.. 37
 3.11.2 Protein-Größenmarker... 37

4 METHODEN... 38

4.1 Isolierung von Plasmid-DNA mit der Schnelllysat-Methode ... 38
4.2 Plasmidisolierung, mittlerer Maßstab.. 39
4.3 Isolierung von DNA aus Stuhlproben... 39
4.4 Aufreinigung von DNA-Fragmenten.. 40
4.5 Ethanol-Fällung von Plasmid-DNA.. 40
4.6 Konzentrationsbestimmung von Nukleinsäuren... 40
4.7 Spaltung von DNA durch Restriktionsendonukleasen ... 41
4.8 Horizontale Gelelektrophorese .. 41
4.9 Isolierung von DNA-Fragmenten aus Agarosegelen... 42
 4.9.1 “Geneclean®Kit”.. 42
 4.9.2 “QIAquick Gel Extraction Kit” ... 43
4.10 Entfernen von überhängenden 3'- und 5'-DNA-Enden.. 43
4.11 “Polymerase chain reaction” (PCR)... 44
4.12 “Long distance”-PCR .. 44
4.13 Dephosphorylierung von DNA-Fragmenten.. 45
4.14 Herstellung rekombinanter DNA-Moleküle .. 45
4.15 Herstellung kompetenter Zellen ... 45
 4.15.1 Behandlung mit CaCl₂ ... 45
 4.15.2 Kompetente Zellen für die Elektroporation... 46

4.16 Transformation von Bakterienzellen.. 46
 4.16.1 Transformation mit Hitzeschock ... 46
 4.16.2 Elektroporation .. 46

4.17 Konjugation zwischen einem E. coli Donor- und Rezipientenstamm 47
4.17.1 Konjugation ... 47
4.17.2 In vitro-Filterkonjugation .. 47

4.18 “One-step”-Inaktivierung von chromosomalen Genen in *E. coli* 47

4.19 Isolierung chromosomaler DNA aus *E. coli* ... 48

4.20 Pulsfeld-Gelelektrophorese (PFGE) .. 49
 4.20.1 Isolierung von “High Molecular Weight”-DNA für die Pulsfeld-Gelelektrophorese ... 49
 4.20.2 Restriktionsspaltung von “High Molecular Weight”-DNA .. 50
 4.20.3 Auftrennung von “High Molecular Weight”-DNA durch Gelelektrophorese 51

4.21 “Southern”-Hybridisierung .. 51
 4.21.1 Vakuum-“Blotting” .. 51
 4.21.2 Nichtradioaktive Markierung einer DNA-Sonde und Hybridisierung 52

4.22 Sequenzierung mit fluoreszenzmarkierten Nukleotiden ... 53

4.23 Gewinnung von Gesamtzellysatsen durch Lyse mit Laemmli-Puffer 53

4.24 Gewinnung von Gesamtzellysatsen durch Ultraschall .. 54

4.25 Hitzeextraktion von Fimbrien .. 54

4.26 “Western”-Hybridisierung .. 55
 4.26.1 Diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese 55
 4.26.2 “Western-Blotting” ... 56
 4.26.3 Antikörperreaktion ... 57

4.27 Coomassie-Blau-Färbung von Proteinen in Polyacrylamidgelen 57

4.28 Qualitative Agglutination ... 58
 4.28.1 Hämagglutinationstest ... 58
 4.28.2 Serumagglutination .. 58
 4.28.3 Hefeagglutinationstest .. 58

4.29 Serumresistenztest ... 59

4.30 Induktion von Bakteriophagen durch Mitomycin C .. 59

4.31 Phagen-Plaque-Assay .. 59

4.32 Biofilmbildung .. 60

4.33 Herstellung spontan Antibiotika-resistenter Bakterienklone 60

4.34 Transmissionselektronenmikroskopische Untersuchungen 60

4.35 Aufzucht von eukaryotischen Zellen .. 61
4.35.1 Passagieren von INT407-Zellen ... 61
4.35.2 Stammhaltung von eukaryotischen Zellen .. 61

4.36 Koinfektions-Invasionsassay .. 61

4.37 Adhäsionsassay .. 63

4.38 In vivo Experimente .. 64

4.38.1 Schutzexperimente ... 64
4.38.2 Immunisierungsexperimente ... 64

5 ERGEBNISSE .. 65

5.1 Etablierung eines spezifischen PCR-Nachweissystems für den E. coli Stamm
DSM 6601 in Humanstuhl .. 65

5.1.1 Sequenzanalyse des Plasmids pMUT1 .. 65
5.1.2 Sequenzanalyse des Plasmids pMUT2 .. 69
5.1.3 Überprüfung der Spezifität der PCR-Assays .. 72
5.1.4 Validierung der stammspezifischen PCR-Reaktionen auf Basis der Plasmide zum
Nachweis von E. coli DSM 6601 aus Humanstuhl .. 76
5.1.5 Analyse von Patientenstuhlproben ... 78

5.2 Herstellung und Charakterisierung eines plasmidfreien Klons des E. coli
Stammes DSM 6601 ... 81

5.2.1 Konstruktion der Suizidplasmide für die Herstellung eines plasmidfreien Klons
des E. coli Stammes DSM 6601 ... 81

5.2.1.1 Konstruktion des Suizidplasmids pMUT1-Tc-Sac 82
5.2.1.2 Konstruktion des Suizidplasmids pMUT2-Kn-Sac 83

5.2.2 Herstellung eines plasmidfreien Klons des E. coli Stammes DSM 6601 84
5.2.3 Charakterisierung des plasmidfreien E. coli Stammes DSM 6601ΔpMUT1/2 87

5.2.3.1 Einfluss der Plasmide auf das Bakterienwachstum 87
5.2.3.2 Einfluss der Plasmide auf die Inhibition der Salmonella-Invasion 88
5.2.3.3 Einfluss der Plasmide auf die Phagenresistenz 89
5.2.3.4 Einfluss der Plasmide auf die Biofilmbildung ... 89
5.2.3.5 Einfluss der Plasmide auf die Serumresistenz 90

5.3 Verwendung der Plasmide des E. coli Stammes DSM 6601 als Klonierungs-
vektoren ... 92

5.3.1 Untersuchungen zur Stabilität der Plasmide pMUT1-Tc und pMUT2-Kn 92
5.3.2 Untersuchung zur Konjugierbarkeit des Plasmids pMUT2 93
5.3.3 Expression von fluoreszierenden Proteinen .. 94
5.3.4 Expression von Adhäsinen ... 97
5.3.4.1 Expression von ETEC-spezifischen K88ab- und K99-Fimbrien...............97
5.3.4.2 Expression des Adhäsins Intimin (Eae) aus EHEC-Bakterien99
5.3.5 Erste tierexperimentelle Untersuchungen zur Induktion einer Immunantwort ..100

5.4 Untersuchungen zur inhibitorischen Wirkung des E. coli Stammes DSM 6601102

5.4.1 Bedeutung der Fimbrienadhäsine des E. coli Stammes DSM 6601 für die inhibitorischen Effekte in vitro ...102
5.4.1.1 Herstellung der Fimbriendeletionsmutanten ...102
5.4.1.2 Komplementation der Fimbriendeletionsmutanten106
5.4.1.3 Elektronenmikroskopische Untersuchungen ...107
5.4.1.4 Einfluss der Fimbrien auf die Adhärenz an INT407-Zellen108
5.4.1.5 Bedeutung der Fimbrien für den inhibitorischen Effekt von E. coli DSM 6601 auf die Invasivität von Salmonellen ...109

5.4.2 Untersuchungen zur inhibitorischen Wirkung des E. coli Stammes DSM 6601 in vivo ..110

6 DISKUSSION ..113

6.1 Entwicklung von stabilen Klonierungsvektoren für den probiotischen E. coli Stamm DSM 6601 ..113
6.2 Etablierung von Nachweissystemen für den E. coli Stamm DSM 6601120
6.3 Verwendung des E. coli Stammes DSM 6601 als Modell für ein Lebendvakzin123
6.4 Inhibitorische Wirkungen des E. coli Stammes DSM 6601.................................127
6.5 Ausblick ...130

7 LITERATUR...131

8 ANHANG ...148

8.1 Restriktionskarten der in dieser Arbeit konstruierten Plasmide148
8.2 Sequenzen ..157
8.3 Abkürzungen ..160
8.4 Publikationen ..163
8.4.1 Originalarbeiten ...163
8.4.2 Tagungsbeiträge ..163
8.4.3 Patent ...164
8.5 Lebenslauf ...165
1 Zusammenfassung

Der apathogene *E. coli* Stamm DSM 6601 (*E. coli* Nissle 1917) kann als Modellorganismus für die Verwendung eines kommensalen Gram-negativen Bakterienstammes als Probiotikum angesehen werden. Dieser *E. coli* Stamm wurde intensiv erforscht und seine Eigenschaften sind daher gut charakterisiert. Der probiotische Charakter dieses Bakterienstammes ist auf gute Kolonisierungseigenschaften des menschlichen Darms, immunmodulatorische Effekte und antagonistische Wirkungen zurückzuführen. Der *E. coli* Stamm DSM 6601 wird seit einigen Jahrzehnten zur Behandlung verschiedener gastrointestinaler Erkrankungen eingesetzt und seine therapeutische Wirksamkeit ist wissenschaftlich bewiesen. Daher eignet sich dieser Stamm als Modellstamm für die Entwicklung eines bakteriellen Lebendvektors, der für mukosale Immunisierungen oder die zielgerichtete Lieferung von therapeutischen Molekülen in den Darm eingesetzt werden könnte.

Des Weiteren wurde ein spezifisches PCR-Nachweissystem für den *E. coli* Stamm DSM 6601 etabliert, das auf einer Methode zur direkten DNA-Isolierung aus Stuhlproben und einem optimierten PCR-Protokoll für auf den kryptischen Plasmiden basierende Primerkombinationen beruht. Dadurch konnte eine Sensitivität von $10^3\text{ bis }10^4$ Bakterien/0,1 g Stuhl erreicht werden, die vergleichbar mit den Nachweisgrenzen anderer beschriebener PCR-Nachweissysteme ist. Durch Analysen von Patientenstuhlproben wurde die Spezifität und der diagnostische Nutzen dieses PCR-Nachweissystems bestätigt.

Ein weiteres Ziel dieser Arbeit war die Entwicklung von stabilen Klonierungsvektoren für den probiotischen *E. coli* Stamm DSM 6601. Durch Integration von Antibiotika-Resistenzkassetten in die Plasmide pMUT1 und pMUT2 wurden Klonierungsvektoren konstruiert, die auch nach Insertion weiterer DNA-Fragmente ohne Antibiotika-Selektionsdruck stabil in diesem Stamm beibehalten werden. Zusätzlich wurde durch die stabile Expression von fluoreszierenden Proteinen ein visuelles Nachweissystem etabliert, das bei *in vivo* Experimenten verwendet werden kann. Dadurch wird die Möglichkeit geboten, Erkenntnisse über Kolonisierungseigenschaften sowie Interaktionen des *E. coli* Stammes DSM 6601 mit endogenen Mikroorganismen und Zellen des Darmimmunsystems zu erlangen, was zur Aufklärung der Wirkungsweise dieses Stammes beitragen könnte.

Im Hinblick auf die Entwicklung eines Lebendvakzins auf der Basis des probiotischen *E. coli* Stammes DSM 6601 wurden Adhäsine von humanpathogenen enterohämorrhagischen *E. coli* und von tierpathogenen enterotoxischen *E. coli* in diesem Stamm exprimiert. Bei ersten Immunisierungsversuchen in Mäusen konnte jedoch keine Induktion einer spezifischen Immunantwort gegen diese Adhäsine nachgewiesen werden.

Weiterhin wurde die inhibitorische Wirkung des *E. coli* Stammes DSM 6601 auf die Invasivität von Salmonellen *in vitro* und *in vivo* untersucht. Es konnte gezeigt werden, dass Typ 1- und F1C-Fimbrien keine Rolle bei dem inhibitorischen Effekt *in vitro* spielen und dass durch diesen *E. coli* Stamm in konventionellen Mäusen keine inhibitorischen Wirkungen nachzuweisen sind.

Die Ergebnisse dieser Arbeit bilden durch die Entwicklung von stabilen Klonierungsvektoren und die Etablierung von Nachweissystemen für den probiotischen *E. coli* Stamm DSM 6601 die Grundlage für den Einsatz dieses Stammes als Lebendvektor und für *in vivo* Untersuchungen, die zur Aufklärung der Wirkungsmechanismen dieses Stammes beitragen könnten.
1 Summary

The nonpathogenic *E. coli* strain DSM 6601 (*E. coli* Nissle 1917) can be considered as model organism for the employment of a commensal Gram-negative bacterial strain as a probiotic. This *E. coli* strain has been intensively investigated and therefore its properties are well characterized. The probiotic character of this strain is due to excellent colonization properties of the human gut, immunomodulatory effects and antagonistic activities. The *E. coli* strain DSM 6601 has been used for decades for the treatment of various gastrointestinal diseases and its therapeutic efficacy is scientifically proved. Therefore, this strain is suited as a model strain for the development of a bacterial live vector, which might be used for mucosal immunization or localized delivery of therapeutic molecules into the intestine.

One major aim of this work was the characterization of the cryptic plasmids pMUT1 and pMUT2 of probiotic *E. coli* strain DSM 6601 by DNA sequence analysis. The analysis showed that plasmid pMUT1 carries a replication system of ColE1-type, a mobilization system as well as a stabilization region, whereas plasmid pMUT2 contains a ColE2-like replication system and another mobilization system. Further open reading frames with known function were not identified in both plasmids.

Furthermore, a specific PCR detection system for *E. coli* strain DSM 6601 was established, which uses a method for direct isolation of DNA from faecal samples and an optimized PCR protocol for primer combinations based on the cryptic plasmids. Thereby, a sensitivity of 10^3-10^4 bacteria/0.1 g faeces was achieved that is comparable with detection limits of other described PCR detection systems. The specificity and diagnostic utility of this PCR detection system was confirmed by analysis of faecal samples from patients.

In addition, a plasmid-free variant of *E. coli* strain DSM 6601 was constructed. Functional analyses of this strain detected no differences compared to the wildtype, whereby the possible function of both cryptic plasmids still remains unclear. This plasmid-free variant can be used as live vector for recombinant plasmids based on the plasmids pMUT1 and pMUT2.

Another aim of this work was the development of stable cloning vectors for the probiotic *E. coli* strain DSM 6601. Cloning vectors were constructed by integration of antibiotic resistance cassettes in the plasmids pMUT1 and pMUT2, which are still stably maintained following insertion of additional DNA fragments without selection pressure by antibiotics. Furthermore, a
visual detection system was established by the stable expression of fluorescent proteins that can be used in in vivo experiments. This offers the opportunity to gain knowledge of colonization properties as well as interactions of E. coli strain DSM 6601 with endogenous microorganisms and cells of the gut’s immune system, which might contribute to explain the mode of action of this strain.

With regard to the development of a live vaccine based on the probiotic E. coli strain DSM 6601, adhesins of human pathogenic enterohaemorrhagic E. coli and animal pathogenic enterotoxigenic E. coli were expressed in this strain. Induction of specific immune responses to these adhesins were not demonstrated by first immunization experiments in mice.

Moreover, the inhibitory effect of the E. coli strain DSM 6601 on Salmonella invasion was investigated in vivo and in vitro. It was demonstrated that type 1 and F1C fimbriae have no influence on the inhibitory effect in vitro and that no inhibitory effects could be established in conventional mice by this E. coli strain.

By the development of stable cloning vectors and the establishment of detection systems for the E. coli strain DSM 6601, the results of this work provide the basis for the employment of this strain as live vector and for in vivo investigations, which might contribute to explain this strain’s mode of action.
2 Einleitung

In den industrialisierten Ländern wird außerdem eine Zunahme von Allergien, Autoimmunerkrankungen und inflammatorischen Erkrankungen festgestellt, deren Auftreten mit Störungen des Darmimmunsystems in Verbindung steht. Diese Störungen werden zum Teil durch genetische Faktoren, aber möglicherweise auch durch eine reduzierte Stimulation des Immunsystems durch Mikroben verursacht, was auf Ernährungsgewohnheiten und hygienische Bedingungen des modernen Lebensstils sowie auf verbesserten Impfschutz und den Einsatz antimikrobieller Medikamente zurückgeführt wird (Isolauri, 2001).

2.1 Infektionsabwehrs systeme des Intestinaltrakts

Nach dem Respirationstrakt stellt der Gastrointestinaltrakt mit einer Fläche von ca. 250 m² die zweitgrößte Oberfläche des menschlichen Körpers dar. Zusätzlich zu der enormen Menge an Nahrung, die diesen Kanal passiert, ist diese mukosale Oberfläche vielen Aggressoren der äußeren Umgebung ausgesetzt und ist die Eintrittsstelle der meisten pathogenen Mikroorganismen. Aus diesem Grund ist die mukosale Oberfläche des Darms die erste Verteidigungs linie gegen bakterielle Toxine und Infektionen, die durch Bakterien, Viren oder Parasiten hervor-
gerufen werden (Mercenier et al., 2003). Der Darm verfügt daher über ein komplexes Netzwerk von angeborenen, unspezifischen und erworbenen, spezifischen Abwehrmechanismen, die am Schutz des Wirts beteiligt sind. Dieses Verteidigungssystem basiert auf drei Hauptkomponenten, die in permanentem Kontakt und Dialog miteinander stehen: die Mikroflora, die mukosale Barriere und das lokale Immunsystem (Bourlioux et al., 2003).

2.1.1 Die Mikroflora des Gastrointestinaltrakts

Es wird geschätzt, dass der Gastrointestinaltrakt eines erwachsenen Menschen etwa 10^{14} lebende Bakterien enthält. Die Kolonisierung beginnt mit der Geburt und setzt sich durch das ganze Leben fort, was zu einer sehr reichen Flora führt, die aus mehr als 400 verschiedenen Spezies besteht. Die Mehrheit dieser Bakterien ist jedoch nicht mit konventionellen Techniken kultivierbar, kann aber durch molekularbiologische Methoden identifiziert werden (Holzapfel et al., 1998; Shanahan, 2002; Mercenier et al., 2003).

Im Magen ist auf Grund des dort vorliegenden niedrigen pH-Werts, der auf die meisten Mikroben toxisch wirkt, nur eine geringe Anzahl an Mikroorganismen (10^3-10^4 koloniebildende Einheiten (KBE)/g) vorhanden. Dort dominieren vor allem säuretolerante Bakterien wie Streptokokken, Laktobazillen und *Helicobacter pylori*, aber auch Hefen wie *Candida albicans*. Durch aggressive Darmflüssigkeiten (z. B. Gallenflüssigkeit, Bauchspeichel) und die kurze Transitzeit stellt auch das Duodenum eine feindliche Umgebung dar und enthält nur eine relativ geringe Anzahl von lediglich transienten Mikroben.

Im Jejunum und Ileum nimmt die Anzahl (bis zu 10^8 KBE/g) und die Vielfalt der Mikroorganismen zu den distalen Regionen hin kontinuierlich zu. Neben Milchsäurebakterien treten Gram-negative fakultativ aerobe Gruppen wie Enterobacteriaceae (z. B. *Escherichia coli* und *Enterobacter* spp.) und obligat anaerobe Gattungen wie *Bacteroides* und *Fusobacterium* auf.

Abb. 1: Besiedlung des Gastrointestinaltrakts (modifiziert nach Isolauri et al., 2004).

Duodenum

10^3-104 KBE/g

Bacteroides

Candida albicans

Lactobacillus

Streptococcus

Kolon

10^{10}-1011 KBE/g

Bacteroides

Bacillus

Bifidobacterium

Clostridium

Enterococcus

Eubacterium

Fusobacterium

Peptostreptococcus

Ruminococcus

Streptococcus

....

Magen

10^8 KBE/g

Candida albicans

Helicobacter pylori

Lactobacillus

Streptococcus

Jejunum

10^7-108 KBE/g

Bacteroides

Bacillus

Bifidobacterium

Clostridium

Enterobacteriaceae

Enterococcus

Lactobacillus

Lactobacillus

Veillonella

Ileum

10^7-108 KBE/g

Bacteroides

Clostridium

Enterobacteriaceae

Enterococcus

Lactobacillus

Lactobacillus

Veillonella
Eine entscheidende Bedeutung kommt der normalen Darmflora auch bei der Entwicklung und Modulation des Immunsystems, der Verbesserung der Integrität sowie der Reduktion der Permeabilität des mukosalen Epithels zu (Mercenier et al., 2003; Isolauri et al., 2004).

Durch die intestinale Mikroflora werden zudem Nahrungsbestandteile abgebaut und Verdauungsenzyme, protektive Enzyme sowie Vitamine produziert. Darüber hinaus wird der Energiestoffwechsel der Darmmukosa durch die Produktion kurzkettiger Fettsäuren gefördert und die Peristaltik angeregt. Außerdem ist die Darmflora am Metabolismus potentiell karzinogener Substanzen beteiligt und kann eine Rolle bei der Wirkung von Arzneimitteln spielen (Berg, 1996; Holzapfel et al., 1998; Shanahan, 2002).

2.1.2 Die mukosale Barriere

Die intestinale Mukosa stellt die Hauptinteraktionsstelle des menschlichen Körpers mit fremden Substanzen und Mikroorganismen dar. Sie besteht aus einem Monolayer intestinaler Epithelzellen, die durch enge Zellverbindungen ("tight junctions") miteinander verbunden sind, und einer aufgelagerten Mukusschicht. Als solches stellt sie eine physikalische Barriere dar, die jedoch zusätzlich mit einer Reihe von angeborenen, unspezifischen Abwehrmechanismen ausgestattet ist (Lu & Walker, 2001; Bourlioux et al., 2003; Mercenier et al., 2003).

Die Mukusschicht ist hauptsächlich aus Mucinglykoproteinen zusammengesetzt, die von den Becherzellen ("goblet cells") synthetisiert und sekretiert werden. Es werden zwei Arten von Mukus produziert: a) ein unlösliches Gel, das stark an die Epithelzellen adhäriert, und b) eine viskose Form, die wasserlöslich ist und das Gel bedeckt.

Zusätzlich verhindert eine stark hydrophobe Oberfläche der Mukusschicht das Eindringen von wasserlöslichen Toxinen in das Epithel. Diese Hydrophobizität wird durch eine Schicht von Lipiden bewirkt, die von den Epithelzellen sekretiert werden und die Oberfläche des Mukus bedecken (Bourlioux et al., 2003).

Ein weiterer wichtiger Abwehrmechanismus der mukosalen Barriere besteht in der Produktion von einer Vielzahl antimikrobieller Peptide, vor allem von Defensinen. Defensine sind kleine kationische Peptide (28-44 Aminosäuren) mit einer charakteristischen β-Faltblattstruktur, die durch drei intramolekulare Cysteindisulfidbrücken stabilisiert werden. Es existieren zwei Subfamilien, α- und β-Defensine, die sich in der Länge der Peptidsegmente zwischen den 6 konservierten Cysteinen und ihrer Faltung unterscheiden. Durch Bildung von Poren zerstören Defensine die Integrität bakterieller Membranen (Bourlioux et al., 2003; Müller et al., 2005).

Spezialisierte Epithelzellen des Dünndarms, die Panethzellen, die an der Basis der Darmkrypten lokalisiert sind, exprimieren α-Defensine (HD-5, HD-6) und verschiedene bakteriolytische Enzyme (Lysozym, Phospholipase A2), die zusammen ein breites Wirkungsspektrum gegen Gram-positive und Gram-negative Bakterien besitzen. Die α-Defensine werden als inaktive Pro-Peptide produziert und gemeinsam mit den bakteriolytischen Enzymen in apikalen zytoplasmatischen Granula gespeichert. Nach der Sekretion des Granulainhalts in das Kryptenlumen werden die Pro-Peptide wahrscheinlich durch Trypsin, das zusammen mit Trypsin-Inhibitoren in Panethzellen exprimiert wird, in eine reife aktive Form umgewandelt. Die Sekretion wird durch
Gram-positive und Gram-negative Bakterien oder durch deren Bestandteile (Lipopolysaccharid, Lipoteichonsäuren, Lipid A, Muramyldipeptide) sowie durch cholinergische Substanzen stimuliert (Bourlioux et al., 2003; Müller et al., 2005).

2.1.3 Das lokale intestinale Immunsystem

Der Darm ist das primäre Immunorgan des Körpers und wird durch das darmassoziierte Immunsystem repräsentiert, welches angeborene, antigenunspezifische und erworbene, antigenspezifische Abwehrsysteme umfasst. Dieses Immunsystem ist in der Lage Nahrungsantigene und den Darm kolonisierende Bakterien zu tolerieren und enteropathogene Mikroorganismen abzuwehren (Bourlioux et al., 2003). Das mukosale Immunsystem stellt somit die erste Verteidigungslinie gegen bakterielle und virale Infektionen dar und spielt außerdem eine bedeutende Rolle bei der Errichtung und Beibehaltung der mukosalen Homöostase zwischen Wirt und der äußeren Umgebung (Kunisawa & Kiyono, 2005).

Durch den Kontakt mit pathogenen Mikroorganismen wird zuerst das angeborene, unspezifische Immunsystem aktiviert (Erickson & Hubbard, 2000). An der unspezifischen Immunabwehr sind Leukozyten (z. B. neutrophile Granulozyten, Makrophagen), die Pathogene phagozytieren und abtöten können, sowie intestinale Epithelzellen beteiligt, die bei der Koordination der Wirtsantwort eine Rolle spielen (Bourlioux et al., 2003).

Rezeptoren werden Transmembransignale erzeugt, die zur Aktivierung des Transkriptionsfaktors NF-κB ("nuclear transcription factor κB") führen, der an spezifische Promotorsequenzen bindet und die Transkription und Expression einer Reihe von Genen aktiviert, die für proinflammatorische Zytokine, Chemokine und induzierbare proinflammatorische Enzyme kodieren. Dies führt durch die Induktion phagozytischer Aktivitäten und durch die Produktion von reaktiven Sauerstoff/Stickstoffoxid-Radikalen, die ein hohes antimikrobielles Potential besitzen, zu einer inflammatorischen Immunantwort (Bourlioux et al., 2003; Alexopoulou & Kontoyiannis, 2005).

durch das Fehlen eines Bürstensaums, limitierte Mukusproduktion, eine geringe Degradationsaktivität sowie eine hohe Transzytoseaktivität charakterisiert sind (Kunisawa & Kiyono, 2005).

![Diagram](image)

Abb. 2: Schematische Darstellung der Aktivierung von B- und T-Zellen in Peyer’schen Plaques und des Migrationsprozesses der B- und T-Zellen zur intestinalen Lamina propria (modifiziert nach Pickard et al., 2004).
In der Lamina propria erfolgt unter dem Einfluss von Zytokinen (Interleukin-5 (IL-5) und IL-6) die terminale Differenzierung der aktivierten B-Zellen zu IgA-produzierenden Plasmazellen. Durch die zusätzliche Expression einer J-Kette (”joining chain”) wird IgA zu Dimeren oder Polymeren oligomerisiert. Polymere IgA-Antikörper binden über die J-Kette an einen Polyimmunglobulin-Rezeptor (pIgR), der an der Basalmembran von Epithelzellen exprimiert wird. Durch Transzytose erfolgt der Transport von IgA in das Darmlumen. Dort wird eine sekretorische Komponente des pIgR abgespalten und somit sekretorisches IgA (s-IgA) gebildet. Durch s-IgA werden Infektionen durch Viren und Bakterien verhindert sowie mikrobielle Toxine neutralisiert (Kunisawa & Kiyono, 2005; Rumbo & Schiffrin, 2005).

Eine weitere wichtige Eigenschaft des darmassozierten Immunsystems besteht in der Unterscheidung harmloser Nahrungsantigene und kommensaler Bakterien von pathogenen Mikroorganismen. Antigene von Kommensalen werden nicht einfach ignoriert, sondern steuern einen aktiven immunsupprimierenden Prozess, der als orale Toleranz bezeichnet wird (Dubois et al., 2005).

Da die meisten Bakterien, Viren und Parasiten ihren Wirt über mukosale Oberflächen infizieren, ist es wünschenswert, durch eine Impfung eine mukosale Immunantwort zu stimulieren, um eine Infektion und damit eine Erkrankung zu verhindern. Während parenteral verabreichte Vakzine hauptsächlich systemische Immunantworten auslösen, können auf dem mukosalen Weg (z. B. oral oder intranasal) applizierte Impfstoffe sowohl mukosale als auch systemische Immunant-
worten induzieren, wie sie auch bei natürlichen Infektionen durch ein Pathogen hervorgerufen werden (Medina & Guzmán, 2000; Garmory et al., 2003). Aus diesem Grund wird an der Entwicklung neuer Impfstoffe gearbeitet, die auf dem mukosalen Weg verabreicht werden können. Eine Strategie beruht hierbei auf der Herstellung von bakteriellen Lebendvakzinen.

2.2 Einsatz von Lebendimpfstoffen

Auf dem mukosalen Weg applizierbare attenuierte Bakterien können aber auch zur Expression von heterologen Antigenen verwendet werden (Ellis, 1999). Rekombinante Salmonella spp. induzierten im Tiermodell effiziente Immunantworten gegen zahlreiche Bakterien (z. B. enteropathogene E. coli (Schriefer et al., 1999), Bordetella pertussis (Strugnell et al., 1992), Listeria monocytogenes (Hess et al., 1996), Borrelia burgdorferi (Dunne et al., 1995), Helicobacter pylori (Koesling et al., 2002) und Streptococcus pneumoniae (Kang et al., 2002)), aber auch gegen Viren (z. B. Herpes Simplex Virus (Chabalgoity et al., 1996) und humanes Papillomavirus (Baud et al., 2004)) sowie gegen Parasiten (z. B. Leishmania mexicana mexicana (Gonzalez et al., 1998) und Plasmodium berghei (Aggarwal et al., 1990)). Auch andere attenuierte Bakterienstämmen wie Vibrio cholerae (Ryan et al., 1997; John et al., 2002), Bordetella pertussis (Stevenson & Roberts, 2003), Bacille Calmette-Guérin (Cirillo et al., 1995; Hayward et al., 1999), Listeria monocytogenes (Peters et al., 2003), Yersinia enterocolitica (Sory et al., 1990) und Shigella flexneri (Altboum et al., 2001; Zheng et al., 2005) wurden erfolgreich als Antigenträger verwendet.

So konnten durch die Verwendung rekombinanter Stämme von *Staphylococcus carnosus* (Cano et al., 2000), *Streptococcus gordonii* (Oggioni et al., 1999; Medaglini et al., 2001), *Lactobacillus* spp. (Granette et al., 2001; Scheppler et al., 2002) sowie *Lactococcus lactis* (Robinson et al., 1997; Dieye et al., 2003) Immunantworten gegen verschiedene Antigene im Tiermodell stimuliert werden. Durch die Coexpression von Interleukinen (IL-2, IL-6 oder IL-12) und heterologem Antigen in *Lactococcus lactis* konnte sogar die Immunantwort gegen das coexprimierte Antigen verstärkt werden (Steidler et al., 1998; Bermudez-Humaran et al., 2003).

Seit einigen Jahren wird zudem an Lebendimpfstoffen auf der Basis von apathogenen kammensalen und probiotischen Bakterien gearbeitet, die zur passiven Immunisierung (Krüger et al., 2002), zur Induktion von mukosaler Toleranz (Maassen et al., 2003) oder zur Übertragung von therapeutischen Molekülen (Steidler et al., 2000; Drouault et al., 2002; Paton et al., 2005) verwendet werden können.

2.3 Probiotika

Probiotika sind definiert als „lebende Mikroorganismen, die eine positive Wirkung auf die Gesundheit ausüben, wenn sie in ausreichender Menge verabreicht werden“ (FAO/WHO, 2001).

Auf Grund des erkannten Nutzens für die Gesundheit wurden in den vergangenen 20 Jahren probiotische Bakterien, vor allem *Lactobacilli* und *Bifidobacteria*, zunehmend Joghurts und fermentierten Milchprodukten zugesetzt, aber auch pharmazeutische Präparate und Nahrungsergänzungsmittel in Form von Pulvern, Tabletten und flüssigen Suspensionen sind im Handel erhältlich (Gibson & Fuller, 2000; Saarela et al., 2000; Mercenier et al., 2003). In Tabelle 1 sind die am häufigsten verwendeten probiotischen Mikroorganismen zusammengefasst.
Tab. 1: In probiotischen Produkten verwendete Mikroorganismen (Zusammenfassung Holzapfel et al., 1998; Mercenier et al., 2003).

<table>
<thead>
<tr>
<th>Lactobacillus Spezies</th>
<th>Bifidobacterium Spezies</th>
<th>Weitere Milchsäurebakterien</th>
<th>Sonstige</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. acidophilus</td>
<td>B. adolescentis</td>
<td>Enterococcus faecalis</td>
<td>Bacillus cereus (”toyoi”)</td>
</tr>
<tr>
<td>L. casei</td>
<td>B. animalis</td>
<td>Enterococcus faecium</td>
<td></td>
</tr>
<tr>
<td>L. crispatus</td>
<td>B. bifidum</td>
<td>Lactococcus lactis</td>
<td></td>
</tr>
<tr>
<td>L. gallinarum</td>
<td>B. breve</td>
<td>Lactobacillus</td>
<td></td>
</tr>
<tr>
<td>L. gasseri</td>
<td>B. infantis</td>
<td>mesenteroides</td>
<td>Escherichia coli (”Nissle 1917”)</td>
</tr>
<tr>
<td>L. johnsonii</td>
<td>B. lactis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. paracasei</td>
<td>B. longum</td>
<td>Pediococcus acidilactici</td>
<td>Propionibacterium freudenreichii</td>
</tr>
<tr>
<td>L. plantarum</td>
<td>B. species 420</td>
<td>Sporolactobacillus inulinus</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>L. reuteri</td>
<td></td>
<td>Streptococcus thermophilus</td>
<td></td>
</tr>
<tr>
<td>L. rhamnosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. bulgaricus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. delbrueckii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. fermentum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. helveticus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. salivarius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) hauptsächlich bei Tieren verwendet
b) wahrscheinlich synonym zu B. animalis
c) wenig bekannt von probiotischen Eigenschaften
d) hauptsächlich pharmazeutische Präparate

In den letzten Jahren wurden zahlreiche experimentelle und klinische Versuche durchgeführt, bei denen der mögliche Einsatz von Probiotika zur Behandlung und Prävention verschiedener intestinaler und extraintestinaler Erkrankungen untersucht wurde. Hierbei konnten positive Wirkungen bei vielen verschiedenen Indikationen festgestellt werden, die jedoch kritisch betrachtet werden müssen, da diese Effekte zum größten Teil nicht durch anerkannte kontrollierte klinische Studien bewiesen wurden. Im Folgenden sind Erkrankungen aufgelistet bei denen durch Probiotika positive Wirkungen erzielt wurden:

Intestinale Erkrankungen:

- Durchfallerkrankungen:
 - Reisediarrhö (Saavedra, 2001)
 - Antibiotika-assoziierte Diarrhö (Surawicz et al., 1989; Rolfe, 2000; Saavedra, 2001; Kotowska et al., 2005)
 - akute Diarrhözustände bei Kindern (Oberhelman et al., 1999; Saavedra, 2001; Weizman et al., 2005)
 - Rotavirus-assoziierte Diarrhö (Rolfe, 2000; Mercenier et al., 2003)
 - Clostridium difficile-assoziierte Diarrhö (McFarland et al., 1994; Pochapin, 2000)
 - HIV-assoziierte Diarrhö (Rolfe, 2000)
 - mit künstlicher Ernährung assoziierte Diarrhö (Bleichner et al., 1997)
chronisch entzündliche Darmerkrankungen:
- Morbus Crohn (Malchow, 1997; Guslandi et al., 2000)
- chronische Pouchitis (Gionchetti et al., 2000; Marteau et al., 2002)
Reizdarmsyndrom (Madden & Hunter, 2002; Mercenier et al., 2003)
chronische Obstipation (Möllenbrink & Bruckschen, 1994)
übermäßiges Bakterienwachstum im Dünndarm (Vanderhoof et al., 1998)
Helicobacter pylori Gastroenteritis (Cremonini et al., 2001; Felley et al., 2001)
Darmkrebs (Brady et al., 2000; Wollowski et al., 2001; Rafter, 2002)
Laktose-Intoleranz (Shermak et al., 1995; Vesa et al., 2000)
Saccharase-Isomaltase-Defizienz (Harms et al., 1987)

Extraintestinale Erkrankungen:
- Infektionen des Urogenitaltrakts (Hallen et al., 1992; Sanders, 2000)
- Erkrankungen des Herz-Keislaufsystems:
 - Bluthochdruck (Hata et al., 1996; Sanders, 2000)
 - Erhöhter Cholesterolspiegel (Sanders, 2000; Mercenier et al., 2003)
- Allergien (Pelto et al., 1998; Lodínová-Zádniková et al., 2003)
atopische Erkrankungen, atopische Ekzeme (Majamaa & Isolauri, 1997; Isolauri et al., 2000; Kalliomäki et al., 2001)
- juvenile chronische Arthritis (Malin et al., 1996)
- Endotoxämie in Verbindung mit alkoholinduzierter Lebererkrankung (Nanji et al., 1994)
- Karies (Näse et al., 2001)
- Nierensteine (Campieri et al., 2001)

Die Wirkungen von Probiotika beruhen hauptsächlich auf der Stärkung der endogenen Verteidigungsbarrieren (Isolauri et al., 2001). So wird zum einen durch probiotische Mikroorganismen durch Kompetition um Nährstoffe, Blockierung von Adhäsionsstellen und Produktion von antimikrobiellen Substanzen (z. B. Bakteriozine, Mikrozine, organische Säuren, Wasserstoffperoxid) die Kolonisierung anderer Bakterien verhindert (Kolonisationsresistenz). Dies führt zu Änderungen der Zusammensetzung der intestinalen Mikroflora, der metabolischen Aktivitäten und der Toxinproduktion (Holzapfel et al., 1998; Rolfe, 2000; Sanders, 2000; Patzer et al., 2003). Zum anderen wird die mukosale Barriere durch Produktion essentieller Nährstoffe für die Kolonenschleimhaut, Stimulation der Proliferation von Kolonocyten, Beeinflussung der Mucinproduktion und Induktion der Defensinproduktion stabilisiert, wodurch die Integrität der Darmmukosa aufrechterhalten und somit eine mikrobielle Translokation verhindert wird (Holzapfel et al., 1998; Mack et al., 1999; Frič, 2002; Wehkamp et al., 2004; Snelling, 2005).

Weitere beschriebene probiotische Wirkungen beruhen auf der Bereitstellung von Enzymen, der Beeinflussung von Enzymaktivitäten, der Modifikation von Nahrungsproteinen und antimutagenen Effekten (Holzapfel et al., 1998; Sanders, 2000).

Tab. 2: Zusammenfassung positiver Effekte von Milchsäurebakterien in Verbindung mit den vermutlich zu Grunde liegenden Wirkungsmechanismen (Mercenier et al., 2003; Sanders, 2003)

<table>
<thead>
<tr>
<th>positiver Effekt</th>
<th>möglicher Wirkungsmechanismus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verminderung der Laktoseintoleranz</td>
<td>- Wirkung der bakteriellen β-Galaktosidase auf Laktose</td>
</tr>
<tr>
<td>Positiver Einfluss auf intestinale Flora</td>
<td>- Beeinflussung der Aktivität von übermäßig wachsender Flora verhindert die Produktion von toxischen Metaboliten</td>
</tr>
<tr>
<td></td>
<td>- Antibakterielle Eigenschaften</td>
</tr>
<tr>
<td>Prävention von Infektionen des Intestinaltrakts</td>
<td>- Erhöhung der Antikörperproduktion durch adjuvanter Effekt</td>
</tr>
<tr>
<td></td>
<td>- Stimulation von systemischen oder sekretorischen Immunantworten</td>
</tr>
<tr>
<td></td>
<td>- Kompetitive Exklusion</td>
</tr>
<tr>
<td></td>
<td>- Änderung der intestinalen Bedingungen (pH, kurzkettige Fettsäuren, Bakteriozine)</td>
</tr>
<tr>
<td></td>
<td>- Änderung von Toxin-Bindungsstellen</td>
</tr>
<tr>
<td></td>
<td>- Änderung der Darmflora</td>
</tr>
<tr>
<td></td>
<td>- Adhärence an intestinale Mukosa verhindert Adhärence von Pathogenen</td>
</tr>
<tr>
<td></td>
<td>- Kompetition um Nährstoffe</td>
</tr>
<tr>
<td>Verbesserung des Immunsystems</td>
<td>- Stärkung der unspezifischen Abwehr gegen Infektion</td>
</tr>
<tr>
<td></td>
<td>- Erhöhung der phagozytischen Aktivität von Leukozyten</td>
</tr>
<tr>
<td></td>
<td>- Erhöhung der IgA Produktion</td>
</tr>
<tr>
<td></td>
<td>- Proliferation von intraepithelialen Lymphozyten</td>
</tr>
<tr>
<td></td>
<td>- adjuvanter Effekt bei antigenspezifischen Immunantworten</td>
</tr>
<tr>
<td></td>
<td>- Regulation der Th1/Th2 Balance, Induktion der Zytokinsynthese</td>
</tr>
<tr>
<td>Reduktion von inflammatorischen und allergischen Reaktionen</td>
<td>- Wiederherstellung der Homöostase des Immunsystems</td>
</tr>
<tr>
<td></td>
<td>- Regulation der Zytokinsynthese</td>
</tr>
<tr>
<td></td>
<td>- Prävention von Antigen-Translokation in den Blutkreislauf</td>
</tr>
<tr>
<td>Anti-Darmkrebsaeffekt</td>
<td>- Mutagenbindung</td>
</tr>
<tr>
<td></td>
<td>- Karzinogendeaktivierung</td>
</tr>
<tr>
<td></td>
<td>- Änderung der Aktivität von Darmmikroben</td>
</tr>
<tr>
<td></td>
<td>- Immunstimulation</td>
</tr>
<tr>
<td></td>
<td>- Einfluss auf Konzentration sekundärer Gallensalze</td>
</tr>
<tr>
<td>Blutfette, Herzerkrankungen</td>
<td>- Assimilation von Cholesterol</td>
</tr>
<tr>
<td></td>
<td>- Änderung der Aktivität von Gallensalz-Hydrolase-Enzymen</td>
</tr>
<tr>
<td></td>
<td>- Antioxidativer Effekt</td>
</tr>
<tr>
<td>Blutdrucksenkender Effekt</td>
<td>- Aktivität von Peptidase auf Milch führt zu blutdrucksenkenden Tripeptide (Angiotensin-Convertting-Enzym Inhibitoren)</td>
</tr>
<tr>
<td></td>
<td>- Zellwandkomponenten wirken als Angiotensin-Convertting-Enzym Inhibitoren</td>
</tr>
<tr>
<td>Infektionen des Urogenitaltrakts</td>
<td>- Adhäsion an Zellen des Harn- und Vaginaltrakts</td>
</tr>
<tr>
<td></td>
<td>- Kompetitive Exklusion</td>
</tr>
<tr>
<td></td>
<td>- Produktion von Inhibitoren (H₂O₂, “Biosurfactants”)</td>
</tr>
<tr>
<td>Infektionen durch Helicobacter pylori</td>
<td>- Kompetitive Exklusion</td>
</tr>
<tr>
<td></td>
<td>- Produktion von Milchsäure</td>
</tr>
<tr>
<td></td>
<td>- Produktion von antimikrobiellen Substanzen</td>
</tr>
<tr>
<td></td>
<td>- Reduzierung der Urease-Aktivität von H. pylori</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 2

<table>
<thead>
<tr>
<th>positiver Effekt</th>
<th>möglicher Wirkungsmechanismus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karies</td>
<td>- Änderung der oralen Mikroflora</td>
</tr>
<tr>
<td></td>
<td>- Änderung der Aktivität der oralen Mikroflora</td>
</tr>
<tr>
<td></td>
<td>- Beeinflussung der Fähigkeit, an Zähne zu adhärieren</td>
</tr>
<tr>
<td>Nierensteine</td>
<td>- Beeinflussung der Degradation von Oxalat durch Änderung der Darmflora</td>
</tr>
<tr>
<td>Endotoxämie</td>
<td>- Inhibierung von Endotoxin-produzierender intestinaler Mikroflora</td>
</tr>
</tbody>
</table>

2.4 Der probiotische *E. coli* Stamm DSM 6601

Der *E. coli* Stamm DSM 6601 besitzt die Fähigkeit, den Darm von Menschen (Lodinová-Žádníková & Sonnenborn, 1997; Malchow et al., 1995) sowie von gnotobiotischen Ferkeln (Gunzer et al., 2002) und Mäusen (Waidmann et al., 2003) effizient zu kolonisieren. Dieser Stamm produziert drei unterschiedliche Fimbrientypen (Typ 1-, F1C- und Curli-Fimbrien) und verfügt über sechs verschiedene Eisenaufnahmesysteme (Aerobaktin, Salmochelin, Enterobaktin,

![Diagramm](attachment:diagram.png)

Abb. 3: Schematische Darstellung einer Bakterienzelle des *Escherichia coli* Stammes DSM 6601 (modifiziert nach G. Blum-Oehler).

Genomanalysen haben gezeigt, dass viele der genannten Faktoren, oftmals als Fitnessfaktoren bezeichnet, auf vier großen genomischen Inseln (GEI I-IV) und mehreren kleineren Genklustern lokalisiert sind (Grozdanov et al., 2004; Sun et al., 2005). Zudem sind im Genom von *E. coli* DSM 6601 zwei kleine kryptische “high-copy”-Plasmide vorhanden, die eine große genetische Stabilität besitzen (Blum-Oehler et al., 2003).

Der probiotische *E. coli* Stamm DSM 6601 exprimiert keine Virulenzfaktoren wie Toxine (CNF1 (“cytotoxic necrotizing factor 1”), Hämolyssin) oder Mannose-resistente hämagglutinierende Adhäsine (P- und S-Fimbrien) (Blum et al., 1995). Das Fehlen dieser Virulenzfaktoren, die Serumempfindlichkeit und die Expression mehrerer Fitnessfaktoren, die das Überleben und die erfolgreiche Kolonisierung im menschlichen Darm unterstützen, bilden wahrscheinlich die Basis für den probiotischen Charakter des *E. coli* Stammes DSM 6601 (Grozdanov et al., 2004).

Frühe Studien haben gezeigt, dass der *E. coli* Stamm DSM 6601 *in vitro* eine deutliche antagonistische Aktivität gegenüber anderen pathogenen und apathogenen Keimen wie *Salmonella enteritidis*, *Shigella dysenteriae*, *Escherichia coli*, *Proteus vulgaris*, *Candida albicans* und...
Saccharomyces cerevisiae aufweist (Irrgang & Sonnenborn, 1988). Außerdem wird durch diesen Stamm die Invasion von Salmonella enterica Serovar Typhimurium und anderen invasiven Bakterien (Shigellen, Listerien, Legionellen, Yersinien, adhärent-invasive E. coli) in humane Epithelzellen in Zellkulturversuchen gehemmt (Boudeau et al., 2003; Altenhoefer et al., 2004). Zudem kann durch die orale Verabreichung des E. coli Stammes DSM 6601 bei Neugeborenen die Kolonisierung des Darms durch pathogene und potentiell pathogene Bakterien effektiv verringert werden (Lodinová-Žádníková & Sonnenborn, 1997).

Darüber hinaus besitzt der Stamm E. coli DSM 6601 immunmodulierende Aktivität sowohl für spezifische als auch für unspezifische Immunantworten. Es konnte gezeigt werden, dass bei ausgetragenen Neugeborenen und Frühgeborenen nach gezielter Kolonisierung mit diesem E. coli Stamm sowohl eine mukosale als auch eine systemische Immunität induziert wird (Lodinová-Žádníková et al., 1992; Cukrowska et al., 2002). In vitro konnte die Stimulation des unspezifischen Immunsystems (Hockertz, 1991) sowie die Induktion des humanen β-Defensins-2 (HBD-2) (Wehkamp et al., 2004) nachgewiesen werden. Durch den E. coli Stamm DSM 6601 wurde in keimfrei aufgezogenen Mäusen eine effektive Reduktion der Erregerbelastung bei Infektionen mit Listeria monocytogenes und Candida albicans erreicht, was auf eine Stimulation des Immunsystems zurückgeführt wird (Hockertz, 1997). Vor kurzem durchgeführte Studien haben gezeigt, dass die immunmodulatorischen Eigenschaften des E. coli Stammes DSM 6601 auch eine Rolle bei der Behandlung von entzündlichen Darmerkrankungen spielen (Schultz et al., 2004; Sturm et al., 2005). Bisher ist jedoch unklar, durch welche Faktoren des E. coli Stammes DSM 6601 diese probiotischen Wirkungen hervorgerufen werden.

2.5 Zielsetzung dieser Arbeit

Ein Ziel dieser Arbeit war die Charakterisierung der kryptischen Plasmide pMUT1 und pMUT2 des probiotischen E. coli Stammes DSM 6601 durch Analyse der DNA-Sequenz. Darüber hinaus sollte ein auf diesen Plasmiden basierendes spezifisches PCR-Nachweissystem etabliert werden, mit dem dieser E. coli Stamm direkt in Humanstuhl detektiert werden kann.

Des Weiteren sollte eine plasmidfreie Variante des E. coli Stammes DSM 6601 hergestellt werden, die zum einen als Trägerorganismus für rekombinante Plasmide und zum anderen bei Untersuchungen zur Klärung einer möglichen Funktion der kryptischen Plasmide verwendet werden kann.
Ein weiterer Schwerpunkt dieser Arbeit lag bei der Entwicklung von stabilen Klonierungsvektoren auf Basis der kryptischen Plasmide pMUT1 und pMUT2 für die Expression von heterologen Proteinen in diesem *E. coli* Stamm. Durch die stabile Expression von fluoreszierenden Proteinen sollte außerdem ein visuelles Nachweissystem für den probiotischen *E. coli* Stamm DSM 6601 etabliert werden.

Im Hinblick auf eine Verwendung des probiotischen *E. coli* Stammes DSM 6601 als Lebendimpfstoff, sollten Virulenzfaktoren von humanpathogenen enterohämorrhagischen *E. coli* (EHEC) und tierpathogenen enterotoxischen *E. coli* (ETEC) in diesem Stamm exprimiert werden. In ersten tierexperimentellen Untersuchungen sollte anschließend das immunogene Potential dieser möglichen Lebendvakzine getestet werden.

Ein weiteres Ziel dieser Arbeit war, die Bedeutung der Fimbrienadhäsine des *E. coli* Stammes DSM 6601 für die inhibitorische Wirkung auf die Invasivität von Salmonellen *in vitro* aufzuklären. Zudem sollte geprüft werden, ob die inhibitorischen Effekte dieses Stammes auch *in vivo* bei konventionellen Mäusen nachzuweisen sind.
3 Material

3.1 Verwendete Bakterienstämme und Plasmide

3.1.1 Bakterienstämme

Alle in dieser Arbeit verwendeten Bakterienstämme sind in den Tabellen 3 bis 5 aufgeführt.

Tab. 3: In dieser Arbeit verwendete E. coli Laborstämm

<table>
<thead>
<tr>
<th>E. coli K-12-Stamm</th>
<th>Relevanter Geno- bzw. Phänotyp*</th>
<th>Referenz oder Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>5K</td>
<td>Sm*, lacY1, tonA21, λ*, thr-1,</td>
<td>S. Glover</td>
</tr>
<tr>
<td>AAEC189</td>
<td>supE44, thi, r, m* Δsim, Δlac</td>
<td>Blomfield et al., 1991</td>
</tr>
<tr>
<td>BMH</td>
<td>Δlac, recA', endA', hsdR*, hsdM'</td>
<td>IMIB-Stammsammlung</td>
</tr>
<tr>
<td>C600</td>
<td>K-12</td>
<td>Appleyard, 1954</td>
</tr>
<tr>
<td>C600(λ)</td>
<td>supE44, hsdR17, recA1, endA1,</td>
<td>IMIB-Stammsammlung</td>
</tr>
<tr>
<td>DH1</td>
<td>gyrA96, thi-1, relA1</td>
<td>Low, 1968</td>
</tr>
<tr>
<td>DH5α</td>
<td>F', endA1, hsdR17 (r', m'), supE44,</td>
<td>Bethesda Research</td>
</tr>
<tr>
<td>E. c. 35</td>
<td>thi-1, recA1, Δ(argF-lac)U169,</td>
<td>Laboratories, 1986</td>
</tr>
<tr>
<td>E. c. 678-54</td>
<td>λ', λ80d(lacZΔM15, gyrA96), relA1</td>
<td>Smith et al., 1987</td>
</tr>
<tr>
<td>E. c. B</td>
<td>F', trp', phè', pro', his, lac',</td>
<td>Adler et al., 1967</td>
</tr>
<tr>
<td>EN99</td>
<td>NalR</td>
<td>Neidhardt, 1987</td>
</tr>
<tr>
<td>HB101</td>
<td>araD, Δlac, aroB, rpsL, thi,</td>
<td>Braun et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Te*, pColV-EN77, aber keine Aerobaktinsynthese</td>
<td>Boyer & Roulland-</td>
</tr>
<tr>
<td>J53</td>
<td>met', pro'</td>
<td>Dussoix, 1969</td>
</tr>
<tr>
<td>JM109</td>
<td>recA1, supE44, endA1, hsdR17,</td>
<td>Taylor, 1983</td>
</tr>
<tr>
<td></td>
<td>gyrA96, relA1, thiΔ(lac-proAB)</td>
<td>Yanisch-Perron et al., 1985</td>
</tr>
<tr>
<td>K-12 WT</td>
<td>F*, λ*</td>
<td>Bachmann, 1987</td>
</tr>
<tr>
<td>LE392</td>
<td>supE44, supF58, hsdR514, galK2,</td>
<td>Borck et al., 1976</td>
</tr>
<tr>
<td></td>
<td>galT22, metB1, trpR55, lacY1</td>
<td></td>
</tr>
<tr>
<td>Sm10λpir</td>
<td>thi1, thr1, leuB6, supE44,</td>
<td>Miller & Mekalanos, 1988</td>
</tr>
<tr>
<td></td>
<td>tonA21, lacY1, recA'Δ::RP4-2-Tc::Mu; KnR, λpir</td>
<td></td>
</tr>
<tr>
<td>SY327λpir</td>
<td>F*, araD, Δ(lac-pro), argE (Am),</td>
<td>Miller & Mekalanos, 1988</td>
</tr>
<tr>
<td></td>
<td>nalA, recA56, λpir, RifR</td>
<td></td>
</tr>
<tr>
<td>WK6</td>
<td>Δ(lac-proAB), galE, strA, lacI*ZΔM15, proA'B',</td>
<td>Zell & Fritz, 1987</td>
</tr>
</tbody>
</table>

Tab. 4: In dieser Arbeit verwendete *E. coli* Wildstämme und Derivate

<table>
<thead>
<tr>
<th>E. coli Wildstamm</th>
<th>Relevanter Geno- bzw. Phänotyp<sup>a)</sup></th>
<th>Referenz oder Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>179/2</td>
<td>O55:H6, EPEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>2907/97</td>
<td>O55:H6, EHEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>3574/92</td>
<td>O157:H<sup>+</sup>, EHEC</td>
<td>Datz et al., 1996</td>
</tr>
<tr>
<td>3697/97</td>
<td>O26:H<sup>+</sup>, EHEC</td>
<td>Schmidt et al., 1999</td>
</tr>
<tr>
<td>37-4</td>
<td>O55:H<sup>+</sup>, EPEC</td>
<td>Levine et al., 1978</td>
</tr>
<tr>
<td>536</td>
<td>O6:K15:H31, hly<sup>+</sup>, fim<sup>+</sup>, sfa<sup>+</sup>, prf<sup>+</sup>, ent<sup>+</sup>, * fla*<sup>+</sup>, sre<sup>+</sup>, *Sm<sup>R</sup></td>
<td>Berger et al., 1982</td>
</tr>
<tr>
<td>5477/94</td>
<td>O86:H7, EAEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>5720/96</td>
<td>O26:H<sup>-</sup>, EHEC</td>
<td>Zhang et al., 2000</td>
</tr>
<tr>
<td>764</td>
<td>O18:K5:H11, hly<sup>+</sup>, fim<sup>+</sup>, sfa<sup>+</sup>, pap/prf<sup>+</sup>, aer<sup>+</sup></td>
<td>Ott et al., 1986</td>
</tr>
<tr>
<td>764/2</td>
<td>O18:K5:H11, hly<sup>+</sup>, fim<sup>+</sup>, sfa<sup>+</sup>, pap/prf<sup>+</sup>, aer<sup>+</sup></td>
<td>Ott et al., 1986</td>
</tr>
<tr>
<td>76-5</td>
<td>O143:HND, EIEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>A151</td>
<td>O18ab:K1:H<sup>+</sup>, hly<sup>+</sup>, Fäkal-Isolat</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>A152</td>
<td>O18ab:K1:H7, hly<sup>+</sup>, Fäkal-Isolat</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>AD110</td>
<td>O6:K2:H1:F7, hly<sup>+</sup>, sfα<sup>+</sup>, foc<sup>+</sup>, pap<sup>+</sup>, aer<sup>+</sup></td>
<td>van Die et al., 1984</td>
</tr>
<tr>
<td>C9221a</td>
<td>O6:K15:H16, ETEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>CI-23</td>
<td>klinisches Isolat, lysogen, φR73 Phage</td>
<td>Inouye et al., 1991</td>
</tr>
<tr>
<td>DPA065</td>
<td>O119:HND, EAEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>DSM 6601</td>
<td>O6:K5:H1, fim<sup>+</sup>, foc<sup>+</sup>, ent<sup>+</sup>, iuc<sup>+</sup>, fec<sup>+</sup>, chu<sup>+</sup>, mch<sup>+</sup>, mcm<sup>+</sup></td>
<td>Ardeypharm GmbH, Herdecke</td>
</tr>
<tr>
<td>(Nissle 1917)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM 6601 Rif<sup>R</sup></td>
<td>Rif<sup>R</sup> Mutante von DSM 6601</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601Δfim</td>
<td>wie DSM 6601, aber fim<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601Δfoc</td>
<td>wie DSM 6601, aber foc<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601Δfoc/fim</td>
<td>wie DSM 6601, aber foc<sup>-</sup>, fim<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601Δfoc/fim Rif<sup>R</sup></td>
<td>Rif<sup>R</sup> Mutante von DSM 6601Δfoc/fim</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1</td>
<td>wie DSM 6601, aber pMUT1<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT2</td>
<td>wie DSM 6601, aber pMUT2<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2</td>
<td>wie DSM 6601, aber pMUT1<sup>-</sup> und pMUT2<sup>-</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2 Rif<sup>R</sup></td>
<td>Rif<sup>R</sup> Mutante von DSM 6601ΔpMUT1/2</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>E2348/69</td>
<td>O127:H6, EPEC</td>
<td>Levine et al., 1978</td>
</tr>
<tr>
<td>ED142</td>
<td>O111:H<sup>+</sup>, EHEC</td>
<td>Rüssmann et al., 1995</td>
</tr>
<tr>
<td>EDL1284</td>
<td>EIEC</td>
<td>Nagy et al., 2001</td>
</tr>
<tr>
<td>EDL1933</td>
<td>O157:H7, EHEC</td>
<td>Strickbne et al., 1986</td>
</tr>
<tr>
<td>F18</td>
<td>R:K1:H5, fim<sup>+</sup>, col<sup>+</sup></td>
<td>Burghoff et al., 1993</td>
</tr>
<tr>
<td>F18-Col<sup>-</sup></td>
<td>R:K1:H5, fim<sup>+</sup>, col<sup>-</sup></td>
<td>Burghoff et al., 1993</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 4

<table>
<thead>
<tr>
<th>E. coli Wildstamm</th>
<th>Relevanter Geno- bzw. Phänotyp(^a)</th>
<th>Referenz oder Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK 043/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td>Institut für Hygiene und Mikrobiologie, Universität Würzburg</td>
</tr>
<tr>
<td>HK 060/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 10058/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 10293/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 10222/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 10413/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 5021/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 10968/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 1247/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 1603/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 1939/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 2309/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 2355/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 2656/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 2899/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 3700/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 3812/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 3856/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 3857/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 4193/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 4236/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 4549/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 5456/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 6253/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 6499/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 6615/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 7519/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 7594/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 8416/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 8572/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 8729/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 9094/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 9765/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>HK 9855/93</td>
<td>aer(^+), fyuA(^+), irp2(^+), hly(^+), cnf-1(^+), fim(^+), prs/prf(^+), sfa(^-)</td>
<td></td>
</tr>
<tr>
<td>IHE3033</td>
<td>O18ac:K1:H7, hly(^+), NBM</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>IHE3034</td>
<td>O18:K1:H7/9, hly(^-), sfa(^+), fim(^+), pil(^-)</td>
<td>Korhonen et al., 1985</td>
</tr>
<tr>
<td>IHE3035</td>
<td>O18ac:K1:H7, hly(^+), NBM</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>IHE3036</td>
<td>O18:K1:H7/9, hly(^-), sfa(^+), fim(^+), pil(^-)</td>
<td>Korhonen et al., 1985</td>
</tr>
<tr>
<td>IHE3080</td>
<td>O18:K1:H7, hly(^+), sfa(^-), pap/prs(^+), fim(^+)</td>
<td>Nowicki et al., 1986</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 4

<table>
<thead>
<tr>
<th>E. coli Wildstamm</th>
<th>Relevanter Geno- bzw. Phänotypa)</th>
<th>Referenz oder Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>J96-M1</td>
<td>O4:K6:H, hlyI, hlyII+, pap/prf+, pil+, cnf+, F1C+, PAI I_{j96}</td>
<td>Hacker et al., 1990</td>
</tr>
<tr>
<td>O149:K88</td>
<td>ETEC Referenzstamm, Schweine-Isolat</td>
<td>A. Caprioli, Rom</td>
</tr>
<tr>
<td>PZ915</td>
<td>O19:H', hly', Fäkal-Isolat</td>
<td>Ardeypharm GmbH, Herdecke; Wehkamp et al., 2004</td>
</tr>
<tr>
<td>PZ915 RifR</td>
<td>RifR Mutante von PZ915</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>RS180</td>
<td>O18:K1:H7, hly+, NBM</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>RS218</td>
<td>O18ac:K1:H7, hly+, sfa, pil+, NBM</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>RS226</td>
<td>O18ac:K1:H7/6, hly+, sfa+, pap/prs+, fim+, aer+, Fäkal-Isolat</td>
<td>Achtman et al., 1983</td>
</tr>
<tr>
<td>SF493/89</td>
<td>O157:H', EHEC</td>
<td>Karch et al., 1993</td>
</tr>
</tbody>
</table>

Tab. 5: Andere in dieser Arbeit verwendete Wildstämme

<table>
<thead>
<tr>
<th>Wildstamm</th>
<th>Relevanter Geno- bzw. Phänotyp</th>
<th>Referenz oder Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/98</td>
<td>Citrobacter freundii, Hunde-Isolat</td>
<td>IMIB-Stammsammlung</td>
</tr>
<tr>
<td>3009</td>
<td>Citrobacter freundii, UTI-Isolat</td>
<td>Walter Reed Army Institute of Research, Washington DC; Oelschlaeger et al., 1993</td>
</tr>
<tr>
<td>3056</td>
<td>Citrobacter freundii, UTI-Isolat</td>
<td>Walter Reed Army Institute of Research, Washington DC; Oelschlaeger et al., 1993</td>
</tr>
<tr>
<td>WR7014</td>
<td>Citrobacter freundii</td>
<td>Walter Reed Army Institute of Research, Washington DC</td>
</tr>
<tr>
<td>WR7004</td>
<td>Citrobacter freundii</td>
<td>Walter Reed Army Institute of Research, Washington DC</td>
</tr>
<tr>
<td>DBS100</td>
<td>Citrobacter rodentium ATCC 51459</td>
<td>Deng et al., 2001</td>
</tr>
<tr>
<td>DSM 8224</td>
<td>Plesiomonas shigelloides ATCC 14029</td>
<td>DSMZ (Deutsche Stammsammlung von Mikroorganismen und Zellkulturen GmbH)</td>
</tr>
<tr>
<td>11184</td>
<td>Plesiomonas shigelloides, O36:H34, Gallenblasen-Isolat</td>
<td>Avison et al., 2000</td>
</tr>
<tr>
<td>SL1344</td>
<td>Salmonella enterica Serovar Typhimurium</td>
<td>IMIB-Stammsammlung</td>
</tr>
<tr>
<td>SL1344 NaR</td>
<td>NaR Mutante von SL1344</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
3.1.2 Plasmide

Die Karten der konstruierten Plasmide sind im Anhang aufgeführt.

Tab. 6: In dieser Arbeit verwendete Vektoren und Plasmide

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Vektor/Eigenschafts</th>
<th>Herkunft oder Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pACYC177</td>
<td>Klonierungsvektor, orip15A, Kn<sup>R</sup>, Ap<sup>R</sup></td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>pACYC184</td>
<td>Klonierungsvektor, orip15A, Cm<sup>R</sup>, Tc<sup>R</sup></td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>pACYC184-F1C</td>
<td>pACYC184 mit foc-Genkluster aus E. coli DSM 6601, Cm<sup>R</sup></td>
<td>Grozdanov et al., 2004</td>
</tr>
<tr>
<td>pCP20</td>
<td>FLP<sup>+</sup>, λ c1857, λp<sub>R</sub>, rep(ts), Cm<sup>R</sup>, Ap<sup>R</sup></td>
<td>Donnenberg & Kaper, 1991</td>
</tr>
<tr>
<td>pCVD442</td>
<td>oriR6K, mobRP4, sacB, Ap<sup>R</sup></td>
<td>Clontech</td>
</tr>
<tr>
<td>pDsRed</td>
<td>oriColE1, P<sub>lac</sub> DsRed, Ap<sup>R</sup></td>
<td>de Graaf et al., 1984</td>
</tr>
<tr>
<td>pFK99</td>
<td>pBR322 mit K99-Genkluster aus E. coli B41, Ap<sup>R</sup></td>
<td>Mooi et al., 1979</td>
</tr>
<tr>
<td>pFM205</td>
<td>pBR322 mit K88ab-Genkluster aus E. coli Stamm G7, Ap<sup>R</sup></td>
<td>Promega</td>
</tr>
<tr>
<td>pGEM<sup>®</sup>-T Easy</td>
<td>Klonierungsvektor, orif1, lacZ, Ap<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pGEM-Typ1</td>
<td>pGEM<sup>®</sup>-T Easy mit fim-Genkluster aus E. coli DSM 6601, Ap<sup>R</sup></td>
<td>Datsenko & Wanner, 2000</td>
</tr>
<tr>
<td>pGFPmut3.1</td>
<td>oriColE1, P<sub>lac</sub> GFPmut3.1, Ap<sup>R</sup></td>
<td>Datsenko & Wanner, 2000</td>
</tr>
<tr>
<td>pKD3</td>
<td>oriR<sub>γ</sub>, Cm<sup>R</sup>, Ap<sup>R</sup></td>
<td>Middendorf, 2005</td>
</tr>
<tr>
<td>pMUT1</td>
<td>kryptisches Plasmid aus E. coli DSM 6601</td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-2</td>
<td>pMUT1 liggirt in pUC18, Plasmide linearisiert mit HindIII, Ap<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-Tc</td>
<td>pMUT1 mit tetA-Kassette, Te<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-Tc-Eae</td>
<td>pMUT1-Tc mit eaeA aus O157:H7 Stamm 86-24, Te<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-Tc-Gfp</td>
<td>pMUT1-Tc mit gfp, Te<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-Tc-Red</td>
<td>pMUT1-Tc mit dsRed, Te<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT1-Tc-Sac</td>
<td>pMUT1-Tc mit sacB, Te<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT2</td>
<td>kryptisches Plasmid aus E. coli DSM 6601</td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT2-2</td>
<td>pMUT2 liggirt in pUC18, Plasmide linearisiert mit Sphi, Ap<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn</td>
<td>pMUT2 mit kn-Kassette, Kn<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn-Eae</td>
<td>pMUT2-Kn mit eaeA aus O157:H7 Stamm 86-24, Kn<sup>R</sup></td>
<td>these Arbeit</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 6

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Vektor/Eigenschaften</th>
<th>Herkunft oder Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMUT2-Kn-Gfp</td>
<td>pMUT2-Kn mit gfp, Kn<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn-K88</td>
<td>pMUT2-Kn mit K88ab-Genkluster aus E. coli Stamm G7, Kn<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn-K99</td>
<td>pMUT2-Kn mit K99-Genkluster aus E. coli B41, Kn<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn-Red</td>
<td>pMUT2-Kn mit dsRed, Kn<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMUT2-Kn-Sac</td>
<td>pMUT2-Kn mit sacB, Kn<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>RP4Δkn</td>
<td>konjugatives Helferplasmid, Ap<sup>R</sup>, Tc<sup>R</sup></td>
<td>IMIB-Stammsammlung</td>
</tr>
</tbody>
</table>

3.2 Oligonukleotide

Die für PCR-Reaktionen und Sequenzierungen verwendeten Oligonukleotide wurden von der Firma MWG-Biotech (Ebersberg) oder Sigma-ARK (Steinheim) bezogen.

Tab. 7: In dieser Arbeit verwendete Oligonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5’→3’)</th>
<th>Verwendung und Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>27f</td>
<td>GAGTTTGATCCTGGCTCA</td>
<td>5’-Primer für Nachweis von eubakterieller 16S rRNA; Lane, 1991</td>
</tr>
<tr>
<td>798r</td>
<td>CCAGGCTATCTAATCCGTT</td>
<td>3’-Primer für Nachweis von eubakterieller 16S rRNA</td>
</tr>
<tr>
<td>Fim 1</td>
<td>TATTGCTAACCCAGCACAGC TATGGCCGTCTGTAATTATA AGGGAAAACGATGGTGTAG GCTGGAGCTGCTTT</td>
<td>5’-Primer für Amplifikation von cat-Kassette aus pKD3 mit 55 Nukleotiden Sequenzhomologie zu 5’-“upstream”-Bereich von fimB</td>
</tr>
<tr>
<td>Fim 2</td>
<td>TTTAGCTTCAGGTAATATTGC GTACCCGATTAGCAATGTC CTGTGATTTCTTTACATATGA ATATCCTCCTTAGTTCTA</td>
<td>3’-Primer für Amplifikation von cat-Kassette aus pKD3 mit 55 Nukleotiden Sequenzhomologie zu 3’-“downstream”-Bereich von fimH</td>
</tr>
<tr>
<td>Fim 3</td>
<td>GTGATTGAGGAAGGTTAAAG TCG</td>
<td>5’-Primer für Komplementation von fim-Genkluster aus E. coli DSM 6601</td>
</tr>
<tr>
<td>Fim 4</td>
<td>CCAGCATTAGCAGACTGTTGTA</td>
<td>3’-Primer für Komplementation von fim-Genkluster aus E. coli DSM 6601</td>
</tr>
<tr>
<td>Foc 1</td>
<td>GTTGTGATGACAGATACGGTT GTGCGTATTTCAATTAAAAA CAGGAATTAAATATGGTGTAG GGCTGGAGCTGTCTTT</td>
<td>5’-Primer für Amplifikation von cat-Kassette aus pKD3 mit 55 Nukleotiden Sequenzhomologie zu 5’-“upstream”-Bereich von focA</td>
</tr>
<tr>
<td>Foc 2</td>
<td>ATATAAAGACGAGTAAATATC ATACCGCCCAACTGCAATTC TACATGAAATATCCCTCCTA GTTCTCTA</td>
<td>3’-Primer für Amplifikation von cat-Kassette aus pKD3 mit 43 Nukleotiden Sequenzhomologie zu 3’-“downstream”-Bereich von focH</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 7

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5'→3')</th>
<th>Verwendung und Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hincrev 2</td>
<td>CAAGCTCGAATTACCGAC</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>K12-L</td>
<td>TTCCACCGGACATGAAGACTACA</td>
<td>5'-Primer für Nachweis von E. coli K-12; Kuhnert et al., 1995</td>
</tr>
<tr>
<td>K12-R</td>
<td>ATCCTGCGCAACCATCAACA</td>
<td>3'-Primer für Nachweis von E. coli K-12; Kuhnert et al., 1995</td>
</tr>
<tr>
<td>M13 Reverse</td>
<td>CAGGAAAAACGCTATGACC</td>
<td>3'-Sequenzierprimer für “multiple cloning site” von pUC18</td>
</tr>
<tr>
<td>M13 Universal</td>
<td>TGTAAGACGCAAGGGCG</td>
<td>5'-Sequenzierprimer für “multiple cloning site” von pUC18</td>
</tr>
<tr>
<td>Micrev 1</td>
<td>CGCCAAAGAGATTGTATT</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micrev 2</td>
<td>GGTGCCACAAATAATGCG</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micrev 3</td>
<td>ATCCGGACATATGGTGTCG</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micrev 4</td>
<td>GTTATCGCATAGCTCATA</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micrev 5</td>
<td>CCGATCATCACTCAGTGA</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micrev 6</td>
<td>CAGGCCGCCATGTGTCAG</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micuni 1</td>
<td>GTGCGGTTGCGCAGTGGC</td>
<td>5'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Micuni 3</td>
<td>GGAACGCGCTGGTATCTTTA</td>
<td>5'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Muta 1</td>
<td>ATACTACGACCGTAATGGGT</td>
<td>5'-Primer für Nachweis von E. coli DSM 6601 und Sonde gegen fimA; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 2</td>
<td>TACATCAGTATCGGTAGCAT</td>
<td>3'-Primer für Nachweis von E. coli DSM 6601 und Sonde gegen fimA; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 3</td>
<td>CCACCGTTAGGTGTGGTACA</td>
<td>5'-Primer für Nachweis von E. coli DSM 6601 und Sonde gegen focA; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 4</td>
<td>CGTCCGCGCTGGCAATACCA</td>
<td>3'-Primer für Nachweis von E. coli DSM 6601 und Sonde gegen focA; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 5</td>
<td>AACTGTGAAGCGATACCC</td>
<td>5'-Primer für Nachweis von E. coli DSM 6601 und 5'-Sequenzierprimer für pMUT1; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 6</td>
<td>GGACTGTTCAGAGGCTATAC</td>
<td>3'-Primer für Nachweis von E. coli DSM 6601 und 3'-Sequenzierprimer für pMUT1; Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 7</td>
<td>GACCAAGCGATAACCGGATG</td>
<td>3'-Primer für Nachweis von E. coli DSM 6601 (pMUT2); Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 8</td>
<td>GTGAGATGATGCGCCAGATT</td>
<td>5'-Primer für Nachweis von E. coli DSM 6601 (pMUT2); Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Muta 9</td>
<td>GCGAGGTAACCTCGAATG</td>
<td>5'-Primer für Nachweis von E. coli DSM 6601 (pMUT2); Blum-Oehler et al., 2003</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 7

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5'→3')</th>
<th>Verwendung und Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muta 10</td>
<td>CGGCGTATCGATAATTACGG</td>
<td>3'-Primer für Nachweis von E. coli DSM 6601 (pMUT2); Blum-Oehler et al., 2003</td>
</tr>
<tr>
<td>Mutrev 1</td>
<td>GTAGGTGCCTCCTGCTCAAGC</td>
<td>3'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Mutuni 1</td>
<td>GAGTACGCCCTGCTGCTGC</td>
<td>5'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Mutuni 2</td>
<td>TCACCTGACTGATGATCGG</td>
<td>5'-Sequenzierprimer für pMUT1</td>
</tr>
<tr>
<td>Mutuni 3</td>
<td>GATAGCTCTCTGAACAGTCC</td>
<td>5'-Sequenzierprimer für pMUT1</td>
</tr>
</tbody>
</table>

3.3 Chemikalien und Enzyme

Die verwendeten Enzyme und Chemikalien wurden von folgenden Firmen bezogen:
Amersham (Braunschweig), Roche Diagnostics (Mannheim), Gibco BRL (Eggenstein), New England Biolabs (Frankfurt am Main), Invitrogen (Karlsruhe), Promega (Heidelberg), Boehringer (Mannheim), QIAGEN (Hilden), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (Steinheim), Difco (Augsburg); Oxoid (Wesel), Pharmacia Biotech (Freiburg), Dianova (Hamburg) und Clontech (Heidelberg).

Folgende Kits wurden verwendet:
- “ECL™ Direct Nucleic Acid Labelling And Detection Systems”, Amersham (Braunschweig)
- “GeneClean® Kit”, Dianova (Hamburg)
- “ELONGase® Enzyme Mix”, Invitrogen (Karlsruhe)
- “AmpliTaq® FS BigDye Terminator”-Sequenzierkit, Perkin Elmer (Weiterstadt)
- “QIAGEN Plasmid Midi Kit”, QIAGEN (Hilden)
- “QIAGEN PCR Purification Kit”, QIAGEN (Hilden)
- “QIAquick Gel Extraction Kit”, QIAGEN (Hilden)

3.4 Geräte und Sonstiges

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysenwaage</td>
<td>Chyo Balance Corp.</td>
</tr>
<tr>
<td>Autoklav</td>
<td>Webeco</td>
</tr>
<tr>
<td>Brutschränke</td>
<td>Memmert TV40b</td>
</tr>
<tr>
<td>Eismaschine</td>
<td>Scotsman AF-20</td>
</tr>
<tr>
<td>Elektronenmikroskop</td>
<td>Zeiss EM 900</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller/Modell</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Elektrophoresekammern</td>
<td>Institutswerkstatt</td>
</tr>
<tr>
<td>Elektroporationsgerät</td>
<td>Gene Pulser Transfection, BioRad</td>
</tr>
<tr>
<td>Exponierkassette</td>
<td>Dr. Goos Suprema</td>
</tr>
<tr>
<td>Filme</td>
<td>Hyperfilm ECL, Amersham</td>
</tr>
<tr>
<td>Filmentwicklungsgerät</td>
<td>Curix 60, Agfa</td>
</tr>
<tr>
<td>Fluoreszenzimager</td>
<td>Typhoon 8600, Amersham</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop</td>
<td>Axiovert 25, Zeiss, Zeiss Filtersets 00 und 10</td>
</tr>
<tr>
<td></td>
<td>Kamera: Intas Lowlight CCD</td>
</tr>
<tr>
<td>Geldokumentationsanlage</td>
<td>GelDoku2000, BioRad</td>
</tr>
<tr>
<td>Geltrockner</td>
<td>BioRad 1125 B</td>
</tr>
<tr>
<td>Gene Linker</td>
<td>BioRad Gene Linker GS</td>
</tr>
<tr>
<td>Grobwaage</td>
<td>Chyo Electronic Balance Mp-3000</td>
</tr>
<tr>
<td>Hybridisierungsofen</td>
<td>Hybaid Mini 10</td>
</tr>
<tr>
<td>Kühlzentrifugen</td>
<td>J2-HC Centrifuge, JA10- und JA20-Festwinkelrotoren, Beckmann</td>
</tr>
<tr>
<td></td>
<td>Biofuge 13R, Heraeus</td>
</tr>
<tr>
<td></td>
<td>Megafuge 1.0R, Heraeus</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>Janke und Kunkel KMO 2</td>
</tr>
<tr>
<td>Mikropipetten</td>
<td>Gilson P20, P200, P1000</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Reference 0,5-10 µl</td>
</tr>
<tr>
<td>Mikrowellenofen</td>
<td>AEG Micromat</td>
</tr>
<tr>
<td>Netzgeräte</td>
<td>Consort E455</td>
</tr>
<tr>
<td></td>
<td>BioRad Power Pac 300</td>
</tr>
<tr>
<td>Nylonmembran</td>
<td>Pall Biodyne B, 0,45 µm</td>
</tr>
<tr>
<td>PCR-Geräte</td>
<td>Eppendorf Thermocycler</td>
</tr>
<tr>
<td></td>
<td>Biometra T3 Thermocycler</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>WTW pH 523</td>
</tr>
<tr>
<td>Photometer</td>
<td>Pharmacia Ultrospec 3000</td>
</tr>
<tr>
<td>Protein-Minigelkammer</td>
<td>BioRad Mini-Protean II</td>
</tr>
<tr>
<td>Proteinblotkammer</td>
<td>Hartenstein Laborbedarf</td>
</tr>
<tr>
<td>Schüttelinkubatoren</td>
<td>Bühler W55 swip</td>
</tr>
<tr>
<td></td>
<td>Innova TM 4300</td>
</tr>
<tr>
<td>Sequenziergerät</td>
<td>ABI Prism 310 Genetic Analyzer, Perkin Elmer</td>
</tr>
<tr>
<td>Speedvac-Konzentrator</td>
<td>SpeedVac SC 110 Savant</td>
</tr>
<tr>
<td>Sterilarbeitsbank</td>
<td>Nuaire A/B3</td>
</tr>
<tr>
<td>Sterilfilter</td>
<td>Schleicher & Schuell, 0,45 µm und 0,22 µm</td>
</tr>
</tbody>
</table>
3 Material

Tischinkubatoren Eppendorf Thermostat 5320
Liebisch Thermoblock
Tischzentrifuge Eppendorf 5415C
Ultraschallgerät Bandelin Sonoplus HD 70
Vakuum-Blot-System Pharmacia Biotech
Videoprintanlage Mitsubishi, Hitachi, Cybertech Cb 1
Vortexer Vortex-Genie 2, Scientific Industries
Wasserbad GFL 1083
Zellinkubator Heraeus T10A

3.5 Medien und Nährböden

Alle Nährmedien wurden für 20 min bei 121 °C autoklaviert. Zur Herstellung von Agarplatten wurde den Medien vor dem Autoklavieren 1,5 % (w/v) Agar zugegeben. Für Softagar wurde dem Medium 0,5 % (w/v) Agar (Difco) hinzugefügt.

3.5.1 LB- (Luria-Bertani-) Medium (Sambrook et al., 1989)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypton</td>
<td>10 g</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>5 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>5 g</td>
</tr>
<tr>
<td>H₂Odest.</td>
<td>ad 1000 ml</td>
</tr>
</tbody>
</table>

pH 7,5

3.5.2 X-Gal-Medium

LB-Medium mit folgenden Zusätzen:
IPTG (0,1 M) 0,5 ml/l
X-Gal (2 % (w/v) in N, N′-Dimethylformamid) 3 ml/l

3.5.3 Saccharose-Medium

LB-Medium ohne NaCl
10 % (w/v) Saccharose (Stocklösung 50 % (w/v) Saccharose, sterilfiltriert)

3.5.4 MacConkey-Agar

50 g/l Difco MacConkey-Agar (enthält 1 % Laktose)
3.5.5 M63B1-Minimalmedium

20 % (w/v) (NH₄)₂SO₄ 10 ml
KH₂PO₄ 13,6 g
10 % (w/v) MgSO₄ 1 ml
0,1 % (w/v) FeSO₄ 1 ml
H₂O dest. ad 978 ml pH 7,0

Nach dem Autoklavieren wurden folgende getrennt sterilisierte Komponenten zugesetzt:

0,05 % (w/v) Thiamin 2 ml
20 % (w/v) Glukose 20 ml

3.5.6 Antibiotikazusätze

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Endkonzentration</th>
<th>Lösungsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>100 µg/ml</td>
<td>H₂O dest.</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>20 µg/ml</td>
<td>100 % EtOH</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>50 µg/ml</td>
<td>H₂O dest.</td>
</tr>
<tr>
<td>Nalidixin</td>
<td>20 µg/ml</td>
<td>H₂O dest.</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>30 µg/ml</td>
<td>70 % (v/v) EtOH</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>100 µg/ml</td>
<td>H₂O dest.</td>
</tr>
<tr>
<td>Tetrazyklin</td>
<td>10 µg/ml</td>
<td>70 % (v/v) EtOH</td>
</tr>
</tbody>
</table>

3.5.7 Nährmedium für INT407-Zellen

Die in der Zellkultur verwendeten Nährmedien und Medienzusätze (FCS, Gentamycin, Glutamin, Trypsin/EDTA, DMSO) wurden von Gibco BRL (Eggenstein), C.C.pro GmbH (Neustadt) oder PAA (Cölbe) bezogen.

Das fötale Kälberserum (FCS) wurde vor Zugabe zum Medium 1 h bei 65 °C hitzeinaktiviert, aliquotiert (50 ml) und bei -20 °C aufbewahrt. Glutamin-Lösungen wurden in 5 ml Aliquots bei -20 °C gelagert. Die Supplemente wurden steril zugesetzt.

Medium: MEM
Supplemente: 10 % (v/v) FCS
2 mM Glutamin
3.6 Patientenstuhlproben

Die Patientenstuhlproben wurden erhalten von Prof. Dr. W. Kruis (Abteilung Innere Medizin des Krankenhauses Kalk, Köln).

3.7 Zelllinien

3.8 Versuchstiere

Die Mausinzuchtlinie Balb/c wurde von Charles River (Sulzfeld) bezogen. Die Tiere wurden am Institut für Medizinische Mikrobiologie und Immunologie der Universität Pécs (Ungarn) gehalten und ad libitum mit Wasser und Trockenfutter versorgt. Die Isolatoren wurden täglich gereinigt.

3.9 Puffer und Lösungen

Für Enzymreaktionen wurden die vom Hersteller mitgelieferten Puffer und Lösungen verwendet. Wurden Puffer und Lösungen selbst angesetzt, sind diese unter den jeweiligen Methoden angegeben. Bei Enzymreaktionen wurde H$_2$O$_{bdest}$ und für alle anderen Lösungen H$_2$O$_{dest}$ eingesetzt.

3.10 Antikörper

- Polyklonales Kaninchen-Antiserum gegen Intimin (αRIHisEae) (McKee & O’Brien, 1996; erhalten von Dr. M. R. Wachtel, Bethesda, Maryland, USA)
- Polyklonales Kaninchen-Antiserum gegen K88-Fimbrien zur Serumagglutination (erhalten von Dr. W. Schrödl, Universität Leipzig)
- Polyklonales Kaninchen-Antiserum gegen K99-Fimbrien zur Serumagglutination (erhalten von Dr. W. Schrödl, Universität Leipzig)
- Polyklonales Kaninchen-Antiserum gegen F1C-Fimbrien (erhalten von Dr. A. S. Khan, Universität Würzburg)
- Peroxidase-gekoppelter Anti-Kaninchen-Antikörper (Dianova, Hamburg)
- Peroxidase-gekoppelter Anti-Maus-Antikörper (Dianova, Hamburg)
3 Material

3.11 Größenmarker

3.11.1 DNA-Größenmarker

Für die Größenbestimmung von DNA-Fragmenten in Agarosegelen wurden die folgenden Größenmarker eingesetzt.

Die 1kb Leiter und die 100 bp-Leiter wurden von der Firma MBI Fermentas (St. Leon-Rot) bezogen.

<table>
<thead>
<tr>
<th>100 bp-Leiter</th>
<th>Größe in kb</th>
<th>1 kb-Leiter</th>
<th>Größe in kb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment</td>
<td></td>
<td>Fragment</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,000</td>
<td>1</td>
<td>10,00</td>
</tr>
<tr>
<td>2</td>
<td>2,000</td>
<td>2</td>
<td>8,00</td>
</tr>
<tr>
<td>3</td>
<td>1,500</td>
<td>3</td>
<td>6,00</td>
</tr>
<tr>
<td>4</td>
<td>1,200</td>
<td>4</td>
<td>5,00</td>
</tr>
<tr>
<td>5</td>
<td>1,031</td>
<td>5</td>
<td>4,00</td>
</tr>
<tr>
<td>6</td>
<td>0,900</td>
<td>6</td>
<td>3,50</td>
</tr>
<tr>
<td>7</td>
<td>0,800</td>
<td>7</td>
<td>3,00</td>
</tr>
<tr>
<td>8</td>
<td>0,700</td>
<td>8</td>
<td>2,50</td>
</tr>
<tr>
<td>9</td>
<td>0,600</td>
<td>9</td>
<td>2,00</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>10</td>
<td>1,50</td>
</tr>
<tr>
<td>11</td>
<td>0,400</td>
<td>11</td>
<td>1,00</td>
</tr>
<tr>
<td>12</td>
<td>0,300</td>
<td>12</td>
<td>0,75</td>
</tr>
<tr>
<td>13</td>
<td>0,200</td>
<td>13</td>
<td>0,50</td>
</tr>
<tr>
<td>14</td>
<td>0,100</td>
<td>14</td>
<td>0,25</td>
</tr>
</tbody>
</table>

3.11.2 Protein-Größenmarker

Als Molekulargewichtstandard für Proteine diente der “Full Range Rainbow”-Marker der Firma Amersham (Braunschweig).

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Größe in kDa</th>
<th>Farbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>Blau</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>Rot</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>Grün</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>Gelb</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>Violett</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>Blau</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>Orange</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>Grün</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>Blau</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Rot</td>
</tr>
</tbody>
</table>
4 Methoden

Soweit nicht anders angegeben sind die Anleitungen dem “CSH Laboratory Manual” (Sambrook et al., 1989) entnommen. Zentrifugationsschritte ohne weitere Angaben wurden in einer Tischzentrifuge mit 10 000 x g ausgeführt.

4.1 Isolierung von Plasmid-DNA mit der Schnelllysat-Methode (Boom et al., 1990)

Eine unter Selektionsdruck angezogene 3 ml Übernachtzüchtung (ÜNK) wird in einem Reaktionsgefäss 1 min abzentrifugiert. Das Zellpellet wird in 150 µl Puffer I gelöst. Zu dieser Zellsuspension werden 150 µl frisch angesetzter Puffer II gegeben. Der Ansatz wird durch mehrmaliges Invertieren gemischt und 5 min auf Eis inkubiert. Die Lösung sollte dabei aufklären, was die erfolgreiche Zelllyse anzeigt. Nach Zugabe von 150 µl eiskaltem Puffer III wird der Ansatz kurz gemischt und nochmals für 5 min auf Eis inkubiert. Ausgefallene chromosomale DNA und Zelltrümmer werden anschließend abzentrifugiert (5 min). Der klare Überstand wird abgegossen und in ein neues Reaktionsgefäss überführt, in das 900 µl L6-Puffer und 50 µl Diatomeenerde-Suspension vorgelegt wurden. Während einer Inkubationszeit von 1 min bei Raumtemperatur (RT) bindet die Plasmid-DNA an die Diatomeenerde, die von der verbleibenden Flüssigkeit über einen Filter getrennt und mit 2 ml Waschpuffer gewaschen wird. Flüssigkeitsreste werden durch kurzzeitiges (15 s) Zentrifugieren entfernt. Zur Elution der Plasmid-DNA von der Diatomeenerde wird der Filter auf ein neues Reaktionsgefäss gesteckt und mit 50 µl H₂O dest. 5 min inkubiert. Nach 15 s Zentrifugation liegt die Plasmid-DNA gereinigt im Reaktionsgefäss vor und wird bei -20 °C aufbewahrt.

Benötigte Lösungen:

Puffer I:
- 1 M Tris-HCl, pH 7,5
- 0,5 M EDTA, pH 8,0
- RNase (10 mg/ml)
- H₂O dest.
- 5 ml
- 2 ml
- 1 ml
- ad 100 ml

Puffer II:
- NaOH
- SDS
- 0,2 N
- 1 % (w/v)

Puffer III:
- Na-Acetat, pH 4,8
- 3 M
L6-Puffer:
- 0,1 M Tris-HCl, pH 6,4: 100 ml
- 0,5 M EDTA, pH 8,0: 8,8 ml
- \(\text{H}_2\text{O}_{\text{dest.}} \): 13,2 ml
- Triton X-100: 2,6 ml
- Guanidinthiocyanat: 120 g

Diatomeenerde-Suspension:
- Diatomeenerde: 10 g
- \(\text{H}_2\text{O}_{\text{dest.}} \): 50 ml
- HCl konz.: 500 µl

Waschpuffer:
- 5 M NaCl: 10 ml
- 1 M Tris-HCl, pH 7,5: 5 ml
- 0,5 M EDTA, pH 8,0: 2,5 ml
- \(\text{H}_2\text{O}_{\text{dest.}} \): ad 250 ml
- EtOH (p. a.): 250 ml

4.2 Plasmidisolierung, mittlerer Maßstab ("Plasmid Midi Kit", QIAGEN)

Der "Plasmid Midi Kit" von QIAGEN wird für die Isolierung von "high-copy"- und "low-copy"-Plasmiden verwendet. Dazu wird eine 50 ml- (bei "high-copy"-Plasmiden) bzw. 200 ml- (bei "low-copy"-Plasmiden) Bakterienkultur unter Selektionsdruck des entsprechenden Antibiotikums ÜN bei 37 °C angezogen und anschließend für 10 min mit 6 000 x g bei 4 °C zentrifugiert. Das Bakterienpellet wird in 4 ml bzw. 8 ml Lösung P1 resuspendiert. Es werden 4 ml bzw. 8 ml Lösung P2 zugegeben, der Ansatz wird vermischt und für 5 min bei RT inkubiert. Danach werden 4 ml bzw. 8 ml kalte Lösung P3 hinzugefügt. Anschließend wird für 15 min auf Eis inkubiert und für 15 min mit 20 000 x g bei 4 °C zentrifugiert. Der Überstand wird in einen neuen Zentrifugenbecher überführt und erneut für 15 min mit 20 000 x g bei 4 °C zentrifugiert. Eine QIAGEN-Säule wird mit 4 ml Puffer QBT äquilibriert und der Überstand der Zentrifugation auf die Säule gegeben. Es wird zweimal mit jeweils 10 ml Puffer QC gewaschen. Die Säule wird auf ein neues Zentrifügenröhrchen gesetzt und die Plasmid-DNA mit 5 ml Puffer QF eluiert. Durch Zugabe von 3,5 ml Isopropanol wird die Plasmid-DNA gefällt. Die DNA wird durch Zentrifugation für 30 min mit 15 000 x g bei 4 °C pelletiert, mit 200 µl eiskaltem 70 % (v/v) Ethanol gewaschen, 5 min luftgetrocknet und in einem geeigneten Volumen \(\text{H}_2\text{O}_{\text{bidest.}} \) aufgenommen.

4.3 Isolierung von DNA aus Stuhlproben (Blum-Oehler et al., 2003)

Für die Isolierung von Plasmid-DNA direkt aus Stuhlproben werden 100 mg Stuhl mit 500 µl \(\text{H}_2\text{O}_{\text{bidest.}} \) gemischt und der Ansatz wird für 10 min bei 100 °C aufgekocht. Anschließend werden
alle Feststoffe für 5 min abzentrifugiert. Der Überstand (500 µl) wird mit 900 µl L6-Puffer und 50 µl Diatomeenerde-Suspension (siehe 4.1) vermischt und für 2 min bei RT inkubiert. Während dieser Zeit bindet die DNA an die Diatomeenerde, die von der verbleibenden Flüssigkeit über einen Filter getrennt und mit 2 ml Waschpuffer (siehe 4.1) gewaschen wird. Flüssigkeitsreste werden durch kurzzeitiges (15 s) Zentrifugieren entfernt. Zur Elution der DNA von der Diatomeenerde wird der Filter auf ein neues Reaktionsgefäß gesteckt und mit 30 µl H₂O₇ bidest. 5 min inkubiert. Nach 15 s Zentrifugation liegt die DNA gereinigt im Reaktionsgefäß vor und wird bei -20 °C aufbewahrt. Für PCR-Reaktionen werden 2 µl des Eluats eingesetzt.

4.4 Aufreinigung von DNA-Fragmenten ("QIAquick PCR Purification Kit", QIAGEN)

Der “QIAquick PCR Purification Kit” eignet sich für die Aufreinigung von einzel- oder doppelsträngigen DNA-Fragmenten aus PCR-Reaktionen und anderen enzymatischen Reaktionen. Dazu werden 5 Volumen Puffer PB zu 1 Volumen wässriger DNA-Lösung gegeben und miteinander vermischt. Anschließend wird der Ansatz auf eine Säule pipettiert und 30 s abzentrifugiert. Die an die Säule gebundene DNA wird mit 0,75 ml Puffer PE gewaschen und Flüssigkeitsreste werden 1 min abzentrifugiert. Danach wird die Säule auf ein neues Reaktionsgefäß gesetzt und die DNA mit 50 µl H₂O₇ bidest. eluiert.

4.5 Ethanol-Fällung von Plasmid-DNA

Zur Konzentrierung von DNA werden DNA-Lösungen mit 0,1 Volumen 3 M Na-Acetat (pH 4,8) und 2 Volumen absolutem Ethanol versetzt, geschüttelt und mindestens 20 min bei -80 °C gefällt. Anschließend wird die gefällte DNA 10 min in der Kühlzentrifuge abzentrifugiert, zur Entfernung von Salzen mit 70 % (v/v) Ethanol gewaschen und im Speedvac-Konzentrator getrocknet. Das getrocknete DNA-Pellet wird in einem geeigneten Volumen H₂O₇ bidest. aufgenommen.

4.6 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentrationsbestimmung von Nukleinsäuren erfolgt durch Bestimmung der Absorption bei 260 nm. Eine Absorption von A₂₆₀ = 1 entspricht bei Verwendung von Quarzküvetten mit einer Schichtdicke von d = 1 cm ca. 50 µg/ml doppelsträngiger DNA, ca. 40 µg/ml RNA bzw. ca. 33 µg/ml einzelsträngiger Oligonukleotide. Die Reinheit von Nukleinsäuren kann durch zusätzliche Bestimmung der Absorption bei 280 nm ermittelt werden. Die Nukleinsäuren weisen eine ausreichende Reinheit auf, wenn das Verhältnis von A₂₆₀/A₂₈₀ über 1,8 liegt.
4.7 Spaltung von DNA durch Restriktionsendonukleasen

Die Spaltung von DNA durch Restriktionsendonukleasen erfolgt nach den von den Herstellern angegebenen Bedingungen. Im 20 µl-Reaktionsansatz wird die in H₂O₉₀₉₀₉₀gelöste DNA mit 0,1 Volumen des geeigneten 10 x Reaktionspuffers und mit ca. 5 Units des entsprechenden Restriktionsenzymes gemischt. Die Temperatur, bei der die Spaltungsansätze für 1-2 h inkubiert werden, beträgt je nach verwendeter Endonuklease 30 °C oder 37 °C. Zur Entfernung von RNA kann zum Spaltansatz 1µl RNase (10 mg/ml) zugesetzt werden. Die Spaltung wird durch Zugabe von 0,2 Volumen Stop-Mix (siehe 4.8) beendet. Soll die DNA weiter aufgearbeitet werden, wird das Restriktionsenzym entweder durch Erhitzen für 20 min bei 75 °C inaktiviert oder durch Aufreinigung entfernt.

4.8 Horizontale Gelelektrophorese

<table>
<thead>
<tr>
<th>% Agarose</th>
<th>Größe der linearen DNA (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3</td>
<td>5,0 - 60</td>
</tr>
<tr>
<td>0,6</td>
<td>1,0 - 20</td>
</tr>
<tr>
<td>0,7</td>
<td>0,8 - 10</td>
</tr>
<tr>
<td>0,9</td>
<td>0,5 - 7</td>
</tr>
<tr>
<td>1,2</td>
<td>0,4 - 6</td>
</tr>
<tr>
<td>1,5</td>
<td>0,2 - 4</td>
</tr>
<tr>
<td>2,0</td>
<td>0,1 - 3</td>
</tr>
</tbody>
</table>

Zur Herstellung des Agarosegels wird die Agarose in dem geeigneten Laufpuffer in der Mikrowelle aufgekocht, bis sie vollständig gelöst ist. Nach Abkühlung auf ca. 50 °C wird die Agarose in eine abgedichtete Gießvorrichtung gegossen und der Kamm eingesetzt. Nachdem das Gel erstarrt ist, wird der Kamm herausgezogen und das Gel in die Elektrophoresekammer gelegt. Das Gel wird mit Laufpuffer überschichtet, die Proben werden mit 0,2 Volumen Stop-Mix versetzt und aufgetragen. Nach erfolgter Gelelektrophorese kann die aufgetrennte DNA durch Inkubation des Gels in einem Ethidiumbromidbad (10 mg/ml) 15 min angefärbt und anschließend unter UV-Licht analysiert oder zur Dokumentation fotografiert werden.
4 Methoden

Bedingungen für verschiedene Gele:

<table>
<thead>
<tr>
<th>Gelart</th>
<th>Laufpuffer</th>
<th>Spannung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>analytisches Gel</td>
<td>0,5 x TBE</td>
<td>120 V</td>
<td>1-2 h</td>
</tr>
<tr>
<td>préparatives Gel</td>
<td>1 x TAE</td>
<td>80 V</td>
<td>2-4 h</td>
</tr>
<tr>
<td>analytisches Gel</td>
<td>1 x TPE</td>
<td>30 V</td>
<td>ÜN</td>
</tr>
</tbody>
</table>

Benötigte Lösungen:

- **50 x Tris-Acetat-EDTA (TAE):**
 - Tris: 242 g
 - Eisessig: 57,1 ml
 - 0,5 M EDTA, pH 8,0: 100 ml
 - H2Odest. ad 1000 ml

- **10 x Tris-Phosphat-EDTA (TPE):**
 - Tris: 108 g
 - 85 % Phosphorsäure: 15 ml
 - 0,5 M EDTA, pH 8,0: 40 ml
 - H2Odest. ad 1000 ml

- **10 x Tris-Borat-EDTA (TBE):**
 - Tris: 108 g
 - Borsäure: 55 g
 - 0,5 M EDTA, pH 8,0: 40 ml
 - H2Odest. ad 1000 ml

- **6 x Stop-Mix:**
 - Bromphenolblau: 0,25 % (w/v)
 - Xylencyanol: 0,25 % (w/v)
 - Ficoll Type 400: 15 % (w/v)

4.9 Isolierung von DNA-Fragmenten aus Agarosegelen

DNA-Fragmente werden durch Elektrophorese auf einem préparativen TAE-Gel getrennt und anschließend mit EtBr gefärbt. Die gewünschte Bande wird unter UV-Licht aus dem Gel ausgeschnitten und das Agarosestück in ein Reaktionsgefäß überführt.

4.9.1 “Geneclean®Kit” (Dianova)

4.9.2 “QIAquick Gel Extraction Kit” (QIAGEN)

Das Gelstück mit dem zu isolierenden DNA-Fragment wird in 3 Volumen (w/v) Puffer QG 10 min bei 50 °C erwärmt. Sobald die Agarose aufgelöst ist, wird 1 Volumen (w/v) des Gelstücks entsprechend Isopropanol zugegeben und der Ansatz vermischt. Anschließend wird das Gemisch auf eine Säule gegeben und abzentrifugiert, wobei die DNA an das Säulenmaterial bindet. Um Agarosereste und Salze zu entfernen, wird die Säule zunächst mit 0,5 ml Puffer QG und anschließend mit 0,75 ml Puffer PE gewaschen. Flüssigkeitsreste werden 1 min abzentrifugiert.

Danach wird die Säule auf ein neues Reaktionsgefäß gesetzt und die an das Säulenmaterial gebundene DNA durch Zugabe von 50 µl H2O bidest. eluiert.

4.10 Entfernen von überhängenden 3'- und 5'-DNA-Enden

Zur Auffüllung von 5'-überhängenden Enden sowie zum Abdauen von 3'-überhängenden Enden von DNA-Fragmenten, die über “blunt ends” ligiert werden sollen, wird das Klenow-Fragment der DNA-Polymerase verwendet. Dazu werden 13 µl des aufzufüllenden DNA-Fragments (ca. 1 µg DNA), 4 µl dNTP-Mix, 2 µl 10 x Reaktionspuffer und 5 Units Klenow-Enzym gemischt und der Ansatz wird für 30 min bei 30 °C inkubiert. Danach wird das Klenow-Enzym durch Erhitzen bei 75 °C (10 min) inaktiviert oder die DNA aufgereinigt.

dNTP-Mix: dATP 0,5 mM
dCTP 0,5 mM
dGTP 0,5 mM
dTTP 0,5 mM
4.11 “Polymerase chain reaction” (PCR) (Saiki et al., 1988)

Mit dieser Methode können Nukleotidsequenzen in vitro enzymatisch exponentiell amplifiziert werden. Die DNA-Sequenz des PCR-Produktes kann dabei gezielt verändert werden.

Für die PCR-Reaktion wird folgender Ansatz in einem Reaktionsgefäß vorbereitet:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq-Polymerase Puffer</td>
<td>10 µl</td>
</tr>
<tr>
<td>20 mM dNTP-Mix</td>
<td>4 µl</td>
</tr>
<tr>
<td>Primer 1</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer 2</td>
<td>2 µl</td>
</tr>
<tr>
<td>Template-DNA</td>
<td>1 µl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>1 µl</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>abgestimmt auf jeweilige PCR-Reaktion</td>
</tr>
<tr>
<td>H₂O bidest.</td>
<td>ad 100 µl</td>
</tr>
</tbody>
</table>

Dieser Reaktionsansatz wird 3 min bei 94 °C aufgekocht. Die Amplifikation der DNA erfolgt über 30 Zyklen unter den jeweils optimalen Bedingungen für das eingesetzte Primerpaar und das zu amplifizierende DNA-Fragment: 1 min Denaturierung bei 94 °C, 1 min “Annealing” der Primer (ca. 2 °C unterhalb der Schmelztemperatur der Oligonukleotide), DNA-Synthese (1 min/kb der zu amplifizierenden DNA) bei 72 °C. Danach wird der Ansatz nochmals 3 min bei 72 °C inkubiert, um die vollständige Synthese aller DNA-Fragmente zu gewährleisten.

4.12 “Long distance”-PCR (εLONGase® Enzyme Mix”, Invitrogen)

Für die Amplifizierung von großen DNA-Fragmenten ist die Taq DNA-Polymerase allein nicht stabil genug. Um eine effektive Amplifizierung von DNA-Fragmenten über 4 kb zu erreichen, wird deswegen häufig ein Zwei-Polymerasen System verwendet. Der “εLONGase Enzyme mix” enthält sowohl eine Taq DNA-Polymerase als auch eine Pyrococcus species GB-D thermostabile DNA-Polymerase. Zusätzlich können noch die Pufferbedingungen und hierbei speziell die Mg²⁺-Konzentration verändert werden.

Für eine “long distance” PCR wird folgender Ansatz in ein 0,5 ml Reaktionsgefäß gegeben:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM dNTP-Mix</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer 1</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer 2</td>
<td>1 µl</td>
</tr>
<tr>
<td>Template-DNA</td>
<td>1 µl</td>
</tr>
<tr>
<td>εLONGase Enzymmix</td>
<td>1 µl</td>
</tr>
<tr>
<td>Puffer A</td>
<td>abgestimmt auf jeweilige PCR-Reaktion</td>
</tr>
<tr>
<td>Puffer B</td>
<td>abgestimmt auf jeweilige PCR-Reaktion</td>
</tr>
<tr>
<td>H₂O bidest.</td>
<td>ad 50 µl</td>
</tr>
</tbody>
</table>
Der Reaktionsansatz wird 30 s bei 94 °C denaturiert. Die Amplifikation der DNA erfolgt über 35 Zyklen unter den jeweils optimalen Bedingungen für das eingesetzte Primerpaar und das zu amplifizierende DNA-Fragment: 30 s Denaturierung bei 94 °C, 30 s “Annealing” der Primer (ca. 2 °C unterhalb der Schmelztemperatur der Oligonukleotide), DNA-Synthese (1 min/kb der zu amplifizierenden DNA) bei 68 °C.

4.13 Dephosphorylierung von DNA-Fragmenten

Um eine Religation von Vektor-DNA nach erfolgter Restriktion zu verhindern, sollten die DNA-Enden dephosphoryliert werden. Die Abspaltung der 5'-Phosphatgruppe erfolgt durch Zugabe von 0,1 Volumen des mit der Phosphatase mitgelieferten 10 x Phosphatasepuffers und alkalischer Phosphatase aus Kälberdarm (1 Unit). Dieser Ansatz wird 60 min bei 37 °C inkubiert. Zur Inaktivierung der Phosphatase wird der Ansatz 15 min bei 85 °C inkubiert oder die DNA direkt aufgeregnet.

4.14 Herstellung rekombinanter DNA-Moleküle

4.15 Herstellung kompetenter Zellen

Zur Aufnahme rekombinanter Plasmidmoleküle muss die bakterielle Zellwand und Zellmembran durchlässig (transformationskompetent) gemacht werden. Dieses kann durch spezielle vorherige Behandlung der Zellen induziert bzw. vorbereitet werden.

4.15.1 Behandlung mit CaCl₂

50 ml LB-Medium werden mit 500 µl einer ÜN-Kultur angeimpft und bei 37 °C bis zu einer OD₆₀₀ von 0,7 geschüttelt. Nach einer Abkühlung auf Eis wird die Bakterienkultur 10 min mit 2 000 x g bei 4 °C zentrifugiert. Das Pellet wird in 20 ml eiskalter 100 mM CaCl₂-Lösung resuspendiert und für mindestens 20 min auf Eis inkubiert. Danach werden die Zellen erneut für 10 min mit 2 000 x g bei 4 °C zentrifugiert. Das Bakterienpellet wird anschließend in insgesamt
2,5 ml 100 mM CaCl₂-Lösung aufgenommen, mit Glycerin bis zu einer Endkonzentration von 15 % (v/v) versetzt, aliquotiert (jeweils 200 µl) und bei -80 °C gelagert.

4.15.2 Kompetente Zellen für die Elektroporation

150 ml LB-Medium werden mit 1,5 ml einer ÜN-Kultur beimpft und bei 37 °C bis zu einer OD₆₀₀ von 0,5 geschüttelt. Danach wird die Bakterienkultur 10 min mit 2 000 x g bei 4 °C zentrifugiert. Das Bakterienpellet wird 3 x in steriles, eiskalten 10 % (v/v) Glycerin gewaschen, zuerst mit 100 %, dann mit 50 % und zuletzt mit 10 % des Ausgangsvolumens. Schließlich wird das gewaschene Pellet in 300 µl 10 % (v/v) Glycerin resuspendiert, aliquotiert (jeweils 40 µl) und bei -80 °C gelagert.

4.16 Transformation von Bakterienzellen

Die Aufnahme isolierter DNA durch Bakterien kann mit Hilfe einer Inkubation der Bakterien mit CaCl₂ in Kombination mit einem kurzen Hitzeschock oder durch kurzzeitiges Anlegen eines elektrischen Feldes erreicht werden.

4.16.1 Transformation mit Hitzeschock

Die CaCl₂-kompetenten Zellen werden auf Eis aufgetaut. Danach werden ca. 0,5 µg Plasmid-DNA bzw. 10 µl des Ligationsansatzes zu den Zellen pipettiert und miteinander vermischt. Der Ansatz wird für 30-60 min auf Eis inkubiert. Die Aufnahme der DNA in die Zellen erfolgt durch einen kurzen Hitzeschock von 90 s bei 43 °C. Danach wird der Ansatz sofort wieder auf Eis gestellt. In das Reaktionsgefäß wird 1 ml LB-Medium zugegeben und der Ansatz für 1-2 h bei 37 °C im Schüttler inkubiert. In dieser Zeit können die Zellen auf dem Plasmid kodierte Resistenzgene exprimieren. Die Bakterien werden danach abzentrifugiert und der Überstand wird bis auf 100 µl entfernt. Das Pellet wird im restlichen Überstand resuspendiert und auf einer Selektionsagarplatte ausplattiert.

4.16.2 Elektroporation

Auf Eis aufgetaute elektrokompetente Zellen werden mit 1-2 µl salzfreier Plasmid-DNA-Lösung (1-100 ng DNA) gemischt und 5 min auf Eis inkubiert. Danach wird dieser Ansatz luftblaseenfrei zwischen die beiden Elektroden einer steril und vorgekühlten 2 mm Elektroporationsküvette pipettiert. Die Küvette wird gut abgetrocknet und in den Elektrodenhalter eingesetzt. Nach der
4 Methoden

Durchführung des Elektroimpulses bei 2,5 kV, 200 Ω und 25 µF wird die Bakteriensuspension mit 1 ml LB-Medium aus der Küvette gespült und bei 37 °C für 1-2 h im Schüttler inkubiert. Anschließend werden die Bakterien auf einer Selektionsagarplatte ausplattiert.

4.17 Konjugation zwischen einem *E. coli* Donor- und Rezipientenstamm

4.17.1 Konjugation

Jeweils 1 ml einer ÜN-Kultur des Donor- und Rezipientenstammes wird in 24 ml LB-Medium verdünnt und bei 37 °C bis zu einer OD₆₀₀ von 0,5-0,7 geschüttelt. Nach 10 min Inkubation auf Eis werden 100 μl der beiden Kulturen miteinander gemischt, auf einer LB-Platte ausplattiert und ÜN bei 37 °C inkubiert. Am nächsten Tag wird der Bakterienrasen mit 2 ml LB-Medium oder 0,9 % (w/v) NaCl abgeschwemmt. Diese Suspension wird entsprechend verdünnt und auf Selektionsagarplatten ausplattiert, die nur das Wachstum von Transkonjuganten zulassen.

4.17.2 *In vitro*-Filterkonjugation

Eine ÜN-Kultur des Donor- und Rezipientenstammes wird jeweils 1:20 in LB-Medium verdünnt und bei 37 °C für 2 h geschüttelt. Daraufhin werden je 0,5 ml der beiden Kulturen miteinander gemischt und das Medium wird über einen Nitrozellulosefilter mittels Unterdruck (Wasserstrahlpumpe) abgesaugt. Die Unterseite des Filters wird auf einer vorgewärmten LB-Agarplatte platziert, die Bakterien befinden sich dabei auf der Oberseite. Die Inkubation des Ansatzes erfolgt 1 h bei 37 °C. Anschließend werden die Bakterien mit 1 ml 0,9 % (w/v) NaCl vom Filter gewaschen. Diese Suspension wird entsprechend verdünnt und auf Selektionsagarplatten ausplattiert, die nur das Wachstum von Transkonjuganten zulassen.

4.18 “One-step”-Inaktivierung von chromosomalen Genen in *E. coli* (Datsenko & Wanner, 2000)

Diese Methode ist eine einfache und höchst effiziente einstufige Allelaustauschmethode, um chromosomale Gene in *E. coli* unter Verwendung von PCR-Produkten zu inaktivieren, wobei PCR-Primer die Sequenzhomologien zu den Randbereichen der Zielgene liefern. Bei dieser
Prozedur ist für die Rekombination die Red-Rekombinase des \(\lambda \)-Phagen erforderlich, welche unter der Kontrolle eines mit L-Arabinose induzierbaren Promotors auf einem Helferplasmid (pKD46) mit temperatursensitivem Replikationsursprung kodiert ist.

Das Templateplasmid pKD3 trägt ein Chloramphenicol-Resistenzgen, das von FLP-Erkennungssequenzen (FRT) flankiert wird. Dieses DNA-Fragment wird mit Primern amplifiziert, die eine mindestens 36 Nukleotide lange homologe Sequenz zu den Randbereichen des zu deletierenden Zielgens besitzen. Der zu verändernde \textit{E. coli} Stamm wird mit dem Helferplasmid pKD46 transformiert. Von diesen Transformanten werden elektrokompetente Zellen hergestellt. Hierfür werden die Bakterien unter Zugabe von Ampicillin (100 \(\mu \)g/ml) und 1 mM L-Arabinose, wodurch die Expression der Red-Rekombinase des \(\lambda \)-Phagen induziert wird, bei 30 °C bis zu einer OD\textsubscript{600} von 0,6 angezogen. Die kompetenten Zellen werden mit 10-100 ng PCR-Produkt transformiert und 1 h bei 37 °C inkubiert. Die induzierte Red-Rekombinase kann während dieser Zeit die Integration des PCR-Fragments in das Chromosom katalysieren. Anschließend wird eine Hälfte des Transformationsansatzes auf Chloramphenicol-Agarplatten ausplattiert, die andere Hälfte wird über Nacht bei RT inkubiert und danach ausplattiert. Chloramphenicol-resistente Klone werden auf LB-Platten ohne Selektionsdruck überstrichen und bei 43 °C inkubiert. Bei dieser Temperatur kann das Helferplasmid pKD46 nicht mehr replizieren. Danach werden die Klone auf Ampicillin-Sensitivität getestet, was den Verlust des Helferplasmids pKD46 bedeutet.

4.19 Isolierung chromosomaler DNA aus \textit{E. coli} (Grimberg et al., 1989)

1 ml einer ÜN-Kultur des betreffenden \textit{E. coli} Stammes wird in einem Reaktionsgefäß abzentrifugiert. Das Bakterienpellet wird mit 1 ml TNE gewaschen und anschließend in 270 \(\mu \)l TNEX aufgenommen. Es werden 30 \(\mu \)l frisch angesetzte Lysozymlösung (5 mg/ml) zugegeben und der Ansatz wird für 30 min bei 37 °C inkubiert. Anschließend erfolgt die Zugabe von 15 \(\mu \)l
Proteinase K (20 mg/ml) und eine weitere Inkubation von 1-2 h bei 65 °C, wobei die Lösung vollständig aufklären muss. Die chromosomale DNA wird durch Zugabe von 0,05 Volumen 5 M NaCl (15 µl) und 500 µl Ethanol (p.a.) ausgefällt, danach in der Kühlzentrifuge abzentrifugiert, zweimal mit 200 µl 70 % (v/v) Ethanol gewaschen und 20 min luftgetrocknet. Das Pellet wird in 100 µl H$_2$O$_{bdest}$ aufgenommen.

Benötigte Lösungen:

<table>
<thead>
<tr>
<th>TNE:</th>
<th>Tris-HCl, pH 8,0</th>
<th>10 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaCl</td>
<td>10 mM</td>
</tr>
<tr>
<td></td>
<td>EDTA, pH 8,0</td>
<td>10 mM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNEX:</th>
<th>TNE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triton X-100</td>
<td>1 % (v/v)</td>
</tr>
</tbody>
</table>

4.20 Pulsfeld-Gelelektrophorese (PFGE)

Voraussetzung für die Durchführung der Pulsfeld-Gelelektrophorese (PFGE) ist die Verwendung von unbeschädigter Gesamt-DNA. Bei der herkömmlichen DNA-Isolierung treten durch mechanische Scherkräfte häufig Strangbrüche auf. Dies wird durch die Einbettung der Bakterien in “low-melting” (LGT)-Agarose vor der DNA-Isolierung vermieden.

4.20.1 Isolierung von “High Molecular Weight”-DNA für die Pulsfeld-Gelelektrophorese

10 ml LB-Medium werden mit einer Bakterienkolonie beimpft und UN bei 37 °C inkubiert. Mit 100 µl dieser ÜN-Kultur wird eine 1:10 Verdünnung in 0,9%iger (w/v) NaCl-Lösung hergestellt und die optische Dichte bei 600 nm bestimmt. Liegt der Wert OD$_{600}$ bei 0,17, werden 4 ml der ÜN-Kultur für die Isolierung verwendet. Die errechnete Menge an Bakteriensuspension wird in einem 2 ml Reaktionsgefäße pelletiert und anschließend zweimal mit 1 ml SE-Puffer gewaschen. Nachdem die Zellen wieder in 1 ml SE-Puffer aufgenommen wurden, wird erneut die optische Dichte bei 600 nm gemessen (100 µl Zellen + 900 µl SE-Puffer). Die OD$_{600}$ sollte zwischen 0,6 und 0,8 liegen. Zum Gießen der Blöckchen werden zwei Aluminiumschienen ineinander gelegt und an beiden Enden so mit Abstandshaltern versehen, dass eine Rinne entsteht. Zum Einbetten der Bakterien wird 2 % (w/v) LGT-Agarose verwendet. Die Agarose wird aufgekocht und nach kurzem Abkühlen werden 900 µl Bakteriensuspension mit 900 µl Agarose gemischt und schnell luftblasenfrei in die vorbereitete Schiene pipettiert. Nach Erstarren der Agarose im Kühlschrank werden Blöckchen zugeschnitten und in ein 15 ml Greiner-Röhrchen überführt, das 5 ml NDS-
Lösung und 2 mg/ml Proteinase K enthält. Die Röhrchen werden ÜN bei 50 °C unter leich

Benötigte Lösungen:

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-Puffer:</td>
<td>NaCl</td>
<td>75 mM</td>
</tr>
<tr>
<td></td>
<td>EDTA, pH 7,4</td>
<td>25 mM</td>
</tr>
<tr>
<td>TE-Puffer:</td>
<td>Tris-HCl, pH 7,5</td>
<td>10 mM</td>
</tr>
<tr>
<td></td>
<td>EDTA, pH 7,5</td>
<td>5 mM</td>
</tr>
<tr>
<td>NDS-Puffer:</td>
<td>N-Laurylsarkosin</td>
<td>1 % (w/v)</td>
</tr>
<tr>
<td></td>
<td>EDTA, pH 9,5</td>
<td>0,5 mM</td>
</tr>
<tr>
<td></td>
<td>Proteinase K (frisch zugeben)</td>
<td>2 mg/ml</td>
</tr>
<tr>
<td>LGT-Agarose Puffer:</td>
<td>Tris-HCl, pH 7,5</td>
<td>10 mM</td>
</tr>
<tr>
<td></td>
<td>MgCl₂</td>
<td>10 mM</td>
</tr>
<tr>
<td></td>
<td>EDTA, pH 7,5</td>
<td>0,1 mM</td>
</tr>
<tr>
<td></td>
<td>LGT-Agarose</td>
<td>2 % (w/v)</td>
</tr>
</tbody>
</table>

4.20.2 Restriktionsspaltung von “High Molecular Weight”-DNA

Vor der Restriktionsspaltung der DNA-Blöckchen muss der TE-Puffer aus den Blöckchen entfernt werden, da das EDTA die Spaltung mit Restriktionsenzymen stören würde. Für die Restriktionsspaltung mit dem Enzym *NotI* werden die Blöckchen 1 h bei 50 °C in 1 ml 1 x Restriktionspuffer vorinkubiert. Anschließend wird der Puffer von den Blöckchen entfernt und durch 150 µl frischen 1 x Restriktionspuffer ersetzt. Die DNA in den Agaroseblöckchen wird dann 3 h mit 30 Units Enzym bei 37 °C gespalten.

<table>
<thead>
<tr>
<th>10 x Restriktionspuffer:</th>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tris-Acetat</td>
<td>100 mM</td>
</tr>
<tr>
<td></td>
<td>K-Acetat</td>
<td>500 mM</td>
</tr>
<tr>
<td></td>
<td>Mg-Acetat</td>
<td>100 mM</td>
</tr>
</tbody>
</table>
4.20.3 Auftrennung von “High Molecular Weight”-DNA durch Gelelektrophorese

Die Auftrennung der “High Molecular Weight”-DNA erfolgt in einer horizontalen Elektrophoresekammer. Die Agarosekonzentration des Gels beträgt 0,8 % (w/v) in 0,5 x TBE-Puffer (siehe 4.8). Die Dauer des Gellaufs liegt zwischen 21 und 24 h bei steigenden Pulszeiten von 5-50 s. Als Größenstandard wird der “Lambda Ladder”-PFGE-Marker der Firma New England Biolabs verwendet. Nach Beendigung der Elektrophorese wird die DNA durch Inkubation des Gels im Ethidiumbromidbad (10 mg/ml) angefärbt. Das Gel wird anschließend auf einem UV-Transilluminator zur Dokumentation fotografiert.

4.21 “Southern”-Hybridisierung

15 µg chromosomale DNA werden mit einem geeigneten Restriktionsenzym gespalten und in einem 0,8 % (w/v) TPE-Agarosegel (siehe 4.8) aufgetrennt. Die DNA in dem Gel wird anschließend angefärbt und das Gel neben einem fluoreszierenden Lineal unter UV-Licht fotografiert, um die nach der Hybridisierung auftretenden Signale später einzelnen Banden zuordnen und ihre Größe bestimmen zu können. Danach wird die DNA durch Vakuum-“Blotting” auf eine Nylonmembran (Pall Biodyne B, 0,45 µm) transferiert.

4.21.1 Vakuum-“Blotting”

Zum Blotten wird die Nylonmembran zugeschnitten, die ca. 5 mm größer als das Gel sein sollte. Diese Membran wird kurz in H₂O dest. und dann für 5 min in 20 x SSC geschwenkt. Währenddessen wird die poröse Trägerplatte der Blotkammer mit H₂O dest. getränkt und mit der glatten Seite nach oben in die Blotkammer eingelegt. Die Nylonmembran wird nun auf die Trägerplatte gelegt und mit einer Plastikmaske so abgedeckt, dass die Maske die Membran um etwa 2-4 mm überlappt. Das Agarosegel wird luftblasenfrei auf die Plastikmaske aufgelegt, die Kammer mit dem Rahmen verschlossen und anschließend ein Vakuum (50 mbar) angelegt. Die Geloberfläche wird darauf nacheinander mit folgenden Lösungen für die angegebenen Zeiten überschichtet:

- **Depurinisierungslösung** (0,25 N HCl) 8 min
- **Denaturierungsösung** (0,5 N NaOH; 1,5 M NaCl) 8 min
- **Neutralisierungslösung** (0,5 M Tris-HCl, pH 7,5; 1,5 M NaCl) 8 min
- **20 x SSC** (0,3 M Na-Citrat, pH 7,0; 3 M NaCl) 45 min
Im Anschluss an das “Blotting” wird die Nylonmembran für jeweils 1 min in 0,4 N NaOH geschwenkt und danach in 0,25 M Tris-HCl (pH 7,5) neutralisiert. Nach kurzem Trocknen der Membran auf Whatmanpapier wird die DNA durch UV-Bestrahlung auf der Membran fixiert.

4.21.2 Nichtradioaktive Markierung einer DNA-Sonde und Hybridisierung („ECL™-Kit“, Amersham)

Für die Markierung der Sonde werden 0,1 µg DNA in 10 µl H₂O bidest. aufgenommen und für 5 min bei 96 °C denaturiert. Danach wird das Reaktionsgefäß sofort 5 min auf Eis gestellt. Zu dieser denaturierten DNA werden 10 µl DNA-Labelling-Reagenz gegeben, das die Peroxidase enthält, und der Ansatz wird gut vermischt. Nach Zugabe von 10 µl Glutaraldehyd wird 10 min bei 37 °C inkubiert, um die Bindung des Enzyms an die DNA zu fixieren. Die markierte Sonde wird dann sofort für die Hybridisierungsreaktion eingesetzt.

Benötigte Lösungen:

Waschlösung I: $0,5 \times \text{SSC}; 0,4 \ % \ (w/v) \ \text{SDS}; 6 \ M \ \text{Harnstoff}$

Waschlösung II: $2 \times \text{SSC}$

4.22 Sequenzierung mit fluoreszenzmarkierten Nukleotiden (AmpliTaq® FS BigDye-Terminator, Perkin Elmer)

Für eine Sequenzierreaktion werden 4 µl “Premix” und 10 pmol Primer zu 0,5 µg Plasmid-DNA gegeben. Der Ansatz wird mit H\textsubscript{2}O\textsubscript{bidest.} (Merck, Darmstadt) auf 10 µl Gesamtvolumen aufgefüllt. Die anschließende Sequenzierreaktion wird unter folgenden Bedingungen durchgeführt:

4.23 Gewinnung von Gesamtzelllysaten durch Lyse mit Laemmli-Puffer

Für die Gewinnung von Gesamtzelllysaten werden jeweils 1,5 ml ÜN-Kultur abzentrifugiert. Sollen die Mengen eines bestimmten Proteins zwischen verschiedenen Stämmen verglichen werden, so sind die ÜN-Kulturen dieser Stämme zuvor auf dieselbe OD₆₀₀ einzustellen. Die Pellets werden in 100 µl H\textsubscript{2}O\textsubscript{bidest.} aufgenommen, mit je 25 µl 5 x Laemmli-Puffer versetzt und für 10 min bei 96 °C gekocht. Daraufhin werden die Proben ein weiteres Mal für 5 min abzentrifugiert und die klaren Überstände in neue Reaktionsgefäße überführt, die direkt im SDS-PAGE eingesetzt werden können.
5 x Laemmli-Puffer:

I. 1,1 g SDS
0,41 g EDTA
0,17 g NaH₂PO₄ x 2 H₂O
1,1 ml β-Mercaptoethanol
pH-Wert mit NaOH auf 7,2 einstellen
mit H₂O₉dest. auf 10 ml auffüllen

II. 0,2 % (w/v) Bromphenolblau in 50 % (v/v) Glycerin

III. I. und II. zu gleichen Teilen mischen

4.24 Gewinnung von Gesamtzelllysaten durch Ultraschall

Für die Herstellung eines 3-fachen Proteinkonzentrats durch Ultraschall werden 6 ml einer ÜN-Kultur 5 min mit 6 000 x g abzentrifugiert. Das Bakterienpellet wird in 2 ml 1 x PBS aufgenommen und in Intervallen von ca. 30 s solange beschallt, bis die Lösung deutlich aufgeklärt ist. Während des Beschallvorgangs wird die Probe auf Eis gekühlt, um ein Erhitzen und damit die Zerstörung der Proteine zu verhindern. Anschließend wird für 5 min abzentrifugiert und der Überstand bei -20 °C gelagert oder direkt auf ein Proteingel aufgetragen.

10 x PBS:

<table>
<thead>
<tr>
<th></th>
<th>NaCl</th>
<th>80 g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>2 g/l</td>
<td></td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>11,5 g/l</td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2 g/l</td>
<td></td>
</tr>
</tbody>
</table>

4.25 Hitzeextraktion von Fimbrien (Khan & Schifferli, 1994)

150 ml LB-Medium werden mit einer Bakterienkolonie beimpft und ÜN bei 37 °C geschüttelt. Die Bakterien werden 5 min mit 6 000 x g abzentrifugiert und das Pellet wird in 10 ml Fimbrienextraktionspuffer aufgenommen. Diese Bakteriensuspension wird für 30 min im 60 °C Wasserbad geschüttelt und anschließend werden die Zellen 10 min mit 10 000 x g abzentrifugiert. Der fimbrienhaltige Überstand wird abgenommen und in ein Centripräp 50 Röhrchen (Millipore) überführt. Durch Zentrifugation werden die 10 ml Ausgangssuspension aufkonzentriert, wobei nach jedem Schritt der sich im oberen Kompartiment befindende Überstand verworfen und die verbleibende Suspension erneut aufkonzentriert wird. Der erste und zweite Zentrifugationsschritt erfolgt für 1 h mit 1 500 x g bei 4 °C, der dritte Schritt unter denselben Bedingungen für 30 min. Die im unteren Kompartiment des Röhrenchens verbleibende Flüssigkeit enthält die Fimbrien.
Fimbrienextraktionspuffer: Tris-HCl 0,5 mM
NaCl 75 mM
pH 7,4

4.26 “Western“-Hybridisierung

Nach gelektrophoretischer Auftrennung der Proteinbestandteile werden diese auf eine Nitrozellulosemembran geblottet. Anschließend wird das zu untersuchende Protein durch einen spezifischen Antikörper detektiert.

4.26.1 Diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese (Laemmli, 1970)

Benötigte Lösungen:

<table>
<thead>
<tr>
<th>10 x Elektrophoresepuffer:</th>
<th>Tris</th>
<th>30 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycin</td>
<td>144,4 g</td>
<td></td>
</tr>
<tr>
<td>10 % (w/v) SDS</td>
<td>100 ml</td>
<td></td>
</tr>
<tr>
<td>H₂O_dest.</td>
<td>ad 1000 ml</td>
<td></td>
</tr>
</tbody>
</table>
4 Methoden

Trenngel:

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>8 % (w/v)</th>
<th>12 % (w/v)</th>
<th>15 % (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 % Acrylamid, 0,8 % Bisacrylamid</td>
<td>10,7 ml</td>
<td>16 ml</td>
<td>20 ml</td>
</tr>
<tr>
<td>1,5 M Tris-HCl, pH 8,8</td>
<td>10 ml</td>
<td>10 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>H₂Odest.</td>
<td>18,5 ml</td>
<td>13,2 ml</td>
<td>9,2 ml</td>
</tr>
<tr>
<td>10 % (w/v) SDS</td>
<td>0,4 ml</td>
<td>0,4 ml</td>
<td>0,4 ml</td>
</tr>
<tr>
<td>10 % (w/v) APS</td>
<td>0,4 ml</td>
<td>0,4 ml</td>
<td>0,4 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>24 µl</td>
<td>16 µl</td>
<td>16 µl</td>
</tr>
</tbody>
</table>

5 % (w/v) Sammelgel:

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>0,83 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 % Acrylamid, 0,8 % Bisacrylamid</td>
<td>0,83 ml</td>
</tr>
<tr>
<td>1,0 M Tris-HCl, pH 6,8</td>
<td>0,63 ml</td>
</tr>
<tr>
<td>H₂Odest.</td>
<td>3,4 ml</td>
</tr>
<tr>
<td>10 % (w/v) SDS</td>
<td>50 µl</td>
</tr>
<tr>
<td>10 % (w/v) APS</td>
<td>50 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

4.26.2 “Western-Blotting”

Nach Auftrennung der Proteine in einem diskontinuierlichen SDS-Polyacrylamidgel werden diese auf eine Nitrozellulosemembran (Schleicher & Schuell BA S85 reinforced, 0,45 µm) transferiert. Durch einen spezifischen Antikörper kann dann ein bestimmtes Protein aus dem aufgetrennten Proteingemisch sichtbar gemacht werden.

Zum Transfer der Proteine wird eine Blotapparatur mit Graphitplatten verwendet. Zuerst werden die Nitrozellulosemembran und 12 Whatmanpapierfilter auf Gelgröße zurechtgeschnitten. Die Membran wird für 10 min in Anodenpuffer II inkubiert. Auf die untere mit H₂Odest. angefeuchtete Graphitplatte (Anode) werden nun luftblasenfrei 6 Lagen mit Anodenpuffer I getränktes Whatmanpapierstücke gefolgt von 3 Lagen Whatmanpapier, getränkt in Anodenpuffer II, und der eingewicheten Nitrozellulosemembran aufeinandergeschichtet. Auf diese wird das Gel gelegt und mit 3 Lagen in Kathodenpuffer getränktem Whatmanpapier bedeckt. In dem Aufbau vorhandene Luftblasen werden entfernt, bevor die obere Graphitplatte (Kathode) aufgelegt wird. Der Transfer erfolgt mit 0,8 mA/cm² Gelfläche für 1 h bei RT.

Benötigte Lösungen:

<table>
<thead>
<tr>
<th>Anodenpuffer I:</th>
<th>Tris</th>
<th>0,3 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>20 % (v/v)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anodenpuffer II:</th>
<th>Tris</th>
<th>25 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>20 % (v/v)</td>
<td></td>
</tr>
</tbody>
</table>
4 Methoden

Kathodenpuffer: Tris 25 mM
 ε-Amino-n-Capronsäure 40 mM
 Methanol 20 % (v/v)

4.26.3 Antikörperreaktion

Nach dem Transfer der Proteine werden zuerst die freien Proteinbindungsstellen auf der Nitrozellulose durch Inkubation für 1 h bei RT in TBS mit 5 % (w/v) Magermilch abgesättigt. Anschließend wird der Blot 1 h bei RT in der Primärantikörperlösung inkubiert (alternativ ÜN bei 4 °C). Die Verdünnung des primären Antikörpers ist abhängig vom jeweiligen Serum und erfolgt in TBS mit 5 % (w/v) Magermilch. Um ungebundene Antikörper zu entfernen, folgen drei Waschschritte mit TBS für 5 min bei RT. Daran schließt sich die Inkubation mit einem Peroxidase-gekoppelten Sekundärantikörper für ebenfalls 1 h bei RT an (Verdünnung in TBS mit 5 % (w/v) Magermilch). Abschließend wird wiederum dreimal mit TBS für 10 min bei RT gewaschen, bevor die Antikörperdetektion stattfindet. Dazu wird der Blot mit gleichen Volumina “ECL”-Detektionslösung I und II (siehe 4.21.2) benetzt und unter leichtem Schwenken 1 min inkubiert. Dann wird die überschüssige Flüssigkeit von der Membran entfernt und der Blot in Frischhaltefolie eingeschlagen. Je nach erwarteter Signalstärke wird ein Hyperfilm-ECL für 1 s - 4 min aufgelegt.

TBS: Tris-HCl, pH 7,5 0,05 M
 NaCl 0,15 M

4.27 Coomassie-Blau-Färbung von Proteinen in Polyacrylamidgelen

Die durch SDS-PAGE aufgetrennten Proteine können durch Coomassie-Färbung sichtbar gemacht werden. Das Proteingel wird zunächst unter leichtem Schwenken in der Färbelösung für 1 h bei RT gefärbt. Die anschließende Entfärbung durch leichtes Schütteln in Entfärberlösung erfolgt so lange, bis die Hintergrundfärbung entfernt wurde, so dass die Proteinbanden deutlich zu erkennen sind. Der Entfäbevorgang kann durch Zugabe von einem Stückchen Schaumstoff beschleunigt werden. Polyurethane adsorbieren Coomassie Brilliant Blue und regenerieren so kontinuierlich den Entfärbver.

Benötigte Lösungen:

<table>
<thead>
<tr>
<th>Färbelösung:</th>
<th>Coomassie Brilliant Blue R250 0,2 % (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>227 ml</td>
</tr>
<tr>
<td>Eisessig</td>
<td>46 ml</td>
</tr>
<tr>
<td>H₂O dest.</td>
<td>ad 500 ml</td>
</tr>
</tbody>
</table>
4.28 Qualitative Agglutination

Zum schnellen Nachweis der Fimbrienexpression wird die Zellagglutination durch adhäsin-spezifische Bindung an Receptorstrukturen ausgenutzt.

4.28.1 Hämagglutinationstest (Jones & Rutter, 1974)

Zum Nachweis der Mannose-resistenten Hämagglutination durch K99-Fimbrien werden 10 ml Schafblut in 0,9 % (w/v) NaCl solange gewaschen (5 min, 2 000 x g, 4 °C), bis der Überstand klar ist. Die verbliebenen Erythrozyten werden in 10 ml 0,9 % (w/v) NaCl aufgenommen und 1:10 verdünnt. Für den Nachweis Mannose-resistentener Hämagglutination wird 1 % (w/v) Mannose zur Erythrozytenlösung zugegeben, bevor 30 µl davon auf einen Glasobjektträger getropft werden. Die zu untersuchenden Bakterien werden mit einem sterilen Zahnstocher von einer Agarplatte abgenommen und mit den Erythrozyten homogen vermischt. Nach einer Inkubation von 5 min auf Eis ist bei Hämagglutinations-positiven Stämmen eine Verklumpung der Erythrozyten zu beobachten.

4.28.2 Serumagglutination

4.28.3 Hefeagglutinationstest (Ørskov & Ørskov, 1983)

Typ 1-Fimbrien können durch Mannose-sensitive Agglutination von Saccharomyces cerevisiae-Zellen nachgewiesen werden. Dazu wird eine Spatelspitze frischer Bäckerhefe in 5 ml 0,9 % (w/v) NaCl suspendiert. Davon werden 30 µl auf einen Glasobjektträger getropft und mit demselben Volumen der zu untersuchenden Bakterienkultur vermischt. Nach wenigen Minuten Inkubation auf Eis ist bei Agglutinations-positiven Stämmen eine Verklumpung der Hefezellen zu beobachten. Bei Zusatz von 2 % (w/v) Mannose zum Zellgemisch tritt keine Agglutination auf.
4.29 Serumresistenztest

Eine ÜN-Kultur der zu untersuchenden Stämme wird 1:20 in 10 ml LB verdünnt und bei 37 °C bis zu einer OD$_{600}$ von 0,5 angezogen. Die Zellen werden 2 x mit 0,9 % (w/v) NaCl gewaschen und 10 min mit 2 000 x g zentrifugiert. Das Pellet wird in 5 ml 0,9 % (w/v) NaCl aufgenommen und anschließend auf eine Verdünnungsstufe von 10^{-2} eingestellt. Diese dient als Ausgangsverdünnung (10^0) für den weiteren Versuch. Die Lebendzellzahl zum Zeitpunkt t_0 wird durch Ausplattieren eines 100 µl Aliquots der Verdünnungsstufen 10^{-3} und 10^{-4} der Ausgangsverdünnung auf LB-Agarplatten bestimmt. Um das Wachstum der Stämme in 90 % Humanserum zu überprüfen, werden 450 µl Humanserum mit 50 µl Bakteriensuspension (Ausgangsverdünnung 10^0) in einem 1,5 ml Reaktionsgefäß 3 h bei 37 °C in einem Schüttler inkubiert. Diesem Ansatz werden nach 1, 2 und 3 h jeweils 100 µl entnommen und bis auf die Verdünnungsstufen 10^{-3} und 10^{-4} verdünnt. Von diesen werden 100 µl auf LB-Agarplatten ausplattiert. Nach Inkubation der LB-Agarplatten ÜN bei 37 °C können die Lebendzellzahlen in koloniebildenden Einheiten/ml (KBE/ml) errechnet werden.

4.30 Induktion von Bakteriophagen durch Mitomycin C

Die ÜN-Kultur eines *E. coli* Stammes mit einem lysogenen Bakteriophagen wird 1:100 in LB-Medium verdünnt und bei 37 °C unter Schütteln bis zu einer OD$_{600}$ von 0,5-0,7 angezüchtet. Für die Phageninduktion durch Mitomycin C werden einer Hälfte der Kultur 200 ng/ml dieses Antibiotikums zugesetzt. Der Kolben wird mit Alufolie abgedunkelt und zusammen mit der anderen Hälfte als Kontrollkultur bei 37 °C geschüttelt. Die Abdunklung ist notwendig, um die Fotoreaktivierung der DNA-Reparatur zu verhindern. Nach ca. 4 h nimmt die OD$_{600}$ der induzierten Kultur auf Grund der einsetzenden Lysis im Vergleich zur Kontrollkultur ab.

4.31 Phagen-Plaque-Assay

Von der mit Mitomycin C induzierten Kultur werden nach Wachstum für 5 h 2 ml abzentrifugiert. Der Überstand wird durch einen 0,45 µm Filter sterilfiltriert. Das Filtrat enthält die extrahierten Phagen. Anschließend werden die Phagenextrakte in LB-Medium, das 10 mM CaCl$_2$ enthält, verdünnt. 100 µl jeder Verdünnung werden mit 100 µl eines Indikatorstammes gemischt, der in LB-Medium mit 10 mM CaCl$_2$ und 0,2 % (w/v) Maltose bis zur stationären Phase angezogen wurde, und 20 min bei 37 °C geschüttelt. Danach werden jeweils 2,5 ml flüssiger, 46 °C warmer LB-Softagar zugegeben. Das Bakterien/Agar-Gemisch wird auf LB-Agarplatten
gegossen und durch Schwenken gleichmäßig verteilt. Nach Inkubation der Platten ÜN bei 37 °C kann eine Infektion des Indikatorstammes an der Bildung von Phagen-Plaques erkannt werden.

4.32 Biofilmbildung (Ghigo, 2001)

Diese Experimente werden in dreifacher Ausfertigung in M63B1 Minimalmedium mit 0,4 % (w/v) Glukose bei 37 °C durchgeführt. Geschlossene 60 ml Mikrofermenter mit vier Öffnungen zur Probenentnahme von Flüssigkeit und Gas werden als Durchfluss-Bioreaktoren mit einer Durchflussrate (F) von 40 ml/h angeordnet. Die Mikrofermenter werden mit 10^8 Bakterien einer ÜN-Kultur beimpft und für 72 h inkubiert. Das Flüssigkeitsvolumen (V) bleibt während des Versuchs konstant und es wird eine Verdünnungsrate (D) von 0,66/h eingestellt ($D = F/V$). Die hohe Zugabe von frischem Medium wird gewählt, um eine gleichbleibende Bakteriendichte in der Kultur zu erhalten, wodurch signifikantes planktonisches Wachstum verhindert wird. Die Durchmischung der Kultur wird durch Belüftung mit steriler Druckluft (0,3 bar) sichergestellt. Eingetauchte und entfernbare Pyrex-Objektträger (22,4 cm²) dienen als Wachstumsunterlage. Die entstandenen Biofilme auf den Objektträgern werden in 10 ml M63B1 Minimalmedium resuspendiert. Von dieser Suspension wird anschließend die OD₆₀₀ bestimmt.

4.33 Herstellung spontan Antibiotika-resistenter Bakterienklone

4.34 Transmissionselektronenmikroskopische Untersuchungen

4.35 Aufzucht von eukaryotischen Zellen

4.35.1 Passagieren von INT407-Zellen

4.35.2 Stammhaltung von eukaryotischen Zellen

4.36 Koinfektions-Invasionsassay

der INT407-Zellen werden 4 ml einer Zellsuspension, gewonnen aus einem konfluenten Zellrasen einer 75 cm² Zellkulturflasche, zu 44 ml Zellkulturmedium gegeben. In jedem Napf wird 1 ml dieser Zellsuspension ausgesät. Die Platte wird kurz geschüttelt, damit sich die Zellen gleichmäßig im Napf verteilen, und ÜN im Zellkulturbrutschrank bei 37 °C inkubiert.

Für die Herstellung von EBSS werden jeweils 50 ml Lösung 1 und 2, 15 ml Lösung 3 und 2,5 ml Lösung 4 zu 382,5 ml H₂O₉₉ gegeben. Anschließend wird der pH-Wert auf 7,4 eingestellt.

<table>
<thead>
<tr>
<th>Lösung 1 (autoklaviert):</th>
<th>CaCl₂</th>
<th>1,06 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgSO₄</td>
<td>0,79 g</td>
</tr>
<tr>
<td></td>
<td>H₂O₉₉</td>
<td>ad 400 ml</td>
</tr>
</tbody>
</table>
Lösung 2 (autoklaviert):

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>1,58 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>27,35 g</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>0,62 g</td>
</tr>
<tr>
<td>H₂Odest.</td>
<td>ad 400 ml</td>
</tr>
</tbody>
</table>

Lösung 3 (sterilfiltriert):

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaHCO₃</td>
<td>7,5 % (w/v)</td>
</tr>
</tbody>
</table>

Lösung 4 (sterilfiltriert):

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukose</td>
<td>22,2 % (w/v)</td>
</tr>
</tbody>
</table>

4.37 Adhäsionsassay

Durch einen Adhäsionsassay kann die Adhäsionsfähigkeit und die Häufigkeit der Adhäsion eines bestimmten Bakterienstammes an eukaryotische Zelllinien qualitativ überprüft werden. Hierzu werden eukaryotische Zellen in beschichteten Objekträgern mit acht aufgesetzten Inkubationskammern, “SonicSeal Slide Wells” (Falcon), ausgesät. Es wird je nach Zelllinie eine so große Menge an Zellen verwendet, dass sich nach einer Inkubation der Zellen ÜNK bei 37 °C im Zellkulturbrutschrank ein einschichtiger Zellrasen in jeder Inkubationskammer bildet. Im Fall der INT407-Zellen wird 1 ml einer Zellsuspension, gewonnen aus einem konfluenten Zellrasen einer 75 cm² Zellkulturflasche, zu 12 ml Zellkulturmedium gegeben. In jeder Inkubationskammer werden nun 200 µl dieser Zellsuspension ausgesät. Der Objektträger wird kurz geschüttelt, damit sich die Zellen gleichmäßig verteilen, und dann ÜNK im Zellkulturbrutschrank bei 37 °C inkubiert. Am nächsten Tag werden 2 ml Zellkulturmedium mit 20-60 µl einer Bakterien-ÜNK angeimpft und für ca. 2 h bei 37 °C geschüttelt. Anschließend wird die OD₆₀₀ gemessen. Diese sollte zwischen 0,4 und 0,6 liegen, das heißt, dass sich die meisten Bakterien in der Mitte der logarithmischen Wachstumsphase befinden. Die Bakterienkultur wird durch Verdünnung in Zellkulturmedium auf einen Wert OD₆₀₀ von 0,1 eingestellt, was einer Bakteriendichte von ca. 2 x 10⁶ entspricht. Von dieser Verdünnung werden nun von den zu testenden Bakterienstämmen jeweils 6 µl zu den Zellen gegeben. Dieser Ansatz wird für 2 h bei 37 °C im Zellkulturbrutschrank inkubiert. Anschließend werden die Zellen fünfmal mit jeweils 200 µl EBSS (siehe 4.36) gewaschen und durch die Zugabe von je 200 µl Methanol für 20 min bei RT fixiert. Das Methanol und die aufgesetzten Inkubationskammern werden entfernt. Der Objektträger wird mit H₂Odest. abgespült und an der Luft getrocknet. Danach erfolgt die Färbung in Giemsalösung (1:10 verdünnt) für 20 min. Der Objektträger wird mit H₂Odest. abgespült, dreimal für je 5 min in 10 ml 0,9 % (w/v) NaCl geschwenkt und getrocknet. Das Präparat kann nun mikroskopisch ausgewertet werden.
4.38 *In vivo* Experimente

4.38.1 Schutzexperimente

4.38.2 Immunisierungsexperimente

Die Mäuse (5 Tiere pro Bakterienstamm) werden über einen Zeitraum von 14 Tagen täglich oral mittels einer Fütterungsadnadel mit den rekombinanten Bakterienstämmen immunisiert. Die Bakterienzahl wird in einem speziellen Salzpuffer (Ardeypharm GmbH, Herdecke) so eingestellt, dass die Anzahl von 1 x 10^8 Bakterien in einem Flüssigkeitsvolumen von 300 µl verabreicht werden kann. Am 15. Tag werden die Mäuse mit Ether betäubt und zur Serungewinnung wird das Blut über das Auge entnommen. Das Blut wird anschließend in Reaktionsgefäße überführt, 4 h bei RT inkubiert und zentrifugiert (10 min, 10 000 x g). Das Serum wird abpipettiert und bis zum Gebrauch bei -20 °C gelagert.
5 Ergebnisse

5.1 Etablierung eines spezifischen PCR-Nachweissystems für den *E. coli* Stamm DSM 6601 in Humanstuhl

Der *E. coli* Stamm DSM 6601 (synonym *E. coli* Nissle 1917) bildet die Basis des Medikaments Mutaflor®, welches als Probiotikum zur Behandlung verschiedener gastrointestinaler Erkrankungen beim Menschen eingesetzt wird. Auf Grund der Verwendung dieses Bakterienstammes in der Medizin und zur schnellen Identifizierung dieses Stammes ist ein spezifischer Nachweis erforderlich. Dabei können traditionelle Stammtypisierungsmethoden wie Phagen- und Sero-typisierung, aber auch moderne Techniken wie PCR und Pulsfeld-Gelelektrophorese angewendet werden. Der Vorteil der PCR-Methode ist jedoch die hohe Sensitivität und Zeiter Manufacturing. In vorangegangenen Arbeiten wurden für den *E. coli* Stamm DSM 6601 fünf spezifische PCR-Reaktionen etabliert, die auf den chromosomal kodierten Typ 1 (*fim*)- und F1C (*foc*)-Fimbrien genklustern (Primer Muta 1-4) sowie auf den beiden kryptischen Plasmiden pMUT1 und pMUT2 (Primer Muta 5-10) basieren. Diese PCR-Reaktionen können für den schnellen und spezifischen Nachweis verwendet werden (Blum-Oehler *et al.*, 2003).

Der *E. coli* Stamm DSM 6601 besitzt zwei kryptische Plasmide, pMUT1 und pMUT2, deren DNA-Sequenzen bereits bestimmt wurden und unter den GenBank-Nummern A84793 (pMUT1) und A95448 (pMUT2) veröffentlicht sind. Zielsetzung dieser Arbeit war, neben der Etablierung eines spezifischen PCR-Nachweissystems, diese Sequenzdaten zu überprüfen, zu verifizieren und durch die Analyse der DNA-Sequenz nähere Informationen über eine eventuelle Funktion dieser Plasmide zu erlangen.

5.1.1 Sequenzanalyse des Plasmids pMUT1

Für die Bestimmung der DNA-Sequenz des Plasmids pMUT1 wurde zunächst das Plasmid pMUT1-2 verwendet. Das Plasmid pMUT1-2 besteht aus dem Vektor pUC18, in den das mit HindIII linearisierte Plasmid pMUT1 ligiert wurde. So konnten anfänglich die Sequenzierprimer

Abb. 4: Graphische Darstellung der genetischen Organisation des 3173 bp großen Plasmids pMUT1 aus *E. coli* DSM 6601. Identifizierte ORFs und die Bindungsstellen der PCR-Primer Muta 5/6 sind eingezeichnet. Relevante Restriktionenzyne mit singulärer Schnittstelle und ihre jeweiligen Positionen in der Sequenz von pMUT1 sind angegeben.
Die Homologiesuche auf DNA-Ebene zeigte, dass die Nukleotidsequenz über die gesamte Länge des Plasmids pMUT1 nahezu identisch mit den Sequenzen der Plasmide pCRP3 aus *Citrobacter rodentium* Stamm DBS100 (98 % Identität, GenBank-Nummer AF311902) und p9705 aus *Escherichia coli* O157:H7 Stamm 9705 (98 % Identität, GenBank-Nummer AB040037) ist. Zudem konnte eine signifikante Ähnlichkeit zu dem “low molecular weight” Plasmid I aus *Salmonella enteritidis* (95 % Identität, GenBank-Nummer AF218051) über eine Distanz von 1620 bp festgestellt werden. Über einen Bereich von 1585 bp weist die Basensequenz des Plasmids pMUT1 eine Identität von 94 % zu dem Plasmid NTP16 aus *Salmonella typhimurium* (GenBank-Nummer L05392) sowie eine Identität von 93 % zu den Plasmiden p4821 aus *Escherichia coli* O157:H7 Stamm 4821 (GenBank-Nummer Y14016) und pOSAK1 aus *Escherichia coli* O157:H7 Stamm RIMD 0509952 (GenBank-Nummer AB011548) auf. Eine signifikante Ähnlichkeit (93 % Identität) zeigt sich auch über eine Distanz von 563 bp zu dem Plasmid ColE1 aus *Escherichia coli* (GenBank-Nummer J01566) und zu verschiedenen weiteren ColE1-Plasmiden.

Bei der Analyse der abgeleiteten Aminosäuresequenzen wurden sechs ORFs gefunden, von denen jedoch nur Zweien eine Funktion zugeordnet werden konnte (Tab. 8). Das MobA-Protein weist eine Homologie von 99 % zu dem MobA-Protein von Plasmid NTP16 auf. Ebenso konnte das Rom-Protein (“RNA I inhibition modulator protein”) identifiziert werden, das an der Kontrolle der Plasmid-Replikation beteiligt ist. Es zeigt eine Homologie von 58 % zu dem Rom-Protein des Plasmids ColE1 und eine hohe Homologie (85 %) zu einem anderen Rom-ähnlichen Protein. Den weiteren vier ORFs konnten keine Funktionen zugeordnet werden, jedoch bestehen Homologien zu anderen hypothetischen Proteinen.
Tab. 8: Analyse der abgeleiteten Aminosäuresequenzen des Plasmids pMUT1

<table>
<thead>
<tr>
<th>Nukleotid (Bezeichnung)</th>
<th>Homologie zu</th>
<th>e-Wert$^a)$</th>
<th>Länge des homologen ORFs (AS)</th>
<th>Länge des vorhandenen ORFs (AS)</th>
<th>AS/AS (Identität in %)</th>
<th>GenBank-Nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>650-808 (ORF 1)</td>
<td>ORF 1, hypothetisches Protein, Plasmid pCRP3, Citrobacter rodentium</td>
<td>7e-20</td>
<td>61</td>
<td>53</td>
<td>52/61 (85 %)</td>
<td>AAL06390</td>
</tr>
<tr>
<td></td>
<td>6,0 kDa ORF, hypothetisches Protein, Plasmid ColE1, E. coli</td>
<td>2e-12</td>
<td>53</td>
<td></td>
<td>41/53 (77 %)</td>
<td>AAB59126</td>
</tr>
<tr>
<td>894-1085 (Rom)</td>
<td>ORF 2, Rom-ähnliches Protein, Plasmid pCRP3, Citrobacter rodentium</td>
<td>5e-25</td>
<td>64</td>
<td>64</td>
<td>58/62 (93 %)</td>
<td>AAL06391</td>
</tr>
<tr>
<td></td>
<td>Rom-ähnliches Protein, Plasmid pEC156, E. coli</td>
<td>1e-22</td>
<td>64</td>
<td></td>
<td>54/63 (85 %)</td>
<td>AAF71175</td>
</tr>
<tr>
<td></td>
<td>“RNA I inhibition modulator” Protein (Rom), Plasmid ColE1, E. coli</td>
<td>6e-12</td>
<td>63</td>
<td></td>
<td>37/63 (58 %)</td>
<td>AAB59132</td>
</tr>
<tr>
<td>1042-1185 (ORF 2)</td>
<td>ORF 3, hypothetisches Protein, Plasmid pCRP3, Citrobacter rodentium</td>
<td>2e-20</td>
<td>85</td>
<td>48</td>
<td>44/46 (95 %)</td>
<td>AAL06392</td>
</tr>
<tr>
<td></td>
<td>hypothetisches 6,2 kDa Protein, Plasmid NTP16, Salmonella typhimurium</td>
<td>4e-17</td>
<td>55</td>
<td></td>
<td>40/43 (93 %)</td>
<td>JQ1540</td>
</tr>
<tr>
<td>1369-1689 (MobA)</td>
<td>ORF 4, MobA, Plasmid pCRP3, Citrobacter rodentium</td>
<td>2e-56</td>
<td>115</td>
<td>107</td>
<td>115/115 (100 %)</td>
<td>AAL06393</td>
</tr>
<tr>
<td></td>
<td>12 kDa Protein, MobA, Plasmid NTP16, Salmonella typhimurium</td>
<td>4e-49</td>
<td>106</td>
<td></td>
<td>106/107 (99 %)</td>
<td>AAA72309</td>
</tr>
<tr>
<td>2084-2509 (ORF 3)</td>
<td>ORF 5, hypothetisches Protein, Plasmid pCRP3, Citrobacter rodentium</td>
<td>9e-77</td>
<td>142</td>
<td>142</td>
<td>142/142 (100 %)</td>
<td>AAL06394</td>
</tr>
<tr>
<td>2801-53 (ORF 4)</td>
<td>ORF 6, hypothetisches Protein, Plasmid pCRP3, Citrobacter rodentium</td>
<td>2e-70</td>
<td>142</td>
<td>142</td>
<td>124/124 (100 %)</td>
<td>AAL06395</td>
</tr>
</tbody>
</table>

$^a)$ Die Signifikanz ist mit dem BLASTX-Programm bestimmt worden. Die angegebenen Zahlenwerte sind ein Maß für die Signifikanz der gefundenen Homologie. Sie sind um so bedeutender, je kleiner sie sind, da sie die Wahrscheinlichkeit wiedergeben, dass es sich nur um eine zufallsbedingte Ähnlichkeit handelt.
5 Ergebnisse

Zusätzlich wurde noch der durchschnittliche G+C-Gehalt des 3173 bp großen Plasmids pMUT1 bestimmt. Er liegt für das gesamte Plasmid bei 46,9 %. Auffällig ist jedoch, dass der G+C-Gehalt des 1625 bp großen Fragments zwischen den Positionen 294 und 1918 bei 52,1 % liegt, während die restliche DNA-Sequenz einen wesentlich niedrigeren G+C-Gehalt von 41,5 % besitzt. In Abb. 5 ist ein Überblick über die Verteilung des G+C-Gehalts des Plasmids pMUT1 dargestellt. Die Analyse wurde mit dem Programm Vector NTI 7.1 durchgeführt (Fenstergröße: 40 bp).

![Abb. 5: G+C-Gehalt der 3173 bp langen Sequenz des Plasmids pMUT1 des *E. coli* Stammes DSM 6601.](image)

5.1.2 Sequenzanalyse des Plasmids pMUT2

Die Homologiesuche auf DNA-Ebene zeigte, dass das Plasmid pMUT2 über eine Distanz von 3529 bp nahezu identisch (97 % Identität) mit dem ColE2-ähnlichen Plasmid pUB6060 aus *Plesiomonas shigelloides* Isolat 11184 (GenBank-Nummer AJ249644) ist, das eine Größe von 5804 bp besitzt.

5 Ergebnisse

Plasmids ColE3-CA38 und weiteren ColE2-verwandten Plasmiden auf (Hiraga et al., 1994). Zwischen den Koordinaten 1843 und 1867 ist ein Transfer-Replikationsursprung (oriT) lokalisiert, der eine Homologie von 64 % zu dem Transfer-Replikationsursprung des Plasmids ColE1 (GenBank-Nummer J01566) zeigt. Es konnten keine Regionen gefunden werden, die für die Stabilität des Plasmids eine Rolle spielen.

![Diagramm](https://via.placeholder.com/150)

Abb. 6: Graphische Darstellung der genetischen Organisation des 5520 bp großen Plasmids pMUT2 aus *E. coli* DSM 6601. Identifizierte ORFs und die Bindungsstellen der PCR-Primer Muta 7/8 und Muta 9/10 sind eingezeichnet. Relevante Restriktionsenzyme mit singulärer Schnittstelle und ihre jeweiligen Positionen in der Sequenz von pMUT2 sind angegeben.

Bei der Analyse der abgeleiteten Aminosäuresequenzen wurden fünf ORFs identifiziert, die auf Grund ihrer Homologie zu dem Mobilisierungslokus des Plasmids ColE1 mit MobA (41 % Identität), MobB (27 % Identität), MobC (47 % Identität), MobD (45 % Identität) und durch die Homologie zu verschiedenen Replikationsproteinen von ColE2-ähnlichen Plasmiden (58 % und 63 % Identität) mit Rep bezeichnet wurden. Zwei weiteren möglichen ORFs (ORF 1, ORF 2) konnten keine Funktionen zugeordnet werden und es bestehen auch keine Homologien zu bekannten Proteinen. Die Ergebnisse der Analyse der abgeleiteten Aminosäuresequenzen sind in Tabelle 9 dargestellt.
<table>
<thead>
<tr>
<th>Nukleotid (Bezeichnung)</th>
<th>Homologie zu</th>
<th>e-Wert(^a)</th>
<th>Länge des homologen ORFs (AS)</th>
<th>Länge des vorhandenen ORFs (AS)</th>
<th>AS/AS (Identität in %)</th>
<th>GenBank-Nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>233-715 (MobB)</td>
<td>putatives Mobilisationsprotein (MobB), Plasmid pUB6060, Plesiomonas shigelloides mob6 ORF, MobB, Plasmid CoIE1, E. coli</td>
<td>4e-81</td>
<td>161</td>
<td>161</td>
<td>156/161 (96 %)</td>
<td>CAB56516</td>
</tr>
<tr>
<td>1396-1722 (MobC)</td>
<td>putatives Mobilisationsprotein (MobC), Plasmid pUB6060, Plesiomonas shigelloides mob2 ORF, MobC, Plasmid CoIE1, E. coli</td>
<td>1e-47</td>
<td>108</td>
<td>109</td>
<td>99/109 (90 %)</td>
<td>CAB56514</td>
</tr>
<tr>
<td>2046-2285 (ORF 1)</td>
<td>ohne Homologie</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3183-3641 (ORF 2)</td>
<td>ohne Homologie</td>
<td>-</td>
<td>-</td>
<td>153</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3737-4768 (Rep)</td>
<td>putatives Replikonprotein (Rep), Plasmid pUB6060, Plesiomonas shigelloides Rep-Protein, Plasmid CoIE9-J, E. coli</td>
<td>3e-96</td>
<td>308</td>
<td>304</td>
<td>172/295 (58 %)</td>
<td>BAA06302</td>
</tr>
<tr>
<td>5409-1235 (MobA)</td>
<td>putatives Mobilisationsprotein (MobA), Plasmid pUB6060, Plesiomonas shigelloides mob3 ORF, MobA, Plasmid CoIE1, E. coli</td>
<td>2e-71</td>
<td>517</td>
<td>517</td>
<td>195/473 (41 %)</td>
<td>AAB59134</td>
</tr>
<tr>
<td>5459-181 (MobD)</td>
<td>putatives Mobilisationsprotein (MobD), Plasmid pUB6060, Plesiomonas shigelloides mob7 ORF, MobD, Plasmid CoIE1, E. coli</td>
<td>2e-27</td>
<td>77</td>
<td>81</td>
<td>61/61 (100 %)</td>
<td>CAB56517</td>
</tr>
</tbody>
</table>

\(^a\) Die Signifikanz ist mit dem BLASTX-Programm bestimmt worden. Die angegebenen Zahlenwerte sind ein Maß für die Signifikanz der gefundenen Homologie. Sie sind um so bedeutender, je kleiner sie sind, da sie die Wahrscheinlichkeit wiedergeben, dass es sich nur um eine zufallsbedingte Ähnlichkeit handelt.

Abb. 7: G+C-Gehalt der 5520 bp langen Sequenz des Plasmids pMUT2 des E. coli Stammes DSM 6601.

5.1.3 Überprüfung der Spezifität der PCR-Assays

Die Spezifität der fünf PCR-Reaktionen mit den Oligonukleotiden Muta 1-10 für den Nachweis des E. coli Stammes DSM 6601 war bereits durch die Untersuchung von verschiedenen E. coli Isolaten aus Fäzes und Umwelt sowie von E. coli Stämmen der Serogruppe O6:K5 überprüft worden (Blum-Oehler et al., 2003). Auf Grund der hohen Homologie der Plasmide pMUT1 und pMUT2 des E. coli Stammes DSM 6601 zu Plasmiden aus enterohämorrhagischen E. coli- (EHEC), Citrobacter- und Plesiomonas Stämmen wurde eine Kollektion weiterer Stämme unterschiedlichen Ursprungs untersucht. Darunter waren Citrobacter- und Plesiomonas Stämme, E. coli K-12-Stämme, weitere E. coli Fäkal-Isolate, extraintestinale E. coli Stämme (UPEC, MENEC, SEPEC) und intestinale E. coli Stämme (EHEC, EPEC, ETEC, EIEC, EAEC). Als interne Positivkontrolle für die PCR-Reaktionen wurden 16S rRNA-spezifische Primer (27f/798r) verwendet. Die Ergebnisse dieser Untersuchungen sind in den Tabellen 10 und 11 dargestellt.
<table>
<thead>
<tr>
<th>Stamm</th>
<th>Primerkombinationen</th>
<th>27f/798r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muta 1/2</td>
<td>Muta 3/4</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR7014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WR7004</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrobacter rodentium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBS100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plesiomonas shigelloides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM 8224</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11184</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E. coli K-12 n = 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 10058/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10209/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10222/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10413/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10521/93</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HK 10968/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 1247/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1603/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1939/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 2309/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2355/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2656/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 269/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2770/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 2882/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 339/93</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HK 10222/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10413/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 10521/93</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HK 10968/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 1247/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1603/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1939/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 2309/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2355/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2656/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 269/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2770/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 2882/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 339/93</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fäkal-Isolate n = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-23</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F18-Col</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extraintestinale E. coli (UPEC, MENEC, SEPEC) n = 53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 10058/93</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 10209/93</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 10222/93</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 10413/93</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 10521/93</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HK 10968/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 1247/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1603/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 1939/93</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HK 2309/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2355/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2656/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 269/93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HK 2770/93</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 10

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Muta 1/2</th>
<th>Muta 3/4</th>
<th>Muta 5/6</th>
<th>Muta 7/8</th>
<th>Muta 9/10</th>
<th>27f/798r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraintestinale E. coli (UPEC, MENEC, SEPEC) n = 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 3690/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 3790/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 3812/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 3856/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 3875/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 4191/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 4193/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 4326/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 4549/93</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 5456/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 6253/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 6499/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 6551/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 7519/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 7594/93</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 8416/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 8572/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 8729/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 9094/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 9765/93</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HK 9855/93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IHE3033</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IHE3034</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IHE3035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IHE3036</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IHE3080</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>J96</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>J96-M1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RS180</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RS218</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RS226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Intestinale E. coli (EHEC, EPEC, ETEC, EIEC, EAEC) n = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>179/2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2907/97</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3574/92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3697/97</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>37-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5477/94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5720/96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>76-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>86-24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>A151</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>A152</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C9221a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DPA065</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>E2348/69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ED124</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>EDL1284</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>EDL933</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>O149:K88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SF493/89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

1 Amplifiziertes Fragment vorhanden, das jedoch in der Größe nicht mit dem DSM 6601-spezifischen Fragment übereinstimmt.
Tab. 11: Anwesenheit von *E. coli* DSM 6601-spezifischen DNA-Sequenzen in verschiedenen *E. coli* Isolaten (Zusammenfassung von Tab. 10)

<table>
<thead>
<tr>
<th>Primer-kombination</th>
<th>E. coli K-12-Stämme n = 17</th>
<th>Fäkal-Stämme n = 3</th>
<th>Extraintestinale E. coli Stämme<sup>a)</sup> n = 53</th>
<th>Intestinale E. coli Stämme<sup>b)</sup> n = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muta 1/2 (fimA)</td>
<td>0 (0 %)</td>
<td>1 (33,3 %)</td>
<td>7 (13,2 %)</td>
<td>1 (5,0 %)</td>
</tr>
<tr>
<td>Muta 3/4 (focA)</td>
<td>0 (0 %)</td>
<td>0 (0 %)</td>
<td>20 (37,7 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>Muta 5/6 (pMUT1)</td>
<td>0 (0 %)</td>
<td>0 (0 %)</td>
<td>1 (1,9 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>Muta 7/8 (pMUT2)</td>
<td>0 (0 %)<sup>c)</sup></td>
<td>0 (0 %)</td>
<td>0 (0 %)</td>
<td>0 (0 %)<sup>d)</sup></td>
</tr>
<tr>
<td>Muta 9/10 (pMUT2)</td>
<td>0 (0 %)</td>
<td>0 (0 %)</td>
<td>2 (3,8 %)</td>
<td>0 (0 %)</td>
</tr>
</tbody>
</table>

^{a)} UPEC-, MENEC-, SEPEC-Isolate
^{b)} EHEC-, EPEC-, ETEC-, EIEC- und EAEC-Isolate
^{c)} Vier Stämme zeigten ein PCR-Produkt, das jedoch in der Größe nicht mit dem DSM 6601-spezifischen Fragment übereinstimmte.
^{d)} Ein Stamm zeigte ein PCR-Produkt, das jedoch in der Größe nicht mit dem DSM 6601-spezifischen Fragment übereinstimmte.

Wie in Tab. 10 und 11 gezeigt, wurden für *E. coli* K-12-Stämme in allen fünf PCR-Assays keine DSM 6601-spezifischen PCR-Produkte beobachtet. Etwa 33 % der Fäkal-Stämme, 13 % der extraintestinalen *E. coli* Stämme und 5 % der intestinalen *E. coli* Stämme zeigten ein positives Ergebnis bei PCR-Reaktionen mit den *fimA*-spezifischen Primern Muta 1/2, während mit den *focA*-spezifischen Primern Muta 3/4 bei 38 % der extraintestinalen *E. coli* Stämme ein positives Ergebnis erhalten wurde.

Weitaus bessere Ergebnisse wurden mit den PCR-Assays erzielt, die auf den beiden Plasmiden pMUT1 und pMUT2 beruhen. So zeigten nur drei der extraintestinalen *E. coli* Stämme eine positive Reaktion mit den Primern Muta 5/6 bzw. Muta 9/10, die spezifisch für die Plasmide pMUT1 bzw. pMUT2 sind. Das lässt auf eine niedrige Frequenz dieser DNA-Sequenzen in anderen *E. coli* Stämmen schließen. Ein Vergleich der Daten aller fünf verschiedenen PCR-Reaktionen zeigt, dass bei keinem der getesteten *E. coli* Stämme ein positives Ergebnis für mehr als drei PCR-Assays erhalten wurde, wobei die auf den chromosomal kodierten Typ 1 (*fim*)- und F1C (*foc*)-Fimbriengenklustern basierenden Primer Muta 1-4 die geringste Spezifität aufwiesen.
5.1.4 Validierung der stammspezifischen PCR-Reaktionen auf Basis der Plasmide zum Nachweis von *E. coli* DSM 6601 aus Humanstuhl

Ein Ziel dieser Arbeit war die Entwicklung eines PCR-Protokolls, das für den spezifischen und schnellen Nachweis des apathogenen *E. coli* Stammes DSM 6601 in Gegenwart von anderen commensalen *E. coli* Stämmen in humanem Stuhl benutzt werden kann. Bisher wurden für die PCR-Reaktionen reine Bakterienkulturen oder einzelne Bakterienkolonien verwendet, so dass eine Zwischenzüchtung der zu testenden Bakterien nötig war. Durch die im Folgenden beschriebenen Untersuchungen sollte ein Nachweissystem etabliert werden, bei dem die für die Plasmide des *E. coli* Stammes DSM 6601 spezifischen PCR-Reaktionen (Muta 5-10) direkt auf Humanstuhl angewendet werden können, so dass eine Zwischenzüchtung der Bakterien entfällt. Zudem sollte mit diesen Versuchen die Sensitivität dieser PCR-Reaktionen ermittelt werden.

Es wurde eine Methode etabliert, mit der DNA direkt aus Stuhlproben isoliert werden kann (siehe 4.3). Um die Nachweisgrenze dieser Methode zu bestimmen und die PCR-Bedingungen für die plasmidspezifischen Primerpaare (Muta 5-10) zu optimieren, wurde DNA aus einer Verdünnungsreihe ausgehend von 10^9 Bakterien/ml von einer Übernachtkultur des Stammes DSM 6601 mit Stuhlzusatz isoliert. Hierzu wurden die einzelnen Verdünnungsstufen mit jeweils 100 mg Stuhl eines gesunden Probanden gemischt, der bisher nicht mit dem probiotischen *E. coli* Stamm DSM 6601 in Form des Präparates Mutaflor® behandelt worden ist. Im Anschluss daran erfolgte die DNA-Isolierung aus diesen Ansätzen. Mit der erhaltenen DNA wurden PCR-Reaktionen mit verschiedenen *Taq* DNA-Polymerasen, Templatemengen, MgCl$_2$-Konzentrationen und “Annealingtemperaturen” durchgeführt (Daten nicht gezeigt). Die größte Sensitivität wurde hierbei mit der *Taq* DNA-Polymerase von QIAGEN unter folgenden Bedingungen beobachtet:

<table>
<thead>
<tr>
<th>Templatemenge:</th>
<th>2 µl Eluat der DNA-Isolierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCl$_2$-Konzentration:</td>
<td>4,5 mM (Muta 5/6) bzw. 3 mM (Muta 7/8 und Muta 9/10)</td>
</tr>
<tr>
<td>PCR-Bedingungen:</td>
<td>3 min 95 °C 1 x</td>
</tr>
<tr>
<td></td>
<td>45 s 95 °C 35 Zyklen</td>
</tr>
<tr>
<td></td>
<td>45 s 60 °C</td>
</tr>
<tr>
<td></td>
<td>45 s 72 °C</td>
</tr>
</tbody>
</table>

Als interne Kontrolle wurden die DNA-Extrakte einer PCR-Reaktion mit den 16S rRNA-spezifischen Primern 27f und 798r unterzogen, um nachzuweisen, dass die Proben in ausreichender Menge eubakterielle DNA enthalten (Abb. 8).
Für alle drei plasmidspezifischen PCR-Reaktionen konnten PCR-Produkte nachgewiesen werden. Die Sensitivität der einzelnen Primerpaare war unterschiedlich. Während mit den Primerpaaren Muta 5/6 (pMUT1) und Muta 7/8 (pMUT2) etwa 10^4 Bakterien detektiert werden konnten, lag die Nachweisgrenze mit der Primerkombination Muta 9/10 (pMUT2) bei 10^3 Bakterien. Wie Abb. 8 zeigt, ist deutlich zu erkennen, dass mit abnehmender Konzentration des *E. coli* Stammes DSM 6601 die Stärke der spezifischen Banden abnimmt, was auf das Erreichen der Nachweissgrenze hindeutet.
Um zu untersuchen, ob die Anwesenheit von humanem Stuhl bei der DNA-Isolierung einen Einfluss auf die Nachweisgrenze ausübt, wurde DNA aus einer Verdünnungsreihe ausgehend von 10^9 Bakterien/ml von einer Übernachtkultur des Stammes DSM 6601 ohne Stuhlzusatz isoliert. Unter denselben PCR-Bedingungen konnte für die Primerpaare Muta 5/6 und Muta 7/8 eine Nachweisgrenze von 10^3 Bakterien, für die Primerkombination Muta 9/10 eine Nachweisgrenze von 10^2 Bakterien erreicht werden (Daten nicht gezeigt). Dadurch konnte demonstriert werden, dass die Nachweisgrenze des *E. coli* Stammes DSM 6601 nach der DNA-Isolierung aus Verdünnungsstufen ohne Stuhlzusatz um etwa eine 10-er Potenz niedriger liegt als bei der Gewinnung der DNA aus humanen Stuhlproben.

5.1.5 Analyse von Patientenstuhlproben

Um den diagnostischen Nutzen des auf PCR-Reaktionen basierenden Nachweises des *E. coli* Stammes DSM 6601 zu zeigen, wurden Stuhlproben von sechs an Colitis ulcerosa (chronisch entzündliche Darmerkrankung) leidenden Patienten untersucht, von denen einige mit dem probiotischen *E. coli* Stamm in Form des Medikaments Mutaflor® behandelt wurden. Die Untersuchungen wurden als Blindstudie durchgeführt, das heißt, dass zur Zeit der Versuchsdurchführung nicht bekannt war, welcher der Patienten das Präparat Mutaflor® erhalten hatte bzw. in welcher Dosis es verabreicht wurde. Die Stuhlproben wurden mittels der auf den Plasmiden basierenden PCR-Assays (Muta 5/6 für pMUT1, Muta 7/8 und Muta 9/10 für pMUT2) auf die Anwesenheit des *E. coli* Stammes DSM 6601 hin untersucht. Als interne Kontrollen für die PCR-Reaktionen wurden 16S rRNA-spezifische Primer (27f/798r) als Positivkontrolle und *E. coli* K-12-spezifische Primer (K12-R/K12-L) als Negativkontrolle verwendet. Die Ergebnisse dieser Untersuchungen sind in Tab. 12 und Abb. 9 dargestellt.

Tab. 12: Ergebnisse der PCR-Untersuchungen von Patientenstuhlproben

<table>
<thead>
<tr>
<th>Primer</th>
<th>Patient 1 (200 mg/d)</th>
<th>Patient 2</th>
<th>Patient 3 (200 mg/d)</th>
<th>Patient 4 (100 mg/d)</th>
<th>Patient 5 (200 mg/d)</th>
<th>Patient 6 (200 mg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muta 5/6</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Muta 7/8</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Muta 9/10</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>K12-R/K12-L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27f/798r</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Unter den Patienten ist die jeweilige Mutaflor®-Dosis angegeben, sofern der Patient behandelt wurde.
Drei der Patienten (1, 3 und 6) wurden mit allen drei spezifischen Primerkombinationen PCR-positiv getestet. Patient 5 konnte nur mit dem Primerpaar Muta 9/10 PCR-positiv getestet werden, das wie schon zuvor gezeigt die sensitivste Primerkombination darstellt. Nach der Entblindung stellte sich heraus, dass dieser Patient nur mit 100 mg/d des Präparates Mutaflor® behandelt wurde, während die Patienten 1, 3 und 6 eine tägliche Dosis von 200 mg Mutaflor® erhalten hatten. Die Patienten 2 und 4, die nicht mit dem Medikament Mutaflor® behandelt wurden, zeigten auch keine PCR-Produkte bei den *E. coli* DSM 6601-spezifischen PCR-Assays.
Zusammenfassung der Ergebnisse des Abschnitts 5.1:

- Bei der Sequenzanalyse des Plasmids pMUT1 (3173 bp) zeigte sich, dass dieses Plasmid ein Replikationssystem vom ColE1-Typ (*oriV*, *rom*) und notwendige Informationen für seine Stabilität (*cer*) und Mobilisierung (*oriT*, *mobA*) enthält. Es konnten keine weiteren ORFs mit bekannter Funktion identifiziert werden.

- Bei der Untersuchung einer Kollektion verschiedener Bakterienstämme unterschiedlichen Ursprungs konnte gezeigt werden, dass die für den *E. coli* Stamm DSM 6601 existierenden PCR-Reaktionen mit den Primern Muta 1-10 eine hohe Spezifität besitzen. Dabei sind die auf den Plasmiden pMUT1 und pMUT2 basierenden PCR-Assays (Muta 5-10) am spezifischsten.

- Es wurde eine Methode etabliert, durch die der probiotische *E. coli* Stamm DSM 6601 direkt aus Humanstuhl spezifisch nachgewiesen werden kann. Die Nachweisgrenze liegt mit den Primerkombinationen Muta 5/6 und Muta 7/8 bei 10^4 Bakterien/0,1 g Stuhl, während sich mit dem Primerpaar Muta 9/10 10^3 Bakterien/0,1 g Stuhl detektieren lassen.

- In einer als Blindstudie durchgeführten PCR-Analyse von Patientenstuhlproben wurde die entwickelte Methode zum spezifischen Nachweis des *E. coli* Stammes DSM 6601 aus Humanstuhl angewendet. Es konnte gezeigt werden, welcher der Patienten mit dem probiotischen *E. coli* Stamm DSM 6601 in Form des Medikaments Mutaflor® behandelt wurde. Dabei war eine Abhängigkeit zwischen der Nachweisgrenze und der verabreichten Medikamentendosis zu beobachten.
5.2 Herstellung und Charakterisierung eines plasmidfreien Klons des *E. coli* Stammes DSM 6601

Für die Verwendung des probiotischen *E. coli* Stammes DSM 6601 als Trägerstamm für die Expression von fremden Proteinen ist es jedoch notwendig, stabile Systeme zu entwickeln, durch die heterologe Proteine in diesem Stamm exprimiert werden können. Daher sollten die stamm-eigenen kryptischen Plasmide pMUT1 und pMUT2 dieses Stammes als Klonierungsvektoren verwendet werden. Um jedoch diese rekombinannten Plasmide in dem *E. coli* Stamm DSM 6601 verwenden zu können, sollte zuerst ein plasmidfreier Klon dieses Stammes hergestellt werden. Anhand dieser plasmidfreien Mutante sollte zudem untersucht werden, ob die Plasmide des *E. coli* Stammes DSM 6601 eine Funktion erfüllen und ob der Verlust der Plasmide zu einer Änderung von Eigenschaften im Vergleich zum Wildtyp führt.

5.2.1 Konstruktion der Suizidplasmide für die Herstellung eines plasmidfreien Klons des *E. coli* Stammes DSM 6601

5 Ergebnisse

5.2.1.1 Konstruktion des Suizidplasmids pMUT1-Tc-Sac

Für die Herstellung des Suizidplasmids pMUT1-Tc-Sac wurde zunächst zur Selektionserleichterung eine Tetrazyklin-Resistenzkassette und anschließend der negative Selektionsmarker sacB in das Plasmid pMUT1 inseriert. Die Konstruktion des Plasmids pMUT1-Tc-Sac ist in Abb. 10 dargestellt.

Für die Klonierung von DNA-Fragmenten in das Plasmid pMUT1 stehen nur wenige Restriktionsenzyme zur Verfügung, deren Schnittstellen nur einmal vorhanden sind und nicht in funktionellen ORFs oder anderen funktionellen Regionen des Plasmids liegen (eine entsprechende Restriktionskarte ist im Anhang zu finden). Diese verfügbaren Restriktionsenzyme sind jedoch für Klonierungen nicht sehr gut geeignet, so dass eine Insertion von DNA-Fragmenten meistens nur durch “blunt end”-Ligationen möglich ist.

5.2.1.2 Konstruktion des Suizidplasmids pMUT2-Kn-Sac

Für die Herstellung des Suizidplasmids pMUT2-Kn-Sac wurde zunächst eine Kanamycin-Resistenzkassette und anschließend der negative Selektionsmarker $sacB$ in das Plasmid pMUT2 inseriert. Die Konstruktion des Plasmids pMUT2-Kn-Sac ist in Abb. 11 dargestellt.

Für die Klonierung von DNA-Fragmenten in das Plasmid pMUT2 stehen einige Restriktionsenzyme zur Verfügung, deren Einzelschnittstellen nicht in funktionellen ORFs oder anderen funktionellen Regionen des Plasmids liegen (eine entsprechende Restriktionskarte ist im Anhang zu finden). Diese verfügbaren Restriktionsenzyme sind jedoch für Klonierungen nicht sehr gut geeignet, so dass auch bei diesem Plasmid eine Insertion von DNA-Fragmenten meistens nur durch “blunt end”-Ligationen möglich ist.

5.2.2 Herstellung eines plasmidfreien Klons des *E. coli* Stammes DSM 6601

Für die Herstellung eines plasmidfreien Klons des *E. coli* Stammes DSM 6601 wurden die beiden natürlich vorkommenden Plasmide pMUT1 und pMUT2 zunächst durch das Einbringen der Suizidplasmide pMUT1-Tc-Sac und pMUT2-Kn-Sac ersetzt, die jeweils einen Antibiotika-Resistenzmarker und das sacB-Gen kodieren. Anschließend wurde sich zu Nutze gemacht, dass die durch das sacB-Gen kodierte Levansaccharase in Anwesenheit von Saccharose bei 30 °C Levan polymerisiert, was für Bakterien toxisch ist. Daher können nur Klone, die das sacB-Gen tragende Plasmid verloren haben, auf 10 % Saccharoseplatten wachsen. Die Strategie für die Herstellung eines plasmidfreien Klons des *E. coli* Stammes DSM 6601 ist in Abb. 12 dargestellt.

Um einen vollständig plasmidfreien Klon des *E. coli* Stammes DSM 6601 zu erhalten, wurde in einem nächsten Schritt das Plasmid pMUT2-Kn-Sac durch Elektroporation in den Stamm DSM 6601ΔpMUT1 eingebracht und somit das Plasmid pMUT2 ersetzt. Um den Verlust des
Plasmids pMUT2-Kn-Sac herbeizuführen, wurde wie oben beschrieben verfahren. Der daraus resultierende Stamm DSM 6601ΔpMUT1/2 wurde durch Isolierung der Plasmid-DNA und PCR auf den Verlust des Plasmids pMUT2-Kn-Sac überprüft (Abb. 13).

Abb. 13: Nachweis des Plasmidverlustes mittels PCR (A) und Isolierung von Plasmid-DNA (B). Die PCR wurde mit den für die Plasmide spezifischen Primern Muta 5/6 (pMUT1) sowie Muta 7/8 und Muta 9/10 (pMUT2) durchgeführt. Die Plasmid-DNA wurde mit EcoRI und EcoRV verdaut, was zu einer Linearisierung der Plasmide pMUT1 (3173 bp) und pMUT2 (5520 bp) führt.

Ein Derivat des *E. coli* Stammes DSM 6601 handelt. Eventuell aufgetretene Punktmutationen können jedoch nicht ausgeschlossen werden.

5.2.3 Charakterisierung des plasmidfreien *E. coli* Stammes DSM 6601\(\Delta pMUT1/2\)

Da bei der Analyse der Basensequenzen und der abgeleiteten Aminosäuresequenzen von den beiden Plasmiden pMUT1 und pMUT2 des *E. coli* Stammes DSM 6601 keine Erkenntnisse zu deren Funktion erlangt werden konnten, wurde nun überprüft, ob der Verlust der Plasmide einen Einfluss auf das Bakterienwachstum und auf weitere bekannte Eigenschaften dieses Stammes wie die Inhibition einer *Salmonella*-Invasion, die Phagenresistenz, die Biofilmbildung und die Serumresistenz hat.

5.2.3.1 Einfluss der Plasmide auf das Bakterienwachstum

Um zu überprüfen, ob auf den Plasmiden pMUT1 und pMUT2 mögliche Faktoren kodiert sind, die einen Einfluss auf das Bakterienwachstum ausüben, wurde eine Wachstumskurve der plasmidfreien Variante DSM 6601\(\Delta pMUT1/2\) im Vergleich zum wildtypischen *E. coli* Stamm DSM 6601 in LB-Medium bei 37 °C erstellt. Wie in Abb. 15 gezeigt, ist kein Unterschied im Wachstumsverhalten zwischen Wildtyp und der plasmidfreien Mutante zu erkennen.

Abb. 14: Pulsfeldgel-Analyse mit *NotI* gespaltener genomischer DNA. Als Größenmarker wurden \(\lambda\)-Konkatamere verwendet. Die Größe der Markerbanden ist in kb am rechten Rand angegeben.
5.2.3.2 Einfluss der Plasmide auf die Inhibition der Salmonella-Invasion

Abb. 15: Vergleich des Bakterienwachstums in Flüssigkultur der E. coli Stämme DSM 6601 und der plasmidfreien Mutante DSM 6601ΔpMUT1/2.

Die Ergebnisse dieses Versuchs sind in Abb. 16 dargestellt. Der plasmidfreie *E. coli* Stamm DSM 6601ΔpMUT1/2 reduziert die Invasivität von *Salmonella enterica* Serovar Typhimurium Stamm SL1344 ebenso wie der Wildtypstamm DSM 6601. Es konnten keine signifikanten Unterschiede festgestellt werden (p = 0,087). Somit konnte gezeigt werden, dass die Plasmide pMUT1 und pMUT2 keine Bedeutung für den inhibitorischen Effekt des *E. coli* Stammes DSM 6601 auf die Invasivität von Salmonellen haben.

5.2.3.3 Einfluss der Plasmide auf die Phagenresistenz

Während der *E. coli* K-12-Stamm C600 zur Aufnahme der getesteten Phagen fähig war, konnte weder der wildtypische noch der plasmidfreie *E. coli* Stamm DSM 6601ΔpMUT1/2 mit einem der beiden Phagen infiziert werden. Somit wurde gezeigt, dass die beiden kryptischen Plasmide pMUT1 und pMUT2 keine Rolle bei der Resistenz des *E. coli* Stammes DSM 6601 gegenüber den Phagen λ und 86-24 spielen.

5.2.3.4 Einfluss der Plasmide auf die Biofilmbildung

Von Ghigo (2001) wird vermutet, dass die Expression von Faktoren, die auch die Biofilmbildung beeinflussen, eine Erklärung für die stabile Beibehaltung von kryptischen Plasmiden darstellt. Daher wurde untersucht, ob die Plasmide pMUT1 und pMUT2 einen Einfluss auf die Biofilmbildung in dem *E. coli* Stamm DSM 6601 haben.
Diese Untersuchungen wurden freundlicherweise von Dr. Jean-Marc Ghigo am Institut Pasteur in Paris (Frankreich) durchgeführt. Hierbei wurde getestet, ob die *E. coli* Stämme DSM 6601, DSM 6601ΔpMUT1, DSM 6601ΔpMUT2 und DSM 6601ΔpMUT1/2 unterschiedlich starke Biofilme ausbilden (siehe 4.32). Die Ergebnisse der Untersuchungen sind in Abb. 17 gezeigt.

Abb. 17: Vergleich der Biofilmbildung nach 72 Stunden zwischen den *E. coli* Stämmen DSM 6601, DSM 6601ΔpMUT1, DSM 6601ΔpMUT2 und DSM 6601ΔpMUT1/2. Unter den einzelnen Stämmen ist die entsprechende OD_{600} der in Minimalmedium resuspendierten Biofilme angegeben.

Bei den getesteten Stämmen konnte auf Grund stark überlappend der Standardabweichungen kein signifikanter Unterschied in der Ausprägung des Biofilms festgestellt werden. Somit konnte kein Einfluss der Plasmide auf die Biofilmbildung nachgewiesen werden.

5.2.3.5 Einfluss der Plasmide auf die Serumresistenz

Um zu überprüfen, ob die Plasmide pMUT1 und pMUT2 des *E. coli* Stammes DSM 6601 einen Einfluss auf die Serumsensitivität ausüben, wurde mit dem *E. coli* Stamm DSM 6601 und der isogenen plasmidfreien Variante DSM 6601ΔpMUT1/2 ein Serumresistenztest in 90 % Humanserum durchgeführt (siehe 4.29). Die Serumresistenz ist definiert als die Fähigkeit von Bakterien, der Wirkung des Komplementsystems des Wirtsorganismus erfolgreich zu entgehen. Im Serumresistenztest zeigte sich, dass der plasmidfreie Stamm *E. coli* DSM 6601ΔpMUT1/2 ebenso wie der Wildtyp DSM 6601 serumsensitiv ist und durch das humane Serum vollständig abgetötet wird.
Zusammenfassung der Ergebnisse des Abschnitts 5.2:

- Die Plasmide pMUT1 und pMUT2 wurden mit Antibiotika-Resistenzkassetten markiert (pMUT1-Tc und pMUT2-Kn) und können als Klonierungsvektoren verwendet werden.
- Durch das Einbringen des sacB-Gens in die Plasmide pMUT1-Tc und pMUT2-Kn wurden die Suizidplasmide pMUT1-Tc-Sac und pMUT2-Kn-Sac konstruiert, die für die Herstellung einer plasmidfreien Variante des *E. coli* Stammes DSM 6601 eingesetzt wurden.
- Es wurde ein plasmidfreier Klon des *E. coli* Stammes DSM 6601 hergestellt. Das Derivat *E. coli* DSM 6601ΔpMUT1/2 wurde für Untersuchungen zur möglichen Funktion der Plasmide pMUT1 und pMUT2 verwendet. Darüber hinaus kann dieser Stamm als Trägerorganismus für die Klonierungsvektoren pMUT1-Tc und pMUT2-Kn benutzt werden.
- Durch Untersuchungen zur möglichen Funktion der Plasmide pMUT1 und pMUT2 konnte festgestellt werden, dass diese Plasmide keinen Einfluss auf das Bakterienwachstum, die Inhibition einer *Salmonella*-Invasion, die Phagenresistenz, die Biofilmbildung und die Serumresistenz ausüben.
5.3 Verwendung der Plasmide des *E. coli* Stammes DSM 6601 als Klonierungsvektoren

Ein Ziel dieser Arbeit war die Etablierung eines stabilen Systems für die Expression heterologer Proteine in dem probiotischen *E. coli* Stamm DSM 6601, um diesen Stamm als Lebendvakzinvektor einzusetzen.

Um jedoch die Selektion von rekombinanten Plasmiden bei der praktischen Arbeit zu erleichtern, wurden die mit Antibiotika-Resistenzkassetten versehenen Plasmide pMUT1-Tc und pMUT2-Kn als Klonierungsvektoren verwendet.

5.3.1 Untersuchungen zur Stabilität der Plasmide pMUT1-Tc und pMUT2-Kn

Um zu überprüfen, ob die kryptischen Plasmide pMUT1 und pMUT2 auch nach der Insertion von Fremd-DNA noch stabil in dem *E. coli* Stamm DSM 6601 beibehalten werden und somit keine für die Stabilität notwendigen DNA-Bereiche durch die Insertion zerstört worden sind, wurden Stabilitätsstests mit den Plasmiden pMUT1-Tc und pMUT2-Kn durchgeführt. Hierzu wurden die *E. coli* Stämme DSM 6601ΔpMUT1/2(pMUT1-Tc) und DSM 6601ΔpMUT1/2(pMUT2-Kn) ver-

5.3.2 Untersuchung zur Konjugierbarkeit des Plasmids pMUT2

Das Helferplasmid RP4Δkn wurde mittels Konjugation von dem Donorstamm *E. coli* J53(RP4Δkn) auf den Rezipientenstamm *E. coli* DSM 6601∆pMUT1/2(pMUT2-Kn) übertragen. Die Selektion des *E. coli* Stammes DSM 6601∆pMUT1/2(pMUT2-Kn/RP4Δkn) erfolgte auf Kanamycin- und Ampicillin-haltigen MacConkey-Agarplatten, auf denen der *E. coli* Stamm J53 weiße Kolonien und der *E. coli* Stamm DSM 6601 rote Kolonien bildet.

Um festzustellen, ob das Plasmid pMUT2-Kn durch das Helferplasmid RP4Δkn mobilisiert werden kann, wurden *in vitro*-Filterkonjugationsversuche durchgeführt (siehe 4.17.2). Als Donor dienten die rekombinanten *E. coli* Stämme DSM 6601∆pMUT1/2(pMUT2-Kn/RP4Δkn) und DSM 6601∆pMUT1/2(pMUT2-Kn). Letzterer wurde verwendet, um zu überprüfen, ob auch eine Übertragung des Plasmids pMUT2-Kn ohne die Anwesenheit eines Helferplasmids stattfindet. Als Rezipient wurde der Streptomycin-resistente *E. coli* K-12-Stamm HB101 verwendet. Die

5.3.3 Expression von fluoreszierenden Proteinen

Da eine Unterscheidung des probiotischen *E. coli* Stammes DSM 6601 von anderen Bakterien bisher nur durch molekularbiologische Methoden möglich ist, wurden die Klonierungsvektoren pMUT1-Tc und pMUT2-Kn verwendet, um fluoreszierende Proteine als visuelle Marker zu exprimieren.

In der Riffkoralle *Discosoma species* wurde ein rot fluoreszierendes Protein (DsRed) entdeckt, das eine ähnliche Struktur wie das GFP besitzt und auf gleiche Weise als Reporter eingesetzt werden kann (Matz *et al.*, 1999).

Um die Expression der fluoreszierenden Markerproteine in dem probiotischen *E. coli* Stamm DSM 6601 nachzuweisen, wurde die plasmidfreie isogene Mutante DSM 6601∆pMUT1/2 mit den markierten Plasmiden entweder einzeln oder in Kombination transformiert.

Wie in Abb. 18 gezeigt, ist durch die Expression der fluoreszierenden Proteine GFP und DsRed der *E. coli* Stamm DSM 6601 sowohl als Einzelkolonie mit Hilfe eines Flussesenzimagers als auch auf Einzelzellebene mittels Fluoreszenzmikroskopie nachzuweisen. Auch eine gleichzeitige Expression von zwei unterschiedlich fluoreszierenden Proteinen in dem rekombinanten Stamm DSM 6601∆pMUT1/2(pMUT1-Tc-Red/pMUT2-Kn-Gfp) ist ohne Probleme möglich. Durch die Überlagerung der fluoreszenzmikroskopischen Aufnahmen mit den dazugehörigen Phasenkontrastbildern der rekombinanten *E. coli* Stämme DSM 6601∆pMUT1/2(pMUT1-Tc-Gfp) und DSM 6601∆pMUT1/2(pMUT2-Kn-Red) konnte demonstriert werden, dass jede einzelne Bakterienzelle fluoresziert. Die Kontrollstämme *E. coli* DSM 6601∆pMUT1/2(pMUT1-Tc) und DSM 6601∆pMUT1/2(pMUT2-Kn) zeigten dagegen keine Eigenfluoreszenz.
Abb. 18: Expression des GFP und/oder des DsRed-Proteins in verschiedenen rekombinanten *E. coli* DSM 6601ΔpMUT1/2-Stämmen.
Fluoreszenzmikroskopische Aufnahmen von DSM 6601ΔpMUT1/2(pMUT1-Tc-Gfp) (B), DSM 6601ΔpMUT1/2(pMUT1-Tc) (Kontrolle) (C), DSM 6601ΔpMUT1/2(pMUT2-Kn-Red) (D) und DSM 6601ΔpMUT1/2(pMUT2-Kn) (Kontrolle) (E). In den einzelnen Bildern ist zunächst das fluoreszenzmikroskopische Bild, dann die Phasenkontrastaufnahme und zuletzt die Überlagerung dieser beiden dargestellt.

pMUT1-Tc-Red und pMUT2-Kn-Gfp stabil in dem *E. coli* Stamm DSM 6601ΔpMUT1/2 vorliegen und dass sich die *Eco*RI-Restriktionsschnittstellen der Klonierungsvektoren pMUT1-Tc und pMUT2-Kn für die Insertion von weiterer Fremd-DNA eignen.

5.3.4 Expression von Adhäsinen

Im Hinblick auf die Entwicklung eines Lebendvakzins auf der Basis des probiotischen *E. coli* Stammes DSM 6601 sollten verschiedene Antigene mit adhäsiven Eigenschaften von darmpathogenen Infektionserregern in diesem Stamm exprimiert werden. Die Präsentation von Antigenen im Darm von Mensch und Tier könnte zur Induktion einer spezifischen mukosalen und systemischen Immunantwort führen, wodurch sowohl die Bindung des jeweiligen Pathogens an Epithelzellen als auch die Kolonisation verhindert werden könnte. Neben einer Stimulierung der Immunantwort könnten auch spezifische Rezeptoren auf Epithelzellen durch das adhäsive Antigen selbst blockiert und dadurch die Etablierung des pathogenen Organismus im Darm verhindert werden.

Als Antigene für die Expression in dem *E. coli* Stamm DSM 6601 wurden die fimbriellen Adhäsine K88ab und K99 von tierpathogenen enterotoxischen *E. coli* (ETEC) sowie das Adhäsin Intimin von humanpathogenen enterohämorrhagischen *E. coli* (EHEC) ausgewählt.

5.3.4.1 Expression von ETEC-spezifischen K88ab- und K99-Fimbrien

Für die Expression der K88ab- und K99-Fimbrien wurde das Plasmid pMUT2-Kn verwendet. Das Plasmid pMUT2-Kn wurde mit *Eco*RI linearisiert, anschließend zur Erzeugung von glatten Enden einer Klenow-Behandlung unterzogen und dephosphoryliert, um eine Religation des
Vektors zu verhindern. Der auf diese Weise vorbereitete Vektor wurde dann für die folgenden Klonierungen eingesetzt.

Zur Herstellung des Plasmids pMUT2-Kn-K88 wurde das gesamte K88ab-Fimbriengenkluster mit Sau3AI aus dem Plasmid pFM205 herausgeschnitten. Das ca. 6,7 kb große DNA-Fragment wurde einer Klenow-Behandlung unterzogen und in die EcoRI-Schnittstelle des Plasmids pMUT2-Kn ligiert.

Tab.13: Nachweis der Fimbrienexpression

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Serumagglutination</th>
<th>Hämagglutination (Schaflut)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ohne Mannose</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2 (pMUT2-Kn-K88)</td>
<td>+ (K88-Antiserum)</td>
<td>nicht bestimmt</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2 (pMUT2-Kn) (Negativkontrolle)</td>
<td>- (K88-Antiserum)</td>
<td>nicht bestimmt</td>
</tr>
<tr>
<td>HB101(pFM205) (Positivkontrolle)</td>
<td>+ (K88-Antiserum)</td>
<td>nicht bestimmt</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2 (pMUT2-Kn-K99)</td>
<td>+ (K99-Antiserum)</td>
<td>+</td>
</tr>
<tr>
<td>DSM 6601ΔpMUT1/2 (pMUT2-Kn) (Negativkontrolle)</td>
<td>- (K99-Antiserum)</td>
<td>-</td>
</tr>
<tr>
<td>C600(pFK99) (Positivkontrolle)</td>
<td>+ (K99-Antiserum)</td>
<td>+</td>
</tr>
</tbody>
</table>
5.3.4.2 Expression des Adhäsin Intimtin (Eae) aus EHEC-Bakterien

EHEC-Bakterien induzieren ebenso wie enteropathogene E. coli (EPEC) eine charakteristische Histopathologie in intestinalen Epithelzellen, die als “attaching and effacing” (A/E)-Läsion bezeichnet wird. A/E-Läsionen sind charakterisiert durch lokale Zerstörung von Bürstensaummikrovilli, eine enge Adhärenz von Bakterien und eine Umstrukturierung des Zytoskeletts. Die Gene aller Faktoren, die an der Ausprägung dieser Läsionen beteiligt sind, befinden sich auf einer 43,4 kb großen Pathogenitätsinsel, dem sogenannten “locus of enterocyte effacement” (LEE). Das eae Gen kodiert für das bakterielle Oberflächenadhäsin Intimin, welches für die enge Wechselwirkung der Bakterienzelle mit der Wirtsepithelzelle verantwortlich ist (Frankel et al., 1998; Perna et al., 1998).

Um nun zu überprüfen, ob das Adhäsin Intimin von den rekombinanten E. coli Stämmen DSM 6601ΔpMUT1/2(pMUT1-Tc-Eae) und DSM 6601ΔpMUT1/2(pMUT2-Kn-Eae) exprimiert wird, wurde eine “Western Blot”-Analyse mit einem Intimin-specifischen polyklonalen Antikörper (αRIHIsEae, Kaninchen, 1:2500 verdünnt) durchgeführt. Hierzu wurden die Bakterien durch Ultraschall aufgeschlossen und die dadurch gewonnenen Proteine auf einem SDS-Polyacrylamidgel aufgetrennt. Wie Abb. 19 zeigt, konnte die Expression von Intimin (97 kDa),
Ergebnisse

das auf den Plasmiden pMUT1-Tc-Eae und pMUT2-Kn-Eae kodiert ist, eindeutig nachgewiesen
werden.

5.3.5 Erste tierexperimentelle Untersuchungen zur Induktion einer Immunantwort

Diese Versuche wurden im Labor von Prof. Dr. L. Emödy (Institut für Medizinische Mikro-
biologie und Immunologie, Universität Pécs, Ungarn) durchgeführt.
Um zu untersuchen, ob durch die von dem *E. coli* Stamm DSM 6601ΔpMUT1/2 exprimierten
Antigene Intimin, K88ab- und K99-Fimbrien im Tiermodell eine Immunantwort in Form einer
spezifischen IgG-Produktion induziert werden kann, wurden erste Immunisierungsexperimente
durchgeführt (siehe 4.38.2). Für diese Untersuchungen wurden die rekombinanten *E. coli*
Stämme DSM 6601ΔpMUT1/2(pMUT1-Tc-Eae), DSM 6601ΔpMUT1/2(pMUT1-Tc),
DSM 6601ΔpMUT1/2(pMUT2-Kn-Eae), (7) DSM 6601ΔpMUT1/2(pMUT2-Kn).

Nach 14 Tagen wurde der Immunisierungserfolg überprüft. Hierzu wurde mit Hilfe von “Western
Blot”-Analysen untersucht, ob das Serum der immunisierten Mäuse spezifische IgG-Antikörper
gegen die exprimierten Fremdantigene enthält. Es konnte jedoch keine Induktion einer Immun-
antwort in Form von spezifischen IgG-Antikörpern nachgewiesen werden (Daten nicht gezeigt).

Abb. 19: “Western Blot”-Analyse mit einem Intimin-spezifischen polyklonalen
Antikörper (αRIHisEae, 1:2500 verdünnt): Die Intimin-spezifische 97 kDa-Bande
ist mit einem Pfeil markiert; bei der unteren ca. 75 kDa-Bande handelt es sich
wahrscheinlich um ein Abbauprodukt von Intimin.
(1) O157:H7 Stamm 86-24, (2) O157:H7 Stamm 86-24Δeae,
(3) DSM 6601ΔpMUT1/2(pMUT1-Tc-Eae), (4) DSM 6601ΔpMUT1/2(pMUT1-Tc),
(5) DSM 6601ΔpMUT1/2, (6) DSM 6601ΔpMUT1/2(pMUT2-Kn-Eae),
(7) DSM 6601ΔpMUT1/2(pMUT2-Kn).

5.3.5 Erste tierexperimentelle Untersuchungen zur Induktion einer Immunantwort

Diesen Versuche wurden im Labor von Prof. Dr. L. Emödy (Institut für Medizinische Mikro-
biologie und Immunologie, Universität Pécs, Ungarn) durchgeführt.
Um zu untersuchen, ob durch die von dem *E. coli* Stamm DSM 6601ΔpMUT1/2 exprimierten
Antigene Intimin, K88ab- und K99-Fimbrien im Tiermodell eine Immunantwort in Form einer
spezifischen IgG-Produktion induziert werden kann, wurden erste Immunisierungsexperimente
durchgeführt (siehe 4.38.2). Für diese Untersuchungen wurden die rekombinanten *E. coli*
Stämme DSM 6601ΔpMUT1/2(pMUT2-Kn-Eae), DSM 6601ΔpMUT1/2(pMUT2-Kn-K88),
DSM 6601ΔpMUT1/2(pMUT2-Kn-K99) und DSM 6601ΔpMUT1/2(pMUT2-Kn) als Kontrolle
verwendet.
Nach 14 Tagen wurde der Immunisierungserfolg überprüft. Hierzu wurde mit Hilfe von “Western
Blot”-Analysen untersucht, ob das Serum der immunisierten Mäuse spezifische IgG-Antikörper
gegen die exprimierten Fremdantigene enthält. Es konnte jedoch keine Induktion einer Immun-
antwort in Form von spezifischen IgG-Antikörpern nachgewiesen werden (Daten nicht gezeigt).
Zusammenfassung der Ergebnisse des Abschnitts 5.3:

- Untersuchungen zur Stabilität der Plasmide pMUT1-Tc und pMUT2-Kn haben gezeigt, dass die beiden kryptischen Plasmide des *E. coli* Stammes DSM 6601 auch nach Insertion von Fremd-DNA stabil beibehalten werden und sich somit als Klonierungsvektoren eignen.
- Das Plasmid pMUT2-Kn kann durch das Helferplasmid RP4Δkn mobilisiert werden, wodurch bestätigt wird, dass dieses Plasmid über ein funktionelles Mobilisationssystem verfügt.
- Die fimbriellen Adhäsine K88ab und K99 sowie der Adhärenzfaktor Intimin konnten durch die Verwendung der Plasmide pMUT1-Tc bzw. pMUT2-Kn als Klonierungsvektoren in dem *E. coli* Stamm DSM 6601ΔpMUT1/2 erfolgreich exprimiert werden.
- Die Expression der Antigene Intimin, K88ab- und K99-Fimbrien in dem *E. coli* Stamm DSM 6601ΔpMUT1/2 führte in ersten tierexperimentellen Untersuchungen nicht zur Induktion einer Immunantwort in Form einer spezifischen IgG-Produktion.
5.4 Untersuchungen zur inhibitorischen Wirkung des *E. coli* Stammes DSM 6601

5.4.1 Bedeutung der Fimbrienadhäsine des *E. coli* Stammes DSM 6601 für die inhibitorischen Effekte *in vitro*

Die Adhärenz an Epithelzellen stellt einen wichtigen Schritt bei der Infektion durch *Salmonella* Stämme dar. Fimbrien vermitteln die Adhärenz von Serovar Typhimurium Stämmen an verschiedene Epithelzelllinien *in vitro*, was für die Invasion der Zellen erforderlich ist (Humphries et al., 2001).

Der probiotische *E. coli* Stamm DSM 6601 exprimiert drei verschiedene Adhäsine: Typ 1-, F1C- und Curli-Fimbrien (Grozdanov et al., 2004). Um festzustellen, ob durch eine Typ 1- und F1C-Fimbrien vermittelte Adhärenz der inhibitorische Effekt dieses Stammes auf die Invasivität von Salmonellen in Epithelzellen erklärt werden kann, wurde eine Typ 1- und F1C-Fimbrien-negative isogene Mutante des *E. coli* Stammes DSM 6601 hergestellt. Mit dieser Mutante sollte untersucht werden, ob Typ 1- und F1C-Fimbrien die Adhärenz an Epithelzellen beeinflussen und ob diese Fimbrien eine Rolle bei dem inhibitorischen Effekt auf die Invasivität von Salmonellen spielen.

5.4.1.1 Herstellung der Fimbriendeletionsmutanten

Nach Transformation des *E. coli* Stammes DSM 6601(pKD46) mit diesem PCR-Fragment erfolgte durch die Aktivität der λ-Red-Rekombinase die Integration des Chloramphenicol-Resistenzgens (*cat*) einschließlich der flankierenden FLP-Erkennungssequenzen (FRT) in das Chromosom. Durch diese Integration wurde das gesamte *foc*-Gencluster (6609 bp) mit Ausnahme von *focB* deletiert. Anschließend wurde das *cat*-Gen aus dem entstandenen *E. coli* Stamm DSM 6601Δ*foc*::*cat* eliminiert. Die auf dem Helferplasmid pCP20 kodierte FLP-Rekombinase erkennt die FRT-Sequenzen und schneidet das *cat*-Gen aus, jedoch verbleibt ein 85 bp großes DNA-Fragment mit einer FLP-Erkennungssequenz (FRT) im Chromosom (Abb. 21). Die resultierende F1C-Fimbriendeletionsmutante des *E. coli* Stammes DSM 6601 erhielt die Bezeichnung DSM 6601Δ*foc*.

Abb. 20: Graphische Darstellung der genetischen Organisation der F1C-Fimbriendeterminante (*foc*) aus *E. coli* DSM 6601. Die Funktion der einzelnen Gene ist angegeben. Die Hauptuntereinheit und das eigentliche Adhäsin sind hervorgehoben. Bindungsstellen der für die Deletion verwendeten Primer und die für die Komplementation verwendeten *Eco*RV-Schnittstellen sind eingezeichnet.

Die Deletion des \(fim\)-Genklusters erfolgte analog zu der eben beschriebenen Deletion des \(foc\)-Genclusters. Hierzu wurden die \(E. coli\) Stämme DSM 6601 und DSM 6601\(\Delta foc\) als Ausgangsstämme verwendet. Die entstandene Typ 1-Fimbriendeletionsmutante erhielt die Bezeichnung DSM 6601\(\Delta fim\), die Typ 1- und F1C-Fimbriendopelmutante wurde DSM 6601\(\Delta foc/fim\) genannt. Die Fimbriendeletionsmutanten wurden mit Hilfe einer “Southern Blot”-Analyse überprüft (Abb. 23).

Abb. 23: “Southern Blot”-Analysen von \(EcoO109I\) (A) und \(EcoRV\) (B) gespaltener chromosomaler DNA des \(E. coli\) Stammes DSM 6601 und seiner Fimbriendeletionsmutanten.

1 DSM 6601, (2) DSM 6601\(\Delta foc::cat\), (3) DSM 6601\(\Delta foc\), (4) DSM 6601\(\Delta fim::cat\), (5) DSM 6601\(\Delta fim\), (6) DSM 6601\(\Delta foc/fim::cat\), (7) DSM 6601\(\Delta foc/fim\). Für die Hybridisierung wurden folgende Sonden eingesetzt: 253 bp \(fimA\)-spezifische Sonde (PCR-Produkt, Muta 1/2) (A), 441 bp \(focA\)-spezifische Sonde (PCR-Produkt, Muta 3/4) (B).
5 Ergebnisse

5.4.1.2 Komplementation der Fimbriendeletionsmutanten

Um die Deletion der F1C- und Typ 1-Fimbriendeterminanten in dem Stamm DSM 6601Δfoc/fim wieder zu komplementieren, wurden die Plasmide pGEM-Typ1 und pACYC184-F1C hergestellt.

Zur Herstellung des Plasmids pACYC184-F1C wurde ein 9139 bp großes DNA-Fragment, welches das foc-Genkluster enthält, mit dem Restriktionsenzym EcoRV aus dem Cosmid pCos3YE4 geschnitten und in die dephosphorylierte EcoRV-Restriktionsschnittstelle des Vektors pACYC184 ligiert. Anschließend wurde die F1C-Fimbriendeletionsmutante DSM 6601Δfoc mit diesem Plasmid transformiert.

Der Nachweis einer Expression der F1C-Fimbrien erfolgte durch Serumagglutination mit polyclonalem Kaninchen-Antiserum gegen F1C-Fimbrien (α-F1C, 1:100 verdünnt). Während die Bakterienzellen des Stammes DH5α(pACYC184-F1C) deutlich agglutinierten, konnte für die Komplementante DSM 6601Δfoc(pACYC184-F1C) kein eindeutiges Ergebnis erhalten werden. Daher wurde eine “Western Blot”-Analyse mit isolierten Fimbrien durchgeführt (Abb. 24).

Mit dem verwendeten Antiserum konnte das 16 kDa-Protein FocA bei der F1C-Fimbriendeletionsmutante DSM 6601Δfoc und der Komplementante DSM 6601Δfoc(pACYC184-F1C) nicht nachgewiesen werden. Dieses Resultat zeigt, dass durch das Komplementationsplasmid pACYC184-F1C die Expression der F1C-Fimbrien in dem E. coli Stamm DSM 6601Δfoc nicht wiederhergestellt werden konnte.
Zur Herstellung des Plasmids pGEM-Typ1 wurde durch “long distance”-PCR mit der Primer-
kombination Fim 3/4 das komplette \textit{fim}-Genkluster amplifiziert und als 11290 bp großes PCR-
Fragment in den Vektor pGEM®-T Easy kloniert. Das so erhaltene Plasmid wurde für die
Komplementation der Typ 1-Fimбриendeletion des Stammes DSM 6601Δ\textit{fim} eingesetzt.
Der Nachweis der Typ 1-Fimbrien erfolgte durch Mannose-sensitive Hefeagglutination. Auch
hier zeigte sich, dass die Expression von Typ 1-Fimbrien in dem rekombinanten \textit{E. coli} Stamm
DSM 6601Δ\textit{fim}(pGEM-Typ1) nicht nachgewiesen werden konnte, während mit Bakterienzellen
des Stammes AAEC189(pGEM-Typ1) ein positives Ergebnis erhalten wurde.

Weitere Untersuchungen der mit den Plasmiden pACYC184-F1C und pGEM-Typ1 komplementier-
ten DSM 6601-Fimбриendeletionsmutanten haben gezeigt, dass die Gene \textit{focA} bzw. \textit{fimA} in
“Southern Blot”-Analysen mit spezifischen Sonden gegen diese Gene nicht detektiert werden
konnten, obwohl die transformierten Stämme die dem jeweiligen Plasmid entsprechende
Resistenz aufwiesen. Auch mit den für \textit{fimA} bzw. \textit{focA} spezifischen PCR-Reaktionen (Primer
Muta 1/2 bzw. Muta 3/4) konnten die entsprechenden Gene in den rekombinanten \textit{E. coli}
Stämmen DSM 6601Δ\textit{fim}(pGEM-Typ1) und DSM 6601Δ\textit{foc}(pACYC184-F1C) nicht nach-
gewiesen werden, während mit DH5α oder AAEC189 als Stammhintergrund ein positives
Ergebnis erhalten wurde. Ebenso unterschieden sich die Restriktionsmustern der aus den
komplementierten Stämmen reisolierten Plasmide von dem der ursprünglich transformierten
Plasmide (Daten nicht gezeigt). Hieraus lässt sich folgern, dass die auf den Klonierungsvektoren
pACYC184 und pGEM®-T Easy basierenden Plasmide nicht stabil in dem \textit{E. coli} Stamm
DSM 6601 beibehalten werden können.

5.4.1.3 Elektronenmikroskopische Untersuchungen

Um Unterschiede in der Expression von Typ 1- und F1C-Fimbrien in dem wildtypischen \textit{E. coli}
Stamm DSM 6601 und der Fimibriendeletionsmutante DSM 6601Δ\textit{foc/fim} nachzuweisen, wurden
transenelektronenmikroskopische Untersuchungen durchgeführt. Die Bakterien wurden ohne
Fixierung mit wässriger Uranylacetat-Lösung negativ kontrastiert und im Elektronenmikroskop
betrachtet.
5 Ergebnisse

Abb. 25: Transmissionselektronenmikroskopische Aufnahmen der *E. coli* Stämme DSM 6601 (A) und DSM 6601Δfoc/fim (B). Die Bakterien wurden mit Uranylacetat kontrastiert. Als Größenmaßstab ist ein schwarzer Balken eingezeichnet.

Auf der elektronenmikroskopischen Aufnahme (Abb. 25) des Wildstammes *E. coli* DSM 6601 sind deutlich mehr Fimbrien als bei der Fimbriendeletionsmutante DSM 6601Δfoc/fim zu erkennen, die als haarförmige Strukturen die Bakterienzellen umgeben. Auf der Aufnahme der Fimbriendeletionsmutante DSM 6601Δfoc/fim sind ebenso Fimbrienstrukturen zu sehen, jedoch in geringerem Ausmaß. Dies ist darauf zurückzuführen, dass *E. coli* DSM 6601 neben Typ 1- und F1C-Fimbrien auch Curli-Fimbrien exprimiert.

5.4.1.4 Einfluss der Fimbrien auf die Adhärenz an INT407-Zellen

Um zu untersuchen, ob F1C- und Typ 1-Fimbrien an der Adhärenz des *E. coli* Stammes DSM 6601 an die humane embryonale intestinale Zelllinie INT407 beteiligt sind, wurden Adhäsionsassays mit einer Inkubationsdauer von 2 Stunden durchgeführt.

Zunächst wurde mittels Serumagglutination (F1C-Fimbrien, α-F1C, 1:100 verdünnt) und Hefeagglutination (Typ 1-Fimbrien, siehe 4.28.3) überprüft, ob der wildtypische *E. coli* Stamm DSM 6601 unter den für diesen Versuch verwendeten Anzuchtbedingungen in Zellkulturmedium diese Fimbrien exprimiert. Hierbei zeigte sich, dass eine Expression von Typ 1-Fimbrien nicht nachweisbar war, während F1C-Fimbrien exprimiert wurden.

Bei den Adhäsionsassays konnte kein Unterschied in der Adhärenz zwischen dem *E. coli* Wildtypstamm DSM 6601 und der isogenen Fimbriendeletionsmutante DSM 6601Δfoc/fim fest-
gestellt werden. Jedoch konnte bei beiden getesteten Stämmen nur eine geringe Anzahl adhärenter Bakterien beobachtet werden, was auf die fehlende Expression der Typ 1-Fimbrien unter den verwendeten Anzuchtbedingungen in Zellkulturmedium zurückgeführt werden könnte (Abb. 26). Mit diesem Ergebnis konnte gezeigt werden, dass die Adhärenz des *E. coli* Stammes DSM 6601 an INT407-Zellen nicht durch F1C-Fimbrien vermittelt wird.

![Abb. 26: Mikroskopische Aufnahmen der Adhärenz des *E. coli* Stammes DSM 6601 (A) und der isogenen Fimbriendeletionsmutante DSM 6601 Δfoc/fim (B) an humane embryonale intestinale INT407-Zellen.](image)

5.4.1.5 Bedeutung der Fimbrien für den inhibitorischen Effekt von *E. coli* DSM 6601 auf die Invasivität von Salmonellen

Obwohl die Ergebnisse der Adhärenzuntersuchungen zeigten, dass die F1C-Fimbrien bei der Adhärenz an INT407-Zellen keine Rolle spielen, wurde getestet, ob dennoch eine Beziehung zwischen der Expression von F1C- sowie Typ 1-Fimbrien und dem inhibitorischen Effekt von *E. coli* DSM 6601 auf die Invasivität von Salmonellen zu beobachten ist. Daher wurden Koinfektions-Invasionsassays mit dem invasiven *Salmonella enterica* Serovar Typhimurium Stamm SL1344 und dem *E. coli* Stamm DSM 6601 sowie den isogenen Fimbriendeletionsmutanten durchgeführt.

Zunächst wurde ebenfalls überprüft, ob die *E. coli* Stämme unter den für diesen Versuch verwendeten Anzuchtbedingungen in Zellkulturmedium Typ 1- und F1C-Fimbrien exprimieren (siehe 5.4.1.4). Hierbei zeigte sich ebenso, dass eine Expression von Typ 1-Fimbrien nicht nachweisbar war, während F1C-Fimbrien exprimiert wurden.
Die Resultate des Koinfektions-Invasionsassays sind in Abb. 27 dargestellt. Die Fimbrien-deletionsmutanten des *E. coli* Stammes DSM 6601 reduzieren die Invasivität von *Salmonella enterica* Serovar Typhimurium Stamm SL1344 ebenso wie der Wildtyp. Es konnten keine signifikanten Unterschiede festgestellt werden (p = 0,4-0,9). Hierdurch konnte gezeigt werden, dass weder die Typ 1-Fimbrien noch die F1C-Fimbrien eine Bedeutung für den inhibitorischen Effekt des *E. coli* Stammes DSM 6601 auf die Invasivität von Salmonellen haben.

5.4.2 Untersuchungen zur inhibitorischen Wirkung des *E. coli* Stammes DSM 6601 *in vivo*

Sowohl die Vermehrung von *Salmonella enterica* Serovar Typhimurium als auch die Kolonisierung gnotobiotischer Ferkel kann durch den probiotischen *E. coli* Stamm DSM 6601 inhibiert werden (Schulze et al., 1992).

Um festzustellen, ob diese inhibitorischen Effekte auch bei konventionellen Tieren, die eine normale Darmflora besitzen, nachzuweisen sind und durch den probiotischen *E. coli* Stamm DSM 6601 daher ein Schutz vor einer Salmonellen-Infektion erreicht werden kann, wurden Schutzexperiments in konventionellen Balb/c-Mäusen durchgeführt (siehe 4.38.1).

Diese Versuche wurden im Labor von Prof. Dr. L. Emödy (Institut für Medizinische Mikrobiologie und Immunologie, Universität Pécs, Ungarn) durchgeführt.
Eine Gruppe der Mäuse erhielt nur den *Salmonella enterica* Serovar Typhimurium Stamm SL1344 (Positivkontrolle), während den anderen Gruppen zusätzlich zu dem *Salmonella* Stamm entweder der wildtypische *E. coli* Stamm DSM 6601, die plasmidfreie isogene Variante DSM 6601ΔpMUT1/2, die F1C- und Typ 1-Fimbriendoppelmutante DSM 6601Δfoc/fim oder der *E. coli* Stamm PZ915 (Negativkontrolle) verabreicht wurde.

Durch die verwendeten *E. coli* Stämme konnten die Mäuse jedoch nicht effizient kolonisiert werden. Die Anzahl der Bakterien der einzelnen *E. coli* Stämme in den Fäzes lag zwischen 10^5 und 10^{10} Bakterien pro Gramm Fäzes, wobei im Stuhl von wenigen Mäusen die *E. coli* Stämme trotz täglicher Verabreichung nicht permanent nachgewiesen werden konnten. Des Weiteren konnte keine inhibitorische Wirkung auf die Vermehrung des *Salmonella* Stammes und die Kolonisierung der Mäuse festgestellt werden. Die Anzahl lebender Bakterien des *Salmonella* Stammes in den Fäzes bei den einzelnen Gruppen, die entweder nur mit dem *Salmonella* Stamm alleine oder in Kombination mit den verschiedenen *E. coli* Stämmen behandelt wurden, wies keinen signifikanten Unterschied auf. Durch die Applikation des *E. coli* Stammes DSM 6601 und seiner verschiedenen Derivate DSM 6601ΔpMUT1/2 und DSM 6601Δfoc/fim konnte somit kein Schutz vor einer Infektion durch den *Salmonella* Stamm erreicht werden (Daten nicht gezeigt).
Zusammenfassung der Ergebnisse des Abschnitts 5.4:

- Die Typ 1-Fimbriendeterminante (\textit{fim}) sowie die F1C-Fimbriendeterminante (\textit{foc}) wurde in dem Stamm \textit{E. coli} DSM 6601 deletiert.
- Die Expression von F1C-Fimbrien beeinflusst nicht die Adhärenz von \textit{E. coli} DSM 6601 an die humane embryonale intestinale Zelllinie INT407.
- Typ 1- und F1C-Fimbrien haben keine Bedeutung für den inhibitorischen Effekt von \textit{E. coli} DSM 6601 auf die Invasivität von Salmonellen.
- Sowohl eine Inhibierung der Kolonisierung und der Vermehrung von Salmonellen als auch ein Schutz vor einer \textit{Salmonella}-Infektion konnte durch die Applikation des \textit{E. coli} Stammes DSM 6601 und seiner Derivate DSM 6601\textit{ΔpMUT1/2} und DSM 6601\textit{Δfoc/fim} in konventionellen Mäusen nicht erreicht werden.
6 Diskussion

Der apathogene *E. coli* Stamm DSM 6601 (*E. coli* Nissle 1917) kann als Modellorganismus für die Verwendung eines kommensalen Gram-negativen Bakterienstammes als Probiotikum betrachtet werden. Der *E. coli* Stamm DSM 6601 wurde in den vergangenen Jahren intensiv erforscht und seine phänotypischen und genotypischen Eigenschaften sind daher gut charakterisiert. Der probiotische Charakter dieses Bakterienstammes wird auf gute Kolonisierungseigenschaften des menschlichen Darms, immunmodulatorische Effekte und antagonistische Wirkungen zurückgeführt. Dieser Stamm bildet die Grundlage für das Medikament Mutaflor®, das bei der Behandlung von verschiedenen gastrointestinalen Erkrankungen eingesetzt wird und dessen therapeutische Wirksamkeit durch anerkannte klinische Studien inzwischen wissenschaftlich bewiesen ist (siehe Einleitung 2.4). Auf Grund der langjährigen Erfahrungen, der biologischen Sicherheit und der probiotischen Eigenschaften eignet sich dieser Stamm als Modellstamm für die Entwicklung eines oral applizierbaren Lebendvektors, der für mukosale Immunisierungen oder die zielgerichtete Lieferung von therapeutischen Molekülen in den Darm eingesetzt werden könnte.

6.1 Entwicklung von stabilen Klonierungsvektoren für den probiotischen *E. coli* Stamm DSM 6601

Seit einigen Jahren wird mit großem Einsatz daran gearbeitet, oral applizierbare bakterielle Lebendvakzine auf der Basis von kommensalen und probiotischen Bakterien zu entwickeln, die zur aktiven oder passiven Immunisierung, aber auch zur Induktion von oraler Toleranz sowie zur Übertragung von therapeutischen Molekülen verwendet werden können.

Auswahl an Antibiotika, die für die Behandlung von Infektionen zur Verfügung stehen, eingeschränkt (Morona et al., 1991). Aus diesem Grund müssen für die stabile Expression von heterologen Proteinen in Lebendvakzinstämmen alternative Möglichkeiten genutzt werden, die nicht auf der Selektion durch Antibiotika beruhen.

Die Integration von Genen in das Chromosom des bakteriellen Lebendvektors ist eine mögliche Lösung, um das Problem der Antigenexpression von rekombinanten Plasmiden aus, die für die Beibehaltung Antibiotika-Selektion erfordern, zu umgehen. Im Vergleich zur Expression einzelner Kopien des Gens im Chromosom der Bakterien werden jedoch stärkere Immunantworten gegen heterologe Proteine induziert, wenn diese von “multicopy”-Plasmiden aus exprimiert werden (McNeill et al., 2000; Garmory et al., 2003; Kotton & Hohmann, 2004).

Durch die Analyse der DNA-Sequenz und der abgeleiteten Aminosäuresequenzen das Plasmids pMUT1 (3173 bp) konnte ein Replikationssystem (oriV, Rom), eine Plasmid-Stabilisierungsregion (cer) und ein Mobilisierungslokus (oriT, MobA) identifiziert werden. Vier weiteren ermittelten ORFs konnten keine Funktionen zugeordnet werden, jedoch bestehen Homologien zu anderen hypothetischen Proteinen (siehe Abb. 4 und Tab. 8).

Die Homologie zu dem Rom-Protein (58 % Identität) sowie zu dem vegetativen Replikationsursprung (oriV, 93 % Identität) des Plasmids ColE1 lässt vermuten, dass das Plasmid pMUT1 ein Replikationssystem vom ColE1-Typ besitzt. Jedoch unterscheiden sich die Sequenzen der Plasmide pMUT1 und ColE1 in dem Bereich, der das Plasmid-Replikationskontrollsystem, bestehend aus RNA I und RNA II, umfasst. Die Replikation des Plasmids ColE1 erfolgt nach dem Theta-Mechanismus (Del Solar et al., 1998). Plasmide, die nach diesem Mechanismus replizieren, bilden während der Replikation keine einzelsträngigen Intermediate und weisen eine hohe Struktur- und Segregationsstabilität auf. Außerdem können diese Plasmide große heterologe
DNA-Inserts stabil beibehalten und sind daher für die Konstruktion von Klonierungsvektoren geeignet (Shareck et al., 2004).

Die signifikanten Ähnlichkeiten des Plasmids pMUT1 zu dem “low molecular weight” Plasmid I aus Salmonella enteritidis (95 % Identität), zu dem Plasmid NTP16 aus Salmonella typhimurium (94 % Identität) sowie zu den Plasmiden p4821 aus Escherichia coli O157:H7 Stamm 4821 und pOSAK1 aus Escherichia coli O157:H7 Stamm RIMD 0509952 (93 % Identität) in einem Bereich, der den größten Teil des Replikationssystems, das Mobilisierungssystem und teilweise die Stabilitätsregion cer umfasst, deuten darauf hin, dass diese Plasmide wahrscheinlich aus einem gemeinsamen Ursprungsplasmid durch Insertion und bzw. oder Deletion von heterologen DNA-Sequenzen entstanden sind. Diese Vermutung wird auch durch die Analyse des G+C-Gehalts des Plasmids pMUT1 unterstützt, die zeigt, dass der G+C-Gehalt in diesen homologen
Bereich bei 52,1 % liegt, während die restliche DNA-Sequenz einen wesentlich niedrigeren G+C-Gehalt von 41,5 % aufweist.

Durch die Analyse der DNA-Sequenz und der abgeleiteten Aminosäuresequenzen des Plasmids pMUT2 (5520 bp) konnte ein Replikationssystem (oriV, Rep) und ein Mobilisierungssystem (oriT, MobABCD) identifiziert werden. Zwei weiteren ermittelten ORFs konnten keine Funktionen zugeordnet werden und es bestehen auch keine Homologien zu bekannten Proteinen (siehe Abb. 6 und Tab. 9). Außerdem konnten keine Regionen gefunden werden, die für die Stabilität des Plasmids eine Rolle spielen könnten.

Die Homologie zu verschiedenen Rep-Proteinen (58 % und 63 % Identität) sowie zu vegetativen Replikationsursprüngen (oriV, 95 % Identität) von CoIE2-verwandten Plasmiden lässt vermuten, dass das Plasmid pMUT2 ein Replikationssystem vom CoIE2-Typ besitzt. CoIE2-Plasmide replizieren ebenso wie CoIE1-Plasmide nach dem Theta-Mechanismus (Del Solar et al., 1998) und sind daher ebenfalls für die Konstruktion von stabilen Vektoren geeignet (Shareck et al., 2004).

Die Ähnlichkeit zu dem Transfer-Replikationsursprung (oriT, 64 % Identität) und zu den Mobilisierungsproteinen MobA (41 % Identität), MobB (27 % Identität), MobC (47 % Identität) und MobD (45 % Identität) des Plasmids CoIE1 deutet darauf hin, dass das Plasmid pMUT2 ebenfalls ein Mobilisierungssystem besitzt. Die mob-Gene bilden wie in dem Plasmid CoIE1 ein Operon, mobCABD, und überlappen einander (Boyd et al., 1989). Auf Grund der geringen Homologien konnte jedoch keine Erkenntnis über die Funktionalität dieses Mobilisierungssystems erlangt werden. Daher wurden Konjugationsexperimente durchgeführt, um die Funktionalität zu überprüfen. Da das Plasmid pMUT2 jedoch keine eigenen tra-Gene beinhaltet, die für die Ausbildung eines Pilus und andere konjugationsspezifische Funktionen verantwortlich sind, kann eine Übertragung des Plasmids pMUT2 nur mittels eines konjugativen Helferplasmids erfolgen. Aus diesem Grund wurde bei den Untersuchungen das IncP-Helferplasmid RP4 verwendet, von dem bekannt ist, dass es CoIE1-Plasmide mobilisiert (Pansegrau et al., 1994; Cabezón et al., 1997). In diesen Experimenten konnte gezeigt werden, dass das Plasmid pMUT2 durch das Helferplasmid RP4 mobilisiert werden kann und somit ein funktionelles Mobilisierungssystem kodiert.

Die Analyse des G+C-Gehalts des Plasmids pMUT2 ergab, dass dieses Plasmid zwischen Position 1939 und 3736 eine 1798 bp große AT-reiche Sequenz mit einem G+C-Gehalt von 34,4 % enthält, während die restliche DNA-Sequenz einen G+C-Gehalt von 51,5 % aufweist.

Abb. 28: Graphische Darstellung der Klonierungsvektoren pMUT1-Tc und pMUT2-Kn.

Ein weiteres Ziel dieser Arbeit war die Herstellung einer plasmidfreien Variante des probiotischen \textit{E. coli} Stammes DSM 6601, die zum einen als Trägerorganismus für die entwickelten Klonierungsvektoren und zum anderen bei Untersuchungen zu einer möglichen Funktion der kryptischen Plasmide verwendet werden kann. Die plasmidfreie Variante \textit{E. coli} DSM 6601ΔpMUT1/2 wurde mit Hilfe der Suizidplasmide pMUT1-Tc-Sac und pMUT2-Kn-Sac hergestellt.

Da bei der Analyse der Basensequenzen und der abgeleiteten Aminosäuresequenzen der beiden Plasmide pMUT1 und pMUT2 des \textit{E. coli} Stammes DSM 6601 keine Erkenntnisse zu deren Funktion erlangt werden konnten, wurde überprüft, ob der Verlust der Plasmide einen Einfluss...

Inzwischen wurde festgestellt, dass der plasmidfreie Stamm DSM 6601ΔpMUT1/2 einen Defekt in der Polyketidsynthese aufweist. Dieser Defekt ist jedoch nicht auf die Plasmide zurückzuführen, sondern beruht auf einer Mutation im Chromosom dieses Stammes (S. Homburg, persönliche Mitteilung).

6.2 Etablierung von Nachweissystemen für den E. coli Stamm DSM 6601

Der Nachweis eines Bakterienstammes durch die Polymerase-Ketten-Reaktion (PCR) stellt eine zeitsparende Methode dar, die zudem eine große Sensitivität und Spezifität besitzt. Für den schnellen und spezifischen Nachweis des E. coli Stammes DSM 6601 wurden bereits fünf verschiedene PCR-Reaktionen etabliert, die auf den chromosomal kodierten Typ 1 (fim)- und F1C (foc)-Fimbriengenklustern (Primer Muta 1-4) sowie auf den beiden kryptischen Plasmiden pMUT1 und pMUT2 (Primer Muta 5-10) basieren. Die Spezifität dieser PCR-Reaktionen war bereits durch die Untersuchung verschiedener E. coli Stämme überprüft worden (Blum-Oehler et al., 2003). Da jedoch bei der Sequenzanalyse der Plasmide pMUT1 und pMUT2 signifikante Homologien zu Plasmiden aus enterohämorrhagischen E. coli- (EHEC), Citrobacter- und Plesiomonas Stämmen gefunden wurden, war ein Ziel dieser Arbeit, die Spezifität der verschiedenen PCR-Reaktionen durch die Untersuchung von weiteren Bakterienstämmen (Citrobacter- und Plesiomonas Stämme, E. coli K-12-Stämme, weitere E. coli Fäkal-Isolate, extraintestinale E. coli Stämme und intestinale E. coli Stämme) zu überprüfen (siehe Tab. 10 und 11).
Die erhaltenen Ergebnisse zeigen, dass die auf den chromosomal kodierten fimA- und focA-Genen basierenden Primerpaare für den spezifischen Nachweis des *E. coli* Stammes DSM 6601 nicht geeignet sind. Durch die Verwendung dieser Primerkombinationen kann der *E. coli* Stamm DSM 6601 nur eindeutig von *E. coli* K-12-Stämmen unterschieden werden, während eine Unterscheidung von den anderen getesteten *E. coli* Gruppen nicht möglich ist.

Im Gegensatz dazu weisen die auf den Plasmiden pMUT1 und pMUT2 basierenden Primerpaare eine große Spezifität auf. Es wurden zwar für drei extraintestinale *E. coli* Stämme sowie für einen *Citrobacter* Stamm und einen *Plesiomonas* Stamm mit einzelnen Primerpaaren positive PCR-Ergebnisse erhalten, jedoch waren nie alle drei plasmidspezifischen PCR-Reaktionen positiv. Auf Grund dieser Spezifität und der Tatsache, dass die Plasmide pMUT1 und pMUT2 sehr stabil in dem *E. coli* Stamm DSM 6601 beibehalten werden (Hawkey & Snelling, 1998), sind die auf den Plasmiden pMUT1 (Muta 5/6) und pMUT2 (Muta 7/8, 9/10) basierenden Primerkombinationen für die spezifische Detektion des *E. coli* Stammes DSM 6601 geeignet.

Für die PCR-Reaktionen wurden bisher einzelne Bakterienkolonien oder reine Bakterienkulturen verwendet, so dass eine Zwischenzüchtung der zu untersuchenden Bakterien erforderlich war. Die Kultivierung von Bakterien aus Stuhlproben kann jedoch ein Problem darstellen, wenn diese Proben wiederholt eingefroren und aufgetaut wurden oder für eine längere Zeit eingefroren waren (Caeiro et al., 1999). Daher sollte in der vorliegenden Arbeit ein auf den Plasmiden basierendes spezifisches PCR-Nachweissystem etabliert werden, mit dem der *E. coli* Stamm DSM 6601 direkt in Humanstuhl detektiert werden kann.

Es wurde ein Protokoll für die direkte Isolierung bakterieller DNA aus Stuhlproben etabliert, das auf der Bindung von DNA an Silikatmaterial in Gegenwart des chaotropen Agens Guanidin-thiocyanat beruht (Boom et al., 1990). Durch zusätzliche Optimierung der PCR-Bedingungen konnte so für die spezifischen Primerkombinationen Muta 5/6 und Muta 7/8 eine Nachweisgrenze von 10^4 Bakterien/0,1 g Stuhl und für das Primerpaar Muta 9/10 sogar eine Nachweisgrenze von 10^3 Bakterien/0,1 g Stuhl erreicht werden. Die Sensitivität dieser PCR-Reaktionen lässt sich wahrscheinlich darauf zurückführen, dass die verwendeten Primerpaare plasmidspezifisch sind und die Plasmide in höherer Kopienzahl in dem *E. coli* Stamm DSM 6601 vorliegen. Des Weiteren wurde die Spezifität und der diagnostische Nutzen dieses PCR-Nachweissystems durch Analysen von Patientenstuhlproben bestätigt.

Die durch dieses Nachweissystem erreichte Sensitivität der PCR-Reaktionen ist mit anderen beschriebenen Sensitivitäten von direkten PCR-Nachweissystemen aus Stuhlproben vergleichbar.
So liegt beispielsweise die Nachweisgrenze für enterotoxische *E. coli* Stämme bei 10^2 bis 10^3 Bakterien/1 g Stuhl (Caeiro et al., 1999), für Verotoxin 1 (Stx1)-produzierende *E. coli* bei 10^3-10^4 Bakterien/0,1 g Stuhl und für Verotoxin 2 (Stx2)-produzierende *E. coli* sogar nur bei 10^7 Bakterien/0,1 g Stuhl (Ramotar et al., 1995).

Darüber hinaus wurde festgestellt, dass die Nachweisgrenze des *E. coli* Stammes DSM 6601 nach der DNA-Isolierung ohne Stuhlzusatz um etwa eine 10-er Potenz niedriger liegt als nach der DNA-Isolierung aus Stuhlproben. Dies lässt sich vermutlich auf im Stuhl vorhandene PCR-Inhibitoren wie z. B. Bilirubin, Gallensalze oder Polysaccharide zurückführen (Ramotar et al., 1995; Monteiro et al., 1997), die mit der hier angewendeten Aufreinigungsmethode nicht vollständig eliminiert werden können.

Ein weiterer Schwerpunkt dieser Arbeit lag in der Entwicklung eines stabilen visuellen Nachweises für den probiotischen *E. coli* Stamm DSM 6601. Durch Insertion der für das grün fluoreszierende Protein (GFP) und für das rot fluoreszierende Protein (DsRed) kodierenden Gene in die Klonierungsvektoren pMUT1-Tc bzw. pMUT2-Kn konnten diese visuellen Marker ohne Antibiotika-Selektionsdruck *in vitro* stabil in dem *E. coli* Stamm DSM 6601 exprimiert werden. Dadurch wird die Detektion von einzelnen Kolonien, aber auch von einzelnen Bakterienzellen des *E. coli* Stammes DSM 6601 ermöglicht. Durch weiterführende Untersuchungen in der Arbeitsgruppe von Herrn Dr. Ölschläger konnte zudem die Stabilität des rekombinannten Plasmids pMUT2-Kn-Gfp *in vivo* nachgewiesen werden (persönliche Mitteilung).

In ersten *in vivo* Untersuchungen in einem Ferkelmodell konnte durch die Verwendung des rekombinannten GFP-exprimierenden *E. coli* Stammes DSM 6601ΔpMUT1/2(pMUT2-Kn-Gfp) gezeigt werden, dass der *E. coli* Stamm DSM 6601 im Darmlumen und in der Mukusschicht zu finden ist, jedoch konnte kein direkter Kontakt mit Epithelzellen beobachtet werden (A. Altenhöfer, persönliche Mitteilung). Durch von Schultz et al. (2005) durchgeführte

Da der Transfer von Plasmiden zwischen Enterobakterien meistens in der intestinalen Mukus- schicht erfolgt (Brunder & Karch, 2000), könnte durch die gleichzeitige Expression von GFP und DsRed in einer Bakterienzelle des *E. coli* Stammes DSM 6601 auch der mögliche Transfer der mobilisierbaren Plasmide pMUT1 und pMUT2 auf andere Darmbakterien in vivo untersucht werden.

Für den *E. coli* Stamm DSM 6601 stehen zwei verschiedene Klonierungsvektoren, pMUT1-Tc und pMUT2-Kn, sowie zwei unterschiedliche visuelle Marker, GFP und DsRed, zur Verfügung. Dadurch bietet sich die Möglichkeit, durch die gleichzeitige Expression eines fluoreszierenden Proteins und eines weiteren Proteins, z. B. eines Adhäsins, die Interaktionen von verschiedenen rekombinanten Stämmen mit anderen Bakterien oder mit intestinalen Epithelzellen zu untersuchen.

6.3 Verwendung des *E. coli* Stammes DSM 6601 als Modell für ein Lebendvakzin

Bisher werden zur aktiven Immunisierung häufig attenuierte pathogene Bakterien als Lebendvakzine eingesetzt (Ellis, 1999). Da attenuierte Bakterien jedoch immer noch virulente und invasive Eigenschaften besitzen, sollte der Einsatz solcher Vakzine bei immunsupprimierten Menschen und Kindern begrenzt werden (Nouaille *et al.*, 2003). Daher wird seit einigen Jahren zunehmend an der Entwicklung von Lebendimpfstoffen auf der Basis von kommensalen und
probiotischen Bakterien gearbeitet. In letzter Zeit wird auch die Möglichkeit untersucht, den probiotischen *E. coli* Stamm DSM 6601 als Trägerorganismus für die zielgerichtete Lieferung von therapeutischen Molekülen in den Darm einzusetzen (Westendorf *et al*., 2005).

Im Hinblick auf eine mögliche Verwendung des *E. coli* Stammes DSM 6601 als oral applizierbares Lebendvakzin war ein Ziel dieser Arbeit, verschiedene Adhäsine von enterohämorrhagischen *E. coli* (EHEC) und enterotoxischen *E. coli* (ETEC), die wichtige Virulenzfaktoren dieser Pathogene darstellen, in dem probiotischen *E. coli* Stamm DSM 6601 zu exprimieren. Durch die Expression von Adhäsinen könnte zum einen durch die Blockierung von Rezeptoren auf der Zelloberfläche die Adhärenz dieser Pathogene an Epithelzellen verhindert werden. Zum anderen könnte durch diese Antigene sowohl eine spezifische mukosale als auch eine systemische Immunantwort induziert werden, was zur Eliminierung der pathogenen Bakterien führen würde (Abb. 29).

Abb. 29: Modell zur Induktion von lokalen mukosalen und systemischen Immunantworten durch einen Antigen exprimierenden *E. coli* DSM 6601-Stamm (modifiziert nach Seegers, 2002).

Um zu untersuchen, ob durch den *E. coli* Stamm DSM 6601 als Träger von heterologen Antigenen eine spezifische Immunantwort induziert werden kann, wurden die K88ab- und K99-Fimbrien von tierpathogenen enterotoxischen *E. coli* und das Adhäsin Intimin von enterohämorrhagischen *E. coli* als Modellantigene ausgewählt, von denen gezeigt wurde, dass sie eine immunogene Wirkung besitzen (Morona *et al*., 1994; Ascón *et al*., 1998; Li *et al*., 2000).

Das für Intimin kodierende *eaeA*-Gen wurde in beide zur Verfügung stehenden Klonierungsvektoren pMUT1-Tc und pMUT2-Kn integriert und die Expression in dem *E. coli* Stamm DSM 6601 durch eine “Western Blot”-Analyse bestätigt.

Im Tiermodell wurde getestet, ob durch die von dem *E. coli* Stamm DSM 6601 exprimierten Antigene Intimin, K88ab- und K99-Fimbrien eine spezifische Immunantwort induziert wird. Jedoch konnte keine Immunantwort in Form einer spezifischen IgG-Produktion nachgewiesen werden, was verschiedene Ursachen haben kann.

In weiterführenden Experimenten mit zwei Immunisierungsphasen und durch Verwendung von einer sensitiveren Nachweismethode wie dem ELISA (“enzyme-linked immunosorbent assay”)
sollte daher das immunogene Potential dieser rekombinannten *E. coli* Stämme nochmals getestet werden. Hierfür sollte ein Tiermodell verwendet werden, in dem eine effiziente Besiedlung des Darms durch die rekombinannten Bakterienstämme erreicht werden kann.

Kürzlich wurde beschrieben, dass intestinale rekombinante *E. coli* DSM 6601-Stämme keinen Einfluss auf die Migration, die klonale Expansion und den Aktivierungsstatus von spezifischen CD4\(^{+}\) T-Zellen *in vivo* ausüben (Westendorf et al., 2005). Auf Grund dieser Tatsache besteht die Möglichkeit, dass die nicht nachweisbare spezifische Immunantwort gegen Intimin, K88ab- und K99-Fimbrien darauf zurückzuführen ist, dass durch die rekombinannten *E. coli* DSM 6601-Stämme tatsächlich keine Immunantwort induziert wurde. Diese Ergebnisse deuten darauf hin, dass der probiotische *E. coli* Stamm DSM 6601 sich möglicherweise nicht für die Verwendung als aktives Lebendvakzin eignet.

Dieser Stamm könnte jedoch auf Grund seiner Kolonisierungseigenschaften als Lebendvektor für die zielgerichtete Lieferung von therapeutischen Molekülen verwendet werden. Die in dieser Arbeit etablierten stabilen Klonierungsvektoren könnten hierbei für die Expression dieser Moleküle eingesetzt werden. Durch einen rekombinannten *E. coli* DSM 6601-Stamm wurde bereits ein antivirales Peptid sekretiert, durch das die Fusion von HI-Viren und das Eindringen in Zielzellen blockiert werden kann (Rao et al., 2005).

6.4 Inhibitorische Wirkungen des *E. coli* Stammes DSM 6601

In verschiedenen *in vitro* Studien konnte bereits gezeigt werden, dass der probiotische *E. coli* Stamm DSM 6601 sowohl die Adhärenz von adhärent-invasiven *E. coli* Stämmen an Epithelzellen als auch die Invasion von verschiedenen invasiven Bakterien in Epithelzellen inhibieren kann (Altenhoefer *et al.*, 2004; Boudeau *et al.*, 2003). Jedoch ist bisher nicht bekannt, welcher Wirkungsmechanismus diesem inhibitorischen Effekt zu Grunde liegt.

Eine mögliche Wirkungsweise könnte darin bestehen, dass der *E. coli* Stamm DSM 6601 Adhäsionsstellen von pathogenen Erregern auf Epithelzellen blockiert und dadurch die Adhärenz dieser Organismen verhindert. Daher war ein Ziel dieser Arbeit, zu untersuchen, ob eine durch Typ 1- und F1C-Fimbrien vermittelte Adhärenz an Epithelzellen einen Einfluss auf den inhibitorischen Effekt des *E. coli* Stammes DSM 6601 hat.

Verschiedene hergestellte Typ 1- und F1C-Fimbriendeletionsmutanten des Stammes DSM 6601 zeigten weder bei der Adhärenz an Epithelzellen noch bei dem inhibitorischen Effekt auf die Invasivität von Salmonellen einen Unterschied im Vergleich zum Wildtyp. Jedoch wurde festgestellt, dass Typ 1-Fimbrien unter den für diese Versuche verwendeten Anzuchtbedingungen in Zellkulturmedium nicht exprimiert werden. Aus diesen Ergebnissen kann dennoch gefolgt werden, dass die Adhärenz an Epithelzellen nicht durch F1C-Fimbrienadhäsine vermittelt wird und dass Typ 1- und F1C-Fimbrien keine Bedeutung für den inhibitorischen Effekt dieses Stammes *in vitro* haben.

Inhibitorische Wirkungen auf die Invasivität von Salmonellen *in vitro* sind auch für *Lactobacillus acidophilus* Stamm LA1 und *Lactobacillus casei* Stamm GG beschrieben. Für diese Stämme konnte im Gegensatz zu *E. coli* DSM 6601 gezeigt werden, dass eine antimikrobielle Substanz

Vor kurzem wurde ein 6 kb großes DNA-Fragment in dem *E. coli* Stamm DSM 6601 identifiziert, das die genetische Basis für den antiinvasiven Effekt darstellen könnte. Durch Klonierung dieses Fragments in den *E. coli* K-12-Stamm MG1655 konnte diesem Stamm eine antiinvasive Aktivität vermittelt werden. Zur Zeit wird an der näheren Charakterisierung dieses DNA-Fragments gearbeitet (A. Altenhöfer, persönliche Mitteilung).

Es wird angenommen, dass die schützende Wirkung des *E. coli* Stammes DSM 6601 vor Infektionen mit *Listeria monocytogenes* und *Candida albicans* in keimfrei aufgezogenen Mäusen durch immunstimulierende Eigenschaften dieses Stammes hervorgerufen wird (Hockertz, 1997). Da in konventionellen Mäusen durch die etablierte Darmflora das Darmimmunsystem vollständig entwickelt ist, könnte eine weitere Erklärung für die nicht erreichte protektive Wirkung sein, dass dadurch die immunstimulierenden Eigenschaften des *E. coli* Stammes bei der Abwehr von pathogenen Mikroorganismen keine Rolle mehr spielen.

Bei von Hudault et al. (2001) durchgeführten Schutzexperimenten mit anderen *E. coli* Stämmen wurde ein ähnliches Ergebnis wie mit *E. coli* DSM 6601 erhalten. Durch die Etablierung des *E. coli* Stammes EM0 (Fäkal-Isolat) und sogar des *E. coli* K-12-Stammes JM105 im Darm von keimfreien Mäusen wurde ein Schutz vor einer Infektion mit Salmonellen erreicht, jedoch nicht in konventionellen Mäusen. Auch eine reduzierte Belastung der Fäzes mit *Salmonella* konnte in konventionellen Mäusen nicht festgestellt werden.

Im Gegensatz zu den *E. coli* Stämmen wurde durch *Lactobacillus acidophilus* Stamm LA1 (Bernet-Camard et al., 1997) und *Lactobacillus casei* Stamm GG (Hudault et al., 1997) ein Schutz in konventionellen Mäusen vor einer Infektion durch Salmonellen erreicht. Die Belastung der Fäzes mit *Salmonella* war dabei signifikant reduziert, was auf die Produktion von antimikrobiellen Substanzen zurückgeführt wird.

In zukünftigen Experimenten sollte in geeigneten Tiermodellen untersucht werden, ob die antagonistische Wirkung des *E. coli* Stammes DSM 6601 durch eine effiziente Besiedlung des Darms aktiviert und somit ein Schutz vor einer Salmonellen-Infektion erreicht werden kann. Bisher durchgeführte Untersuchungen in der Arbeitsgruppe von Dr. Ölschläger haben gezeigt, dass der *E. coli* Stamm DSM 6601 den Darm Streptomycin-behandelter Mäuse, bei denen durch die Antibiotika-Behandlung die normale Darmflora stark reduziert ist, effizient kolonisiert. Bei
täglicher Applikation eines Streptomycin-resistenten Derivates des *E. coli* Stammes DSM 6601 konnte dieser Stamm täglich und in 100-fach höherer Konzentration in den Fäzes dieser Tiere nachgewiesen werden im Vergleich zu Streptomycin-unbehandelten Mäusen (persönliche Mitteilung). Streptomycin-behandelte Mäuse könnten sich daher für solche Schutzexperimente eignen.

6.5 Ausblick

Die in dieser Arbeit hergestellten Klonierungsvektoren bieten erstmals die Möglichkeit, heterologe Proteine stabil in dem probiotischen *E. coli* Stamm DSM 6601 zu exprimieren, ohne dass ein Selektionsdruck durch Antibiotika notwendig ist. Dadurch wurde die Basis für den Einsatz dieses Stammes als Lebendvektor geschaffen. In weiterführenden Experimenten sollte nun geklärt werden, ob dieser *E. coli* Stamm zur aktiven Immunisierung verwendet werden kann oder sich eher für die zielgerichtete Lieferung von therapeutischen Molekülen in den Darm eignet. Hierfür sollte das immunogene Potential der Antigen exprimierenden rekombinanten *E. coli* DSM 6601-Stämme in einem geeigneten Tiermodell wie z. B. Streptomycin-behandelten Mäusen nochmals getestet werden.

Durch die Etablierung von spezifischen Nachweisystemen, sowohl auf molekularbiologischer als auch auf visueller Ebene, kann der *E. coli* Stamm DSM 6601 bei *in vitro* und *in vivo* Untersuchungen nun eindeutig und schnell identifiziert werden. Vor allem die stabile Expression von fluoreszierenden Proteinen bietet die Möglichkeit, diesen Stamm bei *in vivo* Experimenten zu detektieren. Dadurch könnten neue Erkenntnisse über die Kolonisierungseigenschaften sowie Interaktionen des *E. coli* Stammes DSM 6601 mit anderen endogenen Mikroorganismen und Zellen des Darmimmunsystems erlangt werden, was zur Aufklärung der Wirkungsmechanismen dieses Stammes beitragen könnte.

8 Anhang

8.1 Restriktionskarten der in dieser Arbeit konstruierten Plasmide

pMUT1: Restriktionskarte des Plasmids pMUT1; mit Ausnahme der EcoRV- und HindIII-Schnittstellen sind nur singuläre Restriktionsschnittstellen angegeben, die außerhalb von ORFs und funktionellen Regionen liegen.

pMUT1-Tc: 1449 bp Fragment (*tetA*-Resistenzkassette) aus pKS-*tetA* mit HindIII/XbaI ausgeschnitten und in NdeI-Schnittstelle von pMUT1 ligiert ("blunt end"-Ligation).

pMUT1
3173 bp

pMUT1-Tc
4624 bp
pMUT1-Tc-Sac: 2612 bp Fragment (*sacB*-Gen) aus pCVD442 mit *PstI* ausgeschnitten und in *EcoRI*-Schnittstelle von pMUT1-Tc ligiert (“blunt end”-Ligation).

pMUT1-Tc-Gfp: 1050 bp Fragment (*gfp*-Gen) aus pGFPmut3.1 mit *SapI/SpeI* ausgeschnitten und in *EcoRI*-Schnittstelle von pMUT1-Tc ligiert (“blunt end”-Ligation).

![Diagram of pMUT1-Tc-Red](image1)

pMUT1-Tc-Eae: 2886 bp Fragment (*eaeA*-Gen aus *E. coli* O157:H7 Stamm 86-24) aus pOSEae1 mit *Bam*HI/*Kpn*I ausgeschnitten und in *Eco*RI-Schnittstelle von pMUT1-Tc ligiert ("blunt end"-Ligation).

![Diagram of pMUT1-Tc-Eae](image2)
pMUT2: Restriktionskarte des Plasmids pMUT2; mit Ausnahme der EcoRI- und SphI-Schnittstellen sind nur singuläre Restriktionsschnittstellen angegeben, die außerhalb von ORFs und funktionellen Regionen liegen.

pMUT2-Kn: 1340 bp Fragment (kn-Resistenzkassette) aus pACYC177 mit StuI ausgeschnitten und in BglII-Schnittstelle von pMUT2 ligiert ("blunt end"-Ligation).
pMUT2-Kn-Sac: 2612 bp Fragment (sacB-Gen) aus pCVD442 mit PstI ausgeschnitten und in EcoRI-Schnittstelle von pMUT2-Kn ligiert ("blunt end"-Ligation).

pMUT2-Kn-Gfp: 1050 bp Fragment (gfp-Gen) aus pGFPmut3.1 mit SapI/SpeI ausgeschnitten und in EcoRI-Schnittstelle von pMUT2-Kn ligiert ("blunt end"-Ligation).

![Diagram of pMUT2-Kn-Red](image)

pMUT2-Kn-K88: Ca. 6700 bp Fragment (*K88ab*-Genkluster aus *E. coli* Stamm G7) aus pFM205 mit *Sau3AI* ausgeschnitten und in *EcoRI*-Schnittstelle von pMUT2-Kn ligiert ("blunt end"-Ligation).

![Diagram of pMUT2-Kn-K88](image)
pMUT2-Kn-K99: Ca. 6698 bp Fragment (K99-Genkluster aus *E. coli* B41) aus pFK99 mit *BamHI* ausgeschnitten und in *EcoRI*-Schnittstelle von pMUT2-Kn ligiert ("blunt end"-Ligation).

![Diagram of pMUT2-Kn-K99](image1)

![Diagram of pMUT2-Kn-Eae](image2)
pACYC184-F1C: 9139 bp Fragment (foc-Genkluster aus *E. coli* DSM 6601) aus Cosmid pCos3YE4 mit EcoRV ausgeschnitten und in EcoRV-Schnittstelle von pACYC184 ligiert.

![Diagram of pACYC184-F1C](image)

pGEM-Typ1: 11290 bp PCR-Fragment (Primer Fim 3/4, fim-Genkluster aus *E. coli* DSM 6601) in pGEM®-T Easy ligiert.

![Diagram of pGEM-Typ1](image)
8.2 Sequenzen

Sequenz des Plasmids pMUT1 (3173 bp)

Die für die Ermittlung der DNA-Sequenz und den spezifischen Nachweis des Plasmids pMUT1 verwendeten Primer sind eingezeichnet. Die dazugehörigen Nukleotide sind in Großbuchstaben und Fettdruck hervorgehoben.

1. `agctttttaga gcttggatac catgacccaa tgaagctacc tcaaaacttt gaatgatcga`
2. `TGGCCGTTGC CAGTGACGtt aagtctggtgc ttacccggtg ggtactcaaga cgatagttac`
3. `AAACGACCTTACT` *Micro 1*
4. `CAGTGGCAAGTGGC` *Mutrev 1*
5. `CAGTGGC` *Micuni 1*
6. `AAGCTTTAGA AAGCCCTGTTTTTT` *ATCTTTTAGCTGCTGC TTA*
7. `ATCTTTTAGCTGCTGC TTA`
8. `TTCTGCTGCCA CTGACTGATG ATCGG` *Micrev 4*
9. `CTGACTGATG ATCGG` *Mutuni 2*
10. `GCTGACTGATG ATCGG` *Micrev 5*
11. `CTGACTGATG ATCGG` *Micrev 6*

Hinrev 2

Mutuni 2

Hinrev 1

Hincrev 2

Micrev 3

Mutuni 3

Micrev 1

Mutuni 1
Fortsetzung Sequenz Plasmid pMUT1

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161</td>
<td>2281</td>
<td>ttgatatcag gtagtcaact agctttgtta gatcataaat attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micrev 3‡</td>
</tr>
<tr>
<td>2282</td>
<td>2401</td>
<td>gatcataaat attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutuni 3</td>
</tr>
<tr>
<td>2402</td>
<td>2521</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muta 6 ✓</td>
</tr>
<tr>
<td>2522</td>
<td>2641</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micrev 2‡</td>
</tr>
<tr>
<td>2642</td>
<td>2761</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muta 9 ✓</td>
</tr>
<tr>
<td>2762</td>
<td>2881</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutuni 9</td>
</tr>
<tr>
<td>2882</td>
<td>3001</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muta 10 §</td>
</tr>
<tr>
<td>3002</td>
<td>3121</td>
<td>attgagggctgctGGACCA CCATATCGGC</td>
</tr>
</tbody>
</table>

Die für den spezifischen Nachweis des Plasmids pMUT2 verwendeten Primer sind eingezeichnet. Die dazugehörigen Nukleotide sind in Großbuchstaben und Fettdruck hervorgehoben.

Sequenz des Plasmids pMUT2 (5520 bp)

Die für den spezifischen Nachweis des Plasmids pMUT2 verwendeten Primer sind eingezeichnet. Die dazugehörigen Nukleotide sind in Großbuchstaben und Fettdruck hervorgehoben.
Fortsetzung Sequenz Plasmid pMUT2

1321 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1381 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1441 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1501 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1561 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1621 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1681 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1741 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1801 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1861 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1921 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
1981 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2041 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2101 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2161 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2221 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2281 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2341 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2401 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2461 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2521 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2581 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2641 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2701 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2761 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2821 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2881 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
2941 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3001 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3061 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3121 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3181 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3241 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3301 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3361 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3421 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3481 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3541 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3601 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3661 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3721 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3781 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3841 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3901 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
3961 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4021 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4081 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4141 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4201 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4261 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4321 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4381 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4441 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4501 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4561 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4621 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4681 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4741 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
4801 cgcgctgag atcagggccc agaaggttaa ctaccgccca ccggcaccac
Fortsetzung Sequenz Plasmid pMUT2

<table>
<thead>
<tr>
<th>Muta 8</th>
<th>4861</th>
<th>agatacactt</th>
<th>gtcactacat</th>
<th>caagag</th>
<th>GTGA</th>
<th>GATGATGGCC</th>
<th>ACGATT</th>
<th>ttaata</th>
<th>ttggagatcga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4921</td>
<td>tgacgagctg</td>
<td>aaagcgcctg</td>
<td>ctttatgcgcctg</td>
<td>actgggaaag</td>
<td>ctgggcgttaa</td>
<td>gcgcgtcgcga</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4981</td>
<td>ggttctgcgc</td>
<td>caaacaacttg</td>
<td>aatattgtgcc</td>
<td>ccaaacgcgga</td>
<td>ggttggcgcgg</td>
<td>tccagcaggt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5041</td>
<td>ttgtctgacc</td>
<td>gaggatgtagc</td>
<td>cggaatttgtgtgang</td>
<td>gcggatactgtt</td>
<td>cggtggatcgc</td>
<td>tgggaaaccctg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5101</td>
<td>acaggggccc</td>
<td>gtataaagtgc</td>
<td>cacttgatagtg</td>
<td>gctataacctt</td>
<td>gaatttggagtct</td>
<td>gccgagcccg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5161</td>
<td>tgaaggaatg</td>
<td>gcggcaagctc</td>
<td>ggggatgtgtagtg</td>
<td>tcggctctgca</td>
<td>gttcagaagaa</td>
<td>aaactcgcagc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5221</td>
<td>aggtttcatac</td>
<td>aacccccgcgga</td>
<td>atcgatataa</td>
<td>atcgccctgcagaagctc</td>
<td>gctactgtaca</td>
<td>gactgctaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5281</td>
<td>aatcaagctgc</td>
<td>cggtgcCATCC</td>
<td>GGTATCGCT</td>
<td>TGGTCTatatcg</td>
<td>gttgccgcga</td>
<td>caaaccatta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muta 7</td>
<td>5341</td>
<td>cggtatttcgtt</td>
<td>ggtaagccgctgg</td>
<td>taagctctagcttgaagctg</td>
<td>agcggggtcgtaa</td>
<td>cggtgactattgactactgcatgactgctaca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5401</td>
<td>aacgctttata</td>
<td>aacctcatgcgc</td>
<td>gttgacgccgga</td>
<td>gataaccgcgga</td>
<td>gttcgtccgcat</td>
<td>gttgctcatatactgctaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5461</td>
<td>tgctcaagcgc</td>
<td>gcgcactgttctg</td>
<td>ttgatgcagctc</td>
<td>tctttagacgactgctctactgactcagctcagctcagc</td>
<td>ctcgggcagagcctcagctcagc</td>
<td>cctgcagcagcctgcagcagcctcagctcagc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3 Abkürzungen

A | Ampere
Abb. | Abbildung
Ap/Ap^R | Ampicillin/Ampicillin-Resistenz
APS | Ammoniumperoxidsulfat
AS | Aminosäure
bp | Basenpaar
bzw. | beziehungsweise
°C | Grad Celsius
c | centi (10⁻²)
ca. | zirka
cat | Chloramphenicol-Acetyltransferase (Gen)
Cm/Cm^R | Chloramphenicol/Chloramphenicol-Resistenz
d | Tag
Da | Dalton
dATP | Desoxyadenosin-5'-Triphosphat
dCTP | Desoxyctosin-5'-Triphosphat
ddNTP | Didesoxynukleosid-5'-Triphosphat
dGTP | Desoxyguanosin-5'-Triphosphat
DMSO | Dimethylsulfoxid
DNA | Desoxyribonukleinsäure
dNTP | Desoxynukleosid-5'-Triphosphat
DsRed | rot fluoreszierendes Protein
dTTP | Desoxythymidin-5'-Triphosphat
E. | *Escherichia*
EAEC | enteroaggregative *E. coli*
EBSS | “Earle's balanced salt solution”
EDTA Ethylenediamintetraacetat
EHEC enterohämorrhagische E. coli
EIEC enteroinvasive E. coli
EPEC enteropathogene E. coli
et al. et alii (und andere)
EtBr Ethidiumbromid
ETEC enterotoxische E. coli
EtOH Ethanol
FAE Follikel-assoziiertes Epithel
FCS fötales Kälberserum
FRT FLP-Erkennungssequenz
g Gramm
GEI Genomische Insel
GFP grün fluoreszierendes Protein
h Stunde
H$_2$O$_{bidest.}$ zweifach destilliertes Wasser
H$_2$O$_{dest.}$ destilliertes Wasser
IgA, IgG, IgM Immunglobulin A, G, M
IL Interleukin
IMIB Institut für Molekulare Infektionsbiologie
IPTG Isopropyl-β-D-Thiogalactosid
k kilo (10^3)
k b Kilobasen
KBE koloniebildende Einheiten
Kn/KnR Kanamycin/Kanamycin-Resistenz
l Liter
LB Luria Bertani
LGT-Agarose “low-melting”-Agarose
LPS Lipopolysaccharid
m Meter; milli (10^{-3})
µ mikro (10^{-6})
M molar
MALT “mucosa-associated lymphoid tissue”
MENEC meningitisauslösende E. coli
min Minute
n nano (10^{-9}); Anzahl
Nal/NalR Nalidixin/Nalidixin-Resistenz
NBM Neugeborenenmeningitis
OD... optische Dichte bei ... nm
ORF offener Leserahmen (“open reading frame”)
piko (10^{-12})
Polyacrylamid-Gelelektrophorese
Pathogenitätsinsel
“pathogen associated molecular patterns”
Phosphat gepufferte Saline
“polymerase chain reaction”
Pulsfeld-Gelelektrophorese
Poly-Immunglobulin-Rezeptor
Rifampicin/Rifampicin-Resistenz
Ribonukleinsäure
Ribonuklease
ribosomale RNA
Raumtemperatur
Sekunde
Sodiumdodecylsulfat
sepsisauslösende E. coli
Streptomycin/Streptomycin-Resistenz
Spezies
Standard-Saline-Citrat
Shiga-Toxin
Tabelle
Tris-Acetat-EDTA
Tris-Borat-EDTA
Tris gepufferte Saline
Tetrazyklin/Tetrazyklin-Resistenz
N,N,N',N''-Tetramethyldiamin
Tris-Phosphat-EDTA
Tris-(hydroxymethyl)-aminomethan
Übernacht/Übernachtkultur
uropathogene E. coli
Urogenitaltrakinfektion
ultraviolette Licht
Volt
Volumen pro Volumen
Gewicht pro Volumen
Wildtyp
fache Erdbeschleunigung
5-Brom-4-Chlor-3-Indolyl-β-D-Galactosid
zum Beispiel
8.4 Publikationen

8.4.1 Originalarbeiten

1. Donohue-Rolfe, A., Kondova, I., Oswald, S., Hutto, D. and Tzipori, S. (2000) *Escherichia coli* O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis. 181: 1825-1829.

* Diese Autoren sind gleichberechtigt

8.4.2 Tagungsbeiträge

Die Kurzfassungen sind in den jeweiligen Tagungsbänden abgedruckt.

8.4.3 Patent

Patentnummer: 103 28 669
Patentbezeichnung: Plasmidfreier Klon des *E. coli* Stammes DSM 6601
IPC: C12N 1/00
Patentinhaber: Pharma-Zentrale GmbH, Herdecke
Erfinder: Hacker, J., Oelschlaeger, T., Oswald, S., Sonnenborn, U., Proppert, H.
8.5 Lebenslauf

Name: Sibylle Irmgard Oswald
Geburtsdatum: 10.08.1971
Geburtsort: Würzburg

Ausbildung:
1977 - 1981 Grundschule in Würzburg
1981 - 1990 Riemenschneider-Gymnasium in Würzburg
1990 Allgemeine Hochschulreife

1991 - 1997 Studium der Biologie an der Bayerischen Julius-Maximilians-Universität Würzburg

1994 Diplomvorprüfung im wissenschaftlichen Studiengang Biologie in den Fächern Botanik, Zoologie, Anorganische Chemie und Mathematik
1996 Diplomprüfung in den Fächern Mikrobiologie, Zoologie (mit Schwerpunkt Zell- und Entwicklungsbiologie) und Humangenetik

1996 - 1997 Experimentelle Diplomarbeit am Institut für Molekulare Infektionsbiologie der Bayerischen Julius-Maximilians-Universität Würzburg in der Abteilung von Prof. Dr. J. Hacker unter der Anleitung von Dr. I. Mühldorfer (Titel: “Einführung von Virulenz-assoziierten Antigenen in den Escherichia coli-Carrier-Stamm DSM 6601”)

1997 - 1998 Forschungsaufenthalt an der TUFITS University School of Veterinary Medicine, North Grafton, Massachusetts, USA, bei Prof. Dr. A. Donohue-Rolfe

seit Juni 1998 Dissertation am Institut für Molekulare Infektionsbiologie der Bayerischen Julius-Maximilians-Universität Würzburg

Beginn der experimentellen Arbeit zur vorliegenden Dissertation unter Anleitung von Prof. Dr. J. Hacker