














position is not as reproducible compared to end-
expiratory phases (see respiration curve in Fig. 1). This
leads to increased motion artifacts, noise and under-
sampling artifacts due to less accepted data within the gat-
ing process [29, 30]. As a result, random intestinal peristal-
tic and heart motion which cannot be gated are also more
pronounced due to the reduced averaging effect [31, 32].
These factors influence sharpness and CV evaluation as il-
lustrated in Figs. 1, 4 and 5. Median inspiration sharpness

is lower in all comparisons than the corresponding expir-
ation sharpness (Fig. 4). Moreover, median target sharp-
ness can even be improved by registration in case of
inspiration. The sharpness of structures strongly depends
on the proximity to the diaphragm. Consequently, tumor
sharpness is much higher compared to diaphragm sharp-
ness in this study because most of the tumors are located
further away. Statistically significant differences could be
found in most of the comparisons (Table 1).

Fig. 7 Exemplary transversal slices of the registered and target image sets for each patient containing a lesion (arrows). Expiration and inspiration
images are displayed for comparison. The arrows illustrate the inferior image quality of the target image sets
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The qualitative rating results of the patient measure-
ments confirm the findings discussed above (Fig. 6). Ex-
piration target images are rated better in all categories
compared to inspiration. Targets were rated lower than
both registration schemes. The dir-Reg scheme got the
best noise and overall image quality scores. Structure
scores of dir-Reg and nn-Reg were almost the same for
expiration but dir-Reg scored higher in inspiration. Dir-
Reg inspiration scores are even better than the corre-
sponding expiration scores. This may be explained by
the simultaneous reading used in this work. The poor
image quality of the inspiration target image could influ-
ence the perception of the benefit in image quality.
Buerger et al. used a golden-radial phase encoding ac-

quisition with respiratory self-gating to reconstruct a
high-quality reference image and various higher under-
sampled phase-resolved images [33]. Non-rigid registra-
tions are subsequently applied between the reference and
all other under-sampled phases, leading to high-quality
4D images. In contrast to this work, our focus was to im-
prove the image quality of end-expiration and end-
inspiration phases. All the acquired data is used for image
quality enhancement of these two phases respectively.
However, the proposed method by Buerger et al. could
additionally be applied to exploit the same acquired data.
Four-dimensional imaging is essential in target volume

and organ at risk delineation in radiotherapy treatment
planning for moving targets. The total extent of tumor
motion between expiration and inspiration is required in
some treatment planning concepts [1, 2]. The proposed
method could be used to assist in the delineation
process in this context. However, average 4D MRI re-
construction and registration times are too long because
MRI data sets should be available on the same day as 4D
CT to assist in the delineation process. 4D MRI recon-
struction and registration times are varying due to indi-
vidual breathing leading to various under-sampling
patterns responsible for parallel imaging performance,
initial image quality and different volume sizes used in
the registration process.
Almost the whole volume in cranio-caudal and

anterior-posterior direction was used for quantitative
and qualitative evaluation in this work. Focusing on the
lesions will decrease the volume and hence registration
time. The increasing use of image registration in differ-
ent applications in the context of MR guided radiother-
apy [33–36], registration algorithms capable of parallel
computing [37] and the use of different parallel imaging
reconstructions will lead to further time reductions [38].
The physician should decide if registration in case of ex-
piration is necessary or not and if nn-Reg should be pre-
ferred because of shorter reconstruction times if image
quality is supposed to be not significantly lower com-
pared to dir-Reg Another requirement would be the

same patient positioning in the CT and the MR to avoid
inaccuracies in image fusion. Therefore, a wide-bore
scanner would be preferable because it would allow for a
comparison to 4D-CT for more patients. However, the
method described in this paper does not depend on the
scanner type though because the acquisition sequence
can be implemented on every MRI scanner. Additionally,
gradient nonlinearity has definitely to be corrected for
reliable and accurate delineation.

Conclusion
In this work, end-expiratory and inspiratory phases of a
retrospective respiratory self-gated 4D MRI data set of
volunteers and patients were used as targets for non-
rigid image registration. All other phases of the 4D MRI
were registered onto these targets using two different
registration schemes. It was shown that image quality of
the target images can be significantly increased while
motion artifact reduction is preserved allowing for im-
proved lesion detection.
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