A gene encoding a superoxide dismutase of the facultative intracellular bacterium *Listeria monocytogenes*†

(Recombinant DNA; metalloenzyme; paraquat; oxidative stress; genetic complementation; pathogenic bacteria; hybrid enzyme formation)

Klaus Brehm, Albert Haas*, Werner Goebel and Jürgen Kreft

Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Lehrstuhl Mikrobiologie, W-8700 Würzburg (Germany)

Received by R.E. Yasbin: 9 December 1991; Revised/Accepted: 2 March/13 March 1992; Received at publishers: 23 April 1992

SUMMARY

A gene (*lmsod*) encoding superoxide dismutase (SOD; EC 1.15.1.1) of the facultative intracellular pathogen, *Listeria monocytogenes*, was cloned by functional complementation of an SOD-deficient *Escherichia coli* mutant. The nucleotide sequence was determined and the deduced amino acid (aa) sequence (202 aa) showed close similarity to manganese-containing SOD's from other organisms. Subunits of the recombinant *L. monocytogenes* SOD (re-SOD) and of both *E. coli* SOD's formed enzymatically active hybrid enzymes in vivo. DNA/DNA-hybridization experiments showed that this type of recombinant re-sod gene is conserved within the genus *Listeria*.

INTRODUCTION

L. monocytogenes is a Gram⁺ bacterial pathogen causing severe opportunistic infections in man and animals. It is able to survive and to multiply within phagocytic host cells such as macrophages and thus has been named a 'facultative intracellular bacterium'. The uptake of *L. monocytogenes* by phagocytes induces a significant oxidative metabolic burst in these cells, resulting in the release of bactericidal superoxide radicals into the phagosome (McGowan et al., 1983). Superoxide dismutase (SOD; EC 1.15.1.1) converts superoxide into hydrogen peroxide, which then is metabolized by catalases and peroxidases. On the one hand, this enzyme is part of the common defense mechanisms of aerobic bacteria against endogenous oxidative stress. On the other hand, llisterial SOD can counteract the oxygen-dependent defense mechanisms which play an important role in the killing of bacteria by phagocytic cells. Therefore, SOD is considered to be a putative virulence factor of *Listeria* (Chakraborty and Goebel, 1988).

Recently the *sod* gene has been cloned from the animal pathogen *L. ivanovii* using genetic complementation of an *E. coli* sodA/sodB double mutant, grown under aerobic conditions on minimal medium containing paraquat (Haas and Goebel, 1992). *L. monocytogenes* is clearly distinct from *L. ivanovii* with regard to biochemical and serological characteristics (Rocourt, 1986). Among these two pathogenic, facultative intracellular *Listeria* species, *L. monocytogenes*

Correspondence to: Dr. K. Brehm, Biozentrum der Universität Würzburg, Lehrstuhl Mikrobiologie, Am Hubland, W-8700 Würzburg (Germany). Tel. (49-931) 888-4419; Fax (49-931) 888-4402.

* Present address: Molecular Biology Institute, UCLA, 405 Hilgard Ave., Los Angeles, CA 90024-1570 (USA). Tel. (310) 825-6885.

* Dedicated to the memory of Dr. J.-P. Lecocq

Abbreviations: aa, amino acid(s); Ap, ampicillin; B. *Bacillus*; bp, base pair(s); Δ, deletion; Fe-SOD, iron-containing SOD; kb, kilobase(s) or 1000 bp; L. *Listeria*; fid, *L. ivanovii* sod gene; *lmsod*, *L. monocytogenes* sod gene; Mn-SOD, manganese-containing SOD; nt, nucleotide(s); ORF, open reading frame; PA, polyacrylamide; PAGE, PA-gel electrophoresis; RBS, resistance; RBS, ribosome-binding site(s); re-, recombinant; SOD, superoxide dismutase; sod, gene encoding SOD; Sv, serovar; [] denotes plasmid-carrier state.
exhibits a significantly higher virulence than \textit{L. ivanovii}. To address the question whether differences in the structure and regulation of SOD may contribute to the different pathogenic potential of these two listerial species, we have cloned and characterized the \textit{sod} gene from \textit{L. monocytogenes}. In addition, the isolation of this gene will enable us to construct defined mutations in the \textit{sod} gene for in vivo virulence tests.

EXPERIMENTAL AND DISCUSSION

(a) Cloning of the \textit{L. monocytogenes} \textit{sod} gene and analysis of \textit{Escherichia coli} recombinants

A genomic library of HindIII-digested chromosomal DNA from \textit{L. monocytogenes} Svl/2a EGD (S.H.E. Kaufmann, Ulm, Germany) was established using plasmid pTZ18R (ApR, lacZ+; Mead et al., 1986) as a vector and \textit{E. coli} DH5\textsubscript{z} (recA\textsubscript{1}, lacZM15, hisD::Bethesda Res. Labs.) as a host. Plasmid DNA prepared from 4000 recombinant clones of this library was then used to transform \textit{E. coli} QC779 (sodA25, sodBE2; Carlioz and Touati, 1986). In contrast to \textit{E. coli} DH5\textsubscript{z}, strain QC779 is restriction proficient and thus not suitable as a primary host for heterologous DNA. The resulting \textit{E. coli} QC779 transformants were plated onto selective LB agar containing 100 µg Ap/ml and 0.05 mM paraquat (methyl viologen, Sigma Chemical Co., St Louis, MO), which induces intracellular superoxide generation (Hassan, 1988), and grown aerobically at 37°C. Under these conditions \textit{E. coli} QC779 cells which do not harbour a \textit{sod} gene cannot grow. After 15 h of incubation, 18 clones resistant to paraquat-induced superoxide generation were isolated all containing a re-plasmid with an identical 2.17-kb insert of \textit{SOD}.

Recombination of \textit{E. coli} QC779 with these re-plasmids reproducibly yielded transformants which were resistant to paraquat-induced oxidative stress.

Cell lysates from the positive clones were electrophoresed on nondenaturing PA gels and stained for SOD activity (Beauchamp and Fridovich, 1971). All clones showed a SOD activity band which comigrated with the authentic \textit{L. monocytogenes} SOD (R, value 0.64 relative to bromophenol blue on 12.5% PA gels) (Fig.2). The \textit{E. coli} SODs migrated at clearly distinct positions (R, values 0.18 for Mn-SOD, 0.51 for Fe-SOD and 0.34 for hybrid \textit{E. coli} SOD). This suggested that a full \textit{lmsod} gene has been selectively cloned by this procedure. The re-plasmid from one of the isolated clones (pAHAS) was chosen for further analysis.

Selection procedures reported so far for the isolation of \textit{re-sod} genes by genetic complementation in \textit{E. coli} always used paraquat-containing minimal media, and positive clones were detected within three days after transformation (Nakayama, 1990; Van Camp et al., 1990; Haas and Goebel, 1992). Our improved method gave a higher yield of positive clones which can be detected after one day of incubation.

(b) Nucleotide sequence analysis of pAHAS

The nt sequence of the complete insert of pAHAS was determined. It comprised 2170 bp with a G+C-content of 36%, typical for \textit{Listeria} DNA. The ORF of the \textit{lmsod} gene spanned 606 bp and is shown in Fig. 1, together with the 5' and 3' non-coding regions. It coded for a protein of 202 aa with a calculated M, of 22631, which is in a good agreement with the 24 kDa determined by SDS-PAGE (not shown) of cell lysates and of \textit{L. monocytogenes} SOD purified as previously described (Haas and Goebel, 1992). No putative prokaryotic export-mediating signal sequence or cytoplasmic membrane associated regions could be detected in the deduced aa sequence of \textit{L. monocytogenes} SOD by computer analysis (Devereux et al., 1984). Comparison of the \textit{lmsod} gene with the previously characterized \textit{lisd} gene revealed 89.5% nt sequence identity in the coding region and 95% identity for the deduced aa sequences. Identity ratios on the aa sequence level between the SODs of \textit{L. monocytogenes} and other microorganisms were: 71% with \textit{Bacillus stearothermophilus} Mn-SOD, 63% with \textit{E. coli} Mn-SOD, 50% with \textit{E. coli} Fe-SOD and 42% with \textit{Mycobacterium leprae} Mn-SOD. In \textit{L. monocytogenes} SOD all five aa residues which can be used as 'primary candidates' to differentiate between Mn-SODs and Fe-SODs (Gly76, Gly77, Phe144, Asp155; Fig.1) and 14 out of 17 'secondary candidates' (Parker and Blake, 1988a) correspond to the Mn-SOD type. These findings suggest that \textit{L. monocytogenes} SOD most probably is a Mn-containing enzyme, as has already been shown by enzymatic and structural analysis for the closely related \textit{L. ivanovii} SOD (Haas and Goebel, 1992).

(c) SOD activity of various \textit{Escherichia coli} sod mutants containing pAHAS

It has previously been shown that subunits of the re-
\textit{L. ivanovii} SOD form enzymatically active hybrids in vivo with subunits of both \textit{E. coli} SODs (Haas and Goebel, 1992). Here we show that such a hybrid formation also occurs in \textit{E. coli} harbouring the \textit{lmsod} gene on pAHAS (Fig.2).

As has been mentioned above, in cell lysates prepared from \textit{E. coli} QC779 sodA25 sodBE2 [pAHAS] only one SOD activity band comigrating with \textit{L. monocytogenes} SOD could be detected (Fig.2, lane 5). This protein was over-expressed in \textit{E. coli}, amounting to about 15%, of the total soluble cell proteins (not shown). However, in \textit{E. coli} DH5z sodA 'sodB' [pAHAS] two activity bands in addition to \textit{E. coli} Fe-SOD, Mn-SOD and re-\textit{L. monocytogenes} SOD could be detected (Fig.2, lane 7). One of these ac-
contact in and restriction sites for Mn-SODs and according to Maniatis et al. (1982), except for the ligation during construction of the library (Pecenka et al., 1988). Recombinant oligodeoxyribonucleotide primers (approx. according to Flamm et al. (1984). Plasmids were isolated from inserts in pTZ 18R were identified by the β-galactosidase complementation assay (Maniatis et al., 1982). Restriction fragments from the pAHA8-insert migrated between activities (Rrvalue 0.61) also appeared in E. coli QC781 (sodA, Mn-SOD-deficient; Carlizio and Touati, 1986). This band migrated between E. coli Fe-SOD and L. monocytogenes SOD. The other activity (Rr value 0.47) correlated with the expression of the E. coli Mn-SOD in strain QC870 (sodB, Fe-SOD-deficient; Carlizio and Touati, 1986) and migrated between Mn-SOD and L. monocytogenes SOD (Fig. 2, lane 1). From these results we concluded that these activities constitute enzymatically active hybrids between one subunit of the L. monocytogenes SOD and one of the E. coli Fe-SOD or Mn-SOD, respectively. This assumption is supported by the fact that seven out of the eight aa residues involved in subunit contact of B. stearothermophilus SOD (Parker and Blake, 1988b) are conserved in both E. coli SODs and in the L. monocytogenes enzyme (see also Fig. 1).
Fig. 2. Functional expression of re-lmt sod in E. coli and in vivo formation of active SOD hybrids. Cleared cell lysates from the strains indicated below were electrophoresed on nondenaturing 12.5% PA gels and stained for SOD activity. The positions of E. coli Mn-SOD (MnSOD) and Fe-SOD (FeSOD), L. monocytogenes re-SOD (rSOD) as well as the hybrid SOD forms (rSOD/MnSOD; rSOD/FeSOD; FeSOD/rSOD; FeSOD/MnSOD) are indicated.

(d) DNA/DNA hybridization experiments
To investigate whether DNA sequences homologous to lmsod are also present in other species of the genus Listeria, we performed DNA/DNA hybridization experiments with an internal fragment of lmsod (Fig. 1, nt 174–756) as a probe. Under high stringency conditions, related nt sequences could be detected in L. monocytogenes Svl/2a strain MacKanass as well as in all other species of the genus (L. ivanovii, L. seeligeri, L. innocua, L. welshimeri, L. murrayi, L. grayi), indicating the conservation of this type of the sod gene within the genus (Fig. 3).

(e) Conclusions
1. Using an improved protocol for the genetic complementation of an E. coli sodA/sodB double mutant, the sod gene from L. monocytogenes was selectively cloned from a plasmid library. The aa sequence of the L. monocytogenes enzyme is almost identical to the previously characterized SOD from L. ivanovii and closely related to Mn-SODs from other organisms.
2. L. monocytogenes SOD and both E. coli SODs form enzymatically active hybrids in vivo, probably due to the high homology of aa in the contact region of the enzyme subunits. The nt sequences homologous to lmsod could be detected in all species of the genus Listeria.
3. Survival of L. monocytogenes in phagocytic cells is a crucial step in the development of listerial infections. SOD may play an important role in this process since it contributes strongly to the bacterial defense against toxic oxygen...
metabolites generated by the phagocyte. Recently it has been shown that SOD contributes to the pathogenicity of two other facultative intracellular bacteria, *Nocardia asteroides* (Beaman and Beaman, 1990) and most probably also *Shigella flexneri* (Franzon et al., 1990). The availability of the sod gene from *L. monocytogenes*, the most virulent *Listeria* species, will enable investigations on the synthesis and function of this enzyme within the infected cell. Recently, using the cloned gene, we have constructed by insertional mutagenesis a sod-deficient mutant of *L. monocytogenes*. Experiments with this mutant are in progress and will help to clarify the role of SOD in listerial infections.

ACKNOWLEDGEMENTS

We are indebted to D. Touati (Paris) for providing us with the *E. coli* sod mutants. We thank M. Wensch for critical reading of the manuscript and M. Dumbsky as well as M. Keil for excellent technical assistance. This work was supported by grants from the Bundesministerium für Forschung und Technologie (BMFT 01K18059), the Fonds der Chemischen Industrie (to J. K.) and by a fellowship to A.H. from the Boehringer Ingelheim Fonds.

REFERENCES

Beaman, L.V. and Beaman, B.L.: Monoclonal antibodies demonstrate that superoxide dismutase contributes to the protection of *Nocardia asteroides* within the intact host. Infect. Immun. 58 (1990) 3122–3128.

