Beeinflussung der Substratbindungsregion des organischen Kationentransporters 1 der Ratte durch Mutation einer intrazellulär gelegenen Aminosäure

Inaugural-Dissertation
Zur Erlangung der Doktorwürde der medizinischen Fakultät der Julius-Maximilians-Universität Würzburg
vorgelegt von
Christin Martina Semlanski
aus Mosbach

Würzburg, April 2011
Referent Prof. Dr. Hermann Koepsell
Koreferent Priv.-Doz. Dr. Frank Döring
Dekan Prof. Dr. Matthias Frosch

Tag der mündlichen Prüfung: 17.10.2011

Die Promovendin ist Zahnärztin
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 „Solute carrier 22“ (SLC22) ... 2
 1.2 Die OCTs – Vorkommen und Funktion ... 4
 1.3 Struktur und Transportmechanismus der OCTs ... 6
 1.3.1 Struktur ... 6
 1.3.2 Strukturmodell .. 7
 1.3.3 Transportmechanismus – Alternating access mechanism ... 9
 1.3.4 Aminosäuren in der Substratbindungstasche .. 10
 1.4 Zielsetzung .. 13
2 Material und Methodik .. 15
 2.1 Material ... 15
 2.1.1 Chemikalien .. 15
 2.1.2 Radiochemikalien ... 15
 2.1.3 Verwendete Arbeitsmaterialien .. 15
 2.1.4 Verwendete Enzyme ... 16
 2.1.5 Verwendete Geräte .. 16
 2.1.6 Oozytenringerlösung (ORI) .. 16
 2.1.7 Verwendete Computerprogramme .. 17
 2.1.8 Xenopus laevis .. 17
 2.1.9 Oozyten ... 18
 2.1.10 Verwendetes Substrat und Inhibitoren ... 18
 2.2 Methodik ... 20
 2.2.1 cRNA-Synthese .. 20
 2.2.2 Die Gewinnung der Oozyten .. 20
 2.2.3 Auswahl der Oozyten .. 21
 2.2.4 Injektion der Oozyten .. 21
 2.2.5 Aufbewahrung und Inkubation der Oozyten .. 22
 2.2.6 Messung der Substrataufnahme der Oozyten ... 22
 2.3 Datenauswertung .. 24
3 Ergebnisse .. 26
 3.1 Hemmung der TEA-Aufnahme durch Tetrabutylammonium ... 26
 3.2 Hemmung der TEA-Aufnahme durch Kortikosteron .. 31
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anova</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
</tr>
<tr>
<td>C</td>
<td>Cystein</td>
</tr>
<tr>
<td>Ca</td>
<td>Kalzium</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>Cl</td>
<td>Chlorid</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>14C-TEA</td>
<td>14C- Tetraethylammonium</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyldicarbonat</td>
</tr>
<tr>
<td>Dpm</td>
<td>decay per minute</td>
</tr>
<tr>
<td>F</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>GentORI</td>
<td>Oozytenringerlösung mit Gentamycin</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis- Konstante</td>
</tr>
<tr>
<td>K_i</td>
<td>Inhibitionskonstante eines Hemmstoffs</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>mittlere inhibitorische Konzentration</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>L</td>
<td>Leucin</td>
</tr>
<tr>
<td>LacY</td>
<td>Laktosepermease von Escherichia coli</td>
</tr>
<tr>
<td>M</td>
<td>Methionin</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino)propanesulfonic acid</td>
</tr>
</tbody>
</table>
MPP 1-Methyl-4-phenylpyridin
N Anzahl
Na Natrium
NaCl Natriumchlorid
NaOH Natriumhydroxid
nl Nanoliter
OAT organischer Anionentransporter
OCT organischer Kationentransporter
ORI Oozytenringerlösung
rOCT organischer Kationentransporter der Ratte
hOCT organischer Kationentransporter des Menschen
S Substrat
SDS Natriumdodecylsulfat
SLC solute carrier family
TEA Tetraethylammonium
TBUA Tetrabutylammonium
TMH Transmembran- Helix
µM Mikromolar
µl Mikroliter
v_{max} maximale Geschwindigkeit
Y Tyrosin
1 Einleitung

„It seems not improberable, but that by these [microscopes] helps the subtilty of composition of bodies, the structure of their parts, the various texture of their matter, the instruments and manner of their inward motions, and all the other possible appearances of things, may come to be more fully discovered.”

Die vorliegende Arbeit widmet sich Fragen aus diesem Themengebiet. Sie beschäftigt sich mit der Erforschung der Struktur- und Bindungseigenschaften des organischen Kationentransporters 1 der Ratte (rOCT1) und soll einen Teil zu dessen besseren Verständnis beitragen.

Organische Kationen spielen eine bedeutende Rolle in der Physiologie des Menschen. So gehören beispielsweise monoamine Neurotransmitter, wie Acetylcholin, Dopamin, Serotonin, Histamin, Cholin und Coenzyme zu dieser Gruppe, aber auch eine bedeutende Menge an Xenobiotika und Medikamenten (Koepsell et al., 2003), wie Metformin und Phenformin (Antidiabetika) (Dresser et al., 2002), das antivirale Aciclovir (Takeda et al., 2002), das Muskelrelaxanz Memantin (Busch et al., 1998) und das Antiarrhythmikum Quinidin (Van Montfoort et al., 2001). So sind etwa 50 % aller klinisch relevanten Pharmaka Kationen oder bei physiologischem pH protonierte Basen (Sturm 2005). Aufgrund der schlechten Memranpermeabilität der meisten organischen Kationen, ist die Erforschung von Transportern, die in der Lage sind organische Kationen über die Plasmamembran zu transportieren, von entscheidender Bedeutung für die Pharmakokinetik dieser Substanzen.

1 Zit. aus: Hooke R (1665) Micrographia.
1.1 „Solute carrier 22“ (SLC22)

Diese SLC22-Familie stellt eine Untergruppe der MFS (major facilitator superfamily) (Pao et al., 1998; Koepsell et al., 2003) dar. Sie beinhaltet mehrere Transporteruntergruppen, die im Folgenden näher beschrieben werden sollen. Die SLC22 besteht zum Einen aus den drei organischen Kationentransportern (OCT1-3 oder SLC22A1-3), die als Uniporter fungieren, zum Anderen aus den drei Carnitin-Kationen-Transportern (OCTN1 oder SLC22A4, hOCTN2 oder SLC22A5 und hCT2 oder OCT6 oder SLC22A16) (Koepsell und Endou 2004; Koepsell et al., 2007). Weiterhin sind die organischen Anionentransporter (OAT1-6), die als Anionenaustauscher fungieren, zu nennen, sowie die ORCTL- Kationentransporter (Koepsell und Endou, 2004; Koepsell et al., 2003). Die Mitglieder der SLC22 kommen unter anderem im Darm, der Leber und der Niere vor und spielen eine bedeutende Rolle in der Aufnahme und Ausscheidung von Medikamenten, sowie von endogenen Komponenten (Koepsell 2004; Koepsell et al., 2007). Ebenso besitzen sie homöostatische Funktion in Herz und Gehirn. Endogene Substrate sind monoamine Neurotransmitter, L-Carnitin, Cholin (Acetylcholin), α-Ketoglutarate, cAMP, cGMP und Prostaglandine (Koepsell und Endou, 2004).

Alle Mitglieder besitzen 12 Transmembrandomänen mit einer langen extrazellulären Schleife zwischen der ersten und zweiten Transmembrandomäne (Koepsell 2004) sowie einer langen intrazellulären Schleife zwischen der sechsten und siebten Transmembrandomäne. Die meisten Transporter der SLC-Familie sind polyspezifisch, was bedeutet, dass ein Transporter Stoffe verschiedener chemischer Strukturen, Größen und Molekulargewichte transportieren kann. Dies impliziert, dass ein Transporter abhängig vom zu transportierenden Stoff verschiedene Affinitäten und Umsatzraten besitzt. Liganden, die ein Molekulargewicht von 400 Da überschreiten,
fungieren häufig als Hemmstoffe (Anzai et al., 2006; Koepsell et al., 2007; Nigam et al., 2007; Rizwan und Burckhardt, 2007; Gorbunov et al., 2008).
1.2 Die OCTs – Vorkommen und Funktion

Bei den OCTs 1-3 handelt es sich um Uniporter, die Kationen und schwache Basen entlang ihres elektrochemischen Gradienten transportieren können. Vier Punkte sind allen OCTs hinsichtlich ihrer Funktion gemein. Erstens transportieren sie eine Vielzahl organischer Kationen, die verschiedene molekulare Strukturen aufweisen, und sie werden durch andere, nicht transportierte, Stoffe gehemmt (Koepsell et al., 2003). Zweitens transportieren die OCTs organische Kationen in einer elektrogenen Weise (Busch et al., 1996; Nagel et al., 1997; Budiman et al., 2000, Arndt et al., 2001; Koepsell et al., 2003; Keller et al., 2005). Drittens arbeiten die OCTs Na⁺-, Cl⁻- und pH-unabhängig (Busch et al., 1996; Budiman et al., 2000; Schmitt und Koepsell, 2005; Keller et al., 2005) und viertens sind sie in der Lage, organische Kationen in jede Richtung über die Plasmamembran zu transportieren (Busch et al., 1996; Nagel et al., 1997, Arndt et al., 2001; Volk et al., 2003).

Im Jahre 1994 wurde das erste Mitglied der OCT- Familie mittels Expressionsklonierung aus der Rattenniere isoliert. Bei diesem Transporter handelte es sich um den rOCT1 (Gründemann et al., 1994). Das Gen des rOCT1 ist auf Chromosom 1q11-12 (Koehler et al., 1996) lokalisiert und codiert ein Protein aus 556 Aminosäuren mit einem Molekulargewicht von 62 kD. Mittels Nothern Blot konnte der rOCT1 in Niere, Leber, Dünndarm und in der Lunge nachgewiesen werden (Gründemann et al., 1994). Der Transporter befindet sich sowohl in der Niere (Zhang et al., 1997a; Karbach et al., 2000; Sweet et al., 2000) als auch in der Leber (Meyer-Wentrup et al., 1998; Zhang et al., 1997b) und in den Enterozyten des Dünndarms in den basolateralen Membranen. In den Bronchien und der Trachea ist der OCT1 bei Mensch, Ratte und Maus jedoch in der luminalen Membran (Lips et al., 2005) lokalisiert. Das 1997 entdeckte menschliche Ortholog, der hOCT1 (Gorboulev et al., 1997; Zhang et al., 1997b), besitzt 555 Aminosäuren und ist wie alle menschlichen OCTs auf Chromosom 6q26-7 lokalisiert (Koepsell 2004). Er kommt im Gegensatz zum Ortholog des Nagers hauptsächlich in der Leber vor (Koepsell et al., 2007). Die Homologie des hOCT1 zum rOCT1 beträgt 78 % (Dresser et al., 2000). Die wichtigste physiologische Bedeutung des hOCT1 liegt in der Vermittlung des ersten Schrittes der
hepatischen Exkretion kationischer Arzneistoffe und Xenobiotika durch die Aufnahme über die sinusoidale (basolaterale) Membran in den Hepatozyten (Koepsell 2004).

Neben dem rOCT1 wurden zwei weitere Transporter namens rOCT2 und rOCT3 kloniert (Okuda et al., 1996; Kekuda et al., 1998; Wu et al., 1998a; Wu et al., 1998b; Sweet und Pritchard 1999a; Sweet und Pritchard 1999b). Der 1996 entdeckte rOCT2 (Okuda et al., 1996) ist vor allem in der Niere, weniger in anderen Organen wie in Dünndarm, Lunge, Haut und Gehirn lokalisiert (Sweet et al., 2001; Slitt et al., 2002; Choudhuri et al., 2003; Augustine et al., 2005; Lips et al., 2005; Alnouti et al., 2006; Koepsell et al., 2007). Er ist wie der rOCT1 in der Niere basolateral gelegen (Gorboulev et al., 1997; Karbach et al., 2000; Sweet et al., 2000). Im Jahre 1997 wurde auch ein menschliches Ortholog zum rOCT2, der hOCT2, erstmalig beschrieben (Gorboulev et al., 1997). Dieser hOCT2 wird überwiegend in der Niere, aber auch in Neuronen exprimiert (Gorboulev et al., 1997; Busch et al., 1998) und zu 70 % homolog dem hOCT1. Die Homologie zum rOCT2 beträgt 81 %. Vergleicht man das Vorkommen der OCT2 in der Niere, so ist zu erkennen, dass der hOCT2 in allen Segmenten des proximalen Tubulus zu finden ist (Motohashi et al., 2002), hingegen der rOCT2 lediglich in den Segmenten S2 und S3 lokalisiert ist (Karbach et al., 2000; Sugawara-Yokoo et al., 2000). Der hOCT2, der in allen Segmenten des proximalen Tubulus zu finden ist, vermittelt beim Menschen den ersten Schritt der renalen Sekretion kationischer Arzneimittel und den zweiten Schritt der Cholinreabsorption (Motohashi et al., 2002; Koepsell et al., 2003).

Vergleicht man die verschiedenen OCTs einer Spezies untereinander, so beträgt die Übereinstimmung der Aminosäuren 67-70 % zwischen OCT1 und OCT2, zwischen OCT1 und OCT3 47-57 % und zwischen OCT2 und OCT3 40 - 51 % (Koepsell et al., 2003).
1.3 Struktur und Transportmechanismus der OCTs

1.3.1 Struktur

Die Transporter der SLC22-Familie und somit auch die OCTs besitzen zwölf Transmembrandomänen (TMHs) und jeweils einen intrazellulären N-Terminus und einen intrazellulären C-Terminus. Es wurden zwei große Schleifen nachgewiesen. Eine lange extrazelluläre Schleife zwischen der ersten und zweiten Transmembrandomäne, die Glykosylierungsstellen besitzt, und eine lange intrazelluläre Schleife zwischen der sechsten und siebten Transmembrandomäne mit mehreren Phosphorylierungsstellen für Proteinkinasen (Gründemann et al., 1994; Meyer-Wentrup et al., 1998; Tanaka et al., 2004; Ciarimboli und Schlatter, 2005; Zhou et al., 2005; Pelis et al., 2006a+b, Hong et al., 2007; Zhou und You, 2007; Keller et al., 2008). Intensive Mutationsstudien wurden am rOCT1 und rOCT2 durchgeführt und verschiedene Mutanten charakterisiert (Gorboulev et al., 1999; Gorboulev et al., 2005; Popp et al., 2005; Sturm et al., 2007; Gorbunov et al., 2008; Volk et al., 2009). Diese Daten wurden verwendet um ein Strukturmodell zu generieren (Abb.1).

Abb.1: Membrantopologiemodell des rOCT1 nach Gründemann 1994.
1.3.2 Strukturmodell

Das Modell des rOCT1 wurde basierend auf der innergerichteten Struktur der Laktosepermease (LacY) des Bakteriums Escherichia coli generiert. (Abramson et al., 2003; Popp et al., 2005). Diese Generation war möglich, da rOCT1 und die Laktosepermease derselben Proteinsuperfamilie angehören und zu 29% Sequenzähnlichkeiten aufweisen (Popp et al., 2005). Schmitt und Koepsell beschrieben im Jahr 2005 ein Vestibulum für die Bindungsregion des rOCT2. Dieses erklärt aufgrund seiner Weite die Bindung von Molekülen verschiedener Größe an den Transporter. Weiterhin ließ der Vergleich der Größe der Substrate mit der der Bindungsregion vermuten, dass mehrere Stoffe gleichzeitig binden können. Um diesen Sachverhalt näher zu untersuchen, wurde ein Modell des rOCT1 angefertigt (Abb.2; Abb.3).

In einem weiteren Modell wurde in Analogie zu der biochemisch identifizierten, nach außen offenen, Konformation der LacY (Smirnova et al., 2006; Kaback et al., 2007; Majumdar et al., 2007) die nach außen gerichtete Konformation des rOCT1 modelliert (Gorbunov et al., 2008). Es wurden Simulationen der Ligandenbindung an dieser modellierten Struktur durchgeführt (Abb.3) um Aminosäuren zu identifizieren, die von
außen an den Transporter binden (Volk et al., 2009).

Abb. 2: Strukturmodelle des rOCT1. Die an der Bindungstasche beteiligten Aminosäuren und C451 sind farbig unterlegt. **A:** hypothetisches Membrantopologiemodell des rOCT1, **B:** nach extrazellulär offene Konformation. **C:** nach intrazellulär offene Konformation.
Abb. 3: Modell der Substratbindungsregion des rOCT1 (Popp et al., 2005).

1.3.3 Transportmechanismus – Alternating access mechanism
Man stellt sich die einzelnen Schritte eines „alternating access“-Transportmechanismus folgendermaßen vor (Koepsell et al. 2003) (Abb. 4):
(a) Das Substrat bindet an die nach außen gerichtete Konformation des Transporters.
(b) Das gebundene Substrat wird nach intrazellulär transportiert, wobei sich die Konformation des Transporters ändert.
(c) Schließlich löst sich das Substrat von der nach innen gerichteten Konformation.
(d) Die nun leere Substratbindungsregion reorientiert sich wieder nach extrazellulär, wobei die Ausgangskonformation wieder angenommen wird.

Es wird vermutet, dass die OCTs mittels eines „alternating access-Mechanismus“ ähnlich der Laktosepermease arbeiten. Zwei Beobachtungen unterstreichen diese Hypothese: Zum Einen zeigen Versuche aus dem Jahre 2003 (Volk et al., 2003), dass die Substratbindungsregion des rOCT2 sowohl von extra-, als auch von intrazellulär erreichbar ist. Zum Anderen verändern einzelne Punktmutationen, wie beispielsweise die Mutante L447Y des rOCT1, die Bindung von extra- und intrazellulär (Volk et al., 2009).

1.3.4 Aminosäuren in der Substratbindungstasche

Der Vorgang von Substratbindung und Translokation ist noch nicht gänzlich geklärt. Bisher wird angenommen, dass die OCTs Substratbindungstaschen mit teilweise überlappenden Domänen für verschiedene Substrate und Inhibitoren aufweisen (Gorboulev et al., 1999; Volk et al., 2003). Ein Vergleich bezüglich des Größenunterschieds der Bindungsregion in der nach außen gerichteten und der nach innen gerichteten Konformation des rOCT1-Modells mit den Substratmolekülen ließ

Durch Mutationsstudien wurden in den Transmembrandomänen 2, 4, 10 und 11 des rOCT1 insgesamt acht Aminosäuren identifiziert, die an der Substratbindung des rOCT1 beteiligt sind (Gorboulev et al., 1999 und 2005; Popp et al., 2005, Volk et al., 2009) (Abb.3).

Es handelt sich um Phenylalanin 160 der zweiten Transmembrandomäne (Volk et al., 2009); um drei Aminosäuren der vierten Transmembrandomäne, die im Jahre 2005 von Popp beschrieben wurden (Popp et al., 2005). Dies sind Tryptophan 218, Tyrosin 222 und Threonin 226. Studien weisen darauf hin, dass diese in der Bindungsregion des rOCT1 lokalisiert sind, da Mutationen dieser Stellen zu einer Veränderung der Affinität des Transporters führen (Popp, 2004; Popp et al., 2005).

Die drei Aminosäuren in der zehnten Transmembrandomäne sind Arginin 440, Leucin 447 und Glutamin 448 (Gorboulev et al., 2005; Volk et al., 2009). Zwei Studien aus dem Jahr 2005 belegen die Bedeutung der Position 447 einmal am rOCT1 (Gorboulev et al., 2005) und zum anderen am rbOCT2 (Zhang et al., 2005).

Als achte Aminosäure ist Aspartat 475 zu nennen (Gorboulev et al., 1999). Aufgrund
vom Mutationsstudien an der Position 475 des rOCT1 wird angenommen, dass das Asp475 innerhalb des Transportweges an der Kationenbindungsstelle positioniert ist oder in einer nahegelegenen Proteindomäne liegt und dadurch die Konformation der Kationenbindungsstelle mittels einer ionischen Interaktion mit einer anderen intramembranen Proteindomäne stabilisiert (Gorboulev et al., 1999).

1.4 Zielsetzung

Inkubationszeiten keine Aussage darüber, ob sich die beobachteten Hemmeffekte in der nach außen oder nach innen geöffneten Substratspalte abspielen. Der Hemmstoff TBuA kann die Membran nicht passiv durchdringen. Effekte von Mutationen auf die Affinität zeigen deshalb Interaktionen mit der nach außen offenen Substratbindungstasche an.
2 Material und Methodik

2.1 Material

2.1.1 Chemikalien

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalziumdichlorid</td>
<td>Sigma-Aldrich, Seelze</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>Applichem, Darmstadt</td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Kortikosteron</td>
<td>Sigma-Aldrich, Seelze</td>
</tr>
<tr>
<td>Magnesiumdichlorid</td>
<td>Fluka, Neu-Ulm</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Sigma-Aldrich, Seelze</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Tetrabutylammonium (TBuA)</td>
<td>Fluka, Neu-Ulm</td>
</tr>
<tr>
<td>MOPS</td>
<td>Applichem, Darmstadt</td>
</tr>
<tr>
<td>Tricain</td>
<td>Sigma-Aldrich, Seelze</td>
</tr>
</tbody>
</table>

Tabelle 1: verwendete Chemikalien

2.1.2 Radiochemikalien

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14C]Tetraethylammonium</td>
<td>Biotrend, Köln</td>
</tr>
</tbody>
</table>

Tabelle 2: verwendete Radiochemikalien

2.1.3 Verwendete Arbeitsmaterialien

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einwegplastikgefäße</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Glaskapillaren</td>
<td>Hilgenberg, Malsfeld</td>
</tr>
<tr>
<td>Operationsbesteck</td>
<td>Hartenstein, Würzburg</td>
</tr>
<tr>
<td>Nahtmaterial (Seide)</td>
<td>Roeko, Langenau</td>
</tr>
<tr>
<td>Szintillationscocktail Lumasafe Plus</td>
<td>Lumac LSC, Groningen (Niederlande)</td>
</tr>
<tr>
<td>Zählröhren</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
</tbody>
</table>

Tabelle 3: verwendete Arbeitsmaterialien
2.1.4 Verwendete Enzyme

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kollagenase C</td>
<td>Sigma-Aldrich, Seelze oder ICN Biomedicals, Eschwege</td>
</tr>
</tbody>
</table>

Tabelle 4: verwendete Enzyme

2.1.5 Verwendete Geräte

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flüssigkeitsszintillationszähler</td>
<td>Tri-Carb 1600CA, Canberra Packard, Dreieich</td>
</tr>
<tr>
<td>Mikroinjektionspumpe</td>
<td>Drummond, USA</td>
</tr>
<tr>
<td>Zentrifuge 5414</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Pipettenziehgerät (Puller)</td>
<td>Sutter, Novato, CA, USA</td>
</tr>
</tbody>
</table>

Tabelle 5: Verwendete Geräte

2.1.6 Oozytenringerlösung (ORI)

Die Oozyten wurden mit kalziumfreier ORI gewaschen und in GentORI gelagert. Während der Versuche wurde gentamycinfreie ORI verwendet.

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oozytenringerlösung (ORI)</td>
<td>100mM NaCl, 3mM KCl, 2mM CaCl₂, 1mM MgCl₂, 5mM MOPS, NaOH(pH 7,4)</td>
</tr>
<tr>
<td>GentORI</td>
<td>Oozytenringerlösung + 50 mg/l Gentamycin</td>
</tr>
<tr>
<td>Kalziumfreie Oozytenringerlösung</td>
<td>100mM NaCl, 3mM KCl, 1mM MgCl₂, 5mM MOPS</td>
</tr>
</tbody>
</table>

Tabelle 6: ORI-Lösungen
2.1.7 Verwendete Computerprogramme

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebssystem Windows Vista</td>
<td>Microsoft, Redmond, Washington, USA</td>
</tr>
<tr>
<td>Excel 2007</td>
<td>Microsoft, Redmond, Washington, USA</td>
</tr>
<tr>
<td>GraphPad Prism 4.0</td>
<td>Graphpad, San Diego, CA, USA</td>
</tr>
<tr>
<td>Word 2007</td>
<td>Microsoft, Redmond, Washington, USA</td>
</tr>
</tbody>
</table>

Tabelle 7: Verwendete Computerprogramme

2.1.8 Xenopus laevis

![Xenopus laevis](image)

Abb.5: *Xenopus laevis (Kickman et al., 2008)*

2.1.9 Oozyten

2.1.10 Verwendetes Substrat und Inhibitoren

2.1.10.1 Tetraethylammonium (TEA)

Tetraethylammonium

2.1.10.2 Kortikosteron

Das in dieser Arbeit als Hemmstoff fungierende Kortikosteron wurde in verschiedenen Konzentrationen angesetzt, sie betrugen im Endansatz 0,1 µM, 0,3 µM, 1 µM, 3 µM, 10 µM, 30 µM, 100 µM, 300 µM und 1000 µM.

Kortikosteron ist ein Steroidhormon der Nebennierenrinde, das über die Zwischenstufen Pregnenolon und Progesteron aus Cholesterin synthetisiert wird. Es dient als Vorstufe in der Aldosteronsynthese (Stryer et al., 2007). Kortikosteron ist ungeladen und inhibiert die OCTs, wird jedoch selbst nicht transportiert (Koepsell et al., 2007). Seine Masse beträgt 346,45 Da.

2.1.10.3 Tetrabutylammonium

Tetrabutylammonium (TBuA) ist eine quartäre Ammoniumverbindung, die als Kation vorliegt. In den in dieser Dissertation durchgeführten Versuchen fungierte TBuA als Inhibitor der [14C]-TEA-Aufnahme. Tetrabutylammonium wird von dem hOCT1 des Menschen und dem rbOCT1 des Kaninchens transportiert, hingegen nicht vom rOCT1, mOCT1 und rOCT2 (Koepsell et al., 2007). Seine Masse beträgt 242,46 Da.
2.2 Methodik

2.2.1 cRNA-Synthese
Um die gewünschte cRNA herzustellen, wurde die linearisierte DNA mit dem T7 mMessage mMachine-Kit der Firma Ambion (Austin, TX, USA) transkribiert (Ulzheimer 2002).

2.2.2 Die Gewinnung der Oozyten
Nach der Betäubung der Frösche durch 0,1 prozentige Tricainlösung wurden diese in eine Wanne mit Eis gelegt um die Körpertemperatur herunterzukühlen. Nach dem eintretenden Ausfall des Schluckreflexes konnte mit der Präparation der Oozyten begonnen werden. Der ca. 10 mm lange Schnitt wurde etwa 10 mm lateral der Medianlinie und 10 mm kranial der Symphyse durchgeführt. Es wurden Haut, Faszie und Muskulatur durchtrennt. Anschließend konnte ein Teil der Oozyten des ipsilateralen Ovars entnommen und in Oozytenringerlösung zwischengelagert werden. Der Verschluss der Operationswunde erfolgte mittels Einzelknopfnähten. Der Frosch wurde bis zum Auftreten des Fluchtreflexes ca. 15 Minuten in fließendem Wasser gelagert und anschließend einige Stunden isoliert gehalten, bevor er in das Gemeinschaftsbecken zurückgesetzt wurde.

2.2.3 Auswahl der Oozyten

Die Auswahl der Oozyten war für den Versuchsverlauf von entscheidender Bedeutung. Bei der Auswahl der Versuchsoozyten wurde darauf geachtet, nur Oozyten der Stadien 5 und 6 für die Versuche heranzuziehen.

Der Reifungsprozess der Oozyten lässt sich nach Dumont in sechs Stadien untergliedern (Dumont, 1972). Diese Stadien sollen im Folgenden kurz erläutert werden:

Stadium 1: Die Oozyten dieses Stadiums sind 50-300 µm groß. Sie besitzen ein transparentes Zytoplasma und der Zellkern ist gut erkennbar.

Stadium 2: Die Oozyten dieses Stadiums sind 300-450 µm groß. Die Dotterbildung (Vitellogenese) hat begonnen. Das Zytoplasma ist nun opaque bis weißlich.

Stadium 3: Die dotterbildenden Oozyten dieses Stadiums sind 450-600 µm groß. Das Zytoplasma erscheint homogen hellbraun.

Stadium 4: Die dotterbildenden Oozyten dieses Stadiums sind 600-1000 µm groß. Der animale (dunkle) und der vegetative (hell) Pol sind gut voneinander zu unterscheiden.

Stadium 5: Die dotterbildenden Oozyten dieses Stadiums sind 1000-1200 µm groß. Der Zellkern liegt nun in der animalen Hemisphäre. Es ist eine deutliche Trennung der Hemisphären zu erkennen.

Stadium 6: Die dotterbildenden Oozyten dieses Stadiums sind 1200-1300 µm groß. Es ist die deutliche Trennung der Hemisphären und ein unpigmentierter Gürtel am Äquator zu erkennen.

Des Weiteren wurde während des Auslesevorgangs auf eine homogene Pigmentierung, eine runde Form und einen ausreichenden Turgor geachtet.

2.2.4 Injektion der Oozyten

Die Injektion der Oozyten erfolgte unter einem Mikroskop. Die hierfür benutzte Injektionspumpe verfügt über ein Dosiersystem. Die verwendeten Injektionsspitzen wurden aus Glaskapillaren (Innendurchmesser 0,5 mm, Außendurchmesser 1 mm) mittels eines Mikroelektrodenziehgerätes (Puller) gezogen. Anschließend wurde die so
entstandene Spitze unter dem Mikroskop unter Zuhilfenahme einer mit 70 % Ethanol gereinigten Pinzette auf den gewünschten Durchmesser gebracht. Nun wurde die Kapillare blasenfrei mit Mineralöl gefüllt und in die Pumpe eingespannt.

Im Anschluss daran wurde die cRNA aufgetaut, zentrifugiert und 2-4 µl in einen mit Mineralöl gefüllten Deckel eines sterilen Eppendorfgefäßes überführt. Dann wurde die cRNA mit der Pumpe blasenfrei in die Kapillare aufgezogen.

Die Oozyten wurden aus dem Inkubator (16 °C) entnommen und in eine mit ORI gefüllte Schale mit rinnenförmigen Vertiefungen überführt, um eine stabile Lage der Oozyten während des Injektionsvorganges zu gewährleisten.

Die Injektion der Oozyten erfolgte mit 50 nl cRNA. Die Konzentration der RNA betrug 0,2 µg/µl. Jede Oozyte wurde einmal injiziert, wobei eine Injektion in den animalen Pol vermieden wurde um den Zellkern nicht zu touchieren. Durch den Injektionsvorgang verletzte oder dotternde Oozyten wurden aussortiert.

2.2.5 Aufbewahrung und Inkubation der Oozyten

2.2.6 Messung der Substrataufnahme der Oozyten

Vor Beginn der Messung wurden die zweiseinhalb Tage inkubierten Oozyten nochmalig auf ihre Tauglichkeit untersucht und aussortiert. Anschließend wurden sie je nach Überlebensrate in Achter- bis Zehnergruppen unterteilt und in Eppendorfgefäße mit 190 µl oder 188 µl ORI überführt. Ziel war es, ein Gesamtendvolumen nach Zugabe aller Reagenzien von 200 µl zu erreichen, wobei sich die Volumina wie folgt unterteilten (Pipettierschema siehe Tabellen 13 und 14 im Anhang):

- Die Gefäße der Kontrollgruppe der nichtinjizierten Oozyten sowie der Kontrollgruppe der injizierten Oozyten, die keinen Hemmstoff zugesetzt bekamen, enthielten zu Beginn 190 µl ORI.
- Die restlichen Gefäße der Oozyten, die Hemmstoff zugesetzt bekamen,
enthielten zu Beginn 188 µl ORI.

2.3 Datenauswertung

Um die Graphen darzustellen und die Parameter SEM (standard error of mean), V_{MAX}, sowie nicht-lineare Regression (Hill inhibition log) und Testhypothesen (ANOVA) durchzuführen, wurde die Software GraphPad Prism 4.0 (GraphPad Software; San Diego, Kalifornien, USA) verwendet.

Bestimmung des IC$_{50}$-Wertes:

Die verwendete Hill-Gleichung lautet:

$$V = V_{\text{max}} \left(1 - \frac{I^P}{IC_{50} + I^P}\right)$$

Da die für die Transportmessungen gewählte Substrate deutlich unter dem K_m-Wert für TEA lag, entsprechen die errechneten IC$_{50}$-Werte den jeweiligen K_i-Werten.

Um die an unterschiedlichen Oozytenpräparationen mit stark variierender Expressionskapazität durchgeführten Versuchsreihen miteinander vergleichen zu können, wurden die gemessenen Werte an Hand der ungehemmten TEA-Aufnahme normalisiert. Dargestellt werden die Versuchsergebnisse als Mittelwerte ± SEM. Um signifikante Unterschiede zwischen den an verschiedenen Mutanten gemessenen IC$_{50}$-Werten zu ermitteln, wurden die aus den Einzelmessungen gewonnenen Werte benutzt, um einen ANOVA Test und einen post hoc Test nach Tukey durchzuführen. Als signifikant wurde ein p-Wert von < 0.05 betrachtet. Die in Abbildung 7-13 dargestellten Werte sind Mittelwerte ± SEM aus allen Messungen.
3 Ergebnisse

3.1 Hemmung der TEA-Aufnahme durch Tetrabutylammonium

Um festzustellen, wie sich die Mutation an Position 451 auf die Interaktion von TBuA mit dem rOCT1 auswirkt, wurde die Hemmung der TEA-Aufnahme durch TBuA untersucht. Hierbei ist zu berücksichtigen, dass Tetrabutylammonium (TBuA) wie das Substrat Tetraethylammonium (TEA) eine quartäre Ammoniumverbindung ist. Es besitzt eine permanente positive Ladung und ist somit nicht membranpermeabel. Da TBuA ein nicht transportierter Hemmstoff ist und nicht passiv durch die Plasmamembran gelangen kann, wird durch die vorliegenden Versuche die Bindung an die extrazelluläre Konformation untersucht. Die Hemmung der TEA-Aufnahme durch TBuA entspricht einer kompetitiven Hemmung. Die IC$_{50}$-Werte sind der Tabelle 8 zu entnehmen.
Tabelle 8: IC₅₀-Wert der rOCT1-Mutanten für die Hemmung der Tetraethylammonium-Aufnahme durch Tetrabutylammonium. Die IC₅₀-Werte sind in µM angegeben. Pro Mutante wurden 3-7 Versuche durchgeführt und die Hill-Gleichung wurde an die einzelnen Versuche angepasst. Die Mittelwerte der IC₅₀-Werte und deren Standard-Fehler sind angegeben. Die Signifikanzen wurden durch ANOVA mit post hoc Tukey-Vergleich bestimmt. Es sind die Signifikanzen der selbst ermittelten Daten angegeben.

<table>
<thead>
<tr>
<th>Transporter</th>
<th>IC<sub>50</sub>-Wert ± SEM (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOCT1 (Gorboulev et al., 1999)</td>
<td>3,0 ± 2,0</td>
</tr>
<tr>
<td>C451M</td>
<td>7,07 ± 0,93, p< 0,05 zu L447Y/C451M</td>
</tr>
<tr>
<td>L447Y/C451M</td>
<td>2,27 ± 0,39, ♦ p> 0,05 zu L447F/C451M</td>
</tr>
<tr>
<td>L447F/C451M</td>
<td>7,02 ± 0,39, * p> 0,05 zu C451M</td>
</tr>
<tr>
<td>Y222F/L447F/C451M</td>
<td>4,17 ± 0,92, ♦♦ p> 0,05 zu L447Y/C451M</td>
</tr>
</tbody>
</table>

In den Abbildungen 6-8 ist die Hemmung der TEA-Aufnahme durch TBuA für die Mutanten C451M, L447F/C451M und L447Y/C451M dargestellt. Es konnte gezeigt werden, dass die Mutante C451M (IC₅₀= 7,07 ± 0,93 (µM)) zu einer Erniedrigung der Affinität für die Hemmung der TEA-Aufnahme durch TBuA im Vergleich zum rOCT1-Wildtyp (IC₅₀= 3,0 ± 2,0 (µM); Gorboulev et al., 1999) führt. Bei der Mutante L447F/C451M wurde das Leucin des rOCT1 gegen das Phenylalanin, das natürlicherweise beim rOCT3 und hOCT3 zu finden ist, ausgetauscht. Die Daten zeigen, dass bei der Mutante L447F/C451M (IC₅₀= 7,02 ± 0,39 (µM)) keine signifikante Affinitätsänderung im Vergleich zur Grundmutante C451M (p> 0,05) vorliegt (Abb.6; Tabelle 8). Bei der Mutante L447Y/C451M wurde an Position 447 das Leucin des rOCT1 gegen ein Tyrosin ausgetauscht, wie es beim rOCT2 vorkommt. Interessanterweise jedoch zeigte die Mutante L447Y/C451M (IC₅₀= 2,27 ± 0,39 (µM)) eine signifikante Affinitätsänderung im Vergleich zur Grundmutante C451M (p< 0,05) (Abb.7; Tabelle 8) und zur L447F/C451M-Mutante (p< 0,05) (Abb.8, Tabelle 8). Der signifikante Unterschied, vor allem zwischen den beiden Doppelmutanten L447F/C451M und L447Y/C451M ist bemerkenswert, da sich Phenylalanin und Tyrosin strukturell sehr ähneln und sich lediglich dadurch unterscheiden, dass das Tyrosin eine zusätzliche OH-Gruppe am aromatischen Ring besitzt.

Wenn Tyrosin 222 im rOCT1-Wildtyp durch Phenylalanin ersetzt wird (Y222F), erhöht sich die Affinität für TEA im Vergleich zum rOCT1-Wildtyp um den Faktor 3,3 (Popp 2004). Die Mutante Y222F zeigte außerdem eine signifikante Affinitätserhöhung bezüglich der Hemmung der TEA-Aufnahme durch Tetratryptylammonium (Popp et al., 2005). Es wurde nun untersucht, wie sich die Mutation von Tyrosin 222 in Phenylalanin auf dem Hintergrund der rOCT1-Mutante C451M auswirkt. Die Abbildung 9 zeigt, die Hemmung der TEA-Aufnahme durch TBuA der Mutanten L447F/C451M und Y222F/L447F/C451M. Vergleicht man die Graphen der Mutanten Y222F/L447F/C451M und L447F/C451M (Abb.9) miteinander, so ist zu erkennen, dass die Mutation an Position 222 keinen signifikanten Affinitätsunterschied bezüglich der Hemmung der TEA-Aufnahme durch TBuA herbeiführt. Die Dreifachmutante Y222F/L447F/C451M (IC₅₀= 4,17 ± 0,92 (µM)) zeigte weder zur Grundmutante C451M (p> 0,05), noch zur Doppelmutante L447F/C451M (p> 0,05) einen signifikanten Affinitätsunterschied (Tabelle 8).

Abb.9: Affinitäten der Mutanten L447F/C451M und Y222F/L447F/C451M. Die Hemmung der TEA-Aufnahme durch Tetratryptylammonium wurde gemessen (N_{Y222F/L447F/C451M}=4; N_{L447F/C451M}=3). Zur Anpassung der Kurve an die Messwerte wurde die Hill-Gleichung verwendet.
3.2 Hemmung der TEA-Aufnahme durch Kortikosteron

<table>
<thead>
<tr>
<th>Transporter</th>
<th>IC₅₀-Wert ± SEM (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOCT1 (Gorboulev et al., 2005)</td>
<td>198 ± 10</td>
</tr>
<tr>
<td>L447Y (Gorboulev et al., 2005)</td>
<td>42 ± 9</td>
</tr>
<tr>
<td>C451M</td>
<td>27,71 ± 6,05°</td>
</tr>
<tr>
<td>L447Y/C451M</td>
<td>36,22 ± 3,07°</td>
</tr>
<tr>
<td>L447F/C451M</td>
<td>1,84 ± 0,59 *</td>
</tr>
<tr>
<td>Y222F/L447F/C451M</td>
<td>3,33 ± 1,22 *</td>
</tr>
</tbody>
</table>

Tabelle 9: IC₅₀-Wert der rOCT1-Mutanten für die Hemmung der Tetraethylammonium-Aufnahme durch Kortikosteron. Die IC₅₀-Werte sind in µM angegeben. Pro Mutante wurden 3-4 Versuche durchgeführt und die Hill-Gleichung
wurde an die einzelnen Versuche angepasst. Die Mittelwerte der IC\textsubscript{50}-Werte und deren Standard-Fehler sind angegeben. Die Signifikanzen wurden durch ANOVA mit post hoc Tukey-Vergleich bestimmt. Es sind die Signifikanzen der selbst ermittelten Daten angegeben.

* $p< 0,01$ zu C451M

\^ $p< 0,001$ zu L447Y/C451M

$p> 0,05$ zu L447F/C451M

\^ $p< 0,001$ zu Y222F/L447F/C451M

* $p> 0,05$ zu C451M

In den Abbildungen 10-12 ist die Hemmung der TEA-Aufnahme durch Kortikosteron der Mutanten C451M, L447F/C451M und L447Y/C451M dargestellt. Es konnte gezeigt werden, dass der Austausch von Cystein 451 gegen Methionin der Mutante C451M (IC\textsubscript{50} = 27,71 ± 6,05 (µM)) eine deutliche Affinitätserhöhung im Vergleich zu dem rOCT1-Wildtyp (IC\textsubscript{50} = 198 ± 10 (µM); Gorboulev et al., 2005) hervorruft. Man nimmt an, dass die Position 451 nicht direkt an der Substratbindung beteiligt ist. Durch die Mutation C451M scheint es zu einem allosterischen Effekt auf die Substratbindungsregion zu kommen, der die Raumstruktur dahingehend zu verändern scheint, dass die Kortikosteronbindung begünstigt wird, was sich in einer Affinitätserhöhung gegenüber dem rOCT1-Wildtyp äußert.

An der Position 447 wurde das Leucin gegen ein Phenylalanin oder gegen ein Tyrosin ausgetauscht. Die Mutante L447Y/C451M (IC\textsubscript{50} = 36,22 ± 3,07 (µM)) zeigte keine signifikante Affinitätsänderung im Vergleich zur rOCT1-Mutante C451M ($p> 0,05$) (Abb.11; Tabelle 9). Die Doppelmutante L447F/C451M (IC\textsubscript{50} = 1,84 ± 0,59 (µM)) hingegen zeigte eine Affinitätsänderung verglichen mit der Mutante C451M ($p< 0,01$) (Abb.10; Tabelle 9). Sie ist ebenfalls deutlich affiner als die Doppelmutante L447Y/C451M ($p< 0,001$) (Abb.12; Tabelle 9). Dies ist interessant, da sich die beiden Mutanten lediglich durch eine OH-Gruppe an Position 447 unterscheiden.
Kapitel 3 – Ergebnisse

Elektrische Messungen ergaben, dass sich die Affinität von Kortikosteron weder von außen noch von innen durch den Austausch von Tyrosin 222 gegen Phenylalanin weder im rOCT1-Wildtyp noch in der C451M-Mutante (rOCT1) ändert (Volk et al., 2009). Da Volk ermittelt hatte, dass die Mutation Y222F des rOCT3, der ein Phenylalanin in Position 447 enthält, die Affinität von Kortikosteron erhöht, wurde im Folgenden untersucht, ob in der rOCT1-Mutante L447F/C451M der zusätzliche Austausch von Y222F die Affinität von Kortikosteron erhöht. Abbildung 13 ist zu entnehmen, dass dies nicht der Fall war. Der Vergleich der Mutanten L447F/C451M ($IC_{50} = 1,84 \pm 0,59$ (µM)) und Y222F/L447F/C451M ($IC_{50} = 3,33 \pm 1,22$ (µM)) (Abb.13) zeigt keinen signifikanten Affinitätsunterschied ($p>0,05$). Dies bedeutet, dass neben Phe447 in rOCT3 noch andere zwischen rOCT1 und rOCT3 unterschiedliche Aminosäuren an der Bindung von Kortikosteron beteiligt sein müssen.

Abb.13: Affinitäten der Mutanten L447F/C451M und Y222F/L447F/C451M. Die Hemmung der TEA-Aufnahme durch Kortikosteron wurde gemessen ($N_{Y222F/L447F/C451M}=3$; $N_{L447F/C451M}=4$). Zur Anpassung der Kurve an die Messwerte wurde die Hill-Gleichung verwendet.
4 Diskussion

Bis heute ist noch weitgehend unverstanden, wie die OCTs ihre Substrate und Inhibitoren erkennen und wie die Substrattranslokation von statten geht (Volk et al., 2009). Diese Dissertation soll zur Klärung dieser Frage beitragen.

Ebenso wurde die Dreifachmutante Y222F/L447F/C451M untersucht. Sie zeigte keine veränderten Affinitäten verglichen mit der Doppelmутante L447F/C451M.

Wechselwirkungen zwischen Liganden und Bindungsstellen in Proteinen

Die Position 451 liegt zwischen der 10. Transmembrandomäne und der kurzen Schleife, die die 10. und die 11. TMH verbindet (Sturm et al., 2007). Es wurde die Mutante C451M des rOCT1 als Grundmutante der vorliegenden Versuche gewählt, da sie sich bereits in mehreren Publikationen als gut messbare Mutante herausstellte (Sturm, 2005). So liefert sie bei der voltage-clamp-Methode gute Ströme, ohne die Affinität im Vergleich zum rOCT1-Wildtyp zu verändern.

Die vorliegenden Versuche ergaben, dass der Austausch eines Cysteins gegen ein Methionin an Position 451 des rOCT1 zu einer Veränderung der Affinitäten des Transporters bezüglich der TBuA- und Kortikosteronbindung führt. So wird der Transporter durch die Mutation C451M deutlich affiner im Bezug auf die Kortikosteronbindung. Der IC\textsubscript{50}-Wert sinkt von 198 ± 10 (µM) (Gorboulev et al., 2005) des rOCT1-Wildtyps auf 27,71 ± 6,05 (µM) der Mutante C451M. Bei der TBuA-Affinität verhält es sich gegenläufig. Hier bewirkt die Mutation C451M einen Affinitätsabfall. Die Mutante C451M zeigte einen IC\textsubscript{50}-Wert von 7,07 ± 0,93 (µM), der Wildtyp von 3,0 ± 2,0 (µM)(Gorboulev et al., 1999). Ursächlich hierfür könnte die Tatsache sein, dass das Cystein eine freie SH-Gruppe besitzt, die C451M-Mutante dagegen nicht. Das Cystein wäre also im Prinzip in der Lage Disulfidbrücken auszubilden, durch die die Tertiärstruktur und die Struktur der Bindungstasche verändert werden könnte. So zeigten Hirs et al., dass eine Ribonuclease bei Reduktion der Disulfidbrücken ihre enzymatische Aktivität verlor (Hirs et al., 1960). Sturm et al. untersuchten die Cysteine des rOCT1 mittels MMTS. Dabei stellte sich heraus, dass die Cysteine 451 und 322 keine Disulfidbrücken eingehen, da beide Cysteine mit MMTS modifizierbar waren (Sturm et al., 2007). Somit können Disulfidbrücken als Ursache der nach Austausch des Cysteins 451 gegen Methionin beobachteten Affinitätsänderungen ausgeschlossen werden.

Aufgrund der generierten Modelle wird angenommen, dass sich die Aminosäure in Position 451 nicht direkt an der Substratbindung beteiligt, da sie außerhalb der modellierten Substratbindungsspalte liegt. Postuliert wird zudem, dass die Mutante in
4.2 Bedeutung der Position 447 für das Bindungsverhalten von TBuA und Kortikosteron

4.2.1 Hemmung der TEA-Aufnahme durch TBuA

Für die Hemmung der TEA-Aufnahme durch TBuA zeigte sich, dass der Austausch des Leucins gegen das Phenylalanin der Mutante L447F/C451M (IC$_{50}$= 7,02 ± 0,39 (µM)) keine signifikante Affinitätsänderung (p> 0,05) im Vergleich zur Grundmutante C451M (IC$_{50}$= 7,07 ± 0,93 (µM)) herbeiführte. Die Mutante L447Y/C451M (IC$_{50}$= 2,27 ± 0,39 (µM)) hingegen, bei der das Leucin gegen ein Tyrosin ausgetauscht wurde zeigte eine signifikante Affinitätserhöhung (p< 0,05). Wie ist dies zu erklären?

Hierfür gibt es zwei Erklärungsansätze. Zum einen (A) könnte diese Affinitätsänderung auf einer Interaktion zwischen dem TBuA-Molekül und der Hydroxylgruppe beruhen, zum anderen (B) könnte die zusätzliche OH-Gruppe zu einer Veränderung der Tertiärstruktur und dadurch zu einem veränderten Bindungsverhalten des Transporters mit dem TBuA-Molekül führen.

(A) Eine Änderung der direkten Interaktion durch den Austausch von Phenylalanin gegen Tyrosin oder entgegengesetzt könnten wie folgt erklärt werden:
(a) Tyrosin besitzt durch die zusätzliche Hydroxylgruppe eine höhere Elektronendichte als Phenylalanin. Möglich wäre eine ionische Interaktion des Sauerstoffes der Hydroxylgruppe mit dem Stickstoffatom des TBuA-Moleküls, das als Kation vorliegt. Da jedoch Tetrabutylammonium relativ lange Seitenketten besitzt, ist eine solche Bindung als unwahrscheinlich einzustufen.

(B) Die zweite Hypothese für die Affinitätsveränderung ist, dass die zusätzliche Hydroxylgruppe des Tyrosins eine Veränderung der Tertiärstruktur hervorruft und somit die Bindung des TBuA-Moleküls verbessert. Diese Tertiärstrukturänderung
Die zusätzliche Hydroxylgruppe und die somit gegenüber dem Phenylalanin erhöhte Elektronendichte könnte zu Abstoßungsreaktionen innerhalb des Transportermoleküls führen, was sich in einer Strukturänderung äußert.

(b) Tyrosin kann als Donator einer Wasserstoffbrückenbindung fungieren (Lummis et al., 2005). So könnte die Hydroxylgruppe des Tyrosins eine Wasserstoffbrückenbindung mit einem Aminosäurerest innerhalb des rOCT1 ausbilden. Diese würde ebenso zu einer Veränderung der Tertiärstruktur führen. Ähnliche Wasserstoffbrückenbindungen werden zwischen dem Y55 und dem H228, bzw. dem K229 der Serinhydroxymethyltransferase des E.coli (Vivoli et al., 2009) beschrieben.

In beiden Fällen würde durch diese strukturelle Änderung das Tetra-butylammonium-Molekül besser von dem Transporter gebunden, was sich in einer Affinitätserhöhung niederschlägt.

4.2.2 Hemmung der TEA-Aufnahme durch Kortikosteron

durch die Doppelmutation zu keiner weiteren Affinitätserhöhung. Wie ist das zu erklären (4.2.2.1)? Zweitens, wie ist der deutliche Affinitätsunterschied der Mutanten L447Y/C451M und L447F/C451M zu erklären (4.2.2.2)?

4.2.2.1 Vergleich der Einzelmutanten C451M, L447Y mit der Doppelmutante L447Y/C451M

Bemerkenswerter Weise unterscheiden sich die oben beschriebenen Daten von Ergebnissen, die von Volk und Mitarbeitern publiziert wurden (Volk et al., 2009). Es wurde nämlich berichtet, dass die Mutation in Position 451 keine Affinitätsänderung für Kortikosteron herbeiführt (Sturm et al., 2007; Volk et al., 2009). Die differierenden Ergebnisse in meiner Arbeit zeigen, dass diese Aussage nicht allgemein gültig ist, sondern nur für die von Volk et al. angewandten Versuchsbedingungen gilt (siehe Anhang **). Weiterhin zeigte sich im Vergleich zu den Ergebnissen von Volk et al. aus dem Jahre 2009 kein signifikanter Affinitätsunterschied zwischen den Mutanten C451M und L447Y/C451M (p> 0,05). Dies lässt sich darauf zurückführen, dass hier zwei verschiedene Techniken zur Bestimmung herangezogen wurden. Die Ergebnisse von Volk et al. wurden mittels „voltage-clamp“-Technik, die Daten der vorliegenden Arbeit mittels Tracer-Flux-Experimenten erbracht. Des Weiteren wurde in den Versuchen von Volk et al. MPP⁺ und nicht TEA⁺ als Substrat verwendet. Dennoch ist die Stelle 447 von großer Bedeutung im Bezug auf die Kortikosteron-Bindung.

Aber wie ist nun zu erklären, dass die Doppelmutante keinen Affinitätsanstieg im Vergleich zu den Einzelmutanten C451M und L447Y zeigt?

Es wird angenommen, dass die Mutation C451M einen indirekten Effekt auf die Substratbindungregion ausübt. So ist wahrscheinlich, dass es durch die Mutation C451M zu einer Verschiebung der zehnten Transmembrandomäne kommt, was die Bindungsregion räumlich verändert. Hierdurch wäre erklärt, warum sich die

4.2.2.2 Wie ist der Affinitätsunterschied der Mutanten L447Y/C451M und L447F/C451M zu erklären?

Die Mutante L447Y/C451M zeigt, wie bereits beschrieben, keine signifikante Affinitätsänderung im Vergleich zur Grundmutante C451M (p> 0,05). Wird aber nun das Leucin an Position 447 nicht gegen ein Tyrosin, sondern gegen das Phenylalanin des rOCT3 ausgetauscht, so ist eine deutliche Affinitätserhöhung zu erkennen (p< 0,01 zu C451M). Tyrosin und Phenylalanin sind beide aromatische Aminosäuren, die sich lediglich durch eine Hydroxylgruppe unterscheiden. Nun kommt die Frage auf, warum nicht auch Tyrosin eine Affinitätsänderung hervorruft. Wie bereits oben beschrieben wird angenommen, dass die Mutation C451M einen indirekten Effekt auf die Substratbindingstasche ausübt, was wahrscheinlich eine Lageänderung der Position 447 bedingt. Diese Lageänderung gilt jedoch sowohl für die Mutation L447F/C451M und L447Y/C451M, da beide als Hintergrundmutation die C451M- Mutation tragen. Somit scheint das Phenylalanin dem Tyrosin bezüglich der Kortikosteronbindung bevorzugt zu sein. Drei Erklärungen sind nun für die Affinitätsänderung (p< 0,001) der Mutante L447F/C451M gegenüber der Mutante L447Y/C451M denkbar:

(a) Die Hydroxylgruppe des Tyrosinrestes geht mit Aminosäureresten innerhalb des Transporters eine Wasserstoffbrückenbindung ein, was sich negativer auf das Bindungsverhalten auswirkt. Dieses negativere Bindungsverhalten könnte somit auf eine veränderte Raumstruktur der Bindungsstelle durch die Hydroxylgruppe zurückzuführen sein. Das Phenylalanin besitzt keine Hydroxylgruppe und kann somit auch keine Wasserstoffbrückenbindung eingehen, die die Raumstruktur negativ beeinflussen könnten.

(b) Durch die OH-Gruppe des Tyrosins und die dadurch erhöhte Elektronendichte kommt es zu Abstoßungsreaktionen innerhalb des Transporters, was ebenfalls die Struktur des Transporters negativ in Bezug auf das Bindungsverhalten zu Kortikosteron beeinflusst.

(c) Wie bereits anhand der Serinhydroxymethyltransferase (Vivoli et al., 2009)
beschrieben, könnte auch eine sterische Änderung, bedingt durch eine Lageänderung des Phenylalanins im Vergleich zum Tyrosin, für die Affinitätsunterschiede der Mutanten L447F/C451M und L447Y/C451M zu Kortikosteron ursächlich sein. Somit könnte der Phenylalaninrest für die Kortikosteronbindung günstiger im Raum liegen.

4.3 Bedeutung der Position 222 für das Bindungsverhalten von TBuA und Kortikosteron

Kortikosteron ist als Inhibitor hundertmal potenter für den hOCT3 als für den hOCT1 oder hOCT2 (Hayer-Zillgen et al., 2002). Man nimmt an, dass das Tyrosin 222 des hOCT3 für dessen erhöhte Kortikosteronaffinität von entscheidender Bedeutung ist. In dieser Arbeit wurde an Position 222 das Tyrosin, das beim rOCT1, rOCT2 und hOCT3 zu finden ist, gegen das Phenylalanin des rOCT3 ausgetauscht. Phenylalanin ist ebenso wie Tyrosin eine aromatische Aminosäure, die jedoch keine hydrophile Hydroxylgruppe besitzt.

Bezüglich der Hemmung der TEA-Aufnahme durch TBuA zeigte sich, dass ein Verlust der Hydroxylgruppe, wie es beim Phenylalanin vorliegt, zu keinem verbesserten Bindungsverhalten zwischen der Position 222 und dem TBuA-Molekül führt. Im direkten Vergleich der Dreifachmutante Y222F/L447F/C451M (IC$_{50}$= 4,17 ± 0,92 (µM)) mit der Doppeltmutante L447F/C451M (IC$_{50}$= 7,02 ± 0,39 (µM)) ist kein signifikanter Affinitätsunterschied zu erkennen (p> 0,05). Zwar scheint die Dreifachmutante etwas affiner zu sein, jedoch nicht in einem Ausmaß, das als signifikant beurteilt werden könnte. Dieser Effekt könnte darauf beruhen, dass durch die Mutation C451M, die nicht direkt an der Substratbindung beteiligt ist, mittels eines indirekten Effektes die vierte Transmembrandomäne etwas verschiebt, so dass die Aminosäure an Position 222 etwas günstiger für die Bindung des TBuA-Moleküls im Raum liegt. Der Position 222 kommt somit aller Wahrscheinlichkeit nach keine Schlüsselrolle bei der TBuA-Bindung zu.

Auch bei der Hemmung der TEA-Aufnahme durch Kortikosteron zeigte sich keine signifikante Affinitätsänderung (p> 0,05) der Mutante Y222F/L447F/C451M (IC$_{50}$= 3,33 ± 1,22 (µM)) gegenüber der Doppelmutante L447F/C451M (IC$_{50}$= 1,84 ± 0,59 (µM)). Somit werden die Ergebnisse von Volk et al. aus dem Jahre 2009 unterstrichen. In diesen Versuchen wurde mittels der rOCT1-Mutante Y222F/C451M untersucht, ob die Position 222 an der Kortikosteronbindung beteiligt ist. Es zeigte sich, dass die Position 222 nicht entscheidend an der Kortikosteronbindung beteiligt zu sein scheint (Volk et al., 2009). Die Affinitätserhöhung der Dreifachmutante im Vergleich zur
Grundmutante C451M ist somit wahrscheinlich in der Mutation an Position 447 (L447F) begründet.

Die Position 222 der vierten Transmembrandomäne scheint weder an der TBuA-Bindung, noch an der Bindung von Kortikosteron in signifikantem Maße beteiligt zu sein. Dies unterstreicht die bereits publizierten Daten (Popp et al., 2005; Volk et al., 2009).
Klinischer Ausblick

Es ist ein kurzer Ausblick auf die klinische Relevanz der Daten zu geben. So kann diese Arbeit einen Teil zum Verständnis der Funktion des OCT1 beitragen. Die Charakterisierung der Mitglieder der OCT-Familie zielt auf ein besseres Verständnis der Funktion und Pharmakokinetik dieser Transporter ab.

Eine Mutation der OCTs kann zu einem veränderten Metabolismus führen. Durch die Mutation des Cysteins an Position 451 des rOCT1 konnte hier gezeigt werden, dass die Aminosäure an Position 451 einen indirekten Effekt auf die Substratbindungstasche ausübt. Somit ist denkbar, dass durch die Mutation an Position 451 auch die lange intrazelluläre Schleife zwischen der sechsten und siebten Transmembrandomäne, die mehrere Phosphorylierungsstellen für Proteinkinasen besitzt, verändert wird. Da die Regulation durch Proteinkinasen essentiell für die Regulation der OCTs ist (Mehrens et al., 2000; Cetinkaya et al., 2003), könnte somit eine Möglichkeit der Beeinflussung des Transporters gefunden sein.

Unter den Substraten und Inhibitoren der OCTs befinden sich eine Vielzahl an Pharmaka, die unter anderem in der Dauermedikation zum Einsatz kommen. In diesem Zuge seien als Beispiele das Antidiabetikum Metformin, das Antidepressivum Imipramin und der Kalziumkanalblocker Verapamil genannt. So könnte ein durch Mutation veränderter OCT zu einem veränderten Medikamentenmetabolismus und dadurch zu einem erhöhten oder erniedrigten Medikamentenspiegel im Blut durch verminderte oder erhöhte Aufnahme des Stoffes in seine Zielzelle, zu erheblichen Nebenwirkungen führen. Als Beispiel einer solchen Nebenwirkung sind die durch Metformin induzierte Laktataszidose (Koepsell et al., 2003) bei Metforminmedikation zu nennen. Metformin wird beim Menschen durch OCT1 und OCT2 transportiert.

Anhand dieser Beispiele sollte gezeigt werden, dass es das Ziel ist, und in diesem Zusammenhang sollte diese Arbeit als Beitrag gesehen werden, die Funktion und Pharmakokinetik der OCTs vollständig aufzuklären. Mit diesem Wissen könnten künftig Medikamente mit einem optimalen Arzneimetabolismus und minimalen Nebenwirkungen kreiert werden.
6 Zusammenfassung

6.1 Deutsche Zusammenfassung

gegensätzlich. Die Position 222 scheint weder an der TBuA-Bindung, noch an der Bindung von Kortikosteron maßgeblich beteiligt zu sein.

6.2 Englische Zusammenfassung

In 1994 Gründemann et al. described the first organic cation transporter, called rOCT1. Several previous studies revealed some amino acids, which are critical for substrate binding.

In 2005 Sturm et al. identified the cysteine on position 451. It is located between the tenth and eleventh TMH. Because of its position in the structure model cysteine 451 might not be directly involved in substrate binding. However it is postulated, that mutation of C451 alters the position of amino acids in the substrate binding region. The mutation on C451 is the basis for this work. Concerning the inhibition of the TEA uptake by corticosterone or TBuA the mutants C451M, L447F/C451M, L447Y/C451M and Y222F/L447F/C451M were analyzed by tracer uptake measurements. The TEA uptake measurements showed that the replacement of cysteine 451 by methionine resulted in an increased affinity for corticosterone and a decreased affinity for TBuA. The present work together with the proposed localization of cysteine 451 in the tertiary structure of rOCT1 further support the idea that cysteine 451 is not directly-involved in ligand binding, but it seems to exert an indirect effect on the substrate binding region of the transporter, which alters its affinity for TBuA and corticosterone.

The affinity for corticosterone and TBuA of the mutants L447F/C451M and L447Y/C451M was opposed. When L447 was replaced by a tyrosine the affinity for corticosterone was decreased, but the affinity for TBuA was increased. Though, when leucine was replaced by phenylalanine the affinity for corticosterone was increased and the affinity for TBuA was decreased. The position 222 seems to be unimportant concerning the linkage of corticosterone and TBuA.
7 Literaturverzeichnis

8 Anhang

<table>
<thead>
<tr>
<th></th>
<th>ORI in µl</th>
<th>Hemmstoff in µl (TBuA, KortiKosteron)</th>
<th>TEA (Substrat) in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolloozyten</td>
<td>190</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>uninjiziert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolloozyten</td>
<td>190</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Injiziert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oozyten</td>
<td>188</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Injiziert</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Pipetierschema

<table>
<thead>
<tr>
<th>Mutante</th>
<th>Endkonzentration im Ansatz TBuA in µM</th>
<th>Endkonzentration im Ansatz Kortikosteron in µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C451M</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td>L447Y/C451M</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>L447F/C451M</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Y222F/L447F/C451M</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Tabelle 11: Endkonzentrationen des Hemmstoffes (in \(\mu l\)) im Ansatz

Die Konzentrationen waren so gewählt, dass die Endkonzentrationen für TBuA als Hemmstoff 1 \(\mu M\), 3 \(\mu M\), 10 \(\mu M\), 30 \(\mu M\), 100 \(\mu M\) und 300 \(\mu M\) waren. Für Kortikosteron waren die Endkonzentrationen im Ansatz 0,1 \(\mu M\), 0,3 \(\mu M\), 1 \(\mu M\), 3 \(\mu M\), 10 \(\mu M\), 30 \(\mu M\), 100 \(\mu M\), 300 \(\mu M\) und 1000 \(\mu M\). Diese wurden den jeweiligen Mutante angepasst und können aus Tabelle 11 entnommen werden.

Abb.14: relevante Aminosäuren

Cystein Leucin Methionin

Phenyllalanin Tyrosin
Abb. 15: Aminosäuresequenz der Transmembrandomänen 4 und 10 der rOCTs

** Die in der vorliegenden Arbeit gefundenen erhöhten Affinitäten durch den Austausch von Cystein 451 gegen Methionin war überraschend, da Volk et al. für die MPP-Hemmung durch Kortikosteron keine Affinitätsänderung beschrieben hatten (rOCT1 Wildtyp: IC\textsubscript{50MPP} = 7,4 ± 1,1 (µM); C451M : IC\textsubscript{50MPP} = 9,4 ± 1,3 (µM)) (Volk et al., 2009). Beim genauerer Hinschauen, bemerkt man, dass sich die unterschiedlichen Ergebnisse nicht widersprechen, sondern höchstwahrscheinlich auf unterschiedlichen Messmethoden beruhen. Volk erbrachte einige seiner Ergebnisse mittels Tracer-Flux-Experimente, andere dagegen mit Voltage-clamp-Technik (Volk et al., 2009). In der vorliegenden Arbeit wurden jedoch ausschließlich Tracer-Flux-Experimente durchgeführt. Des Weiteren verwendete Volk et al. bei seinem Vergleich teilweise MPP und teilweise TEA als Substrate. TEA diente vor allem bei den mittels Voltage-clamp-Technik erbrachten Daten als Substrat, bei den Tracer-Flux-Experimenten wurde MPP als Substrat verwendet (Volk et al., 2009). Aufgrund theoretischer Überlegungen ist klar, dass die Affinität der Hemmwirkung eines Hemmstoffes durchaus durch das für die Transportmessung verwandte Substrat beeinflusst wird. Somit stehen die Daten in keinem Widerspruch zu einander, da Affinitätsänderungen bei Verwendung einer anderen Methode oder eines anderen Substrates keine Seltenheit darstellten. Ein ähnlicher Sachverhalt wurde bereits an der Mutante L447Y/Q448E beobachtet. Diese Mutante wies unterschiedliche IC\textsubscript{50}-Werte für die Hemmung der TEA- bzw. der MPP-Aufnahmen durch Kortikosteron auf. Es kam folglich zu einer Veränderung der Affinität der Mutante zu Kortikosteron, je nach
dem welches der beiden Substrate verwendet wurde. Dies legte die Vermutung nahe, dass die Kortikosteronaffinität durch den Transport und/oder die Bindung von TEA, bzw. MPP verändert wird (Gorboulev et al., 2005).
Danksagung

„Keine Schuld ist dringender, als die, Dank zu sagen“

Marcus Tullius Cicero

Ich danke meinem Doktorvater Herrn Professor Dr. Hermann Koepsell, an dessen analytische Fähigkeiten ich niemals heranreichen werde, für die einmalige Gelegenheit in einem solch etablierten Arbeitskreis meine Dissertationsschrift verfassen zu dürfen. Weiterhin danke ich ihm für die hervorragende Betreuung und dafür, dass er für seine Doktoranden stets ein offenes Ohr hat.

Herrn Privatdozenten Dr. Christopher Volk danke ich von ganzem Herzen für die geduldige Einarbeitung in das Themengebiet, für die hervorragende Betreuung, für die zahllosen Stunden der Korrektur dieser Schrift, für den guten Zuspruch und die netten Unterhaltungen.

Ich bedanke mich bei Herrn Dr. Valentin Gorboulev für die Herstellung der Mutanten und Frau Irina Schatz für die Herstellung der DNA. Frau Ursula Roth für die Hilfe bei der Einarbeitung und für die Unterstützung bei Laborfragen. Frau Dr. Maike Veyhl-Wichmann danke ich für die guten Ratschläge und für den aufmunternden Ansporn. Ein Dank geht auch an Herrn Michael Christof für die graphische Unterstützung.

Ein Dank geht auch an meine Mitdoktoranden für die vielen heiternden Stunden, ohne die die Laborarbeit sicherlich nicht so viel Spaß gemacht hätte. Ein besonderer Dank geht noch an meine Mitdoktorandin Frau Brigitte Egenberger, die mir immer mit Rat und Tat zur Seite stand.

Meinem Freund Mark danke ich für die jahrelange Unterstützung im Studium, für die kritische Lektüre dieser Schrift, für den guten Zuspruch sowie die menschliche Wärme.

Curriculum Vitae

Persönliche Daten

<table>
<thead>
<tr>
<th>Name:</th>
<th>Semlanski</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorname:</td>
<td>Christin Martina</td>
</tr>
<tr>
<td>Geburt:</td>
<td>06.04.1983</td>
</tr>
<tr>
<td>Geburtsort:</td>
<td>Mosbach</td>
</tr>
<tr>
<td>Staatsangehörigkeit:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Werdegang

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Ereignis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989 – 1993</td>
<td>Grundschule Neckarzimmern</td>
</tr>
<tr>
<td>1993 – 2002</td>
<td>Auguste-Pattberg-Gymnasium in Neckarelz mit Abschluss Abitur</td>
</tr>
<tr>
<td>Ab 01.10.2003</td>
<td>Studium der Zahnmedizin an der Julius-Maximilians-Universität Würzburg</td>
</tr>
<tr>
<td>27.11.2008</td>
<td>Abschluss des Studiums der Zahnmedizin</td>
</tr>
<tr>
<td>Seit April 2009</td>
<td>Assistenzzahnärztin</td>
</tr>
<tr>
<td>Seit April 2011</td>
<td>Angestellte Zahnärztin</td>
</tr>
</tbody>
</table>

Christin Semlanski