
Claus Herdeis and Eberhard Heller
Institut für Pharmazie und Lebensmittelchemie der Universität 8700 Würzburg, Am Hubland, FRG

Abstract:
A route to 2S,5S-and 2R,5S-hydroxypipeolic acid is presented, starting with the enantiopure 5S-5-hydroxy-piperidone 7. The key step of this reaction sequence is the chemoselective methylenation of the amide carbonyl group of 8 with dimethyltitanocene 9 to 10. The transformation of the exocyclic ene-carbamate double bond to the carboxylic acid group is best accomplished via hydroboration/oxidation to the alcohol 11a,b. Separation and oxidation of the diastereomers 11a,b, to 14a, and 14b, and hydrolysis furnishes the diastereomeric piperolic acids 15a and 15b in enantiopure form.

Substituted piperolic acids are the subject of much current investigation, especially in the field of medicinal Chemistry. Phosphonic amino acids are an important class of competitive N-methyl-D-aspartate (NMDA) antagonists. So CGS 19755 (1) is a potent NMDA antagonist and a derivative of piperolic acid. Replacement of the phosphonic acid functional group by the tetrazole moiety gave the NMDA antagonist 2.4

\[
\begin{align*}
\text{PO}_{3} & \text{H}_{2} & \text{N} & \text{COOH} \\
\text{H} & \text{N} & \text{COOH} \\
\end{align*}
\]
Previously we synthesized 3, via a homochiral acyliminium ion\(^{10}\) and (2R,5R)-5-chloropipelic acid 4\(^{5}\), the first member of a class of enantiopure halogenated pipelic acids. This compound should have interesting pharmacological properties comparable to streptolutin 5, a compound which was isolated in dimeric form from streptomyces griseolutes\(^{6}\). In recent years Baikiaein\(^{7}\) served as a starting material for the synthesis of pipelic acids, substituted in 4- and 6-positions.

Here we report an alternative method leading to cis and trans 5-OH-pipelic acid (15a,b) with predominant formation of the cis diastereomer (2S,5S)-15a. In conjunction with our work on the synthesis of 3 and derivatives thereof starting from 8 (derived from 7), we investigated the reactivity of the amide group of 8 towards various organometallic reagents. We have found that the highly electrophilic, carbamate activated amide carbonyl group of 8, is readily attacked by metallorganic reagents (e.g. organocuprates) affording ring open products. With the Grubbs-Tebbe reagent\(^{8}\) we isolated the exocyclic enecarbamate 10 in 40-50% yield.

\[\text{HO} \quad (\text{cis}) \quad \text{N} \quad \text{CO}_2\text{H} \]

\[\text{HO} \quad (\text{trans}) \quad \text{N} \quad \text{CO}_2\text{H} \]

\[\text{HO} \quad (\text{cis}) \quad \text{N} \quad \text{OH} \]

\[\text{HO} \quad (\text{trans}) \quad \text{N} \quad \text{OH} \]

\[\text{HO} \quad (\text{cis}) \quad \text{N} \quad \text{CHO} \]

\[\text{HO} \quad (\text{trans}) \quad \text{N} \quad \text{CHO} \]

\[\text{HO} \quad (\text{cis}) \quad \text{N} \quad \text{O} \]

\[\text{HO} \quad (\text{trans}) \quad \text{N} \quad \text{O} \]

With the Oshima-Lombardo reagent (Zn-CH\(_2\)Br\(_2\)-TiCl\(_4\))\(^9\) decomposition of the starting material 8 occurred. It turned out subsequently that the inexpensive and easy to handle dimethyltitanocene 9\(^{10}\) reacted with 8 to give the enecarbamate 10 in 80-85% yield. Petasis and Bzowej\(^{11}\) showed that 9 is an excellent methylation reagent for aldehydes, ketones, lactones and esters. Methylation of amides or imides have not been described until now with this reagent\(^{12}\). This olefination works also well with other hydroxy protecting groups and
Synthesis of 2S,5S-hydroxypipecolic acid

with the t-butoxycarbonyl (Boc) group on the amide nitrogen of 2-piperidone derivatives. Of importance is that a carbamate group is used for protection and activation of the amide moiety. We were not successful in isolating exocyclic N-benzylenamines. In the presence of Lewis acids, 10 is quantitatively transformed to the endocyclic enecarbamate 10a.

Hydroboration of 10 with BH$_3$·Si(CH$_3$)$_2$ and oxidation with H$_2$O$_2$/NaOH furnished 11a,b in a cis/trans ratio of ~ 1:1. With the sterically more demanding 9-BBN the cis/trans ratio was 7:3. The separation of the main portion of the cis diastereomer by flash chromatography was accomplished on this stage.

Direct oxidation of the alcohols 11a,b to the carboxylic acids with RuCl$_3$/NaI$_2$_$_4$ proved to be unsuccessful. However a two step procedure provided 14a in about 55% yield. In the first step Swern oxidation of 11a furnished the carboxaldehyde 12a which was oxidized with bromine in methanol to the methyl carboxylate 13a. Deprotection of the TBDMS ether was accomplished nearly quantitatively with methanolic hydrogen chloride solution at 0°C. The resulting TBDMSOCH$_3$ ether was evaporated in vacuo. The subsequent hydrolysis of 14a with 6M hydrochloric acid provided 2S,5S-5-hydroxypipecolic acid hydrochloride 15a, identical in all spectroscopic data with material, isolated previously from morus alba.

On the other hand a complete separation of the diastereomers was possible with 14a,b, though more tedious than with 11a,b. Compound 14b was hydrolysed to 15b, which was identical in every respect with material prepared via the acyl iminium ion pathway. In order to compare the 1H- and 13C-NMR data of 15a, we prepared (2R,5R)-5-hydroxypipecolic acid hydrochloride 18 in an independent way, though only in a cis/trans ratio of 92:8. Starting with 16, previously prepared by us from (S)-5-hydroxy-2-piperidone, Mitsunobu reaction yielded 17 with complete inversion of configuration in position 5. Hydrolysis and recrystallisation furnished 18 in 84% diastereomeric excess.
In summary, the olefination of an activated amide carbonyl group by dimethyl titanocene to exocyclic enecarbamates provides after hydroboration, oxidation and functional group transformations facile access to (2S,5S)-5-hydroxy-pipecolic acid, a compound, which was isolated recently from morus alba. Methylenation reactions with more complex starting materials are currently underway.

Acknowledgement. Financial support was provided by Fonds der Chemischen Industrie. We thank Degussa AG Hanau for D and L-glutamic acid and Mrs. A. Betz, University of Würzburg, for preparation of starting materials.

Experimental:

General:
Diethyl ether was dried with anhydrous calcium chloride over night, filtered and then distilled over sodium wire under nitrogen. Toluene was distilled over calcium hydride. THF was dried with potassium hydroxide over night, filtrated and distilled over sodium-potassium alloy under nitrogen. Reactions with organometallic and borane compounds were run in flame-dried glassware under dry and oxygen-free nitrogen. Thin layer chromatography: Merck precoated silica gel 60 F254 plates. Reaction compounds were visualized by ultraviolet light or by iodine vapour. Melting points: Büchi 510 apparatus, values uncorrected. [α]D: Perkin-Elmer 241 polarimeter. IR-spectra: Perkin-Elmer 681 infrared spectrometer. 1H-NMR and 13C-NMR: Bruker AC 200 and Bruker AC 400. Mass spectra: CH7 Varian-MAT (70 eV).

(5S)-5-Hydroxy-2-piperidinone
This compound was prepared in five steps, starting from L-glutamic acid as described in ref. 18.

(5S)-5-t-Butyldimethylsiloxy-2-piperidinone
This compound was prepared from 1 as described in ref. 1g.

(5S)-5-t-Butyldimethylsiloxy-N-methoxy carbonyl-2-piperidinone (8)
(5S)-5-t-Butyldimethylsiloxy-2-piperidinone (1.15 g, 5.0 mmol) was dissolved in THF (25 ml) and cooled to -70°C. Then a 2.0 M solution n-BuLi in cyclohexane (2.6 ml, 5.2 mmol) was added. After cooling again to -70°C methyl cyanoformate (0.44 ml, 5.5 mmol) in THF (15 ml) was added. After stirring for 10 min at this temperature the solution was allowed to warm to -30°C. After addition of water (10 ml) and sat. NaHCO3/Na2CO3 solution 1:1 (10 ml) the organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 25 ml). The combined organic layers were dried with anhydrous sodium sulphate. After filtration and evaporation of the solvent the residue was recrystallized from n-pentane. Yield: 1.20 g
Synthesis of 25,5S-hydroxypipecolic acid

(83%) colourless powder.- Rf: 0.46 (CHCl₃/EtOAc 9:1).- mp.: 68°C.- [α]D ₀ = +10.9 (c = 1.0, MeOH).- IR (KBr): 2960, 2930, 2900, 2850 (CH), 1715, 1705 (C = O), 1285, (C-O) cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 0.07 (6 H, s, Me₂Si), 0.88 (9 H, s, tBuSi), 1.78 - 2.05 (2 H, m, 4-H), 2.38 - 2.56 (1 H, m, 3-Ha), 2.69 - 2.88 (1 H, m, 3-Hb), 3.68 - 3.84 (2 H, m, 6-H), 3.87 (3 H, s, OCH₃), 4.26 (1 H, q, J = 6.0 Hz, 5-H).- ¹³C-NMR (CDCl₃): δ (ppm) = -4.9 (SiCH₃), 17.9 (Me₂CSi), 25.6 ((H₂C)₃CSi), 28.8 (C-4), 30.8 (C-3), 52.8 (OCH₃), 53.8 (C-6), 64.1 (C-5), 154.9 (C = O, urethane).- C₁₃H₂₅N₃O₄Si (287.43).- Calcd.: C 54.32 H 8.77 N 4.87 found: C 54.55 H 9.02 N 4.78.

(5S)-5-t-Butyldimethylsilyloxy-N-methoxycarbonyl-2-methylene-piperidine (10)

8 (2.5 g, 8.7 mmol) was dissolved in a mixture of toluene (75 ml) and dry pyridine (0.75 ml). Dimethyltitanocene (9) (1.94 g, 9.3 mmol) was added and the mixture was heated for 18 h to 60°C. After this time the tic test (petroleum ether/EtOAc 2:1) showed almost complete absence of starting material. After evaporation of the solvent the dark brown oil was diluted with pentane (75 ml) and the solution was filtered. The solvent was evaporated and the light brown oil was purified by flash chromatography on silica gel (petroleum ether/EtOAc 2:1, 0.5% Et₃N). Yield: 2.0 g (82%) yellow oil.- Rf: 0.72 (petroleum ether/EtOAc 2:1).- bp.: 99-101°C 10⁻² mbar.- IR (neat): 3105, 2960, 2930, 2860 (CH), 1715 (C=O), 1660 (C=C) cm⁻¹.- ¹H-NMR (C₆D₆): δ (ppm) = 0.02, 0.04 (6 H, 2s, SiMe₂), 0.94 (9 H, s, t-BuSi), 1.40 - 1.55 (2 H, m, 4-H), 1.81 - 1.90 (1 H, m, 3-Ha), 2.20 - 2.30 (1 H, m, 3-Hb), 3.33 - 3.46 (1 H, m, 6-Ha), 3.49 (3 H, s, OCH₃), 3.51 - 3.76 (1 H, m, 6-Hb), 4.78 (1 H, s, =CH₂), 4.96 (1 H, s, =CH₂).- ¹³C-NMR (C₆D₆): δ (ppm) = -4.8 (SiCH₃), 20.5 (Me₂CSi), 25.9 ((H₂C)₃CSi), 30.0 (C-3), 34.4 (C-4), 52.4 (C-6), 52.5 (OCH₃), 66.4 (C-5), 107.2 (=CH₂), 143.8 (C-2), 155.3 (C = O).- MS: m/z (%) = 285 (1.1%) [M⁺], 228 (35.1) [M⁺ - C₃H₇N], 196 (11) [M⁺ - 89], 96 (18.5), 94 (35.4), 89 (100).- C₁₃H₂₇N₂O₃Si (285.43). Calcd.: C 58.91 H 9.54 N 4.91 found: C 59.23 H 9.76 N 4.87.

(5S,5S)-5-t-Butyldimethylsilyloxy-N-methoxycarbonyl-2-hydroxymethyl-piperidine (11a,b)

To the enecarbamate 10 (1.4 g, 4.9 mmol) in THF (60 ml) a solution of 0.5 M 9-BBN (10.4 mmol, 5.2 ml) at 0°C was added. The solution was stirred at 25°C for 18 h then 3.0 M sodium hydroxide solution (50 ml) and 30 % hydrogen peroxide (50 ml) were added and stirred for another 2 h. The layers were separated, the aqueous layer was saturated with solid potassium carbonate and extracted with ethyl acetate (3 x 70 ml). The combined organic layers were dried over anhydrous potassium carbonate, filtered and the solvent was evaporated. The remaining faint yellow oil was diluted with pentane, stored for 2 h at 4°C, filtered and the solvent was removed in vacuo. The oily residue was purified by flash chromatography, to give a nearly colourless oil. Yield: 1.31 g (88%) as a mixture of diastereomers in a ratio of 7:3 (cis/trans).- Rf: 0.76 (petroleum ether/EtOAc).- IR (neat): 3440 (OH), 2920, 2910, 2850 (CH), 1700 (C = O), 1250 (C-O) cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 0.03 - 0.04 (6 H, 2s, SiMe₂), 0.83 and 0.84 (9 H, s, tBuSi), 1.38 - 1.77 (4 H, m, 3-H, 4-H), 2.45 - 2.75 (1 H, broad, OH), 2.98 (1 H, dd, 6-Ha, J = 12.4 Hz, 3.2 Hz), 3.53 - 3.81 (3 H, m, CH₂OH,
6-H\(_2\)), 3.67 and 3.69 (3 H, s, OCH\(_3\)), 4.10 - 4.35 (1 H, m, 5-H). \(^{13}\)C-NMR (CDCl\(_3\)): \(\delta\) (ppm) = -5.1 and - 4.8 (SiCH\(_3\)), 17.9 (Me\(_3\)Si), 25.7 (Me\(_3\)Si), 19.0 and 19.4 (C-3), 27.4 and 29.7 (C-4), 46.4 (C-2), 51.7 (C-6), 52.5 and 52.7 (OCH\(_3\)), 60.3, 60.6, and 61.1 (CH\(_2\)OH) (rotamers), 64.1, 67.6 (C-5), 157.7 and 157.9 (C=O).

\((2S,5S)\)-5-t-Butyldimethylallyloxy-N-methoxycarbonyl-2-hydroxymethyl-piperidine (11a)

A diastereomeric mixture of 11a,b (2.8 g, 9.25 mmol) was chromatographed on silica gel (500 g, column diameter 5 cm) using ethyl acetate. Eight 50 ml fractions were collected. The solvents evaporated and the diastereomeric purity of the oily residues were checked by \(^{13}\)C-NMR spectroscopy. The first 5 fractions contained 1.54 \(\%\) 11a (cis), 1.14 \(\%\) was unseparated cis/trans mixture.

\(^{1}\)H-NMR (CDCl\(_3\)): \(\delta\) (ppm) = 0.03 (6 H, s, SiMe\(_2\)), 0.83 (9 H, s, tBuSi), 1.43 - 1.78 (4 H, m, 3-H, 4-H), 2.56 - 2.81 (1 H, broad, OH), 3.51 - 3.67 (3 H, m, 2-H, 6-H), 3.69 (3H, s, OCH\(_3\)), 3.79 (2H, dd, \(J = 11.1\) Hz, 8.8 Hz), 4.10 - 4.35 (1H, m, 5-H), \(^{13}\)C-NMR (CDCl\(_3\)): \(\delta\) (ppm) = -4.8 (SiCH\(_3\)), 18.0 (Me\(_3\)Si), 22.7 (C-3), 25.7 (Me\(_3\)Si), 29.7 (C-4), 46.5 (C-2), 51.7 (C-6), 52.7 (OCH\(_3\)), 60.6, 61.1 (CH\(_2\)OH) (rotamers), 67.6 (C-5), 157.0 (C=O).

\((2R,S-5S)\)-t-Butyldimethylallyloxy-N-methoxycarbonyl-piperidine-2-carboxaldehyde (12a,b)

To a cooled (-60 °C.) solution of oxalyl chloride (0.36 ml, 4.05 mmol) in dry dichloromethane (10 ml) dimethylsulfoxide (0.58 ml, 8.1 mmol) in dry CH\(_2\)Cl\(_2\) (10 ml) was added dropwise so that the temperature did not rise above -50 °C. 11a,b (1.12 g, 3.67 mmol) was dissolved in dry CH\(_2\)Cl\(_2\) (10 ml) and was added within 5 min. The solution was stirred for another 15 min., then triethylamine (2.55 ml, 18.4 mmol) was added, and the mixture was stirred for 5 min. After the mixture was allowed to warm to ambient temp. water (50 ml) was added and the layers were separated. The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (2 x 80 ml). The combined organic layers were washed with saturated sodium chloride solution (120 ml) and then dried with sodium sulphate. After filtration and evaporation of the solvent, the oil was purified by flash chromatography. Yield: 0.78 g (72 \%) colorless oil as a mixture of diastereomers in a ratio of 7:3. \((\text{I})\):diastereomer 30 \%; \((\text{II})\):diastereomer 70 \%. \(R_I = 0.72\) g (petroleum ether/ EtOAc 2:1). \(R_f = 0.72\) g (hexane/ EtOAc 2:1). - IR (neat): 2985 , 2940, 2860 (CH), 1745 (HC=O), 1715 (NC=O), 1715 (7H-C-3) cm\(^{-1}\). \(^{1}\)H-NMR (CDCl\(_3\)): \(\delta\) (ppm) = 0.06 (6 H, d, SiMe\(_2\)), 0.86 (9 H, s, tBuSi), 1.21 - 2.70 (6 H, m, 3-H, 4-H, 6-H\(_a\)), 3.00 (1 H, d, 6-H\(_b\)), \(J = 14.6\) Hz), 3.55 - 3.98 (2 H, m, 2-H, 6-H\(_b\)), 3.71 (3 H, s, OCH\(_3\)), 4.58 - 4.67 (1 H, m, 5-H), 9.59 (1 H, d, J = 0.7 Hz, HC=O). \(^{13}\)C-NMR (CDCl\(_3\)): \(\delta\) (ppm) = -5.0 (SiCH\(_3\)), 17.4 (C-3), 18.0 (C-3), 21.4 (C-3), 22.1 (Me\(_3\)Cl), 25.7 (H\(_2\)Cl), 27.2 (C-2) and 28.4 (C-4), 48.6 (C-6) and 49.1 (C-6), 52.9 (C-6) and 53.1 (C-6), 59.9 (OCH\(_3\)), 60.7 (C-2), 64.2 (C-5) and 66.9 (C-5), 156.1 (C=O, urethane), 200.6 (HC=O). - C\(_{14}\)H\(_{27}\)N\(_2\)O\(_4\)Si (301.41). - Calcd.: C 55.77 H 9.02 N 4.60 found: C 55.82 H 9.29 N 4.61.
Synthesis of 2S,5S-hydroxypipecolic acid

Methyl (2S,5S)-5-t-Butyldimethylallyloxy-N-methoxycarbonyl-piperidine-2-carboxylate (13a)

11a (1.64 g, 5.4 mmol) was oxidized to the aldehyde under Swern conditions as described for 12a,b. The resulting brown oil was dissolved in methanol/water 9:1 (30 ml) then solid NaHCO₃ (9.1 g, 108 mmol) and bromine (0.55 ml, 16.9 mmol) was added. The mixture was stirred for 1.5 h at 25 °C. The excess of bromine was reduced with sodium thiosulphate and the solution was filtered. The solvent was evaporated and the residue was stirred in 80 ml of ether. Filtration over a short column of silicagel (petroleum ether/EtOAc 2:1) and evaporation of the solvent provided a nearly colourless oil. Yield: 1.42 g (79 %). \(\delta \) (ppm) = 0.06 - 0.05 (6 H, m, SiMe₂ rotamers), 0.86 (9 H, s, tBuSi, 1.32 - 2.31 (5 H, m, 3-H, 4-H a b, OH), 2.65 - 2.75 (1 H, m, 6-Ha) 3.49 - 3.66 (1 H, m, 6-Hb), 3.69 (3 H, s, OCH₃'), 3.72 (3 H, s, OCH₃), 3.87 - 4.18 (1 H, m, 5-H), 4.71 - 4.86 (1 H, m, 2-H, rotamers). 13C-NMR (CDCl₃): \(\delta \) (ppm) = - 4.8 (SiH₃)', 18.0 (Me~Si), 24.7 (C), 25.3 (C-3), 26.0 ((CH₃)₃CSi), 31.0 (C-4), 48.2, 48.4 (rotamers) (C-6), 52.2, (OCH₃) 53.3, 53.6 (rotamers) (C-2), 67.2, 67.9 (rotamers) (C-5), 156.6 (C=O, urethane), 171.5 (C=O, ester).

Methyl (2S,5S)-6-Hydroxy-N-methoxycarbonyl-piperidine-2-carboxylate (14b)

From 660 mg (2.08 mmol) 13b, as described for 14a. Yield: 390 mg (86%). \(\delta \) (ppm) = 1.30-2.30 (5H, m, 3-H, 4-H, OH), 3.22 (1H, d, J₆₈b = 14.1Hz, 6-H₂b), 3.56-4.25 (8H, m, 6-H₂b, 8-H, OCH₃ ester + OCH₃ urethane), 4.88 (1H-m, 2-H).- \, 13C-NMR (CDCl₃): \(\delta \) (ppm) = 19.5
(C-3), 26.5 (C-4), 46.6 (C-6), 51.9, (OCH₃) 52.6 (OCH₃) 52.9 (C-2), 62.8 (C-5), 156.4 (C=O, urethane), 170.1 (C=O, ester).

(2S,5S)-5-Hydroxy-piperidine-2-carboxylic acid hydrochloride (15a)

14a (0.49 g, 2.26 mmol) was refluxed 4h in 6M HCl (10 ml). After concentration in vacuo EtOH/Et₂O was added to the oily residue. The solvent was evaporated and the residue was dissolved in EtOH/THF (20 ml) and refluxed after addition of a small amount of charcoal. After filtration and evaporation of the solvent, the crystalline solid was triturated with acetone/EtOH (1:1) and isolated by suction. Yield: 0.319 g (76%). m.p.: 195-196°C (dec.), (ref. 19 183-187°C). [α]D = -21.9 (c=1, H₂O), (ref. 19 -18.5 (c=1.0, H₂O)). IR (KBr): 3480, 3390 (OH), 3150-2400 (CH, NH₂⁺), 1735 (C=O), 1555 cm⁻¹. ¹H-NMR (CD₃OD): δ(ppm) = 1.83 - 2.19 (4H, m, 3-H, 4-H), 3.22 - 3.26 (2H, m, 6-H), 3.99 (1H, t, J = 7.4Hz, 2-H), 4.07-4.1 (1H, m, 5-H). ¹³C-NMR (CD₃OD): δ(ppm) = 21.9 (C-3), 29.8 (C-4), 50.4 (C-6), 57.6 (C-2), 62.1 (C-5), 170.6 (COO). C₆H₁₂CINO₃ (181.62) Calcd.: C 39.68 H 6.66 N 7.71 found: C 39.88 H 7.09 N 7.57.

(2R,5S)-5-Hydroxy-piperidine-2-carboxylic acid hydrochloride (15b)

14b (217 mg, 1.00 mmol) was refluxed for 4 h with 6 M HCl (2 ml). After evaporation of the volatiles the residue was triturated with EtOH/acetone. The crystalline solid was isolated by vacuum filtration. Yield: 130 mg (72%). m.p.: 225 (dec.). [α]D = +8.6 (c=1, H₂O) (ref. 19 for 2S,5R: 9.7 (c=0.9, H₂O)). IR (KBr): 3360, 3220 (OH), 3020 - 2420 (CH, NH₂⁺), 1745 (C=O), 1590 cm⁻¹. ¹H-NMR (CD₃OD): δ(ppm) = 1.65 (1H, m, 4-Ha), 1.86 (1H, m, 3-Ha), 2.02 (1H, m, 4-Hb), 2.39 (1H, m, 3-Hb), 2.85 (1H, dd, J₉ = 12.2, 9.2Hz, 6-Ha), 3.42 (1H, ddd, J = 12.2, 3.9, 1.3Hz, 6·Hb), 3.90 (1H, m, 5-H), 4.01 (1H, dd, J = 10.1, 3.9Hz, 2-H). ¹³C-NMR (CD₃OD): δ(ppm) = 24.4 (C-3), 31.1 (C-4), 49.1 (C-6), 56.9 (C-2), 63.9 (C-5), 170.7 (C=O). C₆H₁₂CINO₃ (181.62) Calcd.: C 39.68 H 6.66 N 7.71 found: C 39.48 H 6.64 N 7.62.

Methyl (2R,5R)-5-benzyloxy-N-methoxycarbonylpiperidine-2-carboxylate (17) 80% d.e.

300 mg (1.38 mmol) 16 (prepared in 80% d.e. as described in ref. 19), triphenylphosphine (472 mg, 1.80 mmol) and benzoic acid (220 mg, 1.80 mmol) were dissolved in THF (20 ml) under N₂. To this mixture was added with stirring diethyl azodicarboxylate (313 mg, 1.80 mmol) in THF (2 ml). After 1 h the solvent was evaporated in vacuo and CH₂Cl₂ (100 ml) was added. The mixture was washed with 5 % NaHCO₃ solution (2x) and water (1x). The organic layer was dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel (CHCl₃/EtOAc 9+1). Yield: 189 mg (43%) colorless oil 80 % d.e. by ¹H-NMR.- Rf = 0.40 (CHCl₃/EtOAc 9+1). IR
Synthesis of 2S,5S-hydroxypipecolic acid

(neat): 3070-2880, 1750-1690 (C = O), 1605, 1585 cm⁻¹. ¹H-NMR (CDCl₃) at 60°C; only signals for 2R,5R 17 are shown: δ(ppm) = 1.52 (1H, dq, J₃a,4a = J₄a,4e = 11-14Hz, J₃e,4e = 3.8Hz, 4-H₃), 1.89 (1H, ddt, J₃a,4e = J₃a,3e = 13.9Hz, J₃a,2e = 6.1Hz, J₃e,4e = 3.5Hz, 3-H₂), 2.17 (1H, m, 4-H₂), 2.36 (1H, ddd, J₃a,3e = 13.9Hz, J₃e,4e = 6.2Hz, J₃a,4a = 3.8Hz, 3-H₃), 3.08 (1H, dd, J₃e,4a = 3.5Hz, 3-H₂), 3.19 (1H, dd, J₃a,3e = 13.9Hz, J₃e,4a = 6.2Hz, J₃a,4e = 3.8Hz, 4-H₂), 3.23 (2H, m, H-6), 3.74 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 4.38 (1H, dd, J₆a,6e = 12.4Hz, 6-H₂), 4.89-5.04 (2H, m, 2-H₂, 5-H₂), 7.37-7.59 (3H, m, H arom), 7.98-8.04 (2H, m, H arom). ¹³C-NMR (CDCl₃): 24.60/24.93 (C-4), 26.34/26.84 (C-3), 44.60/44.79 (C-6), 52.34/53.07 (2x OCH₃), 53.27/53.58 (C-2), 68.65 (C-5), 128.28, 129.52, 129.79, 133.09 (C arom), 156.02/156.49 (CO₂CH₃ urethane), 165.52 (Ph), 171.30 (CO₂CH₃ ester)-rotamers. C₁₆H₁₉N₀₆ (321.33) Calcd.: C 59.81 H 5.96 N 4.36 found.: C 59.78 H 5.91 N 4.20.

(2R,5R)-5-Hydroxy-piperidine-2-carboxylic acid hydrochloride (18) 84% d.e.

17 (80% d.e.) (175 mg, 545 μmol) was refluxed with 4 M HCl (3 ml) for 6 h. After cooling, benzoic acid was extracted from the aqueous phase with CH₂Cl₂ (3x). After evaporation of the aqueous layer the oily residue crystallized. The colorless crystals were triturated with acetone, isolated by vacuum filtration and dried. Yield: 58 mg (59%). m.p.: 187°C-195°C (dec.). [α]ᵣᵣ = +18.1 (c=1.3 MeOH, (84% d.e. by ¹H-NMR). IR (KBr): 3520, 3490 (OH), 3000-2500 (CH, NH₂ +), 1730 (C = O). 1560, 1440, 1400, 1225, 1H-NMR (D₄-MeOD): δ(ppm) = 1.83-2.24 (4H, m, 3-H, 4-H), 3.23 (2H, m, H-6), 4.02 (1H, t, J = 7.5Hz, 2-H), 4.08-4.13 (1H, m, 5-H). ¹³C-NMR (D₄-MeOD): δ(ppm) = 21.8 (C-3), 29.8 (C-4), 50.3 (C-6), 57.6 (C-2), 62.1 (C-5), 170.7 (COOD). C₆H₁₂CINO₃ (181.62) Calcd.: C 59.68 H 6.86 N 7.71 found: C 59.79 H 6.54 N 7.66.

References and Notes

3. C. Angst, P. S. Bernard, L. Blanchard, T. Campbell, R. De Jesus, W. Guida, A., J.
5. C. Herdeis and W. Held, unpublished.
6. Synthesis of this amino acid is not known. Isolation as a diketopiperazine derivative: G. R.
33, 4453-4456. Synthesis of: C. Herdeis and W. Engel, Arch. Pharm. (Weinheim) 1993,
12. Benzylidenations of dimethyl formamide and dimethyl acetamide with Dibenzyltitanocene
13. 2-Pyrrolidone and 2-azetidinone derivatives are also methylenated in 50-60% yield. Also
piperidone is transformed to ii.
15. 10 is a rather stable compound. It can be distilled in vacuo and treated with 3 M NaOH
solution at r.t. without decomposition. Flash chromatography on silica gel must be
performed with some drops of Et2N in the eluent.
3936-3938.