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Abstract

Serverless computing is an emerging cloud computing paradigm that offers a high-
level application programming model with utilization-based billing. It enables the
deployment of cloud applications without managing the underlying resources or
worrying about other operational aspects. Function-as-a-Service (FaaS) platforms
implement serverless computing by allowing developers to execute code on-demand
in response to events with continuous scaling while having to pay only for the
time used with sub-second metering. Cloud providers have further introduced
many fully managed services for databases, messaging buses, and storage that also
implement a serverless computing model. Applications composed of these fully
managed services and FaaS functions are quickly gaining popularity in both industry
and in academia.
However, due to this rapid adoption, much information surrounding serverless

computing is inconsistent and often outdated as the serverless paradigm evolves.
This makes the performance engineering of serverless applications and platforms
challenging, as there are many open questions, such as: What types of applications
is serverless computing well suited for, and what are its limitations? How should
serverless applications be designed, configured, and implemented? Which design
decisions impact the performance properties of serverless platforms and how can
they be optimized? These and many other open questions can be traced back to an
inconsistent understanding of serverless applications and platforms, which could
present a major roadblock in the adoption of serverless computing.

In this thesis, we address the lack of performance knowledge surrounding server-
less applications and platforms from multiple angles: we conduct empirical studies
to further the understanding of serverless applications and platforms, we introduce
automated optimization methods that simplify the operation of serverless appli-
cations, and we enable the analysis of design tradeoffs of serverless platforms by
extending white-box performance modeling. More precisely, we make the following
contributions in this thesis:

• Evaluation of the Characteristics and Performance of Serverless Applications. Our first
contribution improves the understanding of serverless applications on the basis
of two empirical studies. The first study systematically collects close to ninety
serverless applications from different sources and characterizes them through
a comprehensive pair-reviewing process with regard to sixteen characteristics.
We complement this with a meta-analysis that compares the results of existing
studies to our results to analyze community consensus. The second study
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is an exploratory case study on the stability of performance measurements
of serverless applications, in which we investigate the baseline performance
variability and the stability of performance tests over time.
In these studies, we identify a community consensus on eight characteristics of
serverless applications and provide the first quantitative data on eight further
characteristics. Additionally, we detect short-term performance fluctuations
and observe multiple long-term performance changes where undisclosed,
provider-side changes permanently alter the performance of serverless appli-
cations.

• Automating Operational Tasks of Serverless Applications. Our second contribu-
tion introduces two approaches to automate the operational tasks associated
with serverless applications. We introduce an approach to predict the optimal
resource size of serverless functions that first implements a serverless func-
tion generator capable of generating a large number of synthetic serverless
functions. Then, we measure the execution time and resource consumption
metrics of many synthetic functions for different resource sizes and construct a
multi-target regression model to predict the optimal size of previously unseen
serverless functions. Further, to enable the cost optimization of serverless
workflows, we apply mixture density networks to predict the response time
and output parameter distributions for individual serverless functions. Based
on these individual function models, a Monte-Carlo simulation derives cost
predictions for entire serverless workflows.
In our evaluation, our resource size optimization model selects the optimal
resource size for 79.0% of the serverless functions in four realistic applications,
which results in an average speedup of 39.7% while simultaneously reduc-
ing average costs by 2.6%. For two audio transcription workflows, our cost
prediction approach achieves a mean workflow cost prediction accuracy of
96.2%.

• Enabling White-Box Performance Modeling and Simulation of Serverless Platforms.
Our third contribution introduces two approaches that extend white-box per-
formance models to make them applicable for the analysis of serverless plat-
forms. The first approach is directed at speeding up the simulation time
required to solve white-box performance models. We introduce a generic
modeling approach that enables a parallel description of subsystems as both
fast-to-solve black-box performance models and as traditional queueing mod-
els. Further, we extend an existing discrete event simulation solver to support
these hybrid models. The second approach addresses the issue that white-box
performance modeling does not support the integration of empirically ob-
served relationships betweenmodel parameters. We propose a novel approach
to modeling empirical parametric dependencies in architectural performance
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models that derives a fully parameterized performance model by transforming
the empirical information into a directed graph.
In our evaluation on a distributed, component-based system of medium size,
our approach maintains sufficient prediction accuracy and achieves speedups
of up to 94.8%. In two case studies in the context of a media store, our approach
for the integration of empirical parametric dependencies achieves a mean
prediction error for utilization and response time of less than 5% and 10%,
respectively.

Together, these contributions address the lack of performance engineering knowl-
edge and techniques for serverless applications and platforms. The empirical data
collected in this thesis provides quantitative evidence for many commonly debated
questions surrounding serverless applications and provides the tools to analyze
and optimize the efficiency and performance of both serverless applications and
platforms. Further, this work provides a foundation for further research on the
performance engineering of serverless applications and platforms.
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Zusammenfassung

Serverless Computing ist ein neues Cloud-Computing-Paradigma, das ein High-
Level-Anwendungsprogrammiermodell mit nutzungsbasierter Abrechnung bietet.
Es ermöglicht die Bereitstellung von Cloud-Anwendungen, ohne dass die zugrunde
liegenden Ressourcen verwaltet werden müssen oder man sich um andere betriebli-
che Aspekte kümmern muss. Function-as-a-Service (FaaS)-Plattformen implemen-
tieren Serverless Computing, indem sie Entwicklern die Möglichkeit geben, Code
nach Bedarf als Reaktion auf Ereignissemit kontinuierlicher Skalierung auszuführen,
während sie nur für die genutzte Zeit mit sekundengenauer Abrechnung zahlen
müssen. Cloud-Anbieter haben darüber hinaus viele vollständig verwaltete Dienste
für Datenbanken, Messaging-Busse und Orchestrierung eingeführt, die ebenfalls
ein Serverless Computing-Modell implementieren. Anwendungen, die aus diesen
vollständig verwalteten Diensten und FaaS-Funktionen bestehen, werden sowohl in
der Industrie als auch in der Wissenschaft immer beliebter.

Aufgrund dieser schnellen Verbreitung sind jedoch viele Informationen zum Ser-
verless Computing inkonsistent und oft veraltet, da sich das Serverless Paradigma
weiterentwickelt. Dies macht das Performanz-Engineering von Serverless Anwen-
dungen und Plattformen zu einer Herausforderung, da es viele offene Fragen gibt,
wie zum Beispiel: Für welche Arten von Anwendungen ist Serverless Computing
gut geeignet und wo liegen seine Grenzen? Wie sollten Serverless Anwendungen
konzipiert, konfiguriert und implementiert werden? Welche Designentscheidun-
gen wirken sich auf die Performanzeigenschaften von Serverless Plattformen aus
und wie können sie optimiert werden? Diese und viele andere offene Fragen lassen
sich auf ein uneinheitliches Verständnis von Serverless Anwendungen und Plattfor-
men zurückführen, was ein großes Hindernis für die Einführung von serverlosem
Computing darstellen könnte.

In dieser Arbeit adressieren wir den Mangel an Performanzwissen zu Serverless
Anwendungen und Plattformen aus mehreren Blickwinkeln: Wir führen empirische
Studien durch, um das Verständnis von Serverless Anwendungen und Plattformen
zu fördern, wir stellen automatisierte Optimierungsmethoden vor, die das benötigte
Wissen für den Betrieb von Serverless Anwendungen reduzieren, und wir erweitern
die White-Box-Performanzmodellierungerung für die Analyse von Designkompro-
missen von Serverless Plattformen. Genauer gesagt, leisten wir in dieser Arbeit die
folgenden Beiträge:

• Bewertung der Eigenschaften und der Performanz von Serverless Anwendungen. Un-
ser erster Beitrag verbessert das Verständnis von Serverless Anwendungen auf
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der Grundlage von zwei empirischen Studien. Die erste Studie sammelt syste-
matisch knapp neunzig Serverless Anwendungen aus verschiedenen Quellen
und charakterisiert sie durch ein umfassendes Pair-Reviewing-Verfahren im
Hinblick auf sechzehn Merkmale. Wir ergänzen dies durch eine Meta-Analyse,
die die Ergebnisse bestehender Studienmit unseren Ergebnissen vergleicht, um
die Übereinstimmung zu analysieren. Bei der zweiten Studie handelt es sich
um eine explorative Fallstudie zur Stabilität von Performanzmessungen bei
Serverless Anwendungen, in der wir die grundlegende Performanzvariabilität
und die Stabilität von Performanztests im Laufe der Zeit untersuchen.
In diesen Studien ermitteln wir eine Übereinstimmung zu acht Merkmalen
von Serverless Anwendungen und liefern die ersten quantitativen Daten zu
acht weiteren Merkmalen. Darüber hinaus stellen wir kurzfristige Performanz-
schwankungen fest und beobachten langfristige Performanzänderungen, bei
denen anbieterseitige Änderungen die Performanz von serverlosen Anwen-
dungen dauerhaft verändern.

• Automatisierung der Betriebsaufgaben von Serverless Anwendungen. Unser zweiter
Beitrag enthält zwei Ansätze zur Automatisierung der mit dem Betrieb von
Serverless Anwendungen verbundenen Aufgaben. Wir stellen einen Ansatz
zur Vorhersage der optimalen Ressourcengröße von Serverless Funktionen vor.
Dabei wird zunächst ein Generator für Serverless Funktionen implementiert,
der eine große Anzahl synthetischer Serverless Funktionen erzeugen kann.
Anschließend messen wir die Ausführungszeit und den Ressourcenverbrauch
vieler synthetischer Funktionen für verschiedene Resourcengrößen und erstel-
len ein Multitarget-Regressionsmodell, um die optimale Größe von Serverless
Funktionen vorherzusagen. Um die Kostenoptimierung von Serverless Work-
flows zu ermöglichen, wenden wir außerdem Mixture Density Networks an,
um die Verteilung der Ausführungszeit und der Ausgabeparameter für einzel-
ne Serverless Funktionen vorherzusagen. Basierend auf diesen individuellen
Funktionsmodellen leitet eine Monte-Carlo-Simulation Kostenvorhersagen für
komplette Serverless Workflows ab.
In unserer Evaluierung wählt unser Modell zur Optimierung der Ressour-
cengröße die optimale Ressourcengröße für 79,0% der Serverless Funktionen
von vier realistischen Anwendungen aus, was zu einer durchschnittlichen
Beschleunigung von 39,7% bei gleichzeitiger Reduzierung der durchschnittli-
chen Kosten um 2,6% führt. Für zwei Audiotranskriptions-Workflows erreicht
unser Ansatz zur Kostenvorhersage eine durchschnittliche Genauigkeit der
Workflow-Kostenvorhersage von 96,2%.

• Ermöglichung der White-Box-Performanzmodellierung und Simulation von Server-
less Plattformen. Unser dritter Beitrag stellt zwei Ansätze vor, die White-Box-
Performanzmodelle erweitern, um sie für die Analyse von Serverless Plattfor-
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men anwendbar zumachen. Der erste Ansatz zielt darauf ab, die für die Lösung
von White-Box-Performance-Modellen erforderliche Simulationszeit zu be-
schleunigen. Wir führen einen generischen Modellierungsansatz ein, der eine
parallele Beschreibung von Subsystemen sowohl als schnell zu lösende Black-
Box-Performanzmodelle als auch als traditionelle Warteschlangen-Modelle
ermöglicht, und erweitern einen bestehenden Solver für die diskrete Ereig-
nissimulation, um diese Hybridmodelle zu unterstützen. Der zweite Ansatz
befasst sich mit dem Problem, dass die White-Box-Performanzmodellierung
die Integration von empirisch beobachteten Beziehungen zwischen Modellpa-
rametern nicht unterstützt.Wir schlagen einen neuenAnsatz zurModellierung
von empirischen Zusammenhängen in White-Box-Performanzmodellen vor,
der ein parametrisiertes Performanzmodell durch Umwandlung der empiri-
schen Informationen in einen gerichteten Graphen erzeugt.
In unserer Evaluierung auf einem verteilten, komponentenbasierten System
mittlerer Größe erreicht unser Ansatz eine ausreichende Vorhersagegenauig-
keit und eine Beschleunigung von bis zu 94,8%. In zwei Fallstudien im Kontext
eines Medienshops erreicht unser Ansatz zur Integration empirischer parame-
trischer Abhängigkeiten einen mittleren Vorhersagefehler weniger als 5% für
Auslastungen und weniger als 10% für Antwortzeiten.

Gemeinsam adressieren diese Beiträge den Mangel an Performanzmanagement-
Wissen und -Techniken für Serverless Anwendungen und Plattformen. Die in dieser
Arbeit gesammelten empirischen Daten liefern quantitative Ergebnisse für viele häu-
fig diskutierte Fragen im Zusammenhang mit Serverless Anwendungen und bieten
dieWerkzeuge zur Analyse undOptimierung der Effizienz und Leistung sowohl von
Serverless Anwendungen als auch von Serverless Plattformen. Darüber hinaus bildet
diese Arbeit die Grundlage für weitere Forschungen zum Performancemanagement
von Serverless Anwendungen und Plattformen.
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Chapter 1

Introduction

Cloud computing promises computing as a utility as companies no longer need
to maintain their own data center [Jon+19]. Instead, they can provision virtually
unlimited compute, network, and storage within minutes. This removes the upfront
capital investment required to build and maintain a data center and replaces it with
a flexible pay-as-you-go model. Traditionally, cloud computing is realized in the
form of virtual machines that can be created and deleted within minutes, which
enables companies to flexibly adapt the available resources to the current demand.
Due to these benefits, cloud computing is becoming widely adopted as 81% of
enterprises are using cloud computing according to the 2020 IDG Cloud Computing
Survey[IDG20] and Gartner reports that cloud spending increased by 40.7% in 2020
from $45.7 billion to $64.3 billion [Gar20].
To bring cloud computing even closer to the promise of computing as a util-

ity, Amazon Web Services introduced AWS Lambda, the first FaaS platform, in
2014 [AWS14]. It abolishes the notion of virtual machines and instead allows de-
velopers to execute code on-demand in response to events with continuous scaling
while having to pay only for the time used with sub-second metering. Recognizing
the potential of FaaS, other cloud providers such as Microsoft Azure, Google Cloud,
and IBM Cloud released their own FaaS platforms in 2016 [Eis+20c]. FaaS is rapidly
adopted by cloud users with Allied Market Research estimating that the global FaaS
market generated $3 billion in 2018 and will reach $24 billion by 2026 [Res20].

In recent years, cloud providers have further introduced many managed services,
which are also known as Backend-as-a-Service (BaaS), for databases, messaging
buses, and storage that also abstract the notion of virtual machines in favor of a
pay-per-use model. Applications composed of these managed services and multiple
FaaS functions have become widely known as serverless applications and their under-
lying computational model as serverless computing. Kounev et al. define serverless
computing as a cloud computing paradigm offering a high-level application pro-
gramming model, based on utilization-based billing, that allows one to develop and
deploy cloud applications without allocating and managing virtualized servers and
resources or being concerned about other operational aspects with utilization-based
billing [Kou+21]. This definition is quite broad to encompass future developments
in this area, such as fully managed container platforms, also known as Container-as-
a-Service (CaaS). However, for the purpose of this thesis, we will consider serverless
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computing as the combination of FaaS and BaaS, as this reflects the current state of
the practice.

In 2019, 40% of companies reported adoption of serverless computing according to
a survey by O’Reilly [ORe19] and is steadily increasing as DataDog finds that AWS
lambda invocations have increased by 350% from 2019 to 2021 [Dat21]. Markets-
AndMarkets Analysis estimates that the serverless computing market size will grow
from an estimated $7.6 billion in 2020 to $21.1 billion in 2021 [Mar20]. Overall,
serverless computing is emerging as the potential next step in the evolution of cloud
computing.

1.1 Problem Statement

Serverless computing is quickly growing in adoption both in industry and in aca-
demia. However, reminiscent of many other emerging technologies, there are some
growing pains associated with this rapid growth. One of the most pressing points is
the lack of information around many serverless computing topics, as the community
is in disagreement on many properties, interactions, and tradeoffs of serverless
applications and platforms [Eyk+19; Eis+21c]. This could present amajor roadblock
in the adoption of serverless computing, as a survey by O’Reilly already reports that
the leading concern of companies that have not yet adopted serverless computing is
the fear of the unknown [ORe19].

This is especially true for the performance of serverless applications and platforms
as much existing performance engineering knowledge and many approaches are
not directly transferable to serverless computing. For example, it is currently unclear
what typical serverless applications look like, what type of performance they can
offer, what their limitations are, or how stable their performance is. Without this
knowledge, it is challenging to make an informed decision if serverless computing
is well suited for a use case. Developers are often unaware which configuration
options and design decisions for serverless applications exist, what their impact on
performance is, or how they should make these design and configuration decisions.
This results in many poorly designed serverless applications in practice which in
turn can quickly undermine the public perception of serverless computing. Further,
there are also many open questions regarding the design of serverless platforms,
such as the impact of different scheduling approaches, placement algorithms, re-
source provisioning strategies, virtualization techniques, worker deprovisioning
timings, or runtime environments. The lack of an in-depth understanding of the
performance implications and tradeoffs of these design decisions can severely hinder
the advancement of serverless platforms. Overall, there are many open questions
regarding the performance of serverless applications and platforms, which threaten
to slow down the adoption of serverless computing.
We consider the following to be among the most pressing challenges:
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1.2 Shortcomings of the State-of-the-Art

Challenge 1: Disagreement on the characteristics of serverless applications Cur-
rently, there exist only few, scattered, and often conflicting reports on what serverless
applications look like, when they are well suited, andwhat the best practices for their
implementation are. Therefore, developers, academics, and managers often have
conflicting views on the common characteristics of serverless applications, which
hinders their adoption.

Challenge 2: Unknown performance variability of serverless applications Devel-
opers have no insight into the resource environment that their application is running
in. Therefore, the performance of serverless applications could theoretically change
at any time if the provider makes changes to the underlying hardware or software
stack. However, there is currently no data on how often this occurs and how large
the resulting performance variability is.

Challenge 3: Lack of automated resource sizing of serverless functions Develop-
ers of serverless functions are still in charge of resource sizing, that is, selecting how
much resources (CPU, memory, network, disk I/O, etc.) are allocated to each worker
instance. However, selecting the optimal size of serverless functions is quite chal-
lenging, so developers often neglect it despite its significant cost and performance
implications.

Challenge 4: Difficulty of estimating the cost of serverless workflows Serverless
workflows facilitate the orchestration of multiple serverless functions for complex
tasks. However, the pay-per-use model and the delayed nontransparent reporting
by cloud providers make it challenging for developers to estimate the expected
monetary cost of serverless workflows, which prevents informed business decisions.

Challenge 5: Limited understanding of design tradeoffs for serverless platforms
Platform providers need to understand the impact of different architectural and
algorithmic design decisions on the performance properties of the platform. The
high cost and risk associated with evaluating the performance of alternative designs
in practice hinders the advancement of serverless platforms.

Therefore, in this doctoral thesis, we introduce techniques to understand, optimize,
and analyze the performance of serverless applications and platforms in order to
address these challenges.

1.2 Shortcomings of the State-of-the-Art

Only few, scattered, and often conflicting reports address the characteristics of server-
less applications. For example, although some of them claim significant cost savings
by switching to serverless applications [AC17a; Lev20], others identify scenarios in
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which higher costs are incurred compared to traditional hosting [Eiv17]. Similarly,
although reports of successful serverless applications for data-intensive applica-
tions exist [Wit+20; Cre+19], other reports claim that serverless computing is not
well suited for data-intensive applications [Hel+18]. For serverless computing,
existing research has focused on serverless platforms and their performance proper-
ties [SL20]. Pioneering studies about the features, architecture, and performance
properties of these platforms [Eyk+19; BA18; Fig+18; LSF18; Llo+18; Wan+18a] do
not study systematic collections of applications. The few existing empirical studies
that do not focus on platform properties do not consider application characteristics
either [Sha+20; Lei+19]. The only existing collection of serverless applications is
by Castro et al. [Cas+19], which introduces ten exemplary applications. Therefore,
Challenge 1 is not yet addressed, as systematic studies about serverless applications
are still missing.

The performance variability of virtual machines in cloud environments has been
studied extensively [IYE11; SDQ10; LSL19]. However, many serverless platforms
are not deployed on traditional virtual machines [Aga+20]. Many existing works
on the performance evaluation of serverless platforms determine the performance
characteristics of such platforms but do not investigate the stability of performance
measurements [Eyk+19; BA18; Fig+18; LSF18]. Some existing studies also investi-
gate the performance variability of serverless platforms and find that the underlying
CPUmodel and the low performance isolation between co-located workers are major
sources of performance variability [Llo+18; Wan+18a; LSF18]. However, all of these
studies consider only the performance variation between repeated executions and
do not investigate the performance variability over longer periods of time. When
Wang et al. repeated a subset of their measurements after six months, they found
significant changes in the platform behavior [Wan+18a]. This shows that the perfor-
mance of serverless applications can change over time, but the frequency, size, and
impact of the performance variability over longer periods of time is still unknown,
which means that Challenge 2 is not yet addressed.

Considering the memory size optimization of serverless functions, there are many
articles describing the impact of memory size on serverless functions, which high-
light the complexity and importance of selecting the optimal memory size [Zha+19;
Wan+18b; Fig+18; BA18; Str18; SL20]. Most existing approaches for the cost opti-
mization of serverless functions either do not consider memory size or consider its
impact as a user-provided parameter [KK17; Gun+19; Elg18; Boz+17]. The current
best practice in industry is to measure the execution time of each memory size using
performance tests followed by a manual analysis of the results [Cas20a]. There have
been approaches proposed to reduce the number of required performance measure-
ments by measuring a subset of memory sizes and interpolating the execution time
for the remaining memory sizes [Akh+20; Ali+20]. All existing approaches to opti-
mize the memory size of serverless functions require automated performance tests,
which are time-consuming to implement and maintain [JH15; Bez+19]. Further, the

4



1.2 Shortcomings of the State-of-the-Art

requirement for active performance tests makes these techniques inapplicable for
cloud providers. This shows that Challenge 3 is not yet addressed.
Many empirical studies analyze the performance and cost of industry-standard

workflow orchestrators that showcase significant cost differences between the avail-
able options [Lop+18; MAB21; WL21; Bar+19]. Academic researchers have further
proposed many formalisms and execution frameworks for serverless workflows
that aim to address the shortcomings of the first generation of serverless workflow
orchestrators [Skl+19; Joh+19; Bur+21; Lop+20; Zha+20]. Existing approaches
for the cost estimation of serverless functions and workflows require the user to
estimate the function response time with a single mean value [Boz+17; Elg18],
which does not consider the impact of input parameters on the function execution
time. Queueing theory-based models can predict the impact of input parameters on
the performance of traditional systems [Bon+05; Ack+18], but they are inapplicable
for serverless solutions, as they require knowledge about the underlying resource
landscape and deployment. To summarize, Challenge 4 is not yet addressed, as
there is currently no approach that enables the accurate cost prediction of different
configurations of a serverless workflow.

As to the analysis of design tradeoffs for serverless platforms, the currently popu-
lar approach is the implementation of research prototypes that implement a specific
combination of tradeoffs combined with an experimental evaluation to analyze its
performance properties. Examples of such prototypes include SOCK [Oak+18],
SEUSS [Cad+20], Atoll [Sin+21], EMARS [SJ18], and SAND [Akk+18]. However,
the implementation and evaluation of research prototypes is quite time-intensive
and only enables the exploration of a specific configuration or a set of configurations.
In traditional software systems, white-box performance modeling is a common
technique to evaluate the impact of design tradeoffs [Reu+16; Ale+09; Kou+17].
White-box performance models capture the system architecture, the control flow
within and between the software components, the deployment of components on
physical resources, the performance properties of individual components, and the
expected workload. These models can then be simulated to predict performance
indices such as response time, throughput, or hardware utilization [Bro+15]. Un-
fortunately, white-box performance modeling is currently challenging to apply to
serverless platforms due to two well-documented shortcomings of white-box perfor-
mancemodeling: a) white-box performancemodeling requires the explicit modeling
of parametric dependencies [Koz08; Ham09; Bon+05], that is modeling the impact
of configuration parameters and user input on the system behavior, which is not
feasible for a platform running thousands of different functions [Sha+20], and b)
the simulation time of a white-box performance model grows exponentially with
the number of components, which makes the analysis of large scale systems, such as
serverless platform, infeasible [Nam+16; WFP07; Koz10]. White-box performance
modeling techniques could be well suited to address Challenge 5, but they are
currently not widely applied for serverless platforms due to their shortcomings.

5



Chapter 1: Introduction

To summarize, none of the challenges we introduce in Section 1.1 are addressed
by the current state-of-the-art.

1.3 Goals and Research Questions

In the previous sections, we introduced five challenges around the performance
engineering of serverless applications and platforms that could potentially slow
down the adoption of serverless computing and the shortcomings of the state-of-
the-art regarding these challenges. In the following, we present the five main goals
of this thesis, with each goal designed to address one of the previously introduced
challenges. For each goal, we also list a set of Research Questions (RQs) that need
to be answered in order to address the respective goals.

Goal I: Provide quantitative data on the common characteristics of modern serverless
applications.

• RQ I.1: What are common characteristics of current serverless applications?

• RQ I.2: Is there a community consensus on the common characteristics of serverless
applications?

The first goal aims to address Challenge 1, the current disagreement on the charac-
teristics (size, platform, programming language, etc.) of serverless applications that
exists in the public dialogue. Resolving this disagreement requires well-founded
quantitative data on the common characteristics of serverless applications. Towards
this goal, the first research question concerns the generation of primary data on
the common characteristics of serverless applications, while the second research
question aims to substantiate the primary data by comparing it with data from
existing studies.

Goal II: Quantify the performance variability that serverless applications experience.

• RQ II.1: How much performance variability do common serverless applications
experience?

• RQ II.2: Does the performance of serverless applications change over time?

The second goal aims to address Challenge 2 by quantifying the performance
variability that serverless applications experience due to variation in the underlying
platforms. As discussed earlier, this is currently an unknown factor that can dissuade
developers from adopting the serverless paradigm. The first research question aims
at the quantification of the baseline performance variability of serverless applications,
while the second research question is about quantifying the performance variability
of serverless applications over longer time periods.
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Goal III: Develop an automated method to optimize the size of serverless functions.

• RQ III.1: How can a dataset on the impact of memory size for a vast number of
functions be generated?

• RQ III.2: How can one predict the optimal size of serverless functions based on
passive monitoring data?

The third goal aims to address Challenge 3, the automated optimization of the
resource sizing for serverless applicationswithout active empirical measurements, so
that cloud providers can automatically manage the function configuration instead of
developers having to deal with it. The first research question concerns the generation
of a large training dataset on the impact of memory size, without having access
to a vast amount of serverless functions; the second research question aims at the
automated size optimization of serverless functions based on passive monitoring
data.

Goal IV: Provide a technique to estimate the costs of serverless workflows.

• RQ IV.1: How can the execution time distribution of a serverless function be predicted
based on its input parameters?

• RQ IV.2: Can the impact of restructuring a serverless workflow on its cost be
predicted?

The fourth goal aims to address Challenge 4 by predicting the billed costs of
serverless workflows based on predictions for the performance of each serverless
function within the workflow. The first research question concerns the prediction
of the execution time distribution of individual serverless functions based on their
input parameters in order to derive accurate cost predictions on a per-function level.
The second research question aims to use these predictions to assess the impact of
different configurations of a serverless workflow on its cost.

Goal V: Provide an approach for the white-box performance modeling and simulation of
serverless platforms.

• RQ V.1: How can the time required to simulate large systems such as serverless
platforms be reduced?

• RQ V.2: How can relationships between parameters observed at runtime be utilized
in white-box performance models?

The fifth goal aims to address Challenge 5 by enabling the use of white-box per-
formance modeling to analyze the performance properties of serverless platforms.
The first research question aims to enable faster simulation times for white-box
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performance models in order to support the analysis of large systems such as server-
less platforms. The second research question targets the modeling of empirically
determined relationships between model parameters, as the explicit modeling of
parametric dependencies at design time is infeasible for large systems such as server-
less platforms.

1.4 Contribution Summary

In the following, we summarize the three main contributions of this thesis, which
address the challenges identified in Section 1.1 and the research goals defined in
Section 1.3.

Contribution 1: Evaluation of the Characteristics and Performance of Serverless
Applications Our first contribution aims to address Challenge 1 and Challenge 2 by
improving the understanding of serverless applications on the basis of two empirical
studies. The first study builds on resources created by the community to systemati-
cally collect a total of 89 serverless applications from open-source projects, academic
literature, industrial white papers, and scientific computing projects. These applica-
tions are then characterized through a systematic and comprehensive pair-reviewing
process with regard to 16 characteristics, such as execution pattern, workflow coordi-
nation, use of external services, andmotivation for adopting the serverless paradigm.
We complement this with a literature search, finding ten, mostly industrial, web
surveys and datasets on the characteristics of serverless applications; we compare
the results of these studies to our results with the aim to identify characteristics for
which there is a consensus among multiple studies as well as points of disagree-
ment. The second study is an exploratory case study on the stability of performance
measurements of serverless applications. Unlike existing work, which mostly re-
lies on microbenchmarks and single-function applications, we use a representative,
production-grade serverless application for our case study. Using this application,
we conduct two sets of performance measurements: (1) multiple repetitions of
performance measurements under varying configurations to investigate the baseline
performance variability, and (2) three daily measurements for ten months to create
a longitudinal dataset and investigate the stability of performance tests over time.

As a result of these two studies, we find that the most commonly reported reasons
for the adoption of serverless computing are cost savings for irregular or bursty
workloads, avoidance of operational concerns, built-in scalability, and increased
speed of development. Typical use cases for serverless applications include short-
running tasks with low data volume and bursty workloads, but we also frequently
came across latency-critical, high-volume core functionality as serverless applica-
tions. Further, we find that serverless applications are mostly implemented on AWS,
in either Python or JavaScript, and use managed services. As to the performance
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variability, we find that the performance variability of measurements conducted
at the same time is comparable to the performance variability observed in tradi-
tional microservice-based or monolithic systems. However, we also find that there
are short-term performance fluctuations where the performance changes from day
to day. Additionally, we observe multiple long-term performance changes where
undisclosed, provider-side changes permanently alter the performance of serverless
applications.
These studies present the largest collection of serverless applications to date, by

a factor of 8.9x over the next largest collection [Cas+19]. They provide the first
systematic and comprehensive characterization of serverless applications, the first
analysis of community consensus on the characteristics of serverless applications,
as well as the first characterization of performance variability of serverless appli-
cations over longer periods of time. Therefore, this contribution addressesGoal I
and Goal II by improving the understanding of serverless applications. The indi-
vidual parts of this contribution have been published in a Standard Performance
Evaluation Corporation Research Group (SPEC RG) technical report [Eis+20c],
an IEEE Software article [Eis+21b], an IEEE Transactions on Software Engineer-
ing (TSE) article [Eis+21c], and an article in the Journal of Systems and Software
(JSS) [Eis+22].

Contribution 2: Automating Operational Tasks of Serverless Applications Our
second contribution introduces two approaches to address Challenge 3 and Chal-
lenge 4 by automating the operational tasks associated with deploying serverless
applications. To address the task of resource sizing, that is, selecting how much
CPU, memory, I/O bandwidth, etc. are allocated to a worker instance, we intro-
duce an approach to predict the optimal memory size of serverless functions based
on monitoring data for a single memory size. To achieve this goal, we first im-
plement a serverless function generator capable of generating a large number of
synthetic serverless functions by combining representative function segments. Next,
we measure the execution time and resource consumption metrics of 2 000 synthetic
functions for six different memory sizes on a public cloud. Finally, we construct
a multi-target regression model to predict the execution time of a serverless func-
tion for previously unseen memory sizes based on the execution time and resource
consumption metrics for a single memory size. The second operational task that
we address in this contribution is the cost optimization of serverless workflows.
First, we apply machine learning to predict the response time and output parame-
ter distributions for individual serverless functions. Next, we show how Mixture
Density Networks (MDNs) can be used to accurately predict the response time and
output parameter distributions of serverless functions. These individual function
models are integrated into a workflow model that describes the parameter relation-
ships within the workflow. Finally, a Monte-Carlo simulation traverses the workflow
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model and samples distributions from the individual function models to derive cost
predictions for serverless workflows.

In our evaluation, our memory size optimization model—which was trained on
data from synthetic functions—successfully predicts the execution time of other
memory sizes based on monitoring data from a single memory size with an average
prediction error of 15.3% for four realistic serverless applications. It selects the
optimal memory size for 79.0% and the second-best memory size for 12.3% of the
serverless functions. Using the memory sizes selected by our approach results in an
average speedup of 39.7%while simultaneously reducing average costs by 2.6%. Our
cost prediction approach predicts the response time distribution and the distribution
of the output parameters of five representative Google Cloud Functions with a mean
accuracy of 96.1% in a case study in the context of audio transcription workflows.
For two workflows composed of these functions, our approach achieves a mean
workflow cost prediction accuracy of 96.2%.

The approaches introduced in this contribution enable cloud providers to provide
memory size recommendations for developers as well as to automatically optimize
the cost of serverless workflows based on accurate, context-sensitive cost predictions.
Therefore, this contribution addresses Goal III and Goal IV by automating the
operational tasks associated with serverless applications. It has been published in a
full research paper at the 13th ACM/SPEC International Conference on Performance
Engineering (ICPE 2022) [Eis+20b] and a full research paper at the 22nd ACM/IFIP
International Middleware Conference (MIDDLEWARE 2022) [Eis+21a], which
received the Best Student Paper Award.

Contribution 3: Enabling White-Box Performance Modeling and Simulation of
Serverless Platforms Our third contribution aims to address Challenge 5 by in-
troducing two approaches that extend white-box performance models to make
them applicable for the analysis of serverless platforms. In this contribution, we
build upon and extend the Descartes Modeling Language (DML), a representative
white-box performance model tailored towards resource management at runtime.
The DML has been developed and extended in the context of multiple PhD the-
ses [Bro14; Hub14; Wal19b]. However, the approaches presented in this contribution
can be transferred to any architectural software performance model which uses a
component notation [BKR09; WW04; His+02; Göb+04].

The first approach is directed at speeding up the simulation time required to solve
white-box performance models. This is necessary as the simulation time increases
with system size making the analysis of large-scale systems, such as serverless plat-
forms infeasible. We introduce a generic modeling approach that enables a parallel
and integrated description of subsystems as both fast-to-solve black-box performance
models and as traditional queueing models. We provide a transformation of the
integrated queueing/statistical model to Queueing Petri Nets (QPNs) and extend an
existing discrete event simulation solver for QPNs to support black-box performance
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models. The second approach addresses the issue that white-box performance
modeling does not support the integration of empirically observed relationships
between model parameters. We propose a novel approach to modeling empirical
parametric dependencies in architectural performance models. To derive perfor-
mance prediction, a dependency resolution algorithm transforms the empirical
information from the model into a directed graph and resolves this graph to derive
a fully parameterized model.

In our evaluation, we apply the proposed approach for the simulation of white-box
performance models to a distributed, component-based system of medium size. Our
experiments show that the approach maintains sufficient prediction accuracy and
achieves speedups of up to 94.8%. In two case studies in the context of a media store,
our approach for the modeling and solution of empirical parametric dependencies
achieves a mean prediction error for utilization and response time of less than 5%
and 10%, respectively.

The approaches proposed in this contribution address two limitations of existing
white-box performance modeling techniques in order to enable their application for
the analysis of design tradeoffs of serverless platforms. Therefore, this contribution
addresses Goal V by extending white-box performance models for the analysis
of serverless platforms. The results have been published in a full research paper
at the 15th ACM/SPEC International Conference on Software Architecture (ICSA
2018) [Eis+18] and a full research paper at the 16th ACM/SPEC International
Conference on Software Architecture (ICSA 2019) [Eis+19].

1.5 Thesis Outline

In the following, we describe the remaining structure of this thesis. First, Part I
introduces the fundamental notions and concepts related to this thesis and discusses
the state-of-the-art in detail. Chapter 2introduces the background on serverless com-
puting including Function-as-a-Service, Backend-as-a-Service, and pricing models
as well as the performance engineering concepts of performance testing, white-box
performance modeling, and black-box performance modeling. Furthermore, we dis-
cuss the current state-of-the-art regarding the challenges this thesis aims to address
in Chapter 3.

In Part II, we present the main contributions of this thesis. In particular, Section 4
discusses the two empirical studies we conducted to improve the understanding
of serverless applications and performance variance, Section 5 presents our ap-
proaches for the automated optimization of serverless function sizes and workflow
configuration, and Section 6 introduces our approaches to close two of the gaps
in white-box performance modeling that make it inapplicable for the analysis of
serverless platforms.
Part III then discusses the results of our studies and evaluates the proposed

approaches. First, Section 7 discusses the results of our empirical studies on the
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characteristics and performance variability of serverless applications. Then, Section 8
evaluates the function size optimization on four realistic serverless applications and
the workflow cost optimization on two speech transcription workflows. Lastly,
Section 9 evaluates the proposed approach to speed up the simulation time of
white-box performance models on a large synthetic application and evaluates our
approach to capture empirical relationships in white-box performance models on
two examples in the context of a media store.

Finally, Part IV concludes this thesis. In Section 10, we summarize the contributions
and Section 11 describes the potential future work.

12



Part I

Fundamentals and Related
Work





Chapter 2

Fundamentals

In this chapter, we outline the fundamental concepts that lay the foundation for our
research. In Section 2.1, we define the term serverless computing and introduce the
concepts of FaaS and BaaS. Finally, Section 2.2 introduces common performance
engineering concepts.

2.1 Serverless Computing

In the following, we provide a definition for serverless computing, the main subject
of this thesis, and discuss the related terms Function-as-a-Service and Backend-as-a-
Service. Further, we introduce the concepts behind Function-as-a-Service platforms,
the serverless pricing model, and function sizing.

2.1.1 Definition

In a recent Dagstuhl seminar with over fifty serverless computing experts from
industry and academia, we extensively debated a definition for serverless comput-
ing [Kou+21]. After multiple days of intense discussion, we agreed on the following
definition:
Definition: Serverless computing is a cloud computing paradigm offering a high-
level application programmingmodel that allows one to develop and deploy cloud
applications without allocating and managing virtualized servers and resources or
being concerned about other operational aspects. The responsibility for operational
aspects, such as fault tolerance or the elastic scaling of computing, storage, and
communication resources to match varying application demands, is offloaded to
the cloud provider. Providers apply utilization-based billing: they charge cloud
users in proportion to the resources that applications actually consume from the
cloud infrastructure, such as computing time, memory, and storage space.

This definition focuses around the concepts of NoOps and Utilization-based Billing,
compared to other definitions that focus on properties such as stateless, granu-
lar billing, and event-driven architectures. Today, Function-as-a-Service (see Sec-
tion 2.1.2) and Backend-as-a-Service (see Section 2.1.3) are the most common im-
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plementations of serverless computing, which are both covered by the new, ex-
tended definition. As the definition focuses on conceptual properties, instead of
implementation-based limitations, such as short execution time, this definition cov-
ers the growing set of technologies and evolving programming models that taken
together will provide the basis for next-generation serverless platforms and applica-
tions.

2.1.2 Function-as-a-Service

While some startups such as PiCloud announced Function-as-a-Service platforms
starting from 20101, mainstream adoption began in 2014, when Amazon Web Ser-
vices (AWS) announced AWS Lambda, the first Function-as-a-Service platform from
a major cloud provider2. This started a race from the other cloud providers to de-
velop their own Function-as-a-Service solution, with IBM functions3, Google Cloud
Functions4, Azure Functions5 all released in 2016. There are also numerous open-
source Function-as-a-Service platforms that are actively being developed [Li+19].
Allied Market Research estimates that the global Function-as-a-Service market gen-
erated $3.01 billion in 2018 and will reach $24.00 billion by 20266, which shows that
Function-as-a-Service is rapidly adopted in industry.

With Function-as-a-Service (also often known as serverless functions), developers
write business logic as isolated functions, specify the memory and CPU resources
that the function should be executed with, and define triggers for the execution of
the business logic. Triggers can either be HTTP requests or cloud events such as a
new message in a queue, a new database entry, a file upload, or an event on an event
bus. The developer provides the code for the serverless functions and the triggers;
then the cloud provider guarantees that the code is executed whenever a trigger
occurs, independent of the number of parallel executions. In contrast to classical
Infrastructure-as-a-Service (IaaS) platforms, developers are not billed for the time
resources are allocated but rather for the time resources are actively used. So under
this pay-per-use model, developers are billed based on the consumed CPU time, so
function execution time multiplied by the specified CPU time.
Serverless functions promise seamless scaling of arbitrary code. In order to do

so, each function needs to be ephemeral, stateless, and executed in a provider-managed
runtime environment. Serverless functions are ephemeral, which means that develop-
ers can not assume that the execution environment stays available after a request is
processed. The ephemeral nature of serverless functions also enforces them to be
stateless as for example, values saved to static variables or initialized connections
1https://techcrunch.com/picloud-launches-serverless-computing-platform-to-the-public/
2https://aws.amazon.com//2014/11/13/introducing-aws-lambda/
3http://www-03.ibm.com/press/us/en/pressrelease/49158.wss
4https://venturebeat.com/2016/02/09/google-launched-its-answer-to-aws-lambda/
5https://azure.microsoft.com/announcing-general-availability-of-azure-functions/
6https://www.alliedmarketresearch.com/function-as-a-service-market-A06072
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might no longer be available when the function is executed a second time. Further,
developers need to select a provider-managed runtime environment, such as for
example Java 8, Java 17, or Python 3. Initially, this was a quite large constraint as AWS
Lambda supported only JavaScript upon release, but now the long-term support
(LTS) versions of most popular languages are available.

For the most part, serverless functions fulfill their promise of seamless scaling,
however, they are suffering from the performance challenge of so-called cold starts.
If no function instances are available to handle an incoming request, a new function
instance is started to handle the request. These cold starts could initially takemultiple
seconds, but cloud providers are continuously working to reduce this startup time.
Current studies indicate that a typical cold start only incurs a three-digit millisecond
overhead today, for an in-depth analysis of cold start times, we refer to an article
series by Mikhail Shilkov7.

Initially, serverless functions were used for inherently stateless applications, such
as chat bots [Yan+16] or single-page applications [Rad16], but have since been
shown to support complex use cases such as neural network training [Fen+18] and
serving [IMS18], seismic imaging [Wit+20], sequence comparison [Niu+19a], task
offloading [Fou+19], or social media platforms [AC17a].

2.1.3 Backend-as-a-Service

There is currently no widely accepted definition for Backend-as-a-Service and there
is quite some ambiguity in how the term is currently used. It is also often used
interchangeably with Mobil-Backend-as-a-Service, that is, managed backends for
mobile applications. For the context of this thesis, we consider Backend-as-a-Service
as the combination of managed services and third-party APIs.
Managed services implement application primitives, such as message brokers

(queues, pub/sub, etc.), request routing, file storage, databases, secret stores, or
key-value stores. Developers can instantiate and configure these services via a
management console, a CLI, or more commonly as Infrastructure-as-Code and can
then interact with these services from their code using software development kits
(SDKs) offered by the cloud provider. The cloud provider is responsible for the
availability, reliability, scalability, performance, deployment, and maintenance of
these services. Managed services implement different forms of the pay-per-use
pricing model, depending on the nature of the service. For example, a queueing
service might charge per message delivered by the queue, whereas blob storage
might charge per megabyte of upload and download, as well as a storage charge
per megabyte of data stored per month. While the complexity and exact nature of
the pricing models differ between managed services, they all charge for usage of the
service rather than for allocation of resources as is the case in IaaS.
7https://mikhail.io/serverless/coldstarts/
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Figure 2.1: The SPEC RG reference architecture for FaaS platforms [Eyk+19].

Third-party APIs differ from managed services in two areas: a) they are offered
by a third party instead of the cloud provider, and b) they implement specific appli-
cation logic, rather than application primitives. A great example for a third-party
API is Stripe8, which is a service that offers managed payment workflows, which can
be integrated into an application in the form of API calls. Other examples of services
offered by third-party APIs include chats, ticketing, surveys, user management, and
mailing lists. Generally, third-party APIs implement application fragments, that can
function on their own whereas managed services implement functionality that can
be used to build applications. However, this line can get blurred quickly, for example,
both AWS andAuth09 offer a service for themanagement and authentication of users
and it is unclear whether to count this as a managed service or a third-party API.
Therefore, for the remainder of this thesis, we will use the term managed services
interchangeably with Backend-as-a-Service to also include any managed third-party
APIs.

The use of managed services offers many benefits to developers. First, it offers the
classic benefits of software reuse in the form of libraries, such as improved develop-
ment speed and lower susceptibility to bugs. Further, as either a cloud provider or a
third-party vendor take care of the runtime management of the applications, they
likely offer better performance and higher availability as they are already operat-
ing these services for years. Finally, it reduces operational overhead as it reduces
operational overhead since developers do not need to operate these services.

2.1.4 Function-as-a-Service Platforms

Despite the rapidly increasing adoption of serverless computing, there is no commu-
nity-wide consensus on the fundamental architecture building blocks of Function-
as-a-Service platforms. In collaboration with the SPEC RG Cloud group10, we
8https://stripe.com/
9https://auth0.com/
10https://research.spec.org/working-groups/rg-cloud.html
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worked on distilling a reference architecture for Function-as-a-Service platforms
based on a systematic analysis of 47 diverse open-source and closed-source platforms,
ranging from workflow composition engines (e.g., Fission Workflows and AWS Step
Functions), to single-function engines (e.g., Apache OpenWhisk and AWS Lambda),
to cloud resource managers (e.g., Kubernetes) [Eyk+19]. The resulting reference
architecture is depicted in Figure 2.1. In the following, we discuss the resource
orchestration layer, function management layer, and workflow composition layer, and their
building blocks in detail.

2.1.4.1 Resource Orchestration Layer

At the lowest level in the reference architecture, the resource orchestration layer is
responsible for the management of physical resources of a cluster of machines. The
components in this layer manage the operational lifecycle of the containers or virtual
machines, which are consolidated on physical resources. We separate this generic
resource layer from the FaaS-specific layers, to indicate where the FaaS platforms fit
into the existing cloud infrastructure, and to capture the common approach of FaaS
platforms to delegate resource management to more mature systems. The resource
orchestration layer consists of:

1. Naming Service: provides cluster-wide unique and consistent naming to
resources. This allows components to identify each other.

2. Resource Manager: manages the available resources of cluster-nodes through
node agents, ensuring that the state of the resources conforms with the desired
state.

3. Resource Scheduler: determines which actions are needed to ensure that
the current state of the resources converges towards the desired state. The
scheduler decides for each job, on which resources it should be deployed.

4. Node Agent: is deployed on each node in the cluster. It monitors the local
resources, informs the resource manager, and executes instructions it receives
from the resource manager.

2.1.4.2 Function Management Layer

The function management layer contains the core components responsible for the
operational lifecycle of individual FaaS functions: deploying function instances,
executing functions triggered by events, and elastically scaling functions. Whereas
the resource orchestration layer is concerned with the management of arbitrary re-
sources, the function management layer manages arbitrary functions. In this layer,
the components rely on the lower-level layer for the correct management of the
resources. At its core, the function management layer consists of:
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1. Function Registry: is a function repository that is often further split into a
function metadata store, for low-latency look-ups of function metadata, and a
function store containing the binaries of the function (the function code).

2. Function Builder: turns function sources into deployable functions. Functions
typically have to undergo compilation, packaging, etc, before they are stored
in the function registry or deployed by the function deployer.

3. Function Deployer: combines the configuration stored in the function registry,
the parameters supplied by the requester, and other factors into a decision of
how the function should be deployed. The deployment of the function instance
itself is delegated to the resource orchestration layer.

4. Function Instance: is a self-contained worker—typically a container—capable
of handling function executions. For scalability, a function can have multiple,
concurrent function instances.

5. Function Router: routes incoming requests or events to the correct function
instance. If no function instance is available, the function router queues the events
to await the deployment of new instances.

6. Function Autoscaler: monitors the demand and supply of resources, and elas-
tically scales the number of function instances—adding or removing instances
as needed.

2.1.4.3 Workflow Composition Layer

Modern applications require the orchestration of multiple functions and the man-
agement of the inter-function state, which is the responsibility of the higher-level
workflow composition layer. As with the resource orchestration layer, we rely on the
extensive existing work on workflow management systems for the components of
this layer. The difference with original workflow systems is that serverless work-
flows are smaller, executedmore frequently, and havemore demanding performance
requirements. The workflow composition layer consists of:

1. Workflow Registry: serves as a repository of workflows. To be admitted to
this registry, a workflow typically requires validation and compilation of its
individual tasks.

2. Workflow Engine: is responsible for monitoring workflow executions. It takes
the appropriate action based on decisions from the workflow scheduler, such
as triggering the execution of functions in the workflow whose predecessors
have completed.
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Provider AWS Azure Google IBM
Invocation cost $0.2 ∗ 10−6 $0.2 ∗ 10−6 $0.2 ∗ 10−6 -
Memory [GB-s] 1.7 ∗ 10−5 1.6 ∗ 10−5 2.5 ∗ 10−6 1.7 ∗ 10−5
CPU [GHz-s] - - 1.0 ∗ 10−5 -
Billing interval 1ms* 1ms* 100ms 100ms

Table 2.1: Comparison of the pricing models of popular serverless function plat-
forms. *changed in 2021 from 100ms.

3. Workflow Scheduler: decides which functions to execute when. It makes
these decisions based on a number of factors, including the current state of
the workflow execution and historical data.

4. Workflow Execution Storage: ensures the persistence of data of workflow
executions. To ensure reliable workflow executions, a database holds the state
of workflow executions.

2.1.5 Serverless Pricing Models

One of the key characteristics of serverless computing compared to traditional cloud
computing models is the billing per use instead of allocated resources. For serverless
functions, the billing scheme between different cloud providers differs slightly, but
generally implements the same concepts: 1) a flat invocation cost that is billed
per function execution, 2) a charge for memory size of the function multiplied
by the execution time, 3) a charge for the CPU size of the function multiplied by
the execution time, and 4) the execution time is rounded up to the nearest 100ms.
Table 2.1 gives an overview of the exact pricing model for serverless functions by
AWS, Azure, Google, and IBM at the time of writing. All providers except for IBM
charge a flat invocation cost of $0.2 ∗ 10−6. At AWS, Azure, and IBM users can select
function sizes only by memory size, and the CPU size is scaled correspondingly,
so they only charge for memory time. Google, on the other hand, allows users
to define the memory and CPU size of a function independently, therefore they
have separate billing for the consumed memory and CPU time. Typically, the billed
memory/CPU time is rounded up to the nearest 100ms interval, however, Azure
uses per millisecond billing with a minimum of 100ms. Recently AWS also switched
to per millisecond billing 11. As an example, a function that runs on AWS for three
seconds with a memory size of 512 MB would cost:

3s · 0.5GB · 0.00001667$ + 0.0000002$ = 0.0000252$

11https://aws.amazon.com/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
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where 0.00001667$ is the price per consumed GB-s and 0.0000002$ is the static
overhead charge (0.7% of the total execution cost). For a more in-depth discussion
of the impact of this pricing model, we refer to an article by Eivy et al. [Eiv17].

A direct comparison of the pricing models of managed services across providers
is challenging as there often is no direct counterpart for every service [Yus+19].
Therefore, we will go over the popular services from AWS to exemplify the billing
models behind managed services. Amazon SQS, a managed queue, has a compar-
atively simple pricing model with a flat charge per message posted to the queue.
This amount of this flat charge depends on the volume of requests per month and
differs between unordered and First In, First Out (FIFO) queues. For Amazon SNS,
a managed pub/sub service, the billing model is more complex. First, there is again a
charge per message that depends on if FIFO is required, however, every message
is divided into chunks based on message size, that each counts as an individual
message. Further, there are data transfer charges that only apply to some target
destinations. Finally, there are additional charges for mobile push, email, and HTTP
notifications. Amazon S3, amanaged blob storage, offers four different six different stor-
age tiers based on the required availability, durability, and access pattern. For each
of these storage tiers, different rates apply for the following charges: GB/month of
stored data, PUT/COPY/POST/LIST requests, other requests, data retrieval requests,
GB of data retrieved, and data transfer to the Internet. Amazon DynamoDB, a man-
aged NoSQL database, differentiates between provisioned capacity and on-demand
billing (the serverless computing option). For the on-demand billing, developers
are charged a flat fee for every read and write request as well as a monthly fee per
stored GB. Additional charges are linked to features such as global tables, backups,
acceleration, streams, and data transfer to some other services. These are the pricing
models for just four out of the over 200 services AWS currently offers, which shows
how the pricing of serverless applications that combine many of these services can
get quite complicated.

2.1.6 Serverless Function Size

The main benefit of serverless functions compared to traditional compute solutions
is that the cloud provider opaquely takes care of common resource management
tasks such as resource provisioning, software deployment, or auto-scaling [AC17a;
Eyk+19]. However, there is still one resource management task that cloud providers
leave to developers: resource sizing. Resource sizing is the task of selecting howmuch
CPU, memory, I/O bandwidth, etc. are allocated to a worker instance [Sin+20; AL19;
Pir+15]. Most cloud providers implement the resource sizing of serverless functions
as a configurable memory size, where other resources such as CPU, network, or
I/O are scaled accordingly1213. Selecting an appropriate resource size is essential
12https://aws.amazon.com/lambda/pricing/
13https://cloud.ibm.com/functions/learn/pricing
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as it can often result in a faster execution at a lower cost. However, selecting an
appropriate resource size is challenging. A recent survey revealed that 47% of the
serverless functions in production use the default memory size setting, indicating
that developers often neglect resource sizing14.
The relationship between the memory size of a serverless function, the cost per

function execution, and the function execution time is quite counter-intuitive. A
common assumption is that a higher memory size results in a faster execution at
a higher price, since the allocated CPU, I/O, network, etc. capacity scales linearly
with the selected memory size. However, this is not the case due to the pricing
scheme most cloud providers employ, where the cost of an execution is calculated
based on the consumed GB-s of memory, that is, the execution time multiplied by
memory size. Increasing the memory size increases the cost per second, but also
decreases the execution time as more resources are allocated. As each function’s
execution time scales differently with additional resources, every function has a
unique cost/performance tradeoff.
Figure 2.2 shows how the execution time and cost per execution vary for four

different functions with different memory sizes based on data from [Cas20b]. The
function InvertMatrix creates and inverts a random matrix. Here, we can see that
increasing the memory size from 128MB to 256MB decreases the execution time
by 49.6%, with only a 1% increase in cost. For larger memory sizes, the execution
time still decreases almost linearly. The second function, PrimeNumbers, calculates
the first million prime numbers a thousand times, which is another CPU-intensive
task. Interestingly, the execution time of this function scales super-linearly with
increased memory sizes up to 2048MB, which results in a 92.9% faster execution
with simultaneously 13.3% reduced costs. Using a memory size of 3008MB further
speeds up the execution time, but it increases the execution cost. The third function,
DynamoDB, executes three queries against a DynamoDB table, which is a serverless
database. Here, the execution time decreases roughly linearly from 128MB to 512MB,
resulting in an 86.6% decreased execution time at a similar cost. However, further
increasing the memory only slightly reduces the execution time while increasing
costs by 587.5%. Lastly, the API-Call function calls an external API. Here, increasing
the memory has minimal impact on the execution time and only increases the cost
per execution.

We can conclude that: i) the impact of memory size configurations on execu-
tion time differs from function to function, ii) predicting the execution time for a
memory size is challenging, as even two seemingly CPU-intensive and two network-
intensive functions behave differently, and iii) selecting an appropriate memory size
is important as it can drastically improve performance at a similar or reduced cost.

14https://www.datadoghq.com/state-of-serverless/
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Figure 2.2: The mean execution time and cost for four serverless functions (adapted
from [Cas20b]).

2.2 Performance Engineering

In this section, we introduce the fundamental performance engineering concepts
related to this thesis. Section 2.2.1 covers performance testing, Sections 2.2.2 and
2.2.3 introduce white-box and black-box performance modeling respectively, and
finally, Section 2.2.4 discusses automated performance optimization.

2.2.1 Performance Testing

Performance testing is the process of measuring and ascertaining a system’s perfor-
mance-related aspects (e.g., response time, resource utilization, and throughput)
under a particular workload [JH15]. Performance testing helps to determine com-
pliance with performance goals and requirements, identify bottlenecks in a system,
and detect performance regressions. A typical performance testing process starts
with designing the performance tests according to the performance requirements.
These performance tests are then executed in a dedicated performance testing envi-
ronment, while the system under test is continuously monitored to collect system
runtime information including performance counters (e.g., response time and CPU
utilization), the system’s execution logs, and event traces. Finally, performance
analysts analyze the results of the performance testing.
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Conducting a performance test in the production environment may have a nega-
tive impact on the users of the production environment. Hence, performance tests
are often conducted in test (or staging) environments. However, it is challenging to
predict the production performance from a performance test on a smaller, less pow-
erful testing environment. For example, there is a discrepancy between performance
test results from a virtual and physical environment. Hence, the testing environment
should ideally be equal to the production environment. In addition, a heteroge-
neous testing environment makes the analysis of performance testing results more
challenging making a homogeneous testing environment more desirable.
In regards to the operational profile, that is, the user behavior, used in a perfor-

mance test, there are two types of performance tests: API-focused performance tests
and realistic performance tests. API-focused performance tests stress only a single
API endpoint and quantify the performance of this endpoint in isolation. Realistic
performance tests on the other hand aim to closely depict the behavior of real users.
API-focused performance tests are easier to set up, maintain and interpret. How-
ever, realistic performance tests more closely mirror the expected performance in
the production environment, as they correctly depict the overall system utilization,
which often impacts the performance of individual endpoints.

During the execution of a software system, it often takes some time to reach
its stable performance level under a given load. One typical example is that Java
programs need some time for the Just-In-Time (JIT) compilation before applications
achieve a steady state. During performance testing, the period before the software
system reaches steady-state is commonly known as the warm-up period, and the
period after that is considered as the steady-state period. There are many reasons for
the warm-up period, such as filling up buffers or caches, performing JIT compilation,
and absorbing temporary fluctuations in the system state. Since performance during
the warm-up period may fluctuate, in practice, performance engineers often remove
the duration of the unstable phase (i.e., warm-up period) of the performance test
and only consider the steady-state period in the performance test results. The most
intuitive way to determine the warm-up period is to simply remove a fixed duration
of time from the beginning of the performance testing results. We refer to a review
by Mahajan and Ingalls [MI04] for an overview of existing techniques to determine
the warm-up period.
One of the common use cases for performance tests is performance regression

testing, which aims to determine which code change caused a deterioration in the
performance of a software product. To determine this, single or multiple perfor-
mance tests are executed for each commit, and the results are analyzed to determine
after which commit the performance degraded. This process is often implemented
as part of a CI/CD pipeline. To avoid the need for manual analysis, techniques
from the area of change point detection (determining when a significant change in
a time series occurs) are used. For an overview of existing change point detection
techniques, we refer to a survey by Aminikhanghahi et al. [AC17b].
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2.2.2 White-box Performance Modeling

White-box performance modeling aims to build a model of an application based on
detailed information about the internals of the application, such as the underlying
hardware infrastructure, the distribution of software components on this hardware,
the control flow within and between the software components, the resource con-
sumption of the software components, and the usage profile. Therefore, it can only
be used if all this information is available to the performance engineer.
Examples for white-box performance models are queueing networks, layered

queueing networks, colored Petri nets, stochastic Petri nets, or stochastic process
algebras. To predict the expected performance of modeled applications, these mod-
els can be solved either analytically or based on simulations. Analytical solution
approaches, such as mean-value analysis, impose strict restrictions on the structure
of the underlying model, whereas simulation-based model solvers, such as QPME15,
LQNS16, or JMT17, can be applied to a larger class of models, but the simulation of
larger applications can get quite time-intensive.
A key parameter of these models is the so-called resource demand or service

demand, which is defined as ”the average time a unit of work (e.g., request or
transaction) spends obtaining service from a resource (e.g., CPU or hard disk) in a
system over all visits excluding any waiting times” [Spi+15]. The accuracy and level
of detail of the resource demands used in a white-box performance model is one of
the key influencing factors for its prediction accuracy, however, measuring them is
challenging. Therefore, a number of estimation approaches based on, for example,
Kalman-filters, queueing theory, regression models, or maximum likelihood estima-
tion have been proposed. For a comprehensive evaluation of these approaches, we
refer to a review by Spindler et al. [Spi+15].
One of the factors that inhibit the usage of, for example queueing models, in

practice is the semantic disconnect between the perspective of an engineer who is
thinking in terms of servers and software components and the theoretical concepts
of queues or Markov chains. Architectural performance models aim to bridge this
semantic gap by enabling the software engineer to model the application using
the concepts of servers, software components, interfaces, etc. These models are
then automatically transformed to stochastical models such as queueing models or
stochastic process algebras to predict the performance. Examples of such architec-
tural models are the Descartes Modeling Languague (DML)18, Unified Modeling
Language (UML) Modeling and Analysis of Real-Time and Embedded systems

15https://se.informatik.uni-wuerzburg.de/software-engineering-group/tools/qpme/
16http://www.sce.carleton.ca/rads/lqns
17http://jmt.sourceforge.net/
18https://se.informatik.uni-wuerzburg.de/software-engineering-group/tools/dml/descartes-

modeling-language/
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(MARTE)19 or the Palladio Component Model (PCM)20.
The main selling point of white-box performance models is their capability of

analyzing hypothetical scenarios without relying on extrapolation. By adapting
parameters of the model, white-box performance models can answer questions, such
as: What is the expected response time if the number of users doubles? How much
would the performance be improved by adding an additional server? How much
do I need to speed up the implementation of a component until it is no longer the
bottleneck in the system? However, white-box performance models also come with
the downside that they are very time-intensive to build and maintain.

Therefore, a number of techniques have been developed to automatically extract
white-box performance models. The component architecture and control flow are
usually extracted either from tracing information or via static code analysis. The
resource demands are traditionally extracted by combining measurement-based
approaches with the resource demand estimation approaches discussed above.
Finally, the information about the deployment and the underlying resource landscape
is derived from deployment descriptors and resource managers, such as Helm charts
in the case of Kubernetes.

2.2.3 Black-box Performance Modeling

In many scenarios, software developers do not have white-box access to all compo-
nents of their applications. The reasons can range from cloud providers obscuring
platform details or the usage of third-party APIs, to the fact that understanding
the details of for example an open-source database might be too time-consuming.
Therefore, black-box performance modeling techniques aim to model application
performance without knowledge of its internal structure and processes.

For most black-box performance modeling techniques, the general idea is the
same. First, the configuration space, that is, the number of variation points and their
potential values are defined. Then, for a subset of these configuration points, the
performance (e.g., response time, throughput, or utilization) is measured using
performance tests. Finally, a stochasticmodel or amachine learningmodel is fit based
on the performance of the measured configurations. The resulting model can then
predict the performance of the unmeasured configurations by inter/extrapolating
from the measured configurations.

One of the key parameters of such approaches is the number of measured config-
urations. On the one hand, measuring additional configurations tends to increase
the accuracy of the model, but on the other hand, there is a time and monetary
investment associated with every measured configuration. Therefore, black-box
performance modeling approaches aim to determine the minimal number of mea-
surements that offer an acceptable prediction accuracy. A common technique here is
19https://www.omg.org/spec/MARTE/
20https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model
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to incrementally increase the number of measurements until k-fold cross-validation
reports an acceptable prediction accuracy.
Another angle to optimize black-box performance models is the selection of the

measured configurations. Intuitively, it makes sense to select the measured configu-
rations so that they cover the full configuration space evenly. Another approach is
to iteratively select the next measured configuration based on in-model confidence,
which enables the approach to allocatemore samples to the areas of the configuration
space that shows higher performance variability. Interestingly, in a study by Alves
et al. [Alv+20], no measurement point selection strategy was able to outperform
random sampling.
The final key parameter that impacts the quality of a black-box performance

model is the selected modeling approach. Examples for modeling techniques in-
clude stochastic regression models (e.g., linear regression, Multivariate Adaptive
Regression Splines (MARS), or kriging), decision tree-based models (e.g., Classifi-
cation and Regression Trees (CART), M5 trees, or cubist forests), and optimization
techniques (e.g., genetic programming). There have been several studies comparing
these techniques, but there is currently no consensus on a single best technique as
the best performing technique depends on the data set [Wes+12; Noo+13].

An emerging trend to further reduce the number of required measurements is the
usage of transfer learning techniques. Here, a model is first trained on system A, and
then later transferred to system B. To adapt the model to a new system, additional
measurements on the new system are required so that the model can learn about the
differences between the two systems. The underlying idea is that many relationships
hold across most software systems, such as response time increases with higher load,
and therefore do not need to be relearned for every software system. In general, the
efficiency of transfer learning for black-box performance modeling highly depends
on the similarity of the two systems, with it performing better for very similar
systems, such as for example two variants of the same system, and transfer learning
being potentially detrimental if the systems are too dissimilar.

2.2.4 Automated Performance Optimization

Optimizing the performance of a software system is a classic performance engineer-
ing task, where the performance engineer attempts to find the system configuration
(deployment, resource allocation, cluster size, component configuration, etc.) that
exhibits the optimal performance properties (response time, throughput, resource
utilization, reliability, durability, etc.). A number of techniques have been proposed
to automate this process, which all follow a similar process. First, a selection cri-
terion determines which system configuration should be investigated next, then a
configuration evaluation approach is used to quantify the performance properties
of this system configuration. Next, a multi-objective optimization determines if this
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configuration is better than the existing system configurations. Finally, a termination
criterion determines whether additional system configurations should be explored.
The two common types of selection criterion are search-based and optimization-

based approaches. Search-based techniques aim to provide strong coverage of the
configuration space to find which configuration performs best, either through a full
exploration of the configuration space or based on heuristics if the configuration
space is too large. Optimization-based techniques, on the other hand, use an initial
system configuration and aim to improve up this configuration. While search-based
approaches tend to identify overall better system configurations, optimization-based
techniques tend to identify good system configurations that are close to the initial
configuration. This makes search-based approaches best suited for greenfield appli-
cations, whereas optimization-based approaches are better suited for brownfield
applications.
For automated performance evaluation, it is essential that the system properties

of interest (e.g., response time, throughput, utilization) can be quantified for every
system configuration selected by the selection criterion. If very high accuracy is
required, this is usually conducted using performance tests (see Section 2.2.1),
however, this can be very time- and cost-intensive. Alternatives are the use of white-
box performance modeling (see Section 2.2.2) or black-box performance modeling
(see Section 2.2.3) in scenarios where a slightly lower accuracy is tolerable.

The automated comparison of system configurations can be challenging even after
determining their performance properties. For example, configuration Amight have
a faster response time and better throughput, whereas configuration B has a lower
cost and better resource utilization. Such solutions (where no other configuration
is strictly better) are called Pareto-optimal. This challenge is usually addressed
using multi-objective optimization techniques, such as a priori methods, a posteriori
methods, and interactive methods. Here, we refer to a survey by Marler et. al.
on multi-objective optimization techniques [MA04]. Finally, once a termination
criterion such as a target performance, a time/cost budget, or sufficient coverage of
the configuration space is reached, the automated performance optimization returns
the best configuration it found alongside the expected performance properties of
this configuration.
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State-of-the-Art

This thesis makes contributions in multiple areas related to both serverless com-
puting and software performance modeling. In both of these fields, there already
exists a large number of related work that serves as the foundation upon which our
contributions build. In the following, we discuss the current state-of-the-art on both
serverless computing (Section 3.1) and software performancemodeling (Section 3.2).
We focus on the following topics, which are closely related to the contributions pre-
sented in this thesis: serverless applications (Section 3.1.1), performance variability
of serverless platforms (Section 3.1.2), and the cost prediction for serverless appli-
cations (Section 3.1.3) as well as hybrid performance models (Section 3.2.1) and
parametric dependencies (Section 3.2.2).

3.1 Serverless Computing

Since the announcement of AWS Lambda brought serverless computing into the
mainstream, researchers have increasingly investigated both serverless applications
and serverless platforms. In the following, we give an overview of the current
scientific state-of-the-art in regard to serverless applications (Section 3.1.1), perfor-
mance variability of serverless platforms (Section 3.1.2), and the cost prediction for
serverless applications (Section 3.1.3).

3.1.1 Serverless Applications

Serverless computing is an emerging technology with an increasing impact on our
modern society, and increasing adoption by academia and industry. As it is an
emerging technology, researchers are still trying to understand for which classes
of applications serverless computing is a good fit, and what the characteristics of
serverless applications in the wild are. In the following, we discuss existing case
studies for serverless applications (Section 3.1.1.1) and attempts to characterize
serverless applications (3.1.1.2).
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3.1.1.1 Serverless Application Case Studies

In the early stages of serverless computing adoption, researchers conducted a number
of case studies to determine the applicability and challenges of serverless computing
for different domains.
One of the first such case studies was conducted by Lehva et al. [LMM17], who

designed a messenger chatbot. They find that serverless messenger chatbots are not
only feasible but highly scalable, low-maintenance, and cost-efficient. As potential
challenges for serverless applications, they find limited debugging and complex
pricing models.

Fouladi et al. [Fou+17; Fou+19] investigate the feasibility of offloading tasks from
consumer computers to the cloud using serverless functions. Here, serverless offers
the advantage, compared to virtual machines, of being able to set up a highly parallel
execution environment within seconds for a small price. They showcase the benefits
of this approach for tasks such as video processing [Fou+17], software compilation,
unit testing, and object recognition [Fou+19].
Data analytics is another infrequently executed task that could profit from the

serverless pay-per-use model. Müller et. al. [MMA20] evaluate the applicability of
serverless computing for distributed data analytics. They find a number of limitations
that make this challenging but introduce Lambada, a framework that can be used to
overcome these challenges.

Tu et al. [TLL18] and Feng et al. [Fen+18] showcase that serverless functions can
be used for neural network serving and training respectively. Before, the potentially
large model size and the long training time of neural networks were considered
prohibitive, but the increasing maturity of serverless platforms alleviated many of
the previous roadblocks.
Hellerstein et al. [Hel+18] argued in 2018 that serverless computing is not well

suited for scientific computing tasks. However, in recent years, a number of suc-
cessful serverless scientific computing use cases were published. Witte et al. apply
serverless computing for seismic imaging [Wit+20], Cresp et al. for SNP Genotyp-
ing [Cre+19], Niu et al. for sequence comparison [Niu+19b], and Vazquez et al. for
magnetic field identification [VL18].
To summarize, serverless computing has been shown to be applicable in a wide

range of domains, even in domains that were initially considered unsuited.

3.1.1.2 Serverless Application Characterization

Despite a large number of case studies on the applicability of serverless computing,
there are very few academic efforts to characterize serverless applications, which
would help answer important questions, such asWhy developers build serverless ap-
plications?, When are serverless applications useful?, or How are serverless applications
implemented in practice?.
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Castro et al. [Cas+19] discuss ten applications collected from reports of successful
adoption of serverless computing by large companies. They argue that each of these
applications is a representative of a class of applications, such as event processing,
API composition, or map-reduce. However, they do not provide any characteristic
analysis on top of these collected use cases.
Eskandani et al. [ES21] collect a large data set of serverless open-source applica-

tions that use the serverless framework1 from Github. The authors argue that this
data set can provide the foundation for a number of studies such as the detection of
serverless security patterns, the analysis of serverless anti-patterns, the investiga-
tion of how serverless applications evolve, and the analysis of the characteristics of
serverless applications.

To summarize, there is to the best of our knowledge no existing study that examines
the characteristics of serverless applications.

3.1.2 Performance Variability of Serverless Platforms

Performance variability (that is, non-steady or non-uniform performance either
over time or across replicated instances) of cloud platforms due to, for example,
the scheduling, placement, or hardware heterogeneity of cloud resources has been
widely discussed for IaaS offerings, and initial studies for serverless systems also
exist. In the following, we introduce the existing work on the performance variability
of IaaS cloud offerings (Section 3.1.2.1) and the existing work on the performance
variability of serverless offerings (Section 3.1.2.2).

3.1.2.1 Performance Variability of IaaS Cloud Offerings

One of the first major studies on the performance variability of IaaS cloud offerings
was conducted by Schad et al. [SDQ10] in 2010, who investigated the performance
variability of EC2, the IaaS offering of AWS. Towards this goal, they conducted
hourly performance measurements of a map-reduce task for one month on both EC2
and a local cluster. They find that EC2 experiences a significantly larger performance
variation compared to the local cluster. Upon further investigation, they determine
that the performance falls into two groups depending on which CPU model is used
by the underlying hardware.
Iosup et al. [IYE11] investigate the performance variability of AWS and Google

Cloud based on performance data collected by Hyperic’s CloudStatus team, which
contains performance indicators for multiple cloud services of each provider. Based
on the data set for the year 2009, they determine that the performance variability
they observe is not purely random but can contain both monthly and yearly patterns.
They also find several time periods exhibiting stable performance.
1https://www.serverless.com/
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In 2016, Leitner and Cito [LC16] benchmark the performance of the IaaS solutions
of AWS, Google Cloud, Microsoft Azure, and IBM Cloud six times a day for a period
of a month using multiple microbenchmarks. Based on this data set, they investigate
15 hypotheses that they derived based on a systematic literature survey. Among
other things, they find reduced hardware heterogeneity and no clearly defined daily
or weekly patterns that would explain the observed performance variability.

To investigate the impact of the performance variability of Virtual Machines (VMs)
on performance assurance activities (e.g., performance testing and microbenchmark-
ing), Laaber et al. [LL18; LSL19] evaluated the variability of microbenchmarking
results in different virtualization environments and analyzed the results from a
statistical perspective. They found that not all cloud providers and instance types
are equally suited for performance microbenchmarking.

3.1.2.2 Performance Evaluation of Serverless Platforms

A number of empirical measurement studies to evaluate the performance of server-
less applications have been conducted, which we discuss in the following with a
focus on performance variability.
Lloyd et al. [Llo+18] examined the infrastructure elasticity, load balancing, pro-

visioning variation, infrastructure retention, and memory reservation size of AWS
Lambda and Azure Functions. They found that cold and warm execution times
are correlated with the number of containers per host, which makes the number of
containers per host a major source of performance variability.
Wang et al. [Wan+18a] conducted a large measurement study that focuses on

reverse engineering platform details. They found variation in the underlying CPU
model used and low performance isolation between multiple functions on the same
host. When they repeated a subset of their measurements about half a year later,
they found significant changes in the platform behavior.

Lee et al. [LSF18] analyzed the performance of CPU, memory, and disk-intensive
functions with different invocation patterns. They found that file I/O decreases with
increasing numbers of concurrent requests and that the response time distribution
remained stable for a varying workload on AWS.

Yu et al. [Yu+20] compared the performance of AWS Lambda to two open-source
platforms, OpenWhisk and Fn. They found that Linux CPU shares offer insufficient
performance isolation and that performance can degrade when co-locating different
applications.

However, while the performance of FaaS platforms has been extensively studied,
there has been little focus on the stability of these measurements over time.

There have also been a number of measurement tools and benchmarks developed
for serverless applications and platforms. Cordingly et al. [CSL20] introduced the
Serverless Application Analytics Framework (SAAF), a tool that allows profiling
FaaS workload performance and resource utilization on public clouds; however, it
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does not provide any example applications. They find that the performance vari-
ability of a CPU-intensive microbenchmark roughly doubles with parallel execution
compared to sequential execution due to the hardware heterogeneity.
Figiela et al. [Fig+18] introduced a benchmarking suite for serverless platforms

and evaluated the performance of AWS Lambda, Azure Functions, Google Cloud
Functions, and IBM Functions. The workloads included in the benchmarking suite
consist of synthetic benchmark functions, such as a Mersenne twister or Linpack
implementation. They found that function instances on AWS Lambda are executed
on four different processor models and are regularly recycled.
Kim et al. [KL19] proposed FunctionBench, a suite of function workloads for

various cloud providers. The functions included in FunctionBench closely resemble
realistic workloads, such as video processing or model serving, but they only cover
single functions and not entire applications. In summary, there has been a strong
focus on benchmarks and tooling around FaaS but much less focus on realistic
applications.

For further details on the current state of the performance evaluation of serverless
offerings, we refer to an extensive multi-vocal literature review by Scheuner et
al. [SL20]. This review also finds that the reproducibility of the surveyed studies is
a major challenge.

3.1.3 Cost Optimization of Serverless Applications

In a serverless computing model, most operational tasks are offloaded to the cloud
provider. However, engineering for cost-performance is still a developer responsibil-
ity [Eyk+18]. Therefore, we discuss the current state-of-the-art on the economics
of serverless computing (Section 3.1.3.1), the cost prediction of serverless func-
tions (Section 3.1.3.2), and the optimization of function size (Section 3.1.3.3).

3.1.3.1 Economics of Serverless Computing

There have been multiple publications discussing the general economic aspects and
pricing models of serverless computing.

In the work of Adzic and Chatley [AC17a], two industrial case studies of com-
panies migrating from traditional hosting options to serverless computing are pre-
sented. The companies reported cost savings of 66% and 95% respectively after
switching to serverless computing. The authors also discuss the non-constant re-
sponse times of serverless functions as a limitation of current serverless platforms.

Eivy et al. [Eiv17] claim that while the cost of serverless computing seems simple
on the surface, they are surprisingly complicated in practice. They discuss the
issue of rounding up the function execution times to 100 ms and that response time
estimates require deploying and testing the function. They also compare a serverless
solution to traditional hosting in a case study with a large-scale API, where the cost
for the serverless solution is almost trice the cost for the VM-based solution.
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Vazquez et al. [VL18] conducted a study on the applicability of serverless com-
puting for data-intensive applications. They compare a solution based on AWS
Lamba to using EC2 to process data collected by the MARS Express orbiter from the
European Space Agency. In their case study, both solutions incur a similar cost, but
the serverless solution is roughly twice as fast.

3.1.3.2 Cost Prediction and Optimization of Serverless Functions

The cost prediction and subsequent optimization of serverless functions and work-
flow enable the cost-efficient operation of serverless applications.

In the work of Boza et al. [Boz+17], an approach using model-based simulations
to compare the cost of reserved VMs, on-demand VMs, and serverless functions
is introduced. The authors propose to model serverless functions asM(t)/M/∞
queues, which assumes constant function response times and does not consider
the impact of input parameters. The authors further conducted a survey with 96
participants, which revealed that many companies rely on reserved VMs to simplify
financial planning.

Another approach to optimize the cost of serverlessworkflows bydecidingwhether
to fuse multiple functions into a larger function and which memory limit should be
allocated to a serverless function is proposed in the work by Elgmal [Elg18]. This
approach also relies on a constant value instead of a distribution for the response
time of the serverless function and does not consider the impact of input parameters
on the response time of a serverless function.

Gunasekaran et al. [Gun+19] propose the use of serverless functions in combina-
tion with VM-based hosting to enable Service Level Objective (SLO) and cost-aware
resource procurement. To enable the cost-aware decision-making between VM-
based hosting and serverless functions, the authors also rely on cost predictions for
the serverless functions. This approach also relies on a constant response time of
the serverless function and does not consider the impact of input parameters on the
response time of a serverless function.
However, none of these approaches consider the influence of input parameters

on the execution time and therefore execution cost, or the need to predict execution
time distributions for the accurate prediction of billed cost.

3.1.3.3 Analysis and Optimizing of Serverless Function Size

Zhang et al. [Zha+19] analyze the impact of different configuration options of
serverless functions on their cost and performance. They observe that the impact
of memory sizes is non-trivial and highly related to the workload. In 2018, Wang
et al. [Wan+18b] conducted one of the largest measurement studies of serverless
functions to date. They find thatmemory size impacts not only the function execution
time but also the cold start duration. Figiela et al. [Fig+18] introduce a benchmarking
framework for serverless functions on AWS, GCloud, and IBM Cloud. They find that
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the impact of memory size on execution time differs between providers and that
finding the best performing memory size is non-trivial. Back et al. [BA18] evaluate
the performance and cost model of public and private serverless function platforms
using microbenchmarks. They find that the relation between memory size and cost
is not linear and depends on the cloud provider.
These works showcase the need for the automated memory size optimization of

serverless functions, as it significantly impacts both the performance and cost of
serverless functions. To the best of our knowledge, there have currently been three
approaches proposed for the automated function size optimization for serverless
functions.

The first approach is the AWS power tuning tool, a popular open-source tool that
measures the impact of different memory sizes on the execution time and cost of a
serverless function [Cas20a]. A step function workflow coordinates the deployment,
performance measurement, and result collection for a set of predefined memory
configurations.
The second approach is COSE [Akh+20], which aims to reduce the number of

required measurements using Bayesian optimization. By learning a performance
model describing the relationship betweenmemory size and execution time based on
fewer measurement points, COSE can reduce the number of required performance
measurements.

Lastly, BATCH [Ali+20] is a framework for efficient machine learning serving on
serverless platforms. It relies on a profiler that measures a subset of the potential
configurations (that is, memory size, batch size, and timeout) and employs a multi-
variable polynomial regression model to estimate the performance of the remaining
configurations.

To summarize, all existing approaches for the memory size optimization of server-
less functions, combine sparse measurements with interpolation or modeling to
determine the optimal memory size, an approach that is commonly applied for
data analytics systems [Ven+16; Ali+17; HDB11]. However, all existing approaches
require measuring multiple function sizes.

3.2 Software Performance Models

Software performance models provide a powerful tool enabling performance pre-
diction for software systems. These performance predictions can be used for many
purposes, such as capacity planning [BKR09] and automated resource manage-
ment [Hub+17]. For serverless platforms and systems, many aspects of software
performance models can be directly reused, however, there are also open chal-
lenges [Eyk+18; MK21]. In the following, we discuss the current state-of-the-art
on hybrid performance models (Section 3.2.1) and parametric dependencies (Sec-
tion 3.2.2), which attempt to address some of these challenges.
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3.2.1 Hybrid Performance Models

Hybrid performance models aim to negate the downsides of white-box performance
models (long simulation time) and black-box performance models (limited extrapo-
lation) by combining them into a single model. In the following, this section dis-
cusses the current state of white-box performance models (Section 3.2.1.1), black-box
performance models (Section 3.2.1.2), model reduction techniques (Section 3.2.1.3),
and hybrid performance models (Section 3.2.1.4).

3.2.1.1 White-box Performance Models

The UML extension MARTE [ZJI15] is a commonly used architectural performance
model that focuses on real-time and embedded systems by extending the UML
modeling formalism with performance annotations. UML MARTE has later been
extended by the DICE profile to enable modeling of technology-specific aspects of
big data frameworks such as Hadoop or Spark [CP17].

Grassi et al. introduce Kernel LAnguage for PErformance and Reliability analysis
(CLAPER) [GMS07], a kernel language based on the Meta-Object Facility (MOF),
aims to simplify the transformation of design time models, such as UML, to analysis
models. By acting as an intermediary model between design and analysis mod-
els, CLAPER significantly reduces the number of required model transformations
compared to a full mapping from design models to analysis models.
The Palladio Component Model (PCM) [Reu+16] is a white-box performance

model for the prediction, analysis, and optimization of software projects during
design time. The PCM model is separated into five sub-models: (1) the compo-
nent repository, (2) the system assembly, (3) the resource environment, (4) the
deployment, and (5) the usage profile.
The Descartes Modeling Language (DML) [Gro+21; Hub+17] is a white-box

performance model to guide resource allocation at runtime. Towards this goal,
DML supports the automated, continuous extraction of model parameters from
monitoring data and the automated, performance-aware self-adaptation at runtime.

For an in-depth overviewofwhite-box performancemodels, we refer to the surveys
by Koziolek [Koz10] and Balsamo et al. [Bal+04].
In order to predict performance indices such as response time, throughput, or

hardware utilization, for each considered system state (i.e., system configuration in-
cluding resource allocations), these white-box performance models are transformed
to predictive stochastic models, such as queueing networks [AM20], layered queue-
ing networks [IPW18], colored Petri nets [JK15], stochastic Petri nets [ZH19], or
stochastic process algebras [MHS19]. These stochastic models can be solved either
analytically or based on an event-based simulation [Bro+15].
Analytical solution approaches, such as mean-value analysis [ZCS07], impose

strict restrictions on the structure of the underlying model making them inap-
plicable for complex software systems. Simulation-based model solvers, such as
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QPME [KD09], LQNS [Fra+09], or JMT [BCS09], can be applied to a larger class of
models, but for large software systems, the time required for the simulation often
becomes prohibitive [Nam+16; WFP07; Koz10]. To summarize, white-box perfor-
mance models are a powerful tool to analyze the performance of software systems,
however, the simulation time can be a limiting factor for larger systems.

3.2.1.2 Black-box Performance Models

Black-box performance models are also known as performance prediction func-
tions [Wes+12], software performance curves [FH12; WM10], performance predic-
tions using machine learning [Kwo+13] or performance predictions using statistical
techniques [The+10]. These approaches train machine learning/statistical models
on measurement data, which is usually collected during dedicated measurements.
These models are used to infer the performance of a software system with different
workloads or configurations.

Thereska et al. [The+10] build a black-box performance model to predict the
performance of several Microsoft applications, such as the Office suite or Visual
Studio. By instrumenting the applications, the authors collect data from several
hundred thousand real users. CART is used to filter relevant features, followed by a
similarity search to derive performance predictions.
Kwon et al. [Kwo+13] use a regression model to predict the performance of

Android applications to determine whether the task can be efficiently offloaded. The
authors train the regression model not only on the input parameters and the current
hardware utilization but also on values calculated during the program execution.
Westermann et al. [Wes+12] compare four techniques for the construction of

black-box performance models: MARS, CART, Genetic programming, and Kriging.
In their case studies, MARS significantly outperformed the other three approaches.
Additionally, the authors evaluate three different measurement point selection algo-
rithms, which reduce the required number of dedicated performance measurements.
Noorshams et al. [Noo+13] evaluate the accuracy of regression techniques for

the black-box performance prediction of storage systems: linear regression, MARS,
CART, M5 Trees, and Cubist Forests. The authors propose an approach to optimize
the parameterization of the individual algorithms. With their parameter optimiza-
tion, MARS and Cubist outperform CART, M5 Trees, and the linear regression in
their case study.
Faber et al. [FH12] use genetic programming to derive software performance

curves. They introduce parameter optimization approaches and a technique to
prevent overfitting for genetic programming. In their evaluation, the optimized
genetic programming approach outperforms an unoptimized MARS model.

To summarize, black-box performance models can predict the impact of changes
in workload intensity and workload parameterization well but are unreliable when
predicting the impact of changes to the system or its deployment.
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3.2.1.3 Performance Model Reduction

Various techniques to reduce or simplify performance models have been proposed.
Some techniques aim to improve the model solution speed whereas others attempt
to make the model easier to understand for human users.
Queueing networks can be simplified by replacing a number of nodes with a

so-called flow-equivalent server [Bol+98; Laz+84]. A flow-equivalent server is a
load-dependent queue, which perfectly emulates the delay caused by a subsystem.
The resulting network can be solved faster using analytical approaches, such as
convolution or mean value analysis. However, flow-equivalent servers come with
two drawbacks: i) the representation as a load-dependent queue is cumbersome
for discrete-event-simulation and ii) in order to construct a flow-equivalent server,
the short-circuited network needs to be solved once for every possible number of
concurrent users, so in order to construct a flow-equivalent server for a system with
a thousand users, the model needs to be solved a thousand times.
The method of surrogate delays by Jacobson et al. [JL81] enables an analytical

solution for models with simultaneous resource possession. The approach requires
a model, where the primary resource is estimated by a delay and another one where
the secondary resource is estimated by a delay. While this method does reduce the
initial model, it requires an additional model and does not provide any advantages
when solved using simulation.

A more recent approach by Islam et al. [IPW15] reduces the size of layered queue-
ing networks by aggregating activities, tasks, and entries of non-bottleneck resources.
This approach is extended by an improved approach for the identification of tasks
that can be safely aggregated [IPW18]. As this approach permanently reduces the
model, it is no longer possible to accurately analyze the impact of reconfigurations
or deployment changes for non-bottleneck resources.
To the best of our knowledge, there is no existing model reduction approach for

simulation-based solvers that enables faster model solution while retaining the full
flexibility and accuracy of the initial model.

3.2.1.4 Hybrid Performance Models

Some existing approaches aim to utilize hybrid performance models, that is, combi-
nations of black-box and white-box performance models in order to negate some of
the downsides of the individual formalisms.

Therefore, Noorshams et al. [Noo+14] propose a methodology to enrich software
architecture modeling approaches with black-box I/O performance models. Storage
access is modeled as traditional resource access, but the response time of the storage
system is determined by a black-box model. This approach enables accurate perfor-
mance predictions for software systems using dedicated storage systems, without
having to explicitly model them. This approach is limited to storage systems and
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does not allow to dynamically switch between the black-box model and a traditional
queueing model for the storage system.

Woodside et al. [WPS02] propose the concept of performance-related completions,
where an abstract model element is later replaced with a concrete model, once the
information is available. Happe et al. [Hap+10] extend this approach by using
platform-independent model skeletons. The platform-specific details are derived
based on measurements from automatically generated test drivers. This approach
incorporates measurements in performance models in order to improve the param-
eterization of the performance model and therefore the performance prediction
accuracy.

To the best of our knowledge, no existing approach allows to dynamically switch
between black-box response time models and queueing model representations for
generic components or sub-systems.

3.2.2 Parametric Dependencies

Providing accurate performance predictions using white-box performance models
requires the modeling of several system properties. Specifically, it requires the
explicit modeling of dependencies between different model parameters, for example,
the resource demand of a service might depend on the value of its input parameters.
Modeling such parametric dependencies expands the range of system settings that
can be accurately modeled [BHK14; BCK07; Koz08; KKR10]. Formal modeling
of parametric dependencies allows predicting the impact of changing workloads,
system reconfigurations, and deployment changes using a single performancemodel.
The SPEC RG Cloud2 also identified modeling the impact of parameters on the
performance of serverless functions as a performance challenge for Function-as-a-
Service architectures [Eyk+18]. Therefore, in the following, we present the current
state-of-the-art on modeling parametric dependencies (Section 3.2.2.2) and the
automated learning of parametric dependencies (Section 3.2.2.1).

3.2.2.1 Automated Learning of Parametric Dependencies

Manual modeling of parametric dependencies is quite cumbersome and therefore a
number of techniques for the automated learning of parametric dependencies have
been proposed.
Krogmann et. al. [KKR10] propose an approach to extract a model that depicts

the influence of the execution platform, the usage profile, and the control flow on
the resource demand of software components. The models are learned at runtime
from monitoring data, bytecode counts, and static bytecode analysis using genetic
programming. The resulting model can predict the performance behavior of a
software component in scenarios with previously unobserved execution platform,
2https://research.spec.org/working-groups/rg-cloud/
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Modeling Feature
Static Parameter

Model
Dynamic Parameter

Model
Persistent Parameter

Model
[WW04; GM01] [Koz08; Sit+01] [HBR14]
[Zsc10; LGF05] [Ham09; Bon+05]

In- and output parameters × X X
Component-level dep. × X X
Dependency chaining × X X
Instance-level dep. × × ×
Multiple descriptions × × ×
Correlations as dep. × (X) (X)

Table 3.1: Support of parametric dependency modeling features by existing perfor-
mance modeling approaches.

usage profile, and control flow. However, the bytecode counter monitoring incurs
significant overheads.
Brosig et. al. [BHK11] forgo the requirement for bytecode counter monitoring

and propose an approach to learn the general model structure, model parameters,
and probabilistic parameter dependencies based on run-time monitoring data. The
extraction of probabilistic parameter dependencies assumes that every target variable
can only depend on a single influencing factor and then estimates the probability
mass function based on the observed tuples of target and influencing variables.
Mazkatli et. al. [Maz+20] argue that learning the full performance model for

every deployment in a DevOps environment is too costly and time-intensive and
therefore propose an approach for the incremental extraction of performance models
including parametric dependencies. For every commit, the changes in the source
code are analyzed to determine which parts of the model have potentially changed.
Next, adaptive monitoring allows to selectively monitor only the relevant parts of
the application. Finally, the model is updated and a self-validation phase determines
if the resulting model can accurately depict the changed performance of the system.

3.2.2.2 Modeling Parametric Dependencies

We categorize existing performance modeling approaches according to their para-
metric dependency modeling capabilities into four categories:

a)Modeling formalisms having no parameter model lackmodeling features tomodel
parameters or their impact on the performance of individual components. Such
models cannot capture changing workload mixes and system configurations within
a single model. Examples include stochastic formalisms, like Queueing Network
(QN), QPN, Layered Queueing Network (LQN), and process models, as well as
some architectural models [GMW97; MM02; WI03].
b) Meta-models with a static parameter model, as presented in [WW04; GM01;

Zsc10; LGF05], allow for the parametrization of component instances to model the
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influence of instance-specific parameters on component performance. However,
these approaches require each component instance to be parameterized individu-
ally. They lack features to model the impact of deployment changes on component
performance. Instance-specific parameters can be hardware parameters, such as
processing rate or number of cores, or software parameters, such as operating system,
hypervisor, or number of virtual cores [Zsc10]. Parameters can also be used tomodel
different component configurations, as for example, two instances of a compres-
sion component with different compression rates. Resource demands and external
call frequencies can be described as a linear combination of the static parameters
[GM01].
c) Dynamic parameter models are supported for example, by PCM [Koz08], RE-

SOLVE [Sit+01], HAMLET [Ham09], ROBOCOP [Bon+05]. While these models
suit design-time analysis, they encounter deficiencies at run-time. This class of mod-
els allows the modeling of input [Bon+05] and output parameters for components
and external calls [Koz08]. The resolution of parameter values propagates from
caller to callee which makes parameter values dependent on the deployment context.
Correlations that do not propagate from caller to callee cannot be modeled.
d) Persistent parameter models allow modeling internal states for subsystems and

components based on parameters [HBR14]. Internal state means that the perfor-
mance of consecutive calls to the same component are no longer statistically inde-
pendent. These parameters may change during the model simulation impacting the
component behavior. Modeling the internal state increases the prediction accuracy,
but cannot accurately model run-time specific behavior.

Table 3.1 compares the capabilities of existing modeling approaches with regard
to modeling of parametric dependencies. The symbol ×means the approach does
not support the modeling feature, (X) indicates partial support, and X stands for
complete support. To summarize, none of the related approaches provides means
to model correlations as dependencies, instance-level dependencies, or multiple
descriptions of the same variable.
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Chapter 4

Evaluation of the Characteristics and
Performance of Serverless Applications

Many aspects of serverless applications are currently poorly understood, which
could hinder the widespread adoption of serverless computing. There exist only few,
scattered, and often conflicting reports on the characteristics of serverless applica-
tions, which means that developers, academics, and managers often have conflicting
views on the characteristics of serverless applications, as described in Challenge 1.
Further, the performance of serverless applications could theoretically change at any
time if the provider makes changes to the underlying hardware or software stack.
As outlined in Challenge 2, there is currently no data on how often the performance
of serverless applications changes and how impactful these changes are.

Our first contribution aims to address Challenge 1 and Challenge 2 by improving
the understanding of serverless applications on the basis of two empirical studies.
The first study systematically collects a total of 89 serverless applications and analyzes
them in regard to characteristics, such as execution pattern, workflow coordination,
use of external services, and motivation for adopting the serverless paradigm. We
complement this data with an analysis of the community consensus regarding
these characteristics. The second study is an exploratory case study on the stability
of performance measurements of serverless applications using a representative,
production-grade serverless application. Our longitudinal analysis investigates the
daily performance variation over a period of ten months.
In the following, Section 4.1 introduces our efforts towards the systematic and

comprehensive analysis of the characteristics of serverless applications, and Sec-
tion 4.2 introduces our case study for the analysis of the performance variability of
serverless applications in general and over longer periods of time.

4.1 Characteristics of Serverless Applications

There exist only few, scattered, and sometimes conflicting reports addressing im-
portant questions such as Why do developers build serverless applications?, When are
serverless applications useful?, or How are serverless applications implemented in prac-
tice? For example, although some report significant cost savings by switching to
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serverless applications [AC17a; Lev20], others identify a higher cost compared to
traditional hosting in some scenarios [Eiv17]. Similarly, although reports of success-
ful serverless applications for data-intensive applications exist [Wit+20; Cre+19],
other reports claim that serverless computing is not well suited for data-intensive
applications [Hel+18]. As a third and last example, although a recent study differ-
entiates between containers and serverless computing and finds the former to be
preferable for latency-critical tasks [Cha18], others see them as connected [Pah+19;
Mae+20] or report successfully applying serverless computing to latency-critical,
user-facing traffic [Orf18]. Having concrete information on these topics would be
valuable for developers, to guide decisions on whether serverless computing is a
suitable paradigm for their specific application.
This study targets Goal I (“Provide quantitative data on the common characteristics

of modern serverless applications.”) by systematically gathering the largest collection
of serverless applications to date, the comprehensive characterization of serverless
applications, and the first analysis of community consensus on the characteristics of
serverless applications. Building on resources created by the community [PAM19;
SA19], we systematically collect a total of 89 serverless applications from four differ-
ent sources. This is the largest collection of serverless applications to date, by a factor
of 8.9x over the next largest [Cas+19]. Next, we characterize each application from
our collection, through a systematic and comprehensive pair-reviewing process,
with regard to 16 characteristics, such as execution pattern, workflow coordination,
use of external services, and motivation for adopting serverless computing. This
addresses RQ I.1 (“What are common characteristics of current serverless applications?”).
Finally, we conduct a literature search, finding ten, mostly industrial, web surveys
and datasets on the characteristics of serverless applications. We compare the re-
sults of these studies to this study, to identify characteristics for which there is a
consensus among multiple studies and investigate points of disagreement, which an-
swers RQ I.2 (“Is there a community consensus on the common characteristics of serverless
applications?”).

The remainder of this section is structured as follows: Section 4.1.1 describes our
methodology for the collection of serverless applications, Section 4.1.2 details our
process to identify the characteristics of serverless applications, and Section 4.1.3
outlines our methodology for the identification of community consensus. Finally,
Section 4.1.4 discusses the limitations and threats to the validity of this study. The
results of this study are discussed in Section 7.1.

4.1.1 Collecting Serverless Applications

Serverless applications have been described in many kinds of materials written for
experts including peer-reviewed academic publications, open-source projects, blog
posts, podcasts, talks, and provider-reported success stories. The field is only a few
years old, so any of these types of materials could include meaningful and unique
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Figure 4.1: Methodology for serverless application collection (left part, Section 4.1.1)
and characterization (right part, Section 4.1.2).

material. We aim to create a process for collecting a large number of descriptions of
serverless applications, spanning this range of materials judiciously and without a
strong selection bias toward one or another. Our aim is not that the process should
be exhaustive; doing so while the field is still growing and new applications are still
emerging would not be useful in the long term. Figure 4.1 shows the result of our
use of this process—a large, varied sample, obtained from the following sources:

Open-source projects (Figure 4.1, component A):We start with an existing dataset
on open-source serverless projects [PAM19]. We remove small and inactive projects
based on the number of files, commits, contributors, and watchers. Next, we man-
ually filter the resulting dataset to retain only projects that implement serverless
applications. Finally, we select only projects that have an active and appreciative com-
munity (projects with over 50 stars). This results in a set of 32 serverless applications
from open-source projects.

Academic literature (Figure 4.1, B): We base our search on an existing, communi-
ty-curated dataset on literature for serverless computing of over 180 peer-reviewed
articles [SA19]. As we were familiar with five additional publications describing
serverless applications, we contribute them to the community-curated dataset and
include them in this study. We first filter all the articles based on title and abstract and
remove any articles that implement only a single function for evaluation purposes
or do not include sufficient detail to enable a review. This results in 23 serverless
applications from academic literature.
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Industrial literature (Figure 4.1, C): There are many blog posts by companies or
individuals, talks at industry conferences, and provider-reported success stories
that describe serverless applications. We filter the case studies reported by the major
serverless providers (AWS, Azure, Google, and IBM) and select from them the
solutions that depend on serverless technology. We also include the ten applications
reported in a recent article [Cas+19], which until this work is the largest public
collection of serverless applications from industrial literature. We further extend
this collection with industrial literature describing serverless applications in main
industry events (e.g., KubeCon). This process results in 28 serverless applications
from industrial literature.

Scientific computing (Figure 4.1, D): The scientific computing community is
showing increasing interest in serverless solutions (e.g., at NASA [Wal19a] and
CERN [Blo+19]). However, most of these applications are still at an early stage,
with scarce public information. To address this deficit of public data, we collect and
include information from the German Aerospace Center (DLR) and the German
Electron Synchrotron (DESY) in this work. This results in 6 serverless applications
from the area of scientific computing.

For each of these sources, we use the same predefined inclusion (I) and exclusion
(E) criteria to determine if an application should be included in our dataset:

I1 Concrete application. Real-world use is a plus.

I2 Application description has sufficient detail to conduct a meaningful review.
(Exclude high-level descriptions that lack technical detail.)

E1 Serverless platforms and frameworks, as these are not serverless applications.

E2 Boilerplate code and simple technology demonstrations, as they do not consti-
tute real-world applications.

I3/E3 Include only one out of multiple academic papers describing the same use
case. For example, many academic papers discuss serverless neural network
serving [IMS18; Bha+19; TLL18], but we only include a single representative
paper.

Based on this methodology, we collect a diverse dataset of 89 serverless appli-
cations from open-source projects, academic literature, industrial literature, and
scientific computing. This dataset (see Figure 4.1, component E) is publicly avail-
able as part of our replication package. Out of the total of 89 applications, 55% are
used in production, and 53% are open-source. Researchers can use this dataset to
study different applications, which facilitates extracting meaningful patterns and
could trigger new designs. The dataset can also help with identifying representative
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Figure 4.2: Two examples of serverless applications from our collected dataset of 89
serverless applications.

applications, which can later be used for the evaluation of novel approaches and in
empirical studies. Engineers can find useful examples in the dataset and identify
areas in which serverless computing is successfully applied, to help decide whether
to adopt serverless computing and to select blueprints for similar use cases. Platform
providers can extract knowledge on how their products are used and thus opti-
mize them, and any gaps in adoption that can point out deficits in current platform
capabilities.
Figure 4.2 shows two example serverless applications from our dataset. Fig-

ure 4.2(a) depicts the serverless backend of Coca-Cola vending machines—an oper-
ation that handles 30 million requests per year. Figure 4.2(b) illustrates the open-
source application StreamAlert, by Airbnb, which allows the validation of security
rules on streams of log data. Both applications use the cloud provider AWS but are im-
plemented in different programming languages. The architecture of these applications
is different: whereas the vending machine uses a single external service, a managed
cloud API gateway, StreamAlert uses several, including managed databases, man-
aged streaming, managed queues, and managed storage. They use different trigger
types, HTTP requests for the vending-machine backend, cloud events for StreamAlert.
The number of serverless functions also differs: whereas the vending machine backend
uses a single serverless function, StreamAlert consists of many serverless functions.
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The workload of both applications further differs in execution pattern, burstiness, and
data volume. The vending machine backend focuses on cost savings as the motivation
behind adopting serverless computing, whereas StreamAlert seems to choose server-
less computing to avoid operational overheads. Motivated by this comparison, we
focus in the next section on analyzing these andmore characteristics for all serverless
applications in our dataset.

4.1.2 Determining the Characteristics

Figure 4.1, points 1–4, gives an overview of our methodology to identify the charac-
teristics of serverless applications. Although we apply the methodology described in
the following on the dataset collected in Section 4.1.1, the characterization method-
ology we introduce here could be applied to other, similar datasets. This level
of generality allows further comparison between studies, a feature we leverage to
conduct our own cross-community study, in Section 4.1.3.
We first identify and formalize the set of investigated characteristics through a

multi-round process. In an initial round, we start from a set of questions, and each
collaborator suggests characteristics independently, based on expertise. In the next
round, wemerge similar characteristics and retain only the characteristics that at least
two collaborators consider relevant, in this work, 22 characteristics. Based on group
discussion, we further define for each characteristic either the range of values or an
exhaustive set of potential values, as applicable. For some characteristics, we cannot
define a set of potential values before reviewing the applications. For these charac-
teristics, we use text fragments during the review. Using thematic coding [CA96;
GMN11], we extract codes and treat those as values for these characteristics.

We then conduct an initial round of reviews (Figure 4.1, label 1 ). Each application
is assigned two reviewers out of a pool of seven available reviewers. We manually
adjust a few reviewer assignments to reduce the number of coinciding reviewer
pairs. Subsequently, each reviewer individually assigns values to all characteristics
of their assigned applications. For the scientific applications, a different approach
was necessary, because many were not publicly available at the time of our review.
Therefore, these applications are reviewed by a single domain expert, which was
either involved in the development of the application or in direct contact with the
development (Figure 4.1, label 2 ). Our replication package contains descriptions
of the scientific use cases and outlines which domain experts were consulted for
each application.

Each review of an application characterizes it according to 22 characteristics: cloud
platform, programming languages, external services, trigger types, number of functions,
execution pattern, burstiness, data volume, application type, function runtime, latency
relevance, motivation, cost/performance tradeoff, resource bounds, locality requirements,
update frequency, domain, is it a workflow?, workflow coordination, workflow structure,
workflow size, and workflow internal parallelism. For each, the result is typically a
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value, one of the possible values for that dimension. However, if the information to
determine a characteristic for a serverless application is not available, we label the
characteristic as ”Unknown” for this application.
After completing the initial round of reviews, we calculate the Fleiss’ kappa

to quantify the level of agreement between the reviewers [Gwe14] (Figure 4.1,
label 3 ). We exclude all characteristics that use thematic coding and all characteristic
assignments where at least one reviewer assigned more than one value, as the Fleiss’
kappa can not be calculated in these cases. As each characteristic has a different
number of possible values, we calculate Fleiss’ kappa value for each characteristic
individually and then quantify the overall agreement with a weighted average over
the individual Fleiss’ kappa value of each characteristic. This results in a Fleiss’
kappa value of 0.48, which can be interpreted as “moderate agreement” [LK77].
In the following discussion and consolidation phase (Figure 4.1, label 4 ), the

reviewers compare their notes and try to reach a consensus for the characteristics
with conflicting assignments. For most conflicts, consolidation turned out to be a
quick process, as the most frequent type of conflict was that one reviewer found
additional documentation that the other reviewer did not find. In only a few cases,
the two reviewers still have different interpretations of a characteristic; these conflicts
are discussed among all collaborators to ensure that characteristic interpretations
are consistent. Following this process, we were able to resolve all conflicts.

Our process is data-driven, so it also has to account for missing or malformed data.
For 6 characteristics (resource bounds, locality requirements, update frequency, domain,
workflow internal parallelism, and cost/performance tradeoff ), many applications are
assigned the “Unknown” value, that is the reviewers were not able to determine the
value of this characteristic, as the required information was missing in the documen-
tation. Therefore, we exclude these characteristics without sufficient information
available.

For the remaining 16 characteristics, the percentage of “Unknowns” ranges from
0–19%, with two outliers at 25% and 30%. These ”Unknowns” are excluded in the
percentage values presented in Section 7.1. A breakdown per characteristic of the
“Unknown” percentages is available in our replication package. Additionally, for a
single characteristic (the application type), the list of potential values turned out to
be inadequate, so we repeat the mapping for this characteristic with a new set of
potential values that were again derived with the above described process.

4.1.3 Finding Community Consensus

Because the field of serverless applications is relatively new and fast-evolving, reach-
ing community consensus about application patterns and best practices is both
desirable and challenging. This section aims to analyze existing studies that analyze
one or several characteristics that we also study, and determine if overlapping studies
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corroborate our findings or contradict them. The results from this comparisonare a
necessary first step towards reaching community consensus.
We aim to find and compare with existing studies in the community on the

characteristics of serverless applications. Our methodology consists of three parts: a
literature search to identify related studies, mapping their findings to our framework,
and quantifying the degree of agreement.

4.1.3.1 Identification of Related Studies

To identify existing surveys and datasets that also investigate at least one of the
characteristics investigated in this work, we conducted a literature search. As we
are mostly looking for industrial studies and datasets, we use Google as the search
engine with the following search term:

(“serverless” OR “faas”) AND

(“dataset” OR “survey” OR “report”)

after: 2018-01-01

This search term looks for any combination of either serverless or FaaS alongside
any of the terms: dataset, survey, or report. We further limit the search to articles
since 2018, as serverless computing is a fast-moving field, and therefore any older
studies are likely outdated. This search term results in a total of 173 unfiltered results.
To validate if using only a single search engine is sufficient, and the search term

is broad enough, we check if the seven studies that we were already familiar with
appear in the results. Because the search results include all these studies, we conclude
our literature search is broad enough.
We identified relevant results as follows. In the first iteration, to keep primary

sources, we filter out results that do not report original data. We remove all reports
on secondary data, where the original study was already contained in the search
results. This process results in a total of 16 primary studies. Finally, we determine for
each primary study if they investigate one of our characteristics. This resulted in a
total of 10 related studies, which Table 4.1 summarizes. The related studies include
7 surveys and 3 datasets, surveys from 19 to 2 400 participants, and reports between
2018 and 2020.

In the following, we give a short description of each related study, as the method-
ology and context of each study are important for the correct interpretation of their
results.

Serverless Community Study (SCS) This is an online survey among 583 partici-
pants from the serverless community, conducted in April 2020. It mostly focuses on
end-user concerns, such as how far the end-user is in adopting serverless computing
and what challenges they experience.
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Table 4.1: Overview of the related studies.
Study Year Type Participants Source
SitW 2020 Dataset - https://bit.ly/3bl2vHM
TSoS 2020 Dataset - https://bit.ly/2Zp9zOh
FtLoS 2020 Dataset - https://bit.ly/3diWZrY
SCS 2020 Survey 583 https://bit.ly/37p56j4
FSS 2020 Survey ˜150 https://bit.ly/2ZsIVUM
OSS 2019 Survey >1500 https://bit.ly/3dnViJH
MMS 2018 Survey 182 https://bit.ly/3dpcJd6
DSS 2018 Survey 19 https://bit.ly/3qybX15
CNCF 2018 Survey 2400 https://bit.ly/2M2sjQz
GtST 2018 Survey 608 https://bit.ly/3biElxO

Serverless in the Wild (SitW) In 2020, researchers at Microsoft published one of
the first comprehensive characterization studies of the workloads of a major (and
closed-source) serverless platform. For this, they released all function invocations
on the Azure Functions platform for two weeks.

Mixed-Method Study (MMS) The academic mixed-method study combines semi-
structured practitioner interviews with 12 experts, a systematic review of 50 grey
literature articles, and a quantitative survey covering 182 responses to investigate
FaaS software development in industrial practice. Our study only compares against
their web survey results from early 2018.

The State of Serverless (TSoS) This study compiles usage data from the cus-
tomer base of Datadog, a vendor of serverless monitoring solutions. This data was
published in early 2020 and focuses solely on AWS Lambda.

O’Reilly Serverless Survey (OSS) In June 2019, O’Reilly surveyed over 1,500
participants from diverse locations, companies, and industries on the adoption of
serverless computing.

Guide to Serverless Technologies (GtST) As part of the ebook, "Guide to Server-
less Technologies", The New Stack surveyed 608 participants interested in serverless
technology. The survey participants were primarily recruited through the company’s
newsletter and their social media reach-out.
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For the Love of Serverless (FtLoS) New Relic, a vendor for a serverless monitor-
ing solution, analyzed serverless computing trends in 2020, based on data covering
a sample set of the trillions of serverless events that their product processes.

Fastly Serverless Survey (FSS) Soon after the launch of the beta version of Com-
pute@Edge, Fastly conducted in the beta community a survey about trends and
challenges.

Dashbird Serverless Survey (DSS) In 2018, Dashbird surveyed its customers on
why they switched to serverless computing, what problems they were trying to
solve, and the biggest benefits and drawbacks. The 19 companies in the survey use
Dashbird’s observability solution on AWS workloads.

CNCF Survey (CNCF) The Cloud Native Computing Foundation regularly sur-
veys its community about the adoption of cloud-native technologies. The 2018
survey includes some questions on serverless adoption and platforms.

4.1.3.2 Mapping the Results to our Framework

Because the related studies (identified in Section 4.1.3.1) offer different answer options
than our study, we map their options to ours. In many cases, this is straightforward,
for example, when mapping “HTTP” to “HTTP Request”.

When the granularities of offered options differ between studies, we aggre-
gate lower-granularity options to match the higher granularity. In case the lower-
granularity options include multiple answers, we select only the highest value
instead of aggregating values, to avoid counting a single study participant multiple
times. We provide a detailed account of the mapping for each characteristic and
related study as part of our replication package.

4.1.3.3 Quantifying the Degree of Agreement

For many studies, some information required for traditional meta-analysis tech-
niques [BG01], such as cohort size, is unavailable. This prevents the direct applica-
tion of these meta-analysis techniques.

We propose an agreement metric, a total that equally weighs the agreement of
the reported percentage values and the agreement of the reported ranking:

At = 0.5×Ap + 0.5×Ar

where At represents the total agreement, Ap the agreement of the reported percent-
age values, and Ar the agreement of the reported ranking, with Ap and Ar defined
in the following.
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We calculate the percentage agreement as the weighted Mean Absolute Per-
centage Error (MAPE), with the reported percentage value of each answer as the
weight:

Ap =
N∑
i=1

Min(1, ui)×
|ui − ti|
ui

where N denotes the number of answer-options; and ui/ti are the percentage value
reported for option i in our study and the related study, respectively. The formula
caps the MAPE for each option at 100%, as otherwise, options with very low percent-
age values would dominate the MAPE [Mak93]. In some cases, one of the studies
allows a participant to select multiple options, while the other study only allows for
a single option. To compare these results, we calculate a scaling factor based on the
percentage difference of the largest reported values by both studies and scale the
results from the study with multiple answers per participant accordingly.

We calculate the agreement regarding the reported ranking as follows:

Ar =
S(u, t) + 1

2

We use Spearman’s rank correlation coefficient S(u, t), a common metric to quantify
the similarity of two rankings [MWL10]. As Spearman’s r value ranges from [-1, 1],
we scale it to [0,1] so it has the same scale as Ap. Therefore, the resulting At also lies
in the range [0, 1].

Finally, we categorize scores in the range [0.8, 1] as very high agreement, [0.6, 0.8)
as high agreement, [0.4, 0.6) asmedium agreement, [0.2, 0.4) as low agreement, and [0, 0.2)
as very low agreement. We acknowledge that these categories are somewhat arbitrary.
However, based on a manual inspection of the results, they seem to capture the
individual studies’ level of agreement quite well. Our replication package includes
the mapped data alongside the resulting scores, to enable readers to conduct manual
inspections of the degree of agreement.

4.1.4 Limitations & Threats to Validity

We discuss potential threats to validity and mitigation strategies for internal validity,
construct validity, and external validity.

4.1.4.1 Internal Validity

Manual data extraction can lead to inaccurate or incomplete data. To mitigate this
threat, we established and discussed a review protocol before reviewing, contin-
uously discussed upcoming questions during the review process, and performed
redundant reviews through multiple reviewers. Our review protocol established
an exhaustive list of potential values for each characteristic and configured auto-
mated validation, which immediately highlighted deviations from these values.
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For characteristics with thematic coding, we continuously refined their values in
regular meetings during the review process. To address potential individual bias, we
performed two independent reviews for each application, quantified the inter-rater
agreement after an initial review round through Fleiss’ kappa, and resolved each
disagreement in an extended discussion and consolidation phase. The goal of this
study is to capture and analyze the current state of serverless applications. However,
due to our methodology, the collected sources can be several years old and therefore
possibly represent already overhauled systems and architectures. As we published
all the underlying data, follow-up studies can also focus on the development of
different characteristics over time.

4.1.4.2 Construct Validity

To align this study’s goal (i.e., comprehensive understanding of existing serverless
applications) with the data extraction, we compiled a list of 22 characteristics cover-
ing six different aspect groups. We conducted and discussed this selection process
in an international working group with collaborators from five different institutions.
This kind of effort ensures that the construct has broad validity, but not necessarily
that it is valid for the entire community: other researchers might consider different
characteristics as relevant. For the purpose of this study, we excluded Container-
as-a-Service, such as applications using AWS Fargate or Google Cloud Run, which
also fall under a broader definition of serverless computing [Kou+21]. While ana-
lyzing these types of applications could also yield interesting findings, we consider
it outside the scope of this work. Serverless computing is an emerging technology,
therefore it is possible and likely that the characteristics of serverless applications
change within the next five years. However, the goal of this study is to provide a
snapshot of the characteristics of serverless applications at the time of writing. We
include a detailed replication package that enables the faithful replication of this
study at a later time, which will allow to draw conclusions about how the state of
serverless applications changed. We analyzed consensus between our study and ten
related studies and found many points of consensus and good (often high or very
high) levels of agreement overall. However, to determine the level of agreement with
existing studies, we could not use established meta-analysis techniques, as some
related studies did not disclose essential information (for example, cohort size).
Therefore, it is possible that the level of agreement we compute does not correctly
reflect the actual degree of agreement between the studies. To account for this, we
included a detailed breakdown of the study results and their comparison as part
of our replication package, enabling the community to conduct other comparisons,
independently.
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4.1.4.3 External Validity

Our study was designed to cover applications from open source projects, academic
literature, and industrial literature, but we cannot claim generalizability to all server-
less applications. For open-source projects, we filtered non-trivial projects from the
most popular open-source repository but might have missed projects published in
other repositories. Our academic literature collection is based on a curated dataset on
serverless literature. Our comparison study uses a similar methodology. Although
we validated the resulting collections against our knowledge and a small set of test
articles, the methodology does not guarantee validity: we might have missed more
recent articles, or articles not found by our process and unknown to all collabora-
tors. Applications from industrial literature mostly focus on provider-reported case
studies, an existing collection of industrial applications, and sources known to the
authors. Our scientific computing applications are limited to institutions in a single
country, Germany. We only partially cover applications in industry and science, as
many of them remain unpublished, and others provide insufficient details to conduct
a meaningful review. Other studies, for example, on FaaS platforms [Eyk+19], suffer
from the same limitations.

4.1.5 Summary

Despite the many perceived advantages of serverless computing, the characteris-
tics of serverless applications are still not well understood. This presents a major
roadblock for the adoption of serverless computing in practice. Therefore, this con-
tribution furthers the understanding of serverless applications by systematically
collecting the largest collection of serverless applications to date from open-source
projects, academic literature, industrial literature, and scientific computing. In order
to answer RQ I.1 (“What are common characteristics of current serverless applications?”),
we characterize each application from our collection, through a systematic and com-
prehensive pair-reviewing process, with regard to 16 characteristics. Then, RQ I.2
(“Is there a community consensus on the common characteristics of serverless applications?”)
is answered by comparing our results to ten, mostly industrial, web surveys, and
datasets. Therefore, this contribution achieves Goal I (“Provide quantitative data
on the common characteristics of modern serverless applications.”). The results of this
study are discussed in detail in Section 7.1. This contribution has been published as
a SPEC RG technical report [Eis+20c], an IEEE Software article [Eis+21b], and a
Transactions on Software Engineering (TSE) article [Eis+21c].
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4.2 Performance Variability of Serverless Applications

One of the key requirements for reliable performance tests is ensuring that an iden-
tical resource environment is used for all tests [Eis+20a]. However, with serverless
applications, developers have no control over the resource environment. Worse
yet, cloud providers expose no information to developers about the resource envi-
ronment [Wan+18a]. Therefore, information such as the number of provisioned
workers, worker utilization, worker version, virtualization stack, or underlying hard-
ware is unavailable. Furthermore, cold starts (requests where a new worker has to
be provisioned) are a widely discussed performance challenge [Lei+19; Eyk+18].
This begs the question if performance tests of serverless applications are stable.

In this section, we present an exploratory case study to addressGoal II (“Quantify
the performance variability that serverless applications experience.”) using the serverless
airline booking application, a representative, production-grade serverless applica-
tion [Les19; Ser19]. First, we conduct multiple repetitions of performance tests
under varying configurations to answer RQ II.1 (“How much performance variability
do common serverless applications experience?”) and then three daily measurements
for ten months to investigate RQ II.2 (“Does the performance of serverless applications
change over time?”). This study is the first to provide quantitative data on the perfor-
mance variability of serverless applications over long periods of time. Unlike the
microbenchmarks and single-function applications often used by existing work, it
analyses the performance behavior of a complex, realistic application. We further
include a detailed replication package that enables the replication of our study on
future configurations of serverless platforms.

The remainder of this section is structured as follows: Section 4.2.1 introduces
the system under test, Section 4.2.2 details our measurement methodology, and
Section 4.2.3 introduces the analysis plan for each research question we address in
the study. Finally, Section 4.2.4 discusses the limitations and threats to the validity
of this study. The results of this case study are discussed in Section 7.2.

4.2.1 Serverless Airline Booking

The Serverless Airline Booking Application (SAB)1 is a fully serverless web applica-
tion that implements the flight booking aspect of an airline on AWS. It was presented
at AWS re:Invent as an example for the implementation of a production-grade full-
stack app using AWS Amplify [Les19]. The SAB was also the subject of the AWS
Build On Serverless series [Ser19]. Customers can search for flights, book flights,
pay using a credit card, and earn loyalty points with each booking.

The frontend of the SAB is implemented using CloudFront2, Amplify3/S3, Vue.js4,
1https://github.com/aws-samples/aws-serverless-airline-booking
2https://aws.amazon.com/cloudfront/
3https://aws.amazon.com/amplify/
4https://vuejs.org/
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Figure 4.3: Architecture and API endpoints of the serverless airline booking appli-
cation.

the Quasar framework5, and Stripe Elements6. This frontend sends GraphQL queries
(resolved using AWS AppSync) to five backend APIs, as shown in Figure 4.3:

• The Search Flights API retrieves all flights for a given date, arrival airport, and
departure airport from a DynamoDB table using the DynamoDB GraphQL
resolver.

• The Create Charge API is implemented as an API gateway that triggers the
execution of the CreateStripeCharge lambda function, which manages the call
to the Stripe API.

• The Create Booking API reserves a seat on a flight, creates an unconfirmed
booking and attempts to collect the charge on the customer’s credit card. If
successful, it confirms the booking, and awards loyalty points to the customer.
In case the payment collection fails, the reserved seat is freed again, and the
booking is canceled. This workflow is implemented as an AWS Step Func-
tions workflow that coordinates multiple lambda functions. The functions
ReserveBooking and CancelBooking directly modify DynamoDB tables, the Noti-
fyBooking function publishes a message to SNS, which is later consumed by
the IngestLoyalty function that updates the loyalty points in a DynamoDB table.
The CollectPayment and RefundPayment functions call the Stripe backend via an
application from the Serverless Application Repository.

5https://quasar.dev/
6https://stripe.com/en-de/payments/elements
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• The List Bookings API retrieves the existing bookings for a customer. Similar to
the Search Flights API, this is implemented using a DynamoDB table and the
DynamoDB GraphQL resolver.

• The Get Loyalty API retrieves the loyalty level and loyalty points for a customer.
An API Gateway triggers the lambda function FetchLoyalty, which retrieves
the loyalty status for a customer from a DynamoDB table.

We selected the SAB for our case study after investigating the serverless applications
we collected in Section 4.1. We chose the SAB over other potential applications due
to its comparatively large size and its usage of many different managed services.
It is also running on AWS, the by far most popular cloud provider for serverless
applications (see Section 4.1), and it uses both Python and JavaScript to implement
the serverless functions, the twomost popular programming languages for serverless
applications (see Section 4.1).

4.2.2 Measurement Methodology

We deploy the frontend via Amplify 7 and the backend services via either the
Serverless Application Model8 or CloudFormation9 templates depending on the
service. The serverless nature of the application makes it impossible to specify the
versions of any of the used services, as DynamoDB, Lambda, API Gateway, Simple
Notification Service, Step Functions, and AppSync all do not provide any publicly
available version numbers.

For the load profile, customers start by querying the Search Flights API for flights
between two airports. If no flight exists for the specified airports and date, the
customer queries the Search Flights API again, looking for a different flight. We
populated the database so that most customers find a flight within their first query.
Next, they call the Create Charge API and the Create Booking to book a flight and
pay for it. After booking a flight, each customer checks their existing bookings and
loyalty status via the List Bookings API and the Get Loyalty API. This load profile is
implemented using the TeaStore load driver [Kis+18].
Based on some initial test runs, the SAB was only able to serve about 50 requests
per second with our load profile. For it to serve at least 500 requests per second we
made the following changes:

• Stripe integration The Stripe API test mode has a concurrency limit of 25 re-
quests. After contacting the support, we adapted the application to distribute
the requests to the Stripe API across multiple Stripe keys. Additionally, we

7https://aws.amazon.com/amplify/
8https://aws.amazon.com/serverless/sam/
9https://aws.amazon.com/cloudformation/
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observed several request timeouts from the Stripe API. Therefore, we reconfig-
ured the Stripe integration to timeout and retry long-running requests, which
significantly reduced the number of failed requests.

• Lambda concurrency limit Each AWS account comes with many so-called
service quotas, which limit, for example, the number of VMs an account can
create. For serverless offerings, such as DynamoDB or Lambda, the service
quotas limit themaximum throughput/concurrent request to provide an upper
limit for the costs a serverless application can incur as unlike auto scaling
groups, there is no upper limit for the scaling of serverless offerings. We
requested an increase of the Lambda concurrent executions service quota from
the default of 1.000 to 5.000, which was granted after about two days.

• Systems Manager Parameter Store Some Lambda functions retrieve configu-
ration parameters from the SystemsManager Parameter Store for every request.
At higher load levels, the default transactions per second limit of the Systems
Manager Parameter Store started to become a limiting factor. First, we imple-
mented caching for these configuration parameters, but the initial wave of
cold starts still exceeded the default transaction limit. Therefore, we enabled
the higher throughput option of the System Manager Parameter Store, which
increases the throughput to up to 1.000 requests per second.

• Step Functions Workflows In our initial test runs, Step Functions was respon-
sible for 60-70% of the incurred costs. AWS introduced Step Functions Express
Workflows10 in 2019. Step functions express workflows use the same Ama-
zon States Language Specification as standard step function workflows but
are tailored towards cost-effectively orchestrating short running workflows.
Switching to an express workflow reduced the step functions costs by about
95-99% while maintaining the same functionality.

In terms of monitoring data, we collect the response time of each API call via the load
driver. Additionally, we collect the duration, so the execution time of every lambda
function. We exclude the duration of the lambdas ChargeCard and FetchLoyalty, as
the response times of the APIs Create Charge and Get Loyalty mostly consist of the
execution times of these lambdas. We cannot collect any resource-level metrics such
as utilization or number of provisioned workers, as AWS and most other major
serverless platforms do not report any resource-level metrics.

For our experiments, we perform measurements with 5 req/s, 25 req/s, 50 req/s,
100 req/s, 250 req/s, and 500 req/s to cover a broad range of load levels. Addition-
ally, we vary the memory size of the lambda functions between 256MB, 512MB,
and 1024MB, which covers the most commonly used memory sizes [Dat20]. For
each measurement, the SAB is deployed, put under load for 15 minutes, and then
10https://aws.amazon.com/2019/12/introducing-aws-step-functions-express-workflows/
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torn down again. We perform ten repetitions of each measurement to account for
cloud performance variability. Additionally, we run the experiments as randomized
multiple interleaved trials, which have been shown to further reduce the impact
of cloud performance variability [AB17]. To minimize the risk of manual errors,
we fully automate the experiments (for further details we refer to our replication
package). These measurements started on July 5th, 2020, and continuously ran until
July 17th, 2020.

Additionally, we set up a longitudinal study that ran three measurement rep-
etitions with 100 req/s and 512 MB every day at 19:00 from Aug 20th, 2020 to
Jun 20th, 2021. The measurements were automated by a Step Functions workflow
that is triggered daily by a CloudWatch alarm and starts the experiment controller
VM, triggers the experiment, uploads the results to an S3 bucket, and shuts down
the experiment controller VM again. We stopped the longitudinal study on Jun 20th,
2021, as AWS removed the Python 2.7 runtime, which is used in some functions of
the SAB, on this date11.

To ensure reproducibility of our results, the fully automated measurement har-
ness and all collected data from these experiments are available in our replication
package.12

4.2.3 Research Questions and Analysis Plan

In the following, we introduce and motivate the two research questions we aim to
address in this case study and the corresponding analysis plans.

RQ II.1 How much performance variability do common serverless applications
experience?

A common goal of performance tests is to measure the steady-state performance of a
system under a given workload. Hence, it is essential that practitioners understand
how long it takes for serverless applications to reach stable performance (i.e., how
long is the warm-up period) in order to plan the duration of their performance tests
accordingly. Aside from the general aspects that influence the initial performance in-
stability, such as the environment and application optimizations (e.g., CPU adaptive
clocking and cache setup), serverless applications also encounter cold starts. A cold
start occurs when a request cannot be fulfilled by the available function instances,
and a new instance has to be provisioned to process the upcoming request. Cold
starts can incur significantly higher response times [Wan+18a; Fig+18]. Hence, in
this research question, we investigate how long is the warm-up period in our exper-
iments and the role of cold starts in the stability of the warm-up and steady-state
experiment phases. Further, practitioners have no way to ensure that two different
11https://aws.amazon.com/blogs/compute/end-of-support-for-python-2-7-in-aws-lambda/
12https://github.com/ServerlessLoadTesting/ReplicationPackage
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Algorithm 4.1:Warm-up Period Identification Heuristic.
Result: warmupInSeconds

1 threshold = 0.01
2 stable = False
3 warmupInSeconds = 0
4 global_mean = mean(ts)
5 while stable == False do
6 ts = remove5secs(ts) // Remove 5 seconds of data
7 warmupInSeconds += 5
8 new_mean = mean(ts)
9 delta = abs((new_mean - global_mean) / global_mean)
10 if delta < threshold then
11 stable = True
12 else
13 global_mean = new_mean
14 end
15 end

performance tests are executed in similar resource environments, given that deploy-
ment details in serverless applications are hidden from developers. Hence, we study
how the inherent variance in deployed serverless applications impacts the stability
between performance tests.

Analysis Plan. To determine the duration of the warm-up period, we initially tried
to use the MSER-5 method [WCS00], which is the most popular method to identify
the warm-up period in simulations [MI04; HRD10]. However, this approach was
not applicable due to the large outliers present in our data, a well-documented flaw
of MSER-5 [SS06]. Therefore, we employ a heuristic to identify the warm-up period.
Our heuristic, shown in Algorithm 4.1, gradually removes data from the beginning
of the experiment in windows of five seconds and evaluates the impact of doing so
on the overall mean results. If the impact is above a threshold (we used 1% in our
experiments), we continue the data removal procedure. Otherwise, we consider
the seconds removed as the warm-up period and the remainder as the steady-state
phase of the performance test experiment. Similar to MSER-5 [WCS00], we label
any measurement where the detected warm-up period is larger than 40% of the
measurement as unstable. This regulation is necessary, as warm-up period detection
approaches become unreliable once the steady-state period is not considerably
longer than the warm-up period. In these scenarios, either longer measurements are
required until a steady-state can be detected or the system under test never reaches
a steady-state (e.g., due to a growing number of entries in a database).
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To evaluate the impact of cold starts on the experiment stability, we analyze the
distribution of cold start requests across the two phases of performance tests: warm-
up period and steady-state period. Then, we evaluate the influence of cold start
requests on the overall mean response time, considering only cold start requests that
occurred after the warm-up period. To test for statistically significant differences,
we use the unpaired and non-parametric Mann-Whitney U test [MW47]. In cases
where we observe a statistical difference, we evaluate the effect size of the differ-
ence using the Cliff’s Delta effect size [LFC03], and we use the following common
thresholds [Rom+06] for interpreting the effect size:

Effect size d =


negligible(N), if |d| ≤ 0.147

small(S), if 0.147 < |d| ≤ 0.33

medium(M), if 0.33 < |d| ≤ 0.474

large(L), if 0.474 < |d| ≤ 1.

Note that not all request classes provide information about cold starts. This
information is only available for the six lambda functions, as the managed services
either do not have cold starts or do not expose them. Therefore, we report the cold
start analysis for the following six request classes: CollectPayment, ConfirmBooking,
CreateStripeCharge, IngestLoyalty, NotifyBooking, and ReserveBooking.

Next, we evaluate the variation of themean response time across experiment runs
and study the influence of experiment factors such as the load level and function
size. We focus on evaluating the steady-state performance of performance tests.
Hence, we discarded the data from the first two minutes of the performance test
runs (warm-up period) and calculated the mean response time for the steady-
state phase, that is the remaining 13 minutes of experiment data. To evaluate the
stability of the mean response time across runs, we first exclude outliers within an
experiment that fall above the .99 percentile. Then, we calculate the coefficient of
variation of the response time across the ten repetitions, per workload level and
function size. The coefficient of variation is the ratio of the standard variation to
the mean and is commonly used as a metric of relative variability in performance
experiments [CSL20; LC16]. Similarly, we test statistically significant differences
using the Mann-Whitney U test [MW47] and assess the effect size of the difference
using the Cliff’s Delta effect size [LFC03].

RQ II.2 Does the performance of serverless applications change over time?

The first research question focuses on the stability of performance tests conducted
within the same time frame. However, the opaque nature of the underlying resource
environments introduces an additional challenge: the underlying resource environ-
ment may change without notice. This might result in both short-term performance
fluctuations (e.g., due to changing load on the platform) or long-term performance
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changes (e.g., due to software/hardware changes). Therefore, in this research ques-
tion, we conduct a longitudinal study on the performance of our SUT, to investigate
if we can detect short-term performance fluctuations and long-term performance
changes.

Analysis Plan. We analyze the results of our longitudinal study, which consists of
three measurement repetitions with 100 requests per second and 512 MB memory
size every day for ten months. First, to determine if there are any significant changes
in the distribution of themeasurement results over time, we employ the change point
detection approach fromDaly et al. [Dal+20]. To reduce the sensibility to short-term
fluctuations, we use the median response time of the three daily measurements
and configure the approach with p = 0 and 100,000 permutations. Second, upon
visual inspection, it seemed that the variation between the three daily measurement
repetitions was less than the overall variation between measurements. To investigate
this, we conducted a Monte Carlo simulation that randomly picks 100,000 pairs of
measurements that were conducted on the same day and 100,000 measurement pairs
from different days. We calculated and compared the average variation between the
sample pairs from the same day and from different days. Finally, to investigate if
the observed performance variation could be misinterpreted as a real performance
change (regression), we conducted a second Monte Carlo simulation. We randomly
select two sets of ten consecutive measurements that do not overlap and test for a
significant difference between the pairs using the Mann–Whitney U test [MW47].
For each detected significant difference, we calculate Cliff’s Delta [LFC03] to quantify
the effect size. Similar to our first Monte Carlo simulation, we repeat this selection
and comparison 100,000 times. Further implementation details are available in our
replication package.13

4.2.4 Limitations & Threats to Validity

This section first introduces the limitations of our study and then discusses the
threats to validity that arise from these limitations. We consider the following to be
the main limitations of this study:

• Single system under test. This study uses only a single system under test, the
serverless airline booking application.

• Single cloud platform. This study is limited to AWS and does not consider
any other cloud providers.

• Constant load. This study does not investigate the impact of varying load
patterns as the experiments all use constant load.

13https://github.com/ServerlessLoadTesting/ReplicationPackage
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• Black-box view. As this study is conducted on a public cloud, it is limited to
the metrics exposed by the cloud provider.

In the following, we discuss the threats to the construct, internal, and external
validity that arise from these limitations [Woh+12]. Construct validity examines
the relation of the measurements to the proposed research questions. Internal
validity examines the trustworthiness of the cause-and-effect relationship, that is
the existence of alternative explanations for findings, and external validity considers
how well the results can be generalized.

4.2.4.1 Construct Validity

In our experiments, we measured only the response time and function execution
time; other metrics might show different effects. Out of the commonly used per-
formance metrics, we did not consider CPU utilization and throughput. However,
measuring the throughput is unusual for serverless applications due to their built-
in scalability, and CPU utilization is currently not exposed by AWS. Further, we
limited our experiments to performance tests with a constant load; performance
tests with varying load might behave differently. Constant load is commonly used
for performance tests, whereas varying load is more commonly used for load and
stress testing. However, further research is required to understand the effects of
performance tests under varying load.

4.2.4.2 Internal Validity

As the MSER-5 method for determining the duration of the warm-up period was
not applicable to our data, we used a custom heuristic. It might be possible that this
heuristic does not appropriately capture the length of the warm-up period. Based on
a visual inspection of a large subset of the experiments, we found that the heuristic
seems to capture the warm-up period well. Our replication package can be used to
repeat this visual inspection.

Another threat to the validity of our results is that performance experiments
in the cloud can suffer from a high degree of uncertainty. To mitigate this threat,
we followed recommended practices for conducting and reporting cloud experi-
ments [Pap+19] and used randomized multiple interleaved trials [AB17] to reduce
measurement variability. Further, we provide a fully automated measurement har-
ness that enables the replication of our measurements. For the longitudinal study,
we perform three measurement repetitions each day at the same time to mitigate
measurement variability, but we do not attempt to further control for performance
variability as the study was intended to investigate the variability.
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4.2.4.3 External Validity

Our case study used only a single system under test, which might limit the general-
izability of our results. However, the serverless airline booking application is larger
(uses more functions) than the average serverless application [Eis+21b; Sha+20], so
independent parts of the application could also be considered multiple applications.
Further, most of the properties we measure are more dependent on the underlying
cloud platform than the application itself. However, it is possible that a different
application, such as a scientific computing application with long-running functions
might behave differently. While our experiments were conducted on one application
only, our methodology is applicable to any application.

Another threat is that we conduct measurements on a single cloud platform.
Although AWS is by far the most popular cloud provider for serverless applications,
with 55%-70% of serverless applications running on AWS (see Section 4.2), further
research is required to determine if our findings are transferable between cloud
providers.

4.2.5 Summary

The performance variability of serverless applications over large periods of time is
still poorly understood. In this contribution, we conducted an exploratory case study
on the performance stability of serverless applications. First, we answered RQ II.1
(“How much performance variability do common serverless applications experience?”) by
analyzing multiple repetitions of performance tests under varying configurations.
Next, we collected and analyzed a longitudinal dataset consisting of three daily
measurements for ten months to answer RQ II.2 (“Does the performance of serverless
applications change over time?”). Together, this provides the first quantitative data
on the performance variability of serverless applications over time and therefore
achieves Goal II (“Quantify the performance variability that serverless applications ex-
perience.”). The results of this study are discussed in detail in Section 7.2. This
contribution has been published as an article in the Journal of Systems and Software
(JSS) [Eis+22].
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Chapter 5

Automating Operational Tasks of
Serverless Applications

One of the key value propositions of serverless computing is that the cloud provider
handles most operational tasks associated with running a serverless application.
However, there are some serverless computing-specific operational tasks that put
an additional burden on developers. As discussed in Challenge 3, developers of
serverless functions are in charge of selecting how much resources are allocated
to each worker instance. Selecting the optimal size of serverless functions is quite
challenging, so developers often neglect it despite its significant cost and perfor-
mance implications. Further, serverless workflows are commonly used to orchestrate
multiple serverless functions. However, the pay-per-use model and the delayed,
nontransparent reporting by cloud providers make it challenging to estimate the
expected cost of workflow as outlined in Challenge 4.

Our second contribution introduces two approaches to address Challenge 3 and
Challenge 4 by automating operational tasks associated with serverless applications.
We introduce an approach to predict the optimal memory size of serverless functions
based on monitoring data for a single memory size. We implement a synthetic func-
tion generator and construct a multi-target regression model to predict the impact
of function size based on a large synthetic dataset. The second approach presented
in this contribution addresses the cost optimization of serverless workflows. First,
we use MDNs to accurately predict the response time and output parameter distri-
butions of serverless functions. These individual function models are integrated
into a workflow model and a Monte-Carlo simulation derives cost predictions for
serverless workflows.

In the following, Section 5.1 introduces our approach for the automated serverless
function size optimization and Section 5.2 introduces our workflow cost estimation
approach.

5.1 Optimizing the Size of Serverless Functions

There is still a resource management task that serverless platforms leave to develop-
ers: resource sizing. Resource sizing is the task of selecting how much CPU, memory,
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I/O bandwidth, etc. are allocated to a worker instance [Sin+20; AL19; Pir+15].
Most cloud providers implement the resource sizing of serverless functions as a
configurable memory size, where other resources such as CPU, network, or I/O
are scaled accordingly [Ser20b; Clo20]. Selecting an appropriate resource size is
essential as it can often result in a faster execution at a lower cost. However, selecting
an appropriate resource size is challenging. A recent survey revealed that 47% of
the serverless functions in production have the default memory size, indicating that
developers often neglect resource sizing [Dat20].

In this section, we introduce an approach to predict the optimal memory size of
serverless functions based onmonitoring data for a singlememory size, which targets
Goal III (“Develop an automatedmethod to optimize the size of serverless functions.”). First,
we implement a serverless function generator capable of generating a large number
of synthetic serverless functions by combining representative function segments.
Next, we measure the execution time and resource consumption metrics of 2 000
synthetic functions for six different memory sizes on a public cloud, which addresses
RQ III.1 (“How can a dataset on the impact of memory size for a vast number of functions
be generated?”). Finally, we answer RQ III.2 (“How can one predict the optimal size of
serverless functions based on passive monitoring data?”) by constructing a multi-target
regression model to predict the execution time of a serverless function for previously
unseenmemory sizes based on the execution time and resource consumptionmetrics
for a single memory size.

The remainder of this contribution is structured as follows: Section 5.1.1 gives
an overview of the proposed approach, Section 5.1.2 describes our process for the
generation of a large training dataset on the influence of varying memory sizes
on different serverless functions, and Section 5.1.3 details how we use multi-target
regression modeling and multi-objective optimization to determine the optimal
memory size for previously unobserved serverless functions. Finally, Section 5.1.4
discusses the current limitations of the proposed approach.

5.1.1 Architecture Overview

Figure 5.1 gives a graphical overview of our approach to predict the optimal memory
size of serverless functions based on monitoring data collected for a single memory
size. During the offline phase, the Synthetic Function Generator creates many synthetic
serverless functions, which are then instrumented with our Resource Consumption
Monitoring. During the Dataset Generation, we run performance tests to obtain the
resource consumptionmetrics and execution times for all memory sizes of thousands
of synthetic serverless functions. By applying Multi-target Regression Modeling to the
resulting dataset, we generate a performance model that can predict the execution
time for all memory sizes of a real function based on monitoring data for a single
memory size. The Memory Size Optimization utilizes these predictions to determine
the optimalmemory size. Our implementation of the proposed approach is limited to
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Figure 5.1: Overview of the proposed approach.

AWS Lambda and the language Node.js as they are by far themost common platform
and programming language for serverless functions [Eis+21b; Dal20]. However,
we are confident that it can be transferred to other platforms and programming
languages.

5.1.2 Generation of a Large Training Dataset

In the following, we discuss howwe generated a large training dataset describing the
influence of varying memory sizes on different serverless functions. Section 5.1.2.1
describes the synthetic function generator, Section 5.1.2.2 explains our resource
consumption monitoring, and Section 5.1.2.3 outlines our data collection process.

5.1.2.1 Synthetic function generator

Learning to derive how different memory sizes influence the execution time based
on resource consumption metrics requires a large dataset covering a wide variety of
different functions. Unfortunately, there are not enough easily benchmarkable open-
source functions available [Eis+20c]. Therefore, we propose to generate synthetic
serverless functions by combining representative function segments. Each function
segment represents the smallest granularity of common tasks in serverless functions.
Additionally, each function segment has to provide its own inputs to simplify load
generation (e.g., a function segment that performs image manipulation comes with
several images). Further, each function segment provides setup and teardown code
of all external services it uses (e.g., databases or messaging queues).
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For the selection of function segments, we investigated common tasks from
the survey presented in Section 4.1. We implemented sixteen function segments
covering, among other things, CPU-intensive tasks, image manipulation, format
conversion, data compression, and interaction with files and external services, such
as DynamoDB or S3. The function generator documentation from our replication
package includes detailed descriptions of all implemented function segments1. While
it is not possible to cover all possible functionality serverless functions can implement,
our function segments should enable the generation of a large number of synthetic
serverless functions with varying resource consumption profiles. In the future,
the number of implemented segments can be easily extended if specific resource
consumption profiles are required.

The function generator randomly combines these function segments and wraps
them in a Lambda handler. The resulting deployment package and template.yaml file
can be deployed as an AWS CloudFormation stack using the Serverless Application
Model. Additionally, it generates scripts to set up and tear down the required
services from the segments. The function generator keeps a list of already generated
function hashes to ensure that no function is generated twice. For additional details
on the function generator implementation, we refer to the documentation in our
replication package.

5.1.2.2 Resource consumption monitoring

Wepropose to predict the execution time of serverless functions for differentmemory
sizes based on the resource consumption metrics and execution time for a single
memory size. However, Lambda currently does not support monitoring of resource
consumption metrics out of the box. In general, Lambda’s monitoring capabilities
are quite lacking, which spawned several third-party monitoring solutions (e.g.,
by Epsagon2, Datadog3, and Dynatrace4). However, these third-party monitoring
solutions focus on tracing requests across a serverless application. If they include
resource consumption metrics, they are limited to basic metrics such as CPU utiliza-
tion.

Therefore, we implement custom resource consumption monitoring to cover a
wide variety of resource consumption metrics. Table 5.1 gives an overview of the
metrics our resource consumption monitoring can collect and how the metrics are
obtained. The execution time is monitored by timing the execution of the monitored
function. A set of resource consumption metrics can be obtained via the Node.js
library ‘Process’. This includes information about the CPU time consumed by user
and systemprocesses, the number of voluntary and involuntary context switches, the
1https://github.com/Sizeless/ReplicationPackage
2https://epsagon.com/
3https://www.datadoghq.com/
4https://www.dynatrace.com/
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Table 5.1: Metric sources and collected metrics
Metric Name Metric Source
Execution time process.hrtime()
User CPU time process.cpuUsage()
System CPU time process.cpuUsage()
Vol Context Switches process.resourceUsage()
Invol Context Switches process.resourceUsage()
File system reads process.resourceUsage()
File system writes process.resourceUsage()
Resident set size process.memoryUsage()
Max resident set size process.resourceUsage()
Total heap process.memoryUsage()
Heap used process.memoryUsage()
Physical heap v8.getHeapStatistics()
Available heap v8.getHeapStatistics()
Heap limit v8.getHeapStatistics()
Allocated memory v8.getHeapStatistics()
External memory process.memoryUsage()
Bytecode metadata v8.getHeapCodeStatistics()
Bytes received /proc/net/dev/
Bytes transmitted /proc/net/dev/
Packages received /proc/net/dev/
Packages transmitted /proc/net/dev/
Min event loop lag perf_hooks
Max event loop lag perf_hooks
Mean event loop lag perf_hooks
Std event loop lag perf_hooks

number of times the file system had to perform I/O, information about the resident
set, and the heap usage. Additional information about the heap is collected from the
underlying V8 JavaScript engine. Information about the bytes and packages received
and transmitted via the network is read using Linux counters in /proc/net/dev/.
Finally, the Node.js event loop is monitored via the perf_hooks library. Within a
traditional VM or container, many additional resource consumption metrics could
be collected. However, many of these metrics are either unavailable within serverless
functions, always return zero, or return unrealistic values [Wan+18b].

To implement the resource consumption monitoring, we employ a wrapper-
style approach, where the monitoring itself implements the Lambda entry point.
Whenever the Lambda is triggered, we log the initial metric values for all monitored
metrics. Next, the entry point of the original monitored Lambda is called, resulting
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Figure 5.2: Number of functions for which each metric is unstable for with different
measurement duration.

in a normal execution of this function. After the monitored function is finished, the
metrics are polled again and the difference between before and after the function
execution is calculated. The resulting metric values are written to a DynamoDB
table. This call to DynamoDB does not affect the collected resource consumption
metrics, as it occurs after the metric collection is finished. Finally, the response from
the monitored function is returned.

This wrapper-style approach has been the best practice to monitor Lambda func-
tions since the inception of this service [Cui20], even though it creates a slight
performance overhead. However, note that this overhead does not impact the ex-
ecution time measurements since we only measure the inner function execution.
Recently, AWS previewed Lambda Extensions, which are processes that can run
concurrently to the Lambda execution, similar to sidecars for containers [Woo20].
Lambda Extensions are mostly targeted at making the monitoring of Lambda func-
tions more efficient, and accordingly, the resource consumption monitoring could
be reimplemented as a Lambda extension once they reach general availability.

5.1.2.3 Data Collection

In this work, we conducted extensive performance experiments to create a large
dataset describing how different functions are impacted by different memory sizes.
Towards this goal, we randomly generated 2 000 different synthetic functions using
our synthetic function generator and equipped themwith our resource consumption
monitoring. To manage the large number of required performance measurements,
we implemented a fully automatedmeasurement harness in Go that relies on Vegeta5
5https://github.com/tsenart/vegeta
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as a load driver and enables parallelization of the experiments. For the implementa-
tion details of the measurement harness, we refer to our replication package.

Before we generate the dataset, we need to determine how long each performance
experiment needs to run until the reported metrics are stable. To investigate this, we
generated 50 functions andmeasured their execution time and resource consumption
metrics for fifteen minutes at 30 requests per second. Next, we tested for each
collected metric if the samples across all requests within the first minute, first two
minutes, first three minutes, and so on come from the same distribution as the values
collected during the full experiment. Figure 5.2 shows the results when using the
Mann–Whitney U test [MW47] to test for similarity. We can see that even after one
minute, all metrics are already stable for over 80% of the investigated functions.
If we apply Cliff’s delta [Cli93] for the differences observed after one minute, all
differences are already considered negligible. After ten minutes of experiment time,
mallocMem is the last metric to become stable for all functions according to the Mann-
Whitney U test. We select ten minutes as the experiment duration for the dataset
generation to ensure that stable metrics are collected.

Finally, we used the measurement harness to measure the execution time and
resource consumption metrics for 2 000 functions across six different memory sizes
(128MB, 256MB, 512MB, 1024MB, 2048MB, 3008MB), including the smallest and
largest availablememory sizes onAWS for tenminutes each at 30 requests per second
with an exponentially distributed inter-arrival time. This amounts to 12 000 per-
formance measurements, 120 000 minutes of experiment time, 216 000 000 Lambda
executions, and roughly $2 000worth of Lambda compute time. The resulting dataset
is publicly available as part of our replication package.

5.1.3 Determining the Optimal Function Size

In the following, we describe our approach to determine the optimal function size
using multi-target regression modeling (Section 5.1.3.1) and multi-objective opti-
mization (Section 5.1.3.2).

5.1.3.1 Multi-target regression modeling

We formulate the task of predicting the execution time of a serverless function across
all memory sizes based on monitoring data from a single memory size as a multi-
target regression problem. Hence, for each monitored memory size (base memory
size) we train a regression model that predicts the remaining five memory sizes
(target memory sizes) based on the average monitored execution time and average
resource consumption metrics. To equalize the scale of the target variables, we
express all target execution times as ratios of the input execution time.

We start out with a simple neural network with three layers of 128 neurons
trained for 200 epochs. Using this model, we conduct several feature engineering
and selection rounds, inspired by [Gro+19b]. The first round of feature selection
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Figure 5.3: Accuracy and selected metrics for three sequential forward feature
selection rounds.

uses our initial features F0, that is the mean execution time and the mean of each
resource consumption metric. Figure 5.3 shows that the accuracy increases until
we reach thirteen features, so we discard all remaining metrics for the reduced
feature set F1. Next, we construct relative features that normalize the F1 features by
execution length to obtain F2. For example, in addition to the total number of context
switches, F2 also contains the context switches per second. Running the sequential
forward feature selection again (see Figure 5.3) shows an increased model accuracy.
We again decrease the number of features in F3 by selecting only the eleven most
promising features from F2. Finally, for each remaining metric in F3, we add the
standard deviation and coefficient of variation and run the feature selection for the
third time to receive the final feature set F4. This results in only a slight accuracy
increase, but further reduces the number of base metrics required as all eleven final
metrics in F4 are calculated using the metrics heap used, user CPU time, system CPU
time, voluntary context switches, bytes written to file system, and bytes received over
the network. Therefore, our approach requires monitoring only these six metrics
when applied in practice.

In order to explore the inner workings of our model and therefore to understand
how different characteristics influence the scaling of a function with additional re-
sources, we employ partial dependence plots. A partial dependence plot shows the
marginal effect of a feature on the model prediction, which makes it a common ex-
plainability tool for machine learning models [Gol+15]. Figure 5.4 shows the partial
dependence plots for the six most impactful features of our model for a base size of
128MB. It shows that the relative time spent in user and system space (i.e., the CPU
utilization caused by the function) have the largest impact on the scaling behavior,
with a higher CPU utilization resulting in higher expected speedups for increased
memory size. This is in line with current assumptions that CPU-intensive functions
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Figure 5.4: Partial dependence plots of the model with basesize 128MB, showcasing
the impact of sixmost important input features on the predicted speedup for different
memory sizes. X-axis values are scaled to [0,1]. The partial dependence plots for
the remaining features can be found in our replication package.

benefit the most from larger memory sizes [Cas20b]. Interestingly, the number of
bytes received per second correlates negatively with the predicted speedup, so a
function that is network-intensive will scale worse with larger memory sizes. Further,
the heap used (so the memory used by the application) also has an impact on the
predicted speedup. If a function uses a lot of its available memory, adding additional
memory would reduce memory swapping, whereas for a function that already has
sufficient memory available additional memory would not be beneficial. While the
remaining features also impact the final prediction, they seem to be mostly used to
fine-tune the prediction. To summarize, we find that the predicted speedup mostly
depends on the CPU utilization, network activity, and memory used by the function.

Next, we conduct a grid search to tune the hyperparameters of the model. Ta-
ble 5.2 shows the tuned parameters, the ranges for each parameter, and the parameter
value selected by the grid search. The final model uses the Adam optimizer, a MAPE
loss function, 200 epochs, an L2 regularization of 10−2, and four layers. With about
three minutes, the training overhead is negligible.

As our approach relies on monitoring data from the function running in pro-
duction with a single memory size, we investigate if a certain monitored memory
size provides better prediction accuracy than others, as it would then make sense to
deploy the function with this memory size initially. Therefore, we run ten iterations
of five-fold cross-validation with a random split for each base memory size. Table 5.3
shows the resulting mean squared error, mean absolute percentage error, coefficient
of determination (R2), and explained variance score, which are common metrics to
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Table 5.2: Parameter range and selected parameters for the hyperparameter opti-
mization.

Parameter Parameter range Selected
Optimizer SGD, Adam, Adagrad Adam
Loss MSE, MAE, MAPE MAPE
Epochs 200, 500, 1000 200
Neurons 64, 128, 256 256
L2 0, 0.0001, 0.001, 0.01 0.01
Layers 2, 3, 4, 5 4

Table 5.3: Mean Squared Error (MSE), MAPE, R^2, and explained variance for each
base memory size (in MB) based on cross-validation.

Basesize 128 256 512 1024 2048 3008
MSE 0.005 0.003 0.004 0.009 0.010 0.015
MAPE 0.066 0.046 0.040 0.031 0.033 0.036
R^2 0.986 0.977 0.971 0.970 0.954 0.958
ExpVar 0.987 0.979 0.974 0.972 0.962 0.963

determine the performance of regression models [GS01]. We select 256MB as the
default basesize, as it shows the best mean squared error, the second-highest R^2
and explained variance scores, and a good mean absolute percentage error.

5.1.3.2 Memory size optimization

Automatically determining the optimal memory size for a serverless function results
in a standard multi-objective optimization problem, as we want to optimize for both
performance and cost. A common approach to determine a single, optimal solution
for multi-objective optimization problems is to use a parameterizable tradeoff func-
tion that combines the objectives into a single score [Rao19]. This requires scores of
the same scale for each objective, which we calculate for each memory sizemx as
follows:

Scost(mx) =
cost(mx)

min∀mi∈M cost(mi)
,

Sperf (mx) =
executionTime(mx)

min∀mi∈M executionTime(mi)

with M being the set of all available memory sizes and the functions cost() and
executionTime() returning the predicted cost and execution time for a givenmemory
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size mi. Note that for monitored memory sizes the observed values can be used.
Both scores have a minimum of 1, which indicates an optimal cost/execution time,
and each value above one indicates the percentage deviation from the optimum, so
a Scost of 1.5 would indicate a 50% increased cost compared to the lowest possible
cost for this function. Therefore, both scores use the same scale and are humanly
interpretable. For the final objective function, these scores are combined using a
configurable tradeoff value t ∈ [0, 1] as follows:

Stotal(mx) = t · Scost(mx) + (1− t) · Sperf (mx)

The value for t can be set by the system operator based on their preferences,
where t = 0.5would indicate that a one percent increase in cost compared to the best
possible cost is worth the same as a one percent increase in execution time compared
to the best possible execution time is worth the same. Whereas a value of t = 0.75
would result in accepting an X% increase in cost only if it would result in a 3X%
decrease of execution time.

In order to apply this tradeoff function to optimize the memory size of serverless
functions, we first use our model to predict the execution time for all memory sizes
and then calculate the predicted cost for a function execution based on the pricing
model of the cloud provider, as it only depends on the execution time. Next, we
calculate Stotal for each memory size and select the memory size with the lowest
Stotal score:

OptSize = arg min
∀mx∈{128,256,512,1024,2048,3008}

Stotal(mx)

5.1.4 Limitations & Threats to Validity

While we consider our approach a significant improvement over the current state-of-
the-art, there still are limitations and threats to the validity to be discussed.

First, we limited the problem along two dimensions to reduce the cost associated
with generating the synthetic dataset. AWS actually supports adjusting the memory
size from 128MB to 3008MB in 64MB increments, whereas the dataset in this paper
is limited to only six different memory sizes. However, the approach from [Ali+20]
could be used to interpolate the values for the 64MB increments. Second, our
approach currently only supports a single cloud provider and a single programming
language. Transferring the approach to other providers and languages does not pose
any conceptual challenges and only requires an extension of the synthetic dataset as
no Node.js-specific metrics were used.

Second, we did not evaluate the performance overhead caused by our resource
consumptionmonitoring. While this overhead does not impact themeasuredmetrics
and execution times, it might hinder adoption in practice. However, there is already
a commercial monitoring solution that tracks the CPU usage and network activity
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of serverless functions using Lambda Extensions, which indicates that the overhead
of monitoring system-level metrics for serverless functions is reasonable [Cui20].
Therefore, monitoring six system-level metrics for about ten minutes should not
cause any issues.

Third, a shift in the workload of an application can change the performance
properties of a serverless function, for example, the workload becomes substantially
burstier, which causes more cold starts, or the payload size increases, which causes
longer execution times. These workload shifts would also change the resource
consumption metrics, so our model could be used to predict the optimal memory
size for the changed function behavior again. To alleviate this, the input-sensitive
performance models proposed in Section 5.2 could be integrated with the approach
from this contribution.

Finally, serverless platforms are introducing new features and performance im-
provements regularly, which raises the question of the longevity of our model. In
our evaluation of this contribution (see Section 8.1), the measurements for the hello
retail application were conducted nine months after the training dataset was created
and there is no significant deterioration in prediction accuracy pointing. However,
there might be breaking changes on the provider side that would invalidate our
model. To avoid having to regenerate the full training dataset, one could explore
transfer learning techniques that freeze the initial layers of our model and retrain
only with a much smaller new dataset.

5.1.5 Summary

Developers of serverless applications are still in charge of is resource sizing, that
is selecting how much resources are allocated to each worker. In this contribution,
we introduced an approach to predict the optimal resource size of serverless func-
tions using monitoring data of a single memory size. First, we answered RQ III.1
(“How can a dataset on the impact of memory size for a vast number of functions be gener-
ated?”) by introducing a synthetic function generator and a resource consumption
monitoring approach. Using these, we generated a large dataset on how functions
with different resource consumption behavior scale with increasing memory sizes.
Based on this dataset, we answered RQ III.2 (“How can one predict the optimal size
of serverless functions based on passive monitoring data?”) by training a multi-target
regression model capable of predicting the execution time of a serverless function
for all memory sizes based on monitoring data for a single memory size. These
predictions then enable the automated optimization of a serverless function’s mem-
ory size. Unlike existing approaches based on performance testing, our approach
only requires monitoring data that can be collected in production as opposed to
dedicated performance tests, which shows that we have achievedGoal III (“Develop
an automated method to optimize the size of serverless functions.”). For developers, this
removes the effort required to implement and maintain representative performance
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tests. For cloud providers, it enables memory size recommendations, similar to the
AWS Compute Optimizer for virtual machines [Ser20a], which so far was infeasible
as cloud providers cannot run performance tests on user functions. The prediction
accuracy, memory size optimization, and the potential speed-ups/cost savings are
evaluated using four realistic serverless applications in Section 8.1. This contribu-
tion has been published as a full research paper at the International Middleware
Conference (MIDDLEWARE) [Eis+20b], which has received the best student paper
award.
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5.2 Optimizing the Cost of Serverless Workflows

Many major cloud providers use the same cost model for serverless functions, where
the cost of a function execution depends on: i) the response time of a function
rounded up to the nearest 100 ms6, ii) the memory allocated to the function, and
iii) a static charge for every invocation [AC17a]. While many organizations report
significant cost savings by switching from traditional hosting options to serverless
solutions [IBM17; Wil17; AC17a], an inhibiting factor for the adoption of serverless
solutions in practice is the difficulty of estimating the expected costs of serverless
functions and workflows [Eyk+18; AC17a; BA18]. A reason for this is that, in
contrast to traditional hosting options, the cost of a function depends directly on its
input parameters—since the response time distribution of a function depends on its
input parameters. For example, the time required to resize an image depends on its
original size. Therefore, the cost of resizing an image depends on its original size as
well. This is exacerbated in workflows, where function outputs are often propagated
to succeeding functions. Hence, the cost and response time of functions contained
within a workflow can be erratic, which makes predicting the cost for the overall
serverless workflow challenging.

In this section, we propose a methodology for the cost prediction of serverless
workflows to address Goal IV (“Provide a technique to estimate the costs of serverless
workflows.”). First, we apply machine learning to predict the response time and out-
put parameter distributions for individual serverless functions. Standard regression
techniques, such as SVR, MARS, or random forest, can only be used to predict the
mean response time of a function. However, accurate cost estimations require the
prediction of response time distributions, because many cloud providers round the
billed execution time up to the nearest 100 ms. Therefore, we show how MDNs can
be used to accurately predict the response time and output parameter distributions of
serverless functions, which answers RQ IV.1 (“How can the execution time distribution
of a serverless function be predicted based on its input parameters?”). These individual
function models are composed to a workflow model that describes the parameter
relationships within the workflow. Finally, a Monte-Carlo simulation traverses the
workflow model and samples distributions from the individual functions models
to derive cost predictions for serverless workflows and thereby addresses RQ IV.2
(“Can the impact of restructuring a serverless workflow on its cost be predicted?”).

The remainder of this section is structured as follows: Section 5.2.1 gives an
overview of the proposed approach. Next, Sections 5.2.2 and 5.2.3, go in-depth on
the prediction of function response time and output parameter distributions and our
approach to derive cost estimates for serverless workflows based on the individual
function models. Finally, Section 5.2.4 discusses the limitations and threats to the

6AWS recently switched to rounding to the nearest millisecond, but this pricing model is still common
among the other cloud providers.
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Figure 5.5: Overview of the proposed approach for the cost prediction of serverless
workflows.

validity of the proposed approach. The prediction accuracy of our approach and
the potential cost savings are evaluated in Section 8.2.

5.2.1 Architecture Overview

The proposed approach shown in Figure 5.5 can be separated into two phases,
the continuous model learning process, and the workflow cost prediction process.
During the continuous model learning process, the existing Serverless Functions
are monitored. For any functions that are not already deployed in production,
microbenchmarks can be used to generate monitoring data [BA18]. The resulting
monitoring data is stored in a Monitoring Data Repository (e.g., Prometheus,
InfluxDB, or a managed monitoring solution from the cloud provider). Periodically,
the Model Trainer is triggered to train models that describe the response time and
output parameter distributions of the serverless functions based on their input
parameters, which is discussed in detail in Section 5.2.2. As the Model Trainer
could make use of GPU-based acceleration during the model learning, it could be
deployed in a distributed data analytics cluster with GPU acceleration, such as a
Spark or Hadoop cluster. The resulting models are then stored in the Function
Model Repository, which due to the infrequent access pattern can be a cloud data
storage, such as Amazon S3, Google Cloud Storage, or Azure Storage.

The workflow cost prediction process is triggered when a workflow designer
uploads the workflow. Next, the Workflow Prediction Engine fetches the models
for all functions contained in the workflow from the Function Model Repository.
These function models are then composed into a Workflow Model based on the
structure uploaded by the workflow designer. To derive cost predictions from
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Figure 5.6: For multiple text segments of length 250, a distribution of response times
and output file sizes can be observed for a function that transcribes text into speech.

the Workflow Model, the Monte-Carlo Simulator simulates the Workflow Model.
Finally, the derived cost estimates are returned to the workflow designer. The
Workflow Prediction Engine could be implemented as a serverless function, as
it has an infrequent, potentially bursty access pattern and model inference rarely
relies on GPU acceleration [Zha+18], which is currently not supported for serverless
functions [Hel+18].

5.2.2 Response Time and Parameter Distribution Prediction

We train an individual model for the response time and for each output parame-
ter of a serverless function based on monitoring data from the Monitoring Data
Repository. This monitoring data contains the response time and parameterization
for each request to the serverless function. Most machine learning techniques require
numeric input, while the parameters of a function call are not necessarily numeric
values. Examples of non-numeric values include strings, lists, binary data, etc. We
do not address the task of creating numeric features based on this data, as there is
extensive prior work targeting the automated extraction of numeric features based
on function input parameters [Gro+19a; KKR10].

For the repeated execution of a serverless function with identical input param-
eter characteristics, a distribution of response times and output parameters can
be observed. To illustrate this, we implemented and evaluated a function called
Text2Speech, which transcribes text segments to speech, as shown in Figure 5.6.
Transcribing multiple text segments with a length of 250 characters, we observe a
distribution of the response time due to variation in the performance and saturation
of the hardware executing the function. Additionally, we also observe varying values
for the size of the resulting audio file. However, both the response time and the
resulting file size are closely correlated to the length of the transcribed text segment.
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Figure 5.7: Comparison between billed response time and mean response time of
normal distribution.

Predicting the distribution of the response time of a serverless function is im-
portant to estimate the resulting costs. Predicting only the expected mean response
time can lead to inaccurate cost predictions, as all major FaaS providers round the
billed response time up to the nearest 100 ms. Figure 5.7 shows this for a simulated
serverless function with a normally distributed response time with a mean of 180
ms and a standard deviation of 60 ms. If we would solely use the mean response
time of 180 ms and round to the nearest 100 ms, we would predict that an execution
of this function is billed for 200 ms on average. However, looking at the actual
probabilities of being billed 100 ms (9.12%), 200 ms (53.93%), 300 ms (34.67%), and
400 ms (2.28%), results in a mean billed time of 230.11 ms. Therefore, accurate cost
estimations for serverless functions and workflows require predicting the response
time distribution instead of only the mean response time.

Common regression techniques, such as SVR, MARS, or random forest can only
be used to predict the mean response time of a serverless function. Therefore, we
propose the usage of so-called MDNs [Bis94]. Bishop et al. propose the idea to
use a dense neural network to parameterize a Gaussian mixture model. A mixture
model describes the probability density function of a random variable as a linear
combination ofm Gaussian kernels:

p(y|x) =
m∑
i=1

αi(x) ∗ φi(y|x) (5.1)

with αi as the mixing factor (∑m
i=1 αi(x) = 1) and φi(y|x) as a Gaussian kernel with

mean µi and standard deviation σi. Provided with a large enough number of kernels,
a Gaussian mixture distribution can approximate any probability distribution with
an arbitrary accuracy [Gea89]. Simply put, a Gaussian mixture distribution is the
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Figure 5.8: Mixture density network architecture for the prediction of response
time and output parameter distributions of serverless functions with α as mixing
coefficients, µ as kernel means, and σ as kernel standard deviations.

weighted average of m normal distributions. Parameterizing a Gaussian mixture
distribution requires the weights, means, and standard deviations of them normal
distributions. In a mixture density network, these parameters are estimated using
a dense neural network. As the weights, means, and standard deviations are not
contained within the training data set, traditional loss functions for regression,
such as MSE, Mean Squared Logarithmic Error (MSLE), or Mean Absolute Error
(MAE) cannot be applied. Instead, most mixture density networks use the negative
log-likelihood function as a loss function, which is defined as:

`(x) = −log(p(y|x)) (5.2)

For each sample in a training batch, the logarithm of its occurrence likelihood is
calculated and then negated, as neural network optimizers aim to minimize the loss
function.

Figure 5.8 shows the network layout we propose to use for the prediction of the
response time and output parameter distributions of serverless functions. It consists
of an input layer, two dense hidden layers, two regularizations, and an output layer
that aggregates over the three layers describing the mixing coefficients αi, the means
µi and the standard deviations σi of the gaussian kernels. The input layer contains a
neuron for each input parameter, so the overall network has rather few input neurons.
The output layer has a total ofm ∗ 3 neurons, but our evaluation showed that the
prediction of the response time and output parameter distributions requires usually
less than five kernels. Therefore, the total number of output neurons remains usually
below fifteen. With limited input and output neurons, the dense layers require only
a comparatively low number of neurons (200 were sufficient during our case study).
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Figure 5.9: Meta-model for the workflow model.

Some input parameters have a large range of values, such as the file size. For such
input parameters, it is possible to only have a single observation for a specific input
parameter value. Additionally, the response time for serverless functions is prone to
outliers due to function cold starts [Bal+17]. If such an outlier is the only sample
for its input parameter value, the neural network will overfit by parameterizing the
mixture distribution for this specific input parameter value much larger than for
adjacent input parameter values. In order to prevent this type of overfitting, we
apply L2 regularization after each dense layer. An L2 regularization (also known as
ridge regularization or Tikhonov regularization [RN09]) adjusts the cost function
for the gradient descent learning by adding the squared Euclidean norm of the
corresponding layers weight matrix [CMR09]. Therefore, the L2 regularization
penalizes model complexity. In our use case, this is a desirable property as we
assume that the relationship between an input parameter and the observed response
time distribution is roughly continuous.

The dense layers use the widespread rectified linear unit (relu) activation func-
tion [LBH15]. The output layer for themixing coefficients uses the softmax activation
function to guarantee that the mixing coefficients sum up to one. As no restrictions
apply for the means of the linear kernels, the corresponding output layer uses a
linear activation function. For the prediction of response time distributions, it could
be restricted to positive values. However, there might be edge cases in which the
distribution of an output parameter might contain negative values. As a standard
deviation is restricted to values greater than or equal to zero, the corresponding
output layer should also be restricted accordingly as otherwise the negative loss like-
lihood can no longer be calculated. Bishop et al. originally proposed the usage of an
exponential activation function [Bis94]. However, this is reported to potentially lead
to numerical instability [Bor15]. As alternatives, we tested the softplus activation
function [GBB11] and an exponential linear unit (elu) activation function [CUH15]
with an offset of 1. The convex nature of the softplus activation function enabled
the network to fit linear kernels with a small standard deviation, whereas the elu
+ 1 activation function consistently skewed towards kernels with large standard
deviations. Linear kernels with a small standard deviation are useful in mixture
density networks to explain subpopulations. Therefore, we choose the softplus
activation function for the standard deviation output layer. Finally, the three output
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layers are concatenated to form a single output layer.

5.2.3 Workflow Cost Prediction

In Section 5.2.2, we propose the usage of mixture density networks to predict the
response time and output parameter distribution of individual serverless functions
for a concrete input parameter value. However, in a serverless workflow, the input
parameters of each function are a distribution instead of a concrete value, because
they are the output of previous functions. We propose to run a Monte-Carlo simula-
tion [Vos08] on a model of the workflow to determine the response time and output
parameter distribution for a given distribution of input parameters.

As shown in Figure 5.9, the proposed workflow model is an extended, directed
acyclic graph (DAG), a common formalism to model workflows [VVI18]. As a sim-
plification, we assume that control and data flow are identical. Each WorkflowModel
consists of a number of Nodes. A Node represents a single execution of a serverless
function and should be named after the function it represents. Every Node contains a
number of AbstractEdges, which represent the input parameters to the function and
also should be named accordingly. Each edge describes the name of a parameter and
its corresponding distribution. There are two sub-classes of AbstractEdge, namely
InputEdge and ConnectionEdge. An InputEdge represents an input to the workflow
and characterizes the distribution of an input parameter to the first Nodes in the
workflow. On the contrary, ConnectionEdges serve both as input parameters to
nodes and output parameters from nodes. They characterize the output distribution
of a return parameter of a node, which is usually an input parameter to another Node
in the workflow. Therefore, ConnectionEdges contain an MDNModel that can predict
the Distribution of the output parameter the ConnectionEdge represents, based
on the input parameters of the corresponding Node. ConnectionEdges additionally
reference the Node of which the output parameter originated from. Similarly, each
Node contains a MDNModel that can be used to estimate the response time distribution
of the serverless function represented by the Node based on its input parameters.
Since all edges always describe the input parameters of nodes, it is possible to add
output parameters that do not impact the cost of the workflow execution.

Algorithm 5.1 requires a WorkflowModel as an input and provides an estimation
of the costs for executing this workflow. First, at lines 2-4 of Algorithm 5.1, all input
distributions are solved by iterating over all input edges of all nodes of the workflow
and recursively solving them. The SOLVE function described at lines 14-23 returns at
line 16, if a given edge already has a distribution. This is the case for InputEdges for
example, as they are already parameterized as input. However, if the distribution of
an edge is unknown, the distribution of the edge can be estimated by applying the
Monte-Carlo simulation on the given MDN model of the edge and the distributions
of its input parameters. However, as the input parameters might also be unknown,
all dependent edges are first solved by recursively calling SOLVE on them. This
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Algorithm 5.1:Workflow Model Traversal
1 function ESTIMATECOSTS(workflowModel):
2 for edge in workflowModel.nodes.input do
3 SOLVE(edge)
4 end
5 workflowCost = 0
6 for node in workflowModel.nodes do
7 rDist = SIMULATE(node.rtModel, node.input)
8 functionCost = ESTIMATECOST(rDist)
9 workflowCost += functionCost

10 end
11 return workflowCost
12 End function
13
14 function SOLVE(edge):
15 if edge.distribution != NULL then
16 return
17 end
18 inputDists = edge.source.input
19 for dependency in inputDists do
20 SOLVE(dependency)
21 end
22 edge.distribution = SIMULATE(edge.model, inputDists)
23 End function

recursion is guaranteed to be finite, as DAGs are not allowed to contain circles and
all input edges are already parameterized. After the recursion ends at line 5 of
Algorithm 5.1, all input distributions to all nodes in the given workflow model are
known. Hence, lines 6-11 iterate over all nodes in the workflow engine, and sums
up the estimated cost for each predicted response time distribution. Finally, the total
costs can be returned at line 11.

Algorithm 5.2 details how the Monte-Carlo simulation derives the distribution
of response times or output parameters of a serverless function based on the distri-
bution of its input parameters. It uses the mixture density networks described in
Section 5.2.2, that predict the expected distribution for concrete input parameter val-
ues. In lines 5-9 of Algorithm 5.2, the algorithm draws a sample from the probability
distribution of each input parameter.

Next, at lines 10-11, the mixture density model is used to predict the expected
distribution for this set of input parameters, and the resulting distribution is added
to a list. The more samples are used in a Monte-Carlo simulation, the more precise

91



Chapter 5: Automating Operational Tasks of Serverless Applications

Algorithm 5.2:Monte-Carlo Simulation
1 function SIMULATE(MDNModel, paramDists):
2 numSamples = 5000
3 resultDistList = new List()
4 for i = 1; i ≤ numSamples; i++ do
5 params = new List()
6 for param in paramDists do
7 sample = param.drawSample()
8 params.add(sample)
9 end
10 dist =MDNModel.predict(params)
11 resultDistList.add(dist)
12 end
13 return new MixtureDistribution(resultDistList)
14 End function

Algorithm 5.3: Cost Estimation
1 function ESTIMATECOST(respDist):
2 numSamples = 5000
3 sumCosts = 0
4 for i = 1; i ≤ numSamples; i++ do
5 sample = respDist.drawSample()
6 billedIntervals = CEIL(sample/BILLINGINTERVAL)
7 sumCosts += billedIntervals * CPUCOST
8 sumCosts += billedIntervals * MEMORYCOST
9 sumCosts += EXECUTIONCOST

10 end
11 return sumCosts/numSamples
12 End function

the resulting estimation becomes, at the cost of increased computation time. As rare
events are not expected in our use case, 5,000 samples likely provide a sufficient
prediction accuracy. The resulting list of probability distributions is then composed
to a mixture distribution with equal weights, which can be seen as the average over
the individual distributions.

Algorithm 5.3 shows the adapted Monte-Carlo simulation used to predict the
average cost for a function estimation based on its response time distribution. First,
5,000 samples are drawn from the response time distribution of the serverless func-
tion. In line 6, the algorithm calculates the number of billed intervals by dividing
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the response time sample by the size for the billing interval and rounding up. The
number of billed intervals is then used for calculating the cost for the CPU time and
the memory time, by multiplying them at lines 7 and 8 of Algorithm 5.3. Some cloud
providers do not split the costs of CPU time and memory time; in this case lines 7
and 8 can be concatenated and replaced by just one multiplication with the charged
amount per interval. Additionally, each sample is charged a constant blanket fee per
execution, that is, the invocation cost for each function execution. After calculating
all samples, the costs for each sample are summed up and divided by the number
of samples to determine the average execution cost at line 11. The static variables
BILLINGINTERVAL, CPUCOST, MEMORYCOST and EXECUTIONCOST depend on the pricing
of the selected cloud provider and can be parameterized accordingly.

5.2.4 Limitations & Threats to Validity

Serverless functions can be provisioned with different memory limits, which indi-
rectly also changes the processing power allocated to each function instance. Our
approach currently does not take this into consideration and assumes that if a func-
tion is used in a workflow, its memory limit is not changed. While we consider
this assumption reasonable, This approach could be integrated with the approach
proposed in Section 5.1 to determine the impact of different memory sizes.

Besides costs for CPU time, memory time, and a flat execution cost, cloud
providers usually also charge for network egress, that is the amount of data leaving
their data center or a regional zone. Our approach currently does not consider
this type of costs as the specification of the workflow model does not contain any
information about when data leaves a regional zone or the data center of the cloud
provider. However, our approach is already capable of estimating the size of the out-
put data of a serverless function and if the workflow model is extended accordingly,
it should also be possible to predict the egress costs.

The proposed approach considers functions as black-boxes that can only be
monitored at the interface level. Therefore, it does not explicitly model potential
external calls within the serverless functions. For external calls to other serverless
solutions such as serverless object storage (e.g., S3 Buckets or Google Cloud Storage),
serverless databases (e.g. AWS Aurora or Google Cloud Datastore), serverless event
management (e.g., AWS SNS or Google Cloud Pub/Sub) or serverless in-memory
data storage (e.g., AWS Elasticache) should not impact the response time prediction
accuracy, as the load-independent response time of these calls is correctly modeled
within the mixture density network describing the response time of the function
issuing the external call. External calls to non-serverless services can negatively
impact the response time prediction accuracy, as the load-dependent behavior of
these external calls is not captured by our approach. In practice, this should be
neglectable as synchronous external calls in serverless functions are a major anti-
pattern as they cause double-billing [Bal+17].
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5.2.5 Summary

To provide complex functionality, serverless functions are often assembled into work-
flows. However, estimating the costs of these serverless workflows is challenging as
the response time and therefore the costs of a serverless function depend on its input
parameters, which are propagated from prior functions within the workflow. In this
contribution, we propose a methodology to predict the costs of serverless workflows.
To answer RQ IV.1 (“How can the execution time distribution of a serverless function
be predicted based on its input parameters?”), we apply mixture density networks to
predict the distribution of a function’s response time and its output parameters. The
resulting models are then combined into a workflow model. Based on this workflow
model, a Monte-Carlo simulation derives cost estimates for the workflow execution,
which answers RQ IV.2 (“Can the impact of restructuring a serverless workflow on its
cost be predicted?”). The approach presented in this contribution achievesGoal IV
(“Provide a technique to estimate the costs of serverless workflows.”) by providing accu-
rate cost predictions for previously unobserved serverless workflows. Using our
approach, solution architects can make informed decisions when choosing between
a serverless workflow and a traditionally hosted workflow by providing concrete
numbers for the costs of the serverless workflow. Based on our cost predictions,
workflow designers can compare alternatives without time-intensive experimenta-
tion. Additionally, this contribution represents a first step towards fully automated
workflow optimization using multi-objective optimization techniques, analogously
to existing tools for traditional software systems [Ale+09; Mar+10]. The prediction
accuracy of our approach and the potential cost savings are evaluated in Section 8.2.
This contribution has been published as a full research paper at the International
Conference on Performance Engineering (ICPE) [Eis+20b].
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Enabling White-Box Performance
Modeling and Simulation of Serverless
Platforms

Providers of serverless platforms need to understand the impact of different architec-
tural and algorithmic design decisions on the performance properties of the platform.
The high cost and risk associated with evaluating the performance of alternative
designs in practice stymies the advancement of serverless platforms. In traditional
software systems, white-box performance modeling is a common technique to evalu-
ate the impact of design tradeoffs. Unfortunately, white-box performance modeling
is currently challenging to apply to serverless platforms due to twowell-documented
shortcomings of white-box performance, as discussed in Challenge 5: a) white-box
performance modeling requires the explicit modeling of parametric dependencies
at design time, and b) the simulation time of a white-box performance model grows
exponentially with the number of components.

In this section, we introduce two approaches targeted towards Goal V (“Provide
an approach for the white-box performance modeling and simulation of serverless platforms.”).
The first approach speeds up the simulation time required to solve white-box per-
formance models by enabling the parallel modeling of subsystems as fast-to-solve
black-box performance models and as traditional queueing models. Further, we
provide a transformation of the hybrid model toQPNs and extend an existing solver
to support hybrid models. The second approach addresses the shortcoming that
white-box performance modeling does not support the integration of empirically ob-
served relationships between model parameters, such as resource demands, branch
probabilities, and in-/output parameters. We propose a novel approach to mod-
eling empirical parametric dependencies in architectural performance models. To
derive performance prediction, a dependency resolution algorithm derives a fully
parameterized model from the empirical data.

In the following, Section 9.1 introduces our approach for the simulation of fine-
grained deployments, and Section 9.2 introduces our approach for the modeling
and solution of empirical parametric dependencies.
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6.1 Simulation of Fine-grained Deployments

The time required to simulate a model is an important factor for performancemodels.
Nambiar et al. [Nam+16] identify fastermodel solution as a criterion for performance
modeling success, Woodside et al. [WFP07] find that reduced run-time would
increase the adoption of simulation-based solvers and Koziolek et al.[Koz10] state
that the time required to solve a model is a limiting factor for the level of detail a
performance model can contain.

In this contribution, we introduce a hybrid modeling approach that aims at
RQ V.1 (“How can the time required to simulate large systems such as serverless platforms
be reduced?”). This generic modeling approach enables a parallel and integrated
description of subsystems as statistical response time models (black-box performance
models) and as traditional queueing models (white-box performance models) in order to
speed up model simulation. The proposed approach allows users to dynamically se-
lect the appropriatemodeling composition of statistical and queueing sub-models for
each analysis run. We provide a transformation of the integrated queueing/statistical
model to QPN [KB06] and extend an existing discrete event simulation solver for
QPN to support black-box performance models. Additionally, we investigate the im-
pact of replacing components or full subsystems by statistical response time models
on the architectural performance model’s accuracy and simulation time.

The remainder of this section is structured as follows: Section 6.1.1 describes our
hybridmeta-modeling approach that extends component-based performancemodels
with the statistical response time models, Section 6.1.2 describes our algorithm to
extract statistical response time models from monitoring data, and Section 6.1.3
introduces an approach to transform architectural performance models containing
statistical response time models to an extended QPN. Finally, Section 6.1.4 discusses
the current limitations of the proposed approach. Our approach is evaluated in
detail in Section 9.1.

6.1.1 Hybrid Meta-Model

In general, our modeling approach can be applied to any architectural software
performance model which uses a component notation. Examples for software
performance models which could be extended using our approach include the
PCM [BKR09], CBML [WW04], PECT [His+02], or COMQUAD [Göb+04] as all of
these models rely on the notion of repository components with some kind of perfor-
mance description which are instantiated as assembly components. The meta-model
proposed in this paper would not be directly applicable to performancemodels, such
as ROBOCOP [Bon+05], which do not differentiate between repository and assem-
bly components. However, the general concept of including statistical response time
models in architectural performance models is also applicable to these performance
models but would require a different modeling approach.
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Figure 6.1: Structure of the DML meta-model (source: [Hub+17]).

We show how our approach can be applied to DML [BHK14], a performance
model for component-based systems in data centers. It is representative of compo-
nent-based performance models and was already evaluated in a number of case
studies [Hub+17; Kou+16; Eis+18; Spi+19]. The meta-model of DML is separated
into six submodels as shown in Figure 6.1:

Application architecture The application architecture meta-model consists of a
component repository and a component assembly. The repository specifies the
interfaces and components of a system. For each component the performance-
relevant properties can be specified via resource demands, control flow operations
(loops, branches, etc.), and calls to interface providing roles. In the assembly, these
components are instantiated and connected to each other according to their interface
providing and requiring roles.

Resource landscape The physical resources in a data center such as compute
or storage nodes are contained in the resource landscape meta-model. The DML
provides support for virtualized environments, such as VMs or containers as nested
resources.

Deployment The deployment meta-model maps the instantiated assembly com-
ponents from the application architecture meta-model to the physical resources
defined in the resource landscape meta-model.
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Figure 6.2: Meta-model for assembly with response time model integration.

Usage profile The workload is specified in the usage profile meta-model, similar to
UML use cases andUML activities. Here, DML supports open and closedworkloads,
as well as detailed user sessions.

Adaptation points The possible adaptations to a system at run-time are limited,
as not everything can be changed during system operation. Therefore, the adap-
tation points meta-model describes which elements of the resource landscape and
application architecture can be adapted at run-time.

Adaptation process The adaptation process meta-model describes how a dynamic
system reacts if its environment changes during operation. The DML supports three
granularities that allow building composite adaptation processes: strategies, tactics,
and actions.

Component assembly in DML ismodeled similarly to UML, as shown in Figure 6.2.
Every RepositoryComponent is either a BasicComponent, a CompositeComponent
or a SubSystem. Every RepositoryComponent specifies a number of Interface-
Providing- and InterfaceRequiringRoles, which describe the functionality a com-
ponent provides and what functionality should be provided by external compo-
nents. A RepositoryComponent can be instantiated multiple times as Assembly-
Contexts. These component/subsystem instances are connected with each other
by AssemblyConnectors, which connect InterfaceProvidingRoles to Interface-
RequiringRoles.

Traditionally, performance descriptions are modeled on the level of repository
components to enable reuse of the performance descriptions [BKR09; WW04;
His+02; Göb+04]. However, statistical response time models describe the response
time of a specific component instance and the response time of a component is
influenced by its required services and deployment [Koz10]. Therefore, we propose
to enrich component instances in the form of AssemblyContextswith Statistical-
Models describing its response time. This allows replacing component instances,
composite component instances, and subsystem instances with statistical response
time models during model solution.
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Figure 6.3: Meta-model for response time models.

Every response time model describes the response time for a specific workload
class, as shown in Figure 6.3. In DML, a workload class can be uniquely identi-
fied by an InterfaceProvidingRole and a corresponding Signature. Therefore,
every ResponsetimeModel references an InterfaceProvidingRole and a Signature.
Every ResponsetimeModel has a number of InputParameters based on which the
response time for a specific request is calculated. Currently, the only supported
InputParameter is RequestsInSystem. Upon the arrival of a new request for which
a response time has to be calculated, this parameter counts how many requests
of a workload class (specified by an InterfaceProvidingRole and a Signature)
are currently being processed by the component/subsystem. The InputParameter
interface provides an extension point to include further parameters that influence
the response time of a component/subsystem, for example, workload parameters
such as the size of an input file. Response timemodels can either be a white-box, that
is a human-readable function, or a black-box, such as a machine learning model. We
model one of each, in order to showcase how they can be integrated into the model.
As a black-box approach, we use a trained RandomForest model. Every Random-
Forest references a file containing the machine learning model. This model predicts
the response time of a component/subsystem by using the InputParameters as
features. MARS is a regression technique that results in a human-readable function,
which can therefore be modeled explicitly. Every MARSmodel consists of a sum of
BasisFunctions, which are either a static Constant or a Hinge. A HingeH(i, k, c, s)
is a function over an InputParameter iwith the following form:

H(i, k, c, s) =

{
c ∗max(0, k − i) for s = LEFT,

c ∗max(0, i− k) else (6.1)

with a constant c, a knot k, and a side s. For further information on random
forests or MARS see [Ho95] and [Fri91], respectively.

Our modeling approach provides three key characteristics: (i) It provides an
extension point to include any regression or machine learning model. Although
deep learning approaches might often be unfeasible due to the required quantity
of training data, including them would be possible. (ii) Our approach annotates
component/subsystem instances with response time models. The response time of
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a component/subsystem depends on the deployment platform and the required
services, which means the response time, unlike resource demands, cannot be
specified for generic components. (iii) The presented meta-model enables parallel
modeling of a component/subsystem as a traditional queueing system and as a
response model. As the appropriate modeling granularity depends on the predicted
performance metrics and model adaptations, this enables adapting the model for
each individual request.

6.1.2 Statistical Response Time Model Extraction

Response time models can be extracted from either run-time monitoring or via dedi-
cated measurements. There is a large body of work on the construction of response
time models using dedicated measurements, for example, [Wes+12; Noo+13; FH12].
This research usually focuses on the intelligent selection of measurement points.

In the following, we present an approach to extract response time models from
run-time monitoring. We assume generic monitoring data that consists of a set
of monitoring records rec = (wc, st, cp), where wc denotes the request’s workload
class, st and cp represent the absolute start and completion time of the request,
respectively. Training regression or machine learning models requires a set of
observations of a target variable and a number of features that will be used to
predict the target variable. In our case, the target variable is the response time of a
single request and the features are the number of requests of each workload class
that are currently being processed within the component/subsystem. Therefore,
an observation obs = (rt, wc, reqwc1 , reqwc2 , ...) consists of the observed response
time rt, the workload class of the processed request wc and the number of requests
being processed in the component/subsystem upon arrival of the request for every
workload class reqwci .

Algorithm 6.1 shows how we extract the training data for the regression and
machine learning approaches based on run-time monitoring data. The algorithm
receives a list of records recordList as input and returns a list of observations
observations. It maintains a list of requests that are currently being processed in
the component/subsystem requestsInSystem and a map wcToCount that counts
the number of requests currently being processed for each workload class in order
to speed up the computation. In line 5, the algorithm iterates over the list of mon-
itoring records (we assume that this list is ordered by request arrival time). For
every monitoring record, an observation is created in lines 12-16. The observation
consists of the response time of the request record.cp− record.st, the workload class
of the request record.wc and the number of requests already in the system for each
workload class wcToCount.get(wci). Afterwards, the request is added to the list of
requests currently in the system requestsInSystem and the counter for the number
of requests currently in the system wcToCount is increased for the workload class
of the request.
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Algorithm 6.1: Training data extraction algorithm
1 function EXTRACTTRAININGDATA(recordList):
2 observations = {}
3 requestsInSystem = {}
4 wcToCount = {wc1 → 0, wc2 → 0, ...}
5 for record in recordList do
6 for request in requestsInSystem do
7 if request.cp < record.st then
8 requestsInSystem.remove(request)
9 wcToCount.decrease(request.wc)

10 end
11 end
12 observations.add(new Observation(
13 record.cp− record.st,
14 record.wc,
15 wcToCount.get(wc1),
16 wcToCount.get(wc2), ...))
17 requestsInSystem.add(request)
18 wcToCount.increase(request.wc)
19 end
20 return observations
21 End function

Prior to this, the algorithm checks if any of the requests currently in the system
has departed prior to the arrival of the current request in lines 6-11. It iterates over
every request currently in the system and evaluates if the completion timestamp
of the request request.cp is smaller and therefore prior to the start timestamp of
the new record record.st. Every request that finishes is removed from the list of
requests currently in the system requestsInSystem and the counter for the number
of requests in the system wcToCount is decreased for the workload class.

The presented algorithm converts common run-time monitoring data that con-
sists only of start and completion time for each request and its request class to a
format that enables training of most machine learning approaches and the fitting of
stochastic models. The corresponding processes to train a MARS or random forest
model on this data is described in [Ho95] and [Fri91], respectively.

6.1.3 Simulation of Hybrid Performance Models

Traditionally, architectural performance models are transformed into a solution
formalism such as a QN, LQN, or QPN. DML, the modeling formalism used in this
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Figure 6.4: Example for the integration of statistical response time models in queue-
ing models.

thesis, derives performance predictions by transforming the model to a QPN that
is subsequently simulated using simQPN [KB06]. For detailed information on the
transformation to QPN, we refer to [Bro14].

We extend the existing formalism by introducing a new distribution for the
processing time, where the processing time is calculated by a statistical response
time model based on the number of requests already being served. As the statistical
response time model already considers queueing time, the corresponding queueing
place has infinite servers to avoid duplicating the queueing time. It is important to
note that each statistical response time model only describes the response time for a
single request class. Therefore, a queueing place that serves two request classes has
to contain two response time models.

Figure 6.4 shows an example how a subsystem can be replaced by a statistical
response time model. In Figure 6.4a the original queueing model is depicted. It
consists of two queues, which represent two components and a place with five initial
tokens, that is used to model a limited software thread pool of five for the second
component. Figure 6.4b shows the system if the second component is replaced by
a statistical response time model. The full representation of the component (the
queueing place and the ordinary place for the software thread pool) is replaced by a
single queueing place with infinite servers and a processing rate which is described
by a statistical response time model. This example describes the replacement of a
single, coarsely modeled component. For more complex components or subsystems,
the full model describing the component/subsystem is still replaced by a single
queue with infinite servers and a statistical response time model. Assuming the
statistical response time model perfectly predicts the response time of the subsys-
tem/component, we can assume that the model with the statistical response time
model predicts the same values for the following performance indices as the original
model:

• Throughput of the model

• Overall response time of the model
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• Utilization of all remaining queues

As the derivation of a single value from a response time model is significantly faster
than the simulation of a request through a subsystem, the overall model solution
time should be greatly reduced.

6.1.4 Limitations & Threats to Validity

While our approach shows significant benefits over the current state-of-the-art, there
still are limitations and threats to the validity to be discussed.

Currently, the statistical response time models are trained based on the observed
concurrency levels for each request class. However, the literature suggests that the
parameterization of requests within a single request class can significantly impact
resource demands [Koz10; Ack+18]. Our approach could be extended to take this
into account by having these parameters implement the InputParameter interface
shown in Figure 6.3.

Most components are stateless, but for a stateful component, the response time
can be influenced by its internal state [HBR14]. The approach presented in this
contribution is not able to capture this behavior accurately. In theory, response
time models could be able to accurately capture such behavior if data on previous
requests is included in the training data and a machine learning technique that can
handle non-linear correlations is used. However, since serverless functions enforce
statelessness anyway, this is outside the scope of this thesis.

The experimental evaluation of this contribution (see Section 9.1) considers a
restricted scenario as there is no co-location of components on the same physical
resources and the only investigated adaptation is the load level. Further experimen-
tation including scenarios with co-located components, adaptations to the system
architecture, and changing component implementations is required to derive a
definitive rule set describing when statistical response time models can safely be
integrated in architectural performance models.

Lastly, the exact results for the attained speedups by the integration of statistical
response time models in architectural performance models are limited to MARS
models. Further experimentation using different machine learning algorithms to
build statistical response time models could provide additional insights. However,
for most machine learning algorithms the training time is the limiting factor and
deriving predictions from a previously trained model is comparatively fast [RN09].

6.1.5 Summary

Architectural performance models provide a powerful tool for software architects
to evaluate and improve the performance of a software system and its architecture.
However, the time required to simulate large or detailed models has been iden-
tified as a limiting factor by many researchers [Nam+16; WFP07; Koz10]. This
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contribution addresses this issue by integrating statistical response time models into
architectural performance models. The appropriate model composition depends
on the performance metrics of interest. Our approach enables the modeling of each
component and subsystem as a queueing network and a statistical response time
model in parallel. This allows to dynamically tailor the system description for each
analysis run. We provide a transformation of the integrated queueing/statistical
model to QPN [KB06] and extend an existing discrete event simulation solver for
QPN to support black-box performance models. Our approach enables software ar-
chitects to analyze larger systems, performance engineers can explore more detailed
models and self-adaptive systems can explore additional adaptation options within
the same time period due to the faster model solution, which achievesRQV.1 (“How
can the time required to simulate large systems such as serverless platforms be reduced?”).
The prediction accuracy of our approach and the achieved simulation speedups are
evaluated in Section 9.1. This contribution has been published as a full research
paper at the International Conference on Software Architecture (ICSA) [Eis+19].
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6.2 Simulation of Parametric Dependencies

At run-time, variables and dependencies can be learned and continuously updated
based on available monitoring data [Spi17]. However, parts of the system may be
inaccessible to monitoring as instrumentation might negatively impact the overall
system performance [Ehl+11]. At design time, many details on component interac-
tions remain open, limiting concrete specifications of parametric dependencies to
aspects independent of component instantiation. In contrast, a run-time environment
can supply sufficient information (e.g., using monitoring) to identify dependencies
for specific component instances.

Existing architectural performance modeling formalisms [Koz08; Sit+01; Ham09;
Bon+05; Ost+14] apply design-time assumptions when modeling parametric de-
pendencies. In particular, we identified the following major limitations: (1) Existing
parameter dependency models only support the modeling of dependencies per
component type, not between specific component instances. However, in a run-
time scenario, where dependencies between specific component instances can be
obtained from monitoring data, modeling them becomes necessary. (2) No support
for parameterization based on multiple parametric dependencies, which would
allow for selecting alternative input parameters based on what is measurable. (3)
Existing solutions [Koz08; Ham09; Bon+05] can not incorporate and benefit from
correlations if they are not based on previously executed parameters from the call
path, such as backward correlations.

In this section, we present a novel approach to integrate empirical parametric
dependencies in architectural performance models of component-based software
systems to address RQ V.2 (“How can relationships between parameters observed at run-
time be utilized in white-box performance models?”). Our approach enables themodeling
of parametric dependencies on a component instance level, multiple independent
dependencies describing one variable, and modeling of correlations as parametric
dependencies. The dependency resolution algorithm transforms its information to a
directed graph and resolves this graph to derive a fully parameterized model.

The remainder of this contribution is structured as follows: Section 6.2.1 intro-
duces two motivating examples and provides a detailed problem statement. Sec-
tion 6.2.2 describes the proposed parametric dependency modeling approach and
Section 6.2.3 presents the corresponding dependency resolution approach. Finally,
Section 6.2.4 discusses the limitations of the proposed approach. Finally, Section 6.2.5
summarizes the contribution. A detailed evaluation of the proposed approach is
presented in Section 9.2.

6.2.1 Motivating Example

We illustrate general deficiencies for the modeling of parametric dependencies based
on a video store application and then derive the general problem statement.
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Figure 6.5: Generation of new subtitles.

6.2.1.1 Video Store Example

The challenges of modeling parametric dependencies in run-time scenarios can
be easily highlighted using an online video store application, similar to YouTube,
Netflix, or Amazon Video. The video store in our example provides its videos
with subtitles in different languages. The subtitles are automatically generated
and translated. We introduce two use cases that underline common requirements
for modeling parametric dependencies at run-time. The first use case covers the
automatic generation of new subtitles by transcribing the audio using machine
learning and subsequent translation to different languages. In the second use case,
the video store retrieves subtitles from a subtitle repository with a cache.

Use case 1: This use case is inspired by YouTube’s automatically generated cap-
tions1. To automatically generate subtitles for newly uploaded videos, a transcription
service uses machine learning techniques to transcribe the video’s audio track. The
resulting subtitles are then automatically translated by a translation service, as shown
in Figure 6.5. The resource demand of the transcription service can be derived from
the size of the file it transcribes. Another way to characterize this resource demand
is to reverse engineer it using the resulting number of subtitle lines.

This use case motivates two novel modeling features: First when designing a
performance model it might not be known for which parameters monitoring data
will be available at run-time. Therefore, both dependencies have to be modeled and
the decision which of these two dependencies should be used to characterize the
resource demand of the transcription service should be made at run-time. Secondly,
this use-case motivates the modeling of correlations as parametric dependencies.
Variables can be described by correlations instead of relying on cause and effect.
In general, the output of a method may encapsulate information about its internal
execution process. In concrete, the correlation between the number of lines and the
transcription resource demand opens an additional valid way to derive the resource
demand.

Use case 2: This use case is inspired by video-on-demand providers, such as
Netflix or Amazon Video. When a user requests a video, the subtitle repository
1https://googleblog.blogspot.de/2009/11/automatic-captions-in-youtube.html
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Figure 6.6: Retrieval of subtitles from the subtitle repository.

provides subtitles in the corresponding language, as shown in Figure 6.6. The
subtitle repository implements a cache, which contains the frequently requested
subtitles. The retrieval of subtitles from the cache causes a lower resource demand
than retrieving subtitles from the database. The cache probability depends on
both the popularity and language of the requested video, as subtitles in a frequent
language for popular videos are more likely to be in the cache. This interaction can
not be generalized for all subtitle repository instances. Other subtitle repository
instances might be used in a different context, where the access frequency does not
depend on the subtitle language or video popularity. An example for this would
be a component creating backups, which iterates over all subtitles, independent
of language or popularity. This showcases the need to model dependencies on an
instance level in addition to component-level dependencies. At run-time, correlations
between parameters can be learned from monitoring data for the deployed system.
These correlations are only applicable for specific component instances, not for all
instances of a component.

6.2.1.2 Problem Statement

Illustrated by the video store example, we identified the following general require-
ments to model parametric dependencies for component-based systems in run-time
scenarios:
Instance-level dependencies Instance-level dependencies describe interrelations

between component instances. Modeling these dependencies for component
types, as supported by existing approaches, would apply the dependency to
all instances of the component.

Multiple descriptions The description of parameters using multiple independent
parametric dependencies provides alternatives for run-time model parameter-
ization. A typical use case can be, for instance, the specification of component-
level dependencies and instance-level dependencies for the same variable.

Correlations as dependencies At a runnable system state, monitoring data may
reveal correlations between parameters. Modeling these correlations as de-
pendencies can be used to derive characterizations in case parameters can
not be measured. Existing parameter models can only capture strictly causal
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Figure 6.7: Model variables in DML.

correlations as dependencies since they enforce that a parameter may only
depend on prior parameters from the same call path [Koz08; Ham09; Bon+05].

Existing approaches [Koz08; Sit+01; Ham09; Bon+05; Ost+14] can not model the
parametric dependencies that occur in our video store example. In the following,
we propose a modeling and resolution approach that provides native support for
the above-described modeling features.

6.2.2 Parametric Dependency Modeling

We integrate our work for modeling and resolution of parametric dependencies into
a representative architectural performance modeling formalism, the DML [BHK14;
BHK11]. Therefore, we briefly introduce its relevant parts. The DML meta-model
is made of five sub-models: repository, assembly, resource environment, deploy-
ment, and usage profile. The repository model defines blueprints for the software
components that get assembled and connected in the assembly model. The deploy-
ment model describes how these components are distributed across the hardware
resources defined in the resource environment model. The usage profile model con-
tains the workload definition. For a detailed introduction to the DML meta-model,
we refer to [BHK14].

The integration of novel modeling features requires the identification of the af-
fected meta-model parts. The resource landscape and the deployment do not affect
parametric dependencies. Only the application architecture meta-model contains
information about parameters and dependencies between them. In the application
architecture, components are modeled, instantiated, and connected to other com-
ponents using interface providing and requiring roles. Every interface signature
provided by a component has a corresponding behavior description. It may contain
control-flow descriptions such as loops, branches, and forks. Additionally, behav-
ior descriptions contain resource demands and external calls to other components.
The specification of parametric dependencies builds upon three main concepts: (i)
variables, (ii) parameters, and (iii) relationships.
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Variables depict a core concept for parametric dependency modeling. Figure 6.7
shows the variable and parameter types to which dependency descriptions may
refer to. Every variable inherits from RelationshipVariable. Each Relationship-
Variable can either be an InfluencableVariable or a CallParameter, which are
both contained in a BehaviorAbstraction. An InfluencableVariable can be a
ResourceDemand, a BranchProbability, a CallFrequency, or a LoopIterationCount.
Any RelationshipVariable contains a value attribute of type RandomVariable de-
scribing its distribution. The value attribute can be NULL if its distribution is to be de-
rived based on parametric dependencies. The Characterization of a Relationship-
Variable indicates whether the variable value is explicitly modeled or should be
characterized using monitoring data.

Calls to components can contain parameters that influence the behavior of the
called component. The value returned by a call to another component can also influ-
ence the calling component’s behavior. Common examples include file sizes and list
lengths. In DML, such parameters are modeled as CallParameters, which are de-
picted in Figure 6.8. CallParameters include ExtCallParameters, ExtCallReturn-
Parameters, ServiceInputParameters, and ServiceOutputParameters. Service-
InputParameters together with ServiceOutputParameters model a component’s
input and output parameters. Therefore, they reference a ProvidedRole, which
describes the interface and signature the parameter belongs to. The counterparts to
these parameters are the ExtCallParameters and the ExtCallReturnParameters,
which specify the input and output parameters for a call to another component.
If two component instances are connected via an assembly, the ExtCallParameter
and the respective ServiceInputParameter share the same distribution; the same
applies to ServiceOutputParameters and ExtCallReturnParameters.

In order to model dependencies both on repository level and on component
instance level, DML provides two types of Relationships, as shown in Figure 6.9.
A DependencyRelationship represents a dependency on the repository level and
is therefore modeled as part of the component blueprint in the Repository. Cor-
relationRelationships on the other hand are used to model dependencies on a
component instance level. Therefore it is modeled as part of the System and refers
to two or more AssemblyContexts, which represent specific component instances.

109



Chapter 6: Enabling White-Box Performance Modeling of Serverless Platforms

DependencyRelationship

CorrelationRelationship

Component

System

Relationship

AssemblyContext

RelationshipVariable

1

1..*

1
*

*

1
*

1
*

1

1..*
*

*

*

dependent
independent

1..*
*

dependent
independent

Figure 6.9: Relationships in DML.

Callpath
Model

Dependency
Graph

Resolved
Dependency

Graph

Stackframe
Model

Simulation

Analytical
SolverStep 1 Step 2 Step 3 Step 4

Architectural
Performance

Model

Figure 6.10: Dependency resolution process.

Both types of Relationships contain an equation which can be used to derive the
value of the dependent RelationshipVariable from the one or more independent
RelationshipVariables.

6.2.3 Parametric Dependency Resolution

The second major objective of our approach is to automatically derive performance
indices from models using our novel and existing dependency modeling features.
The automated prediction requires a resolution of the declarative parametric depen-
dency description to enable model analyses. Besides functional requirements, we
formulate the following design goals for the realization of our dependency resolution
approach: (i) modularity in order to improve maintainability and (ii) independence
of concrete stochastic model solvers.

To achieve modular design, we decompose the resolution into the multi-step
dependency resolution process depicted in Figure 6.10. It consists of the following
steps:
Step 1 Extraction of possible call paths through the system from the architectural

model into a CallpathModel.
Step 2 Transformation of the model parameters and the dependencies between

them into a directed graph, denoted as DependencyGraph.
Step 3 Resolution of parametric dependencies within the DependencyGraph using

our dependency resolution algorithm to generate the ResolvedDependency-
Graph.
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Figure 6.11: Callpath meta-model.

Step 4 Combination of the information contained in the CallpathModel and the Re-
solvedDependencyGraph in order to generate a StackframeModel. The Stack-
frameModel represents a solution-readymodel that can be solved using existing
simulators and analytical solvers by transforming it to their respective analysis
format [Hub+17].

The resolution of parametric dependencies should not rely on a specific prediction
formalism in order to be reused in transformations to different stochastic models and
respective analytical or simulation-based solvers. Through the transformation to the
StackframeModel, our dependency resolution is independent of specific stochastic
model solvers. In addition, this enables the reuse of all existing DML solvers. The
description of employed intermediate models allows for their reuse in the context of
further architectural performance modeling formalisms. In the following, we detail
the employed intermediate meta-models and our dependency resolution algorithm.

6.2.3.1 Intermediate Meta-Models

The dependency resolution algorithm applies a set of intermediate graph meta-
models. In this section, we describe the CallpathModel, the DependencyGraph, and
the StackframeModel.

Callpath Model The CallpathModel, depicted in Figure 6.11, captures all paths
a request may take through the system. It contains a set of CallpathPoints rep-
resenting entry points to the system. Each CallpathPoint specifies the Location
where its Behavior is executed. A location does not refer to a physical node in the
system, but to an assembled software component that contains the executed behav-
ior. For every Call in the Behavior of a CallpathPoint, a CallMapEntry references
another CallpathPoint representing the Call’s target Behavior and the assembly
component it is executed in. Every possible path that leads to the execution of a
Behavior can be described by a single CallpathPoint as it contains a reference to its
predecessor. Additionally, the CallpathModel contains Dependencies, which con-
nect two or more CallpathPoints. The Behavior description of CallpathPoints
contains the independent and dependent parameters. The nature of the depen-
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Figure 6.13: Stackframe model from [Hub+17].

dency is abstracted in a DependencyDescription. The meta-model only contains
the connections between CallpathPoints. Component level dependencies do not
have to be modeled in the CallpathModel since the location of its dependent and
independent components is captured within the model.

Dependency Graph The DependencyGraph, depicted in Figure 6.12, contains
information about themodel parameters and the dependencies between them. Every
Node in the Graph represents a Parameter and a call path to it, which is represented
by a CallpathPoint. This means that one Parameter can be contained in multiple
Nodes if it lies on multiple call paths, allowing a Parameter to have different values
depending on the call path. If the distribution of the Parameter in this call path is
known, the value is saved in its Distribution, otherwise it is NULL. The Nodes are
connected by directed Edges that model the dependencies between them. Every
Edge connects one dependent Node to one or more independent Nodes. The Edge’s
StochasticExpression describes how the distribution of the dependent Node can
be calculated if the values of the independent Nodes are known.

Stackframe Model We reuse the StackframeModel presented in [Hub+17] as
output for our dependency resolution algorithm. The StackframeModel represents a
solution ready form of an architectural performancemodel. In the StackframeModel,
the sophisticated aspects of architectural performance models are resolved, simpli-
fying the transformation into solution models such as QPNs or LQNs, as described
in [Hub+17]. Figure 6.13 shows the meta-model of the StackframeModel. It con-
sists of a series of StackFrameswhich describe a ServiceBehaviorAbstraction and
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Algorithm 6.2: Dependency Resolution Algorithm
1 function SOLVEDEPENDENCIES(dependencyGraph):
2 hasChanged = true
3 while hasChanged == true do
4 hasChanged = false
5 for Edge in dependencyGraph.edges do
6 allIndependentsCharacterized = true
7 for Node in Edge.independents do
8 if Node.value == null then
9 resolvable = false

10 end
11 end
12 if resolvable == true then
13 Edge.dependent.value = Edge.calc()
14 hasChanged = true

15 end
16 end
17 end
18 End function

a ComponentInstanceReference, which describe the assembly instance on which
the behavior is executed. For every ExternalCall in the StackFrame’s behavior, a
Successor annotates which StackFrame is called by the ExternalCall. Similarly, a
ValueMapEntry annotates every ModelVariable in the StackFrame’s behavior with
a RandomVariable describing its distribution.

6.2.3.2 Resolution Process

This section details how our dependency resolution algorithm uses the intermedi-
ate meta-models to transform a model containing parametric dependencies to an
analysis-ready model without dependencies. The approach consists of the following
four steps:

Step 1 The CallpathModel can be extracted from an architectural performance
model by creating CallpathPoints for all possible entry points. Next, iterating over
all newly created CallpathPoints, a CallMapEntry, and a target CallpathPoint has
to be created for every Call inside the CallpathPoint’s Behavior. This needs to
be recursively repeated for all CallpathPoints created by this step, until every call
path ends in a CallpathPointwho’s Behavior does not contain any Calls.

Step 2 The CallpathModel can be transformed to the DependencyGraph by iter-
ating over all CallpathPoints in the CallpathModel and executing the following
tasks on them:
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• Create a Node for every parameter in the CallpathPoint Behavior.

• Create an Edge for every component level dependency described in the Call-
pathPoint’s Behavior.

• Create an Edge for every pair of input and output parameter in the Callpath-
Point’s Behavior and its predecessor’s Behavior.

• Create an Edge for every instance level dependency modeled in the Callpath-
Modelwho’s dependent is contained in the CallpathPoint’s Behavior.

This generates a complete DependencyGraph, which can be used to derive values for
all unknown parameters in the following step.

Step 3 The DependencyGraph contains Nodeswith known distributions and Nodes
with unknown distributions. If all independent Nodes of an Edge have distributions,
the distribution of the dependent Node can be derived. To determine a resolution or-
der that resolves distributions for all Nodes, we use the dependency solver algorithm
shown in Algorithm 6.2. It iterates over all Edges in the dependency graph and
evaluates if every independent Node of the Edge is already characterized. Should this
be the case, the algorithm computes the distribution of the dependent Node of the
Edge. The algorithm repeats these steps until no changes occur in the dependency
graph after iterating over the Edges. This resolves distributions for all Nodes and
therefore for every occurrence of every parameter in the system.

Step 4We transform the CallpathModel and the ResolvedDependencyGraph to a
StackframeModel. The CallpathPoints and the CallMapEntries connecting them
can be directly mapped to StackFrames and Successor. For every parameter in
a CallpathPoint Behavior, its distribution can be found in the corresponding
Node of the ResolvedDependencyGraph. We transform it to a ValueMapEntry of
the StackframeModel. The result of the whole process is a fully parameterized
StackframeModel, which can be analyzed using a variety of analytical approaches
and simulations [Hub+17].

6.2.4 Limitations & Threats to Validity

While we consider our approach a significant improvement over the current state-of-
the-art, there still are limitations and threats to the validity to be discussed.

Algorithm 6.2 for the resolution of parametric dependencies could potentially
never terminate. However, since each iteration reduces the number of nodes without
characterization, it will always terminate. In case no new node was characterized,
the algorithm also terminates. Whenever a parametric performance model contains
cyclic dependencies, one of the dependencies making up the cycle can be ignored
since it describes an already known variable. Assuming that all dependencies
describe the variable with the same accuracy, no information is lost.
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There is no guarantee that our approach will be able to resolve distributions for
all variables. In case the parameter model contains insufficient information to derive
distributions for all variables, our algorithm still resolves as many distributions as
possible and then returns the partially resolved DependencyGraph. This partially
resolved DependencyGraph contains the information which variables could not be
resolved and measurement values for which parameters would allow to resolve the
missing distributions.

If the distributions of two variables can be derived from the same parameter or
share a common ancestor in the DependencyGraph, then the resultingmodel wrongly
assumes that the distributions of the two variables are statistically independent. This
problem is also inherent to existing approaches [Bro+15]. In contrast to existing
work, our approach allows to automatically detect this by checking whether two
variables share a common ancestor in the DependencyGraph. This allows to inform
the user that the parameterization might be inaccurate.

6.2.5 Summary

This contribution provides novel modeling features for parametric dependencies
and a corresponding solution algorithm, which extends state-of-the-art modeling
with run-time-specific features. In particular, it enables parametric dependencies
on component instance level, multiple descriptions of a single variable, and model-
ing of correlations as dependencies. Next, we introduce a dependency resolution
algorithm that transforms the model to a directed graph and resolves this graph to
derive a fully parameterized model. The presented approach enables the utilization
of empirically observed parametric dependencies improving the ability to reflect
system behavior within architectural performance models based on higher flexibil-
ity of inputs, which shows that we have answered RQ V.2 (“How can relationships
between parameters observed at runtime be utilized in white-box performance models?”).
This results in higher performance prediction accuracy, which is valuable for various
purposes such as capacity planning [MV00], bottleneck analysis [ST07], design
tradeoff analysis [KAM13], and proactive auto-scaling [BHK17]. A detailed evalu-
ation of the proposed approach is presented in Section 9.2. This contribution has
been published as a full research paper at the International Conference on Software
Architecture (ICSA) [Eis+18].
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Chapter 7

Results for the Characteristics and
Performance of Serverless Applications

7.1 Serverless Application Characterization

In this chapter, we present the results of our serverless application characterization,
which consists of the collection of serverless applications, their characterization
by multiple reviewers, and the analysis of consensus among existing studies. We
present our results forGoal I (“Provide quantitative data on the common characteristics of
modern serverless applications.”) in the context of the following two research questions,
that we defined in Section 1.3:

• RQ I.1 (“What are common characteristics of current serverless applications?”)

• RQ I.2 (“Is there a community consensus on the common characteristics of serverless
applications?”)

In the following, Section 7.1.1 introduces the results of our characterization of 89
serverless applications from open-source projects, academic literature, industrial
literature, and scientific computing. Next, Section 7.1.2 discusses our findings on the
consensus between our results and ten existing, mostly industrial studies. Our repli-
cation package is introduced in Section 7.1.3 and finally, Section 7.1.4 summarizes
our findings.

7.1.1 Characteristics Analysis

In the following, we describe the serverless application characterization results in
the context of six common questions about serverless applications.

How are serverless applications implemented?
When AWS revealed Lambda in 2014, it was the only FaaS platform offered by a
major cloud provider, and it only supported JavaScript functions. Since then, tens of
serverless platforms have emerged [Eyk+19, §3], offering support for diverse pro-
gramming languages. The capabilities and performance features of these platforms
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Proportion of applications [%]
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Figure 7.1: Cloud provider used for serverless applications.

and languages have been studied extensively [SL20]. We focus here on the state of
practice in implementing serverless applications.

We analyze the collection of serverless applications introduced in Section 4.1.1.
Figure 7.1 shows that 80% of the applications in our dataset are using the cloud
provider AWS, whereas the other major cloud providers are used a lot less often
(10% Azure, 7% IBM Cloud, and 3% Google Cloud). Although AWS also has the
largest market share when it comes to IaaS at 47.8% [Gar18], this difference alone
is not enough to explain why so many of the applications in our dataset are using
AWS. A potential explanation is that AWS Lambda was released two years before
any other large cloud provider released their Function-as-a-Service solution, which
means this platform is likely more mature and there was more time for customers to
adopt its serverless features. Since then, many open-source Function-as-a-Service
solutions launched [Eyk+19], yet we do not see significant adoption for them in our
dataset (a combined 8%, mostly by scientific applications). We observe that most
applications in our dataset usemanaged cloud services that would not be available in
a private cloud environment; this could explain the low adoption of the open-source
Function-as-a-Service solutions and also spur innovators in serverless technology to
consider more carefully the ecosystem where their platforms can work.

Interpreted languages may be better suited for serverless applications than com-
piled languages because compiled languages suffer from longer cold-starts [Mal19].
Figure 7.2 corroborates this rule-of-thumb: JavaScript (42%) and Python (42%) are
the most popular programming languages. Serverless applications are also written
in Java (12%), C/C++ (11%), or C# (8%); few use Go (5%) or Ruby (2%). However,
this may change, as the usage of ahead-of-time compilation, for example, for Java,
has been shown to alleviate the difference in cold-start duration [MG20].
Finding 1: Currently, AWS is the dominating platform for serverless applica-
tions (80%), and most applications are implemented in either JavaScript or
Python (42% each) (RQ I.1).

What does a typical serverless architecture like?
Developers looking to implement serverless applications need to make many archi-
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Figure 7.2: Programming language used for serverless applications.
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Figure 7.3: Managed services used by serverless applications.

tectural decisions, such as which external services to use, how many functions to
use, and how they are triggered. Understanding patterns in serverless architecture
can guide the general discourse on serverless applications and provide a valuable
guideline for developers starting to build serverless applications.

Figure 7.3, label None, shows that only 12% of the serverless applications in our
dataset do not use any managed service. This suggests serverless applications are
typically created by combining serverless functions for compute and managed cloud
services for other operations. The most frequently used managed services in our
dataset are storage (61%) and databases (48%). Serverless functions are stateless,
therefore all application state needs to be persisted in external storage and databases.
The second class of most frequently used external services are managed messaging
services, including publish/subscribe solutions (17%), streaming solutions (11%),
and queueing solutions (10%). Serverless functions often use such messaging
services to store their output if it needs to be processed further.

Cloud providers offer different ways to trigger the execution of serverless func-
tions. As Figure 7.4 depicts, we find that 48% of the selected applications use HTTP
triggers, and 41% use cloud event triggers (e.g., as a new message in a queue, or a
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Figure 7.4: Trigger types used in serverless applications.
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Figure 7.5: Number of serverless functions per serverless application.

new entry in a database). Generally, HTTP triggers are commonly used to expose
functionality to users, whereas cloud events help coordinate multiple cloud func-
tions. This is a significant change from microservices, which typically rely on API
calls to coordinate multiple services. One of the reasons for this change towards
an event-driven architecture could be that synchronous calls between serverless
functions cause double billing [Bal+17]. A smaller number of applications use
schedule-based triggers (13%) or manually triggered functionality (9%). These
triggers are usually used for orchestration or management tasks.

Figure 7.5 shows that the number of functions per application is relatively low:
Only 7% of the applications in our dataset use more than 10 functions, and 82%
use 5 or fewer functions. This suggests, firstly, that the use of external services
reduces the amount of (internal) code required to build an application. Secondly,
the functionality encapsulated by a serverless function is between a microservice
and an API endpoint, as the applications we review do not wrap every programming
function as a serverless function [SMM18]. The term “serverless functions” might
be misleading, as they are not related to the programming concept of functions.
Finding 2: Serverless applications typically use cloud storage (61%), cloud
databases (47%), and cloud messaging (38%). They use few cloud functions:
82% of serverless applications use 5 or fewer functions (RQ I.1).

What are common traffic patterns for serverless applications?
Traffic patterns—namely, execution patterns, burstiness characteristics, and data
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Figure 7.6: Execution pattern of serverless applications.
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Figure 7.7: Burstiness of the workload of serverless applications.

volumes—can reveal how serverless platforms are used. Applications can be exe-
cuted on-demand when a user interacts with the application or a cloud event occurs;
we further classify the on-demand execution as regular on-demand or high-volume
on-demand. Applications can also be scheduled to run at specific times, for example,
to perform cleanup tasks during off-hours.

Regarding the execution patterns, Figure 7.6 shows that most applications are
triggered on-demand (86%), out of which more than half are high-volume invoca-
tions, associated with business-critical functions. Only 17% of the applications are
triggered by a periodic schedule. Through an in-depth analysis, we find that about
half of the scheduled applications execute operations & monitoring functions, high-
lighting how the serverless model has been adopted—in many cases—to automate
operations, software management, and DevOps pipelines. We also note that the
high prevalence of on-demand triggered applications, and specifically, high-volume
on-demand patterns, is well supported by the industry trends of reducing over-
heads (i.e., function start-up time), and of providing quick and seamless function
auto-scaling mechanisms.

Regarding burstiness, we classify applications as having potentially bursty work-
loads or non-bursty workloads. A bursty application follows a workload pattern
that includes sudden and unexpected load spikes, or a significant amount of sus-
tained noise and variation in intensity. We classify an application as non-bursty if the
workload is guaranteed to rarely or never experience bursts (e.g., if all executions
are scheduled and known in advance); otherwise, the workload is bursty. When
humans trigger function executions, the workload pattern can be bursty, as user
behavior can rarely be scheduled or reliably controlled. As Figure 7.7 shows, we
classify more than 84% of the workload patterns we analyzed as bursty; only 16%
have a clear non-bursty pattern. As one of the strengths of serverless computing
is its seamless scalability, together with the general ease of operations, it comes as
no surprise that most of the applications can indeed experience bursty workload
patterns.
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Proportion of applications [%]
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Figure 7.8: Data volume handled by serverless applications.

Finally, we analyze the data volume or load that the serverless applications issue
on the network and storage devices. We classify applications into: volumes of less
than 1MB per execution, less than 10MB, less than 100MB, less than 1 GB, andmore than
1 GB. Exact numbers rarely appear in our sources so this classification is based on
reviewers’ estimates. Figure 7.8 shows (i) more than half of the applications (53%)
in the smallest category of data volumes and 16% in the next (< 10 MB) and (ii)
the second peak (16%) in the largest category (> 1GB). The resulting distribution
appears bimodal, but this might be an artifact of the binning intervals.

Finding 3: Most serverless applications have potentially bursty workloads (84%).
Serverless applications are often used for high-traffic workloads (39%) (RQ I.1).

What are serverless applications used for?
A common assumption is that serverless applications are suitable for operations
tasks and batch jobs, as their traffic patterns profit from the pay-per-use model. For
example, Netflix uses AWS Lambda for operations tasks, such as video encoding,
file backup, security audits of EC2 instances, and monitoring. However, the core
functionality—the website and app backend, and video delivery—is still running
on traditional IaaS cloud services [Lau18]. Contrary to this popular belief, and as
Figure 7.9 depicts, we find that the most common serverless applications in our
dataset are implementing APIs (29%) or are processing frequent events (streams)
asynchronously (28%). Example use cases for these types of applications are server-
less backends for web, mobile, or IoT applications. Still, a significant portion of
serverless applications focus on processing batch tasks (24%) and on automating
operations tasks (20%).

Another common assumption is that serverless applications are not suitable for
complex analysis tasks. In contrast, in our dataset, 25% of applications contain
functions with an estimated runtime of over one minute. Among these applica-
tions are scientific workloads, such as SNP Genotyping [Cre+19] or seismic imag-
ing [Wit+20], showing an increased adoption of serverless computing for complex
analysis tasks.
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Figure 7.9: Application type of serverless applications.
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Figure 7.10: Latency requirements of serverless applications.

The high percentage of APIs is somewhat surprising, as a common argument
against serverless applications is that cold starts make them unsuitable for applica-
tions with low-latency requirements or focus on tail-latency. However, we find that
serverless applications are used for latency-critical tasks. As shown in Figure 7.10,
38% of the selected serverless applications have no latency requirements. However,
32% of the serverless applications have latency requirements for all functionality,
28% have partial latency requirements, and 2% even have real-time requirements.
Finding 4: Serverless applications are not limited to any specific types of appli-
cations, as they are commonly used to implement APIs (29%), stream/async
processing (28%), batch tasks (24%), and operations tasks (20%) (RQ I.1).

Why are practitioners choosing serverless computing?
Several potential benefits of serverless applications have been proposed: reduced
operational effort, faster development due to the heavy use of Backend-as-a-Service,
and near-infinite scalability of serverless applications. Many also discuss significant
cost savings from switching to serverless computing. However, these benefits are not
generally agreed upon, for example, cost savings have come under scrutiny [Eiv17].
To understand why practitioners choose to adopt serverless computing, we investi-
gate the descriptions and documentation of applications in our dataset.

We could not determine the reasons behind the adoption of serverless computing
for about 30% of the applications in our dataset, as the documentation did not
mention explicitly why serverless computing was chosen. We analyze the remainder
and depict the results in Figure 7.11. The main driver is cost—mentioned by 47%
of the remaining applications. While serverless computing is not per se cheaper

125



Chapter 7: Results for the Characteristics and Performance of Serverless Applications

Proportion of applications [%]
Maintainability

Simplify Development
Performance

Scalability
NoOps

Cost

3%
13%

19%
34%
34%

47%

Figure 7.11: Motivation for building serverless applications.
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Figure 7.12: Structure of serverless workflows.

than IaaS hosting, the pay-per-use model and ability scale to zero, reduce costs
in scenarios where the IaaS resources are underutilized. Serverless applications
can also offer seamless, virtually infinite scaling. Scalability is mentioned as a
reason for serverless adoption by 34% of the applications in our dataset. The third
main reason for choosing serverless computing over traditional hosting options is
reduced operational overhead because server management is no longer done by
applications. A few applications also reported improved performance (19%) and
faster development speed (13%) as reasons for serverless adoption.
Finding 5: Reduced hosting costs of serverless applications (47%), reduced opera-
tion effort (34%), and high scalability (34%) are the main drivers for serverless
adoption (RQ I.1).

How complex are serverless applications?
Although initially, serverless computing focused on simple applications, comprised
of mainly small functions, there has been increasing interest in using serverless
computing for more complex applications. Such applications can be expressed as
serverless workflows, which orchestrate the dependencies between multiple functions.

From our dataset, we find a significant percentage of applications already struc-
tured as serverless workflows (31%). Examples of such serverless workflows can
range from simple workflows to large scientific workflows [Wit+20].

Similar to workflows in other fields, we can classify these serverless workflows
into specific patterns based on how the function calls (or tasks) are structuredwithin
these orchestrations. As Figure 7.12 depicts, we find that half of the workflows are
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Figure 7.13: Size of serverless workflows.
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Figure 7.14: Coordination of serverless workflows.

sequential in nature, where tasks are executed one after the other. We also find
bags of tasks (17%), where a set of tasks can execute without a particular order or
inter-dependency. Finally, a third (33%) of the applications are defined as complex
workflows, that is, workflows that include structures such as conditional branches
and loops. The diversity and level of complexity indicate designers of workflow
management systems are soon to be engaged in a competition over new features
and optimizations.

Another key differentiator between the selected applications is workflow size
(shown in Figure 7.13). Most applications (72%) have rather small workflows,
consisting of 2 to 10 tasks. These tend to be applications for business processes
and data pipelines, such as the multi-step provisioning of developer machines at
Autodesk[Wil17]. Almost a quarter of serverless workflows (23%) contain 11 up
to 1,000 tasks. Finally, a few serverless workflows (4%) consist of more than 1,000
tasks—typically, large scientific workflows requiring custom workflow engines to
run.

A final factor in serverless workflows is the approach used to orchestrate their
execution. Overall, as Figure 7.14 highlights, we found that most serverless workflow
applications (60%) use event-based mechanisms—such as file uploads triggering the
execution of functions—to implicitly orchestrate entire workflows by ensuring that
the result of one function triggers the next. About a third of the workflows (38%) are
managed by a dedicated workflow management system, such as AWS Step Functions,
Google Workflows, or Azure Durable Functions. Besides these cloud-based orches-
tration methods, we also identify a less-common approach, local coordination (2%),
in which the orchestration complexity is deferred to the client-side. Although this is
less robust than other methods, it is used for one-off workflows, for example, the
distributed build-workflows of gg [Fou+19].
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Table 7.1: Degree of agreement with existing studies. A - denotes that the study did
not investigate this characteristic and a (-) denotes that the results are incomparable
due to differences in the question or answer options.
Characteristic SCS SitW MMS TSoS OSS GtST FtLoS FSS DSS CNCF
Platform Very High - (-) - Very High High - - High -
Language Medium - High Very High - Medium Very High - - -
External Services (-) (-) (-) (-) - - - - - -
Trigger Types - Very High - - - - - - - -
Number of Functions (-) Very High High - - Low - - - -
Execution Pattern - (-) - - - - - - - -
Burstiness - High - - - - - - - -
Data Volume - - - - - - - - - -
Application Type Very High - (-) - - High - (-) - (-)
Function Runtime - High - High - - (-) - - -
Is Latency relevant? - - - - - - - - - -
Motivation Medium - Medium - High High - Low - Low
Is it a workflow - - - - - - - - - -
Workflow coordination - - - - - - - - - -
Workflow structure - - - - - - - - - -
Workflow size - - - - - - - - - -

Finding 6: Almost a third (31%) of the serverless applications are workflows.
Most workflows are of simple structure, small, and short-lived (RQ I.1).

7.1.2 Consensus Analysis

Here, we analyze the degree of agreement between the results from our study
and from other studies. This meta-analysis can identify meaningful corroboration
between the different studies: For the characteristics that appear both in our study
and in others, a high degree of agreement with the existing studies would increase
the credibility of these results. A high degree of agreement can also suggest that the
results for characteristics that have not yet been investigated by any other study are
also credible.

Table 7.1 summarizes the results; the degrees of agreement are defined in Sec-
tion 4.1.3.3. We find that 8 characteristics are also investigated by other studies, as
indicated by rows where very low to very high items appear. Among these char-
acteristics, platform, language, and motivation are analyzed by 4–6 other studies. For
6 characteristics, we are the first to investigate them in peer-reviewed material. For
the remaining 2 characteristics, external services, and execution pattern, our study uses
options incomparable with other studies that considered the aspect.

In general, we find a high degree of agreement with the existing studies. For
each characteristic where we observe only a low or medium level of agreement
with another study, we also observe high or very high agreement with another
study, pointing towards differences between these studies. Only for the motivation
characteristic, there are multiple studies relatively to which we observe low and
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Figure 7.15: Comparison of results for used cloud provider.

medium levels of agreement, suggesting there might be some information that our
study missed.

In the following, we provide a qualitative comparison of the results from our
study and the comparison studies for the eight characteristics analyzed by at least one
of the comparison studies. Here, we focus on points of agreement and disagreement
between the studies to obtain corroborating evidence for our findings and identify
characteristics that require further investigation.

Platform and Programming Language
Five independent studies indicate that AWS is the most popular serverless provider,
followed by Microsoft Azure and Google Cloud. All five studies report a relative
share of applications per respondent above 50% for AWS, as shown in Figure 7.15.
Azure comes second in all studies except CNCF, where Google Cloud is slightly
more popular. Google Cloud is ranked third in all studies except ours, which re-
ports IBM Cloud to be more popular. IBM Cloud is the last major public serverless
provider mentioned by all studies. CNCF, GtST, and SCS mention many other
serverless platforms such as Cloudflare Workers, Twilio Functions, or Huawei Func-
tionStage. However, we excluded these hosted platforms due to low popularity
(<5%) and only being mentioned by few studies. SCS and our study grouped
installable platforms into the private cloud category, including Apache OpenWhisk,
Knative, Kubeless, and OpenFaas. For the other studies, the private cloud category
could not be calculated due to incompatible reporting.

Figure 7.16 shows six studies agreeing that JavaScript and Python are the domi-
nant programming languages in serverless applications, followed by Java and C#.
The tie between JavaScript and Python in our study highlights that both languages
are similarly popular across all six studies, with a minor trend towards JavaScript be-
ingmore popular. Compared to broadly distributed surveys, Java appears to bemore
popular among enterprise newsletter respondents from GtST and the enterprise-
focused survey and interview studyMMS. The .NET platformwith C# is also present
in all six studies but generally less popular than Java. Four studies report Go as a
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Figure 7.17: Comparison of function numbers per application. The long tail of the
distributions is not shown (GtST: 10.3% > 25 functions, MMS: 16% > 20 functions,
SitW: 0.25% > 20 functions, Us: 1.1% > 20).

strong contender for catching up with C#. Ruby remains a niche language listed
by only three studies. In contrast to other studies, our study found C/C++ to be
similarly popular to Java and C#. We assume that other studies mostly ignored
this category because it refers to C/C++ binaries running under another officially
supported runtime. For GtST and TSoS, the share of programming languages is
derived from telemetry data of deployed functions (rather than applications) based
on their runtime configuration for the cloud provider AWS.
Consensus 1: AWS is the most popular serverless provider with an over 50%
market share, followed by Microsoft Azure and Google Cloud (RQ I.2).

Consensus 2: JavaScript and Python are themost popular programming languages
for serverless applications. Different studies find next amix of Java, C#, and C/C++
(RQ I.2).
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Table 7.2: Comparison of results for trigger types.
Study HTTP Event Scheduled Manual Orchestration
SitW 0.641 0.363 0.292 - 0.094
Us 0.474 0.402 0.124 0.093 -

Number of Functions
The number of functions per serverless application was also investigated by GtST,
MMS, and SitW. Figure 7.17 shows a histogram of the number of functions deter-
mined by each study. The coarse binning used by the surveys prevents a detailed
analysis, but a clear trend is visible. Both GtST and MMS find applications to consist
of more functions than we do; the difference is larger for MMS. We hypothesize that
this is due to differences in survey methodologies. SitW finds more single-function
applications than all other studies. As SitW is specific to Azure, while the other
studies predominantly cover AWS, we hypothesize that serverless applications on
AWS are larger than on other platforms due to the higher maturity of the AWS
serverless ecosystem. Despite disagreements on the exact distribution, all studies
agree that at least 64% of serverless applications have ten or fewer functions.
Consensus 3: Nearly two-thirds of serverless applications have 10 or fewer func-
tions (RQ I.2).

Trigger Types
The only other study on how serverless functions are triggered is SitW. Table 7.2
shows the results for the triggers HTTP request, cloud event, and scheduled triggers.
For SitW, we aggregated the results for queue, storage, and event trigger as cloud
events, as our definition of cloud event includes those. Both studies agree that HTTP
requests and cloud events are the most common triggers for serverless functions.
However, SitW finds that scheduled triggers are similarly common, whereas we
find them less common than HTTP and event triggers. SitW covers only functions
deployed on Azure and reports a larger share of single-function apps than any other
study. We hypothesize there is a difference in serverless usage between the providers,
with serverless computing being used more for timer-based, single-function utility
applications at Azure than at, for example, AWS.
Consensus 4: HTTP requests and cloud events are the most common triggers for
serverless functions (RQ I.2).

Burstiness
The only other study that included information related to burstiness is the SitW
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Figure 7.18: Comparison of results for application type.

study. We note that there is no standardized way of characterizing burstiness [GB08;
Ali+14]. The SitW study reports the coefficient of variation (cv) of the inter-arrival
times of application invocations, which we used to derive burstiness levels B in
terms of the cv following the metric proposed by Goh and Barabasi [GB08]. The
SitW results are in high agreement with the results in our study: both studies
agree that more than half of the serverless applications exhibit bursty workloads.
Specifically, we found 81% of the applications exhibit bursty workloads, while 57%
of the applications from the SitW study exhibited bursty behavior.
Consensus 5: More than 50% of serverless applications have potentially bursty
workloads (RQ I.2).

Application Type
Comparing the different application type studies is not straightforward, as each
study introduces its own classification type. We, therefore, had to map the catego-
rizations of the other studies to match our taxonomy. The details can be found in
our replication package. Figure 7.18 shows that GtST and SCS agree with the obser-
vation that serverless tasks are used for all areas of computing, including operations,
batch jobs, streaming or asynchronous data, or standard API operations. Although
the individual percentages differ, for example, GtST and SCS both assign higher
importance to API applications and less to stream operations, the overall picture is
quite similar. In fact, all studies agree that at least 20% of serverless applications
implement operations tasks, batch jobs, async processing, and APIs each.
Consensus 6: There is no dominant application type, but several types are common
(RQ I.2).

Function runtime
The runtime of serverless functions was not covered in any of the surveys, only the
datasets from Azure (SitW), Datadog (TSoS), and New Relic (FtLoS) cover this
information. Due to our study methodology, we only estimated if the runtime of
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Table 7.3: Comparison of results for function runtime.

Study Function Runtime
<1 min >= 1 min

SitW 0.960 0.040
TSoS 0.965 0.035
Us 0.750 0.250
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Figure 7.19: Comparison of motivation for building serverless applications.

any function of an application is less than a minute or if it is likely to run longer.
Thus, we can not compare our results to the data from FtLoS, as they focus on the
runtime distribution below five seconds. As Table 7.3 shows, the studies agree that
most functions run for less than a minute, but SitW and TSoS find that over 95% of
serverless functions run for less than a minute, compared to the 75% we found. The
main reason for this difference should be that SitW and TSoS analyze per function
runtime, whereas we analyze how many applications contain one or more functions
that run longer than a minute, so the results are not directly comparable. We note
that even though TSoS focuses on AWS and SitW on Azure, both agree that over
95% of serverless functions run for less than a minute.
Consensus 7: At least 75% of the serverless functions run for under 1minute
(RQ I.2).

Motivation
Figure 7.19 compares the motivations for building serverless applications. The stud-
ies had a wide range of possible and overlapping options; we grouped the answers
of the comparison studies to fit the options that we identified in our study. This
means we compared the studies based on motivations for cost reduction, scalability,
performance, developer productivity (DevSpeed), and reduced operational com-
plexity (NoOps). We find that cost reduction and scalability are common and key
motivations mentioned in all studies. A reason for this could be that cost reduc-
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tion and scalability properties are typical concerns for serverless developers and
operators. In contrast, the other motivations—performance, developer productivity,
and reduced operational complexity—vary in relative share or are even completely
absent in some studies. We believe this is due to the surveys providing options
for participants to select from; those options tend to be biased by what the survey
is focused on. One survey (GtST) focused heavily on motivations related to the
developer productivity, whereas another (MMS) targeted the operation of serverless
applications.
Consensus 8: Cost, scalability, and NoOps are major drivers of serverless com-
puting adoption. Some studies also find increased development speed as a major
driver of serverless computing adoption (RQ I.2).

7.1.3 Replication Package

We include a detailed replication package that provides in-depth details about
our methodology and enables the faithful replication of this study at a later time,
which will allow to draw conclusions about how the state of serverless applications
changed. For the collection of serverless applications, it documents the selection
of applications from open-source projects and academic literature based on com-
munity datasets. Additionally, it contains descriptions of the scientific computing
applications along with our contacts for each application. Finally, it contains a list
of all applications collected in this study. For the characterization of serverless ap-
plications, it documents the initial reviewer ratings and the scripts to calculate the
inter-rater agreement as well as the breakdown of the ”Unknown” values. Finally, it
contains the characteristics of all surveyed applications and the scripts to reproduce
the figures. For the consensus analysis, it documents the search results and the
subsequent filtering, the mapping of investigated characteristics to our characteristic
framework for every study, and the scripts to calculate the agreement and reproduce
all figures. The full replication package is available in the form of a GitHub repos-
itory1. This comprehensive replication package should provide full transparency
for our study and enable the replication at a later point to determine if and how the
state of serverless applications has changed.

7.1.4 Summary

In this section, we presented the results for our study addressing Goal I (“Provide
quantitative data on the common characteristics of modern serverless applications.”). Our
analysis spotlights the followingmain findings that answerRQI.1 (“What are common
characteristics of current serverless applications?”): (I) The most commonly reported
reasons for the adoption of serverless computing include cost savings for irregular
1https://github.com/ServerlessApplications/ReplicationPackage
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or bursty workloads, avoidance of operational concerns, built-in scalability, and
increased speed of development, (II) Typical scenarios include short-running tasks
with low data volume and bursty workloads, but we also frequently found latency-
critical, high-volume core functionality as serverless applications, and (III) Serverless
applications aremostly implemented onAWS, in either Python or JavaScript, and use
BaaS. Further, we find that seven out of these findings are corroborated by multiple,
independent studies, which answers RQ I.2 (“Is there a community consensus on the
common characteristics of serverless applications?”). By providing answers to these two
research questions, we have achievedGoal I (“Provide quantitative data on the common
characteristics of modern serverless applications.”).
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7.2 Performance Variability of Serverless Applications

In this section, we present the results of our performance variability case study.
The first dataset we collected contains multiple repetitions of performance tests
under varying configurations to investigate the performance impact of the latter,
and the second dataset contains three daily measurements for ten months to create
a longitudinal dataset and investigate the stability of performance tests over time.
We present our results for Goal II (“Quantify the performance variability that serverless
applications experience.”) in the context of the following two research questions, that
we defined in Section 1.3:

• RQ II.1 (“How much performance variability do common serverless applications
experience?”)

• RQ II.2 (“Does the performance of serverless applications change over time?”)

In the following, Section 7.2.1 introduces the results of the analysis of both perfor-
mance variability datasets in the context of our research questions. Next, Section 7.2.2
discusses how our findings impact the performance testing stages: design, execution,
and analysis. Our replication package is introduced in Section 7.2.3 and finally,
Section 7.2.4 summarizes our findings.

7.2.1 Case Study Results

We now present the results of our empirical study in the context of our research
questions.

RQ II.1 How much performance variability do common serverless applications
experience?

Table 7.4 shows the maximum warm-up period in seconds, observed across all
experiments per workload level. In most experiments, we observe that themaximum
warm-up period out of the ten repetitions lasts less than 30 seconds (37 out of 48
experiment combinations). With exception of IngestLoyalty, all workload classes
exhibit a shorter warm-up period as the load increases. The average warm-up
period in experiments with 500 requests per second was 27 seconds, half of the
warm-up period observed in runs with 5 requests per second (52 seconds). The
function Get Loyalty never reaches a steady-state under high load, as it implements
the performance anti-pattern “Ramp” due to a growing number of entries in the
database [SW02]. We also note that, contrary to the workload, the function size
(memory size) has no influence on the warm-up period: in most cases, the difference
of the warm-up period across function sizes (256 MB, 512 MB, 1024 MB) is not
significant (p > 0.05), with a negligible effect size for the few significantly different
cases (d < 0.147). In the following, we opt to conservatively consider the first 2
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Table 7.4: Maximumwarm-up period in seconds across ten repetitions of all function
sizes.

Request Class Workload (reqs/s)
5 25 50 100 250 500

CollectPayment 15 10 10 10 10 10
ConfirmBooking 25 15 15 65 10 15
CreateStripeCharge 15 15 15 15 20 15
Get Loyalty 70 60 45 30 10 –
IngestLoyalty 15 25 55 75 125 155
List Bookings 115 70 55 45 25 15
NotifyBooking 20 40 40 15 60 10
Process Booking 65 45 20 10 10 15
ReserveBooking 20 20 10 10 10 15
Search Flights 135 80 50 30 30 20

minutes of performance tests as part of the warm-up period for any subsequent
analysis.
Result 1: The warm-up period lasts less than 2 minutes in the vast majority of our
experiments (RQ II.1).

Table 7.5 depicts the average percentage of cold start requests across different
request classes, the share of cold start requests that occur in the warm-up period, and
whether cold starts after the warm-up period significantly impact the mean response
time. We consider cold starts to impact the results if there is a significant difference
between the mean response time with and without cold starts in the steady-state
phase. As we observe similar results for all request classes, below we only discuss
CollectPayment. On average, cold start requests in CollectPayment make up for 0.93%
of the total number of requests. However, since they mostly concentrate in the
first two minutes of the experiment (99.5%), they are discarded with the warm-up
period. The remaining cold start requests (0.5%) that occur throughout the run of
our performance test did not significantly impact the response time (Mann-Whitney
U test with p > 0.05).
Result 2: The vastmajority (>99%) of cold starts occur during thewarm-up period.
Cold start requests that occur after the warm-up period (<1%) do not impact the
measurements (RQ II.1).

Given that cold starts occur mostly during the warm-up period, we wanted to
assess if the warm-up period is composed solely of cold start requests. Is it enough to
simply drop cold start requests from the experiment and consider all other requests as
part of the steady-state performancemeasurements? Table 7.6 shows the difference of
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Table 7.5: Average occurrence of cold start requests in the performance tests per
request class.

Request Class % Cold % Occurrence Impact?Start <=2 min >2 min

CollectPayment 0.93 99.5 0.05 No
ConfirmBooking 0.72 99.5 0.05 No
CreateStripeCharge 0.44 99.9 0.01 No
IngestLoyalty 1.01 99.2 0.02 No
NotifyBooking 1.04 99.9 0.01 No
ReserveBooking 0.40 99.8 0.02 No

Table 7.6: Difference of the maximum warmup-period in seconds between experi-
ments including all requests vs. experiments filtering out the cold starts.

Request Class Workload (reqs/s)
5 25 50 100 250 500

CollectPayment -5 – -5 – – –
ConfirmBooking – – – – – –
CreateStripeCharge -10 -5 -5 -5 -5 -10
IngestLoyalty – – -10 – – -10
NotifyBooking – -20 -20 – – –
ReserveBooking -5 -5 – – – –

the warm-up period considering all requests for the workloads that expose cold start
information (the one shown in Table 7.4), versus the warm-up period calculated
by filtering the cold start requests from the experiment. In the majority of the
experiments (22 out of 36 combinations), we observe no difference between dropping
or keeping the cold start requests in the duration of the warm-up period. Some
request classes, however, exhibited shorter periods of warm-up once we filter out
cold start requests, as the high response time of cold start requests contributes to
the warm-up period. For instance, the experiment with CreateStripesCharge showed
a consistent reduction of the warm-up period of at least 5 seconds (our heuristic’s
window size) for all the workload sizes. It is important to note, however, that the
warm-up period—while shorter for some classes— is not only influenced by cold
starts.
Result 3: In the majority of experiments, removing the cold starts does not shorten
the warm-up period (RQ II.1).

Figure 7.20 shows a heat map of the coefficient of variation observed in 10 repe-
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Figure 7.20: Coefficient of variation of the .99 mean across 10 repetitions per request
class, load level, and function size.

titions of all experiments. With the exception of three request classes, List Booking,
Process Booking, and Search Flights, most of the other experiments show a coefficient of
variation of less than 5% of the mean (125 out of the 132 experiments). The observed
coefficient of variation is also in line with reported variation in other serverless
benchmarks [CSL20], which was reported to be 5 to 10% when executing synthetic
workloads in the AWS infrastructure. This suggests that the studied serverless appli-
cation performance tests are more stable than most traditional performance tests
of cloud applications (IaaS). Cito and Leitner [LC16] reported that performance
variations of performance tests in cloud environments are consistently above 5%,
reaching variations above 80% of the mean in several I/O-based workloads. The two
classes with higher variability of the results, List Booking, and Search Flights, both use
an Amplify resolver to retrieve data from DynamoDB. Our findings indicate that
this AWS-managed resolver might suffer from a larger performance variability.

Result 4: We observe that the vast majority of experiments (160 out of 180) exhibits
a coefficient of variation below 10% of the mean response time (RQ II.1).

Figure 7.21 shows the response time of the ConfirmBooking request class, in which
we observe that as the workload increases, the average response time decreases for
all function sizes. This is true across almost all experiments, where the response
time observed in the scenario with 500 requests per second is significantly faster
than scenarios with only 5 requests per second (Mann-Whitney U p < 0.05), often
to large effect sizes (Cliff’s delta d > 0.474). Moreover, the stability of the obtained
average response time (across 10 repetitions) also improves slightly, from 4.6% on
average across all experiments with 5 reqs/s, to 3.3% on experiments with 500 reqs/s
(see Figure 7.22). Our findings suggest that the workload in the studied serverless
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Figure 7.21: Response time of ten repetitions of ConfirmBooking performance tests,
per workload level and function size.
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Figure 7.22: Distribution of coefficients of variation across all request classes and
function size, per workload (reqs/s).

application showed an inverse relationship to measured performance, that is, the
higher the workload we tested the faster was the average response time, the opposite
of what is expected in most typical systems (bare-metal, cloud environments). It is
important to note that, given the cost model of serverless infrastructure, performance
tests with 500 requests per second cost 100 x more than tests with 5 requests per
second. Therefore, the small gain in stability is unlikely to justify the much higher
costs of running performance tests in practice.
Result 5: We observe improvement in the response time and result stability in
scenarios with higher workloads (RQ II.1).

We note in Figure 7.21 that the ConfirmBooking average response time is consider-
ably faster when the function size is 512 MB or larger. However, we do not observe
any significant difference in the stability of the experiments (coefficient of variation)
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Figure 7.23: Mean response time over a period of ten months.

across different function sizes (Mann-Whitney U test p > 0.05). This means that the
amount of memory allocated for the function has an impact on its response time
(expected), but exerts no significant influence on the stability of experiments.
Result 6: While the response time improves on larger function sizes, the stability
of the tests is not affected significantly by the allocated memory (RQ II.1).

To summarize, we find that the performance of serverless applications becomes
stable quite quickly and that their stability in general is comparable to the stability
of traditional software systems (coefficient of variation below 10%), which answers
RQ II.1 (“How much performance variability do common serverless applications experi-
ence?”)

RQ II.2 Does the performance of serverless applications change over time?

Figure 7.23 presents the average response time of each API endpoint during the
study periods. We can clearly observe fluctuations in performance. For example, the
response time of the API Process Booking has demonstrated large fluctuation after
October 2020. Table 7.7 compares the variation of performance between measure-
ments from the same day and across different days (overall) using a Monte Carlo
simulation. We find that in all of the API endpoints, the average variation between
two randommeasurements is higher than the variation betweenmeasurements from
the same day. For example, Process Booking has an average variation of 17.2% when
considering all measurements, which is more than four times the average variation
between measurements from the same day (3.5%).
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Table 7.7: Comparison of average performance variation between twomeasurements
from either the same day or different days.

Request class Same-day Variation Overall Variation
ConfirmBooking 2.1% ± 2.6% 2.8% ± 3.0%
CreateStripeCharge 2.2% ± 2.1% 13.3% ± 11.0%
Get Loyalty 3.0% ± 20.0% 7.0% ± 22.0%
IngestLoyalty 1.6% ± 1.6% 2.9% ± 2.4%
List Bookings 7.0% ± 59.3% 16.2% ± 65.3%
NotifyBooking 2.3% ± 8.5% 4.3% ± 8.4%
Process Booking 3.5% ± 16.9% 17.2% ± 20.4%
ReserveBooking 2.4% ± 3.2% 3.2% ± 3.8%
CollectPayment 1.9% ± 2.0% 8.3% ± 6.1%
Search Flights 7.1% ± 50.1% 13.2% ± 49.6%
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Figure 7.24: Detected change points for each workload class, note the different y-axis
scales.

Result 7: There were short-term performance fluctuations during our longitudinal
study, despite no changes to the application (RQ II.2).

Figure 7.24 presents the detected long-term performance changes in the different
APIs, according to the change point detection. Although some API endpoints have
more change points than others, all of the API endpoints, except for ReserveBooking,
have gone through at least one change point (the change point in ConfirmBooking
might also be a false positive, as it is quite close to the experiment start). There exist as

142



7.2 Performance Variability of Serverless Applications

Table 7.8: Percentage of at least negligible, small, or medium differences according
to Mann-Whitney U test and Cliff’s delta based on Monte Carlo simulation.

Request class Negligible+ Small+ Medium+
ConfirmBooking 54.0% 17.4% 6.8%
CreateStripeCharge 11.0% 3.8% 1.7%
Get Loyalty 21.6% 7.1% 2.9%
IngestLoyalty 43.3% 14.0% 5.6%
List Bookings 19.2% 6.8% 3.1%
NotifyBooking 37.1% 11.9% 4.7%
Process Booking 14.0% 5.0% 2.3%
ReserveBooking 57.0% 18.5% 7.0%
CollectPayment 13.2% 4.4% 1.9%
Search Flights 24.3% 7.9% 3.3%

many as five change points during the observation period for an API endpoint. The
impact of the performance change may be drastic. For example, the API endpoints
Search Flights and List Bookings have similar performance changes where the response
time is drastically reduced twice. On the other hand, the response time of some API
endpoints, for example, CollectPayment, increases in each change point, leading to a
potential unexpected negative impact on the end-user experience. Finally, most of
the change points for the different API endpoints do not appear at the same time,
which may further increase the challenge of maintaining the performance of the
serverless applications.

Result 8: We detect long-term performance changes during the observation period
(RQ II.2).

Table 7.8 shows the results of conducting theMann-WhitneyU test andmeasuring
Cliff’s delta between two groups of consecutive, non-overlapping samples based on
our Monte Carlo simulation (described in Section 15). We find that for four API
endpoints, almost half of the comparisons have a statistically significant performance
difference, even though the serverless application itself was identical throughout
the observation period. On the other hand, most of the differences have lower than
medium effect sizes. In other words, the magnitude of the differences may be small
and negligible, such that the impact on end-users may not be drastic. However, there
still exist cases whether large effect sizes are observed. Practitioners may need to be
aware of such cases due to their large potential impact on end-user experience.

Result 9: Short-term performance fluctuations and long-term performance
changes could be considered as false performance regressions (RQ II.2).
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To summarize, we find that there are impactful short-term and long-term per-
formance changes over longer periods of time for serverless applications (RQ II.2
(“Does the performance of serverless applications change over time?”)).

7.2.2 Impact on Performance Testing Stages

According to Jiang et al. [JH15], performance tests consist of three stages: (1) de-
signing the test, (2) running the test, and (3) analyzing the test results. Based on
the findings from our case study, we identified multiple properties of performance
tests of serverless applications that practitioners should consider in each of these
stages, as shown in Figure 7.25.

7.2.2.1 Design Phase

During the design of a performance test, the key factors are the workload (which
types of requests in which order), the load intensity (the number of requests), and
the duration of the performance test.

Unintuitive performance scaling (D1). One of the key selling points of serverless
platforms is their ability to seamlessly, and virtually infinitely scale with increasing
traffic [Eis+21b]. Therefore, the classical approach of running performance tests at
increasing load intensities, to see how much the performance deteriorates, becomes
obsolete. We find in our experiments that the performance still differs at different
load levels, however, and perhaps counterintuitively, the execution time decreases
with increasing load. This property impacts how to plan performance tests. For
example, a developer might run a performance test at 200 requests per second
and find that the performance satisfies the SLA; however when the application
is deployed and receives only 100 requests per second, it might violate the SLA.
Therefore, developers need to consider that the worst performance is no longer
observed at the highest load. Depending on the use case, performance testing
strategies could aim to: (a) quantify the expected performance by aiming to match
the production load level, (b) understand how different load levels impact the
performance by measuring a range of load intensities, or (c) aim to find the worst-
case performance with a search-based approach.

Load intensity to cost relationship (D2). Traditionally, the cost of a performance
test is independent of the load intensity and depends only on the number of deployed
VMs and the duration of the experiment. For a serverless application, this relation-
ship is inverted due to the pay-per-use pricing model of serverless computing. Due
to this per-request pricing, the costs of a performance test have a linear relationship
to the total number of requests in a performance test, for example, a performance
test with 50 requests per second costs ten times as much as a performance test with

144



7.2 Performance Variability of Serverless Applications

D1: Unintuitive
performance

scaling

Performance Test
Execution

Performance Test
Design

Performance Test
Analysis

E1: Short-term
performance
fluctuations

A1: Warm-up 
period after 
cold starts

D2: Load 
intensity to cost

relationship

E2: Long-term
performance

changes

A2: Cold starts
occur late 
in the test

Figure 7.25: Properties of serverless computing that influence the different perfor-
mance test stages.

5 requests per second. This changes how developers should think about the costs of
a performance test. Additionally, increasing the load intensity from five requests
per second to 500 requests per second resulted in only a minor increase in result
stability in our case study. Therefore, running more repetitions of a performance
test at low load intensity instead of a single, large test could result in more stable
results at the same cost. However, further experiments in this direction are required
to determine how much this increases the result stability.

7.2.2.2 Execution Phase

For the execution of a performance test, performance engineers need to decide when
and how the test is executed. The technical implementation of a performance test
is mostly unaffected by the switch to serverless applications, as most tooling for
the performance testing of HTTP APIs (e.g., for microservice applications) can be
reused. However, we find that there are two properties of serverless applications
that influence the scheduling of performance tests.

Short-term performance fluctuations (E1). We find that the performance of
serverless applications can suffer from short-term (daily) performance variation.
While performance variation has also been observed for virtual machines [IYE11;
LC16], we find that the variation between measurements conducted on different
days is larger than for measurements conducted on the same day for serverless appli-
cations. Depending on the goal of a performance test, this has different implications.
If the goal is to compare the performance of two alternatives (e.g., to answer the
question if the performance of an application changed between two commits), then
the measurements for both alternatives should be conducted on the same day. On
the other hand, if the goal of a performance test is to quantify the performance of an
application, the measurement repetitions should be spread across multiple days as
this will result in a more representative performance.
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Long-term performance changes (E2). We detect a number of long-term per-
formance changes that caused the performance of the application to permanently
change in our case study, despite no changes being made to the application itself. We
hypothesize that these performance changes are caused by updates to the software
stack of the serverless platform; however, most serverless services do not offer any
publicly available versioning that could be used to corroborate this. Unlike the
short-term fluctuations, this issue can not be combated by running a larger number
of measurement repetitions or by adopting robust measurement strategies such as
multiple randomized interleaved trials [AB17]. When comparing two alternatives,
they should be measured at the same time to minimize the chance of a long-term
performance change occurring between the measurements, which is currently not
necessarily the case, for example, for performance regression testing. Quantifying
the performance of a serverless application is no longer a discrete task, but rather a
continuous process, as the performance of a serverless application can change over
time.

7.2.2.3 Analysis Phase

In this phase, the monitoring data collected during the execution phase is analyzed
to answer questions related to the performance of the SUT. A key aspect of this
phase is the removal of the warm-up period to properly quantify the steady-state
performance.

Warm-up period after cold starts (A1). The performance of a serverless applica-
tion is generally separated into cold starts, which include initialization overheads,
and warm starts, which are considered to have reached the steady-state phase and
yield a more stable performance. We find that a performance test can still have a
warm-up period even after excluding cold starts. A potential reason might be that,
for example, caches of the underlying hardware still need to be filled before steady-
state performance is reached. This indicates that in the analysis of performance test
results, the warm-up period still needs to be analyzed and excluded. For our data,
MSER-5, the current best practice to determine the warm-up period [MI04; WCS00],
was not applicable due to large outliers present in the data, a well-documented flaw
of MSER-5 [SS06]. Therefore, future research should investigate suitable approaches
for detecting the warm-up period of serverless applications.

Cold starts occur late in the test (A2). Another aspect about cold starts is that for
a constant load, one could expect to find cold starts only during the warm-up period.
In our experiments, we found that while the vast majority of cold starts occur during
the warm-up period, some cold starts are scattered throughout the experiment. This
might be, for example, due to worker instances getting recycled [Llo+18]. While
these late cold starts did not significantly impact the mean execution time, they
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might impact more tail-sensitive measures such as the 99th percentile. Therefore,
performance testers need to keep the possibility of late cold starts in mind while
analyzing performance testing results.

7.2.3 Replication Package

Performance measurements of public cloud environments are per definition only
a snapshot of the performance at the time of measurement [LC16; AB17; IYE11].
The performance properties can change whenever the cloud provider upgrades
its hardware, switches to newer versions of the underlying operating system or
virtualization technology, introduces new optimizations or features for the offered
services, or changes any number of configuration parameters [Eis+20a; IYE11]. To
increase our results’ longevity, we provide a replication package that allows other
researchers to replicate our findings and enables tracking if and how the reported
performance properties evolve over time. This is in line with the recently proposed
methodological principles for the reproducible performance evaluation of public
clouds by Papadopoulos et al. [Pap+19].

Our replication package2 consists of two parts: (a) the experiment harness used
to run the performance measurements and (b) the data and analysis scripts used in
the presented analysis. We provide the experiment harness as a Docker container
that replicates all measurements conducted in this study with a single CLI command
from any Docker-capable machine. To simplify the reuse of this harness in other
studies, experiments can be specified as JSONfiles, includingmeasurement duration,
load intensity, load pattern, measurement repetitions, and system configuration.
The second part of our replication package is a CodeOcean capsule containing the
collected measurement data and the scripts for the analysis presented in this paper.
The CodeOcean capsule enables a one-click replication of our analysis either on the
measurement data we collected or on new measurement data collected using our
measurement harness.

7.2.4 Summary

In this section, we present the results for our study towards Goal II (“Quantify the
performance variability that serverless applications experience.”). Among other things,
we find that the performance of serverless applications becomes stable quite quickly
and that their stability in general is comparable to the stability of traditional software
systems (coefficient of variation below 10%), which answers RQ II.1 (“How much
performance variability do common serverless applications experience?”). In regard to
RQ II.2 (“Does the performance of serverless applications change over time?”), we find
that there are both short-term and long-term performance changes over longer
periods of time for serverless applications. Further, we find that there are serverless
2https://github.com/ServerlessLoadTesting/ReplicationPackage
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computing-specific changes and pitfalls to all performance test phases: design,
execution, and analysis. These insights show that we have addressed both research
questions and therefore achieved Goal II (“Quantify the performance variability that
serverless applications experience.”).
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Chapter 8

Evaluating the Automation of
Operational Tasks of Serverless
Applications

8.1 Serverless Function Size Optimization

In this chapter, we present the evaluation of our approach for the serverless function
size optimization. We design our evaluation to answer the following three evaluation
questions to determine if we achieved Goal III (“Develop an automated method to
optimize the size of serverless functions.”):

• EQ III.1: Can our model, trained on a synthetic dataset, accurately predict the
execution time of realistic serverless functions?

• EQ III.2: Are the execution time predictions provided by our approach sufficient to
determine the optimal memory size of serverless functions?

• EQ III.3: How large are the benefits in terms of decreased cost and execution time of
our proposed approach?

In the following, Section 8.1.1 introduces the four realistic serverless applications
we used to evaluate our approach. Next, Section 8.1.2 analyzes the accuracy of our
execution time predictions, Section 8.1.3 investigates the memory size optimization,
and Section 8.1.4 evaluates the obtained cost savings and execution time speedups.
Our replication package is introduced in Section 8.1.5 and finally, Section 8.1.6
summarizes our findings.

8.1.1 Evaluation Systems

In order to investigate these research questions, we conduct performance measure-
ments for the following four case study systems:

Airline Booking This application was the subject of the AWS Build On Serverless
series [Ser19] and presented at AWS re:Invent as an example for the implementation

149



Chapter 8: Evaluating the Automation of Operational Tasks of Serverless Applications

of a production-grade full-stack app using AWS Amplify [Les19]. The airline book-
ing application implements the flight booking aspect of an airline. Customers can
search for flights, book flights, pay using a credit card, and earn loyalty points with
each booking. It consists of eight serverless functions, the managed services S3, SNS,
Step Functions, and API Gateway, as well as an external payment provider. The
workload consists of 200 requests per second that sequentially access all application
features for ten minutes. The measurements for this case study were conducted in
October 2020, so two months after the training dataset and incurred costs of ~500$.

Facial Recognition This case study is part of the AWS Wild Rydes workshop and
was also used in the evaluation of Costless [Elg18], another cost optimization ap-
proach for serverless functions. In this application, users of a fictional transportation
app, Wild Rydes, upload their profile picture, which triggers the execution of a
workflow that performs facial recognition, matching, and indexing. It consists of six
serverless functions, however, we removed the notification function as it is a no-op
stub. This application makes heavy use of AWS Rekognition, a service that was not
contained in our function segments. The workload consists of only ten requests per
second for five minutes, as AWS Rekognition is comparatively expensive. Therefore,
for this case study, our approach will have less monitoring data available to learn
from. The measurements for this case study were conducted in December 2020, so
four months after the training dataset and incurred costs of ~400$.

Event Processing This application was introduced in [Yus+19], where the authors
investigate the challenges of migrating serverless applications across cloud providers
by migrating different systems across multiple cloud providers. For our case study,
we use the AWS implementation of the IoT-inspired event processing system, where
the data obtained from multiple sensors are aggregated for further processing. It
consists of seven serverless functions and uses the API Gateway, SNS, SQS, and
AWS Aurora, none of which are used in our function segments. Compared to the
other two applications, the functions of this application exhibit very fast execution
times. The workload consists of 10 requests per second that sequentially access all
application features for ten minutes. The measurements for this case study were
conducted in December 2020, so four months after the training dataset and incurred
costs of ~50$.

Hello Retail This application from the online retailer Nordstrom won the inau-
gural serverless architecture competition at Serverlessconf Austin [McK17]. The
application models the product catalog of an online shop. Notably, it includes a
workflow for the addition of new products that outsources the product image ac-
quisition to photographers. This application consists of seven functions and uses
Kinesis, API Gateway, Stepfunctions, DynamoDB, and S3. The workload consists
of 10 requests per second that sequentially access all application features for ten

150



8.1 Serverless Function Size Optimization

128 256 512 1024 2048 3008
Memory size [MB]

0

100

200

300

400

500

Ex
ec

ut
io

n 
tim

e 
[m

s]
Airline Booking - CreateCharge

128MB
256MB
512MB
1024MB

2048MB
3008MB
Measured

128 256 512 1024 2048 3008
Memory size [MB]

0

10

20

30

40

Ex
ec

ut
io

n 
tim

e 
[m

s]

Facial Recognition - PersistMetadata
128MB
256MB
512MB
1024MB

2048MB
3008MB
Measured

128 256 512 1024 2048 3008
Memory size [MB]

0

10

20

30

40

50

Ex
ec

ut
io

n 
tim

e 
[m

s]

Event Processing - EventInserter
128MB
256MB
512MB
1024MB

2048MB
3008MB
Measured

128 256 512 1024 2048 3008
Memory size [MB]

0

20

40

60

80

100

Ex
ec

ut
io

n 
tim

e 
[m

s]

Hello Retail - ProductCatalogApi
128MB
256MB
512MB
1024MB

2048MB
3008MB
Measured

Figure 8.1: Example for the measured and predicted execution time for a serverless
function of each serverless application.

minutes. The measurements for this case study were conducted in May 2021, so
nine months after the training dataset and incurred costs of ~30$.

For all four case studies, we conducted ten measurement repetitions for each
memory size to account for cloud performance variability, in line with existing
guidelines for performance measurements of cloud applications [Pap+19]. We
run the experiments as randomized multiple interleaved trials, which has been
shown to reduce performance variability [AB17]. To reduce the chance of human
error and enable the replication of our measurements, we implemented automated
measurement harnesses for each case study, which are available in our replication
package1. Considering the number of functions and external services used, these
applications have an above average complexity [Sha+20; Eis+21b].

8.1.2 Execution Time Prediction

The underlying idea of our approach is to learn how memory size impacts the exe-
cution time of a function based on a large dataset obtained from synthetic functions
1https://github.com/Sizeless/ReplicationPackage
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Table 8.1: Relative prediction error based on monitoring data from 256MB for the
airline booking application.

Targetsize 128 512 1024 2048 3008
IngestLoyalty 10.2 4.7 16.8 19.6 19.8
CaptureCharge 0.4 7.3 8.8 7.6 8.4
CreateCharge 0.1 6.8 9.2 7.7 8.6
CollectPayment 26.1 16.8 26.7 30.3 29.2
ConfirmBooking 5.7 9.6 11.8 6.1 5.0
GetLoyalty 11.2 16.6 27.3 32.7 33.1
NotifyBooking 1.3 1.1 1.3 4.1 4.3
ReserveBooking 1.3 11.6 16.3 11.8 8.3
All functions 7.0 9.3 14.8 15.0 14.6

Table 8.2: Relative prediction error based on monitoring data from 256MB for the
facial recognition application.

Targetsize 128 512 1024 2048 3008
FaceDetection 0.8 0.9 15.8 2.8 1.3
FaceSearch 5.6 5.1 20.7 15.2 13.5
IndexFace 12.0 18.9 9.2 17.0 18.8
PersistMetadata 14.7 9.5 4.3 6.9 9.7
CreateThumbnail 30.7 6.5 25.1 10.4 6.4
All functions 12.7 8.2 15.0 10.5 9.9

with realistic resource consumption profiles. To investigate if the knowledge our
model learned from the synthetic dataset can be transferred to realistic functions,
we train the model on the synthetic dataset as described earlier and ask it to predict
the execution time of the twenty-seven serverless functions from our four case study
systems across all memory sizes based on monitoring data obtained from a single
memory size. Figure 8.1 shows the measured execution time and standard deviation
across ten measurement repetitions for a function from each application in blue.
The colored crosses show the predictions for different basesizes. The individual
functions scale differently with increasing memory sizes, and our approach is gener-
ally able to predict these differences quite well. It also shows that there are some
inaccuracies, especially when predicting the execution time of 128MB. The graphs
for the remaining nineteen functions can be viewed in the CodeOcean capsule of
our replication package.

Table 8.1 shows the relative prediction error of the airline application for a base
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Table 8.3: Relative prediction error based on monitoring data from 256MB for the
event processing application.

Targetsize 128 512 1024 2048 3008
EventInserter 7.6 26.8 0.4 19.8 14.8
FormatForecast 7.7 9.1 7.1 4.6 6.3
FormatState 8.9 2.2 6.1 5.6 8.2
FormatTemp 3.1 3.4 9.6 5.5 9.7
GetLatestEvents 23.8 56.5 70.9 50.3 47.6
ListAllEvents 18.0 34.3 119.4 131.9 132.2
IngestEvent 10.5 11.5 16.1 20.8 20.9
All functions 11.4 20.5 32.8 34.1 34.2

Table 8.4: Relative prediction error based on monitoring data from 256MB for the
hello retail application.

Targetsize 128 512 1024 2048 3008
EventWriter 5.7 2.1 4.9 7.8 7.3
PhotoAssign 0.8 1.4 1.0 0.2 0.9
PhotoProcessor 32.6 21.4 42.2 53.3 52.9
PhotoReceive 6.5 0.1 3.1 4.6 2.6
PhotoReport 2.0 6.5 11.1 16.2 18.4
ProductCatalogApi 10.2 9.7 1.0 5.2 5.6
ProductCatalogBuilder 11.0 7.3 2.8 14.5 16.3
All functions 9.8 6.9 9.4 14.5 14.8

size of 256MB, which we identified as the preferred basesize as described in Sec-
tion 5.1.3.1. Our approach is able to predict the execution time for 128MB and 512MB
accurately with below 10% relative error, and the relative prediction error increases
to around 15% for the execution time with 1024MB, 2048MB, and 3008MB. The
predictions for the functions of the facial recognition application (Table 8.2) show
similar prediction accuracies with 512 MB and 3008 MB below 10% relative error
and the other three memory sizes with below 15% error. For the functions of the
event processing application, the predictions for 128MB again exhibits a relative
prediction error of around 10%, however, the relative prediction error for 512MB,
1024MB, 2048MB, and 3008MB is quite large with 20-35%, as shown in Table 8.3. This
is mostly due to a single function where the predictions are over 100% off. While the
very high relative prediction error is partly due to the low absolute values at higher
memory sizes (prediction ∼40ms, real ∼20ms), the approach also underestimates
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how well the function scales with additional resources. Finally, the prediction error
for the hello retail application is below 10% for 128MB, 512MB, and 1024MB and
below 15% for 2048 MB and 3008 MB.
Result 1: Across 27 serverless functions, our approach achieved an average pre-
diction error of 15.3% (EQ III.1).

8.1.3 Memory Size Optimization

The goal of our approach is to select the optimalmemory size for a serverless function
after monitoring it with a single base size. Therefore, the goal of this experiment is
to verify, whether our approach is applicable to find the optimal memory size based
on the execution time predictions for the previously unobserved memory sizes.

To investigate if the predictions are accurate enough to determine the optimal
memory size, we apply the optimization approach from Section 5.1.3.2 using the
execution time predictions and compare the selected memory size to the optimal
memory size determined based on the measured execution time. We run the op-
timization for three different tradeoff parameters, t = 0.75 which prioritizes cost,
t = 0.5which shows no preference, and t = 0.25which prioritizes performance. Fig-
ure 8.2 shows the ranking of the selected memory sizes for each tradeoff parameter
grouped by application. For a tradeoff parameter of 0.75, our approach selects the
optimal memory size for 74.0% of the functions, for a tradeoff parameter of 0.5 it
selects the optimal memory size for 81.4% of the functions, and for a tradeoff param-
eter of 0.25, it also selects the optimal memory size for 81.4% of all functions. If our
approach does not select the optimal memory size, it usually selects the second-best
memory size and only rarely the third or fourth-best memory size.
Result 2: Our approach selects the optimal memory size for 79.0% of the serverless
functions and the second-best memory size for 12.3% of the serverless function
(EQ III.2).

8.1.4 Cost Savings and Speedup

We have shown that our approach is capable of selecting either the optimal or a
close to optimal memory size. In a next step, we are investigating what the actual
benefits of using the memory sizes selected by our approach are, that is how much
costs can be saved and how much the function execution can be sped up.

To quantify these benefits, we calculate the relative change in cost and execution
time between the memory size selected by our approach for the tradeoff factors
of 0.75, 0.5, and 0.25. Table 8.5 shows the average percentage cost savings and
execution time speedup obtained by switching to the memory sizes recommended
by our approach. For t = 0.5, the cost increase by 12.0%, but the average function
execution is speed up by 46.7%. If the optimization is configured to favor speed
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Figure 8.2: Number of functions for which our approach selects the X best approach
for three different tradeoff parameters.

Table 8.5: Cost savings and application speedup for four applications using our
approach.
Application t = 0.75 t = 0.5 t = 0.25

Cost savings Speedup Cost savings Speedup Cost savings Speedup
Airline Booking 15.6% 28.5% 4.5% 31.9% -12.3% 34.1%
Facial Recognition -2.9% 67.5% -2.9% 67.5% -17.4% 70.6%
Event Processing 2.8% 31.2% -17.0% 47.8% -30.5% 57.5%
Hello Retail -8.4% 41.1% -32.4% 47.7% -63.8% 55.7%
All Applications 2.6% 39.7% -12.0% 46.7% -31.3% 52.5%

over cost (t = 0.25), the execution is sped up further (52.5%) and the cost increases
by 31.3%. If the optimization is configured to favor cost over speed (t = 0.75), the
cost savings increase to 2.6%, and the achieved speedup decreases by about seven
percent to 39.7%. This also shows that the tradeoff parameter correctly influences the
behavior of the optimization. As cost savings from the memory size optimization
are generally lower than execution time speedups, it seems that t = 0.75 achieves
the most balanced optimization result. Therefore, we would recommend using this
tradeoff factor for the automated memory size optimization.
Result 3: Applying our approach to four realistic serverless applications saves on
average 2.6% costs and speeds up the functions by 39.7% (EQ III.3).
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8.1.5 Replication Package

To facilitate replication of our results and extensions of our approach, we attempt
to provide an extensive three-part replication package. This is in line with a recent
guideline on reproducible measurements in cloud environments [Pap+19]. The
first part of our replication package consists of docker containers containing the
benchmark harnesses for the airline booking, facial recognition, and event processing
applications that require only the injection of valid AWS credentials to reproduce the
measurement results shown in our evaluation. The second part of our replication
package consists of the function generator and resource consumption monitoring
introduced in this evaluation alongside instructions to reproduce the measurements
to create our training dataset. The third part is a CodeOcean capsule containing the
generated dataset covering 12 000 performance measurements (216 000 000 lambda
executions) as well as the implementation of the multi-target regression modeling
used in our approach. This enables a 1-click replication of all analyses conducted
in the scope of this work, and all tables/figures presented in the evaluation. The
replication package is available in form of a Github repository2. Our replication
package was evaluated at the artifact evaluation track of the International Middle-
ware Conference (MIDDLEWARE) and has received the ACM Artifact Evaluated -
Available and ACM Artifact Evaluated - Functional badges.

8.1.6 Summary

In this section, we evaluated whether the approach proposed in Section 5.1 fulfills
Goal III (“Develop an automated method to optimize the size of serverless functions.”)
using four realistic serverless applications. We answer EQ III.1 (“Can our model,
trained on a synthetic dataset, accurately predict the execution time of realistic serverless
functions?”) by showing that our approach achieved an average prediction error of
15.3% across 27 serverless functions. It selects the optimal memory size for 79.0% of
the serverless functions and the second-best memory size for 12.3% of the serverless
function, which addresses EQ III.2 (“Are the execution time predictions provided by our
approach sufficient to determine the optimal memory size of serverless functions?”). Finally,
we cover EQ III.3 (“How large are the benefits in terms of decreased cost and execution
time of our proposed approach?”) by showing that using our approach to optimize
the memory size of four realistic serverless functions saves on average 2.6% costs
and speeds up the functions by 39.7%. Answering these three evaluations questions
shows that our approach achieves Goal III. By automating the memory size opti-
mization for serverless functions, our approach removes a resource management
task that developers still need to deal with in serverless functions and thus makes
serverless functions more serverless.

2https://github.com/Sizeless/ReplicationPackage

156

https://github.com/Sizeless/ReplicationPackage


8.2 Cost Optimization of Serverless Workflows

8.2 Cost Optimization of Serverless Workflows

In this chapter, we present the evaluation of our approach for the cost optimization
of serverless workflows. We design our evaluation to answer the following three
evaluation questions to determine if we achieved Goal IV (“Provide a technique to
estimate the costs of serverless workflows.”):

• EQ IV.1: Are mixture density networks capable of accurately predicting the distribu-
tion of the response time and the output parameters of a serverless function?

• EQ IV.2: Can the proposed algorithm and the underlying machine learning models
for the individual functions accurately predict the costs of a previously unobserved
workflow?

• EQ IV.3: What is the required time for training and workflow prediction? Is the
overhead feasible for a production environment?

In the following, Section 8.2.1 introduces the serverless functions and workflows
we used to evaluate our approach. Next, Section 8.2.2 evaluates the accuracy of
response time and parameter distribution predictions, Section 8.2.3 evaluates the
accuracy of the cost predictions for serverless workflows, and Section 8.2.4 analyzes
the time requirements of our approach. Our replication package is introduced in
Section 8.2.5 and finally, Section 8.2.6 summarizes our findings.

8.2.1 Evaluation Setup

We implemented the following five audio utility functions on Google Cloud Func-
tions using Python with the following input and output parameters:
Text2Speech Transcribes text files into audio files, a functionality that is commonly
used to increase accessibility, automate phone banking, or in smart home assistants
like Alexa or Google Assistant. It uses the google text-to-speech Python library
gTTS (v2.0.3), which returns an MP3 file. This function has the following input and
output parameters:

• [Input] TextLength: Length of the text that needs to be transcribed, measured
in number of characters.

• [Output] FileSize: Size of the resulting MP3 file in bytes.
ProfanityDet Detects racial slurs, sexually explicit language, and general expletives
in a text segment. The implementation is based on the Python library profanity
(v1.1.0), which implements a blacklist-based filter. This function has the following
input and output parameters:

• [Input] TextLength: Length of the text in which the profanities are detected,
measured in number of characters.
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• [Output] ProfanityCount: Number of detected profanities alongside their loca-
tion in the text.

Conversion Converts an MP3 file to a WAV file. This conversion tends to increase
the file size, but many applications require raw WAV files as input. The conversion
is performed using the Python library pydub (v0.23.1), a wrapper for the ffmpeg
library, which is available in all Google Cloud function instances. This function has
the following input and output parameters:

• [Input] FileSize: Size of the MP3 file that is converted.
• [Output] FileSize: Size of the resulting WAV file in bytes.

Censor Censors segments of a WAV file, based on a list of time segments that should
be censored. For the censoring, all samples within the segments that are censored
are muted using the pydub (v0.23.1) library. This function has the following input
and output parameters:

• [Input] FileSize: Size of the file that is censored in bytes.
• [Input] ProfanityCount: Number of detected profanities.
• [Output] FileSize: Size of the censored audio file in bytes.

Compression Compresses a WAV audio file by reducing the sampling rate and
sample width. On an initial set of audio files, the compression achieves compression
rates of about 60-90%. This function has the following input and output parameters:

• [Input] FileSize: Size of the audio file prior to compression, measured in bytes.
• [Output] FileSize: Size of the audio file after compression, measured in bytes.

We deploy each function to Google Cloud Functions with 512 MB memory, the
Python 3.7 runtime, and a timeout of 60 seconds. The implementations of these
functions are available as part of our replication package. In the following, we first
investigate the capability of the proposed mixture density networks to accurately
predict the distribution of a function’s response time and its output parameters.
Next, we apply our cost-prediction algorithm to two distinct workflows composed
of these functions and compare the cost predictions to the actual observed costs.

8.2.2 Response Time and Parameter Distribution Predictions

As described in Section 5.2.2, the mixture density networks can be trained on moni-
toring data collected during function operation or using microbenchmarks. In this
case study, we use microbenchmarks to create the data set for the training of the mix-
ture density networks as these functions are currently not deployed in production.
The workload for each function consists of 50 requests/second with varying input
parameters. The monitoring data for the first three minutes of a measurement is
discarded as a warm-up phase. The next tenminutes are used as training data for the
mixture density network models. For the evaluation in this paper, we additionally
collect the monitoring data of the following 50 minutes as our validation data set.
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Figure 8.3: MDNmodel for the response time of the Text2Speech function.

This larger validation data set is only required for the evaluation presented in this
paper and is not necessary to apply our approach in practice. For the experiments
presented in this paper, we parameterize the network as following. We use the
Adam optimizer [KB14] with a learning rate of 0.001. We train for 500 epochs with a
batch size of 32 and to prevent overfitting an early stopping criterion terminates the
training process if the negative log-likelihood does not decrease by more than 0.001
for 10 epochs [YRC07]. Additionally, we apply model check-pointing to save the best
model achieved during training as the model accuracy decreased at times during
the training process. In order to determine the appropriate number of kernels for
the gaussian mixture model, we apply basic hyper-parameter optimization based
on the observed negative log-likelihood during model training to select between 1,
2, 3, 4 or 5 kernels.

As an example for the resultingmodels, Figure 8.3 shows how themixture density
networks fit the training data for the response time of the Text2Speech function. The
input parameter TextLength varies from roughly 300 to 900 characters and the
resulting response time ranges from roughly 400 ms up to 3000 ms. There is a clear
correlation between the length of the transcribed text and the response time of the
Text2Speech function. However, for each input text length, a broad range of response
times is observed. The mixture density network describes this distribution using
two normal distributed kernels. The green normal distribution (MDN Kernel 2) is
used to fit the bulk of occurring response times and the orange normal distribution
(MDN Kernel 1) is used to describe the scattered lower response times. Note that
these two distributions are not weighted equally, instead, the green kernel has a
larger weight than the orange kernel.

Figure 8.4 shows how the predicted distributions (in red) compare to the ob-
served empirical distributions from the validation data set for text lengths of 300, 600,
and 900. To derive the empirical distributions we apply a gaussian kernel density
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Figure 8.4: Comparison of measured response time distribution in the validation
data set and predicted response time distribution for three different text lengths.

Function Parameter 1 kernel 2 kernels 3 kernels 4 kernels 5 kernels
Text2Speech Response time 5.3% 4.2% 4.1% 6.4% 4.5%
Text2Speech FileSize 0.6% 0.3% 1.1% 0.4% 0.6%
Conversion Response time 13.2% 38.3% 3.4% 3.3% 3.3%
Conversion FileSize 0.9% 1.2% 7.8% 9.0% 16.4%
Compression Response time 13.1% 4.3% 5.2% 4.4% 3.6%
Compression FileSize 0.2% 1.7% 0.4% 0.2% 3.5%
ProfanityDet Response time 38.7% 32.9% 12.8% 9.4% 4.6%
ProfanityDet ProfanityCount 14.5% 69.0% 12.8% 12.3% 14.0%
Censor Response time 9.5% 10.1% 8.5% 8.2% 9.1%
Censor FileSize 1.0% 0.6% 0.7% 1.5% 7.9%

Table 8.6: Relative Wasserstein distance [%] between validation dataset and predic-
tions of MDNs with 1-5 kernels. Kernel count selected by hyperparameter optimiza-
tion highlighted in bold.

estimation [BGK+10] with a bandwidth of 0.4. The predicted distributions capture
both the mean of the empirical distribution and the shape of the distribution well.
The shape of the predicted distributions is slightly left heavy compared to a normal
distribution due to the addition of the second kernel.

Next, we investigate the impact of the number of kernels used in the mixture
density network. Table 8.6 shows the prediction error of mixture density networks
with one to five kernels for the response time and output parameter distributions of
the five functions. As a measure for the similarity of two distributions, we use the
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Wasserstein metric [AGS08] defined for two distributions u and v as:

l(u, v) =

∫ ∞
−∞
|U − V | (8.1)

with U and V as the cumulative distribution function of u and v, respectively. Gen-
erally speaking, the Wasserstein metric quantifies how far a sample from a set of
samples drawn from u has to be moved on average in order to transform the set
of samples drawn from u to a set of samples drawn from v. As the absolute val-
ues of the Wasserstein metric are difficult to interpret, we calculate the relative
Wasserstein metric by dividing the absolute Wasserstein metric by the mean of the
empirical distribution as proposed in [Maj+18]. This relative Wasserstein metric
enables us to quantify the prediction accuracy for a single input value. As a mixture
density network predicts a different distribution for each input value, we calculate
the weighted average over all values of the input distribution with the number of
empirical samples as a weight.

Table 8.6 shows theweighted average of the relativeWassersteinmetric ofmixture
density networkswith one to five kernels for the response time and output parameter
distributions of the five functions and the kernel number selected by the hyper-
parameter optimization. Generally, it seems that response time distributions are
harder to predict than output parameter distributions. This is intuitive, as the output
parameter of a function for a certain input is often constant, for example transcribing
a text segment multiple times results in the same audio file each time, but the
response time varies between executions. An outlier in this regard is the output
parameter ProfanityCount of the function ProfanityDet, which has a higher error
compared to the other parameters. This does not necessarily indicate a bad model
fit as the target parameter ProfanityCount is an integer value of less than ten in
most cases. The relative Wasserstein metric assigns high percentage errors for even
small deviations between integer distributions with a small range of values that also
includes zero.

Regarding the kernel count, these results show that there is no kernel count that
is ideal for every function. While three to five kernels seem to generally produce
accurate performance predictions, the prediction error for the FileSize parameter of
the Conversion function with five kernels is 16.4%, while using two kernels results
in a prediction error of 1.2%. This shows that selecting an individual number of
kernels for each function is necessary. The hyper-parameter optimization based
on the observed negative log-likelihood during model training reliably selects a
kernel count that provides accurate predictions. In four out of ten scenarios, the
hyper-parameter optimization does not select the ideal number of kernels, but the
prediction accuracy of the selected kernels is always within one percentage point of
the ideal kernel count.
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Figure 8.5: The two alternatives for the transcription and censoring workflow. The
blue arrows indicate parameters passed to a function from a previous function.

Result 1: Across all functions, response time, and parameter distributions, the
mixture density network models selected by the hyper-parameter optimization
achieve a prediction accuracy of 96.1% (EQ IV.1).

8.2.3 Workflow Cost Predictions

For the evaluation of our workflow cost prediction algorithm, we consider the
following scenario: A workflow designer is looking to build a workflow that turns
short text segments into speech and censors any profanities within the text segment.
For this task, he comes up with the two different workflows shown in Figure 8.5. In
both workflows, the input text is first passed to the Text2Speech function and then
converted to a WAV file using the Conversion function. In parallel, the text is also
passed to the ProfanityDet function in order to identify any profanities within the
text. In WorkflowA , any identified profanities are censored first using the Censor
function and afterwards the audio file is compressed. In WorkflowB, the audio
file is compressed prior to the censoring. While it is a reasonable assumption that
WorkflowB might be cheaper, manually quantifying the cost difference is currently
challenging for a workflow designer.

We apply the algorithmproposed in Section 5.2.3 in combinationwith themixture
density network models with two kernels from Section 8.2.2. To measure the actual
execution cost of both workflow alternatives, we implement both workflows using
Google Cloud Composer (a managed Apache Airflow service). The implementation
of the workflows is available as part of our replication package. At the time of
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Workflow Metric Invocations CPU Time Memory Time Total

WorkflowA Measured cost [cent] 2.00 * 10-6 8.60 * 10-5 1.40 * 10-5 1.02 * 10-4

WorkflowA Predicted cost [cent] 1.79 * 10-6 9.08 * 10-5 1.35 * 10-5 1.06 * 10-4

WorkflowA Relative prediction error 10.3% 5.5% 3.4% 4.0%
WorkflowB Measured cost [cent] 2.00 * 10-6 3.80 * 10-5 6.00 * 10-6 4.60 * 10-5

WorkflowB Predicted cost [cent] 1.79 * 10-6 3.70 * 10-5 5.52 * 10-6 4.43 * 10-5

WorkflowB Relative prediction error 10.3% 2.6% 8.0% 3.6%

Table 8.7: Comparison between measured and predicted cost for a single workflow
execution for both workflows in EUR.

writing, the billing reporting for Google Cloud Functions is quite coarse-grained.
An example of the most detailed reporting currently possible: On June 7th, 2019
you paid 43.7$ for 4,370,000 GHz-seconds CPU time of Cloud Functions, 30.5$ for
12,200,000 GB-seconds memory time of Cloud Functions, and 5.5$ for 13,750,000
invocations of Cloud Functions. The smallest time frame for cost reports is a full day
and there is no capability to report costs for a specific function or function execution.
Additionally, no costs are reported until the free tier of 2 million invocations, 400,000
GB-seconds memory time, and 200,000 GHz-seconds CPU time are used up.

Based on these limitations, we use the following approach to experimentally
evaluate the costs of both workflows. First, we purposefully use up the capacity
of the free tier by executing arbitrary functions. Next, we reserve a day for each
experiment where no other functions are executed. During this day, we execute the
first workflow 5,000 times with text segments with a normally distributed length
(µ = 500, σ = 50). At the start of the next day, we take the aggregated costs for the
day and divide them by 5,000 in order to get the average cost per workflow execution.
We repeat the same process for the second workflow.

Table 8.7 shows the measured costs per workflow execution, the predicted costs
using our approach, and the resulting relative prediction error. At first glance,
the measured prices seem unrealistically low. However, this is mostly due to the
unfamiliar pricing scheme of cost per execution. If we were to assume that a n1-
standard-2 VM (2 vCPU, 7.5GB memory) from Google Cloud (currently priced at
$0.0950 per hour) can handle 5 requests per second, this would result in a cost of
5.3 · 10-6 per request. Consequently, costs of 1.02 · 10-4 and 4.60 · 10-5 to execute a
workflow consisting of five functions is cheap, but within reason.

Existing approaches that rely on cost estimations for serverless functions and
workflow simply round the mean observed function response time up to the nearest
100ms [Boz+17; Elg18]. Applying this cost estimation approach results in a cost
estimate of 4.06 · 10-5 for both workflows as it assumes that the function execution
cost is independent of its context. However, a single execution of WorkflowA costs
1.02 · 10-4 ct, whereas an execution of WorkflowB costs only about half as much even
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though both workflows provide the same functionality. This results in a relative
prediction error of 60.2% for WorkflowA and 11.8% for WorkflowB using the naive
cost estimate.

Our approach on the other hand accurately predicts this cost difference between
the two workflows. It predicts the charged costs for invocations, CPU time, and
memory time with a prediction error ranging from 2.6% to 10.3%. An interesting
observation is that the measured and predicted cost for the number of invocations
differs. As in the workflows from our case study, the number of function invocations
is static, our approach correctly predicts that 25,000 functions (5 executions per
workflow * 5,000 workflow executions) will be executed. The billed costs on Google
Cloud are rounded up to full cents, which causes this observed difference between
measured and predicted costs for function invocations.
Result 2: Our approach predicts costs for the execution of both workflows with
an error of 4.0% and 3.6% respectively, resulting in an average cost prediction
accuracy of 96.2% (EQ IV.2).

8.2.4 Overhead Analysis

The proposed approach enables accurate cost predictions for serverless workflows.
In order to ensure that the proposed approach is applicable in practice, we investigate
the time required to train the machine learning models for each function and the
time required for the Monte-Carlo simulation.

The following experiments were conducted using an Intel® Core™ i5-4690K
CPU with 3.50 GHz. We measure the time required to train the MDN model for the
response time distribution and the MDNmodel for the output parameter for each
function from our case study with the hyper-parameter optimization to determine
the appropriate number of kernels, which requires training MDNmodels. Figure 8.6
shows the result of repeating this measurement ten times as a boxplot. The training
process for each function which includes training ten mixture density networks
takes between 10 and 15 minutes, with the Censor function as a small outlier with a
median training time of 20 minutes. This difference can be attributed to an increased
model complexity due to the additional input parameter. In general, we consider
these training times acceptable as the training is performed offline and can be easily
parallelized.

Additionally, we measure the time required to derive the cost predictions for
a workflow using the Monte-Carlo simulation. Predicting the costs of WorkflowA
requires 16.34±0.30 (N=10) seconds, whereas the predictions for WorkflowB re-
quire 14.20±0.03 (N=10) seconds. A user looking to compare these two workflow
alternatives would need to wait about 30 seconds.
Result 3: Our approach requires less than 30 minutes for the model training and
less than 30 seconds for the cost prediction (EQ IV.3).
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Figure 8.6: Training time for both models of each serverless functions with hyper-
parameter optimization.

8.2.5 Replication Package

The replication package for this chapter consists of two parts: 1) reproducing the per-
formance measurements for the audio processing functions in the Google Functions
environment and 2) reproducing the performance predictions using the proposed
approach based on the collected measurement data. In order to enable quick re-
production of the performance measurements, we packaged the scripts for the
experiment automation as a docker container. The original measurement data used
in this analysis and the python code implementing the proposed approach are avail-
able in form of a CodeOcean capsule, which enables quick and easy reproduction of
our results. This replication package is available on Zenodo3. It was evaluated at the
artifact evaluation track of the International Conference on Performance Engineering
(ICPE) and has received the ACM Artifact Evaluated - Available and ACM Artifact
Evaluated - Functional badges.

8.2.6 Summary

In this section, we evaluated whether the approach proposed in Section 5.2 fulfills
Goal IV (“Provide a technique to estimate the costs of serverless workflows.”). We answer
EQ IV.1 (“Are mixture density networks capable of accurately predicting the distribution of
the response time and the output parameters of a serverless function?”) by showing that
our approach predicted the response time and parameter distributions of serverless
functions with an average prediction accuracy of 96.1%. The costs for the workflow
execution are predicted by our approach with an average prediction accuracy of
96.2%, which addresses EQ IV.2 (“Can the proposed algorithm and the underlying ma-
chine learning models for the individual functions accurately predict the costs of a previously
3https://doi.org/10.5281/zenodo.3612479
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unobserved workflow?”). Finally, we answer EQ IV.3 (“What is the required time for
training and workflow prediction? Is the overhead feasible for a production environment?”)
by showing that our approach requires less than 30 minutes for the model training
and less than 30 seconds for the cost prediction, whichwe consider to be acceptable to
use our approach in production. Answering these three evaluations questions shows
that our approach achieves Goal IV. Using our approach, solution architects can
make informed decisions when choosing between a serverless workflow and a tradi-
tionally hosted workflow and workflow designers can compare alternatives without
time-intensive experimentation. Additionally, our approach represents a first step
towards fully automated workflow optimization using multi-objective optimization
techniques, analogously to existing tools for traditional software systems [Ale+09;
Mar+10].
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Chapter 9

Evaluating the Adaptation of
White-Box Performance Models for
Serverless Platforms

9.1 Simulation of Fine-grained Deployments

In this chapter, we present the evaluation of our approach for the simulation of
fine-grained deployments. We design our case study in answer the following three
evaluation questions to determine if we have successfully answered RQ V.1 (“How
can the time required to simulate large systems such as serverless platforms be reduced?”):

• EQ V.1: Does replacing parts of the performance model with statistical response time
models decrease prediction accuracy?

• EQ V.2: What are limiting factors for applying statistical response time models?

• EQV.3: Howmuch can the integration of statistical models decrease the time required
to simulate a system?

In the following, Section 9.1.1 introduces the component-based system we used
to evaluate our approach. Next, Section 9.1.2 evaluates the accuracy of our response
time and utilization predictions, and Section 9.1.3 evaluates the simulation time
speedups. Finally, Section 9.1.4 summarizes our findings.

9.1.1 Evaluation System

We analyze a medium-sized, distributed system with seven components featuring
diverse performance properties. We construct a traditional performance model for
this system and extract statistical response time models as described in Section 6.1.2.
Next, we compare the prediction accuracy of the traditional performance model
to using different statistical response time models. Finally, we analyze how much
applying different statistical response time models speeds up model solution.

For this case study, we deploy a system composed of components with synthetic
resource demands on seven virtual machines with two 2.6 GHz cores and 4 GB
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Figure 9.1: System consisting of components A-Z with their performance properties
and the different models sections S1-S7 that can be replaced by statistical response
time models.

memory, each. The virtual machines are deployed in a CloudStack cluster (version
4.9 with KVM) consisting of eight HPE ProLiant DL160 Gen9 hosts with eight 2.6
GHz cores and 32 GB RAM each. Hyper-threading was disabled on all hosts to
avoid race conditions. The architecture of the system is shown in Figure 9.1. It
consists of seven components with constant, exponentially distributed, and normally
distributed resource demands. Additionally, component C contains a loop that calls
component D five times and component F contains branches where its resource
demand is 20 ms 80% of the time and 100 ms otherwise. For our experiments, we
use the load driver from [KDK18].

First, we build a traditional performancemodel usingDML, based on the resource
demands shown in Figure 9.1. After some initial analysis, we added network delays
of about 3 ms to each external call, which we model as resource demands on a
resource with infinite servers, as the network delays appear to be static. In order
to collect monitoring data to construct the statistical response time models, we put
the system under varying loads, ranging from 10 requests per second to 50 requests
per second for ten minutes. Next, we use the algorithm presented in Section 6.1.2 to
generate a set of training data to train a MARS model on. For the MARS model we
use the py-earth python package1 with the following parameters:

• minspan_alpha = 5

• endspan_alpha = 5

• sample_weight = 1 + 1/(concurrency + 1)
1https://contrib.scikit-learn.org/py-earth/content.html
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Load Measured / Predicted Utilization [%]
[Req/s] A B C D E F G
10 11.4 / 9.9 11.3 / 10.0 6.6 / 5.0 25.7 / 25.0 4.0 / 2.5 18.0 / 18.0 15.3 / 15.0
15 15.9 / 15.0 16.0 / 14.9 9.6 / 7.5 37.3 / 37.4 5.4 / 3.7 26.2 / 26.9 22.2 / 22.5
20 20.7 / 20.1 21.2 / 20.1 12.8 / 10.1 48.9 / 50.2 6.7 / 5.1 34.7 / 36.2 28.6 / 30.1
25 25.6 / 25.1 25.8 / 25.1 15.3 / 12.6 60.6 / 62.8 7.9 / 6.3 42.9 / 45.3 36.1 / 37.6
30 30.2 / 29.9 30.4 / 29.9 11.7 / 15.0 72.7 / 74.7 9.4 / 7.5 50.9 / 54.1 42.8 / 42.5
35 35.3 / 35.0 35.3 / 35.0 20.8 / 17.5 88.5 / 87.8 10.9 / 8.8 60.0 / 63.0 50.5 / 52.4
40 38.5 / 40.0 39.1 / 40.0 24.2 / 20.0 96.7 / 99.9 12.2 / 10.0 67.9 / 72.0 55.3 / 59.9

Table 9.1: Comparison of measured utilizations of components A-G and the predic-
tions by the queueing theory model.

Load Measured / Predicted Responsetime [ms]
[Req/s] A B C D E F G
10 226 / 209 200 / 185 93 / 81 16 / 14 83 / 82 42 / 40 34 / 34
15 229 / 215 204 / 192 95 / 85 16 / 14 85 / 84 43 / 41 35 / 35
20 236 / 226 211 / 202 99 / 92 17 / 16 87 / 87 45 / 43 35 / 36
25 254 / 245 228 / 221 112 / 106 20 / 19 92 / 92 47 / 47 38 / 37
30 283 / 281 257 / 256 136 / 132 25 / 24 96 / 99 49 / 51 40 / 40
35 339 / 391 312 / 365 184 / 232 34 / 44 102 / 109 54 / 58 42 / 43
40 4805 / 21614 4778 / 21587 4632 / 21438 924 / 4287 120 / 124 68 / 68 45 / 47

Table 9.2: Comparison of measured response times of components A-G and the
predictions by the queueing theory model.

These parameters are derived based on systematic experimentation to optimize
the internal GCV error score of the MARS model, which describes how well the
model fits the training data. The sample weights prioritize lower concurrency levels
in order to decrease the influence of measurements during overload scenarios. Using
this approach, we extract a total of seven statistical response time models, shown in
Figure 9.1 as S1-S7. These response time models have varying sizes. For example,
S1 replaces the full system with a statistical response time model whereas S4 only
replaces a single component. We integrate these response time models into the DML
model as described in Section 5.1.3.1.

9.1.2 Prediction Accuracy

In a first step, we validate the prediction accuracy of the traditional performance
model to ensure its validity. We ran seven experiments with a constant load of 10-40
requests per second for three minutes and measured the utilization and response
time for every component. Table 9.1 compares the measured utilization to the
predictions of the traditional queueing theory model. Most predictions are accurate
with an error of less than two percentage points. For components C, D, F, and G
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Statistical Predicted Utilization [%]
Models A B C D E F G
None 25.1 25.1 12.6 62.8 6.3 45.3 37.6
S1 0 0 0 0 0 0 0
S2 25.0 0 0 0 0 0 0
S3 25.0 25.0 0 0 6.3 45.1 37.5
S4 25.0 25.0 12.5 0 6.2 44.9 37.5
S5 25.0 25.0 12.5 62.5 0 0 0
S6 25.0 25.0 12.5 62.5 6.3 0 37.5
S7 25.0 25.0 12.5 62.6 6.3 45.1 0

S3 + S5 25.0 25.0 0 0 0 0 0
S3 + S6 25.0 25.0 0 0 6.3 0 37.5
S3 + S7 24.9 25.0 0 0 6.2 45.0 0
S4 + S5 25.0 25.0 12.5 0 0 0 0

Measured 25.6 25.8 15.3 60.6 7.9 42.9 36.1

Table 9.3: Predicted utilization at 25 req/s when applying different statistical models
(see Figure 9.1) and the measured values as baseline.

the prediction is slightly off in the high load scenarios, but still always less than
five percentage points. Table 9.2 shows the measured response times along the
predicted values. Here, the prediction error is ≤10% for the experiments with 10-30
requests per second. For 35 requests per second, the model overestimates the system
response time but remains below the 30% considered sufficient for capacity planning
[MV00]. At 40 requests per second, the response time predictions are inaccurate,
which is expected as the system is under excess load, so there is no steady-state for
the response time. Overall, the accuracy of the model seems sufficient and will be
our comparison values for the following experiments.

Next, we apply the different statistical response time models S1-S7 as well as
some combinations of them (S3 + S5, S3 + S6, S3 + S7, S4 + S5) and compare
the resulting prediction accuracy to the traditional performance model without
statistical response time models (”None”). Table 9.3 shows the resulting utilization
predictions. We performed this analysis for all load levels, but show only the results
for 25 requests per second due to space constraints. The full dataset is available
online2. The first observation here is that the model predicts a utilization of zero for
any component which is replaced by a statistical model. This can be explained by
the fact, that the statistical models only predict a response time, but do not schedule
any resource demands. Therefore, the first limitation for the integration of statistical
models in performance models is that we can not replace components or subsystems
that are deployed on physical resources of which we want to predict the utilization.
2https://github.com/SimonEismann/ICSA2019/blob/master/results.xlsx
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Statistical Predicted Responsetime [ms]
Models A B C D E F G
None 245 221 106 19 92 47 37
S1 266 - - - - - -
S2 263 239 - - - - -
S3 265 240 131 - 86 42 36
S4 284 260 145 26 91 46 37
S5 253 228 105 18 99 - -
S6 252 227 105 18 98 55 35
S7 252 227 106 19 98 46 44

S3 + S5 270 245 130 - 95 - -
S3 + S6 269 244 131 - 90 48 34
S3 + S7 270 245 130 - 91 42 41
S4 + S5 295 267 145 26 99 - -

Measured 254 228 112 20 92 47 38

Table 9.4: Predicted response time at 25 req/s when applying different statistical
models (see Figure 9.1) and the measured values as baseline.

The average prediction accuracy across all utilization predictions without statistical
models is 9.2%±9.4, compared to 9.1%±9.4 for the average prediction accuracy across
all utilization predictions using models containing statistical response time models.
Therefore, we conclude that the utilization predictions remain accurate. Table 9.4
shows the same data for the response time predictions. Here, when we replace
a component with a statistical model, we lose the ability to predict the response
time of any components called by this component as the statistical response time
model does not contain any notion of external calls. This is a conceptual limitation
for the use of statistical response time models within performance models. The
response time predictions are in some cases more accurate than their queueing
model counterparts andworse in other cases. The average prediction accuracy across
all response time predictions without statistical models is 6.3%±6.4, compared to
12.6%±20.6 for the average prediction accuracy across all response time predictions
using models containing statistical response time models. While the prediction
accuracy deteriorates slightly, it remains overall satisfactory.

It is interesting to note here, that the prediction accuracy is not tied to the size
of the system that is replaced by a statistical response time model. For example,
the S4 + S5 scenario replaces four components and achieves the worst prediction
accuracy, whereas S1 replaces seven components but results in better prediction
accuracy. Instead, the prediction accuracy seems to be tied to how well the MARS
model is able to fit the response time data, that is the better theMARSmodel predicts
the monitoring data, the more accurate the overall predictions become. Here, the
investigation of other machine learning approaches such as random forests would
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Figure 9.2: Wall clock time required to simulate 200.000 seconds of simulated time
when applying different statistical models (see Figure 9.1).

be of interest.
Result 1: Integrating statistical response time models in architectural performance
models does not invalidate the performance predictions (EQ V.1).

Result 2: The prediction of some performance metrics is no longer possible when
integrating statistical response time models in architectural performance models
(EQ V.2).

9.1.3 Simulation Time Analysis

The previous experiment shows that replacing parts of the performancemodelmakes
the prediction of some performance indices impossible, but does not negatively
impact the accuracy of the remaining predictions. In the next step, we analyze the
speedup that can be gained in these scenarios. In order to measure the simulation
time, we measure the wall clock time required to simulate a total of 200 000 seconds
for each scenario from the previous experiment. The measurements were performed
on an out-of-the-box Lenovo X1 Yoga Gen 2 Thinkpadwith an i7-7600U CPUwith up
to 2.80 GHz. As there is some variation in the results, we repeat the measurements
20 times each and calculate the standard deviation.

Figure 9.2 shows the required wall clock time to simulate 200 000 seconds for load
levels from 10 to 40 requests per second. The required time increases linearlywith the
number of requests per second. This behavior is expected, as doubling the number of
requests per second roughly doubles the number of events that need to be processed
within the event-based simulation. The model without any statistical response time
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models is the slowest and takes up to 178 seconds. The fastest is S1 with an average
simulation time of 9.1 seconds for 40 requests per second, resulting in a speedup
of 94.8%. On the other hand, S6 and S7 result in almost no speed up, as they only
replace a single component with a statistical response time model. Curiously, S4
also replaces only a single component but still speeds the simulation up by ∼60%.
The difference here seems to be that component D is called five times as often as
components E/F. So we can conclude that the speedup depends on the number of
calls to the replaced components. Based on S1-S7 we can observe that the achieved
speedup is also related to the size of the system which is replaced by a statistical
response time model. Lastly, the results for models containing multiple statistical
response time models (S3+S5, S3+S6, S3+S7, and S4+S5) indicate that applying
multiple models increases the speedup compared to their singular counterparts (S3,
S4, S5, S6, S7).
Result 3: Integrating statistical response time models in architectural performance
models speeds up simulation time by up to 94.8% (EQ V.3).

9.1.4 Summary

In this section, we evaluated whether the approach proposed in Section 6.1 answers
RQ V.1 (“How can the time required to simulate large systems such as serverless platforms
be reduced?”) using amedium-size component-based application. We answer EQV.1
(“Does replacing parts of the performance model with statistical response time models de-
crease prediction accuracy?”) by showing that the integration of statistical response
time models in white-box performance models does not invalidate performance pre-
dictions. However, our evaluation revealed that the prediction of some performance
metrics is no longer possible, which addresses EQ V.2 (“What are limiting factors for
applying statistical response time models?”). Finally, we answer EQV.3 (“How much can
the integration of statistical models decrease the time required to simulate a system?”) by
showing that tailoring the integrated statistical response time models to the required
metrics can speed up the simulation time of architectural performance models by
up to 94.8%. Answering these three evaluation questions shows that our approach
answers RQ V.1, by enabling faster solution of architectural performance models
while retaining the prediction accuracy and capability to predict previously unseen
scenarios of traditional, queueing theory-based performance models. Our approach
enables software architects to analyze larger systems, performance engineers ben-
efit from the ability to build more detailed models and self-adaptive systems can
explore additional adaptation options within the same time period due to the faster
model solution. Further, it represents a step towards solving a problem that impedes
widespread adoption of performance models in practice: models that are either too
large or too detailed cannot be simulated within a reasonable time frame [Nam+16;
WFP07; Koz10].

173



Chapter 9: Evaluating the Adaptation of White-Box Performance Models

9.2 Modeling of Parametric Dependencies

In this section, we present the evaluation of our approach for the modeling of para-
metric dependencies. We design our evaluation to answer the following three evalu-
ation questions to determine if we have successfully answered RQ V.2 (“How can
relationships between parameters observed at runtime be utilized in white-box performance
models?”):

• EQ VI.1: Is the modeling of dependencies on the component instance required in
some cases?

• EQVI.2: Can we provide multiple characterizations of a parametric resource demand
based on alternative parameters that enable accurate performance predictions?

• EQ VI.3: Does modeling parametric dependencies on component instance-level
improve the prediction accuracy?

In the following, Section 9.2.1 introduces the case study setup we used to evaluate
our approach. Next, Section 9.2.2 describes how we used the previously introduced
concepts tomodel the dependencieswithin our case study, and Section 9.2.3 evaluates
how much our approach improves the performance prediction accuracy. Finally,
Section 9.2.4 summarizes our findings.

9.2.1 Case Study Setting

For our evaluation, we implemented parts of the motivating video store required for
analysis. All of our experiments run on an HPE ProLiant DL160 server. It features
an Intel Xeon E5-2650 v3 processor with 10 cores at 2.4 GHz and 32 GB RAM. To
provide an implementation of the video transcription service for the first case study,
we integrate the established open source speech recognition software CMUsphinx3
into a Java EE servlet application. The processing time of the transcription service
depends on the properties of the respective video. The length of a video, aswell as the
number of subtitles (counted as number of lines), impact the processing overhead.
While the number of subtitle lines can be monitored from the Java interface, the
monitoring of the file size requires a more intrusive monitoring. For the evaluation,
we collected a training data set and an evaluation data set, each consisting of 25
videos with 10 to 30 seconds of English-spoken content from YouTube. Based on
these videos, we investigate the response times of the transcription service for a
mixture of videos.

The second case study monitors the impact of different parametrizations on
the system performance for subtitle retrieval. At the retrieval, subtitles have to be
queried from a database if not cached within the subtitle repository component.
Subtitles in frequent languages and for popular videos are more likely to be in the
3https://cmusphinx.github.io/
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Region ENG SPA GER FR IT POL RUM
USA 83% 17% 0% 0% 0% 0% 0%
EU 25% 11% 21% 15% 14% 9% 5%

Table 9.5: Assumed language mix within the workload.

Popularity Class Number of Products Product Likelihood
Frequent access 200 0.3%
Moderate access 800 0.033%
Long tail 9000 0.0011%

Table 9.6: Product popularity classes.

cache. Consequently, the likelihood of a subtitle being in the cache is influenced
by the requested language as well as the popularity of the video. We assume two
workloadmixes depicted in Table 9.5, denoted as USA and EU.We assume American
traffic to be predominated by English and Hispanic customers, whereas European
traffic consists of a wide variety of languages. The popularity of videos follows a
long tail distribution [BHS06]. As shown in Table 9.6, the store provides 10.000
videos from which the 200 most frequently accessed videos make up for over half
of the traffic. The next 800 most frequently accessed videos cause 30% of the traffic.
The remaining 9000 long-tail videos cause only 10% of the traffic. For each video,
subtitles can be requested in seven languages. While the cache allows storing 250
subtitles at a time, the number of subtitles sums up to a total of 70.000.

9.2.2 Dependency Modeling

Figure 9.3 models the video transcription use case. The CPU resource demand of
the TranscriptionService is modeled as a ResourceDemand variable. Two Service-
InputParameters specify the file size and the number of lines parameters. Further,
we model a DependencyRelationship describing the relationship between the file
size and the resource demand on the component level. To describe the relationship
between the number of lines and the resource demand of the TranscriptionService,
we select a CorrelationRelationship to model the instance-level dependency.

Figure 9.4 shows modeling of the subtitle provider use case. The behavior of
cache hits and misses is modeled as a BranchActionwith an unknown Branching-
Probability. The branch denoting a cache-hit is connected to a lower resource
demand than the branch for cache misses. The input parameters Language and
Popularity are modeled as ServiceInputParameters. The dependency between
these parameters and the branching probability is represented by a Correlation-
Relationshipwith two independents to model an instance-level dependency.
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Figure 9.3: Modeling the video transcription case study.
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Figure 9.4: Modeling the subtitle generation case study.

To characterize the parametric dependencies, we measure the video file size,
the amount of generated subtitles in number of lines, and corresponding resource
demands for the training data set. Then, we fit polynomial functions up to fourth-
order that describe the resource demand from the file size and the number of lines.
Our investigations show that increasing polynomial degrees does not significantly
improve the prediction. Therefore, we conclude a linear correlation and model both
aspects using first-order functions. The CPU resource demand description of the
transcription service based on the file size in kilobyte is:

ResourceDemand = 43.2× FileSize− 1662.5

Additionally, wemodel the resource demand based on the number of lines parameter
as:

ResourceDemand = 2253.5×NumberOfLines+ 3894.2

In this use case, modeling the correlation between the number of lines parameter
and the transcription service resource demand allows to accurately estimate the
resource demand. This provides an additional description of the resource demand,
which can be used as a fallback in case the size of the video files cannot be monitored.

The dependency between the language distribution, the popularity distribution,
and the probability of accessing the database to retrieve a subtitle follows Wallenius’
noncentral hypergeometric distribution [Fog08], which can be approximated as a
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binomial distribution. This approximation leads to the following formula describing
the probability for a cache hit:

P(hit) =
Languages∑

l

Popularities∑
p

P(p)2 × P(l)2 × 250

|p|
(9.1)

For all popularity levels p and all languages l, their respective occurrence probabili-
ties P(p) and P(l) are squared and multiplied by the cache capacity, which is 250.
Finally, the resulting value is divided by the number of subtitles in the language l
and popularity class p, which is equivalent to the number of videos in the popularity
class p, denoted as |p|.

Instance-level dependencies are required to capture the influence of the video
popularity and subtitle language influence on the cache probability of the subtitle
provider. We argue that this dependency has to be modeled on component instance-
level, that is for this specific component instance. In contrast, the traditional approach
wouldmodel it as a dependency on repository component-level, that is a dependency
that applies to all subtitle provider instances. However, this dependency can not
be applied to every subtitle provider instance. For example, if a subtitle provider
instance is used by a backup component, the dependency would not apply. The
backup component iterates over all subtitles leading to a cache probability of zero,
since no subtitle is requested twice. However, the dependency from Equation 9.1
would derive a non-zero cache probability.
Result 1: It is necessary to model some dependencies on the component instance-
level rather than on the repository component-level (EQ VI.1).

9.2.3 Prediction Accuracy

After dependency resolution, we solve the resulting StackFrame model reusing
a transformation to QPN and subsequent simulation using SimQPN, a discrete
event simulation tool for QPNs [KB06]. Table 9.7 shows the residual standard
error, R-squared metric, and p-value for estimations of four polynomial orders
with either the file size or the number of subtitle lines as input. The low p-value
indicates a significant relationship between the input parameter and the response
time, which justifies modeling it. The residual standard error of the number of
lines estimation exceeds the error of file size estimation by about 10%. Similarly,
the file size estimation captures the variance within the sample slightly better, as
described by the R-squared metric. While the file size estimation produces more
accurate predictions, the estimation using the number of lines is sufficient in case the
file size cannot be monitored. Our experiments show that the correlation between
the resource demand and the number of lines parameter provides an accurate
description of the resource demand.
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Input Polynomial p-value Residual R-Squaredorder std. error

File size
1 8.5e-13 3023 0.896
2 1.4e-11 3078 0.897
3 6.3e-11 3017 0.906
4 9.6e-11 2826 0.921

Number of
lines

1 1.8e-11 3445 0.865
2 1.7e-11 3363 0.877
3 5.2e-10 3338 0.884
4 2.9e-09 3357 0.889

Table 9.7: Evaluation of the CPU resource demand estimations.

Region Metric Eval. Load-Level
high med low lowest

EU Utilization measured 79.6 39.2 19.7 9.4
USA Utilization measured 57.2 29.9 15.4 8.0
Both Utilization predicted 70.7 35.3 17.6 8.8
EU Relative Prediction Error 11.2 9.9 10.7 5.9
USA 23.6 18.1 14.3 10.6

Table 9.8: Comparison of the measured utilization to a model-based prediction
without parametric dependencies.

Result 2: Multiple accurate descriptions of the same variable can be derived based
on different input (EQ VI.2).

To demonstrate that each of the two descriptions allows for accurate performance
predictions, we analyze the accuracy of response time predictions for each descrip-
tion. We configure an exponentially distributed request inter-arrival rate with an
average delay of 60 s which corresponds to a CPU utilization of around 45%. The
requests randomly select a video from the evaluation data set. The measured av-
erage response time was 44207 ms. The model predicts an average response time
of 45518 ms when using the file size estimation and 46252 ms for the number of
lines estimation. This corresponds to an accuracy of 97.03% and 95.38%, respectively.
While using the file size estimation achieves a better accuracy, the accuracy of both
predictions is sufficient for capacity planning [MV00].

Modeling this case study without parametric dependencies corresponds to using
the averagemonitored value for the branching probability. Analysis results presented
in Table 9.8 show this to be highly inappropriate to capture the system behavior due
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Region Metric Eval. Load-Level
lowest low med high

EU
Utilization measured 9.4 19.7 39.2 79.6

predicted 9.8 19.8 39.0 79.3
Resp. time measured 21.0 27.0 39.0 149.0

predicted 23.1 26.7 37.0 106.0

USA
Utilization measured 8.0 15.4 29.9 57.2

predicted 7.2 14.4 28.8 57.4
Resp. time measured 17.0 18.0 22.0 45.0

predicted 16.2 18.3 23.6 43.9

Table 9.9: Comparison of measured performance metrics to predictions using para-
metric dependencies.

to an average utilization prediction error of 13%. When modeling the dependency
between the language and popularity distribution and the branching probability
of the subtitle repository, the DML model is capable of accurately predicting the
utilization for all eight scenarios, with a relative error below 5%, as shown in Table 9.9.
The response time prediction error is below 10%, except for a high load of EU traffic.
Here, the model-based prediction underestimates the response time by 28.86%.
This outlier is still within a 30% margin considered to be acceptable for capacity
planning [MV00]. By modeling the cache probability as a parametric dependency,
our model can accurately predict the impact of different language distributions on
the performance of the system.
Result 3: Using parametric dependencies reduced the average relative utilization
prediction error from 13% to below 5% (EQ VI.3).

9.2.4 Summary

In this section, we evaluated whether the approach proposed in Section 6.2 answers
RQ V.2 (“How can relationships between parameters observed at runtime be utilized in
white-box performance models?”) in two case study scenarios. We answer EQ VI.1
(“Is the modeling of dependencies on the component instance required in some cases?”) by
showing that it is necessary to model some dependencies on the component-level
rather than on the repository component-level. Next, we show that multiple ac-
curate descriptions of the same variable can be derived based on different input,
which addresses EQ VI.2 (“Can we provide multiple characterizations of a parametric
resource demand based on alternative parameters that enable accurate performance pre-
dictions?”). Finally, we cover EQ VI.3 (“Does modeling parametric dependencies on
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component instance-level improve the prediction accuracy?”) by showing that in our case
studies the use of parametric dependencies reduced the average relative utilization
prediction error from 13% to below 5%. Answering these three evaluations questions
shows that our approach achieves RQ V.2. Applying the presented approach, soft-
ware architects benefit from an improved ability to reflect system behavior within
architectural performance models based on a higher flexibility of inputs. This result-
ing increased input sensitivity increases the prediction accuracy for the analysis of
design tradeoffs and other what-if analysis scenarios.
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Chapter 10

Summary

Serverless computing abolishes the notion of virtual machines and instead allows
developers to execute code on-demand in response to events with continuous scaling
while having to pay only for the time used with sub-second metering. In recent
years, cloud providers have further introducedmanymanaged services for databases,
messaging buses, and storage, that also abstract the notion of virtual machines in
favor of a pay-per-use model. The adoption of serverless computing is quickly
growing due to the reduced operational overhead, perceived cost savings, and
increased development speed.

However, the serverless community faces significant new challenges due to
the paradigm shift and is in disagreement regarding many serverless computing
topics. This is especially the case for the performance of serverless applications and
platforms as much existing performance engineering knowledge and many existing
approaches are not directly transferable to serverless computing. This results in
many poorly designed serverless applications in practice which in turn can quickly
undermine the public perception of serverless computing. Further, there are also
many open questions regarding the design of serverless platforms. The lack of
an in-depth understanding of the performance implications and tradeoffs of these
design decisions can severely hinder the advancement of serverless platforms.

In this thesis, we address the lack of performance knowledge surrounding server-
less applications and platforms from multiple angles: we conduct empirical studies
to further the understanding of serverless applications and platforms, we introduce
automated optimization methods that reduce the knowledge overhead of operating
serverless applications, and we enable the analysis of design tradeoffs by extending
white-box performance modeling. In the following, we summarize the individual
contributions and revisit the goals and research questions laid out in Section 1.3.

Contribution 1: Evaluation of the Characteristics and Performance of Serverless
Applications As our first contribution, Chapter 4 presents two empirical studies
that aim to improve the understanding of serverless applications. The first study
addresses Goal I (“Provide quantitative data on the common characteristics of modern
serverless applications.”) by conducting the first systematic and comprehensive char-
acterization of serverless applications. We collect 89 serverless applications and
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characterize them, which answers RQ I.1 (“What are common characteristics of current
serverless applications?”). To answer RQ I.2 (“Is there a community consensus on the
common characteristics of serverless applications?”), we further compare the results of
our study with ten existing surveys and datasets. We find that the most commonly
reported reasons for the adoption of serverless computing are cost savings for ir-
regular or bursty workloads, avoidance of operational concerns, built-in scalability,
and increased speed of development. Typical use cases for serverless applications
include short-running tasks with low data volume and bursty workloads, but we
also frequently found latency-critical, high-volume core functionality as serverless
applications. Further, we find that serverless applications are mostly implemented
on AWS, in either Python or JavaScript, and use managed services. With more
details beyond this summary presented in Chapter 4 , we are confident about having
achieved Goal I.

The second study investigates the stability of performance measurements of
serverless applications which aligns with Goal II (“Quantify the performance vari-
ability that serverless applications experience.”). We first quantify the baseline per-
formance variability of serverless applications based on multiple repetitions of
performance measurements under varying configurations, which addresses RQ II.1
(“How much performance variability do common serverless applications experience?”). To
answer RQ II.2 (“Does the performance of serverless applications change over time?”),
we conduct a longitudinal study consisting of three daily measurements for ten
months. We find that the performance variability of measurements conducted at
the same time is comparable to the performance variability observed in traditional
microservice or monolithic systems. However, we also find that serverless applica-
tions experience short-term and long-term performance changes. These findings
show that we have achieved Goal II.

Contribution 2: Automating Operational Tasks of Serverless Applications Our
second contribution introduces two approaches to automate the operational tasks
associatedwith serverless applications. The first approach automates resource sizing
by predicting the optimal memory size of serverless functions, which addresses
Goal III (“Develop an automated method to optimize the size of serverless functions.”).
First, we measure the execution time and resource consumption metrics of a large
collection of functions generated by our synthetic function generator on a public
cloud, which targets RQ III.1 (“How can a dataset on the impact of memory size for a vast
number of functions be generated?”). Then, to answer RQ III.2 (“How can one predict
the optimal size of serverless functions based on passive monitoring data?”), we construct
a multi-target regression model to predict the execution time of a serverless function
for previously unseen memory sizes based on the execution time and resource
consumption metrics for a single memory size. In our evaluation on four realistic
serverless applications, our approach selects the optimal memory size for 79.0%
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of the serverless functions, which saves on average 2.6% costs and speeds up the
functions by 39.7%. These results show that our approach achieves Goal III.

The second operational task that we automate in this contribution is the cost
prediction of serverless workflows, which addressesGoal IV (“Provide a technique
to estimate the costs of serverless workflows.”). First, we show how Mixture Density
Networks (MDNs) can be used to accurately predict the response time and output
parameter distributions of serverless functions, which answers RQ IV.1 (“How can
the execution time distribution of a serverless function be predicted based on its input parame-
ters?”). These individual function models are integrated into a workflow model that
a Monte-Carlo simulation traverses to derive cost predictions for serverless work-
flows, which addresses RQ IV.2 (“Can the impact of restructuring a serverless workflow
on its cost be predicted?”). In our evaluation in the context of audio transcription
workflows, our cost prediction approach predicts the response time distribution
and the distribution of the output parameters of five representative Google Cloud
Functions with a mean accuracy of 96.1%. For two workflows composed of these
functions, our approach achieves a meanworkflow cost prediction accuracy of 96.2%,
which shows that our approach achieves Goal IV.

Contribution 3: Enabling White-Box Performance Modeling and Simulation of
Serverless Platforms Our third contribution introduces two approaches aimed
towards Goal V (“Provide an approach for the white-box performance modeling and
simulation of serverless platforms.”). The first approach speeds up the simulation time
required to solve white-box performance models, which targets RQ V.1 (“How can
the time required to simulate large systems such as serverless platforms be reduced?”). Our
approach enables a parallel description of subsystems of a white-box performance
model as fast-to-solve black-box performance models. We provide a transformation
of the integrated queueing/statistical model to QPNs and extend an existing discrete
event simulation solver for QPNs to support black-box performance models. Our
evaluation shows that our approach maintains prediction accuracy and achieves
speedups of up to 94.8% for a component-based system of medium size, which
shows that our approach successfully achieves RQ V.1.

The second approach provides an integration of empirically observed relation-
ships between model parameters in white-box performance models, which targets
RQ V.2 (“How can relationships between parameters observed at runtime be utilized in
white-box performance models?”). We propose a novel approach to modeling empirical
parametric dependencies in architectural performance models. To derive perfor-
mance prediction, a dependency resolution algorithm transforms the empirical
information from the model into a directed graph and resolves this graph to derive
a fully parameterized model. In two case studies in the context of a media store,
our approach for the modeling and solution of empirical parametric dependencies
achieves a mean prediction error for utilization and response time of less than 5%
and 10% respectively, which shows that our approach successfully answers RQ V.2.
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Together, these two approaches achieveGoal V (“Provide an approach for the white-box
performance modeling and simulation of serverless platforms.”).

Summary In this thesis, we present three core contributions regarding the per-
formance engineering of serverless applications and platforms. Together, these
contributions address all five challenges introduced in Section 1.1. We address
the lack of performance-related knowledge from three directions: (i) we investi-
gate the characteristics and performance of serverless applications, (ii) provide
automation for the operational tasks associated with serverless applications, and
(iii) adapt white-box performance models to make them applicable to analyze the
design tradeoffs of serverless platforms. As a result, these contributions further
the understanding of the performance of serverless applications and represent a
significant advance in the performance engineering of serverless applications and
platforms.
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Open Challenges and Future Work

Finally, we discuss open challenges in the performance engineering of serverless
applications and platforms that we did not address in this thesis and motivate future
work in this research area.

Empirical analysis of serverless platforms and developers In this thesis, we con-
ducted two empirical studies to further the understanding of serverless applications.
These studies are by no means exhaustive, there are multiple further directions
for future work in this area. While there have been a multitude of studies that
characterize the performance of serverless platforms [Llo+18; Wan+18a; LSF18;
Yu+20; Fig+18], most of these studies treat the serverless platforms as a black-box
and are limited to describing the performance properties they observe. Here, a
tracing-based, white-box benchmark of serverless platforms could elucidate the
reasons behind the observed performance [Eyk+20]. For example for tail-latencies,
it would be insightful to determine which part of the request, such as computation,
network latency, external calls, or orchestration, is causing the slowdown. There
is also a distinct lack of studies that focus on the development workflow and life-
cycle of serverless applications, which is a perspective that is currently missing for
a holistic view of serverless applications. Studies that investigate developer pain
points, gaps in current workflows, and DevOps practices, similar to the survey by
Leitner et. al. [Lei+19], and compares these practices to reports by developers of
traditional systems, could help pinpoint the novel aspects and challenges related to
the development of serverless applications.

Resource abstraction layer We have proposed an approach to automatically op-
timize the resource sizing of serverless functions, which automates the most cum-
bersome configuration parameter of serverless functions. However, serverless ap-
plications do not consist solely of serverless functions, instead, they make heavy
use of managed services as described in our survey on the characteristics of server-
less applications. These managed services come with a multitude of configuration
parameters, for example, for a managed queue on AWS, developers need to con-
figure among other things the type of queue, encryption, deduplication window
and scope, number of retries, maximum message size, retention period, visibility

187



Chapter 11: Open Challenges and Future Work

timeout, delivery delay, and receive wait time. While each individual configuration
is not as cumbersome to determine as the resource size of serverless functions, the
sheer number of configuration parameters places a high burden of knowledge on
developers [Lei+19; LP20]. Here, an additional layer of abstraction on top of these
resources that allows developers to specify their use case and derives good defaults
from the selected use case and context information could help to significantly reduce
the number of parameters that developers need to know about and configure.

Holistic cost modeling One of the key selling points of serverless computing
is the fine-granular pay-per-use billing model, instead of the traditional pay-per-
reservation billing model [Cas+19]. However, this also makes it challenging to
estimate the expected costs of an application during the design of the application. In
the context of this thesis, we introduced an approach to estimate the costs of server-
less workflows composed of serverless functions. Other cost estimation approaches
also focus elusively on serverless functions [Boz+17; Elg18; Gun+19]. Therefore,
none of these approaches enable the holistic cost estimation of serverless applications.
Here, a model-based approach, that enables developers to model the cost-relevant
aspects of an application could fill this gap. Based on this model, cost estimations
could be derived analytically based on the cloud provider cost models. The existing
approaches that address specific cost prediction complexities could be integrated in
this holistic model to enable the cost estimation of serverless applications during
the design phase.

Simulating the transient behavior of serverless platforms In the context of this
thesis, we have extended white-box performance models to address shortcomings
that previously made them inapplicable for the analysis of serverless platforms. This
means that white-box performance models can now be used to analyze the steady-
state behavior of serverless platforms. However, serverless functions are often short-
lived and ephemeral, so their transient behavior is quite important to the operation
of a serverless platform. This includes for example the analysis of provisioning and
de-provisioning techniques [Sha+20], request routing strategies [ABV18; LC21], or
resource placement approaches [Mah+19; BKN21]. Existing simulations for server-
less platforms do not support such fine-grained analysis [MK21]. Building on top
of our approaches to alleviate the shortcomings of white-box performance models,
white-box performance models could be further extended to support the simulation
of transient behavior. Towards this goal, architectural performance models would
need to be extended to enable the modeling of serverless function-specific features,
such as cold starts, and provide interfaces for run-time strategies, such as resource
provisioning, request routing, or resource placement. Further, this would require a
simulation environment targeted towards the analysis of transient phases, instead of
the commonly targeted steady-state phases. The resulting framework would enable
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the time- and cost-efficient analysis of design decisions for the run-time behavior of
serverless platforms.

Understanding the evolution of serverless computing Serverless computing is still
an emerging technology, with consistent innovation from providers and developers.
This is apparent from the large number of novel platform improvements that are
proposed [Sin+19; Oak+18; Cad+20] and the constant stream of novel application
domains that are adopting serverless computing [Niu+19a; Fou+19; AC17a]. The
fast innovation cycle means that study results can become outdated in a matter of
years, as evidenced by studies reporting conflicting results for the characteristics of
serverless applications [Wit+20; Eiv17] andmeasurement studies reporting differing
performance properties [Llo+18; Wan+18a; LSF18]. We believe that this necessitates
a methodological change, where studies are not conducted to capture a snapshot of
the analyzed properties, but rather are regularly repeated to capture the evolution of
serverless applications and platforms over time. A challenge in this direction is that
many studies can not be externally reproduced due tomissing documentation [SL20].
To address this, we provide detailed replication packages for the empirical studies
conducted in the context of this thesis.
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