Aus der Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie der Universität Würzburg
Direktorin: Professor Dr. med. Eva-Bettina Bröcker

Bienengiftallergie: Wirksamkeit und Sicherheit einer Immuntherapie mit 100 µg Gift über 3 bis 5 Jahre

Inaugural – Dissertation
zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Julius-Maximilians-Universität Würzburg

vorgelegt von
Bernd Hofmann
aus Würzburg

Würzburg, Februar 2011
REFERENT: Prof. Dr. med. Axel Trautmann

KOREFERENTIN: Prof. Dr. med. Eva-Bettina Bröcker

DEKAN: Prof. Dr. med. Matthias Frosch

TAG DER MÜNDLICHEN PRÜFUNG:

06. JUNI 2011

DER PROMOVEND IST ARZT.
3.4 Definition der Vergleichsgruppen ... 22
 3.4.1 Bienengiftallergiker vs. Wespengiftallergiker ... 22
 3.4.2 „Erfolgreiche Therapie“ vs. „Therapieversager“ .. 22
3.5 Statistische Methoden .. 22
 3.5.1 T-Test für zwei unabhängige Stichproben (Signifikanztst) 23
 3.5.2 Mann-Whitney U-Test (Signifikanztst) .. 25
 3.5.3 Chi-Quadrat-Tests (Signifikanztst) ... 28
 3.5.4 Prozentwertberechnung ... 32
3.6 Technische Hilfsmittel ... 32
4 Ergebnisse ... 33
 4.1 Allgemeine Übersicht .. 33
 4.1.1 Datenerhebung ... 33
 4.1.2 Patientenkollektiv ... 35
 4.2 Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker 37
 4.2.1 Geschlechterverteilung ... 37
 4.2.2 Altersverteilung .. 39
 4.2.3 Anaphylaxie beim Indikatorstich ... 41
 4.2.4 Atopie und Asthma .. 41
 4.2.5 Kumulative Stichereignisse .. 41
 4.2.6 Hauttestung .. 43
 4.2.7 Labortestung ... 49
 4.2.8 Latenzzeit und Dauer der SIT ... 52
 4.3 Wirksamkeit und Sicherheit der SIT .. 52
 4.3.1 Bienengiftallergie ... 52
 4.3.2 Wespengiftallergie .. 54
 4.4 Vergleichsgruppen „Erfolgreiche Therapie“ und „Therapieversager“ 56
 4.4.1 Diagnose .. 56
 4.4.2 Geschlechterverteilung ... 57
 4.4.3 Altersverteilung .. 58
 4.4.4 Anaphylaxie beim Indikatorstich ... 59
 4.4.5 Atopie und Asthma .. 60
 4.4.6 Kumulative Stichereignisse .. 61
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bienengiftallergie</td>
</tr>
<tr>
<td>BAT</td>
<td>Basophilen-Aktivierungstest</td>
</tr>
<tr>
<td>CCDs</td>
<td>Cross-reactive carbohydrate determinants</td>
</tr>
<tr>
<td>DIB</td>
<td>Deutscher Imkerbund</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>IC</td>
<td>Intracutan</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunglobulin E</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzkrankheit</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung (= standard deviation)</td>
</tr>
<tr>
<td>SIT</td>
<td>Spezifische Immuntherapie</td>
</tr>
<tr>
<td>W</td>
<td>Wespengiftallergie</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Definition der Bienen-/Wespengiftallergie

1.2 Epidemiologie und Symptome

Das klassische nicht-allergische Symptom nach einem Bienen-/Wespenstich ist die „normale“ toxische Stichreaktion, die fast jeder Mensch kennt. Die sehr seltene systemisch-toxische Stichreaktion, mit z. B. akutem Nierenversagen, peripherer Neuropathie oder Encephalomyelitis, kann nur nach einer sehr großen Anzahl gleichzeitiger Stiche (> 50) auftreten. Symptome einer Bienen-/Wespengiftallergie sind die gesteigerte Lokalreaktion auf einen Stich und die allergisch-systemische Reaktion [1, 3-6].

Abzugrenzen von der allergisch-systemischen Stichreaktion ist die gesteigerte Lokalreaktion ohne systemische Beteiligung. Dabei kommt es zu einem größeren Erythem und Ödem um die Einstichstelle; nach einem Stich in die Extremitäten können sogar mehr als zwei Gelenkbereiche betroffen sein, das heißt die Schwellung reicht z. B. von der Hand bis zur Oberarmmitte. Im Gegensatz zur toxischen Stichreaktion persistiert diese gesteigerte Lokalreaktion typischerweise über mehrere Tage [12]. Bei bis zu 19 % der Allgemeinbevölkerung kann es zu einer solchen gesteigerten lokalen Reaktion kommen [13, 14]. Auch diese kann bei ungünstiger Lokalisation, z. B. im Bereich der oberen Luftwege, zu bedrohlichen Komplikationen führen [6, 15].
Einleitung

1.3 Pathomechanismen

1.3.1 Anaphylaxie nach Bienen-/Wespenstich

Erwachsene Patienten mit einer allergisch-systemischen Stichreaktion entwickeln (ohne kausale Immuntherapie!) nach einem erneuten Stich in bis zu 74 % eine ähnliche oder sogar noch schwerere Symptomatik. Bei Kindern (< 16. Lebensjahr) beträgt nach einem erneuten Stich das Anaphylaxie-Risiko ohne Therapie nur maximal 40 % [22-24].

Abb. 1: Pathogenese der IgE-vermittelten Bienen-/Wespengiftallergie

1.3.2 Gestiegene Lokalreaktion nach Bienen-/Wespenstich

Der genaue Pathomechanismus der gesteigerten Lokalreaktion ist nach wie vor nicht geklärt. Einige Autoren vermuten auch hier einen IgE-vermittelten Mechanismus [8, 13, 14, 26], während andere eine IgG-vermittelte oder durch T-Lymphozyten verursachte Reaktion favorisieren [27].
1.4 Bienen und Hummeln, Wespen und Hornissen

Die Insekten, die in Deutschland am häufigsten für eine Allergie verantwortlich sind, gehören der Ordnung Hymenoptera (Hautflügler) an [28].

Tab. 1: Taxonomie

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Insecta (Insekten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordnung</td>
<td>Hymenoptera (Hautflügler)</td>
</tr>
<tr>
<td>Teilordnung</td>
<td>Aculeata (Stechimmen)</td>
</tr>
<tr>
<td>Überfamilie</td>
<td>Apoidea (Bienen und Grabwespen)</td>
</tr>
<tr>
<td>Familie</td>
<td>Apidae (Bienen)</td>
</tr>
<tr>
<td></td>
<td>Vespidae (Faltenwespen)</td>
</tr>
<tr>
<td>Unterfamilie</td>
<td>Apinae („Echte“ Bienen)</td>
</tr>
<tr>
<td></td>
<td>Polistinae (Feldwespen)</td>
</tr>
<tr>
<td></td>
<td>Vespinae (Papierwespen)</td>
</tr>
<tr>
<td>Gattung</td>
<td>Apis (Honigbiene)</td>
</tr>
<tr>
<td></td>
<td>Bombus (Hummeln)</td>
</tr>
<tr>
<td></td>
<td>Polistes (Feldwespe)</td>
</tr>
<tr>
<td></td>
<td>Vespula (Kurzkopfwespen)</td>
</tr>
<tr>
<td></td>
<td>Dolichovespula (Langkopfwespen)</td>
</tr>
<tr>
<td>Art</td>
<td>Apis mellifera (Westliche Honigbiene)</td>
</tr>
<tr>
<td></td>
<td>Bombus hypnorum (Baumhummel)</td>
</tr>
<tr>
<td></td>
<td>+ 9 weitere Arten</td>
</tr>
<tr>
<td></td>
<td>Polistes dominulus (Gallische Feldwespe)</td>
</tr>
<tr>
<td></td>
<td>+ 3 weitere Arten</td>
</tr>
<tr>
<td></td>
<td>Vespula vulgaris (Gemeine Wespe)</td>
</tr>
<tr>
<td></td>
<td>Vespula germanica (Deutsche Wespe)</td>
</tr>
<tr>
<td></td>
<td>Vespula rufa (Rote Wespe)</td>
</tr>
<tr>
<td></td>
<td>Vespa crabro (Hornisse)</td>
</tr>
<tr>
<td></td>
<td>+ 2 weitere Arten</td>
</tr>
</tbody>
</table>

Auslöser der Bienengiftallergie | Auslöser der Wespengiftallergie
Beim Hautstich einer Biene dringen im Durchschnitt 50 µg Gift in die obere Dermis ein [37]. Die Sensibilisierung bzw. allergische Reaktion wird dabei durch relativ großmolekulare Proteine verursacht (siehe Tab. 2) [1]. Die allergologische Kreuzreaktivität zwischen den verschiedenen Arten der Apinae-Unterfamilie, das heißt Honigbiene und Hummeln, ist so groß, dass in der klinischen Praxis nach allergischer Reaktion durch Stich einer Honigbiene oder Hummel vereinfachend nur von Bienengiftallergie gesprochen wird. Gleiches gilt für die Arten der Vespinae-Unterfamilie, das heißt Allergien gegen die gemeine Wespe oder die Hornisse werden unter Wespengiftallergie subsumiert [16].

Tab. 2: Aspekte und Merkmale

<table>
<thead>
<tr>
<th>Biologische Eigenschaften der Hymenoptera [6, 30, 35, 37, 38]</th>
<th>Gattung*</th>
<th>Aggressivität**</th>
<th>Nahrungssubstrate</th>
<th>Giftmenge pro Stich</th>
<th>Wichtige Allergene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honigbiene (Westl. Honigbiene)</td>
<td>+</td>
<td>Blühende Pflanzen, (zuckerhaltige Getränke)</td>
<td>50 (-140) µg</td>
<td>Phospholipase A₂, Hyaluronidase, saure Phosphatase</td>
<td></td>
</tr>
<tr>
<td>Langkopfwespen (Hornisse)</td>
<td>+</td>
<td>Zuckerhaltige Flüssigkeiten, (z. B. Nektar, Baumflussäfte, Saft reifer Früchte), kleine Insekten</td>
<td>nicht bekannt</td>
<td>Phospholipase A₁, Hyaluronidase, Antigen 5</td>
<td></td>
</tr>
<tr>
<td>Kurzkopfwespen (Gemeine – und Deutsche Wespe)</td>
<td>++</td>
<td>Zuckerhaltige Flüssigkeiten (siehe Feldwespe), zuckerhaltige Nahrungsmittel, rohes Fleisch toter Tiere, kleine Insekten</td>
<td>2-20 µg</td>
<td>Phospholipase A₁, Hyaluronidase, Antigen 5</td>
<td></td>
</tr>
<tr>
<td>Feldwespen (Gallische Wespe)</td>
<td>+</td>
<td>Zuckerhaltige Flüssigkeiten (z. B. Nektar, Baumflussäfte, Saft reifer Früchte), kleine Insekten</td>
<td>nicht bekannt</td>
<td>Phospholipase A₁, Hyaluronidase, Antigen 5</td>
<td></td>
</tr>
<tr>
<td>Hummeln (Baumhumeln)</td>
<td>+</td>
<td>Blühende Pflanzen</td>
<td>10-31 µg</td>
<td>Phospholipase A₂, Serinprotease</td>
<td></td>
</tr>
</tbody>
</table>

* in Klammern typische Vertreter dieser Gattung
** Aggressivität: ’+’ Gefährdung des Menschen im Nestbereich, ’++’ Gefährdung im Nestbereich und Futterplatz

Auch zwischen Bienen- und Wespengift ist eine zumindest partielle Kreuzreaktivität möglich. 30-60 % der Patienten zeigen im Hauttest oder in den serologischen Untersu-
chungen eine partielle Doppelpositivität gegenüber Bienen- und Wespengift [39, 40]. Partielle Doppelpositivität bedeutet dabei, dass die Sensibilisierung (gemessen im Hauttest und Serum-IgE) gegen eines der beiden Insektengifte deutlich stärker ausgeprägt ist. Ursachen dafür sind meist eine Kreuzreaktivität gegen das Enzym Hyaluronidase oder IgE-Antikörper gegen kreuzreaktive Kohlenhydratseitenketten („cross-reactive carbohydrate determinants“, CCDs) der glykosilierten Giftallergene. Eine echte Doppelsensibilisierung und Doppelallergie gegen Bienen- und Wespengift ist selten. Die im Hauttest und Serum-IgE gemessene Sensibilisierung gegen Bienen- und Wespengift ist dann annähernd gleich stark ausgeprägt [40-43].

1.5 Risikofaktoren

1.5.1 Erhöhtes Stichrisiko

Eine vermehrte Anzahl von Bienen-/Wespenstichen erhöht das Risiko, eine Allergie auf das entsprechende Gift zu entwickeln. Klima, Jahreszeit, Temperatur, Beruf und Freizeitverhalten beeinflussen das Risiko gestochen zu werden [1]. Nachfolgend einige Beispiele:

- **Klima**: In höheren Lagen der Mittelgebirge oder den Alpen ist das Stichrisiko deutlich geringer [30].
- **Jahreszeit**: Das Bienenstichrisiko besteht während der gesamten Flugzeit der Bienen von Ende Februar bis Anfang Oktober. Das Risiko für Wespenstiche ist vor allem im Hochsommer bis in den Spätherbst am höchsten [30].
- **Bestimmte Berufe**: Imker (Bienenstiche) [44, 45]; Gärtner, Bäckereifachverkäufer, Müllwerker, Feuerwehrleute (Wespenstiche) [16, 46]
- **Freizeitverhalten**: Schwimmen, Radfahren, Aktivitäten in der Natur, Motorradfahren [1].

1.5.2 Erhöhtes Risiko schwerer anaphylaktischer Reaktionen

Einige Faktoren können die Anaphylaxiesymptome einer allergischen Stichreaktion aggravieren. Dazu gehören:

- **Erhöhte basale Serum-Tryptasewerte mit oder ohne Mastozytose**: Schwere anaphylaktische Stichreaktionen wurden vermehrt beobachtet [47-50].
Einleitung

- **Herz-Kreislauf-Erkrankungen (z.B. KHK):** Häufige lebensbedrohbliche Reaktionen und eine erhöhte Morbidität nach Insektenstichen ist beschrieben [51, 52].
- **β-Blocker Einnahme:** Diese hemmen den Effekt von endogenem oder therapeutisch appliziertem Adrenalin. Daher können sie eine anaphylaktische Reaktion verstärken und eine suffiziente Behandlung erschweren [51, 52].
- **ACE-Hemmer Einnahme:** Bradykinin wirkt vasodilatierend und gefäßpermeabilitätssteigernd und wird bei anaphylaktischen Reaktionen freigesetzt. Durch die ACE-Hemmer-bedingte Hemmung der Bradykinin-Degradierung kann eine anaphylaktische Reaktion theoretisch verstärkt werden [50, 51, 53].
- **Lebensalter:** Im Vergleich mit Kindern oder jüngeren Erwachsenen haben ältere Patienten (>60 Jahre) meist schwerere systemische Stichreaktionen [1].

1.6 Diagnostik der Bienen-/Wespengiftallergie

Nachfolgend wird die allergologische Stufendiagnostik der Bienen-/Wespengiftallergie beschrieben, die in ähnlicher Weise auch bei anderen Allergiekrankheiten durchgeführt wird [2, 16]. Sie umfasst folgende Schritte:

![Abb. 2: 4-Stufendiagnostik der Bienen-/Wespengiftallergie](image)

1.6.1 Anamnese und Symptome

Eine detaillierte Anamnese ist erster und wichtigster Baustein der Diagnostik. Es sollten dabei Informationen über den Zeitpunkt, das Zeitintervall (zwischen Stich und Reaktion), die Anzahl der Stiche, das Insekt (welches?), frühere Stichreaktionen und die Art der Symptome erfragt werden. Auch mögliche Risikofaktoren (wie oben beschrieben) oder sonstige Erkrankungen sind zu erfragen [1, 2, 54].
Besonders wichtig ist die Differenzierung zwischen Lokalreaktion und Anaphylaxie [11]. Außerdem sollte an die Möglichkeit nichtallergischer, toxischer oder psychogener Reaktionen gedacht werden [54]. Anaphylaktische Reaktionen können in die Grade I-IV nach Ring und Messmer eingeteilt werden (Tab. 3) [55]. Es müssen nicht immer alle Symptome, die in der Tabelle aufgelistet sind, gleichzeitig vorhanden sein. Gerade Hautveränderungen fehlen oft bei schweren Lebensbedrohlichen Reaktionen [38].

Tab. 3: Schweregrad anaphylaktischer Reaktionen*

<table>
<thead>
<tr>
<th>Grad</th>
<th>Haut</th>
<th>GI-Trakt</th>
<th>Respirationstrakt</th>
<th>Herz-/Kreislauf-System</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Juckreiz, Urtikaria, Flush</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>II</td>
<td>Grad-I-Symptome möglich</td>
<td>Nausea, geringe Bauschsschmerzen, Engegefühl, Dyspnoe</td>
<td>Bronchospasmus, Zyanose (Asthmaanfall), Tachykardie, Hypotonie, Schwindel</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Grad-I-Symptome möglich</td>
<td>Aspirationsstörungen, Verlust der sphinkterkontrollen (Defäkation, Miktion)</td>
<td>Bronchospasmus, Zyanose (Asthmaanfall), Schock, Bewusstlosigkeit</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Grad-I-Symptome möglich</td>
<td>Grad-I bis -III Symptome möglich, Atemstillstand</td>
<td>Herz-/Kreislaufstillstand</td>
<td></td>
</tr>
</tbody>
</table>

*gering modifizierte Einteilung nach Ring und Messmer [55]

1.6.2 Hauttestung

Die Hauttests sollten möglichst in einem Zeitraum von zwei (besser vier) Wochen bis maximal einem Jahr nach dem Stichereignis erfolgen [1, 16, 56].

Der Pricktest wird üblicherweise an der Volarseite der Unterarme durchgeführt [1]. Es wird ein Tropfen der Testlösung auf die Haut aufgetragen und danach mit Hilfe einer speziellen Pricktest-Lanzette durch den Tropfen hindurch die Hautoberflächlich angestochen. Folgende drei Konzentrationen der Testlösungen (Bienen- und Wespengift) werden verwendet:

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>1 µg/ml</th>
<th>10 µg/ml</th>
<th>100 µg/ml</th>
</tr>
</thead>
</table>

Nach 20 Minuten werden die Teststellen am Unterarm beurteilt und mit einer Leerprobe (physiologische 0,9 % NaCl-Lösung) und einer Positivkontrolle (Histaminlösung) ver-
glichen. Sind eindeutige Zeichen einer Sofortreaktion zu erkennen (Quaddelbildung mit Erythem) wird der Test als positiv gewertet [2, 16, 57].

Beim Intrakutantest werden die Testlösungen nicht auf die Haut getropft, sondern mittels einer 1 ml-Tuberkulinspritze und Injektionsnadel direkt intrakutan appliziert. Folgende Bienen- und Wespengiftkonzentrationen kommen dabei zum Einsatz:

\[
\begin{array}{cccc}
0,001 \text{ µg/ml} & 0,01 \text{ µg/ml} & 0,1 \text{ µg/ml} & 1 \text{ µg/ml} \\
\end{array}
\]

Auch diese Tests werden nach 20 Minuten abgelesen und mit einer Leerlösung und der Positivkontrolle verglichen [1, 2, 16]. Im Vergleich zum Pricktest ist der Intrakutantest deutlich sensitiver [1].

Die Hauttests sollten immer in Notfallbereitschaft durchgeführt werden, weil es in seltenen Fällen auch durch diese minimale Giftexposition zu einer anaphylaktischen Reaktion kommen kann [2].

1.6.3 Labortestung

Nach schweren anaphylaktischen Stichreaktionen (Grad III und IV) gehört die Bestimmung der basalen Tryptasekonzentration inzwischen ebenfalls zur Standarddiagnostik [1]. Die Tryptase ist ein Enzym, das nur in Mastzellen und basophilen Granulozyten vorkommt. Es kann kurzfristig durch akute Freisetzung bei allergischen oder nicht-allergischen Überempfindlichkeitsreaktionen (z. B. durch Insektenstiche, Medikamente) im Serum in erhöhter Konzentration nachweisbar sein. Kontinuierlich (= Basalwert) ist die Tryptase bei systemischer Mastozytose oder anderen hämatologischen Erkrankungen erhöht [56]. Erhöhte basale Tryptasewerte (mit oder ohne Mastozytose) sind ein Risikofaktor für schwere Reaktionen nach Bienen-/Wespenstichen [35, 48, 60].

Weitere In-vitro-Testverfahren wie der Basophilenaaktivierungstest (BAT), der Histamin- und der Leukotrienfreisetzungstest sind speziellen Fragestellungen vorbehalten.
Sie werden bei fehlendem Nachweis spezifischer IgE-Antikörper und nicht eindeutigem Hauttestergebnis durchgeführt [1, 61]. Mit ihnen kann ebenfalls eine IgE-vermittelte Sensibilisierung nachgewiesen werden [62-65].

Bei Doppelpositivität gegenüber Bienen- und Wespengift ist eine Immunoblot-Inhibition und die Messung von IgE-Antikörper gegen CCS zur Unterscheidung zwischen Kreuzreaktionen oder echter Doppelsensibilisierung hilfreich [41, 43].

1.6.4 Provokationstest

1.6.5 Bewertung der Ergebnisse

Mit den Hauttests und den In-vitro-Testsystemen kann zunächst nur eine IgE-vermittelte Sensibilisierung nachgewiesen werden. Denn 15 – 25 % der gesunden Bevölkerung weisen eine Sensibilisierung (Hauttest und/oder Labortest positiv) gegen eines der Insektengifte auf, ohne dass diese Personen jemals relevante Allergiesymptome gezeigt haben [69, 70]. Bei Kindern beträgt diese Quote bis zu 50 %. Nur in Zusammenschau von positiver Diagnostik und Anamnese, das heißt einer anaphylaktischen Stichreaktion, kann eine Bienen-/Wespengiftallergie diagnostiziert werden. Andererseits können negative Testergebnisse in Haut- und/oder Labortest trotz vorhandener Allergie vorkommen [71]. Die Schwellenwertkonzentration im Hauttest und die Höhe des spezifischen IgE’s korrelieren nicht mit dem Schweregrad der Stichreaktionen [1, 2, 72]. Am Ende der Diagnostik muss entscheiden werden, ob in Zusammenschau von Anamnese und Testbefunden die Indikation zu einer SIT gegeben ist oder nicht [54].

1.7 Therapie der Bienen-/Wespengiftallergie

1.7.1 Allgemeinmaßnahmen und Notfallset

Zuerst steht die ausführliche Information des Patienten im Vordergrund. Diese umfasst Verhaltensregeln bei plötzlichem Kontakt mit Bienen oder Wespen, gegebenenfalls eine
Berufsberatung, Empfehlung zur Aufgabe des Imkerhobbys und das Verhalten nach einem erneuten Bienen-/Wespenstich. Insbesondere wird dem Patienten ein sogenanntes Notfallset (enthält Medikamente zur Selbstbehandlung) inklusive einem detaillierten Notfallplan zur richtigen Anwendung verordnet (Tab. 4) [16].

Tab. 4: Notfallset

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Set für Erwachsene + Kinder > 30 kg</th>
<th>Set für Kinder < 30 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antihistaminikum</td>
<td>Fenistil Tropfen 20 ml*</td>
<td>Fenestil Tropfen 20 ml*</td>
</tr>
<tr>
<td>Kortikosteroid</td>
<td>Celestamine N 0,5 liquidum 30 ml*</td>
<td>Celestamine N 0,5 liquidum 30 ml*</td>
</tr>
<tr>
<td>Adrenalin-Injektor</td>
<td>Anapen Autoinjektor 0,3 mg*</td>
<td>Anapen-Junior Autoinjektor 0,15 mg*</td>
</tr>
</tbody>
</table>

* Markenname beispielhaft

1.7.2 **Ärztliche Notfalltherapie**

Lokalreaktionen nach einem Bienen-/Wespenstich können durch Kühlung und Hochlagerung sowie mit einem oralen Antihistaminikum und Glukokortikoid behandelt werden [74].

Bei anaphylaktischen Reaktionen richtet sich die Therapie nach dem Schweregrad. Neben den Allgemeinmaßnahmen (Lagerung, Überwachung der Vitalfunktionen) kann dies von einer intravenösen Antihistaminika- und Glukokortikoidgabe bis zur kardio-pulmonalen Reanimation reichen (Tab. 5). Bei systemischen allergischen Reaktionen sollte der Patient hospitalisiert und für mindestens 24 Stunden überwacht werden [75].
Einleitung

Tab. 5: Notfallmaßnahmen bei Anaphylaxie je nach Schweregrad [76]

<table>
<thead>
<tr>
<th>Schweregrad*</th>
<th>Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Basistherapie: Antihistaminika (i.v.) Glukokortikoide (i.v.) Sauerstoffzufuhr</td>
</tr>
<tr>
<td></td>
<td>Vorwiegend kardiovaskulär: + Adrenalin (i.m.) + Volumen</td>
</tr>
<tr>
<td>II</td>
<td>Basistherapie Vorwiegend Atemwege: + Adrenalin (inhaletiv/i.m.) + β2-Agonisten (inhaletiv/i.v.)</td>
</tr>
<tr>
<td>III</td>
<td>Adrenalin (i.m./i.v.) + Kolloid + Basistherapie</td>
</tr>
<tr>
<td>IV</td>
<td>Kardiopulmonale Reanimation + Adrenalin (i.v.) + Basistherapie</td>
</tr>
</tbody>
</table>

*zur Einteilung der Schweregrade siehe Tab. 3 „Schweregrad anaphylaktischer Reaktionen“

1.7.3 Spezifische Immuntherapie (SIT)

und der Injektionsabstand auf vier bis sechs Wochen gesteigert. Die SIT wird dann mindestens drei bis fünf Jahre durchgeführt [2].

Einen allgemein akzeptierten, standardisierten Parameter zur Überprüfung des Therapieerfolges gibt es derzeit nicht. Die Entscheidung zur Beendigung der Therapie muss individuell getroffen werden [78]. Für Patienten mit erhöhter basaler Serumtryptasekonzentration oder manifester Mastozytose ist nach derzeitigem Kenntnisstand aufgrund des erhöhten Risikos für schwere, lebensbedrohliche, anaphylaktische Reaktionen eine dauerhafte, gegebenenfalls lebenslange SIT zu empfehlen [49].
2 Fragestellung

Diese Studie untersuchte Merkmale von Patienten mit Bienen- oder Wespengiftallergie, die Wirksamkeit einer SIT mit Bienen-/Wespengift und die Sicherheit, diese Therapie nach drei bis fünf Jahren zu beenden. Weiterhin wurden die Patientenkollektive mit toleriertem und nicht toleriertem Feldstich verglichen. Folgende konkrete Fragen sollten beantwortet werden:

- **Merkmale:** Welche signifikanten Unterschiede finden sich zwischen Wespen- und Bienengiftallergikern?
- **Wirksamkeit:** Wie häufig kommt es nach Beendigung der SIT (Dauer mindestens drei Jahre) durch Feldstiche erneut zu systemischen anaphylaktischen Reaktionen (alle Schweregrade)?
- **Sicherheit:** Kommt es nach Beginn oder nach Beendigung der SIT (Dauer mindestens drei Jahre) durch Feldstiche erneut zu bedrohlichen (Anaphylaxie ≥ Grad III) oder sogar tödlichen Stichreaktionen?
- **Vergleich der Patienten mit toleriertem und nicht toleriertem Feldstich:** Wie unterschieden sich Patienten mit erfolgreicher SIT (mindestens ein tolerierter Feldstich) von Therapieversagern (trotz SIT nach Feldstich erneut Anaphylaxiesymptome)?
3 Material und Methoden

3.1 Patientenkollektiv

3.2 Allergenprodukte für die SIT

3.3 Datenerfassung

3.3.1 Allgemeines Vorgehen
Die Datenerfassung erfolgte in zwei Schritten.
2. Im zweiten Schritt wurden die Patienten telefonisch befragt. War eine telefonische Kontaktaufnahme nicht möglich, so wurde mit Hilfe eines Fragebogens (siehe Anhang, 8.1 „Fragebogen“) versucht an die entsprechenden Informationen zu gelangen. Diese Daten bildeten die Grundlage für die Datengruppe „Nachbeobachtung“. Tabelle 6 zeigt einen Überblick über alle Datengruppen und Variablen, die für jeden Patienten erfasst wurden.
Tab. 6: Datengruppen und Variablen

<table>
<thead>
<tr>
<th>Allgemeine Anamnesedaten</th>
<th>Diagnostik</th>
<th>Therapiedaten</th>
<th>Nachbeobachtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>Prick-Biene (1)</td>
<td>Diagnose</td>
<td>Kontaktaufnahme</td>
</tr>
<tr>
<td>Geburtstag</td>
<td>IC-Biene (1)</td>
<td>SIT-Dauer*</td>
<td>Feldstichanzahl</td>
</tr>
<tr>
<td>SIT-Beginn*</td>
<td>Prick-Wespe (1)</td>
<td>Verlaufstest*</td>
<td>Zeitpunkt*</td>
</tr>
<tr>
<td>Alter</td>
<td>IC-Wespe (1)</td>
<td>IgE-Biene (2)</td>
<td>Inekt (2)</td>
</tr>
<tr>
<td>Latenzzeit*</td>
<td>IgE-Biene (1)</td>
<td>IgE-Wespe (2)</td>
<td>Stichreaktion (2)</td>
</tr>
<tr>
<td>Insekt (1)</td>
<td>IgE-Wespe (1)</td>
<td>Prick-Biene (2)</td>
<td>Notfallset</td>
</tr>
<tr>
<td>Stichreaktion (1)</td>
<td>BAT</td>
<td>IC-Biene (2)</td>
<td>Arztkontakt</td>
</tr>
<tr>
<td>Atopie</td>
<td>Tryptase</td>
<td>Prick-Wespe (2)</td>
<td>Überwachung</td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td>IC-Wespe (2)</td>
<td></td>
</tr>
<tr>
<td>Mastozytose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stichereignisse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Zeitangabe (Zeitpunkt bzw. –intervall)

3.3.2 Datengruppe „Allgemeine Anamnesedaten“

3.3.2.1 Geburtstag, SIT-Beginn, Alter

3.3.2.2 Latenzzeit, Insekt (1)

Tab. 7: „Latenzzeit“

<table>
<thead>
<tr>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 Jahr</td>
</tr>
<tr>
<td>1 – 5 Jahre</td>
</tr>
<tr>
<td>6 – 10 Jahre</td>
</tr>
<tr>
<td>> 10 Jahre</td>
</tr>
<tr>
<td>unbekannt</td>
</tr>
</tbody>
</table>
3.3.2.3 Stichreaktion (1)

Die Variable „Stichreaktion (1)“ drückt den Schweregrad der allergischen Reaktion beim Indikatorstich aus. Einzelheiten zur Einteilung in die Anaphylaxiegrade I-IV sind in der Tabelle 3 „Schweregrad anaphylaktischer Reaktionen“ genannt.

3.3.2.4 Atopie

3.3.2.5 Asthma

3.3.2.6 Mastozytose

3.3.2.7 *Stichereignisse*

Die Gesamtzahl der Stichereignisse vor SIT (unabhängig von der Stichreaktion) wurde in drei Klassen eingeteilt (Tab. 8). Wurde ein Patient von mehreren Insekten zur gleichen Zeit gestochen, so zählte dies nur als ein Stichereignis. Eine Differenzierung zwischen den einzelnen Insektenarten wurde dabei nicht vorgenommen.

Tab. 8: „Stichereignisse“

<table>
<thead>
<tr>
<th>Anzahl der Stichereignisse vor SIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5</td>
</tr>
<tr>
<td>6-10</td>
</tr>
<tr>
<td>>10</td>
</tr>
<tr>
<td>unbekannt</td>
</tr>
</tbody>
</table>

3.3.3 *Datengruppe „Diagnostik“*

Diese Datengruppe beinhaltet die In-vivo- und In-vitro-Testergebnisse, die zur Diagnostik vor der Therapie durchgeführt wurden.

3.3.3.1 *Prick-Biene (1), IC-Biene (1) und Prick-Wespe (1), IC-Wespe (1)*

Der Pricktest wurde mit den Testlösungen „ALK-Prick SQ“ für Bienen-/Wespengift von ALK-ABELLO® durchgeführt. Für den Intrakutantest verwendete man „ALK-lyophilisiert SQ“, ebenfalls von ALK-ABELLO®. Die Durchführung und Interpretation dieser Tests ist in nationalen und internationalen Leitlinien genau standardisiert (siehe Punkt 1.6.2 „Hauttestung“). Von diagnostischer Bedeutung ist dabei die Schwellenwertkonzentration, das heißt ab welcher Giftkonzentration eine positive Hautreaktion nachweisbar ist (Tab. 9).

Tab. 9: Schwellenwertkonzentrationen

<table>
<thead>
<tr>
<th>Pricktest (Prick-Biene, Prick-Wespe)</th>
<th>Intrakutantest (IC-Biene, IC-Wespe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µg/ml</td>
<td>0,001 µg/ml</td>
</tr>
<tr>
<td>10 µg/ml</td>
<td>0,01 µg/ml</td>
</tr>
<tr>
<td>100 µg/ml</td>
<td>0,1 µg/ml</td>
</tr>
<tr>
<td></td>
<td>1 µg/ml</td>
</tr>
</tbody>
</table>

3.3.3.2 *IgE-Biene (1) und IgE-Wespe (1)*

Tab. 10: Einteilung der spezifischen IgE-Werte

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Messwert der spezifischen IgE-Konzentration nach der UniCAP®- Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><0,35 kU/l</td>
</tr>
<tr>
<td>1</td>
<td>0,35 kU/l - 0,70 kU/l</td>
</tr>
<tr>
<td>2</td>
<td>0,70 kU/l - 3,50 kU/l</td>
</tr>
<tr>
<td>3</td>
<td>3,50 kU/l - 17,50 kU/l</td>
</tr>
<tr>
<td>4</td>
<td>17,50 kU/l - 50,00 kU/l</td>
</tr>
<tr>
<td>5</td>
<td>50,00 kU/l - 100,00 kU/l</td>
</tr>
<tr>
<td>6</td>
<td>>100,00 kU/l</td>
</tr>
</tbody>
</table>

3.3.3.3 BAT (Basophilen-Aktivierungstest)

Der Basophilen-Aktivierungstest ist eine Zusatzuntersuchung, die bei unklaren oder divergierenden Hauttestergebnissen und spezifischen IgE-Bestimmung eingesetzt werden kann. Als Testmethode kam der „Basotest“ von GLYCOTOPE® Biotechnology (früher ORPEGEN® Pharma) zum Einsatz. Die Testergebnisse waren „Biene positiv“, „Wespe positiv“, „Doppel positiv“ oder „keine positive Reaktion“.

3.3.3.4 Tryptase

3.3.4 Datengruppe „Therapiedaten“

3.3.4.1 Diagnose

In Zusammenschau von Anamnese und Untersuchungsergebnissen konnten fünf mögliche Diagnosen gestellt werden (Tab. 11).

Tab. 11: „Diagnose“

<table>
<thead>
<tr>
<th>Attribute der Variablen „Diagnose“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
</tr>
<tr>
<td>Bienengiftallergie mit Sensibilisierung gegen Wespengift</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
</tr>
<tr>
<td>Wespengiftallergie mit Sensibilisierung gegen Bienengift</td>
</tr>
<tr>
<td>Bienen- und Wespengiftallergie (= „Doppelallergie“)</td>
</tr>
</tbody>
</table>
3.3.4.2 SIT-Dauer und Verlaufstest

3.3.4.3 IgE-, Prick-, IC-Biene (2) und IgE-, Prick-, IC-Wespe (2)

Prick-, Intrakutan-Test und spezifische IgE-Bestimmung wurden während der SIT wiederholt. Der erste sogenannte Verlaufstest erfolgte in der Regel nach 3 Jahren. Bei Fortführung der SIT wiederholten sich diese Tests alle ein oder zwei Jahre. Der letzte dokumentierte Verlaufstest findet sich in den Variablen IgE-Biene (2), Prick-Biene (2), IC-Biene (2), IgE-Wespe (2), Prick-Wespe (2) und IC-Wespe (2) wieder. Die Klassifizierung der IgE-Werte erfolgte wie in Tabelle 10 „Einteilung der spezifischen IgE-Werte“, die Hauttestung wie in Tabelle 9 „Schwellenwertkonzentrationen“.

3.3.5 Datengruppe „Nachbeobachtung“

Für die Nachbeobachtung wurden die Patienten zwischen Mitte 2007 bis Ende 2008 telefonisch oder schriftlich kontaktiert. Das Hauptaugenmerk der Befragung lag auf Stichereignissen während und nach der SIT. Diese wurden einzeln erfasst und ausführlich dokumentiert. Folgende Fragen waren dabei von besonderer Wichtigkeit:

- Wann hat das Stichereignis stattgefunden?
- Haben sie das Insekt erkannt? Wenn ja, welches?
- Wie war die Reaktion? Welche Symptome traten auf?
- Haben sie ihr Notfallset benutzt? Wenn ja, was?
- Haben sie einen Arzt aufgesucht oder kontaktiert (Hausarzt, Klinikarzt, oder Notarzt)?
- Sind sie daraufhin ambulant überwacht oder stationär aufgenommen worden?

Im Rahmen des Telefongesprächs wurden die Patienten unter anderem auch noch einmal bezüglich ihres Notfallsets beraten und entsprechende Fragen beantwortet. Falls nötig wurden bisher fehlende allgemeine Anamnesedaten vervollständigt. War ein Tele-
fonkontakt nicht möglich, so wurde versucht mit einem postalisch zugestelltem Fragebogen (siehe Anhang, 8.1 „Fragebogen“) an die entsprechenden Informationen zu gelangen.

3.3.5.1 **Kontaktaufnahme**

Mit dieser Variablen wurde die genaue Form der Datenerhebung der Datengruppe „Nachbeobachtung“ festgehalten: 1. Telefonisch, 2. Schriftlich (mittels Fragebogen), 3. „nicht möglich“.

3.3.5.2 **Feldstichanzahl**

Diese Variable beschreibt die genaue Anzahl der Feldstiche während und nach SIT.

3.3.5.3 **Zeitpunkt, Insek, Stichreaktion, Notfallset, Arztkontakt und Überwachung**

Tab. 12: „Feldstich“

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Insek (2)</th>
<th>Stichreaktion (2)</th>
<th>Notfallset</th>
<th>Arztkontakt</th>
<th>Überwachung</th>
</tr>
</thead>
<tbody>
<tr>
<td>während SIT</td>
<td>Biene</td>
<td>normal</td>
<td>Nicht angewendet</td>
<td>nein</td>
<td>keine</td>
</tr>
<tr>
<td>< 1 Jahr nach SIT</td>
<td>Hummel</td>
<td>Lokalreaktion ↑</td>
<td>Glukokortikoide +/-</td>
<td>Hausarzt</td>
<td>Ambulant (mind. 1 h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antihistaminikum</td>
<td>oder Klini-</td>
<td></td>
</tr>
<tr>
<td>1 – 5 Jahre nach SIT</td>
<td>Wespe</td>
<td>Anaphylaxie I</td>
<td>Adrenalin-Injektor (+/- Glukokortikoide, Antihistaminikum)</td>
<td>Notarzt</td>
<td>Stationär (mind. 24 h)</td>
</tr>
<tr>
<td>6 – 10 Jahre nach SIT</td>
<td>Hornisse</td>
<td>Anaphylaxie II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 10 Jahre nach SIT</td>
<td>„nicht identifiziert“</td>
<td>Anaphylaxie III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 Definition der Vergleichsgruppen

3.4.1 Bienengiftallergiker vs. Wespengiftallergiker
Zur Gruppe der Bienengiftallergiker gehörten die Patienten, die nur eine Bienengiftallergie und keine Allergie gegen Wespengift hatten, zusätzlich die Patienten mit Bienengiftallergie und einer Sensibilisierung gegen Wespengift ohne klinische Relevanz, das heißt es gab kein Wespenstichereignis mit Anaphylaxiesymptomen.
Zur Gruppe der Wespengiftallergiker gehörten alle Patienten, die auf Wespen- oder Hornissenstiche allergisch reagierten; eine gleichzeitige bisher klinisch irrelevante Sensibilisierung gegen Bienengift war möglich. „Doppelallergiker“ (= Patienten mit Bienengiftallergie) wurden bei diesem Vergleich ausgeschlossen.

3.4.2 „Erfolgreiche Therapie“ vs. „Therapieversager“
Zur Gruppe „Erfolgreiche Therapie“ gehörten alle Patienten mit mindestens einem vertragenen Feldstich (= normale Stichreaktion oder Lokalreaktion ↑) nach SIT-Beginn.
Zur Gruppe der „Therapieversager“ gehörten alle Patienten, die nach einem Feldstich erneut mit anaphylaktischen Symptomen reagierten.

3.5 Statistische Methoden
Die statistischen Methoden sind in Tabelle 13 zusammengefasst und werden nachfolgend ausführlicher beschrieben.
Tab. 13: Statistische Berechnungen

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Methoden</th>
<th>Variablen</th>
<th>Skalenniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppenvergleich: Bienen- und Wespen-giftallergiker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-Test für 2 unabhängige Stichproben</td>
<td>Alter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney U-Test</td>
<td>Stichreaktion (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stichereignisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prick-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prick-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IgE-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IgE-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latenzzeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIT-Dauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-Quadrat-Test nach Pearson</td>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atopie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirksamkeit und Sicherheit der SIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prozentwertberechnung</td>
<td>Stichreaktion (2)</td>
<td></td>
<td>ordinal</td>
</tr>
<tr>
<td>Gruppenvergleich: „erfolgreiche Therapie“ und „Therapieversager“</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-Test für 2 unabhängige Stichproben</td>
<td>Alter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney U-Test</td>
<td>Stichreaktion (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stichereignisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prick-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prick-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IgE-Biene/Wespe (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IgE-Biene/Wespe (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latenzzeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIT-Dauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-Quadrat-Test nach Pearson</td>
<td>Diagnose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atopie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exakter Test nach Fisher</td>
<td>Asthma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.1 T-Test für zwei unabhängige Stichproben (Signifikanztest)

Der T-Test ist eine mathematische Methode, mit der ein Unterschied zwischen den empirisch gefundenen Mittelwerten zweier Gruppen bewertet werden kann. Dieser Test liefert jedoch nur für Daten mit metrischem Skalenniveau zuverlässige Ergebnisse. Der Testablauf gestaltete sich wie folgt [82]:

a) Aufstellen der Nullhypothese: Die Mittelwerte der Variablen unterscheiden sich in beiden Stichproben nicht (das heißt kein signifikanter Unterschied).

Aufstellen der Alternativhypothese: Die Mittelwerte der Variablen unterscheiden sich in beiden Stichproben signifikant.
b) Festlegung der Irrtumswahrscheinlichkeit (Signifikanzniveau) \(\alpha \):

\[
\alpha^* = 5\% = 0,05
\]

*Anmerkung: In dieser Untersuchung immer 5 %

c) Überprüfen der Voraussetzungen:

- Unabhängigkeit der Stichproben
- Daten mit metrischem Skalenniveau
- Normalverteilung des zu untersuchenden Merkmals
- Homogenität der Varianzen (Levene-Test), sonst modifizierte Berechnung nach Welch [83]

d) Berechnung des Mittelwertes:

\[
\bar{x}_1 = \frac{1}{n_1} \sum_{i=0}^{n_1} x_{i1}
\]

\[
\bar{x}_2 = \frac{1}{n_2} \sum_{i=0}^{n_2} x_{i2}
\]

*Anmerkung: \(\bar{x}_{1/2} \) Mittelwert der Stichprobe 1 bzw. 2

n_{1/2} Umfang der Stichprobe 1 bzw. 2

e) Berechnung der Varianz:

\[
\hat{\sigma}_1^2 = \frac{\sum_{i=1}^{n_1} (x_{i1} - \bar{x}_1)^2}{(n_1-1)}
\]

\[
\hat{\sigma}_2^2 = \frac{\sum_{i=1}^{n_2} (x_{i2} - \bar{x}_2)^2}{(n_2-1)}
\]

*Anmerkung: \(\hat{\sigma}_1^2 \) Varianz der Stichprobe 1

\(\hat{\sigma}_2^2 \) Varianz der Stichprobe 2

f) Berechnung der Standardabweichung (SD):

\[
\hat{\sigma}_1 = \sqrt{\hat{\sigma}_1^2}
\]

\[
\hat{\sigma}_2 = \sqrt{\hat{\sigma}_2^2}
\]

*Anmerkung: \(\hat{\sigma}_1 \) Standardabweichung der Stichprobe 1

\(\hat{\sigma}_2 \) Standardabweichung der Stichprobe 2
g) Berechnung des Standardfehlers vom Mittelwert

Formel: \[\hat{\sigma}(\bar{x}_1) = \frac{\tilde{\sigma}_1}{\sqrt{n_1}} \]
\[\hat{\sigma}(\bar{x}_2) = \frac{\tilde{\sigma}_2}{\sqrt{n_2}} \]

Anmerkung: \(\hat{\sigma}(\bar{x}_1) \) Standardfehler des Mittelwertes (Stichprobe 1)
\(\hat{\sigma}(\bar{x}_2) \) Standardfehler des Mittelwertes (Stichprobe 2)

h) Berechnung des Standardfehlers der Differenz

Formel:
\[\hat{\sigma} (\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{(n_1-1) \times \hat{\sigma}_1^2 + (n_2-1) \times \hat{\sigma}_2^2}{(n_1-1)+(n_2-1)}} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \]

i) Berechnung der Prüfgröße \(T \):

Formel: \[T = \frac{\bar{x}_1 - \bar{x}_2}{\hat{\sigma} (\bar{x}_1 - \bar{x}_2)} \]

j) Berechnung der Freiheitsgrade:

Formel: \[df = n_1 + n_2 - 2 \]

Anmerkung: \(n_1+n_2 \geq 50 \) annähernd normalverteilt

k) Ermittlung des Signifikanzwertes aus der Normalverteilungstabelle bzw. T-Tabelle.

l) Bewertung der Ergebnisse:

- Signifikanz vom T-Wert \(\geq \alpha \):
 Die Nullhypothese kann nicht abgelehnt werden.

- Signifikanz vom T-Wert \(< \alpha \):
 Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

3.5.2 *Mann-Whitney U-Test (Signifikanztest)*

Der Mann-Whitney-U-Test überprüft, ob sich die mittleren Ränge von zwei unabhängigen Stichproben signifikant unterscheiden. Das Verfahren kann für Daten mit Ordinalskaletenniveau verwendet werden [84]. Der Testablauf gestaltet sich wie folgt [82]:

25
a) Aufstellen der Nullhypothese: Zwei Stichproben, die verglichen werden sollen, stammen aus einer identischen Verteilung (das heißt kein signifikanter Unterschied).
Aufstellen der Alternativhypothese: Die Verteilungen der beiden Stichproben unterscheiden sich durch die Lage (das heißt es besteht ein signifikanter Unterschied).

b) Festlegung der Irrtumswahrscheinlichkeit (Signifikanzniveau) \(\alpha \):
\[
\alpha^* = 5\% = 0.05
\]
*Anmerkung: In dieser Untersuchung immer 5 %

c) Überprüfen der Voraussetzungen:
- Unabhängigkeit der Stichproben
- Zielgröße mit mindestens Ordinalskaenniveau
- Stetige Verteilung, aber keine Gaußverteilung notwendig

d) Rangsummenbildung:
- Es liegen zwei Stichproben vor:
\[
x_i \text{ und } y_i
\]
*Anmerkung: x,y…… Gruppenvariable
i……… Merkmalsausprägung (= Testvariable)
- Alle \(x_i \) und \(y_i \) Werte werden in eine gemeinsame Rangfolge gebracht. Sind alle Werte (= Merkmalsausprägungen) unterschiedlich, bezeichnet man den Indexwert als Rang. Tritt ein Wert wiederholt nach gleichen Beobachtungen auf (Bindungen oder ties), so ordnet man allen diesen Werten den Durchschnitt der entsprechenden Rangzahlen zu.
- Zu jeder Rangzahl wird vermerkt, ob der Rangwert dem sie zugeordnet ist, aus Gruppe x oder Gruppe y stammt.
- Danach wird die Summe der Rangwerte aus Gruppe x (= \(R_x \)) und die Summe der Rangwerte aus Gruppe y (= \(R_y \)) gebildet.
e) Berechnung des Mann-Whitney-U:

Formel:
\[
U_1 = n_1 \times n_2 + \frac{n_1(n_1+1)}{2} - R_x
\]
\[
U_2 = n_1 \times n_2 + \frac{n_2(n_2+1)}{2} - R_y
\]
\[
Mann-Whitney - U = \min[U_1; U_2]
\]

Anmerkung: \(n_1\) Anzahl der Rangwerte in Gruppe x
\(n_2\) Anzahl der Rangwerte in Gruppe y

f) Ermittlung des Signifikanzwertes:

- Bei kleinen Stichproben: aus Statistiktafeln.
- Bei großen Stichproben: Normalverteilungsapproximation.

Prinzip: Berechnung des Z-Wertes zur Auswertung über die Standardnormalverteilung.

Formel:
\[
Z = \frac{U - \mu_U}{\sigma_U}
\]
\[
\mu_U = \frac{n_1 \times n_2}{2}
\]
\[
\sigma_U = \sqrt{\frac{n_1 \times n_2 \times (n_1+n_2+1)}{12}} \quad \text{(ohne Bindungen)}
\]
\[
\sigma_U = \sqrt{\frac{n_1 \times n_2}{n \times (n-1)}} \times \left(\frac{n^3-n}{12} - \sum_{i=1}^{k} \frac{t_i^3-t_i}{12} \right) \quad \text{(mit Bindungen)}
\]

Anmerkung: \(U\)… Mann-Whitney-U
\(n\)… Gesamtzahl der Messwerte (= \(n_1+n_2\))
\(k\)… Anzahl der Bindungen
\(t_i\)… Anzahl der Werte innerhalb der \(i\)-ten Bindung

g) Bewertung der Ergebnisse:

- Signifikanzwert \(\geq \alpha\):
 Die Nullhypothese kann nicht abgelehnt werden.
• Signifikanzwert < \(\alpha \):

Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

3.5.3 Chi-Quadrat-Tests (Signifikanztest)

3.5.3.1 Chi-Quadrat-Test nach Pearson

Mit diesem Test nach Pearson wird überprüft, ob die in einer Stichprobe beobachtete Häufigkeitsverteilung, über die Zellen einer Kreuztabelle mit der Hypothese der Unabhängigkeit von Zeilen- und Spaltenvariablen, in ihrer Grundgesamtheit "verträglich" ist. Nachfolgend der Testablauf [82, 85]:

a) Aufstellen der Nullhypothese: Es besteht Unabhängigkeit zwischen den Variablen.

Aufstellen der Alternativhypothese: Es besteht eine Assoziation zwischen den Variablen.

b) Festlegung der Irrtumswahrscheinlichkeit (Signifikanzniveau) \(\alpha \):

\[\alpha^* = 5\% = 0,05 \]

*Anmerkung: In dieser Untersuchung immer 5 %

c) Erstellen der Kreuztabelle:

Tab. 14: Kreuztabelle (Beispielhaft mit den Variablen s und t)

<table>
<thead>
<tr>
<th>Merkmale (s/t)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(\ldots)</th>
<th>(s_j)</th>
<th>Randhäufigkeit von (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
<td>(\ldots)</td>
<td>(n_{1j})</td>
<td>(n_{1\cdot})</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(n_{21})</td>
<td>(n_{22})</td>
<td>(\ldots)</td>
<td>(n_{2j})</td>
<td>(n_{2\cdot})</td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(t_i)</td>
<td>(n_{i1})</td>
<td>(n_{i2})</td>
<td>(\ldots)</td>
<td>(n_{ij})</td>
<td>(n_{i\cdot})</td>
</tr>
<tr>
<td>Randhäufigkeit von (t)</td>
<td>(n_{\cdot1})</td>
<td>(n_{\cdot2})</td>
<td>(\ldots)</td>
<td>(n_{\cdot j})</td>
<td>(n_{\cdot \cdot} = n)</td>
</tr>
</tbody>
</table>

*Anmerkung: \(n_{ij} \) Häufigkeit der Merkmalskombination

\(n \) Gesamtzahl der Fälle
d) Berechnung der erwarteten Häufigkeitswerte (e_{ij}) aus der Randverteilung:

Formel:

$$ e_{ij} = \frac{n_i \times n_j}{n} $$

Tab. 15: Erwartete Werte (Beispielhaft)

<table>
<thead>
<tr>
<th>Merkmale (s/t)</th>
<th>s_1</th>
<th>s_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>e_{11}</td>
<td>e_{12}</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>e_{21}</td>
<td>e_{22}</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

* *wird in der Auswertung nicht dargestellt.*

Anmerkung: Die Gültigkeit des Chi-Quadrat-Tests ist nur gegeben, wenn $e_{ij} > 5$ für mindestens 80 % der Werte.

e) Berechnung des Chi-Quadrat-Wertes (χ^2):

Formel:

$$ \chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij}-e_{ij})^2}{e_{ij}} $$

f) Berechnung der Freiheitsgrade (df):

Formel:

$$ df = (i - 1) \times (j - 1) $$

g) Ermittlung des Signifikanzwertes aus standardisierten, statistischen Tabellen

h) Bewertung der Ergebnisse:

- Signifikanz vom Chi-Quadrat-Wert $\geq \alpha$:

 Die Nullhypothese kann nicht abgelehnt werden.

- Signifikanz vom Chi-Quadrat-Wert $< \alpha$:

 Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

i) Bestimmung der Assoziationsstärke bei Annahme der Alternativhypothese:

- PHI-Koeffizient berechnet sich mit Hilfe des Chi-Quadrat-Wertes. Er ist eine Maßzahl für die Stärke des Zusammenhangs.
Material und Methoden

Formel: \[\Phi = \sqrt{\frac{x^2}{n}} \]

Wichtig: Kann nur bei 2x2 Kreuztabellen verwendet werden. Nimmt Werte zwischen 0 (kein Zusammenhang) und max. 1 (perfekter Zusammenhang) an.

- Cramer's V berechnet sich ebenfalls mit Hilfe des Chi-Quadrat-Wertes.

Formel: \[V = \sqrt{\frac{x^2}{n \times (R-1)}} \]

Anmerkung: \(n \) ... Gesamtzahl der Fälle
\(R \) ... der kleinere der beiden Werte i und j

Wichtiges: Kann bei beliebig großen Kreuztabellen verwendet werden. Nimmt Werte zwischen 0 und 1 an.

Interpretation:
- 0,1 - 0,3 schwacher Zusammenhang
- 0,4 - 0,5 mittlerer Zusammenhang
- > 0,5 starker Zusammenhang

3.5.3.2 Exakter Test nach Fisher (= Fisher-Yates-Test)

Der exakte Test nach Fisher gehört ebenfalls zu den Chi-Quadrat-Tests. Mit ihm lässt sich eine Vierfelderverteilung überprüfen, auch wenn die erwarteten und beobachteten Häufigkeiten sehr klein sind (kleiner als 5) [82]. Der Testablauf gestaltete sich wie folgt [85]:

a) Aufstellen der Nullhypothese: Es besteht Unabhängigkeit zwischen den Variablen.
 Aufstellen der Alternativhypothese: Es besteht eine Assoziation zwischen den Variablen.

b) Festlegung der Irrtumswahrscheinlichkeit (Signifikanzniveau) \(\alpha \):

\[\alpha^* = 5 \% = 0,05 \]

* Anmerkung: In dieser Untersuchung immer 5 %
c) Erstellen der Kreuztabelle (Vierfelderverteilung):

Tab. 16: Vierfeldertabelle (Beispielhaft mit den Variablen s und t)

<table>
<thead>
<tr>
<th>Merkmale (s/t)</th>
<th>s_1</th>
<th>s_2</th>
<th>Randhäufigkeit von s</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>a</td>
<td>b</td>
<td>n_{ab}</td>
</tr>
<tr>
<td>t_2</td>
<td>c</td>
<td>d</td>
<td>n_{cd}</td>
</tr>
<tr>
<td>Randhäufigkeit von t</td>
<td>n_{ac}</td>
<td>n_{bd}</td>
<td>n_{abcd} = n</td>
</tr>
</tbody>
</table>

Anmerkung: a, b, c, d… Häufigkeit der Merkmalskombination
n… Gesamtzahl der Fälle

d) Berechnen der Wahrscheinlichkeitsverteilung für die Merkmalskombination a:

Formel: \[p(a) = \frac{(a+c)(b+d)}{n} \]

e) Berechnen der Wahrscheinlichkeit für „extremere“ Felderverteilungen. Die Randsummen bleiben dabei konstant:
 - z. B. Merkmalskombination b wird auf Null gesetzt.
 - Berechnung der „neuen“ Merkmalshäufigkeiten für a, c und d durch die konstanten Randsummen.
 - Berechnung der Wahrscheinlichkeit für diese „extreme“ Felderverteilung mit oben genannter Formel.

g) Bewertung der Ergebnisse:
 - Überschreitungswahrscheinlichkeit P \geq Irrtumswahrscheinlichkeit \alpha:
 Die Nullhypothese kann nicht abgelehnt werden.
 - Überschreitungswahrscheinlichkeit P < Irrtumswahrscheinlichkeit \alpha:
 Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.
3.5.4 Prozentwertberechnung

3.5.4.1 Berechnung der Wirksamkeit

Die Wirksamkeit der SIT errechnet sich aus der Patientenzahl mit vertragenen Feldstichen (= keine anaphylaktischen Symptome) und der Gesamtzahl aller Patienten mit Feldstichen:

\[
\text{Wirksamkeit (in Prozent)} = \frac{\text{Anzahl der Patienten mit „vertragenem“ Feldstich}}{\text{Anzahl aller Patienten mit Feldstich}} \times 100
\]

3.5.4.2 Berechnung der Sicherheit

Die Sicherheit der SIT errechnet sich aus der Patientenzahl mit Feldstichen ohne schwere Stichreaktion (= kein Anaphylaxiegrad III oder IV) und der Gesamtzahl aller Patienten mit Feldstichen:

\[
\text{Sicherheit (in Prozent)} = \frac{\text{Anzahl der Patienten mit Feldstich ohne lebensbedrohliche Reaktion}}{\text{Anzahl aller Patienten mit Feldstich}} \times 100
\]

3.6 Technische Hilfsmittel

Als technische Hilfsmittel wurden die Programme MICROSOFT EXCEL® 2007, MICROSOFT WORD® 2007 und Version 2010, sowie zur statistischen Auswertung SPSS® 15.0 von IBM® verwendet.
4 Ergebnisse

4.1 Allgemeine Übersicht

4.1.1 Datenerhebung

Für die besonders wichtigen Daten zum Krankheitsverlauf nach Beginn und Ende der SIT (die sogenannte Nachbeobachtung) konnten 616 Patienten direkt telefonisch befragt werden. 33 Patienten antworteten nur per Fragebogen. 30 Patienten konnten aus verschiedenen Gründen (unter anderem: unbekannt verzogen, gespeicherte Adressangaben falsch, aus anderen Gründen verstorben) nicht mehr befragt werden.
Diagr. 2: Datenerfassung

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Patientenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtanzahl</td>
<td>679</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>679</td>
</tr>
<tr>
<td>Geburtsstag</td>
<td>679</td>
</tr>
<tr>
<td>SIT-Beginn</td>
<td>679</td>
</tr>
<tr>
<td>Alter</td>
<td>679</td>
</tr>
<tr>
<td>Latenzzeit</td>
<td>676</td>
</tr>
<tr>
<td>Insekten (1)</td>
<td>427</td>
</tr>
<tr>
<td>Stichreaktion (1)</td>
<td>679</td>
</tr>
<tr>
<td>Atopie</td>
<td>610</td>
</tr>
<tr>
<td>Asthma</td>
<td>523</td>
</tr>
<tr>
<td>Mastozytose</td>
<td>90</td>
</tr>
<tr>
<td>Stichereignisse</td>
<td>506</td>
</tr>
<tr>
<td>Prick-Biene (1)</td>
<td>673</td>
</tr>
<tr>
<td>IC-Biene (1)</td>
<td>668</td>
</tr>
<tr>
<td>Prick-Wespe (1)</td>
<td>671</td>
</tr>
<tr>
<td>IC-Wespe (1)</td>
<td>660</td>
</tr>
<tr>
<td>IgE-Biene (1)</td>
<td>679</td>
</tr>
<tr>
<td>IgE-Wespe (1)</td>
<td>679</td>
</tr>
<tr>
<td>BAT</td>
<td>662</td>
</tr>
<tr>
<td>Tryptase</td>
<td>92</td>
</tr>
<tr>
<td>Diagnose</td>
<td>679</td>
</tr>
<tr>
<td>SIT-Dauer</td>
<td>679</td>
</tr>
<tr>
<td>Verlaufstest</td>
<td>642</td>
</tr>
<tr>
<td>IgE-Biene (2)</td>
<td>626</td>
</tr>
<tr>
<td>IgE-Wespe (2)</td>
<td>628</td>
</tr>
<tr>
<td>Stichreaktion (2)</td>
<td>625</td>
</tr>
<tr>
<td>Prick-Biene (2)</td>
<td>625</td>
</tr>
<tr>
<td>IC-Biene (2)</td>
<td>625</td>
</tr>
<tr>
<td>Prick-Wespe (2)</td>
<td>620</td>
</tr>
<tr>
<td>IC-Wespe (2)</td>
<td>621</td>
</tr>
<tr>
<td>Kontaktaufnahme</td>
<td>649</td>
</tr>
<tr>
<td>Pat. mit Feldstichen</td>
<td>358</td>
</tr>
<tr>
<td>Feldstichanzahl</td>
<td>358</td>
</tr>
<tr>
<td>Zeitpunkt</td>
<td>358</td>
</tr>
<tr>
<td>Insekten (2)</td>
<td>271</td>
</tr>
<tr>
<td>Stichreaktion (2)</td>
<td>358</td>
</tr>
<tr>
<td>Notfallset</td>
<td>358</td>
</tr>
<tr>
<td>Arztkontakt</td>
<td>358</td>
</tr>
<tr>
<td>Überwachung</td>
<td>358</td>
</tr>
</tbody>
</table>

Basiswert (= 100%) | Angaben vorhanden | unklar oder nicht erfasst
4.1.2 *Patientenkollektiv*

Insgesamt wurden Daten von 679 Patienten ausgewertet. Das Geschlechterverhältnis gestaltete sich dabei fast ausgeglichen, 328 weibliche (= 48,3 %) und 351 männliche (= 51,7 %) Patienten. Das Durchschnittsalter (bei SIT-Beginn) betrug 37,9 Jahre (SD ± 15,4), der jüngste war fünf Jahre und der älteste 81 Jahre alt.

Die meisten Patienten hatten eine Wespengiftallergie (74,7 %), knapp ein Viertel (23,1 %) eine Bienengiftallergie und 2,2 % waren sowohl gegen Bienen- als auch gegen Wespengift allergisch (Diagr. 3).

Diagr. 3: Diagnose

Der Schweregrad der anaphylaktischen Stichreaktion wurde entsprechend der Symptomkonstellation an den Hauptmanifestationsorganen Haut, Atemwege, Herz-Kreislaufsystem und Magen-Darmtrakt klassifiziert (siehe 1.6.1 „Anamnese und Symptome“).Diagramm 4 zeigt die Häufigkeitsverteilung der Schweregrade I bis IV.

Diagr. 4: Stichreaktion beim Indikatorstich (= „Stichreaktion (1)“)
Die Zeitspanne zwischen anaphylaktischer Stichreaktion und Beginn der SIT lag bei 76,7 % der Patienten unter einem Jahr (Diagr. 5).

Diagr. 5: Latenzzeit

Die Dauer der durchgeführten SIT betrug in 95,3 % der Fälle (bei 647 Patienten) zwischen drei und fünf Jahren (Diagr. 6). Bei drei Wespengiftallergikern entschied man sich zur Durchführung einer lebenslangen SIT.

Diagr. 6: Beendete SIT
Von den 649 befragten Patienten hatten seit Beginn der SIT 358 Personen mindestens einen Feldstich erlebt (Diagr. 7). Im Einzelnen waren dies 72 Bienengiftallergiker, 278 Wespengiftallergiker und acht Doppelallergiker.

Diagr. 7: Patienten mit Feldstichen

4.2 Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker

4.2.1 Geschlechterverteilung

Die Geschlechterverteilung innerhalb der beiden Vergleichsgruppen ist in Diagramm 8 dargestellt. Es zeigte sich dabei ein signifikanter Unterschied. Der Anteil männlicher Patienten ist bei Bienengiftallergikern signifikant höher als bei Wespengiftallergikern. Die statistische Berechnung:

- **Nullhypothese**: Die beiden Variablen Diagnose und Geschlecht sind unabhängig voneinander.
- **Alternativhypothese**: Die beiden Variablen Diagnose und Geschlecht stehen miteinander in Verbindung.
- **Irrtumswahrscheinlichkeit**: \(\alpha = 0.05 \)
Ergebnisse

- **Kreuztabelle:**

- **Chi-Quadrat-Test:**

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

- **Assoziationsstärke:**

- **Diagr. 8: Geschlechterverteilung**

Kreuztabelle (Geschlecht*Diagnose)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>männlich</th>
<th>Anzahl</th>
<th>% von Diagnose</th>
<th>Bienengift-allergie</th>
<th>Wespengift-allergie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Bienengift-allergie</th>
<th>Wespengift-allergie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>94</td>
<td>246</td>
<td>340</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>59,9%</td>
<td>48,5%</td>
<td>51,2%</td>
</tr>
</tbody>
</table>

Chi-Quadrat-Test

<table>
<thead>
<tr>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>6,183<sup>b</sup></td>
<td>.013</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>664</td>
<td>1</td>
</tr>
</tbody>
</table>

- 0 Zellen (,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 76,61.

Korrelationskoeffizient

<table>
<thead>
<tr>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
</tr>
<tr>
<td>Cramer-V</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
</tr>
</tbody>
</table>

38
4.2.2 *Altersverteilung*

Die Altersverteilung zeigte ebenfalls einen signifikanten Unterschied zwischen Bienengiftallergikern und Wespengiftallergikern. Bienengiftallergiker (32,3 Jahre zu SIT-Beginn) waren im Schnitt 7,4 Jahre jünger als Wespengiftallergiker (39,7 Jahre zu SIT-Beginn), bei annähernd gleicher Latenzzeit (siehe 4.2.8, „Latenzzeit und Dauer der SIT“). Nachfolgend die statistische Berechnung und die grafische Darstellung (Diagr. 9):

- **Nullhypothese:** Die Altersverteilung unterscheidet sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.
- **Alternativhypothese:** Die Altersverteilung unterscheidet sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$
- **Voraussetzungen, T-Wert, Freiheitsgrade und Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose (Gruppe)</td>
</tr>
<tr>
<td>Bienengiftallergie</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
</tr>
</tbody>
</table>

T-Test bei unabhängigen Stichproben (Altersverteilung)

<table>
<thead>
<tr>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>3,358</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>-5,12</td>
</tr>
</tbody>
</table>

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.
Ergebnisse

Diagr. 9: Altersverteilung*

* zum besseren Überblick wurden 18 Altersgruppen gebildet.
4.2.3 Anaphylaxie beim Indikatorstich

Die Verteilung der Anaphylaxiegrade beim Indikatorstich unterschied sich zwischen Bienengiftallergiker und Wespengiftallergikern nicht signifikant (siehe Anhang, 8.2.1 „Statistik 1“). Tabelle 17 gibt dazu einen Überblick. Auch der Vergleich zwischen moderater (Grad I, II) oder schwerer (Grad III, IV) Stichreaktion und Bienen-/Wespengiftallergie mittels Chi-Quadrat-Test erbrachte keinen signifikanten Unterschied (siehe ebenfalls Anhang, 8.2.1 „Statistik 1“).

Tab. 17: „Stichreaktion (1)“

<table>
<thead>
<tr>
<th>Anaphylaxie</th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad I</td>
<td>29 18,5 %</td>
<td>161 31,8 %</td>
</tr>
<tr>
<td>Grad II</td>
<td>100 63,7 %</td>
<td>234 46,2 %</td>
</tr>
<tr>
<td>Grad III</td>
<td>28 17,8 %</td>
<td>109 21,4 %</td>
</tr>
<tr>
<td>Grad IV</td>
<td>0 0 %</td>
<td>3 0,6 %</td>
</tr>
</tbody>
</table>

4.2.4 Atopie und Asthma

Die beiden Vergleichsgruppen zeigten bezüglich der Kategorien „Atopie positiv“ und „Asthma positiv“ keine signifikanten Unterschiede. Die Verteilung ist in Tabelle 18 dargestellt, die ausführliche Berechnung im Anhang unter 8.2.1 „Statistik 1“.

Tab. 18: Asthma und Atopie

<table>
<thead>
<tr>
<th>Asthma*</th>
<th>„positiv“/ „negativ“ (Anzahl)</th>
<th>„Asthma positiv“ (Prozentsatz)</th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/103</td>
<td>7,1 %</td>
<td>33/368</td>
<td>9,0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atopie**</th>
<th>„positiv“/ „negativ“ (Anzahl)</th>
<th>„Atopie positiv“ (Prozentsatz)</th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35/101</td>
<td>25,7 %</td>
<td>110/352</td>
<td>23,8 %</td>
</tr>
</tbody>
</table>

* bei 152 Patienten „unbekannt“ ** bei 66 Patienten „unbekannt“

4.2.5 Kumulative Stichereignisse

Ergebnisse

- **Nullhypothese**: Die Anzahl der kumulativen Stichereignisse unterscheidet sich zwischen den Vergleichsgruppen nicht.

 Alternativhypothese: Die Anzahl der kumulativen Stichereignisse unterscheidet sich zwischen den Vergleichsgruppen signifikant.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0.05$

- **Rangsummenbildung**:

 Rangsummenberechnung

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>113</td>
<td>290,95</td>
<td>32877,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>381</td>
<td>234,61</td>
<td>89387,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>494</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung**:

 Statistik für Test

<table>
<thead>
<tr>
<th>kumulative Stichereignisse (Testvariable)</th>
<th>Mann-Whitney-U</th>
<th>Z</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16616,500</td>
<td>-4,029</td>
<td>.000</td>
</tr>
</tbody>
</table>

 a. Gruppenvariable: Diagnose

- **Bewertung**: Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

Diagr. 10: Kumulative Insektenstiche vor SIT-Beginn (= „Stichereignisse“)

* bei 44 Bienengiftallergiker „unbekannt“.

** bei 126 Wespengiftallergiker „unbekannt“.
4.2.6 Hauttestung

4.2.6.1 Pricktestung

Beim Pricktest vor Beginn der SIT zeigte sich kein signifikanter Unterschied zwischen den Vergleichsgruppen. Am Ende der SIT hatten Bienengiftallergiker signifikant niedrigere Schwellenwertkonzentrationen. Nachfolgend die statistische Berechnung und die grafische Darstellung (Diagr. 11, 12):

a) Pricktest vor SIT

- **Nullhypothese:** Die Ergebnisse der Pricktestung vor SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.
- **Alternativhypothese:** Die Ergebnisse der Pricktestung vor SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0.05$
- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>154</td>
<td>346,69</td>
<td>53389,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>504</td>
<td>324,25</td>
<td>163421,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>658</td>
<td>324,25</td>
<td>163421,50</td>
</tr>
</tbody>
</table>

- **Signifikanztest:***

<table>
<thead>
<tr>
<th>Statistik für Test(a)</th>
<th>Pricktest vor SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>36161,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,404</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.160</td>
</tr>
</tbody>
</table>

 a. Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.
Diagr. 11: Pricktestung vor SIT

b) Pricktest am Ende der SIT:

- **Nullhypothese**: Die Ergebnisse der Pricktestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienen Giftallergiker und Wespengiftallergiker nicht.

- **Alternativhypothese**: Die Ergebnisse der Pricktestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienen Giftallergiker und Wespengiftallergiker signifikant.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0.05$

- **Rangsummenbildung**:

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>144</td>
<td>352,37</td>
<td>50741,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>478</td>
<td>299,19</td>
<td>143011,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>622</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

- **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test³</th>
<th>Pricktest am Ende der SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>28530,500</td>
</tr>
<tr>
<td>Z</td>
<td>-4,548</td>
</tr>
</tbody>
</table>
 | Asymptotische Signifikanz (2-seitig) | .000

a. Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

Diagr. 12: Pricktestung am Ende der SIT

4.2.6.2 *Intrakutantestung*

Die Ergebnisse der Intrakutantestung unterschieden sich zwischen den Vergleichsgruppen signifikant, sowohl vor als auch am Ende der SIT. In beiden Testungen hatten Bienengiftallergiker insgesamt niedrigere Schwellenwertkonzentrationen als Wespengiftallergiker. Nachfolgend die statistische Berechnung und die grafische Darstellung (Diagr. 13, 14):
a) **Intrakutantest vor SIT**

- **Nullhypothese:** Die Ergebnisse der Intrakutantestung vor der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.

- **Alternativhypothese:** Die Ergebnisse der Intrakutantestung vor der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$

- **Rangsummenbildung:**

Rangsummenberechnung

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>148</td>
<td>370,16</td>
<td>54783,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>495</td>
<td>307,60</td>
<td>152262,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>643</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztest:**

Statistik für Test\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>Intrakutantest vor SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>29502,500</td>
</tr>
<tr>
<td>Z</td>
<td>-3.865</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(^a\) Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.
Diagr. 13: Intrakutantestung vor SIT-Beginn

* bei 9 Patienten kein Intrakutantest durchgeführt. ** bei 12 Patienten kein Intrakutantest durchgeführt.

b) Intrakutantest am Ende der SIT:

- **Nullhypothese:** Die Ergebnisse der Intrakutantestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.

 Alternativhypothese: Die Ergebnisse der Intrakutantestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

- ** Irrtumswahrscheinlichkeit:** $\alpha = 0,05$

- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>143</td>
<td>360,68</td>
<td>51577,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>480</td>
<td>297,50</td>
<td>142798,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>623</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ergebnisse
- **Signifikanztestung:**

 Statistik für Test

<table>
<thead>
<tr>
<th>Intrakutantest am Ende der SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymtotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

 a. Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

Diagr. 14: Intrakutantestung am Ende der SIT

* bei 14 Patienten kein Intrakutantest durchgeführt. ** bei 27 Patienten kein Intrakutantest durchgeführt.
4.2.7 Labortestung

Bei den spezifischen IgE-Klassen bestand ebenfalls ein signifikanter Unterschied, sowohl vor SIT-Beginn als auch am Ende der SIT. Bienengiftallergiker hatten insgesamt höhere spezifische IgE-Werte als Wespengiftallergiker. Nachfolgend die statistische Berechnung und die grafische Darstellung (Diagr. 15, 16):

a) IgE-Klasse vor SIT:

- **Nullhypothese:** Die spezifischen IgE-Klassen vor SIT-Beginn unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.
- **Alternativhypothese:** Die spezifischen IgE-Klassen vor SIT-Beginn unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$
- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>157</td>
<td>397,16</td>
<td>62354,00</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>507</td>
<td>312,48</td>
<td>158426,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Testa</th>
<th>IgE-Klasse vor SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>29648,000</td>
</tr>
<tr>
<td>Z</td>
<td>-5,036</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.
b) IgE-Klasse am Ende der SIT:

- **Nullhypothese**: Die spezifischen IgE-Klassen am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.
- **Alternativhypothese**: Die spezifischen IgE-Klassen am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0,05$
- **Rangsummenbildung**:

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>142</td>
<td>368,44</td>
<td>52318,00</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>473</td>
<td>289,86</td>
<td>137102,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>615</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>IgE-Klasse am Ende der SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>25001,000</td>
</tr>
<tr>
<td>Z</td>
<td>-4,813</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Diagnose

• **Bewertung:** Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.

Diagr. 16: Spezifische IgE-Bestimmung am Ende der SIT

* bei 15 Patienten keine Bestimmung durchgeführt. ** bei 34 Patienten keine Bestimmung durchgeführt.
4.2.8 Latenzzeit und Dauer der SIT

Die Latenzzeiten und die Dauer der SIT zeigten keine signifikanten Unterschiede zwischen den beiden Vergleichsgruppen (siehe Anhang, 8.2.1 „Statistik 1“). Tabelle 19 gibt die genaue Verteilung der Werte innerhalb der beiden Gruppen wieder.

Tab. 19: Latenzzeit und SIT-Dauer

<table>
<thead>
<tr>
<th></th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Prozentwert</td>
</tr>
<tr>
<td>Latenzeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 Jahr</td>
<td>116</td>
<td>74,4 %</td>
</tr>
<tr>
<td>1 – 5 Jahre</td>
<td>29</td>
<td>18,6 %</td>
</tr>
<tr>
<td>6 – 10 Jahre</td>
<td>5</td>
<td>3,2 %</td>
</tr>
<tr>
<td>> 10 Jahre</td>
<td>6</td>
<td>3,8 %</td>
</tr>
<tr>
<td>Dauer der SIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Jahre</td>
<td>76</td>
<td>48,4 %</td>
</tr>
<tr>
<td>4 Jahre</td>
<td>19</td>
<td>12,1 %</td>
</tr>
<tr>
<td>5 Jahre</td>
<td>50</td>
<td>31,8 %</td>
</tr>
<tr>
<td>6 Jahre</td>
<td>8</td>
<td>5,1 %</td>
</tr>
<tr>
<td>7 Jahre</td>
<td>3</td>
<td>1,9 %</td>
</tr>
<tr>
<td>8 Jahre</td>
<td>1</td>
<td>0,7 %</td>
</tr>
<tr>
<td>lebenslänglich</td>
<td>0</td>
<td>0 %</td>
</tr>
</tbody>
</table>

* bei 2 Patienten „unbekannt“.

4.3 Wirksamkeit und Sicherheit der SIT

4.3.1 Bienengiftallergie

Acht Patienten berichteten nach einem Feldstich erneut von anaphylaktischen Symptomen. Die Wirksamkeit der SIT mit Bienengift betrug in diesem Kollektiv somit 89,0 % (Diagr. 18). Allerdings hatte keiner dieser acht Patienten schwerwiegende und damit potentiell lebensbedrohliche Symptome, das heißt keine Anaphylaxie Grad III oder IV. Somit errechnete sich eine Sicherheit der SIT mit Bienengift von 100 % (Diagr. 18).

Diagr. 17: Feldstichzeitpunkt (B)

Diagr. 18: Stichreaktion bei Feldstich (B)
In Tabelle 20 sind die Eigenschaften der Feldstiche in Abhängigkeit vom Anaphylaxie-grad aufgelistet.

Tab. 20: Zeitpunkt und Maßnahmen beim Feldstich (B)

<table>
<thead>
<tr>
<th>Bienengiftallergie</th>
<th>Anaphylaxie beim Feldstich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine (Anzahl)</td>
</tr>
<tr>
<td>Zeitpunkt</td>
<td></td>
</tr>
<tr>
<td>während SIT</td>
<td>19</td>
</tr>
<tr>
<td>< 1 Jahr (nach Ende der SIT)</td>
<td>2</td>
</tr>
<tr>
<td>1 – 5 Jahre (nach Ende der SIT)</td>
<td>21</td>
</tr>
<tr>
<td>6 – 10 Jahre (nach Ende der SIT)</td>
<td>18</td>
</tr>
<tr>
<td>> 10 Jahre (nach Ende der SIT)</td>
<td>5</td>
</tr>
<tr>
<td>Notfallset</td>
<td></td>
</tr>
<tr>
<td>Nicht angewendet</td>
<td>46</td>
</tr>
<tr>
<td>Glukokortikoide +/- Antihistaminikum</td>
<td>18</td>
</tr>
<tr>
<td>Adrenalin-Injektor (+/- Glukokortikoide, Antihistaminikum)</td>
<td>1</td>
</tr>
<tr>
<td>Arztkontakt</td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>53</td>
</tr>
<tr>
<td>Hausarzt oder Klinikerzt</td>
<td>11</td>
</tr>
<tr>
<td>Notarzt</td>
<td>1</td>
</tr>
<tr>
<td>Überwachung</td>
<td></td>
</tr>
<tr>
<td>keine</td>
<td>58</td>
</tr>
<tr>
<td>Ambulant (mind. 1 h)</td>
<td>5</td>
</tr>
<tr>
<td>Stationär (mind. 24 h)</td>
<td>2</td>
</tr>
</tbody>
</table>

4.3.2 Wespengiftallergie

284 Patienten (278 Wespengiftallergiker + 6 Doppelallergiker mit Wespenstich) sind seit Beginn der SIT mindestens noch einmal gestochen worden. Bei Patienten mit mehreren Feldstichen wurde in der Auswertung immer das Stichereignis mit der schwersten Reaktion berücksichtigt. Diagramm 19 zeigt die Patientenzahl und die Insektenart in
Abhängigkeit von dem Zeitpunkt des Stiches. 39,8 % der Feldstiche ereigneten sich während der SIT, 60,2 % nach deren Ende.

Diagr. 19: Feldstichzeitpunkt (W)

19 Patienten hatten nach einem Feldstich erneut mit anaphylaktischen Symptomen reagierte. Die **Wirksamkeit der SIT** mit Wespengift belief sich somit auf 93,3 % (Diagr. 20). Zwei Patienten erlitten schwere Stichreaktionen, jeweils einen Anaphylaxiegrad III. Die **Sicherheit der SIT** mit Wespengift betrug somit 99,3 % (Diagr. 20).

Diagr. 20: Stichreaktion bei Feldstich (W)

Tabelle 21 zeigt die Eigenschaften der Feldstiche in Abhängigkeit von der Stichreaktion.
Ergebnisse

Tab. 21: Zeitpunkt und Maßnahmen beim Feldstich (W)

<table>
<thead>
<tr>
<th>Wespengifftallergie</th>
<th>Anaphylaxie beim Feldstich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine (Anzahl)</td>
</tr>
<tr>
<td>Zeitpunkt</td>
<td></td>
</tr>
<tr>
<td>während SIT</td>
<td>109</td>
</tr>
<tr>
<td>< 1 Jahr (nach Ende der SIT)</td>
<td>23</td>
</tr>
<tr>
<td>1 – 5 Jahre (nach Ende der SIT)</td>
<td>64</td>
</tr>
<tr>
<td>6 – 10 Jahre (nach Ende der SIT)</td>
<td>60</td>
</tr>
<tr>
<td>> 10 Jahre (nach Ende der SIT)</td>
<td>9</td>
</tr>
<tr>
<td>Notfallset</td>
<td></td>
</tr>
<tr>
<td>Nicht angewendet</td>
<td>168</td>
</tr>
<tr>
<td>Glukokortikoide +/- Antihistaminikum</td>
<td>71</td>
</tr>
<tr>
<td>Adrenalin-Injektor (+/- Glukokortikoide, Antihistaminikum)</td>
<td>26</td>
</tr>
<tr>
<td>Arztkontakt</td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>214</td>
</tr>
<tr>
<td>Hausarzt oder Klini- karzt</td>
<td>42</td>
</tr>
<tr>
<td>Notarzt</td>
<td>9</td>
</tr>
<tr>
<td>Überwachung</td>
<td></td>
</tr>
<tr>
<td>keine</td>
<td>234</td>
</tr>
<tr>
<td>Ambulant (mind. 1 h)</td>
<td>27</td>
</tr>
<tr>
<td>Stationär (mind. 24 h)</td>
<td>4</td>
</tr>
</tbody>
</table>

4.4 Vergleichsgruppen „Erfolgreiche Therapie“ und „Therapieversager“

4.4.1 Diagnose

Biesengiftallergiker hatten eine etwas niedrigere Therapieerfolgsrate als Wespengiftallergiker (89,0 % vs. 93,3 %, siehe 4.3 „Wirksamkeit und Sicherheit der SIT“). Dies
Ergebnisse

drückt sich auch in der Verteilung der Diagnose innerhalb der Gruppen „Erfolgreiche Therapie“ und Therapieversager aus (Diagr. 21). Ein signifikanter Unterschied besteht mathematisch allerdings nicht (siehe Anhang, 8.2.2 „Statistik 2“).

Diagr. 21: Diagnose

4.4.2 Geschlechterverteilung

Das Geschlechterverhältnis innerhalb der Gruppen „erfolgreiche Therapie“ und „Therapieversager“ ist relativ ausgeglichen (Diagr. 22). Die statistischen Berechnungen sind im Anhang unter 8.2.2 „Statistik 2“ aufgeführt.

Diagr. 22: Geschlechterverteilung
4.4.3 Altersverteilung

Das durchschnittliche Alter bei Patienten mit „erfolgreicher Therapie“ betrug 37,8 Jahre. Therapieversager waren im Schnitt ein Jahr älter. Ein signifikanter Unterschied besteht aber nicht (siehe Anhang, 8.2.2 „Statistik 2“). Diagramm 23 zeigt die Altersverteilung.

Diagr. 23: Altersverteilung*

* zum besseren Überblick wurden 18 Altersgruppen gebildet.
4.4.4 Anaphylaxie beim Indikatorstich

Der Anaphylaxiegrad des Indikatorstiches war bei den Therapieversagern signifikant höher als bei den Patienten mit erfolgreicher Therapie. 40,7 % der Therapieversager hatten beim Ausgangsstich eine lebensbedrohliche Stichreaktion (= Anaphylaxiegrad III oder IV). Bei den Patienten mit erfolgreicher Therapie waren es hingegen nur 22,1 %. Nachfolgend die statistische Berechnung und die grafische Darstellung (Diagr. 24):

- **Nullhypothese**: Die Anaphylaxiegrade beim Indikatorstich unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

- **Alternativhypothese**: Die Anaphylaxiegrade beim Indikatorstich unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0,05$

- **Rangsummenbildung**:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>330</td>
<td>175,48</td>
<td>57907,00</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>27</td>
<td>222,07</td>
<td>5996,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>357</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung**:

<table>
<thead>
<tr>
<th>Statistik für Testa</th>
<th>Stichreaktion (1) (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3292,00</td>
</tr>
<tr>
<td>Z</td>
<td>-2,468</td>
</tr>
<tr>
<td>Asymptotische Signifianz (2-seitig)</td>
<td>.014</td>
</tr>
</tbody>
</table>

 a Gruppenvariable: Gruppe

- **Bewertung**: Die Nullhypothese wird abgelehnt, die Alternativhypothese angenommen.
4.4.5 Atopie und Asthma

Atopiker sind in der Gruppe „Therapieversager“ mit 41,7 % und in der Gruppe „erfolgreiche Therapie“ mit 24,2 % vertreten (Diagr. 25). Ein statistisch signifikanter Unterschied besteht jedoch nicht (siehe Anhang, 8.2.2 „Statistik 2“).

Asthmatiker verteilen sich auf die beiden Gruppen nahezu ausgeglichen. Bei der Gruppe „erfolgreiche Therapie“ beträgt die Quote 9,9 %, bei den „Therapieversagern“ 9,5 %. Einzelheiten und die statistische Berechnung können ebenfalls dem Anhang unter 8.2.2 „Statistik 2“ entnommen werden.
4.4.6 Kumulative Stichereignisse

Zwischen der Gruppe „Therapieversager“ und der Gruppe „erfolgreiche Therapie“ zeigten sich in der Anzahl der Stichereignisse vor Therapie keine signifikanten Unterschiede (siehe Anhang, 8.2.2 „Statistik 2“). Die Verteilung ist in Diagramm 26 dargestellt.

Diagr. 26: Kumulative Stichanzahl vor SIT (= „Stichereignisse“

* bei 77 Patienten Stichanzahl „unbekannt“. ** bei 7 Patienten Stichanzahl „unbekannt“.

4.4.7 Hauttestung

4.4.7.1 Pricktestung

Die Pricktestung wurde sowohl vor als auch am Ende der SIT durchgeführt. Signifikante Unterschiede zwischen Therapieversagern und Patienten mit erfolgreicher Therapie zeigten sich keine. Auch im zeitlichen Verlauf (z. B. Rückgang, gleichbleibend oder Anstieg der Schwellenwertkonzentration) konnte kein signifikanter Unterschied festgestellt werden. Die statistischen Berechnungen befinden sich im Anhang unter 8.2.2 „Statistik 2“. Einzelheiten sind auch in den Diagrammen 27, 28 und 29 dargestellt.
Ergebnisse

Diagr. 27: Pricktestung vor SIT

* bei 2 Patienten keine Pricktestung durchgeführt. ** bei 1 Patient keine Pricktestung durchgeführt.

Diagr. 28: Pricktestung am Ende der SIT

* bei 20 Patienten kein Pricktest durchgeführt. ** bei 1 Patient kein Pricktest durchgeführt.
Ergebnisse

Diagr. 29: Veränderung der Schwellenwertkonzentration (Pricktest)

* bei 21 Patienten Datenerhebung nicht möglich. ** bei 2 Patienten Datenerhebung nicht möglich.

4.4.7.2 Intrakutantestung

Die Ergebnisse der Intrakutantestung vor SIT-Beginn, am Ende der SIT, als auch die Veränderung (z. B. Rückgang, gleichbleibend oder Anstieg der Schwellenwertkonzentration) unterschieden sich zwischen den Vergleichsgruppen ebenfalls nicht signifikant (siehe Anhang, 8.2.2, „Statistik 2“). Die Diagramme 30, 31 und 32 zeigen die unterschiedlichen Häufigkeitsverteilungen in Abhängigkeit von der Gruppe.
Ergebnisse

Diagr. 30: Intrakutantestung vor SIT

* bei 13 Patienten kein Intrakutantest durchgeführt. ** bei 2 Patienten kein Intrakutantest durchgeführt.

Diagr. 31: Intrakutantestung am Ende der SIT

* bei 19 Patienten kein Intrakutantest durchgeführt. ** bei 1 Patient kein Intrakutantest durchgeführt.
4.4.8 Labortestung

Bei den spezifischen IgE-Klassen besteht sowohl vor SIT-Beginn als auch am Ende der SIT kein signifikanter Unterschied zwischen den Vergleichsgruppen. Auch bei der Betrachtung des zeitlichen Verlaufs (z. B. Rückgang, gleichbleibend oder Anstieg der IgE-Klasse) trifft dies zu. Die statistischen Berechnungen befinden sich im Anhang unter 8.2.2 „Statistik 2“. Einzelheiten können den Diagrammen 33, 34 und 35 entnommen werden.
Diagr. 33: Spezifische IgE-Bestimmung vor SIT

* bei 23 Patienten keine Bestimmung durchgeführt.

Diagr. 34: Spezifische IgE-Bestimmung am Ende der SIT

* bei 27 Patienten keine Bestimmung durchgeführt.

* bei 23 Patienten keine Bestimmung durchgeführt.

** bei 2 Patienten keine Bestimmung durchgeführt.
4.4.9 Latenzzeit und Dauer der SIT

Auch die Latenzzeiten und die Dauer der SIT zeigten keine signifikanten Unterschiede zwischen den beiden Vergleichsgruppen (siehe Anhang, 8.2.2 „Statistik 2“). Tabelle 22 zeigt die Verteilung der Werte.

Tab. 22: Latenzzeit und SIT-Dauer

<table>
<thead>
<tr>
<th>Latenzzeit</th>
<th>„erfolgreiche Therapie“</th>
<th>„Therapieversager“</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Prozenthalt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 Jahr</td>
<td>252</td>
<td>77,1 %</td>
</tr>
<tr>
<td>1 – 5 Jahr</td>
<td>56</td>
<td>17,1 %</td>
</tr>
<tr>
<td>6 – 10 Jahr</td>
<td>12</td>
<td>3,7 %</td>
</tr>
<tr>
<td>> 10 Jahr</td>
<td>7</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Dauer der SIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Jahre</td>
<td>177</td>
<td>53,7 %</td>
</tr>
<tr>
<td>4 Jahre</td>
<td>37</td>
<td>11,2 %</td>
</tr>
<tr>
<td>5 Jahre</td>
<td>102</td>
<td>30,9 %</td>
</tr>
<tr>
<td>6 Jahre</td>
<td>6</td>
<td>1,8 %</td>
</tr>
<tr>
<td>7 Jahre</td>
<td>4</td>
<td>1,2 %</td>
</tr>
<tr>
<td>8 Jahre</td>
<td>3</td>
<td>0,9 %</td>
</tr>
<tr>
<td>lebenslänglich</td>
<td>1</td>
<td>0,3 %</td>
</tr>
</tbody>
</table>

* bei 3 Patienten „unbekannt“
5 Diskussion

5.1 Datenerhebung

Alle Patientendaten stammen aus der Allergieambulanz der Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie. Sie ist am Universitätsklinikum Würzburg die einzige Ambulanz in der Bienen-/Wespengiftallergiker betreut werden. Aufgrund der standardisierten Diagnostik und Therapie, der Personalkontinuität und der Qualitätssicherung kann eine sehr hohe Datenqualität gewährleistet werden.

Bestimmte diagnostische Methoden wurden erst seit 1998 eingeführt oder waren speziellen Fragestellungen vorbehalten. Dazu gehörten der Basophilen-Aktivierungstest (nur ergänzend bei diagnostischen Unklarheiten), die Bestimmung der basalen Tryptasekonzentration (regelmäßig nur bei Patienten mit schwerer Stichreaktion) und die Untersuchung auf Mastozytose [1, 63, 64].

Die Art des stechenden Insekts war sowohl beim Indikatorstich als auch beim Feldstich während oder nach Ende der SIT häufiger unklar. Dies resultierte entweder aus der Unsicherheit der Patienten in der Differenzierung der Insektenarten oder einfach durch den Umstand, dass das stechende Insekt gar nicht gesehen wurde.
5.2 Patientenkollektiv

Die charakteristischen Merkmale von Patienten mit Bienen-/Wespengiftallergie zeigten sich auch in unserem Kollektiv.

Rüeff et al. [50] untersuchten in einer Multicenterstudie 962 unbehandelte Hymenopterengiftallergiker auf Vorhersagewerte für eine schwere, lebensbedrohliche Stichreaktion. Dabei zeigte sich ein Durchschnittsalter der Studienteilnehmer von 38,2 Jahren (SD ± 16,9), in unserer Untersuchung von 37,9 Jahren (SD ± 15,4). Von den 962 Teilnehmern waren 54,4 % (n = 523) männlichen und 45,6 % (n = 439) weiblichen Geschlechts, in unserer Untersuchung 51,7 % männlich und 48,3 % weiblich. Das leichte Überwiegen des männlichen Geschlechts ist interessant, da bei anderen Allergiekrankheiten das weibliche Geschlecht meist häufiger betroffen ist [86].

Tab. 23: Häufigkeit der Diagnose

<table>
<thead>
<tr>
<th>Autor</th>
<th>Land</th>
<th>Studienpopulation</th>
<th>Bienengiftallergiker n</th>
<th>% *</th>
<th>Wespengiftallergiker n</th>
<th>% *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Björnsson et al. [9]</td>
<td>Schweden</td>
<td>Allgemeinbevölkerung n = 1399</td>
<td>5</td>
<td>9,4 %</td>
<td>48</td>
<td>90,6 %</td>
</tr>
<tr>
<td>Strupler et al. [10]</td>
<td>Schweiz</td>
<td>Allgemeinbevölkerung n = 8322</td>
<td>289</td>
<td>49,1 %</td>
<td>293</td>
<td>49,7 %</td>
</tr>
<tr>
<td>Marqués et al. [88]</td>
<td>Spanien</td>
<td>Allgemeinbevölkerung n = 4991</td>
<td>35</td>
<td>45,5 %</td>
<td>39</td>
<td>50,7 %</td>
</tr>
<tr>
<td>Ruëff et al. [50]</td>
<td>Europäische Multicenterstudie</td>
<td>Unbehandelte Insektengiftallergiker</td>
<td>289</td>
<td>30,0 %</td>
<td>673</td>
<td>70,0 %</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>Deutschland (Region Unterfranken)</td>
<td>Insektengiftallergiker mit SIT</td>
<td>157</td>
<td>23,6 %</td>
<td>507</td>
<td>76,4 %</td>
</tr>
</tbody>
</table>

* Prozentsatz von den Hymenopterengiftallergikern, Doppelallergiker dabei nicht berücksichtigt

Tab. 24: Bienenvölker in europäischen Ländern

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl der Bienenvölker*</th>
<th>Bienenvölker pro km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweden</td>
<td>150 000</td>
<td>0,3</td>
</tr>
<tr>
<td>Deutschland</td>
<td>710 000</td>
<td>2,0</td>
</tr>
<tr>
<td>Schweiz</td>
<td>190 000</td>
<td>4,6</td>
</tr>
<tr>
<td>Spanien</td>
<td>2 560 000</td>
<td>5,1</td>
</tr>
</tbody>
</table>

* aktuelle Zahlen vom DIB und der EU-Kommission

Bei der hier verwendeten Einteilung der Anaphylaxieschweregrade zeigte sich erneut, dass nur sehr wenige Patienten in den Grad IV klassifiziert werden können. Es fand sich folgende Verteilung der Schweregrade: Grad I = 28,4 %, Grad II = 50,4 %, Grad III = 20,8 %, Grad IV = 0,4 %; nur drei Patienten hatten eine Grad IV-Reaktion. Das zeigte sich auch in der Untersuchung von Ruëff et al. [50]. Die allgemeine Häufigkeitsverteilung der Anaphylaxiegrade war dort: Grad I = 15,2 %, Grad II = 63,4 %, Grad III = 21,0 %; Grad IV = 0,4 %. Andere Vorschläge zur Einteilung der Anaphylaxie unterscheiden daher nur drei Schweregrade [89]. In diesem Zusammenhang muss betont werden, dass eine allgemein gültige und international akzeptierte Klassifikation der Anaphylaxieschweregrade bis heute nicht vorliegt. Die Anaphylaxie manifestiert sich als ein kontinuierliches Spektrum an Symptomen, die fließend und dynamisch ineinander übergehen. Jede Einteilung ist daher artifiziell.

Nach der Diagnose Bienen-/Wespengiftallergie wurde bei 76,7 % der Patienten die SIT innerhalb eines Jahres nach dem Indikatorstich eingeleitet. In den anderen Fällen verzö-

5.3 Vergleich zwischen Bienen- und Wespengiftallergikern

Diskussion

Tab. 25: Geschlechterverhältnis im Studienvergleich

<table>
<thead>
<tr>
<th>Autor et al. [77]</th>
<th>Studie/Publikation</th>
<th>Studienpopulation</th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller et al. [77]</td>
<td>Schweiz</td>
<td>Bienengiftallergiker (n = 148) und Wespengiftallergiker (n = 57)</td>
<td>66,2 %</td>
<td>33,8 %</td>
</tr>
<tr>
<td>Eich-Wanger et al. [90]</td>
<td>Schweiz</td>
<td>Imker (n = 62)</td>
<td>74,2 %</td>
<td>25,8 %</td>
</tr>
<tr>
<td>Pérez et al. [92]</td>
<td>Spanien</td>
<td>Wespengiftallergiker (n = 115)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Münstedt et al. [93]</td>
<td>Deutschland</td>
<td>Imker (n = 63)</td>
<td>66,7 %</td>
<td>33,3 %</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>Deutschland (Region Unterfranken)</td>
<td>Insektengiftallergiker mit SIT</td>
<td>59,9 %</td>
<td>40,1 %</td>
</tr>
</tbody>
</table>

Grundsätzlich sind bei Imkern mit Bienengiftallergie einige Besonderheiten zu beachten. Bousquet et al. [45] führten eine Untersuchung an 200 Imkern durch. Dort zeigte sich, dass Imker mit mehr als 200 jährlichen Stichereignissen noch nie allergische...
Stichreaktionen zu beklagen hatten. Bei Imkern mit 50 – 200 Stichereignissen pro Jahr waren es dagegen 9 %, bei 25 – 50 Stichereignissen pro Jahr 20 %, und bei Imkern mit weniger als 25 Stichereignissen pro Jahr waren es 45 %. Somit bieten regelmäßige Stichereignisse, wie sie z. B. bei Imkern vorkommen, einen gewissen Schutz, vielleicht sogar eine „natürliche Desensibilisierung“. Regelmäßigkeit und Abstand der Stichereignisse haben wahrscheinlich einen entscheidenden Einfluss auf die Sensibilisierung/Allergiemanifestation bzw. die Toleranzinduktion [17, 44].

Tab. 26: Altersdurchschnitt im Studienvergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Land</th>
<th>Studienpopulation</th>
<th>Bienengiftallergiker</th>
<th>Wespengiftallergiker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller et al. [77]</td>
<td>Schweiz</td>
<td>Bienengiftallergiker (n = 148) und Wespengiftallergiker (n = 57)</td>
<td>32,4 Jahre</td>
<td>34,4 Jahre</td>
</tr>
<tr>
<td>Eich-Wanger et al. [90]</td>
<td>Schweiz</td>
<td>Imker (n = 62)</td>
<td>42,8 Jahre</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Familienangehörige von Imkern (n = 44)</td>
<td>34,4 Jahre</td>
<td>-</td>
</tr>
<tr>
<td>Pérez et al. [92]</td>
<td>Spanien</td>
<td>Wespengiftallergiker (n = 115)</td>
<td>-</td>
<td>40,2 Jahre</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>Deutschland (Region Unterfranken)</td>
<td>Insektengiftallergiker mit SIT</td>
<td>32,3 Jahre</td>
<td>39,7 Jahre</td>
</tr>
</tbody>
</table>

Bezüglich der Anaphylaxiegrade fanden sich zwischen Bienen- und Wespengiftallergikern keine signifikanten Unterschiede (Tab. 17, „Stichreaktion (1)“). Das ist insofern überraschend, weil in der Allergologie früher davon ausgegangen wurde, dass Bienenstiche höhergradige anaphylaktische Reaktionen verursachen, dass Bienen aus allergologischer Sicht sozusagen die „gefährlicheren“ Insekten sind. Die hier erhobenen Daten bestätigen diesen klinischen Eindruck eindeutig nicht. Unter einer SIT mit Bienengift kommt es im Vergleich zu Wespengift, insbesondere während der Einleitungsphase, wesentlich häufiger zu Komplikationen, das heißt systemischen Reaktionen [94]. Wahr-
scheinlich ist das eine Ursache für die Fehleinschätzung, dass Bienenstiche gefährlicher als Wespenstiche seien.

Im Gegenteil, Ruëff et al. [50] berichteten, dass Wespenstiche ein signifikant höheres Risiko für eine schwere, lebensbedrohliche Stichreaktion haben. Diese Assoziation war bei uns statistisch nicht zu sehen, auch wenn auf den ersten Blick die Zahlen eine gewisse Ähnlichkeit aufweisen (Tab. 27).

Dieser Unterschied kann durch die Mathematik des Chi-Quadrat-Tests erklärt werden. Erst bei einem größeren Stichprobenumfang werden auch kleinere Abweichungen signifikant. In unserer Untersuchung mit 679 Patienten (im Vergleich zur Datenserie von 962 Patienten) ist deswegen ein Fehler zweiter Art möglich, das heißt die Nullhypothese wird fälschlicherweise beibehalten [82].

Tab. 27: Unterschiede der Anaphylaxiegrade im Studienvergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Studie</th>
<th>Bienengiftallergie</th>
<th>Wespengiftallergie</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grad I oder II</td>
<td>241</td>
<td>83,4 %</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>Grad III oder IV</td>
<td>48</td>
<td>16,6 %</td>
<td>158</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>Grad I oder II</td>
<td>129</td>
<td>82,2 %</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Grad III oder IV</td>
<td>28</td>
<td>17,8 %</td>
<td>112</td>
</tr>
</tbody>
</table>

Bienengiftallergiker und Wespengiftallergiker zeigten keine Unterschiede in Bezug auf die Atopiekrankheiten Asthma, allergische Rhinitis und atopisches Ekzem (Tab. 28, „Asthma und Atopie“). Mit 25,7 % der Bienengiftallergiker und 23,8 % der Wespengiftallergiker lagen sie im unteren Bereich der Prävalenz für die Allgemeinbevölkerung (25 - 30 %, [15]).

Auch beim Anteil der allergischen und nicht-allergischen Asthamatiker in den beiden Vergleichsgruppen fanden sich keine signifikanten Unterschiede (bei Bienengiftallergikern 7,1 %, bei Wespengiftallergikern 9,0 %). Sie lagen ebenfalls im Prävalenzbereich der Gesamtbevölkerung (5 – 10 %, [95]).
Beim Intrakutantest und bei den spezifischen IgE-Klassen (Bestimmung jeweils vor und am Ende der SIT) ergaben sich signifikante Unterschiede. Die Schwellenwertkonzentrationen waren bei Bienengiftallergikern niedriger und die IgE-Klassen höher als bei Wespengiftallergikern (siehe 4.2.6.2 „Intrakutantestung“ und 4.2.7 „Labortestung“). Auch in der Studie von Müller et al. [77] waren diese signifikanten Unterschiede zwischen Bienen- und Wespengiftallergikern zu sehen. Im Test vor und am Ende der SIT waren die Schwellenwertkonzentrationen des Intrakutantests bei Bienengiftallergikern niedriger und die IgE-Klasse höher im Vergleich zu den Wespengiftallergikern. Müller et al. [77] leiteten aus einer Studie von Kind et al. [97] eine Hypothese ab. Dort wurden in einem Mausmodell die fördernden Effekte von Melittin auf die IgE-Synthese nachgewiesen. Dieses Melittin, mit 50 – 70 % Hauptbestandteil von Bienengift und ein wichtiges Allergen (Api m 4), kommt im Wespengift nicht vor und könnte für die gesteigerte IgE-Bildung bei Bienengiftallergie verantwortlich sein. Eine andere mögliche Erklärung könnte auch in der Zusammensetzung der verwendeten Testlösungen bzw. in den Detektionssystemen für die in-vitro IgE-Bestimmung liegen. In den letzten Jahren wurden neue Insektengiftallergene entdeckt bzw. Allergene auf molekularer Ebene identifiziert und charakterisiert [61]. In den verwendeten Testlösungen oder Detektionsystemen sind diese nicht immer in ausreichender Quantität und Qualität enthalten, dadurch können die Ergebnisse voneinander abweichen.

Die Höhe der spezifischen IgE-Werte und die Schwellenwertkonzentrationen geben jedoch keine Auskunft über die Schwere vorangegangener Stichreaktion [98-100].

Tab. 28: Anzahl der Atopiker im Studienvergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Land</th>
<th>Studienpopulation</th>
<th>Bienengiftallergiker (n = 119)</th>
<th>Wespengiftallergiker (n = 115)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settipane et al. [96]</td>
<td>USA</td>
<td></td>
<td>25,2 %</td>
<td>-</td>
</tr>
<tr>
<td>Eich-Wanger et al. [90]</td>
<td>Schweiz</td>
<td>Bienengiftallergiker (n = 207)</td>
<td>29,0 %</td>
<td>-</td>
</tr>
<tr>
<td>Pérez et al. [92]</td>
<td>Spanien</td>
<td>Wespengiftallergiker (n = 115)</td>
<td>-</td>
<td>22,6 %</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>Deutschland (Region Unterfranken)</td>
<td>Insektengiftallergiker mit SIT</td>
<td>25,7 %</td>
<td>23,8 %</td>
</tr>
</tbody>
</table>
haben auch keinen prognostischen Charakter für nachfolgende Stichreaktionen [101, 102]. Nebenwirkungen der SIT [27] oder gar deren Erfolg (siehe unten).

5.4 Wirksamkeit und Sicherheit der SIT

Golden et al. [103] postulierten ein 10%-Anaphylaxie-Risiko für jeden Bienen-/Wespenstich nach Ende der SIT. Eine Vorhersage für eine einzelne Stichreaktion wäre dabei aber nicht möglich. Im Folgenden sollen die Daten zur Bienen- und Wespengift-SIT separat diskutiert werden.

Die prozentuale Wirksamkeit der SIT mit Bienengift war 89,0 %, das heißt 11,0 % der Patienten hatten nach Beginn der SIT erneut eine anaphylaktische Reaktion nach einem Feldstich. In absoluten Zahlen waren dies 8 von 73 Patienten. Kein Patient hatte nach Ende der SIT nach einem erneuten Stichereignis eine höhergradige anaphylaktische Reaktion. Rechnerisch sind 100,0 % der Bienengiftallergiker nach Beginn der SIT vor erneuten höhergradigen anaphylaktischen Stichreaktionen geschützt.

Müller et al. [77] führten in ihrer Studie an insgesamt 148 Bienengiftallergikern eine kontrollierte Stichprovokation durch. Dies geschah überwiegend am Ende der durchschnittlich 4-jährigen SIT. Von subjektiven allergischen Symptomen (z. B. Parästhesie, Juckreiz) berichteten 16 Patienten (10,8 %). Objektive allergische Symptome konnten bei 18 Patienten nachgewiesen werden (12,2 %). Schließt man die Patienten mit subjektiven Symptomen in die Bewertung mit ein, so ergibt sich eine Wirksamkeit der SIT von 77,0 %. Auch in weiteren Studien ist von einer hohen Wirksamkeit und Sicherheit der Bienengift-SIT berichtet worden (Tab. 29).
Tab. 29: Wirksamkeit der SIT bei Bienengiftallergikern im Studienvergleich

<table>
<thead>
<tr>
<th>Studie/Publikation</th>
<th>Autor</th>
<th>Patientenanzahl</th>
<th>Patientenalter</th>
<th>Therapiedauer</th>
<th>Kontrollmethode</th>
<th>Zeitpunkt</th>
<th>Wirksamkeit</th>
<th>Sicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müll et al. [77]</td>
<td>148</td>
<td>8 - 71</td>
<td>Ø 3,9 Jahre</td>
<td>Stichprovokation</td>
<td>0</td>
<td>77,0 %</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Eich-Wanger et al. [90]</td>
<td>85</td>
<td>8 - 84</td>
<td>??</td>
<td>Feldstich oder Stichprovokation</td>
<td>0</td>
<td>82,4 %</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lerch et al. [104]</td>
<td>120</td>
<td>11 - 70</td>
<td>≥ 3 Jahre</td>
<td>Feldstich</td>
<td>1</td>
<td>84,2 %</td>
<td>98,3 %</td>
<td></td>
</tr>
<tr>
<td>Münstedt et al. [93]</td>
<td>43</td>
<td>10 - 77</td>
<td>Ø 3,7 Jahre</td>
<td>Feldstich</td>
<td>1</td>
<td>97,7 %</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>73</td>
<td>6 - 71</td>
<td>Ø 3,9 Jahre</td>
<td>Feldstich</td>
<td>0/1</td>
<td>89,0 %</td>
<td>100 %</td>
<td></td>
</tr>
</tbody>
</table>

* "0" = während SIT; "1" = nach Beendigung der SIT
** "…keine bedrohliche systemische Stichreaktion"
*** 2 Patienten mit Anaphylaxiegrad III (nach Ring und Messmer [55])

In der oben schon zitierten Studie von Müller et al. [77] wurden neben den 148 Bienengiftallergikern auch bei 57 Wespengiftallergikern eine Stichprovokation während der SIT durchgeführt. 5 Patienten entwickelten dabei allergische Symptome. Nur bei einem Patienten konnten diese objektiv verifiziert werden. Rechnet man die subjektiven Beschwerden (z. B. Parästhesie, Juckreiz) mit ein, ergab sich in dieser Studie eine Wirksamkeit der Wespengift-SIT von 91,2 %.

und Sicherheit der SIT bei Wespengifttallergikern sind in Tabelle 30 aufgelistet. Ältere Studien, in denen die Therapieform von der heutigen stark abweicht (andere Allergenpräparate, kurze Therapiedauer, niedrige Erhaltungsdosis), sind hier nicht aufgeführt.

Tab. 30: Wirksamkeit der SIT bei Wespengifttallergiker im Studienvergleich

<table>
<thead>
<tr>
<th>Autor</th>
<th>Patientenanzahl</th>
<th>Patientenalter</th>
<th>Therapiedauer</th>
<th>Kontrollmethode</th>
<th>Zeitpunkt*</th>
<th>Wirksamkeit</th>
<th>Sicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller et al. [77]</td>
<td>57</td>
<td>10 - 64</td>
<td>Ø 5,0 Jahre</td>
<td>Stichprovokation</td>
<td>0</td>
<td>91,2 %</td>
<td>-</td>
</tr>
<tr>
<td>Lerch et al. [104]</td>
<td>80</td>
<td>12 - 78</td>
<td>≥ 3 Jahre</td>
<td>Feldstich</td>
<td>1</td>
<td>92,5 %</td>
<td>97,5 %**</td>
</tr>
<tr>
<td>Golden et al. [103]</td>
<td>113</td>
<td>≥ 16</td>
<td>≥ 5 Jahre</td>
<td>Feldstich + Stichprovokation</td>
<td>0/1</td>
<td>85,8 %</td>
<td>-</td>
</tr>
<tr>
<td>Severino et al. [105]</td>
<td>104</td>
<td>??</td>
<td>Ø 2,5 Jahre</td>
<td>Feldstich</td>
<td>0</td>
<td>89,4 %</td>
<td>99,0 %</td>
</tr>
<tr>
<td>Eigene Daten</td>
<td>284</td>
<td>6 - 74</td>
<td>Ø 3,9 Jahre</td>
<td>Feldstich</td>
<td>0/1</td>
<td>93,3 %</td>
<td>99,3 %</td>
</tr>
</tbody>
</table>

* „0“ = während SIT; „1“ = nach Beendigung der SIT
** 2 Patienten mit Anaphylaxiegrad III (nach Ring und Messmer [55])

Im Rahmen der Diskussion über Wirksamkeit und Sicherheit der SIT muss man unbedingt eine Studie von Reisman [22] erwähnen. Er untersuchte den natürlichen Verlauf der Insektenpestallergie, das heißt Reaktionen auf Feldstiche bei unbehandelten Patienten. Von 220 Patienten mit einer anaphylaktischen Stichreaktion entwickelten nur 56 % beim nächsten Insektenstich erneut anaphylaktische Symptome; Erwachsene aber deutlich häufiger (74 %) als Kinder und Jugendliche (40 %).

Zusätzlich sind auch die positiven psychologischen Effekte einer SIT zu berücksichtigen, die sich für den Patienten bei dieser Therapieform ergeben können. Rösch et al. [107] zeigten, dass es durch eine SIT zu einer Reduzierung der Angst vor Bienen-/Wespenstichen und damit grundsätzlich zu einer Verbesserung der Lebensqualität kommt, auch wenn die Patienten von keinem erneuten Feldstich berichteten.

Nachfolgend werden die zwei Fälle mit Wespengifttallergie, die nach Ende der SIT bei einem Feldstich erneut mit lebensbedrohlichen Symptomen reagiert hatten, diskutiert.

Patient # 66 entwickelte die potentiell lebensbedrohliche Feldstichreaktion fünf Jahre nach Ende der SIT. Er wurde bei einem Waldspaziergang von einer Wespe hinter dem Ohr gestochen. Innerhalb von fünf Minuten kam es unter anderem zu unkontrollierter

Tab. 31: Eigenschaften von Patient # 66

| Wespengiftallergiker mit lebensbedrohlicher Feldstichreaktion nach SIT |
|--------------------------|--------------------------|
| Alter bei SIT-Beginn: | 54 |
| Geschlecht: | männlich |
| SIT- Beginn: | 03/92 |
| Dauer der SIT: | 3 Jahre |
| Atopie: | nein |
| Asthma: | nein |
| Kumulative Stiche: | 6 - 10 |
| Tryptase: | 6,69 µg/l |
| Anaphylaxie beim Indikatorstich: | Grad III |
| Anaphylaxie beim Feldstich: | Grad III |
| Vor SIT: | |
| IgE-Klasse (W): | 2 |
| Pricktest (W): | 100 µg/ml |
| Intrakutantest (W): | 0,1 µg/ml |
| Nach SIT: | |
| IgE-Klasse (W): | 2 |
| Pricktest (W): | 100 µg/ml |
| Intrakutantest (W): | 0,1 µg/ml |

Schwellung der Lippen (Anaphylaxiegrad I). Weitere Merkmale des Patienten sind der Tabelle 32 zu entnehmen. Entgegen ärztlichem Rat lehnte der Patient eine erneute allergologische Konsultation mit weiterführender Diagnostik/Therapie ab.

Tab. 32: Eigenschaften von Patient # 199

<table>
<thead>
<tr>
<th>Wespengiftallergiker mit lebensbedrohlicher Feldstichreaktion nach SIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei SIT-Beginn: 30</td>
</tr>
<tr>
<td>Geschlecht: männlich</td>
</tr>
<tr>
<td>SIT-Beginn: 11/95</td>
</tr>
<tr>
<td>Dauer der SIT: 3 Jahre</td>
</tr>
<tr>
<td>Atopie: nein</td>
</tr>
<tr>
<td>Asthma: nein</td>
</tr>
<tr>
<td>Kumulative Stiche: > 10</td>
</tr>
<tr>
<td>Tryptase: -</td>
</tr>
<tr>
<td>Anaphylaxie beim Indikatorstich: Grad I</td>
</tr>
<tr>
<td>Anaphylaxie beim Feldstich: Grad III</td>
</tr>
<tr>
<td>Vor SIT:</td>
</tr>
<tr>
<td>IgE-Klasse (W): 4</td>
</tr>
<tr>
<td>Pricktest (W): 10 µg/ml</td>
</tr>
<tr>
<td>Intrakutantest (W): 0,001 µg/ml</td>
</tr>
<tr>
<td>Nach SIT:</td>
</tr>
<tr>
<td>IgE-Klasse (W): 1</td>
</tr>
<tr>
<td>Pricktest (W): negativ</td>
</tr>
<tr>
<td>Intrakutantest (W): 0,1 µg/ml</td>
</tr>
</tbody>
</table>

Dieser Fallbericht zeigt auch, dass eine IgE-vermittelte Allergie und der Schutz durch eine SIT kein Alles-oder-nichts-Phänomen ist. Es muss davon ausgegangen werden, dass besondere Umstände, z. B. Stich in die gut vaskularisierte Unterlippe oder größere Giftmengen durch multiple Stiche, durchaus entscheidend für die klinischen Symptome sind. Toxische Reaktionen auf Insektengifte sind erst bei mehr als 50 Stichen möglich, im Vordergrund stehen dann Symptome wie Hämolyse, Rhabdomyolyse, ZNS-Symptome, Nieren- und Leberinsuffizienz [3, 16, 108].

Von manchen Autoren wird die Durchführung einer Stichprovokation als Methode zur Überprüfung der Wirksamkeit einer Bienen-/Wespengift-SIT gefordert [1, 67]. Patienten mit anaphylaktischen Reaktionen bei der Stichprovokation könnten anschließend durch eine Erhöhung der Erhaltungsdosis besser geschützt werden [109]. Eine Re-Sensibilisierung oder die Wirkung höherer Giftdosen (z. B. bei multiplen Stichen) werden mit einer Stichprovokation aber nicht erfasst. Es ist daher sehr fraglich, ob man die eben diskutierten zwei Patienten aus dem untersuchten Kollektiv (Tab. 31 und 32) mit einer Stichprovokation identifiziert hätte. Auch aufgrund der schwierigen Standardisierung besitzt die Stichprovokation nur eine beschränkte Aussagekraft und ist gleichzeitig

5.5 Vergleich von Patienten mit erfolgreicher Therapie und Therapieversagern

Trotz lebensbedrohlicher Feldstichreaktion der beiden Wespengiftallergiker hatten Bienengiftallergiker insgesamt eine etwas geringere Therapieerfolgsrate (89,0 % vs. 93,3 %). Der Unterschied war jedoch nicht signifikant (p = 0,219). Auch in anderen Untersuchungen, z. B. von Rösch et al. [107], Pryzbilla et al. [110] oder Lerch et al. [104] zeigte sich kein signifikanter Unterschied zwischen der Effektivität einer Bienen- und einer Wespengift-SIT. In den Tabellen 29 und 30 ist ein Trend zur besseren Wirksamkeit der Wespengift-SIT zu erkennen. Wahrscheinlich kann nur aufgrund der niedrigen Fallzahl an Therapieversagern meist kein statistisch signifikanter Unterschied zwischen Bienenund Wespengiftallergikern festgestellt werden (Fehler zweiter Art). Daher wird in aktuellen Übersichtsarbeiten [111, 112] die Bienengiftallergie trotzdem als Risikofaktor für ein Therapieversagen genannt.

Der Anaphylaxiegrad des Indikatorstiches hatte dagegen einen signifikanten Einfluss auf die Wirksamkeit einer SIT (p = 0,014). Ein hoher Anaphylaxiegrad wirkte sich ne-

Atopiker waren in der Gruppe der Therapieversager mit 41,7 % und bei den Patienten mit erfolgreicher Therapie mit 24,2 % vertreten. Dieser Unterschied war jedoch statistisch nicht signifikant (p = 0,058). In verschiedenen Studien [96, 99, 116, 117] zeigte sich ein Einfluss der Ato pie auf die Schwere der allergischen Reaktion beim Indikatorstich. Atopiker hatten häufigere und stärkere respiratorische Symptome als Nicht-Atopiker. Im Ganzen waren Atopiker aber nicht öfter von einer Insektengiftallergie betroffen als die Allgemeinbevölkerung (siehe auch Diskussion 5.3 „Vergleich von Bienen- und Wespengiftallergikern“). Aufgrund der relativ geringen Fallzahl (Therapiever-
sager waren nur 27 Patienten) kann ein Einfluss der Atopie auf die Wirksamkeit der SIT nicht sicher ausgeschlossen werden.

Patienten mit allergischem oder nicht-allergischem Asthma waren in beiden Gruppen mit knapp 10 % vertreten. Asthma wird hin und wieder als Risikofaktor für schwere Stichreaktionen angegeben [96, 116, 118]. Als Einflussgröße auf den Therapieerfolg spielt diese Erkrankung aber keine Rolle.

Bei den spezifischen IgE-Klassen und den Schwellenwertkonzentrationen im Hauttest sah man keinen signifikanten Unterschied zwischen den beiden Vergleichsgruppen. Dies betrifft die Testergebnisse vor SIT-Beginn, die Ergebnisse am Ende der SIT, sowie deren zeitliche Veränderung. Fünf Therapieverlierer hatten beim Feldstich anaphylaktische Symptome, obwohl bei ihnen die spezifischen IgE-Antikörper am Ende der SIT gar nicht mehr nachweisbar waren (siehe Diagr. 34, „Spezifische IgE-Bestimmung am Ende der SIT"). Vergleichbare Untersuchungen kamen zu ähnlichen Ergebnissen, z. B. Müller et al. [119], die an 67 Bienengiftallergikern die spezifischen IgE-Werte vor SIT und kurz vor der Stichprovokation (während laufender SIT) ermittelten. 15 Patienten entwickelten bei der Stichprovokation erneut anaphylaktische Symptome. Anhand der IgE-Klassen konnten diese Therapieverlierer aber nicht identifiziert werden. Auch Eich-Wanger et al. [90] zeigten in einer Untersuchung an 85 Bienengiftallergikern, dass die spezifischen IgE-Klassen vor SIT nicht mit dem Therapieerfolg korrelierten. Hauttestergebnisse und die spezifischen IgE-Werte können daher nicht als Erfolgsmarker einer SIT verwendet werden [120]. Der Therapieerfolg lässt sich weder durch IgE-Werte noch durch Hauttest-Schwellenwertkonzentrationen voraussagen.

Es zeigte sich weiterhin, dass der zeitliche Abstand zwischen Indikatorstich und SIT-Beginn keinen Einfluss auf den Therapieerfolg hatte. Daraus lässt sich schließen, dass auch Patienten mit länger zurückliegenden anaphylaktischen Stichreaktionen in gleicher Maße von einer SIT profitieren, wie Patienten, bei denen die SIT zeitnah durchgeführt wurde. Vergleichbare Daten, die sich mit dem Abstand des Indikatorstiches zum SIT-Beginn und dem Therapieerfolg beschäftigten, wurden in der Literatur nicht gefunden.

In einem Positionspapier der “European Academy of Allergy and Clinical Immunology (EAACI)” zur Behandlung einer Hymenopterengiftallergie wurden mögliche Risikofaktoren für ein Therapieversagen diskutiert [73]. Die abschließende Tabelle 33 zeigt eine Zusammenfassung unserer Ergebnisse und vergleicht diese mit denen der EAACI.
Tab. 33: Vergleich unserer Daten mit einer Publikation der EAACI 2005

<table>
<thead>
<tr>
<th>Variablen</th>
<th>EAACI 2005*</th>
<th>Eigenen Daten</th>
<th>Signifikanter Unterschied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
<td>Bienengiftallergie</td>
<td>Bienengiftallergie</td>
<td>nein</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Alter</td>
<td>Erwachsene (vs. Kinder)</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Indikatorstich</td>
<td>Schwere Anaphylaxie</td>
<td>Schwere Anaphylaxie</td>
<td>ja (p = 0,014)</td>
</tr>
<tr>
<td>Atopie</td>
<td>nein</td>
<td>Atopie positiv</td>
<td>nein (p = 0,058)</td>
</tr>
<tr>
<td>Asthma</td>
<td>-</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Mastozytose</td>
<td>ja</td>
<td>-**</td>
<td>-**</td>
</tr>
<tr>
<td>Kumulative Stichereignisse vor SIT</td>
<td>-</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Schwellenwertkonzentration im Intrakutantest (vor oder am Ende der SIT)</td>
<td>hohe Schwellenwertkonzentrationen bei SIT-Ende</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Spezifischer IgE-Wert (vor oder am Ende der SIT)</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Erhöhte Serumtrypasewerte</td>
<td>ja</td>
<td>-**</td>
<td>-**</td>
</tr>
<tr>
<td>Latenzzeit</td>
<td>-</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>SIT-Dauer</td>
<td>3 Jahre (vs. 5 Jahre)</td>
<td>nein</td>
<td>nein</td>
</tr>
</tbody>
</table>

* Positionspapier von Bonifazi et al. [73]
** Mastozytose und erhöhte Serumtrypasewerte konnten aufgrund der geringen Fallzahl in unserer Studie nicht sicher bewertet werden
6 Zusammenfassung

Die Bienen-/Wespengiftallergie ist auf der einen Seite eine potentiell lebensbedrohliche IgE-vermittelte Allergiekrankheit, in Deutschland neben den Nahrungsmittelallergien die häufi

Die Wirksamkeit der SIT mit Bienengift betrug 89,0 %. Nur 11,0 % der Patienten (8 von 73 Patienten mit erneutem Bienenstich) hatten nach Beginn der SIT erneut eine
anaphylaktische Stichreaktion mit Schweregrad I oder II. Vor höhergradigen Stichreaktionen (Schweregrad III oder IV) waren nach Beginn der SIT somit 100,0 % der Bienengiftallergiker geschützt. Bei Wespengiftallergikern fanden wir eine Wirksamkeit von 93,3 %. Nur 6,7 % (19 von 284 Patienten mit erneutem Wespenstich) der Patienten mit Feldstich nach Beginn der SIT reagierten erneut mit anaphylaktischen Symptomen; davon aber zwei mit Grad III-Anaphylaxie. Somit waren auch 99,3 % der Wespengiftallergiker nach Beginn der SIT vor höhergradigen anaphylaktischen Stichreaktionen geschützt. Diese Ergebnisse bestätigen die Wirksamkeit des durchgeführten Therapieschemas in der Erhaltungsphase mit einer Dosis von 100 µg Bienen- oder Wespengift pro subkutaner Injektion (in die dorsolaterale Oberarmhaut) und einem Injektionsabstand von bis zu sechs Wochen.

Die Bestimmung des Bienen-/Wespengift-spezifischen IgE im Serum und die Hauttests dienen nur der Diagnostik und sind für den Therapieverlauf oder die Therapiekontrolle nicht verwertbar. Daher kann weder ein einzelner dieser Parameter noch eine Kombination zur Therapiekontrolle verwendet werden. Es können weiterhin nur bestimmte Befunde, wie hochgradige Anaphylaxie beim Indikatorstich, oder Komorbiditäten, wie die Mastozytose, als allgemeine Risikofaktoren für ein Versagen der SIT angegeben werden.

7 Literatur- und Abbildungsverzeichnis

7.1 Literatur- und Quellenangaben:

7.2 Abbildungsverzeichnis

Grafiken:
Abb. 1: Pathogenese der IgE-vermittelten Bienen-/Wespengiftallergie 3
Abb. 2: 4-Stufendiagnostik der Bienen-/Wespengiftallergie ... 7

Tabellen:
Tab. 1: Taxonomie.. 4
Tab. 2: Aspekte und Merkmale .. 5
Tab. 3: Schweregrad anaphylaktischer Reaktionen.. 8
Tab. 4: Notfallset .. 11
Tab. 5: Notfallmaßnahmen bei Anaphylaxie je nach Schweregrad 12
Tab. 6: Datengruppen und Variablen ... 16
Tab. 7: „Latenzzeit“.. 16
Tab. 8: „Sticheereignisse“.. 18
Tab. 9: Schwellenwertkonzentrationen .. 18
Tab. 10: Einteilung der spezifischen IgE-Werte ... 19
Tab. 11: „Diagnose“ ... 19
Tab. 12: „Feldstich“.. 21
Tab. 13: Statistische Berechnungen .. 23
Tab. 14: Kreuztabelle .. 28
Tab. 15: Erwartete Werte.. 29
Tab. 16: Vierfeldertabelle ... 31
Tab. 17: „Stichreaktion (1)“ ... 41
Tab. 18: Asthma und Atopie .. 41
Tab. 19: Latenzzeit und SIT-Dauer .. 52
Tab. 20: Zeitpunkt und Maßnahmen beim Feldstich (B) ... 54
Tab. 21: Zeitpunkt und Maßnahmen beim Feldstich (W) ... 56
Tab. 22: Latenzzeit und SIT-Dauer .. 67
Tab. 23: Häufigkeit der Diagnose ... 70
Tab. 24: Bienenvölker in europäischen Ländern ... 70
Tab. 25: Geschlechterverhältnis im Studienvergleich .. 73
Tab. 26: Altersdurchschnitt im Studienvergleich .. 74
Literatur- und Abbildungsverzeichnis

Tab. 27: Unterschiede der Anaphylaxiegrade im Studienvergleich .. 75
Tab. 28: Anzahl der Atopiker im Studienvergleich ... 76
Tab. 29: Wirksamkeit der SIT bei Bienengiftallergikern im Studienvergleich 78
Tab. 30: Wirksamkeit der SIT bei Wespengiftallergiker im Studienvergleich 79
Tab. 31: Eigenschaften von Patient # 66 ... 80
Tab. 32: Eigenschaften von Patient # 199 .. 81
Tab. 33: Vergleich unserer Daten mit einer Publikation der EAACI 2005 86

Diagramme:
Diagr. 1: Todesfälle durch Bienen-/Wespenstiche .. 2
Diagr. 2: Datenerfassung .. 34
Diagr. 3: Diagnose ... 35
Diagr. 4: Stichreaktion beim Indikatorstich ... 35
Diagr. 5: Latenzzeit .. 36
Diagr. 6: Beendete SIT ... 36
Diagr. 7: Patienten mit Feldstichen .. 37
Diagr. 8: Geschlechterverteilung .. 38
Diagr. 9: Altersverteilung ... 40
Diagr. 10: Kumulative Insektenstiche vor SIT-Beginn ... 42
Diagr. 11: Pricktestung vor SIT .. 44
Diagr. 12: Pricktestung am Ende der SIT .. 45
Diagr. 13: Intrakutantestung vor SIT-Beginn ... 47
Diagr. 14: Intrakutantestung am Ende der SIT ... 48
Diagr. 15: Spezifische IgE-Bestimmung vor SIT ... 50
Diagr. 16: Spezifische IgE-Bestimmung am Ende der SIT ... 51
Diagr. 17: Feldstichzeitpunkt (B) .. 53
Diagr. 18: Stichreaktion bei Feldstich (B) ... 53
Diagr. 19: Feldstichzeitpunkt (W) .. 55
Diagr. 20: Stichreaktion bei Feldstich (W) ... 55
Diagr. 21: Diagnose .. 57
Diagr. 22: Geschlechterverteilung ... 57
Diagr. 23: Altersverteilung ... 58
Diagr. 24: Stichreaktion beim Indikatorstich .. 60
Diagramm 25: Atopie ... 60
Diagramm 26: Kumulative Stichanzahl vor SIT ... 61
Diagramm 27: Pricktestung vor SIT .. 62
Diagramm 28: Pricktestung am Ende der SIT .. 62
Diagramm 29: Veränderung der Schwellenwertkonzentration (Pricktest) 63
Diagramm 30: Intrakutan testing vor SIT ... 64
Diagramm 31: Intrakutan testing am Ende der SIT 64
Diagramm 32: Veränderung der Schwellenwertkonzentration (Intrakutan testing) 65
Diagramm 33: Spezifische IgE-Bestimmung vor SIT 66
Diagramm 34: Spezifische IgE-Bestimmung am Ende der SIT 66
Diagramm 35: Veränderung der IgE-Klassen ... 67
Diagramm 36: SIT-Dauer in Abhängigkeit vom Anaphylaxiegrad 72
8 Anhang

8.1 Fragebogen zur Datenerhebung

<table>
<thead>
<tr>
<th>Fragebogen zur Therapiekontrolle Ihrer Insektengiftallergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Erika Mustermann</td>
</tr>
<tr>
<td>Geburtstag: 28.02.1964</td>
</tr>
</tbody>
</table>

1. Wie oft sind Sie seit Beginn der Hyposensibilisierung gegen Ihre Bienen-/Wespengiftallergie noch einmal gestochen worden?

- [] Biene: _______ (Anzahl)
- [] Wespe: _______ (Anzahl)
- [] von unbekanntem Insekt: _______ (Anzahl)
- [] seit Beginn der Hyposensibilisierung bin ich nicht mehr gestochen worden

2. Wann war das ungefähr?

(Bei den Zeitangaben bei dieser Frage und den nachfolgenden Fragen 4 – 7 ist die Jahresangabe völlig ausreichend. Wenn Sie das Jahr nicht mehr wissen, dann geben sie bitte einen ungefähren Zeitraum an. Bei mehreren Stichen geben Sie auch bitte mehrere Zeitpunkte an.)

- Biene: __
- Wespe: __
- Hornisse: ___
- Hummel: ___
- unbekanntes Insek: ________________________________
3. Welche Symptome traten bei den von Ihnen oben aufgeführten Stichen auf?

- keine Reaktion
- normale Reaktion (leichte Schwellung, Rötung an der Einstichstelle)
- größere Schwellung um die Einstichstelle
- Schwellung oder Ausschlag am ganzen Körper
- Rötung oder Juckreiz am ganzen Körper
- Schwellung im Gesicht
- Hitzewallung
- Nesselsucht/Quaddeln am ganzen Körper
- Schwindel
- Herzrasen
- Blutdruckabfall
- Übelkeit
- Erbrechen
- Engegefühl in der Brust
- Urin-/Stuhlabgang
- Atemnot
- Heiserkeit
- Bewusstlosigkeit
- Herz-Kreislauf-Stillstand
- Sonstige Reaktion: ______________________________

4. Traten diese Symptome jedesmal, nur bei wenigen oder nur bei einem bestimmten Stich auf? (Bei dieser und den nachfolgenden Fragen ist bei den Zeitangaben das Jahr - wann sie gestochen wurden - völlig ausreichend)

- jedesmal
- bei wenigen Stichen: ___________________________ (Insekt, Zeitangabe(n))
- bei einem Stich: ________________________________ (Insekt, Zeitangabe(n))

5. Haben Sie Ihr Notfallset bei einem der Stiche angewandt?

- noch nie

- Tropfen bzw. Fläschchen (Fenistil und/oder Celestamine) vom Notfallset angewandt bei folgenden Stichen:

 (Insekt, Zeitangabe(n))

- Spray (Adrenalin Medihaler / Primatene MIST Inhaler) oder Spritze (Fastjekt / Anapen) vom Notfallset angewandt bei folgenden Stichen:

 (Insekt, Zeitangaben(n))
6. Wurde direkt nach dem Insektenstich ein Arzt kontaktiert?

☐ niemals

☐ Hausarzt oder anderer Arzt (z.B. Vertretung) aufgesucht bei folgenden Stichen:

__________________________ _____________________________
(Insekt, Zeitangabe(n))

☐ Notarzt gerufen bei folgenden Stichen:

__________________________ _____________________________
(Insekt, Zeitangabe(n))

☐ Sonstiges:

__________________________ _____________________________
(weitere Angaben, Insekt, Zeitangabe(n))

7. Erfolgt bei ihrem Hausarzt, Vertretung des Hausarztes oder im Krankenhaus eine Überwachung?

☐ niemals

☐ weniger als eine Stunde bei folgenden Stichen:

__________________________ _____________________________
(Insekt, Zeitangabe(n))

☐ ca. 1 Stunde oder länger bei folgenden Stichen:

__________________________ _____________________________
(Insekt, Zeitangabe(n))

☐ über 1 Nacht oder länger im Krankenhaus gewesen bei folgenden Stichen:

__________________________ _____________________________
(Insekt, Zeitangabe(n))

8. Anmerkungen:

__
__
__
__
__
__
__
__
8.2 Statistische Berechnungen

8.2.1 Statistik 1

Stichreaktion (1):

- **Nullhypothese:** Die Anaphylaxiegrade beim Indikatorstich unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.

 Alternativhypothese: Die Anaphylaxiegrade beim Indikatorstich unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

- **Irrtumswahrscheinlichkeit:** \(\alpha = 0.05 \)

- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>157</td>
<td>351,11</td>
<td>55123,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>507</td>
<td>326,74</td>
<td>165656,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Stichreaktion (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Testvariable)</td>
</tr>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
<tr>
<td>36878,500</td>
</tr>
<tr>
<td>-1,517</td>
</tr>
<tr>
<td>.129</td>
</tr>
</tbody>
</table>

 a. Gruppenvariable: Diagnose

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Vergleich zwischen der moderaten/schweren Anaphylaxie und der Diagnose:

- **Nullhypothese:** Zwischen Patienten mit moderaten (Grad I + II) und schweren (Grad III + IV) allergischen Reaktionen (beim Indikatorstich) und den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker gibt es keine Unterschiede.

 Alternativhypothese: Zwischen Patienten mit moderaten (Grad I + II) und schweren (Grad III + IV) allergischen Reaktionen (beim Indikatorstich) und den
Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker gibt es signifikante Unterschiede.

- Irrtumswahrscheinlichkeit: $\alpha = 0,05$
- Kreuztabelle:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Stichreaktion (1), gruppiert} & \text{Grad I + II} & \text{Grad III + IV} & \text{Gesamt} \\
\hline
\text{Anzahl} & 129 & 28 & 157 \\
\text{Anzahl % von Diagnose} & 82,2% & 17,8% & 100,0% \\
\hline
\text{Bienengiftallergie} & 395 & 112 & 507 \\
\text{Wespengiftallergie} & 77,9% & 22,1% & 100,0% \\
\hline
\text{Gesamt} & 524 & 140 & 664 \\
\hline
\end{array}
\]

- Chi-Quadrat-Test:

\[
\begin{array}{|c|c|c|}
\hline
\text{Chi-Quadrat nach Pearson} & \text{Chi-Quadrat} & \text{df} \\
\hline
\text{Wert} & 1,305^b & 1 \\
\text{Anzahl der gültigen Fälle} & 664 & \\
\hline
\text{Asymptotische Signifikanz (2-seitig)} & .253 & \\
\hline
\end{array}
\]

b. 0 Zellen (0,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 33,10.

- Bewertung: Die Nullhypothese wird nicht abgelehnt.

Atopie:

- **Nullhypothese:** Die beiden Variablen Diagnose und Atopie sind unabhängig voneinander.
- **Alternativhypothese:** Die beiden Variablen Diagnose und Atopie stehen miteinander in Verbindung.
- Irrtumswahrscheinlichkeit: $\alpha = 0,05$
Anhang

- **Kreuztabelle:**

 Kreuztabelle (Atopie*Diagnose)

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Bienengift-allergie</th>
<th>Wespengift-allergie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopie negativ</td>
<td>Anzahl</td>
<td>101</td>
<td>352</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>74,3%</td>
<td>76,2%</td>
<td>75,8%</td>
</tr>
<tr>
<td>Atopie positiv</td>
<td>Anzahl</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>25,7%</td>
<td>23,8%</td>
<td>24,2%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Anzahl</td>
<td>136</td>
<td>462</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

- **Chi-Quadrat-Test:**

 Chi-Quadrat-Test

<table>
<thead>
<tr>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>0,212</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>598</td>
<td></td>
</tr>
</tbody>
</table>

b. 0 Zellen (0,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 32,98.

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Asthma:

- **Nullhypothese:** Die beiden Variablen Diagnose und Asthma sind unabhängig voneinander.

 Alternativhypothese: Die beiden Variablen Diagnose und Asthma stehen miteinander in Verbindung.

- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$

Kreuztabelle:

Kreuztabelle (Asthma * Diagnose)

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Bienengift-allergie</th>
<th>Wespengift-allergie</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma Nein</td>
<td>Anzahl</td>
<td>103</td>
<td>368</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>92,8%</td>
<td>91,8%</td>
<td>92,0%</td>
</tr>
<tr>
<td>Ja</td>
<td>Anzahl</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>7,2%</td>
<td>8,2%</td>
<td>8,0%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Anzahl</td>
<td>111</td>
<td>401</td>
</tr>
<tr>
<td>% von Diagnose</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>
• **Chi-Quadrat-Test:**

Chi-Quadrat-Test

<table>
<thead>
<tr>
<th></th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>0,123^b</td>
<td>1</td>
<td>0,725</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. 0 Zellen (.0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 8,89.

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Latenzzeit:

• **Nullhypothese:** Die Latenzzeiten unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.

• **Alternativhypothese:** Die Latenzzeiten unterscheiden sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

• **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05 \)

• **Rangsummenbildung:**

Rangsummenberechnung

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>156</td>
<td>342,02</td>
<td>53355,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>506</td>
<td>328,26</td>
<td>166097,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>662</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Signifikanztestung:**

Statistik für Test\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>Latenzzeit (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>37826,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,079</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,280</td>
</tr>
</tbody>
</table>

\(^a\) Gruppenvariable: Diagnose

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

SIT-Dauer:

• **Nullhypothese:** Die Dauer der SIT unterscheidet sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker nicht.
Alternativhypothese: Die Dauer der SIT unterscheidet sich zwischen den Vergleichsgruppen Bienengiftallergiker und Wespengiftallergiker signifikant.

- Irrtumswahrscheinlichkeit: \(\alpha = 0,05 \)

Rangsummenbildung:

<table>
<thead>
<tr>
<th>Diagnose (Gruppe)</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>157</td>
<td>348,53</td>
<td>54719,50</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>504</td>
<td>325,54</td>
<td>164071,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>661</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Patienten mit lebenslanger SIT konnten bei der Berechnung nicht berücksichtigt werden.

Signifikanztestung:

<table>
<thead>
<tr>
<th>Statistik für Test<sup>a</sup></th>
<th>SIT-Dauer (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>36811,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,456</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.145</td>
</tr>
</tbody>
</table>

^a Gruppenvariable: Diagnose

Bewertung: Die Nullhypothese wird nicht abgelehnt

8.2.2 Statistik 2

Diagnose:

- Nullhypothese: Die beiden Variablen Gruppenzugehörigkeit und Diagnose sind unabhängig voneinander.

Alternativhypothese: Die beiden Variablen Gruppenzugehörigkeit und Geschlecht stehen miteinander in Verbindung.

- Irrtumswahrscheinlichkeit: \(\alpha = 0,05 \)
• **Kreuztabelle:**

Kreuztabelle (Diagnose*Gruppenzugehörigkeit)

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Anzahl</th>
<th>% von Gruppe</th>
<th>Gruppenzugehörigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienengiftallergie</td>
<td>65</td>
<td>19,7%</td>
<td>Erfolgreiche Therapie</td>
</tr>
<tr>
<td>Wespengiftallergie</td>
<td>265</td>
<td>80,3%</td>
<td>Therapieversager</td>
</tr>
<tr>
<td>Gesamt</td>
<td>330</td>
<td>100,0%</td>
<td>Gesamt</td>
</tr>
</tbody>
</table>

Geschlechterverteilung:

- **Nullhypothese:** Die beiden Variablen Gruppenzugehörigkeit und Geschlecht sind unabhängig voneinander.
- **Alternativhypothese:** Die beiden Variablen Gruppenzugehörigkeit und Geschlecht stehen miteinander in Verbindung.
- **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05\)
- **Kreuztabelle:**

Kreuztabelle (Geschlecht *Gruppenzugehörigkeit)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Anzahl</th>
<th>% von Gruppe</th>
<th>Gruppenzugehörigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>181</td>
<td>54,8%</td>
<td>Erfolgreiche Therapie</td>
</tr>
<tr>
<td>weiblich</td>
<td>149</td>
<td>45,2%</td>
<td>Therapieversager</td>
</tr>
<tr>
<td>Gesamt</td>
<td>330</td>
<td>100,0%</td>
<td>Gesamt</td>
</tr>
</tbody>
</table>
Chi-Quadrat-Test:

<table>
<thead>
<tr>
<th>Chi-Quadrat nach Pearson</th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>.452</td>
<td>1</td>
<td>.502</td>
</tr>
</tbody>
</table>

b. 0 Zellen (.0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 12,33.

Bewertung: Die Nullhypothese wird nicht abgelehnt.

Altersverteilung:

Irrtumswahrscheinlichkeit: $\alpha = 0,05$

Voraussetzungen, T-Wert, Freiheitsgrade und Signifikanztestung:

Statistik

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>330</td>
<td>37,76</td>
<td>15,163</td>
<td>.835</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>27</td>
<td>38,81</td>
<td>12,545</td>
<td>2,414</td>
</tr>
</tbody>
</table>

T-Test bei unabhängigen Stichproben (Altersverteilung)

<table>
<thead>
<tr>
<th>Varianzen sind gleich</th>
<th>F</th>
<th>Signifikanz</th>
<th>T</th>
<th>df</th>
<th>Sig. (2-seitig)</th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,772</td>
<td>.184</td>
<td>-.350</td>
<td>355</td>
<td>.726</td>
<td>-1,051</td>
<td>3,000</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>-411</td>
<td>-411</td>
<td>32,5</td>
<td></td>
<td>683</td>
<td>-1,051</td>
<td>2,555</td>
</tr>
</tbody>
</table>

Bewertung: Die Nullhypothese wird nicht abgelehnt.
Anhang

Atopie:

- **Nullhypothese**: Die beiden Variablen Gruppenzugehörigkeit und Atopie sind unabhängig voneinander.

 Alternativhypothese: Die beiden Variablen Gruppenzugehörigkeit und Atopie stehen miteinander in Verbindung.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0,05$

- **Kreuztabelle**:

<table>
<thead>
<tr>
<th>Gruppenzugehörigkeit</th>
<th>erfolgreiche Therapie</th>
<th>Therapieverabfolger</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopie negativ</td>
<td>226</td>
<td>14</td>
<td>240</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>75,8%</td>
<td>58,3%</td>
<td>74,5%</td>
</tr>
<tr>
<td>posiv</td>
<td>72</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>24,2%</td>
<td>41,7%</td>
<td>25,5%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>298</td>
<td>24</td>
<td>322</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

 - **Chi-Quadrat-Test**:

 - **Bewertung**: Die Nullhypothese wird nicht abgelehnt.

Asthma:

- **Nullhypothese**: Die beiden Variablen Gruppenzugehörigkeit und Asthma sind unabhängig voneinander.

 Alternativhypothese: Die beiden Variablen Gruppenzugehörigkeit und Asthma stehen miteinander in Verbindung.

- **Irrtumswahrscheinlichkeit**: $\alpha = 0,05$
• **Kreuztabelle:**

<table>
<thead>
<tr>
<th>Gruppenzugehörigkeit</th>
<th>Gruppenzugehörigkeit</th>
<th>Gruppenzugehörigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>Nein</td>
<td>Anzahl</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>228</td>
<td>19</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>90,1%</td>
<td>90,5%</td>
</tr>
<tr>
<td>Ja</td>
<td>Anzahl</td>
<td></td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>9,9%</td>
<td>9,5%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Anzahl</td>
<td></td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>253</td>
<td>21</td>
</tr>
<tr>
<td>% von Gruppe</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Chi-Quadrat-Tests:

<table>
<thead>
<tr>
<th>Chi-Quadrat-Tests</th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (1-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>.003 b</td>
<td>1</td>
<td>.958</td>
<td>1.000</td>
<td>.658</td>
</tr>
</tbody>
</table>

b. 1 Zellen (25,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 2,07.

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Kumulative Stichereignisse:

• **Nullhypothese:** Die Anzahl der kumulativen Stichereignisse unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

• **Irrtumswahrscheinlichkeit:** α = 0,05

• **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Rangsummenberechnung</th>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>erfolgreich Therapie</td>
<td>253</td>
<td>135,45</td>
<td>34269,50</td>
</tr>
<tr>
<td></td>
<td>Therapieversager</td>
<td>20</td>
<td>156,58</td>
<td>3131,50</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>273</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

\(a\). Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Pricktest vor SIT:

• **Nullhypothese:** Die Ergebnisse der Pricktestung vor SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

Alternativhypothese: Die Ergebnisse der Pricktestung vor SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

• **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05\)

• **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Rangsummenberechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
</tr>
<tr>
<td>erfolgreiche Therapie</td>
</tr>
<tr>
<td>Therapieversager</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pricktest vor SIT (Testvariable)</td>
</tr>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

\(a\). Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.
Pricktest am Ende der SIT:

- **Nullhypothese:** Die Ergebnisse der Pricktestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Ergebnisse der Pricktestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$
- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>310</td>
<td>167,26</td>
<td>51851,00</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>26</td>
<td>183,27</td>
<td>4765,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Testa</th>
<th>Pricktest am Ende der SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3646,00</td>
</tr>
<tr>
<td>Z</td>
<td>-1,133</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.257</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Gruppe

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Veränderung im Pricktest:

- **Nullhypothese:** Die Veränderungen der Schwellenwertkonzentrationen im Pricktest (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Veränderungen der Schwellenwertkonzentrationen im Pricktest (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$
• **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>309</td>
<td>169,62</td>
<td>52412,00</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>25</td>
<td>141,32</td>
<td>3533,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>334</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Veränderung im Pricktest (Testvariable)</th>
<th>Mann-Whitney-U</th>
<th>Z</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3208,000</td>
<td>-1,532</td>
<td>.126</td>
</tr>
</tbody>
</table>

 a. Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Intrakutantest vor SIT:

- **Nullhypothese:** Die Ergebnisse der Intrakutantestung vor der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Ergebnisse der Intrakutantestung vor der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.
- **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$

• **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>317</td>
<td>169,73</td>
<td>53803,00</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>25</td>
<td>194,00</td>
<td>4850,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrakutantest vor SIT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>(Z)</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

\(^a\) Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Intrakutantest am Ende der SIT:

• **Nullhypothese:** Die Ergebnisse der Intrakutantestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

Alternativhypothese: Die Ergebnisse der Intrakutantestung am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

• **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05\)

• **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Rangsummenberechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gruppe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>erfolgreiche Therapie</td>
</tr>
<tr>
<td>Therapieversager</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

Signifikanztestung:

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrakutantest am Ende der SIT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>(Z)</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

\(^a\) Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

Veränderung im Intrakutantest:
Nullhypothese: Die Veränderungen der Schwellenwertkonzentrationen im Intrakutantest (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

Alternativhypothese: Die Veränderungen der Schwellenwertkonzentrationen im Intrakutantest (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

Irrtumswahrscheinlichkeit: $\alpha = 0,05$

Rangsummenbildung:

Rangsummenberechnung

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>299</td>
<td>161,56</td>
<td>48307,50</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>24</td>
<td>167,44</td>
<td>4018,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>323</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signifikanztestung:

Statistik für Testa

<table>
<thead>
<tr>
<th></th>
<th>Veränderung im Intrakutantest (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3457,50</td>
</tr>
<tr>
<td>Z</td>
<td>-.317</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.751</td>
</tr>
</tbody>
</table>

a: Gruppenvariable: Gruppe

Bewertung: Die Nullhypothese wird nicht abgelehnt.

IgE-Klasse vor SIT:

Nullhypothese: Die spezifischen IgE-Klassen vor SIT-Beginn unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

Alternativhypothese: Die spezifischen IgE-Klassen vor SIT-Beginn unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

Irrtumswahrscheinlichkeit: $\alpha = 0,05$
• **Rangsummenbestimmung:**

Rangsummenberechnung

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>330</td>
<td>177,08</td>
<td>58436,50</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>27</td>
<td>202,46</td>
<td>5466,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>357</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Signifikanztestung:**

Statistik für Test

<table>
<thead>
<tr>
<th>Testvariable</th>
<th>IgE-Klasse vor SIT (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3821,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,282</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.200</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

IgE-Klasse am Ende der SIT:

• **Nullhypothese:** Die spezifischen IgE-Klassen am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.

 Alternativhypothese: Die spezifischen IgE-Klassen am Ende der SIT unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

• **Irrtumswahrscheinlichkeit:** $\alpha = 0,05$

• **Rangsummenbestimmung:**

Rangsummenberechnung

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>307</td>
<td>166,28</td>
<td>51047,50</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>25</td>
<td>169,22</td>
<td>4230,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Signifikanztestung:**
Veränderung in der IgE-Klasse:

- **Nullhypothese:** Die Veränderungen in der IgE-Klasse (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Veränderungen in der IgE-Klasse (Testzeitpunkt: vor SIT und am Ende der SIT) unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.

- **Irrtumswahrscheinlichkeit:** $\alpha = 0.05$

Rangsummenbildung:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>307</td>
<td>168,44</td>
<td>51710,50</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>25</td>
<td>142,70</td>
<td>3567,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signifikanztestung:

<table>
<thead>
<tr>
<th>Statistik für Testa</th>
<th>Veränderung in der IgE-Klasse (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3242,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,326</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.185</td>
</tr>
</tbody>
</table>

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.
Latenzzeit:

- **Nullhypothese:** Die Latenzzeiten unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Latenzzeiten unterscheiden sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.
- **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05 \)
- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>327</td>
<td>178,11</td>
<td>58241,50</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>27</td>
<td>170,13</td>
<td>4593,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
<th>Latenzzeit (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>4215,500</td>
</tr>
<tr>
<td>Z</td>
<td>-0,534</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,593</td>
</tr>
</tbody>
</table>
\(^a\) Gruppenvariable: Gruppe

- **Bewertung:** Die Nullhypothese wird nicht abgelehnt.

SIT-Dauer:

- **Nullhypothese:** Die Dauer der SIT unterscheidet sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ nicht.
- **Alternativhypothese:** Die Dauer der SIT unterscheidet sich zwischen den Vergleichsgruppen „erfolgreiche Therapie“ und „Therapieversager“ signifikant.
- **Irrtumswahrscheinlichkeit:** \(\alpha = 0,05 \)
- **Rangsummenbildung:**

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Therapie</td>
<td>330</td>
<td>178,08</td>
<td>58765,00</td>
</tr>
<tr>
<td>Therapieversager</td>
<td>27</td>
<td>190,30</td>
<td>5138,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>357</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Signifikanztestung:**

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
<th>SIT-Dauer (Testvariable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>4150,000</td>
</tr>
<tr>
<td>Z</td>
<td>-.654</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.513</td>
</tr>
</tbody>
</table>

\(^a\) Gruppenvariable: Gruppe

• **Bewertung:** Die Nullhypothese wird nicht abgelehnt.
Danksagung

Für die Vergabe des Themas, die konstruktive Anleitung und die außerordentlich gute Betreuung danke ich sehr herzlich Herrn Prof. Dr. med. Axel Trautmann, Leitender Oberarzt der Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie der Universität Würzburg.

Auch möchte ich Herrn Johannes Horstmann für die Begutachtung meiner Arbeit auf Form und sprachliche Korrektheit herzlichst danken.

Bernd Hofmann
Lebenslauf

Name Bernd Hofmann
Geburtsdatum/-ort 20.05.1983 in Aschaffenburg

1993 – 1995 Ivo-Zeiger-Schule Mömbris
1995 – 1999 Staatliche Realschule Hösbach
1999 – 2002 Berufliches Gymnasium der Ludwig-Geisler-Schule in Hanau
05/2002 Allgemeine Hochschulreife

Zivildienst 09/2002 – 06/2003 Auf der Intensivstation des Kreiskrankenhauses Wasserlos

Studium 10/2003 – 05/2010 Medizinstudium an der Julius-Maximilians-Universität Würzburg
05/2010 Approbation als Arzt

Beruf Seit 01/2011 Assistenzarzt am Uniklinikum Mannheim

Würzburg, den 01.02.2011 Bernd Hofmann