GROWTH OF THE NUCLEAR ENVELOPE IN THE VEGETATIVE PHASE OF THE GREEN ALGA ACETABULARIA

Evidence for Assembly from Membrane Components

Synthesized in the Cytoplasm

WERNER W. FRANKE, HERBERT SPRING, ULRICH SCHEER, and HEIDE ZERBAN.
From the Division of Membrane Biology and Biochemistry, Institute of Experimental Pathology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany, and the Institute of Plant Physiology and Cell Biology, Free University of Berlin, D-1000 West Berlin

In current cytology, the mechanisms of the formation of the various biomembranes in eukaryotic cells are subject to quite controversial hypotheses (1, 5, 11, 16, 17, 23–26, 30, 31, 33). For example, there is a continuing debate on questions such as: (a) whether constitutive membrane proteins are synthesized on free or membrane-bound polyribosomes or on both; (b) whether the proteins and lipids of membranes of the "rough" category including rough endoplasmic reticulum (rER), nuclear envelope (NE), and annulate lamellae (AL) are originally made and assembled in situ, i.e. at the specific membrane, or whether they are made elsewhere and incorporated into these membranes in a secondary step (see references above); (c) whether membranes grow by the integration of preformed membrane units as cisternae and vesicles (vesicular "membrane flow"), or of "free" individual molecules or morphologically ill-definable micelles; and (d) whether there exists a general mode of membrane biosynthesis and assembly at all.

In most cell types the nuclear envelope does not show considerable growth rates and special growth phenomena. It is very similar to the rER in most membrane properties such as morphology (e.g., thickness, polyribosome association at least in parts, formation of smooth-surfaced and coated vesicles), biochemical composition, and kinetics of labeling of its components (6–8, 12, 19–21). In some cell stages, however, there is an extensive nuclear envelope growth, particularly in cells characterized by the formation of giant nuclei such as during oogenesis of a great many animals, in the course of chromosome polytenizations, during micro- and macrospore formations in many plant organisms, and in the postgerminal vegetative growth phase of some dasycladacean green algae (14, 15, 36). Among such cell systems, the formation of the primary nucleus in the green alga genus Acetabularia provides a particularly interesting and unique demonstration of nuclear envelope growth by the incorporation of components which are synthesized in the cytoplasm and can reach the nuclear membranes only by flow processes.

MATERIALS AND METHODS

Algae (Acetabularia mediterranea and Acetabularia [Polyphysa] cliftonii) of various sizes, from the germinating zygote up to fully mature cells (ca. 4 cm large) at the beginning of cap formation, were fixed and processed for electron microscopy and morphometric evaluation as described earlier (9, 10, 32, 34). Freeze-cleavage preparations were performed as previously described (18, 37, 38). For calculations of total nuclear membrane area and mass, the following parameters were determined: (a) the nuclear diameter (by phase-contrast light microscopy); (b) the "redundancy" (cf. reference 2), this is the increase of nuclear surface by the formation of evaginations, which occur especially in the very late stage of nuclear maturation (9), relative to the surface of the spherical central part of the nucleus (by membrane profile tracing in electron micrographs); (c) the mean nuclear membrane thickness which was consistently 6.0 nm ± 0.3 nm in all stages examined in ultrathin sections; (d) the nuclear pore frequency, i.e. number of pores per square micrometer, and the total number of pore complexes per nucleus (by electron microscopy of thin sections, freeze-cleave preparations, and whole mount preparations of isolated nuclear envelopes; with these nuclei, as with other giant nuclei such as in oocytes, almost identical values are found by the different preparation methods; cf. 8, 12, 18, 32, 37, 38); (e) the slight difference in membrane area between pore walls and the corresponding two inner areas (dimensions taken from electron micrographs: 64 nm mean inner pore diameter, 25 nm mean nuclear envelope width from cytoplasmic to nucleoplasmic surface). Membrane profile lengths were determined by projecting micrograph plates with a photographic enlarger onto tracing paper, tracing and drawing the
contours of the classified membranes under controlled magnification, and measuring the individual membrane profiles with a map measurer. Inner pore diameters (for definition, see references 8, 12, 18, 21) of the nuclear pore complexes and in the paranuclear cisterna of the labyrinthum were determined in both tangential sections and in tangential freeze-fractures (see also reference 38).

RESULTS AND DISCUSSION

Upon germination, the nucleus of the zygote of Acetabularia increases dramatically from 3.5 to 5 μm to a maximum diameter of 100 μm, in some cases even 150 μm. From a certain early germling stage onward (with about 10 μm nuclear diameter), a special membrane complex is continuously present in the form of a paranuclear cisternal system that obviously is derived from—and is at many sites continuous with—the large vacuolar cavity system of the rhizoid, the “lacunar labyrinthum” (LL) (3, 4, 9, 35). This perinuclear cisternal system which completely enshakes the nucleus in a conspicuous parallelism (90–100 nm mean distance from the nuclear envelope surface, Fig. 1) and, so to say, constitutes a secondary nuclear envelope, has recently been described in detail, together with a variety of associated structures (9). In the context of the present note, it is worth emphasizing the following observations. (a) The nuclear envelope is not continuous with any part of the RER. (b) The outer nuclear membrane is not...
associated with polyribosomes, nor are ribosomes recognized in the "intermediate zone" between the nuclear envelope and the innermost cisterna of the LL (Figs. 2 and 3). (c) Other distinct cytoplasmic structures and organelles such as mitochondria, plastids, dictyosomes, large vesicles, ER, and the characteristic "perinuclear bodies" of this stage (see above-quoted references) are also excluded.

Figure 2 a-d Details of the nuclear periphery and the juxanuclear region of *Acetabularia mediterranea* as revealed in electron micrographs of transverse ultrathin sections. Note the exclusion of cytoplasmic organelles and constituents such as plastids (P), mitochondria (M), dictyosomes (D), vesicles (V), endoplasmic reticulum cisternae, perinuclear bodies (PB), and polyribosomes (e.g., at the pair of arrows in Fig. 2 c) from the intermediate zone (IZ) which is sandwiched between the nuclear envelope (NE) and the paranuclear cisterna of the lacunar labyrinthum (LL). N, nuclear interior. The arrowheads in (b) denote the annular granules of nuclear pore complexes which also reveal central elements. The fenestrae ("junction channels") in the paranuclear LL cisterna do not show such a complex organization but merely aggregated fibrillar material (e.g., arrows, a–c). The only structure identifiable in the intermediate zone is a fibrillar meshwork. Note also the regular spike pattern at the inner surface of the LL membrane (d), a feature which distinguishes this membrane from, e.g., ER-type membranes. (a) Bar = 0.25 µm; × 40,000. (b) Bar = 0.1 µm; × 85,000. (c) Bar = 0.25 µm; × 57,000. (d) Bar = 0.1 µm; × 130,000.
from this intermediate zone (Figs. 2, 3). The only structures regularly recognized in this zone are densely interwoven fine filaments (ca. 3.5 nm in width) and occasionally, densely stained globular aggregates (40–100 nm in diameter) of the kind commonly observed in the peripheral zones of the nuclear interior (Figs. 2 and 3; reference 9). (d) The intermediate zone is—to some extent—continuous with the nucleoplasm via the pore complexes, and with the cytoplasm via specific fenestrae, the “junction channels,” in the paranuclear cisterna of the LL system (Figs. 2 and 4; reference 9). The size distribution of the “junction channels” is given in Fig. 4, in comparison with that of the nuclear pore complexes. Both the pore complexes and the junction channels are associated with some granulofibrillar structures but the organization of the membrane-associated components is clearly different in both kinds of pores. The pores in the LL cisterna do not reveal symmetrically arranged annular and internal granules but appear to be rather homogeneously filled with some finely filamentous tufts (Figs. 2, 3). (e) The nuclear pore frequency is about 20 pores per μm² in the germlings but then increases dramatically and is fairly constant at between 70 and 80 pores per μm².
during the phase of maximal nuclear growth (see also reference 38); the frequency of the junction channel pores in the secondary envelope is much lower (two to six per square micrometer) and they are much less regular in pattern (e.g., Fig. 3). The total number of pore complexes per nucleus attains values of $2 - 8 \times 10^4$ (see also references 9, 37, 38), and the total number of junction channels per fully mature nucleus is between 70,000 and ca. 300,000.

Maximally, only 1.0 - 1.5% of the surface of the paranuclear cisterna of the LL is represented by pore area, in contrast to about 23% pore area in the nuclear envelope. (f) The growth rate of both the nuclear envelope and the paranuclear LL cisterna is very impressive; during maximal growth the nuclear membrane surface doubles within about 10 days (Table I). The mean increase of nuclear envelope between the 50th and the 90th day after germination would correspond to an average input rate of approximately 1 μm2 membrane area per minute. (g) Nuclear growth and, correspondingly, nuclear envelope enlargement (Table I) takes place within this "cage" constituted by the lacunar labyrinthum cisterna. (h) Apart from the occasional occurrence of some (smooth-surfaced) vesicular or tubular profiles (30 - 120 nm in size) in the intermediate zone of some nuclei (Table II) and, infrequently, of some membranous structures located at the junction channels (Figs. 2, 3; see reference 9), there is no morphological indication of an ongoing flow of vesicles across the LL pores described. These vesicles in the intermediate zone represent only very little membrane material and are not ubiquitous structures; in a great many cells they were not noted at all (Table II; compare also their absence in references 3, 4, and 35 and other earlier studies on *Acetabularia*). Neither at the nuclear envelope nor at the lacunar labyrinthum have bleb formations or vesicle fusions been noted. (i) After full maturation of the nucleus, and after the cap formation of the cell has been completed, the LL cisterna is disintegrated, and the strict separation becomes progressively looser (9). Although the function of this accessory envelope of the LL system is not known (similar structures have hitherto been noted only with the macronuclei of some marine ciliates; see, e.g., references 27 - 29) its strictly transitory existence only during the phase of giant growth is remarkable.

From these observations, we draw the following alternative conclusions. Either (a) the nuclear envelope or within the nucleus or in the intermediate zone, but without ribosomes being involved. Such a view is in obvious contrast to the current concepts of protein synthesis (for the continuing debate as to the existence of an intranuclear

Table I

<table>
<thead>
<tr>
<th>Stage of development</th>
<th>Days after germination</th>
<th>Nuclear diameter*</th>
<th>Nuclear membrane area</th>
<th>Nuclear membrane volume</th>
<th>Nuclear membrane mass†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germling (1 mm cell size)</td>
<td>30</td>
<td>10</td>
<td>618</td>
<td>3.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Medium-size cell (6 - 7 mm in length)</td>
<td>50</td>
<td>40</td>
<td>9,590</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>Maturing cell (ca. 30 mm in length, before cap formation)</td>
<td>90</td>
<td>100</td>
<td>59,660</td>
<td>357</td>
<td>424</td>
</tr>
<tr>
<td>Maximum-size cell (ca. 40 mm in length, at about onset of cap formation)</td>
<td>110</td>
<td>150</td>
<td>134,245</td>
<td>805</td>
<td>598</td>
</tr>
<tr>
<td>Mature cell (stage of lobed primary nucleus during cap formation)§</td>
<td>140</td>
<td>ND</td>
<td>ca. 300,000</td>
<td>ca. 1,800</td>
<td>ca. 2,156</td>
</tr>
</tbody>
</table>

* Values from slightly ellipsoidal nuclei were corrected.

† Assuming a density of 1.19 g/cm3 (see references 7, 8).

§ It is not clear whether this stage is obligatory for nuclear maturation. ND, not determined.

Brief Notes

686 Brief Notes
was at least 2 nucleus as series of three to five; each series, however, intermediate zone across the paranuclear LL cisterna and microscope work. Figures in parentheses give total number of sections evaluated per nucleus.

For obvious reasons, most morphological studies hitherto have emphasized contributions to membrane formation and growth by fusions with pre-existing membrane structures such as vesicles and cisternae. The unique situation of the growing *Acetabularia* primary nucleus now appears to provide an example indicative of a contribution of “free” molecular or micellar units to the growth of a membrane system.

SUMMARY

The primary nucleus of the green alga *Acetabularia* grows about 25,000-fold in volume while it is separated from the endoplasmic reticulum and the whole cytoplasm by a special paranuclear cisterna of a vacuolar labyrinthum system which shows only very few (two to six per square micrometer) and small (ca. 40–120 nm in diameter) fenestrations. The nuclear envelope does not bear polyribosomes, nor do they occur in the entire zone intermediate between the nuclear envelope and the paranuclear cisterna. It is suggested that this special form of nuclear envelope growth takes place by assembly from cytoplasmically synthesized proteins that are translocated across the paranuclear cisterna in a nonmembrane-structured form.

We are indebted to Drs. H. Falk of the Institute of Biology II, University of Freiburg i. Br., Federal Republic of Germany, H. G. Schweiger of the Max Planck Institute for Cell Biology, Wilhelmshaven, F.R.G., G. Werz of the Institute of Plant Physiology and Cell Biology, Free University of West Berlin, and J. Kartenbeck of the German Cancer Research Center for helpful discussions. We also thank Miss Marianne Winter for skillful technical assistance.
The work has been supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, grants Fr. 308/8 and 308/9.

Received for publication 16 January 1975, and in revised form 13 March 1975.

REFERENCES

688 BRIEF NOTES

