Funktionelle Charakterisierung der Transportproteine für Organische Kationen rOCT1 und hOCT2 unter besonderer Berücksichtigung der cis-/trans-Symmetrie von rOCT1

Inaugural - Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Bayerischen Julius-Maximilians-Universität zu Würzburg

vorgelegt von

Jochen C. Ulzheimer

aus

Würzburg

Würzburg, November 2002
Referent: Professor Dr. med. H. Koepsell

Koreferent: Professor Dr. med. M. Gekle,

Dekan: Professor Dr. med. S. Silbernagl

Tag der mündlichen Prüfung: 23. Mai 2003

Der Promovend ist Arzt.
für Carmen
Inhalt

1. Einleitung ... 1

2. Material und Methoden .. 18
 2.1 Molekularbiologische Methoden .. 19
 2.2 Oozyten von *Xenopus laevis* als Expressionssystem für Transportproteine 27
 2.2.1 Präparation von *X. laevis*-Oozyten .. 28
 2.2.2 Kultur von *X. laevis*-Oozyten .. 29
 2.2.3 Mikroinjektion von *X. laevis*-Oozyten ... 30
 2.3 Fluxmessungen mit radioaktiv markierten Tracer-Substraten ... 33
 2.3.1 Influxmessungen .. 33
 2.3.2 Effluxmessungen .. 35
 2.4 Datenauswertung ... 38
 2.5 Bezugsquellen ... 42

3. Ergebnisse ... 45
 3.1 Spezifitäten der Transportkinetik von rOCT1 ... 46
 3.1.1 Substrattransport ... 46
 3.1.2 *cis*-Hemmung .. 55
 3.1.3 *trans*-Effekte ... 59
 3.2 Spezifitäten der Transportkinetik von hOCT2 .. 68
 3.2.1 Substrattransport .. 68
 3.2.2 *cis*-Hemmung .. 75
 3.2.3 *trans*-Effekte ... 79
 3.3 Elektrochemische Eigenschaften von rOCT1 ... 85
 3.4 Symmetrieverhalten im Bindungs- und Transportmechanismus von rOCT1 89
 3.4.1 *cis-* und *trans*-Verhalten von Transportsubstraten .. 89
 3.4.2 *cis-* und *trans*-Verhalten kompetitiver und nicht-kompetitiver Hemmstoffe 93

4. Diskussion .. 100
 4.1 rOCT1 und hOCT2 - Gemeinsamkeiten und Unterschiede ... 101
 4.2 *cis/trans*-Asymmetrie von rOCT1 .. 106

5. Zusammenfassung .. 112

6. Literatur .. 113

7. Appendix .. 121
Verwendete Abkürzungen:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG</td>
<td>α-Methyl-D-Glucose</td>
</tr>
<tr>
<td>APDA</td>
<td>N-(4,4’-azo-n-pentyl)-21-deoxy-ajmalinium</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BBM</td>
<td>brushborder membrane, Bürstensaummembran</td>
</tr>
<tr>
<td>BES</td>
<td>2-[Bis-(2-hydroxyethyl)-amino]-ethansulfonsäure</td>
</tr>
<tr>
<td>BLM</td>
<td>basolaterale Membran</td>
</tr>
<tr>
<td>CI</td>
<td>Chloroform-Isoamylalkohol- Mischung (24:1)</td>
</tr>
<tr>
<td>Cyanin863</td>
<td>1-Ethyl-2-[(1,4-dimethyl-2-phenyl-6-pyrimidinyliden)methyl]-chinolinium-Chlorid</td>
</tr>
<tr>
<td>Decynium22</td>
<td>1,1’-Diethyl-2,2’-cyanin-Iodid</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid, Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dpm</td>
<td>decays per minute, Zerfälle pro Minute (60 dpm = 1 Bq)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamminetetraacetic acid, Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>GentORi</td>
<td>Gentamicin-Oozyten-Ringerlösung</td>
</tr>
<tr>
<td>GIPM</td>
<td>Glucosylisophosphonamidmustard</td>
</tr>
<tr>
<td></td>
<td>(ß-D-Glucopyranosyl-N,N’-bis-(2-chloroethyl)-phosphorodiamidsäure</td>
</tr>
<tr>
<td>hOCT</td>
<td>organic cation transporter, Human-Homolog</td>
</tr>
<tr>
<td>MDR</td>
<td>Multiidrug resistance</td>
</tr>
<tr>
<td>MPP</td>
<td>N1-methyl-4-phenylpyridinium</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid, Boten-Ribonukleinsäure</td>
</tr>
<tr>
<td>NMN</td>
<td>N1-methylnicotinamid</td>
</tr>
<tr>
<td>PCI</td>
<td>Phenol-Chloroform-Isoamylalkohol- Mischung (25:24:1)</td>
</tr>
</tbody>
</table>
OATP organic anion transport protein, Organischer Anionentransporter
OCTN organic cation and carnitine transporter
ODₜ optical density, Lichtabsorption bei Wellenlänge \(\lambda \) nm
ORi Oozyten-Ringerlösung
PCG-ORi Pyruvat-Cholin-Gentamicin-Oozyten-Ringerlösung
rOCT organic cation transporter, Ratten-Homolog
SD standard deviation, Standardabweichung
SDS sodium dodecylsulfate, Natriumdodecylsulfat
SEM standard error of mean, Standardfehler des arithmetischen Mittels
TBuMA Tributylmethylammonium
TEA Tetraethylammonium
TMA Tetramethylammonium
TPeA Tetrpentylammonium
TRIS Tris-(hydroxymethyl-)-methylamin
upm Umdrehungen pro Minute
1.

Einleitung

Einen wesentlichen Anteil an ausscheidungspflichtigen Metaboliten und Fremdstoffen stellen die sog. organischen Kationen dar. Hierunter werden aliphatische oder aromatische Kohlenwasserstoffverbindungen subsumiert, welche pH-abhängig oder ständig ein- oder mehrfach positiv geladen sind sowie deren undissozierte ungeladene Derivate. Meist erhalten organische Kationen diese Ladung durch sekundäre (dissoziierbare) oder quartäre (permanent kationische) Aminogruppen. Zu den Organischen Kationen zählen körpereigene Verbindungen
wie Cholin oder Methylnicotinamid, Neurotransmitter wie Dopamin oder Noradrenalin, Medikamente wie Amantadin oder Isoprenalin, aber auch Toxine wie Methyl-Phenyl-Pyridinium (MPP) oder d-Tubocurarin.

Renale Transportsysteme für organische Kationen

In der Niere erfolgt die Sekretion organischer Kationen hauptsächlich im proximalen Tubulus, in weitaus geringerem Ausmaß jedoch auch im distalen Tubulus und im Sammelrohr. Bislang konnten im proximalen Tubulus der Niere funktionell mehrere verschiedene Transportsysteme für Organische Kationen charakterisiert werden, die sich in Lokalisation (basolateral oder luminal), Energieabhängigkeit (ATPase, Cotransport- und Austauschersysteme) und Spezifität (Substratspektrum/Hemmarkeit) unterscheiden. Ein Hauptproblem hierbei stellte stets die Polyspezifität vieler Transportsysteme dar, welche zumeist auch Überlappungen im

Hepatische Transportsysteme für organische Kationen

Studien an isolierten Rattenhepatozyten hatten bereits früh die Existenz zweier getrennter Transportsysteme für organische Kationen in der Leber gezeigt [Steen H. et al., 1992; Groothuis G.M.M. et al., 1996]. Ein Typ-1 System vermittelt die sinusoidale Aufnahme kleiner, hydrophiler organischer Kationen wie TEA, TBuMA,
1. Einleitung

1) Das basolaterale, potentialabhängige polyspezifische System, entspricht den klonierten Homologen rOCT1 und rOCT2.

2) und 4) Zwei luminale H⁺-Kationen-Austauschersysteme sezernieren kleine organische Kationen.

5) Luminal lokalisierte ATPasen der MDR-Familie (multidrug resistance proteins) vermitteln die Sekretion großer hydrophober Kationen.

3) Ein elektrogenes System mit Präferenz für Cholin,

6) ein ATP-abhängiges Aufnahmesystem für organische Kationen und

7) der polyspezifische Transporter oatp, der sowohl organische Anionen als auch Kationen befördert, vermitteln dagegen die Reabsorption.
Biophysik von Transportproteinen für Organische Kationen

Neuronale Transportsysteme für Neurotransmitter

1. Einleitung

Die OCT-Familie

Abb. 2: Aminosäuresequenz von rOCT1 und mutmaßliches Modell der Membraninsertion (outside, extrazelluläre Seite; inside, zytoplasmatische Seite) Erkennbar sind die zwölf helikalen Transmembrandomänen sowie eine auffällig große extrazelluläre Linkerregion nahe dem N-Terminus. Fett hervorgehobene Aminosäuren sind konserviert in den OCT1/OCT2- und OCT3-Subfamilien, schwarz hervorgehoben diejenigen auch in der OCTN-Subfamilie, aber nicht bei den Anionentransportern konservierten Aminosäuren. PKC-Phosphorylierungsstellen sind mit (P), N-Glykosylierungsstellen mit (Ψ) hervorgehoben.
1. Einleitung

Einführung in die Biophysik von Transportproteinen

\[v = \frac{V_{\text{max}} \cdot S}{K_M + S} \]

wobei \(v \) die Transportgeschwindigkeit in Abhängigkeit von der angebotenen Substratkonzentration \(S \) ist. Für jedes Transportsubstrat ist der spezifische Transport durch einen Carrier durch die Konstanten \(K_M \) und \(V_{\text{max}} \) charakterisiert. Hierbei ist \(V_{\text{max}} \) als die maximale Transportgeschwindigkeit bei Sättigung definiert, ihre Dimension ist mol/min (oder in der vorliegenden Arbeit soweit nicht anders angegeben pmol h⁻¹ Oozyte⁻¹). \(K_M \) stellt die Substratkonzentration dar, bei der die halbmazimale Transportrate erzielt wird. Sie ist direkt proportional zur Dissoziationskonstante des Substrats und somit indirekt proportional zur Substrataffinität. Seine Dimension ist mol/l [Stein W.D., 1990, S. 135ff.]. Bei vielen
Transportproteinen zeigen diese Parameter auch eine Abhängigkeit vom Membranpotential [BORST-PAUWELS G.W., 1993].

1. Einleitung

Hierbei repräsentiert E_n den Transporter in seinem jeweiligen Orientierungszustand zu den Membranseiten n (1 für die extrazelluläre Seite bzw. 2 für die zytoplasmatische Seite) sowie S_n die Konzentration des Transportsubstrats auf der jeweiligen Membranseite n. Die Parameter $k_{nn'}$ und $g_{nn'}$ stellen die Zeitkonstanten für die Konformationsänderung des Transporters von der Membranseite n zur Membranseite n' dar. Die Parameter b_n und f_n sind die Dissoziations- und Bildungskonstanten des Transporter-Substrat-Komplexes ES_n. Diese Parameter lassen sich nicht isoliert experimentell bestimmen, jedoch schlägt sich ihr Zusammenspiel in messbaren Faktoren nieder. Resistenzfaktoren ($R_{nn'}$), welche proportional zur Dauer eines Transportzyklus in jeder der vier denkbaren Modi sind, lassen sich durch sie beschreiben (nach STEIN W.D., 1990, S. 167 f.): Hierbei steht R_{12} für den Zyklus beladen einwärts und unbeladen auswärts, R_{21} unbeladen einwärts.
und beladen auswärts, \(R_{ee} \) beladen in beide Richtungen, entsprechend der Gleichgewichtssituation („equilibrium exchange“) sowie \(R_{00} \) unbeladen in beide Richtungen\(^1\). \(R_{\text{mn}} \) verhält sich jeweils reziprok zur entsprechenden Maximalgeschwindigkeit (\(V_{\text{max}} \)), welche experimentell gemessen werden kann. Hierbei entspricht \(1/R_{12} \) der \(V_{\text{max}} \) beim \(\text{trans-zero} \)-Einwärtstransport, \(1/R_{21} \) der \(V_{\text{max}} \) beim \(\text{trans-zero} \)-Auswärtstransport und \(1/R_{ee} \) der \(V_{\text{max}} \) im Fließgleichgewicht. \(R_{00} \) ist nicht experimentell messbar. Sofern eine Symmetrie der Transportrichtung (\(b_1 f_2 g_{21} k_{12} = b_2 f_1 g_{12} k_{21} \)) vorliegt, gilt jedoch \(R_{ee} + R_{00} = R_{12} + R_{21} \). Zusammen mit der Michaelis-Menten-Konstante, die sich aus den o.g. Zeit-, Dissoziations- und Bildungskonstanten zusammensetzt\(^2\), kann jeder unidirektionale Fluß allgemein definiert werden. Zum Beispiel gilt für den Einwärtstransport (Influx):

\[
v_{12} = \frac{K S_1 + S_1 S_2}{K^2 R_{00} + KR_{12} S_1 + KR_{21} S_2 + R_{ee} S_1 S_2}
\]

(Für die Flußgeschwindigkeit der Gegenrichtung (Efflux) sind lediglich die Indices (1 gegen 2) zu vertauschen. Für die Geschwindigkeit des \(\text{trans-zero} \) Einwärtstransports \(v_{12}^{tz} \) gilt aufgrund \(S_2 = 0 \) nach entsprechender Vereinfachung:

\[
v_{12}^{tz} = \frac{S_1}{K R_{00} + R_{12} S_1}
\]

Dies entspricht genau der Michaelis-Menten-Gleichung, da

\[
V_{\text{max.}}^{tz} = \frac{1}{R_{12}} \quad \text{und} \quad K_m^{tz} = \frac{K R_{00}}{R_{12}}
\]

Dieses allgemeine Modell gilt für den einfachen Uniporter und den Transport eines neutralen Substrates. Für OCT und die an Oozyten durchgeführten Messungen

1) Für die einzelnen Resistenzfaktoren gilt (modifiziert nach STEIN W.D., 1990, S. 167 f.):

\[
\begin{align*}
R_{12} &= \frac{1}{b_2} + \frac{1}{k_{21}} + \frac{1}{g_{12}} + \frac{1}{b_1 g_{12}} \\
R_{21} &= \frac{1}{b_1} + \frac{1}{k_{21}} + \frac{1}{g_{21}} + \frac{1}{b_2 g_{21}} \\
R_{ee} &= \frac{1}{b_1} + \frac{1}{b_2} + \frac{1}{g_{12}} + \frac{1}{g_{21}} + \frac{g_{12}}{b_1 b_2 g_{12}} + \frac{g_{21}}{b_2 b_1 g_{21}} \\
R_{00} &= \frac{1}{k_{12}} + \frac{1}{k_{21}}
\end{align*}
\]

2) Die Michaelis-Menten-Konstante lässt sich beschreiben als (modifiziert nach STEIN W.D., 1990, S. 167 f.):

\[
K_m = \frac{k_{12}}{f_1} + \frac{k_{21}}{f_2} + \frac{b_1 k_{12}}{f_1 g_{12}}
\]
1. Einleitung

muss jedoch einschränkend festgehalten werden, dass die meisten Transportsubstrate wie z.B. TEA und MPP eine einfache positive Ladung tragen und deren Translokation somit eine Membranpotentialänderung $\Delta \psi$ entsprechend dem aufgebauten Konzentrationsgradienten S_2/S_1 verursacht [BÖRST-PAUWELS G.W., 1993], welche durch die Nernst-Gleichung beschrieben werden kann:

$$\Delta \psi = \frac{R \cdot T}{Z \cdot F} \cdot \ln\left(\frac{S_2}{S_1}\right)$$

Um Effekte des Kationentransports auf das Membranpotential auszuschließen müsste strenggenommen das Membranpotential mittels voltage-clamp-Technik konstant gehalten werden, was jedoch nicht Thema der vorliegenden Arbeit war. Desweiteren ist methodenbedingt die Messung des trans-zero-Influxes an der Oozyte nicht möglich. Es ist davon auszugehen, dass im Dotter der Oozyte potenziell trans-stimulierende Substanzen (z.B. Cholin) im Überschuß vorliegen. Daher musste zur Abschätzung der Transportersymmetrie jeweils die trans-stimulierte Bedingung herangezogen werden.

Polyspezifität von OCT

1. Einleitung

Zielsetzung dieser Arbeit

1. Charakterisierung der Polyspezifität von rOCT1 durch Transportmessungen,

2. Enzymkinetische Klassifizierung von rOCT1 bezüglich des cis-/ trans-Verhaltens,

3. Analyse der direktionalen Transportersymmetrie anhand Influx- und Effluxmessungen,

Nach der Charakterisierung von rOCT1 aus der Ratte lag es nahe, auch humane Homologe zu finden und vergleichend zu analysieren. Als erster humaner Verwandter von rOCT1 wurde 1996 hOCT2 (zunächst Klon N42 genannt) kloniert [GORBOULEV V. et al., 1997]. Demnach war es ab 1997 von höchstem allgemeinem
Interesse, die Transport- und Hemmcharakteristika von hOCT2 im direkten Vergleich aufzuklären. Somit lassen sich weiterhin als Zielsetzungen für die zwischen 1997 und 1998 durchgeführten Arbeiten formulieren:

5. Charakterisierung der Polyspezifität von hOCT2 durch Transportmessungen,

6. Charakterisierung des Hemmstoffspektrums von hOCT2 durch Hemmkinetiken,

7. Enzymkinetische Klassifizierung von hOCT2 anhand des cis-/trans-Verhaltens.

2.

Material und Methoden

2.1 Molekularbiologische Methoden

2.2 Oozyten von *Xenopus laevis* als Expressionssystem für Transportproteine
 2.2.1 Präparation von *X. laevis*-Oozyten
 2.2.2 Kultur von *X. laevis*-Oozyten
 2.2.3 Mikroinjektion von *X. laevis*-Oozyten

2.3 Transportmessungen an *Xenopus*-Oozyten mit radioaktiv markierten Tracer-Substraten
 2.3.1 Influxmessungen
 2.3.2 Effluxmessungen

2.4 Datenauswertung

2.5 Bezugsquellen
2.1 Molekularbiologische Methoden

Lösungen

Für die nachfolgenden Prozeduren wurden folgende Lösungen und Standardansätze verwendet. Hierbei wurden alle Lösungen, die mit RNA in Kontakt kommen sollten, mit DEPC-H₂O angesetzt. DEPC (Diethylpyrocarbonat) inaktiviert Enzyme durch Histidin-Ethoxyformylierung, modifiziert ssRNA und zerfällt durch Autoklavieren in CO₂ und Ethanol.

DEPC-H₂O: 0,1% Diethylpyrocarbonat in entionisiertem H₂O übernacht geschüttelt, dann autoklaviert
TE-Puffer (für DNA): 10 mM TRIS 1 mM EDTA HCl ad pH 8,0
TEA-Puffer (für RNA): 10 mM Triethanolamin 1 mM EDTA DEPC-Behandlung HCl ad pH 7,5
TAE-Puffer (für DNA-Gelelektrophorese): 40 mM TRIS 1 mM EDTA Essigsäure ad pH 8,5
CW-Laufmarker (für DNA-Gelelektrophorese):
- 10% Glycerol
- 0,01% Bromphenolblau
- 0,05% Orange G
 in TAE-Puffer

BES-Puffer (für RNA-Gelelektrophorese):
- 10 mM BES
- 0,1 mM EDTA
- NaOH ad pH 6,7

DLG-Denaturierungslösung (für RNA-Gelelektrophorese):
- 50 µg/ml Ethidiumbromid
- 50% DMSO
- 1 M Glyoxal
 in BES-Puffer

Linearisation von cDNA

Die 1,9 kb große rOCT1-cDNA war zunächst im pBluescript SK(-)-Vektor (2,96 kb) zwischen einer NotI- und einer EcoRI-Schnittstelle unterhalb des SP6-Promoters einkloniert. Später erfolgte zugunsten einer besseren Proteinexpression in den *Xenopus*-Oozyten die Umklonierung in den pRSSP-Vektor, der 5’- und 3’ nichttranslatierte Sequenzen des *Xenopus* β-Globin-Gens trägt [Arbeiten von V. Gorboulev und A. Akhoundova, vgl. hierzu GORBOULEV V. *et al.*., 1997]. Hier befand sich die rOCT1-Sequenz zwischen dem SP6-Promoter und einer Mlu-Schnittstelle. Somit musste eine Linearisation von rOCT1 in pBluescript durch Restriktion mit NotI erfolgen bzw. von rOCT1 in pRSSP mit MluI erfolgen: 10 µg rOCT1/pBluescript bzw. rOCT1/pRSSP wurden mit ca. 15U NotI- bzw. 20 U MluI-Restriktionsendonuklease im firmenseitig mitgelieferten Reaktionspuffer (Gesamtvolumen 30 µl pro 10 µg DNA) über 4 Stunden bei 37°C inkubiert. Hierbei war zu beachten, dass die glycerolhaltige Enzymlösung im Gesamtansatz mindestens 10fach verdünnt ist. Die Restriktion wurde durch Zugabe von 1 µl 0,5 M EDTA gestoppt und der Ansatz bei Bedarf bei –20°C gelagert.

hOCT2 war zunächst ebenfalls im pRSSP-Vektor unterhalb einer KpnI-Schnittstelle einkloniert, wurde dann aber (N42 genannt) in den ebenfalls *Xenopus*-

Die linearisierte cDNA wurde unmittelbar nach Ende der Restriktion durch Phenol-Chloroform-Extraktion gereinigt: Hierzu wurde jeweils frisch eine Phenol/Chloroform-Mischung („PCI“) aus einem Teil Phenol (vakuumdestilliert, äquilibriert mit TE-Puffer, versetzt mit 0,1% 8-Hydroxychinolin als Antioxidans) und einem Teil Chloroform/Isoamylalkohol (24:1) („CI“) hergestellt. Die DNA-Lösung (meist 31 µl) wurde 1:1 mit PCI vermischt (Vortex) und 2 min zentrifugiert (13000 upm). Die Oberphase (ohne Interphase) wurde vorsichtig abgezogen und asserviert, die Unterphase nach Versetzen mit dem halben Volumen an TE-Puffer reextrahiert. Die vereinigten Oberphasen (ca. 45 µl) wurden 1:1 mit CI vermischt und 2 min zentrifugiert. Wieder wurde die Oberphase (mit Interphase) abgezogen und der Fällung mit Natriumacetat zugeführt. Hierzu wurde die Lösung mit dem 0,1-fachen Volumen an 3M Natriumacetat und dem 2,5-fachen Volumen an 100% Ethanol vermischt und 30 min bei Raumtemperatur und 13000 upm zentrifugiert. Der Überstand wurde vorsichtig vom sichtbaren DNA-Pellet abgezogen. Das Pellet wurde mit 100 µl 70% Ethanol gewaschen, nochmals zentrifugiert, und nach Abziehen des Überstandes 10 min bei 60°C getrocknet. Danach wurde die linearisierte cDNA in 10 µl TEA-Puffer aufgenommen und photometrisch quantifiziert. Durch Bestimmung der Absorption bei 260 nm und 280 nm Wellenlänge kann die Konzentration und die Reinheit einer DNA-Lösung bestimmt werden. Die OD₂₆₀ von Wasser wird auf 0 normiert, sodann entspricht eine OD₂₆₀ von 1,0 einer DNA-Konzentration von 50 µg/ml. Zur Analyse der Reinheit wurde der Koeffizient k berechnet. Bei 1,6 < k < 2,0 ist die DNA als rein anzusehen [GRÜNDEMANN D., 1994 (Diss.]):

\[k = \frac{OD_{260}(DNA)}{(OD_{280}(DNA) - OD_{280}(H_2O))} \]

Der Erfolg der Linearisation wurde sodann mittels DNA-Gelelektrophorese überprüft: Ein 0,7% Agarose-TAE-Gel wurde jeweils frisch hergestellt (50 ml TAE-
Puffer mit 0,35 g Agarose) und in einer Elektrophoresekammer mit TAE überschichtet. Die zu analysierenden DNA-Proben (jeweils ca. 500 ng, entsprechend 0,5 µl in TEA) wurden mit 3µl CW-Lauffmarker versetzt, 10 min bei 60°C denaturiert und parallel zu einem DNA-Standard (Boehringer VII oder GIBCO 1,0 kb, ebenso mit CW-Lauffmarker versetzt) aufgetragen. Die Elektrophorese erfolgte für 60 min konstant bei 75 V wobei ab 10 min nach dem Start der TAE-Puffer zur Vermeidung eines pH-Gradienten mittels einer Rollerpumpe von der Anode zur Kathode kontinuierlich umgewälzt wurde. Nach dem Ende der Laufzeit wurde das Gel in ausreichend 1µg/ml Ethidiumbromid in Leitungswasser 10 min bei 60°C von der Unterseite her gefärbt. Das gewaschene Gel wurde auf einem UV-Leuchttisch mit einer Sofortbildkamera und einem Orangefilter fotografiert (Abbildung 3). Korrekt linearisierte cDNA läuft bei 4,9 kb. Der DNA-Standard wurde meist soweit mit CW-Lauffmarker und TEA-Puffer verdünnt, sodaß jede Bande 50 ng DNA entspricht. Anhanddessen war zusätzlich eine Konzentrationsabschätzung der eingesetzten DNA-Probe möglich. Diese korrelierte gut mit dem Ergebnis der photometrischen Bestimmung.

Transkription von cRNA

Als nächster Schritt musste die linearisierte cDNA durch DNA-abhängige RNA-Polymerase in eine cRNA übersetzt werden. Die in vitro-Transkription erfolgte zunächst wie bei GRÜNDEMANN D., 1994 (Diss.) beschrieben, das Protokoll wurde dann jedoch aus Gründen der Reproduzierbarkeit und einfachen Handhabung bei gleicher Ausbeute auf ein kommerzielles Transkriptionskit (Stratagene #200341) umgestellt. Modifizierend beibehalten wurde die Zugabe von Anorganischer Pyrophosphatase, welche die RNA-Ausbeute deutlich zu steigern schien [GRÜNDEMANN D., 1994 (Diss.)]. Als Polymerase wurde für rOCT1 SP6, für hOCT2 T7 verwendet. Der übliche Transkriptionsansatz setzte sich wie folgt zusammen:
Abb. 3a: DNA-Gelektrophorese von rOCT1 in pBluescript vor und nach Linearisation mit NotI. Unlinearisiertes Plasmid zeigt zwei Banden: bei 2,7 kb in “super-coiled” und bei 5,0 kb in “nicked” Konformation. Masse einer Marker-Bande: 50 ng, geschätzte Masse der rOCT1-Banden: ca. 1 µg.

Abb. 3b: DNA-Gelektrophorese von rOCT1, hOCT1 und hOCT2 nach Linearisation mit NotI bzw. KpnI. Linearisierte rOCT1-cDNA läuft bei 4,9 kb. Geschätzte Masse der Banden: 500, 750 bzw. 750 ng. Photometrisch bestimmte Konzentrationen: rOCT1 1 µg/µl, hOCT1: 1,7 µg/µl, hOCT2: 1,4 µg/µl. Die Reinheitskoeffizienten lagen bei 1,7 bzw. 1,9.
2. Material und Methoden

10 µl 5x Transkriptionspuffer (bestehend aus 200 mM Tris-HCl (pH 7.5), 250 mM NaCl, 40 mM MgCl$_2$, 10 mM Spermidin)

2 µl rNTP-Mischung (bestehend aus 10 mM rATP, 10 mM rUTP, 10 mM rCTP, 3 mM rGTP)

10 µl mCAP-Analog (3 mM 5’-7MeGpppG-5’)

2 µl 0,75 M Dithiothreitol

4 µg linearisierte DNA

20 U RNase-Block (40 U/µl)

40 U SP6-Polymerase bzw.

20 U T7-Polymerase

DEPC-H$_2$O ad 50 µl

Der Erfolg der Transkription wurde anschließend in einer denaturierenden Glyoxal-RNA-Gelelektrophorese [Gründemann D. & KöpSELL H., 1994] kontrolliert: Ein 1% Agarose-BES-Gel wurde jeweils frisch hergestellt (0,5 g Agarose auf 50 ml BES-Puffer), wobei nach dem Aufkochen 50 mg Jodacetat als RNase-Inhibitor zugegeben wurde, und in einer gut gereinigten und mit DEPC-H$_2$O gespülten Elektrophoresekammer mit ausreichend BES-Puffer überschichtet. Die Proben wurden zunächst mit Glyoxal/DMSO denaturiert. Hierzu wurden jeweils 0,5 µl der zu analysierenden RNA-Lösung mit 2 µl DLG (die Zugabe von Ethidiumbromid zum DLG-Ansatz erfolgte jeweils unmittelbar vor Verwendung)
Abb. 4: Denaturierende BES-Glyoxal-Gelelektrophorese in vitro

transkribierter cRNA von rOCT1. Auf Spur 1 sind 0,5 µl der mittels kommerziell Transkriptionskit der Fa. Stratagene hergestellten cRNA-Lösung aufgetragen. Zum Vergleich zeigt die auf Spur 2 aufgetragene, mittels bisherigem Protokoll hergestellte cRNA (ebenfalls 0,5 µl) keine bessere Ausbeute. Die Reinheit scheint bei ersterem Ansatz etwas besser zu sein. Semiquantitativ ist die Masse der rOCT1-cRNA-Banden mit ca. 0,25 µg für Spur 1 und ca. 0,2 µg für Spur 2 zu schätzen. Daraus ergibt sich eine Konzentration von 0,5 µg/µl für die analysierte cRNA-Lösung nach dem Stratagene-Protokoll.
versetzt und 60 min bei 50°C inkubiert. Danach erfolgte die Zugabe von jeweils 1 µl Bromphenolblau als Laufmarker und die Auftragung auf das Gel. Die Elektrophorese erfolgte für ca. 2,5 Stunden bei 80V unter Verwendung einer Umwälzpumpe von Anode zur Kathode. Nach Ende der Laufzeit wurde das Gel unter Leitungswasser gewaschen und auf einem UV-Leuchttisch fotodokumentiert (siehe Abbildung 4). Korrekt transkribierte rOCT1-cRNA läuft bei 1,9 kb. Anhand des RNA-Längenstandards (GIBCO-BRL 0,24 - 9,4 kb, 1 µg/µl), von welchem 3 µg aufgetragen wurden, konnte die Masse der aufgetragenen RNA-Probe geschätzt werden. Eine Bande des Standards entspricht dabei 0,5 µg. Nur selten war in Zweifelsfällen eine photometrische Quantifizierung notwendig. Diese erfolgte analog zur DNA-Quantifizierung (s.o.), jedoch entspricht eine OD₂₆₀ von 1,0 einer RNA-Konzentration von 40 µg/ml. Von einer ausreichenden Reinheit der RNA wurde ebenso bei 1,6 < k < 2,0 ausgegangen [GRÜNDEMANN D., 1994 (Diss.)].
2.2 Oozyten von *Xenopus laevis* als Expressionssystem für Transportproteine

Die Oozyten des südafrikanischen Krallenfrosches *Xenopus laevis* eignen sich aus mehreren Gründen ausgezeichnet als Expressionssystem für Membranproteine [siehe hierzu SIGEL E., 1990]. Zunächst ist die relativ problemlose Verfügbarkeit und die außerordentliche Größe (durchschnittlicher Durchmesser 1,2 mm, Volumen ca. 1 µl, davon wässriges Kompartment ca. 0,5 µl) vorteilhaft für die praktische Handhabung. Ab Reifungsstadium III zeigen die Oozyten eine auffällige Pigmentierung, wobei die animale Hemisphäre dunkelbraun bis schwarz, die vegetative Hemisphäre weiß bis gelb erscheint. Oozyten der am besten für Expressionsexperimente verwendbaren Reifungsstufe VI zeigen zusätzlich ein helles Äquatorialband. Der durch Mikrovilli vergrößerten Plasmamembran liegt eine Vitellinhülle aus Glykoproteinen und Mukopolysacchariden auf, es folgt eine Umhüllung aus Follikelzellen. Aufgrund ihrer Omnipotenz und Undifferenziertheit besitzt die *Xenopus*-Oozyte die Fähigkeit, cytosolisch injizierte heterologe RNA effizient zu translatieren. Darüberhinaus ist die Oozyte zu vielfältigen posttranslationalen Modifikationen und zu einem korrekten *protein sorting* in Richtung Zellmembran befähigt. Die hohe Dichte der Insertion von integralen Membranproteinen konnte u.a. am Beispiel des Natrium-D-Glucose-Cotransporters elektronenmikroskopisch nachgewiesen werden [ESKANDARI S. *et al.*, 1998].

Lösungen

Für die alle Prozeduren an Oozyten wurden als Standardlösungen verwendet:

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Konzentration (mM)</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORi (Oozyten-Ringer)</td>
<td>5</td>
<td>TRIS</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>KCl</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CaCl₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCl ad pH 7,4</td>
</tr>
</tbody>
</table>
2. Material und Methoden

Kulori: 20 mg/l Penicillin G
 25 mg/l Streptomycin
 in ORi

Gentori: 50 mg/l Gentamicin
 in ORi

PCG-ORi: 2,5 mM Natriumpyruvat
 1 mM Cholin
 in Gentori

ORi 130: 130 mM NaCl
 sonst wie ORi

2.2.1 Präparation von X. laevis-Oozyten

Xenopus laevis-Weibchen wurden entsprechend der Richtlinien in temperierten 200 l-Aquarien gehalten, zweimal wöchentlich mit Rinderherz und Multivitaminsirup gefüttert. Zur Entnahme von Oozyten wurden abends zwei Tiere in Eiswasser verbracht (eines zur OP, ein weiteres als Reserve, falls keine Oozyten vorhanden), nach Sistieren der Spontanaktivität auf Eis gebettet und mit Eis bedeckt. Nach Sistieren des Schluckreflexes auf Bestreichen der Kehle wurde die Leistenregion einer Seite von Eis befreit, eine ca. 1 cm lange parainguinale Hautinzision mittels Präparierschere angelegt, die darunterliegende Faszie und die Muskelschichten gleichsinnig durchtrennt. Unmittelbar kamen die Lobuli des großen Ovars mit sichtbaren Oozyten zum Vorschein, welche mit Pinzetten vorsichtig extrahiert, abgeschnitten und in Schälchen mit Kulori verbracht wurden. Die Faszien- und Hautinzision wurde unverzüglich mittels steriler Nähseide mit 3-4 einschichtigen Einzelknopfnähten verschlossen. Die Erholung des Tieres erfolgte zunächst in handwamem Leitungswasser (Aufwachphase) und anschließend übernacht in einem dunklen Behälter mit Meerwasser (Leitungswasser mit 0,5g/l Meersalz) mit einer Spatelspitze Streptomycin. Die Ovarlappen wurden anschließend manuell disseziert und übernacht in 10 ml Kulori mit 20 mg Kollagenase (Clostridiopeptidase A, Sigma-Aldrich Taufkirchen, 1000 – 3000 collagen digesting...

2.2.2 Mikroinjektion von X. laevis-Oozyten

Die Injektion der zu exprimierenden cRNA in die Oozyten erfolgte mittels fein ausgezogener (Kapillarpuller der Fa. Sutter) Borosilikat-Glaskapillaren (Rohling: Innendurchmesser 0,5 mm) und einer mikrohydraulischen Mikroinjektionspumpe mit elektronischem Zähls- und Dosiersystem (Eigenbau W. Hampel, Max-Planck-Institut für Biophysik, Frankfurt am Main), welche auf einem Mikromanipulator montiert war. Bei Montage der Glaskapillare war streng auf die luftblasenfreie Füllung mit Mineralöl zu achten. Die zu injizierende cRNA-Lösung wurde mit DEPC-H₂O auf die erforderliche Konzentration verdünnt, sodass bei einem Injektionsvolumen von 50 nl pro Oozyte die gewünschte RNA-Menge (soweit nicht anders angegeben, 10 ng/Oozyte) appliziert wird. Ein Tropfen (ca. 2 µl) der RNA-Lösung wurde in einen autoklavierten Deckel eines 1,5-ml-Reaktionsgefäßes gegeben und mit Mineralöl (heavy white paraffin oil, Sigma-Aldrich Taufkirchen) überschichtet. Die RNA-Lösung wurde bei maximaler Geschwindigkeit (300 nl/min) in die Glaskapillare luftblasenfrei aufgezogen.

Die zu injizierenden Oozyten wurden in hyperosmolarem ORi 130 inkubiert und in die Rillen eines Injektionsschälchens aufgereiht. Die Injektion von 50 nl pro Oozyte erfolgte in der Äquatorialzone mit einer Geschwindigkeit von 300 nl/min.
Um einen Druckausgleich zu gewährleisten und den Austritt von Dotter (und damit auch von injizierter RNA) zu vermeiden wurde nach der Injektion die Kapillare für einige Sekunden in der Oozyte belassen und erst anschließend vorsichtig extrahiert. Das Injektionsloch verschloss sich in der Regel aufgrund der Membranfluidität und der vorbereitenden hypertonen Schrumpfung rasch und vollständig. Dotternde Oozyten wurden aussortiert.

Um die Genauigkeit der Mikroinjektion zu überprüfen und die optimale und dabei effizienteste Injektionsgeschwindigkeit zu ermitteln, bei der eine möglichst geringe Schwankung der tatsächlich injizierten cRNA-Menge im Oozytenvergleich resultiert, wurden jeweils 7 bis 10 Oozyten mit 40 nl eines radioaktiven Tracers ([\(^{14}\)C]-α-Methyl-Glucose) injiziert (Abbildung 5). Hierbei ergab sich, dass die Schwankung der tatsächlich injizierten Menge bei einer Injektionsgeschwindigkeit von 240 nl/min am niedrigsten ist (4,2%), während bei 50 und 100 nl/min eineinst die Schwankung größer und andererseits die tatsächlich injizierte Menge absolut niedriger war als bei den höheren Geschwindigkeiten, was möglicherweise auf leckbedingte Rückdiffusion während der längeren Injektionsdauer bedingt ist. Da die Schwankung bei 300 nl/min nicht wesentlich höher als bei 240 nl/min war und immer noch unter 5% lag, wurde für die RNA-Injektionen angesichts höherer Effizienz 300 nl/min gewählt.

2.2.3 Kultur von X. laevis-Oozyten

Die mit cRNA und DEPC-H\(_2\)O injizierten Oozyten wurden in 60mm-Schälchen mit Kulori, Gentori oder PCG-ORi überführt und dunkel bei 19°C gelagert. Für die Expression und Membraninsertion der Transportproteine wurden die Oozyten drei Tage kultiviert. Dabei wurde täglich das Medium gewechselt und inspektorisch schlechte Oozyten aussortiert. Kriterien für eine Negativselektion
Transportmessungen an *Xenopus*-Oozyten

Abb. 5: **Genauigkeit der Injektion** von 40 nl einer Lösung von 200 µM [14C]-α-Methyl-Glucose (AMG) in *Xenopus*-Oozyten in Abhängigkeit von der Injektionsgeschwindigkeit. Aufgetragen ist die Abweichung der pro Oozyte gemessenen Aktivität (dpm) vom Mittelwert:

<table>
<thead>
<tr>
<th>Injektionsgeschwindigkeit</th>
<th>Mittlere Aktivität [14C]-AMG</th>
<th>Standardabweichung</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 nl/ min</td>
<td>306,7 dpm</td>
<td>7,4 %</td>
<td>10</td>
</tr>
<tr>
<td>100 nl/ min</td>
<td>304,9 dpm</td>
<td>5,1 %</td>
<td>7</td>
</tr>
<tr>
<td>160 nl/ min</td>
<td>316,5 dpm</td>
<td>4,2 %</td>
<td>10</td>
</tr>
<tr>
<td>240 nl/ min</td>
<td>320,2 dpm</td>
<td>4,2 %</td>
<td>10</td>
</tr>
<tr>
<td>300 nl/ min</td>
<td>317,0 dpm</td>
<td>4,9 %</td>
<td>9</td>
</tr>
</tbody>
</table>

2.3 Transportmessungen an *Xenopus*-Oozyten mit radioaktiv markierten Tracersubstraten

2.3.1 Influxmessungen

Zur Messung der Substrataufnahme in die Oozyten (Influx) wurden 7 bis 10 Oozyten in 1,5 ml-Polystyrolbecher mit zunächst 186 – 199 µl ORi (entsprechend der Differenz zum späteren Endvolumen von exakt 200 µl nach Substratzugabe, s.u.) überführt. Zu definierten Zeitpunkten erfolgte die Zugabe des Hemmstoffs zwecks Vorinkubation. Hierdurch sollten unspezifische Bindungsstellen der großflächigen Oozytenmembran zunächst abgesättigt werden um eine gleichmäßige Wirkung des Hemmstoffs auf alle exprimierten OCT-Proteine zu gewährleisten. Zum Zeitpunkt \(t = 0 \) erfolgte durch Zugabe des radioaktiv markierten Transportsubstrats der Start des Influxes. Das Gesamtvolumen während des Influxes betrug stets exakt 200 µl. Gegen Ende der Meßdauer wurden jeweils zweimal 10 µl Überstand aus der Badlösung entnommen und der Szintillationsanalyse zugeführt. Nach Ablauf der gewünschten Meßdauer (soweit nicht anders angegeben 60 min) wurden zum Stoppen der temperaturabhängigen carriervermittelten Aufnahme 1 bis 1,5 ml eiskalter ORi in das Meßgefäβ pipettiert, die Oozyten entnommen und dreimal in eiskaltem ORi gewaschen. Die Oozyten wurden einzeln in die Szintillationsgefäβe pipettiert, in die jeweils 100 µl 10% SDS vorgelegt worden war. Anschließend erfolgte die Lysierung der Oozyten durch Vortexen und Schwenken der gefüllten Szintillationsgefäβe auf einem Exzenter-Schüttler. Nach Lyse der Oozyten wurde jedes Vial mit 1 ml Szintillationscocktail beschickt, verschlossen und in einem TRICARB Canberra Packard Flüssigkeitsszintillationszähler analysiert. Der Ausdruck der Rohdaten erfolgte über die Software DataLink 1500 Version 2.51.

Die pro Meßansatz einzusetzende Aktivität des Tracers wurde so bemessen, daß ca. 10 KBq pro Ansatz (200 µl) einer Messung von 25000 dpm in 10 µl der Badlösung (bei 3H-MPP) entsprechen. Hierbei war auch der geräte- und
tracerspezifische Quenchfaktor (siehe technisches Handbuch) des Szintillationszählers zu berücksichtigen.

Die Umrechnung der pro Oozyte erhaltenen Messwerte (in dpm) in eine Transportrate (in pmol/h) erfolgte nach der Formel

\[
\text{n}_{\text{transp.}} = \frac{a_{\text{transp.}} \cdot M_{\text{Üb.}} \cdot V_{\text{Üb.}} \cdot 60 \text{ min/h}}{a_{\text{Üb.}} \cdot t_{\text{transp.}}}
\]

wobei \(n_{\text{transp.}}\) für die transportierte Stoffmenge (in pmol/Oozyte), \(a_{\text{transp.}}\) für die in der Oozyte gemessene Traceraktivität (in dpm), \(a_{\text{Üb.}}\) für die im Überstand gemessene Traceraktivität (in dpm), \(M_{\text{Üb.}}\) und \(V_{\text{Üb.}}\) für die Konzentration des Tracers in der Badlösung (in pmol/µl = µM) bzw. das Volumen der abgenommenen Überstandsprobe (10 µl) sowie \(t_{\text{transp.}}\) für die Meßdauer (in min) stehen.

Bei Transportkinetiken wurden in der Regel die Substrataufnahme in ungewehmte Oozyten bei 10 Konzentrationsstufen gemessen, zusätzlich hierzu bei jeweils mindestens 4 Konzentrationsstufen in hemmstoffvorinkubierte und wasserinjizierte Kontrolloozyten, wobei für jede Versuchsbedingung 7 bis 10 Oozyten pro Meßgefäβ eingesetzt wurden. Für Influx-Hemmkinetiken wurden die Oozyten für jeweils 14 min in einer Badlösung mit der gewünschten Hemmstoffkonzentration vorinkubiert, bevor die Transportmessung durch Zugabe des Tracersubstrates gestartet wurde. Hierbei wurde die Substrataufnahme in ungewehmte Oozyten und bei mindestens 8 Konzentrationsstufen des Hemmstoffs gemessen. Für jede Versuchsbedingung wurden 7 bis 10 Oozyten pro Meßgefäβ eingesetzt. Das Transportsubstrat wurde, sofern möglich, in einer Konzentration im Bereich des jeweiligen \(K_M\) eingesetzt.

Bei allen Influx-Transportmessungen wurden Oozyten verwendet, die während der Kulturphase mit Cholin und Pyruvat (in PCG-ORi) substituiert wurden. Daß Cholin hierbei kompetitiv hemmen könnte ist vernachlässigbar, da im Oozytendofter bereits potentielle OCT-Substrate zu vermuten sind. Deren eventuelle und variable Inhibition wird durch die konstante Vorbeladung mit Cholin eher noch nivelliert.
2.3.2 Effluxmessungen

Wie oben beschrieben kultivierte Xenopus-Oozyten wurden einzeln mit jeweils 50 nl einer Tracer-Lösung von \[^{3}\text{H}]-\text{MPP} (7,4 \text{kBq/\mu l}, 2,4 \text{\mu M}) bei einer Geschwindigkeit von 80 nl/min injiziert. Dies entspricht bei einem angenommenen durchschnittlichen Oozytenvolumen von 1 \mu l mit einem wässrigen Kompartiment
von 500 nl einer intrazellulären Konzentration von 0,24 µM. Somit liegt die für den Efflux effektive
$[^{3}H]$-MPP-Konzentration noch unterhalb des entsprechenden K_M,
so daß noch keine Sättigung für MPP erreicht ist. Da aber anzunehmen ist, dass der
Transporter durch weitere intrazellulär vorhandene Transportsubstrate, insbesondere
Cholin (zumal sämtliche Oozyten während der Kulturphase cholin- und
pyruvatsubstituiert wurden, s.o.) in Saßigungsbereich bzw. im steady state läuft,
würde eine weitere Erhöhung der intrazellulären MPP-Konzentration in Richtung des
K_M (durch Mischung mit nicht markiertem MPP) nur zu einer Abnahme des in der
Badlösung detektierbaren Aktivitätssignals aber nicht zu einer Steigerung der
Transportgeschwindigkeit führen. Demgegenüber wird eine eventuelle kompetitive
Inhibition durch endogene Oozytensubstrate durch die Cholinsubstitution auf ein
konstantes Maß nivelliert und ist somit vernachlässigbar, zumal die Oozyten auch im
Influxparadigma gleichermaßen (potentiell kompetierendes) Cholin enthalten.

Aufgrund der entsprechend erforderlich hohen spezifischen Aktivität des zu
verwendenden Tracers waren Effluxmessungen nur mit $[^{3}H]$-MPP (37 kBq/µl, 3,1
GBq/µmol) und nicht z.B. mit $[^{14}C]$-TEA (3,7 kBq/µl, 0,185 MBq/µmol) als Tracer
möglich. Bei Injektion von 10 nl Stammlösung pro Oozyte sind mit $[^{3}H]$-MPP 370
Bq pro Oozyte bei 120 fmol pro Oozyte (0,24 µM) erreichbar. Im Vergleich hierzu
wären selbst bei Injektion von 50 nl Stammlösung $[^{14}C]$-TEA nur 185 Bq pro Oozyte
bei bereits 1000 pmol pro Oozyte erreichbar. Dies würde einer intrazellulären TEA-
Konzentration von 2 mM entsprechen, was bereits 20-fach über dem entsprechenden
K_M läge. Aufgrund des hohen endogenen Cholin-Transports der Oozyten wurde auch
auf die Durchführung von Cholin-Effluxversuchen verzichtet.

Zur Effluxmessung wurden pro Versuchsbedingung 3 bis 5 cholinsubstituierte,
optisch einwandfreie Oozyten einzeln injiziert und gemessen. Nach Tracerinjektion
wurde die Oozyte kurz in ORi gewaschen und in ein Polystyrolgefäβ mit konischem
Boden verbracht, in welches 100 µl ORi-Badlösung mit der gewünschten
Konzentration an $trans$-Substrat vorgelegt war. Hiermit wurde die Effluxzeit t
gestartet. Es erfolgte somit keine Vorinkubation des $trans$-Substrates. Zu den
Zeitpunkten $t = 1, 2, 3, 4$ und 5 min wurde die Badlösung (100 µl) komplett entfernt,
Transportmessungen an *Xenopus*-Oozyten

in ein Szintillationsgefäß pipettiert und sofort durch 100 µl frische Badlösung ersetzt. Nach Abnahme der letzten Badlösung (t = 5 min) wurde der Efflux durch Zugabe von 1 bis 1,5 ml eiskaltem ORi auf die Oozyte gestoppt. Unmittelbar danach wurde die Oozyte aus dem Meßgefäße entfernt, dreimal in eiskaltem ORi gewaschen, lysiert und wie oben beschrieben der Szintillationsanalyse zugeführt.

Die Messwerte wurden in einen kumulativen Efflux \(n_e(t) \) (in fmol) zum jeweiligen Zeitpunkt \(t \) umgerechnet. Hierzu wurde die Aktivität, die im zum Zeitpunkt \(t \) entnommenen Überstand gemessen wurde, zu den entsprechenden Werten der zuvor entnommenen Überstände addiert. Alle Überstandsaktivitäten wurden zum Messwert der Oozyte selbst addiert um die zum Zeitpunkt \(t = 0 \) in der Oozyte vorhandene Aktivität zu erhalten. Diese entspricht der injizierten Tracermenge (in fmol). Hierdurch konnte durch einfachen Dreisatz die zum Zeitpunkt \(t \) aus der Oozyte kumulativ ausgeflossene Tracermenge berechnet werden. Über die Zeit verläuft der kumulative Efflux exponentiell (annähernd linear während der ersten zwei Minuten) und nähert sich einem Maximum an, welches extrapolativ bei ca. 20 min nach dem Start liegt. Dies läßt sich durch die relativ geringe intrazelluläre Tracerkonzentration erklären, die durch den OCT-vermittelten Transport rasch signifikant erniedrigt wird. Somit ist davon auszugehen dass die Transportaktivität von OCT nur initial der eingesetzten Substratkonzentration entspricht. Daher wurde an die kumulativen Effluxwerte die monoexponentielle Funktion

\[n_e = a \cdot \exp(-k \cdot t) + r \]

angepasst. Die durch das Fitting (Software Biosoft Fig.P Version 6.0) erhaltenen Parameter \(a \), \(k \) und \(r \) beschreiben somit die Efflux-Kennkurve jeder einzelnen Oozyte. Hieraus wurde durch die erste Ableitung die Steigung der Kurve bei \(t = 0 \) errechnet, welche der initialen Effluxrate entspricht:

\[\frac{dn_e}{dt}(t = 0) = -a \cdot k \]

Die initialen Effluxraten aller Oozyten der gleichen Versuchsbedingung wurden gemittelt und die Standardabweichung bzw. der Standardfehler berechnet.
Alle Tracerkinetiken wurden mittels Biosoft Fig.P Version 6.0 an die entsprechenden Gleichungen angepasst. Für die Gesamtaufnahmen der Transportkinetiken wurde die Michaelis-Menten-Gleichung mit unspezifischer Bindung zugrundegelegt:

\[v = \frac{V_{\text{max}} \cdot S}{K_m + S} + b \cdot S \]

Hierbei bezeichnet \(v \) die Transportgeschwindigkeit (in pmol/h oder fmol/min), \(S \) die Substratkonzentration, \(b \) die Rate der unspezifischen Aufnahme oder Bindung. Genauere Ergebnisse wurden jedoch erhalten, wenn von der Gesamtaufnahme via OCT-exprimierende Oozyten die unspezifische Aufnahme in wasserinjizierte oder cyaningehemmte Oozyten subtrahiert und die so erhaltene Differenzkurve an die reine Michaelis-Menten-Gleichung angepasst wurde.

\[v = \frac{V_{\text{max}} \cdot S}{K_m + S} \]

Hemmkinetiken wurden in der Regel gegen die Aufnahme von TEA oder MPP jeweils am \(K_M \) gemessen, d.h. bei 100 µM TEA bzw. 14 µM MPP. Die Substrataufnahme durch hemmstoffexponierte Oozyten (\(V_{\text{inh.}} \)) wurde – nach Korrektur um die unspezifische Aufnahme in wasserinjizierte Kontrolloozyten (\(V_{\text{H2O}} \)) – zur Aufnahme in ungehemmte Oozyten (\(V_0 \)) in Relation gesetzt und als Relativhemmwert (\(0 \leq V_{\text{rel.}} \leq 1 \)) ausgedrückt:

\[V_{\text{rel.}} = \frac{V_i}{V_0} = \frac{V_{\text{inh.}} - V_{\text{H2O}}}{V_0 - V_{\text{H2O}}} \]

Die so ermittelten Relativhemmwerte wurden gegen die Hemmstoffkonzentration halblogarithmisch aufgetragen und an die Gleichung des entsprechenden Inhibitionsmodells angepasst. Sofern am \(K_M \) gemessen wurde, gilt für die
kompetitive Hemmung [nach GRÜNDEMANN D., 1994 (Diss.)] in Abhängigkeit von der Hemmstoffkonzentration I:

\[
\frac{V_i}{V_0} = \frac{1}{1 + \frac{I}{2 \cdot K_i}}
\]

Sofern jedoch nicht direkt am \(K_M \) gemessen wurde, sondern die Substratkonzentration ein Vielfaches oder ein Bruchteil des \(K_M \) betrug (\(S = m \cdot K_M \)), muß eine allgemeinere Form der obigen Hemmkinetik verwendet werden. Diese läßt sich wie folgt herleiten:

Die Michaelis-Menten-Gleichung läßt sich mit \(S = m \cdot K_M \) formulieren als

\[
V_0 = \frac{V_{\text{max}} \cdot m}{1 + m}
\]

Für die Geschwindigkeit des kompetitiv gehemmten Transports gilt:

\[
\frac{1}{V_i} = \frac{1}{V_{\text{max}}} + \frac{K_M}{V_{\text{max}}} \cdot \left(1 + \frac{I}{K_i} \right) \cdot \left(\frac{1}{S} \right)
\]

was sich mit \(S = m \cdot K_M \) nach Umformung schreiben läßt als

\[
\frac{1}{V_i} = \frac{(1 + m) \cdot K_i + I}{V_{\text{max}} \cdot m \cdot K_i}
\]

Als Quotient mit \(V_0 \) ergibt sich nach Umformung:

\[
\frac{V_i}{V_0} = \frac{1}{1 + \frac{I}{(1 + m) \cdot K_i}}
\]
Demgegenüber gilt für die nicht-kompetitive Hemmung unabhängig von der Konzentration des eingesetzten Transportsustrates [nach Gründemann D., 1994 (Diss.)]:

\[
\frac{V_i}{V_0} = \frac{1}{1 + \frac{I}{K_i}}
\]

Bei Hemmstoffen, deren Hemmmechanismus (kompetitiv oder nicht-kompetitiv) noch nicht bekannt ist, wurde die Hemmkinetik an eine monoexponentielle Funktion angepasst:

\[
\frac{V_i}{V_0} = a \cdot e^{-k \cdot I} + r
\]

Als IC\(_{50}\) wird die halbmaximale Hemmkonstante bezeichnet, d.h. die Hemmstoffkonzentration, bei der der Transport auf die Hälfte reduziert wird (\(V_i/V_0 = 0,5\)). Sie errechnet sich aus der obigen Gleichung als

\[
IC_{50} = -\frac{\ln \left(\frac{0,5 - r}{a} \right)}{k}
\]

Mittelwerte und Fehlerberechnung

Bei Influxmessungen an Xenopus-Oozyten wurden bisweilen einzelne Messwerte beobachtet, die klar außerhalb des Bereichs der übrigen Oozyten der gleichen Versuchsbedingung liegen. Diese Ausreißer können in negativer Richtung durch verminderte OCT-Expression aufgrund akzidenteller intranukleärer Injektion der cRNA oder Verlust von injizierter cRNA durch das Injektionsloch bzw. in positiver Richtung durch Schäden in der Oozytenmembran bedingt sein. Auf das arithmetische Mittel würden sich solche Ausreißer deletär auswirken, sodaß diesem Problem auf zwei Wegen begegnet werden musste. Zum einen ist der Median der
Messwerte (der mittlere Wert aller in aufsteigender Reihe geordneten Messwerte einer Gruppe) wesentlich robuster gegen Ausreißer, sodaß dieser, sofern nicht anders angegeben, mit dem entsprechenden Standardfehler zur Darstellung der Influxergebnisse verwendet wurde [SACHS L., 1992]. Andererseits beeinflussen Ausreißer auch die Qualität der Standardabweichung (SD), sodaß Signifikanztests bisweilen erschwert werden. Deshalb wurde bei einer Häufung von Ausreißern in einem Versuch konstant bei allen Gruppen des Versuchs der oberste und unterste Messwert gestrichen, was bei konstanter Durchführung und Plausibilität der Ausreißer statistisch erlaubt ist.

Bei Effluxmessungen lag aufgrund des erheblichen technischen Versuchsaufwandes die n-Zahl der pro Versuchsbedingung eingesetzten Oozyten niedriger als beim Influx (n = 3 bis 5), sodaß das gleiche Vorgehen wie beim Influx nicht möglich war. Sofern nicht anders angegeben, wurden für Effluxwerte das arithmetische Mittel der errechneten initialen Effluxraten der einzelnen Oozyten und der entsprechende Standardfehler (SEM = SD / n^{0.5}) angegeben.

Bei Verrechnung von mit Fehlern versehenen Werten ist eine Fehlerfortpflanzung erforderlich. Bei Verrechnung zweier Messwerte durch Addition, Subtraktion, Multiplikation oder Division (z.B. bei Relativhemmwerten oder Differenzwerten) erfolgte die Fehlerfortpflanzung durch das geometrische Mittel der relativen Einzelfehler \(E_{rel.} \):

\[
E_{rel.\ z} = \left(E_{rel.\ 1}^2 + E_{rel.\ 2}^2 \right)^{0.5}
\]

Bei Verrechnung eines Messwertes mit einer Konstanten wurde der relative Fehler weitergegeben und mit dem Ergebnis verrechnet.

Darstellung

Die Diagramme wurden mit Biosoft Fig.P® 6.0 und SigmaPlot® 7.0 erstellt.
2. Material und Methoden

2.5 Bezugsquellen

Standardchemikalien wurden, sofern nicht anders angegeben, von Sigma-Aldrich, Taufkirchen, oder Fluka, ebd., bezogen.

Enzyme:

MluI-Restriktionsendonuklease: Fermentas
NotI-Restriktionsendonuklease: Fermentas #ER0592 (8U/µl)
GIBCO-BRL #15441-017 (15U/µl)
RNase-Block: Stratagene #300151
Transkriptions-Kit: Stratagene #200350
SP6-Polymerase: Fermentas
Epicentre Technologies (25 U/µl)
T7-Polymerase: Stratagene
DNase I, RNase-frei: Stratagene #600031

DNA-Standards:

DNA-Standard VII: Boehringer Mannheim #1209264 (15 Banden, 250 ng/µl)
GIBCO: GIBCO-BRL 1,0 kb, (22 Banden, 1 µg/µl)
Life-Technologies #15615-016
RNA-Standard: GIBCO-BRL 0,24-9,5 kb (6 Banden, 1 µg/µl)
Life-Technologies #15620-016

Xenopus laevis Weibchen (Größe 10 – 11 cm):
H. Kähler, Hamburg

Glaskapillaren für die Mikroinjektion: Innendurchmesser 0,5 mm,
Aussendurchmesser 1,0 mm
Fa. Hilgenberg, Malsfeld
Radioaktiv markierte Transportsubstrate (Tracer):

[me-³H]-MPP -Acetat: 3,1 TBq/mmol, 37 MBq/ml
New England Nuclear, #NET-914

[¹⁴C]-TEA -Bromid: 1,96 GBq/mmol, 3,7 MBq/ml
New England Nuclear #NEC-298

[¹⁴C]-TEA -Bromid: 2,1 GBq/mmol, 39,22 MBq/ml
Biotrend ARC-577

[¹⁴C]-TEA -Bromid: 185 MBq/mmol, 3,7 MBq/ml
New England Nuclear #NEC-298

[me-³H]-Cholinchlorid: 2,55 TBq/mmol, 37 MBq/ml
Amersham #TRK-593

[9-³H]-Chinin: 555 GBq/mmol, 18,5 MBq/ml
ARC American Radiolabeled Chemicals Inc., St. Louis, MO, #ART-451

[³H]-Chinidin: 536 GBq/mmol, 37 MBq/ml
ARC American Radiolabeled Chemicals Inc., St. Louis, MO, #ART-452

[me-³H]-NMN -Chlorid: 111 GBq/mmol, 37 MBq/ml
ICN #27081

[³H]-Dopamin: 2,1 TBq/mmol, 37 MBq/ml
Biotrend #ARC-577

[2,5-³H]-Histamin: 1,9 TBq/mmol, 37 MBq/ml
Amersham #TRK-631

[³H]-Acetylcholin: 740 GBq/mmol, 37 MBq/ml
ARC American Radiolabeled Chemicals Inc., St. Louis, MO, #ART-204

[³H]-Corticosteron: 3,18 TBq/mmol, 37 MBq/ml
Amersham #TRK-406

DL-[4-³H]-Propranolol: 714 GBq/mmol, 37 MBq/ml
Amersham #TRK-495

[21-³H]-APDA: 92,5 GBq/mmol, 1,1 MBq/ml
Prof. D.K.F. Meijer, Groningen

[¹⁴C]-Ifosfamid: 57 MBq/mmol, 222 kBq/mg
ASTA Medica/ Prof. M. Wießler, DKFZ Heidelberg
2. Material und Methoden

[^14C]-Ifosfamid: 444 MBq/mmol, 19,3 MBq/ml
 ASTA Medica/ Prof. M. Wießler, DKFZ Heidelberg

[^14C]-GIPM: 419 MBq/mmol, 109,3 MBq/ml
 ASTA Medica/ Prof. M. Wießler, DKFZ Heidelberg

[^3H]-D-Phe-Ala: 333 GBq/mmol, 120 MBq/ml
 Prof. H. Daniel, Gießen

[^14C]-AMG: 10,8 GBq/mmol, 7,4 MBq/ml
 Amersham #CFB-76

Nicht radioaktiv markierte Hemmstoffe und Transportsubstrate wurden ebenfalls von Sigma bzw. Fluka bezogen, außer:

MPP-Iodid: Biotrend RBI #D-048
Vecuroniumbromid: Organon-Teknika, Eppelheim
3. Ergebnisse

3.1 Spezifitäten der Transportkinetik von rOCT1
 3.1.1 Substrattransport
 3.1.2 \textit{cis}-Hemmung
 3.1.3 \textit{trans}-Effekte

3.2 Spezifitäten der Transportkinetik von hOCT2
 3.2.1 Substrattransport
 3.2.2 \textit{cis}-Hemmung
 3.2.3 \textit{trans}-Effekte

3.3 Elektrochemische Eigenschaften von rOCT1

3.4 Symmetrie im Bindungs- und Transportmechanismus von rOCT1
 3.4.1 \textit{cis}- und \textit{trans}-Verhalten kompetitiver und nicht-kompetitiver Hemmstoffe
 3.4.2 \textit{cis}- und \textit{trans}-Verhalten von Transportsubstraten
3. Ergebnisse

3.1 Spezifitäten der Transportkinetik von rOCT1

3.1.1 Substrattransport

In der Erstbeschreibung von rOCT1 [GRÜNDEMANN D., 1994] war bereits durch Influxmessungen an rOCT1-exprimierenden Oozyten der Transport von TEA kinetisch charakterisiert und die Transportabilität von MPP und NMN gezeigt worden. Unter den Bedingungen fehlender Cholinsubstitution und Expression im Bluescript-Vektor war für TEA ein K_m von $95 \pm 10 \mu M$ und eine V_{max} von $81 \pm 5 \text{pmol/h}$ bestimmt worden. Für MPP und NMN wurde kein K_m berechnet. Insbesondere wurde nicht geklärt, welche der Hemmstoffe selbst transportiert werden und welche nicht. Insofern war keine Aussage über eventuelle Unterschiede im Bindungs- und Transportverhalten von OCT möglich.

Im Rahmen dieser Arbeit wurden die Versuchsbedingungen für die funktionelle Expression von rOCT1 in Xenopus-Oozyten weiter optimiert. Eine Voraussetzung hierfür war die Umklonierung von rOCT1 in den oozyten spezifischen Vektor pRSSP (siehe Methodik). Hierunter zeigte sich eine bei gleicher Menge injizierter cRNA eine wesentlich höhere Transportkapazität. Deshalb wurde die optimale zu injizierende cRNA-Menge für rOCT1 neu ermittelt. Hierzu wurden Oozyten mit unterschiedlichen Mengen rOCT1/pRSSP-cRNA injiziert und die Aufnahme von $[^{3}H]$-MPP gemessen (Abbildung 6). Hierbei zeigte sich, dass eine Injektionsmenge von 5,6 ebenso wie 11,3 ng/Oozyte zu einer über 3-fach stärkeren Transportaktivität als 12,5 ng der aus pBluescript transkribierten rOCT1-cRNA vermittelt. Eine Verdopplung der injizierten cRNA-Menge auf 22,5 ng/Oozyte erbrachte jedoch keine weitere Verdopplung der vermittelten Transportaktivität, sodaß im folgenden standardmäßig 10 ng/Oozyte injiziert wurden. Aus den Versuchen von GRÜNDEMANN war bereits bekannt, dass sich das Expressionssystem
Xenopus-Oozyte

Abb. 6: **Abhängigkeit der MPP-Aufnahme in *X.-laevis*-Oozyten von der Menge der injizierten cRNA.** Dargestellt ist die Aufnahme von 14 µM [³H]-MPP über 60 min ± S.E.M. ungehemmt und gehemmt durch Zugabe von 36 µM Cyanin863. Es fällt auf, dass cRNA, die aus RSSP-Plasmid-cDNA transkribiert wurde, eine wesentlich stärkere Expression von rOCT1 vermittelt als die aus *pBluescript* gewonnene.
durch eine sehr hohe Aufnahmekapazität für organische Kationen im Influx-Paradigma auszeichnet, sodaß ein Einwärtstransport über sehr lange Zeit linear zu verlaufen vermag. Deshalb können Transportmessungen an der Oozyte im Rahmen von bis zu 60 oder 90 Minuten erfolgen. Im Vergleich hierzu müssen Aufnahmemessungen an Vesikeln oder Zellkulturen nach wenigen Sekunden gestoppt werden, um nicht in den Sättigungsbereich zu kommen. Um die Linearität der Substrataufnahme im Zeitverlauf für die verschiedenen Substrate von rOCT1 nachzuweisen, wurde für MPP, NMN und TEA für verschiedene Konzentrationen Zeittkinetiken angefertigt (siehe Abbildung 7). Hierbei zeigte sich, dass die Aufnahme von MPP in Xenopus-Oozyten bei 14, 60 und 160 µM für mindestens 60 Minuten, bei 60 µM sogar bis mindestens 90 Minuten linear verläuft. Ebenso konnte für NMN die Linearität über mindestens 90 Minuten bei 1 mM und über mindestens 60 Minuten bei 6 mM gezeigt werden. Die Aufnahme von TEA (1 mM) war ebenso für mindestens 60 Minuten linear. Demgegenüber war die entsprechende Substrataufnahme in wasserinjizierte Kontrolloozyten und in cyanin gehemmte rOCT1-exprimierende Oozyten nicht linear, sondern erreichte rasch ein Maximum, was am ehesten der Absättigung von unspezifischen Bindungsstellen in der Oozytenmembran entspricht. Insofern konnten alle nachfolgenden Substrataufnahmeversuche standardisiert mit einer Fluxdauer von 60 min durchgeführt werden.

Abb. 7: Zeitkinetiken von rOCT1 für MPP (a) und NMN (b). Aufgetragen sind gegen die Aufnahmedauer die Mediane ± S.E.M. der Aufnahme von $[^{3}\text{H}]$-MPP (bei 160 µM) bzw. $[^{3}\text{H}]$-NMN (bei 6 mM) in cholinsubstituierte, rOCT1-exprimierende Oozyten, jeweils ungehemmt und unter 37 µM Cyanin863, sowie in wasserinjizierte Kontrollozyten (jew. n = 8). Es erfolgte jeweils eine Anpassung an eine monoexponentielle Funktion sowie die Errechnung einer Differenzkurve der streng rOCT1-spezifischen Aufnahme (Δ). Der jeweilige rOCT1-spezifische Transport ist über mindestens 60 min als linear anzusehen.
3. Ergebnisse

der Standardfehler der Anpassung berechnet. Hierbei fanden sich (in absteigender Substrataffinität) als K_M für MPP 9,60 ± 1,51 µM, für Dopamin 51,0 ± 14,6 µM, für NMN 403 ± 150 µM, für Histamin 544 ± 136 µM und für Cholin 620 ± 139 µM (siehe Tabelle 4). Repräsentativ hierfür sind die Transportkinetiken für MPP und Dopamin abgebildet (Abbildungen 8 und 9).

Um die relative Transportkapazität von rOCT1 für die einzelnen Substrate zu vergleichen, wurde in einem Parallelversuch die Maximaltransportgeschwindigkeit für diese Substrate an der gleichen Oozytencharge bei der jeweils aus der Substratkinetik abgelesenen Sättigungskonzentration gemessen. Auch hier wurde jeweils der cyaninhemmmbare Anteil der Aufnahme über 60 min in 8 – 10 cholinsubstituierte Oozyten berechnet. Hierbei ergaben sich (in absteigender Transportkapazität) als V_{max} für NMN 916 ± 47 pmol/h (6 mM), für Cholin 819 ± 39 pmol/h (10 mM), für TEA 679 ± 93 pmol/h (1 mM), für Histamin 542 ± 39 pmol/h (1 mM), für MPP 407 ± 37 pmol/h (160 µM) und für Dopamin 161 ± 10 pmol/h (500 µM). Siehe hierzu auch Tabelle 1. Bei einzelnen Konzentrationsstufen wurde rOCT1 auf Transport (im Influx-Paradigma) von verschiedenen weiteren pharmakologisch und physiologisch interessanten Modellsubstraten getestet. Hierbei fand sich ein geringer aber statistisch signifikanter, rOCT1-spezifischer und cyaninhemmbarer Transport des Dipeptids D-Phe-Ala bei 0,27 µM. Die Aufnahmeraten betrugen 0,152 ± 0,017 pmol/h ungehemmt und 0,127 ± 0,016 pmol/h unter Cyanin 863 (p<0,05) bzw. 0,127 ± 0,042 pmol/h in wasserinjizierte Kontrolloozyten (p<0,02). Kein rOCT1-spezifischer oder cyaninhemmbarer Transport wurde gefunden für Chinidin (14 µM), Corticosteron (10 µM), Ifosfamid (1 mM), Glucosyl-Isophosphoramidmustard (GIPM, 150 µM, siehe hierzu POHL J. et al., 1995), N-(4,4-azo-n-pentyl)-21-deoxy-[21-3H]-ajmalinium (N-APDA, 0,35 µM), Lidocain (18 µM, weder bei pH 6,5 noch bei pH 8,5 wobei der Anteil an nichtionisiertem Lidocain 5,2-fach höher ist) und Propranolol (0,13 µM).
Spezifitäten der Transportkinetik von rOCT1

Abb. 8: Konzentrationsabhängigkeit des MPP-Transports durch rOCT1.
Aufgetragen sind die Mediane ± S.E.M. der [3H]-MPP-Aufnahme (60 min) in rOCT1-exprimierende, cholinsubstituierte Oozyten, jeweils ungehemmt und unter 37 µM Cyanin863, sowie in wasserinjizierte Kontrollozyten (jew. n = 7 - 10). Die MICHAELIS-MENTEN-Gleichung wurde an die ungehemmte Aufnahme angepaßt, die Hemmung und die Wasserkontrolle wurden einer linearen Regression unterworfen. Das Fitting ergab für die differenzielle (siehe Methodik), rOCT1-spezifische MPP-Aufnahme einen KM von 9,6 ± 1,5 µM. Das Inset zeigt einen vergrößerten Ausschnitt aus dem unteren Konzentrationsbereich (gestrichelter Rahmen).
3. Ergebnisse

Abb. 9: Konzentrationsabhängigkeit des Dopamin-Transports durch rOCT1.

Aufgetragen sind die Medianen ± S.E.M. der \[^{\text{3}}\text{H}\]-Dopamin-Aufnahme (60 min) in rOCT1-exprimierende, cholinsubstituierte Oozyten, jeweils ungehemmt und unter 37 µM Cyanin863, sowie in wasserinjizierte Kontrollozyten (jew. n = 8). Die Michaelis-Menten-Gleichung wurde an die ungehemmte Aufnahme angepaßt, die Hemmung und die Wasserkontrolle wurden der linearen Regression unterworfen. Das Fitting ergab für die differenzielle, rOCT1-spezifische Dopamin-Aufnahme einen \(K_m\)-Wert von 51,0 ± 14,6 µM. Das Inset zeigt einen vergrößerten Ausschnitt aus dem unteren Konzentrationsbereich (gestrichelter Rahmen).
Spezifitäten der Transportkinetik von rOCT1

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Konzentration</th>
<th>rOCT1 V_{max} [pmol/h] ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA</td>
<td>1 mM</td>
<td>679 ± 93</td>
</tr>
<tr>
<td>MPP</td>
<td>160 µM</td>
<td>407 ± 37</td>
</tr>
<tr>
<td>Dopamin</td>
<td>500 µM</td>
<td>161 ± 10</td>
</tr>
<tr>
<td>Histamin</td>
<td>1 mM</td>
<td>544 ± 39</td>
</tr>
<tr>
<td>Cholin</td>
<td>10 mM</td>
<td>819 ± 39</td>
</tr>
<tr>
<td>NMN</td>
<td>6 mM</td>
<td>916 ± 47</td>
</tr>
</tbody>
</table>

Tab. 1: Abgleich der maximalen Transportgeschwindigkeiten von rOCT1 für verschiedene Transportsubstrate (V_{max}). Angegeben ist jeweils der cyaninhemmmbare Anteil der Traceraufnahme bei den genannten Sättigungskonzentration über 60 min. Alle Werte wurden innerhalb einer Oozytencharge bestimmt.
Sonderfall Chinin

demgegenüber eher unwahrscheinlich, da nach 60 min Inkubation mit Tracer-Chinin immer noch keine Sättigung erzielt werden konnte. Bei Annahme einer Proteinbindung wäre angesichts der aus den Hemmversuchen bekannten hohen Affinität von Chinin eine schnelle Absättigung aller rOCT1-Bindungsstellen zu erwarten, während nur die hohe Aufnahmekapazität der großvolumigen Oozyte eine lineare Zunahme über 60 min ermöglicht, sofern der Tracer nach intrazellulär transportiert wird.

3.1.2 cis-Hemmung

3. Ergebnisse

Substrat eine scheinbar höhere Affinität (einen geringeren K_i) gegenüber OCT zeigen als das hydrophile. Um solche schwerwiegenden Sekundäreffekte zu vermeiden, erfolgte eine Vorinkubation der Oozyten mit dem Hemmstoff stets für mindestens 14 min vor Zugabe des Tracersubstrates, wodurch eine Äquilibrierung von Membran und Badlösung gewährleistet wird. Hierdurch entstehen vergleichbare Konzentrationsbedingungen für lipophile wie hydrophile Substrate und lediglich die Dissoziationskonstante der jeweiligen Substanz bezüglich OCT ist limitierend für Hemmwirkung auf den OCT-vermittelten Transport.

Die Berechnung der Hemmkonstanten erfolgte nach nichtlinearer Anpassung der relativen Aufnahmewerte (in Bruchteilen der ungehemmten Aufnahme) an eine monoexponentielle Gleichung, woraus die IC$_{50}$ bestimmt wurde. Hierbei ergaben sich für d-Tubocurarin eine IC$_{50}$ von 72,6 ± 19,4 µM, für 3-O-Methylisoprenalin eine IC$_{50}$ von 73,3 ± 20,8 µM, für Pancuronium eine IC$_{50}$ von 1710 ± 390 µM und für Cyanin863 eine IC$_{50}$ von 0,85 ± 0,29 µM. Da für Cyanin863 bereits die nicht-kompetitive Hemmung gezeigt worden war [TEÜBER I., 2002 (Diss.)], ist es hier auch zulässig, nach Anpassung an das nicht-kompetitive Inhibitormodell einen K_i von 0,72 ± 0,18 zu berechnen (siehe Tabelle 2). Exemplarisch sind in Abbildung 10 die Hemmkinetiken für d-Tubocurarin und für 3-O-Methylisoprenalin dargestellt. In Einzelversuchen konnte darüberhinaus eine leichte aber signifikante Hemmung des rOCT1-vermittelten Transports für Taurocholat nachgewiesen werden. Hierbei senkte 100 µM Taurocholat die MPP-Aufnahme (14 µM) auf 60,2% des Ausgangswertes (Aufnahmeraten 118 ± 7 pmol/h bzw. 71 ± 9 pmol/h, $p=0,0053$). Keine eindeutige hemmende Wirkung konnte für Spermin (100 µM auf 14 µM MPP) und Paraquat (120 µM auf 14 µM MPP und 100 µM TEA) gefunden werden.
Spezifitäten der Transportkinetik von rOCT1

<table>
<thead>
<tr>
<th>Hemmstoff</th>
<th>Hemmung des TEA-Transportes via rOCT1</th>
<th>Dissoziationskonstante [µmol/l ± S.E.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀</td>
<td>Kiₙc</td>
</tr>
<tr>
<td>d-Tubocurarin</td>
<td>72,6 ± 19,4</td>
<td>55,3 ± 10,5</td>
</tr>
<tr>
<td>3-OMI</td>
<td>73,3 ± 20,8</td>
<td>70,0 ± 7,1</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>1710 ± 394</td>
<td>2110 ± 637</td>
</tr>
<tr>
<td>Cyanin863</td>
<td>0,85 ± 0,29</td>
<td>0,72 ± 0,18</td>
</tr>
</tbody>
</table>

Tab. 2: Hemmkonstanten von rOCT1 für verschiedene organische Kationen, deren Inhibitionsmechanismus auf rOCT1 noch nicht aufgeklärt ist (allosterisch / kompetitiv), sowie für Cyanin863 bezüglich der rOCT1-vermittelten Aufnahme von TEA (95 µM). Je nach zugrundegelegtem Inhibitionsmodell liefert die nichtlineare Anpassung der Hemmkinetik unterschiedliche Ergebnisse. Dargestellt sind die halbmaximale Hemmkonstante IC₅₀ bei monoexponentieller Anpassung, jeweils der Ki für das nicht-kompetitive Modell (Kiₙc) und das kompetitive Modell (Kiₖc). Für Cyanin863 wurde keine Anpassung an das kompetitive Modell durchgeführt, da für dieses bereits der nicht-kompetitive Hemmmechanismus gezeigt werden konnte [TEUBER I., 2002 (Diss.)]. Jede Kinetik wurde mit 9 Meßpunkten zu jeweils 7 - 10 Oozyten erstellt.
3. Ergebnisse

Abb. 10: Hemmung des TEA-Transportes via rOCT1 durch 3-O-Methylisoprenalin (a) und d-Tubocurarin (b). Median ± S.E.M. der relativen Aufnahme von 95 µM [14C]-TEA in rOCT1-exprimierende Oozyten über 60 min (jeweils n = 10 bzw. 8). Die ungehemmte TEA-Aufnahme betrug 381,6 bzw. 148,7 pmol h⁻¹ Oozyte⁻¹. Bei nichtlinearer Anpassung der Relativhemmkräfte an eine monoexponentielle Funktion bzw. an das nicht-kompetitive Modell errechnet sich für 3-OMI eine IC₅₀ von 73,3 ± 6,8 µM bzw. ein Kᵢ von 70,0 ± 7,1 µM, für d-Tubocurarin eine IC₅₀ von 72,6 ± 19,4 µM bzw. ein Kᵢ von 55,3 ± 10,5 µM.
Amantadin und Dopamin

Da rOCT1 auch Dopamin transportiert, könnte ihm bei noch nachzuweisender Expression in Neuronen oder Gliazellen eine Bedeutung in der Rückresorption von Neurotransmittern zukommen. Amantadin wird zur Behandlung des Morbus Parkinson eingesetzt, welcher durch ein Unterangebot an Dopamin in verschiedenen cerebralen Kerngebieten gekennzeichnet ist und durch dopaminerge Medikation behandelbar ist. Daher erschien es interessant zu untersuchen, ob Amantadin den OCT-vermittelten Transport zu hemmen vermag. Durch einen solchen Mechanismus, welcher die Dopamin-Konzentration im synaptischen Spalt zu erhöhen vermag, könnte zumindest eine Wirkkomponente des diesbezüglich noch kontrovers diskutierten Amantadins erklärt werden. Tatsächlich ließ sich die Dopaminaufnahme in rOCT1-exprimierende Oozyten recht hochaffin mit einer IC$_{50}$ von $25,2 \pm 5,0 \, \mu$M hemmen (siehe Abbildung 17).

3.1.3 *trans*- Effekte

Bislang war für rOCT1 ebenfalls noch nicht gezeigt worden, über welchen Mechanismus der Substrattransport erfolgt. Aus funktionellen Untersuchungen an perfundierten Tubuli war bekannt, dass der basolaterale TEA-Transport im Sinne eines potentialabhängigen, nicht H$^+$- oder Na$^+$-gekoppelten und nicht primär aktiven Transportmechanismus erfolgt. Für rOCT1 war zu diesem Zeitpunkt jedoch die subzelluläre Lokalisation noch nicht geklärt. Weiterhin war nicht bekannt, ob rOCT1 als Uniporter einzustufen ist, d.h. unter *trans-zero*-Bedingung transportiert, und ob rOCT1 *trans*-stimulierbar ist. Mit konventionellen Influx-Experimenten an *Xenopus*-Oozyten war diese Fragestellung jedoch nicht zu lösen, da hierbei die Substratverhältnisse auf der *trans*-Seite der Oozytenmembran nicht kontrollierbar sind. Aus diesem Grund wurden Efflux-Versuche mit Oozyten durchgeführt, die zum
Abb. 11: *trans*-Stimulation des MPP-Effluxes via rOCT1. Dargestellt ist der rOCT1-vermittelte Transport von MPP unter *trans*-zero-Bedingung, unter *trans*-Stimulation durch TEA (1,6 mM) und unter *trans*-Hemmung durch Cyanin 863 (41 µM). Mittelwerte ± S.E.M. (jeweils n = 4) des kumulativen [³H]-MPP-Effluxes aus mit 120 fmol MPP vorinjizierten und cholinsubstituierten Oozyten. Der Efflux aus wasserinjizierten Kontrollozyten (*trans*-TEA) ist als gestrichelte Linie orientierend dargestellt.
Spezifitäten der Transportkinetik von rOCT1

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>rOCT1</th>
<th>H₂O</th>
<th>p</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-zero</td>
<td>4,59 ± 0,60</td>
<td>1,48 ± 0,17</td>
<td>0,0108</td>
<td>**</td>
</tr>
<tr>
<td>trans-MPP</td>
<td>9,80 ± 0,69</td>
<td>1,20 ± 0,41</td>
<td>0,0001</td>
<td>***</td>
</tr>
<tr>
<td>trans-TEA</td>
<td>10,88 ± 1,79</td>
<td>0,76 ± 0,05</td>
<td>0,0108</td>
<td>**</td>
</tr>
<tr>
<td>trans-Cyanin</td>
<td>1,97 ± 0,34</td>
<td>0,87 ± 0,08</td>
<td>0,0439</td>
<td>*</td>
</tr>
</tbody>
</table>

t-Test:

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>verglichen mit</th>
<th>p</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOCT1 trans-zero</td>
<td>rOCT1 trans-MPP</td>
<td>0,0013</td>
<td>**</td>
</tr>
<tr>
<td>rOCT1 trans-zero</td>
<td>rOCT1 trans-TEA</td>
<td>0,0327</td>
<td>*</td>
</tr>
<tr>
<td>rOCT1 trans-zero</td>
<td>rOCT1 trans-Cyanin</td>
<td>0,0141</td>
<td>**</td>
</tr>
<tr>
<td>rOCT1 trans-MPP</td>
<td>rOCT1 trans-TEA</td>
<td>0,6036</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 3: Abhängigkeit der Geschwindigkeit des rOCT1-vermittelten MPP-Transports vom trans-Substrat. Initiale Raten des MPP-Effluxes aus rOCT1-exprimierenden und wasserinjizierten, cholionsubstituierten Oozyten (aus Abbildung 11). Die cis-Konzentration von [³H]-MPP betrug 240 nM, die trans-Konzentrationen von MPP 164 µM, TEA 1,64 mM, Cyanin863 41 µM. Die initialen Raten wurden aus den Efflux-Kennlinien jeder einzelnen Oozyte errechnet und mittels t-Test miteinander verglichen.
Zeitpunkt t=0 mit Tracersubstrat vorinjiziert wurden. Gemessen wurde der pre-steady-state-Auswärts-transport von Tracer in die Badlösung in Ab- oder Anwesenheit von Transportsubstraten auf der trans-Seite (außerhalb der Oozyte).

Mit [\(^3\)H]-MPP Tracersubstrat (120 fmol/Oozyt, 370 Bq/Oozyt) injizierte rOCT1-exprimierende Oozyten zeigten in einer Badlösung aus ORi ohne transportables Substrat (trans-zero-Bedingung, siehe Abbildung 11) einen signifikanten, über fünf Minuten exponentiell sich einer Sättigung nähernden Efflux von MPP mit einer initialen Transportrate von 4,59 ± 0,60 fmol/min ([\(^3\)H]-MPP via rOCT1 trans-zero, n=4). Wasserinjizierte Kontrolloozyten dagegen zeigten einen endogenen, möglicherweise leckbedingten, nach drei Minuten jedoch nicht mehr wesentlich zunehmenden Tracer-Efflux mit einer initialen Rate von 1,48 ± 0,17 fmol/min. Die initiale Rate des rOCT1-vermittelten [\(^3\)H]-MPP-Effluxes unterscheidet sich signifikant von diesem Leck-Efflux (p<0,02) und ist signifikant hemmbar durch Zugabe von Cyanin 863 in der Badlösung (trans 41 \(\mu\)M). Hierbei findet sich eine initiale Rate von 1,97 ± 0,34 fmol/min ([\(^3\)H]-MPP via rOCT1 trans-Cyanin 863, n=4, p<0,02). Diese wiederum unterscheidet sich noch signifikant von dem entsprechenden Leck-Efflux aus Kontrolloozyten (initiale Rate 0,87 ± 0,08 fmol/min, p<0,05). Dies lässt sich erklären durch eine nicht vollständige Hemmung des rOCT1-vermittelten Transportes durch von der trans-Seite zugegebene Cyanin 863 bei 41 \(\mu\)M. Zusammenfassend findet sich unter trans-zero-Bedingung ein rOCT1-spezifischer, cyaninhemmbarer Transport (Efflux) von MPP (vergleiche hierzu auch Abbildung 11 und Tabelle 3). Somit vermag rOCT1 als Uniporter zu funktionieren und ist definitiv nicht als obligater Austauscher an ein auch endogen in Xenopus-Oozyten vorhandenes Substrat wie z.B. Cholin gekoppelt.

Darüberhinaus fanden sich in Anwesenheit sättigender Konzentrationen von MPP (164 \(\mu\)M) und TEA (1,64 mM) in der Badlösung (trans) signifikant gesteigerte [\(^3\)H]-MPP-Effluxe, die sich ebenfalls in exponentieller Weise einer Sättigung nähern und initiale Raten (siehe Tabelle 3) von 9,80 ± 0,69 bzw. 10,88 ± 1,79 fmol/min zeigen (n=4, p< 0,002 bzw. p< 0,05 gegenüber trans-zero). Wasserinjizierte
Abb. 12: **trans-Stimulation des rOCT1-vermittelten MPP-Transports.** Initiale Raten des MPP-Effluxes via rOCT1 nach **trans-Zugabe** von Ifosfamid (5 mM), Cyclophosphamid (4mM), MPP (200 µM) und Acetylcholin (500 µM). Auf den Mittelwert der entsprechenden **trans-zero**-Raten normalisierte und um den endogenen Efflux korrigierte Mittelwerte ± S.E.M. der initialen Raten des kumulativen [3H]-MPP-Effluxes aus mit 120 fmol MPP vorinjizierten und cholinsubstituierten Oozyten. Bemerkenswert ist, dass neben MPP und Acetylcholin auch das neutrale Zytostatikum Ifosfamid im Gegensatz zu Cyclophosphamid zu einer reproduzierbaren **trans**-Stimulation des MPP-Transports führt.
Kontrolloozyten zeigten dagegen keine Steigerung des endogenen \[^{3}\text{H}]-\text{MPP}-\text{Leck-Effluxes durch} trans-\text{MPP oder -TEA (vergleiche hierzu Abbildung 9). Die stimulierenden Konzentrationen von MPP und TEA lagen beide 17-fach über dem jeweiligen K_m. Der Grad der jeweils erzielten trans-Stimulation war dementsprechend nicht signifikant voneinander verschieden. Zusammengefasst findet sich eine signifikante trans-Stimulation des rOCT1-vermittelten Transportes durch sättigende Konzentrationen transportabler Substrate, sodaß eine Klassifikation von rOCT1 als Uniporter erwiesen ist. Lediglich Effekte eines eventuell leicht veränderten Membranpotentials auf den Substrattransport können methodenbedingt nicht ausgeschlossen werden, was auch nicht Bestandteil der Zielsetzungen dieser Arbeit war sondern weiterführenden Studien übertragen wurde.

Neben MPP und TEA war auch das neutrale Zytostatikum Ifosfamid (bei 5 mM) in der Lage, den \[^{3}\text{H}]-\text{MPP}-\text{Efflux zu} trans-stimulieren (siehe Abbildung 12). Die entsprechende initiale Rate berechnete sich auf 6,11 ± 0,38 fmol/min (\[^{3}\text{H}]-\text{MPP via} rOCT1 trans Ifosfamid, n=4) gegenüber 3,46 ± 0,47 fmol/min unter trans-zero Bedingung (n=4, p< 0,01). Der unspezifische Leck-Efflux wasserinjizierter Kontrolloozyten war demgegenüber nicht stimulierbar durch Ifosfamid (initiale Raten 1,99 ± 0,04 bzw. 1,54 ± 0,08 fmol/min). Da Ifosfamid keine dissoziierbare Gruppe besitzt, ist es ungeladen und kann somit keinen direkten Effekt auf das Membranpotential ausüben. Hiermit wird zugleich gezeigt, dass das Phänomen der trans-Stimulation nicht durch eine direkte Änderung des Membranpotentials durch Substratsuperfusion erzeugt wird. Andererseits kann aus diesem Befund geschlossen werden, dass zu den potentiellen Transportsubstraten von rOCT1 auch neutrale Substanzen gehören.

Im gleichen Versuch fand sich eine erwartungsgemässe trans-Stimulation durch 200 µM MPP auf 13,54 ± 1,42 fmol/min (mit n=3 und p< 0,02). Demgegenüber war keine trans-Stimulation durch Cyclophosphamid (4 mM) zu beobachten. Die initialen Effluxraten betrugen hierbei für rOCT1 trans-zero 3,24 ± 1,08 fmol/min, für rOCT1 trans-Cyclophosphamid 3,13 ± 0,48 fmol/min, für die entsprechenden Kontrollen wasserinjizierter Oozyten 1,84 ± 0,48 bzw. 1,65 ± 0,04 fmol/min. Bei
trans-Stimulation durch Acetylcholin (500 µM, siehe Abbildung 12) zeigte sich der Zeitverlauf des kumulativen \(^3\text{H}\)-MPP-Effluxes via rOCT1 über 5 min signifikant verschieden gegenüber dem trans-zero-Efflux und der trans-Stimulation durch 200 µM MPP (ANOVA Multivariat-Analyse für wiederholte Messungen: \(p < 0,05\)). Nach Berechnung der initialen Raten konnte im t-Test die entsprechende Nullhypothese jedoch nicht verworfen werden, sodaß eine trans-Stimulation durch Acetylcholin zwar vermutet, jedoch nicht statistisch bewiesen werden konnte. Hieraus ist zu schließen, dass der Effekt der trans-Stimulation hochspezifisch bezüglich der chemischen Substratstruktur ist: Ifosfamid trans-stimuliert, während das strukturverwandte Cyclophosphamid dies nicht tut.

Um den Effekt der trans-Stimulation zu quantifizieren und in enzymkinetischer Hinsicht mit den entsprechenden cis-Verhältnissen zu vergleichen, wurden trans-Kinetiken angefertigt. In diesen konnte die Konzentrations-abhängigkeit des Stimulationseffektes nachgewiesen werden und jeweils eine dem \(K_M\) vergleichbare Stimulationskonstante \(K_S\) berechnet werden. Hierzu wurden für die einzelnen trans-MPP-Konzentrationsstufen die jeweiligen initialen Effluxraten der gemittelten zeitabhängigen Effluxkurven jeweils einer Oozytencharge (\(n = 4 – 5\)) berechnet. Diese wurden in Abhängigkeit von der trans-MPP-Konzentration aufgetragen, um die jeweilige Effluxrate der wasserinjizierten Kontrolloozyten korrigiert und an das Michaelis-Menten-Modell angepasst. Aus dem automatischen Curve-Fitting (Biosoft Fig.P Version 6.0) konnten die entsprechenden Stimulationskonstanten \(K_S\) mit Standardfehler berechnet werden. Auf diese Weise ergab sich für die trans-Stimulation des \(^3\text{H}\)-MPP-Effluxes via rOCT1 durch MPP eine Stimulationskonstante \(K_S = 12,4 \pm 7,2 \, \mu\text{M}\). (vergleiche hierzu Kapitel 3.4.1 und Abbildung 21). Das bedeutet konkret, dass eine trans-Substratkonzentration von 12,4 µM MPP den gegenläufigen Substrattransport (von MPP) von cis nach trans gegenüber der trans-zero-Bedingung verdoppelt.

Bei Zugabe sättigender Konzentrationen von Chinidin (40 µM), Chinin (40 µM), d-Tubocurarin (1,4 mM), Tetrapentylammonium (40 µM), Cyanin 863 (40 µM) und Decynium 22 (250 µM) in der Badlösung (trans) konnte jeweils eine nahezu
vollständige Hemmung des \[^3\text{H}\]-MPP-Effluxes beobachtet werden. Dieser Mechanismus wäre folglich als \emph{trans}-Hemmung zu bezeichnen. Auch diese \emph{trans}-Hemmung ist konzentrationsabhängig, wie im Kapitel 3.4.2 gezeigt wird. Zum Vergleich mit den Hemmkonstanten K_i der \emph{cis}-Hemmung wurden \emph{trans}-Kinetiken nach oben genanntem Verfahren durchgeführt und \emph{trans}-Hemmkonstanten berechnet. Hierzu wurden der \[^3\text{H}\]-MPP-Auswärtstransport von tracerinjizierten Oozyten nach Zugabe verschiedener Hemmstoffkonzentrationen in die Badlösung (\emph{trans}) gemessen. Die aus den Efflux-Kennlinien der einzelnen Oozyten errechneten initialen Effluxraten wurden gegen die entsprechende Leckeffluxrate wasserinjizierter Kontrolloozyten korrigiert, mit der \emph{trans}-zero-Rate in Relation gesetzt und die so erhaltenen Relativhemmwerte halblogarithmisch gegen die \emph{trans}-Hemmstoffkonzentration aufgetragen. Die Kurven wurden an das nicht-kompetitive Inhibitionsmodell angepasst und \emph{trans}-K_i-Werte errechnet. Die entsprechenden Werte für Decynium22, Cyanin863, Tetrapentylammonium und Chinin sind der Tabelle 8 zu entnehmen. Insbesondere für Chinin und Cyanin863 ergeben sich im direkten Vergleich deutliche Unterschiede zwischen \emph{cis}- und \emph{trans}-Hemmung, was später zu diskutieren sein wird. Repräsentativ ist in Abbildung 13 die \emph{trans}-Hemmkinetik für Cyanin863 aufgetragen.
Abb. 13: Konzentrationsabhängigkeit der trans-Hemmung des MPP-Effluxes via rOCT1 durch Cyanin863. Die Mittelwerte ± S.E.M. der initialen Raten des kumulativen [³H]-MPP-Effluxes aus mit 120 fmol [³H]-MPP vorinjizierten, cholinsubstituierten Oozyten (jeweils n = 4 bzw. 8, siehe Kapitel Methodik) wurden um die endogene Effluxrate bereinigt und mit der trans-zero-Rate in Relation gesetzt. Bei Anpassung an das nicht kompetitive Modell errechnet sich ein $K_{i,\text{trans}}$ für Cyanin863 von 21,9 ± 6,5 µM. Zum Vergleich beträgt die aus monoexponentieller Anpassung errechnete IC_{50} 16,2 ± 6,1 µM. Die mittlere rOCT1-spezifische trans-zero-Rate betrug 2,35 ± 0,05 fmol/min.
3. Ergebnisse

3.2 Spezifitäten der Transportkinetik von hOCT2

3.2.1 Substrattransport

Analog zu rOCT1 wurden alle Transportmessungen mit hOCT2 an *Xenopus*-Oozyten durchgeführt, welche während der Kultur in ORi mit Cholin und Pyruvat substituiert wurden (PCG-ORi). Insbesondere hOCT2-Oozyten zeigten bei fehlender Substitution eine auffällig schlechtere Morphologie insbesondere hinsichtlich des Zellturgors. In normalem Gentori (ohne Cholin und Pyruvat) kultivierte Oozyten waren für verlässliche Tracerfluellenexperimente nicht verwendbar. Somit musste noch gezeigt werden, dass die durch Pyruvatsubstitution verhinderte hOCT2-vermittelte Verarmung an Energieträgern zu einer besseren Transportaktivität von PCG-ORi-kultivierten Oozyten beiträgt. Zunächst wurde die MPP- und TEA-Aufnahme in PCG-ORi-kultivierte Oozyten mit derselben in Gentori plus 1 mM Cholin kultivierter und somit energieverarmter Oozyten verglichen. Hierbei zeigte sich für TEA eine 1,8-fach, für MPP eine 1,3-fach höhere Aufnahme in pyruvatsubstituierte
Spezifitäten der Transportkinetik von hOCT2

<table>
<thead>
<tr>
<th>Substrat</th>
<th>rOCT1</th>
<th>hOCT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA</td>
<td>95 ± 10 ³</td>
<td>75,8 ± 12,5</td>
</tr>
<tr>
<td>MPP</td>
<td>9,60 ± 1,51</td>
<td>19,4 ± 2,5</td>
</tr>
<tr>
<td>Dopamin</td>
<td>51,0 ± 14,6</td>
<td>373 ± 27</td>
</tr>
<tr>
<td>Histamin</td>
<td>544 ± 136</td>
<td>1310 ± 290</td>
</tr>
<tr>
<td>Cholin</td>
<td>620 ± 139</td>
<td>210 ± 45</td>
</tr>
<tr>
<td>NMN</td>
<td>403 ± 150</td>
<td>298 ± 62</td>
</tr>
</tbody>
</table>

Tab. 4: Vergleich der K_M-Werte von rOCT1 und hOCT2 für verschiedene organische Kationen. Ermittelt aus der nichtlinearen Anpassung der jeweiligen Substratkinetik (cyaninhemmbarer Anteil) an die MICHAELIS-MENTEN-Gleichung. Die eingesetzte Konzentration von Cyanin863 betrug für rOCT1 37 µM, für hOCT2 75 µM. Jede Kinetik wurde mit 10 Meßpunkten erstellt und pro Meßpunkt und Bedingung wurden 8 bis 10 Oozyten eingesetzt. Angegeben ist der Standardfehler der nichtlinearen Anpassung.

³ Wert übernommen aus GRÜNDEMANN D., 1994 (Diss.)
hOCT2-exprimierende Oozyten (203 gegenüber 112 pmol/h für MPP bzw. 92 gegenüber 71 pmol/h für TEA, jeweils OCT-spezifische, cyaninhemmbare Aufnahmewerte). Demgegenüber fand sich für rOCT1 kein wesentlicher Unterschied in den MPP- und TEA-Transportraten von PCG-ORi- und Cholin-Gentori-kultivierten Oozyten (112 gegenüber 115 bzw. 149 gegenüber 164 pmol/h OCT-spezifische, cyaninhemmbare MPP- bzw. TEA-Aufnahme).

Um die relative Transportkapazität von hOCT2 für die einzelnen Substrate untereinander und mit rOCT1 zu vergleichen, wurden in einem Parallelversuch die Maximaltransportgeschwindigkeiten für die vier wichtigsten Substrate sowohl für hOCT2 als auch für rOCT1 an der gleichen Oozytencharge bei der jeweils aus der Substratkinetik abgelesenen Sättigungskonzentration gemessen. Auch hier wurde jeweils der cyaninhemmbare Anteil der Aufnahme über 60 min in 8 – 10 Oozyten berechnet (Tabelle 5). Hierbei ergaben sich (in absteigender Transportkapazität für hOCT2) als V_{max} für MPP 206 ± 28 pmol/h (160 µM), für TEA 611 ± 91 pmol/h
Spezifitäten der Transportkinetik von hOCT2

Abb. 14: Transportkinetik von hOCT2 für MPP. Aufgetragen sind die Mediane ± S.E.M. der $[^3\text{H}]-\text{MPP}^+$-Aufnahme (60 min) in hOCT2-exprimierende, cholinsubstituierte Oozyten, jeweils ungehemmt und unter 75 µM Cyanin863, sowie in wasserinjizierte Kontrollozyten (jeweils n = 7 - 10). Die Michaelis-Menten-Gleichung wurde an die ungehemmte Aufnahme angepaßt, die Hemmung und die Wasserkontrolle wurden linear angepaßt. Zur Ermittlung der rOCT1-spezifischen Aufnahme wurde die Aufnahme unter Hemmung von der ungehemmten Aufnahme subtrahiert. Das Fitting ergab für diese differenzielle, rOCT1-spezifische MPP-Aufnahme einen K_M von 19,4 ± 2,5 µM. Das Inset zeigt eine Vergrößerung des Kurvenverlaufs (MPP ungehemmt) im unteren Konzentrationsbereich (gestrichelter Rahmen).
3. Ergebnisse

Spezifitäten der Transportkinetik von hOCT2

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Konzentration</th>
<th>rOCT1 $V_{\text{max.}}$ [pmol/h] ± S.E.M.</th>
<th>hOCT2 $V_{\text{max.}}$ [pmol/h] ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA</td>
<td>1 mM</td>
<td>282 ± 68</td>
<td>611 ± 91</td>
</tr>
<tr>
<td>MPP</td>
<td>160 µM</td>
<td>184 ± 64</td>
<td>206 ± 28</td>
</tr>
<tr>
<td>Cholin</td>
<td>15 mM</td>
<td>565 ± 283</td>
<td>1433 ± 262</td>
</tr>
<tr>
<td>NMN</td>
<td>6 mM</td>
<td>444 ± 194</td>
<td>1190 ± 178</td>
</tr>
</tbody>
</table>

Tab. 5: Vergleich der maximalen Transportgeschwindigkeiten von rOCT1 und hOCT2 für verschiedene Transportsubstrate ($V_{\text{max.}}$). Angegeben ist jeweils der cyaninhemmbare Anteil der Traceraufnahme bei den genannten Sättigungskonzentration über 60 min. Die Werte wurden an der gleichen Oozytencharge gemessen und sind untereinander somit direkt, mit den Werten des internen $V_{\text{max.}}$-Abgleichs für rOCT1 (Tabelle 1) nur indirekt vergleichbar, da dieser an einer anderen Oozytencharge erfolgte.
3. Ergebnisse

(1 mM), für NMN 1190 ± 178 pmol/h (6 mM) und für Cholin 1433 ± 262 pmol/h (15 mM). Die V_{max}-Werte für rOCT1 dürfen nur in relativer Hinsicht verwertet werden, da der interne V_{max}-Abgleich für die rOCT1-Substrate an einer anderen Oozytencharge erfolgte und die Zielsetzung des in Tabelle 5 veranschaulichten Versuchs der Vergleich zwischen hOCT2 und rOCT1 und nicht der interne Vergleich der Transportkapazitäten für rOCT1 war. Für alle gemessenen Substrate fand sich jedoch für hOCT2 eine höhere Transportkapazität als rOCT1.

Bei einzelnen Konzentrationsstufen wurde hOCT2 auf Transport (im Influx-Paradigma) von verschiedenen weiteren pharmacologisch und physiologisch interessanten Modellsubstraten getestet. Im Konzentrationsbereich von 3,9 bis 250 µM vermittelt hOCT2 einen spezifischen, cyaninhemmbaren Transport von Acetylcholin mit einem K_M von 215 ± 49 µM und einer differenziellen V_{max} von 473 ± 62 pmol/h. Diese Werte sind jedoch nur mit gewisser Einschränkung vergleichbar, da die entsprechenden Aufnahmewerte vor allem im höheren Konzentrationsbereich (500 µM bis 2 mM) bei wasserinjizierten, hOCT2-freien Kontrolloozyten sogar ca. 3-fach höher lagen als bei hOCT2-injizierten Oozyten. Die Ursache hierfür kann nur vermutet werden. Am wahrscheinlichsten erscheint eine parallel zu OCT erfolgende niederaffine Aufnahme durch einen endogenen Transporter für Cholinderivate, dessen Expression in hOCT2-Oozyten durch die Expression der heterologen cRNA supprimiert ist. Jedoch zeigt sich im unteren Konzentrationsbereich ein signifikanter Unterschied in der Acetylcholin-Aufnahme zwischen ungehemmten und cyaningehemmten hOCT2-Oozyten, welcher bei wasserinjizierten Kontrolloozyten nicht erscheint.

Im Gegensatz zu rOCT1 vermittelt hOCT2 keinen Transport des Dipeptids D-Phe-Ala (0,27 µM). Die Aufnahmeraten betrugen $0,125 \pm 0,012$ pmol/h ungehemmt und $0,124 \pm 0,016$ pmol/h unter Cyanin863 (n.s.) bzw. $0,127 \pm 0,042$ pmol/h in wasserinjizierte Kontrolloozyten (n.s.). Ebenfalls kein hOCT2-spezifischer oder cyaninhemmmbarer Transport wurde gefunden für Phlorizin (0,41 µM).
3.2.2 *cis*-Hemmung

Ebenso wie rOCT1 zeichnet sich hOCT2 auch durch Polyspezifität gegenüber Hemmstoffen aus. Im Vergleich zu rOCT1 wurden unter den gleichen optimierten Versuchsbedingungen die Hemmkonstanten für wichtige organische Kationen bestimmt. Hierbei wurde die Hemmung der 60-minütigen Aufnahme von TEA in Oozyten gemessen, wobei die TEA-Konzentration im Bereich des K_m-Wertes gehalten wurde und die Hemmstoffkonzentration in 9 Stufen variiert wurde. Transportsubstrat und Hemmstoff wurden in die Badlösung zugegeben, sodaß beide Substrate am Transportprotein von der gleichen Seite (außen) angreifen. Somit wurde die *cis*-Hemmung bestimmt. Um Sekundäreffekte durch Unterschiede in der unspezifischen Membranbindung der einzelnen Hemmstoffe und dadurch veränderte Kompetition mit dem Transportsubstrat an der spezifischen Bindungsstelle zu vermeiden, erfolgte eine Vorinkubation der Oozyten mit dem Hemmstoff für mindestens 14 min vor Zugabe des Tracersubstrates.

Die Berechnung der Hemmkonstanten erfolgte nach nichtlinearer Anpassung der relativen Aufnahmewerte (in Bruchteilen der ungehemmten Aufnahme) an eine monoexponentielle Gleichung, woraus die IC$_{50}$ bestimmt wurde. Hierbei ergaben sich die in Tabelle 6 im direkten Vergleich zu rOCT1 angegebenen Werte. Bei Substanzen, deren Transportabilität durch hOCT2 gezeigt werden konnte, z.B. MPP und NMN, erfolgte die Anpassung an das kompetitive Inhibitormodell und die Berechnung eines kompetitiven K_i-Wertes. Für Substanzen, für die bereits die nicht-kompetitive Hemmung gezeigt wurde, wie z.B. Cyanin863, Decynium22 und Chinin [Teuber I., 2002 (Diss.)], erfolgte die Anpassung an das nicht-kompetitive Inhibitormodell und die Berechnung des K_i-Wertes. Repräsentativ sind die Hemmkinetiken für Decynium22, Chinin und Procainamid in Abbildung 16 graphisch dargestellt.
3. Ergebnisse

<table>
<thead>
<tr>
<th>Hemmstoff</th>
<th>rOCT1</th>
<th>hOCT2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_{i \text{ nc}} / K_{i \text{ c}} / \text{IC}_{50} \ [\mu \text{M}] \pm \text{S.E.}$</td>
<td>$K_{i \text{ nc}} / K_{i \text{ c}} / \text{IC}_{50} \ [\mu \text{M}] \pm \text{S.E.}$</td>
</tr>
<tr>
<td>Chinin</td>
<td>$0,93 \pm 0,08$</td>
<td>$6,66 \pm 2,82$</td>
</tr>
<tr>
<td>Cyanin863</td>
<td>$0,72 \pm 0,18$</td>
<td>$1,08 \pm 0,34$</td>
</tr>
<tr>
<td>Decynium22</td>
<td>$0,36 \pm 0,08$</td>
<td>$0,191 \pm 0,021$</td>
</tr>
<tr>
<td>Desipramin</td>
<td>$2,8 \pm 0,6$</td>
<td>$33,3 \pm 6,4$</td>
</tr>
<tr>
<td>Mepiperphenidol</td>
<td>$5,2 \pm 0,3$</td>
<td>$16,8 \pm 7,3$</td>
</tr>
<tr>
<td>MPP</td>
<td>13 ± 2</td>
<td>$2,68 \pm 0,62$</td>
</tr>
<tr>
<td>NMN</td>
<td>1000 ± 200</td>
<td>299 ± 34</td>
</tr>
<tr>
<td>3-OMI</td>
<td>$73,3 \pm 20,8$</td>
<td>1540 ± 360</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>1710 ± 390</td>
<td>586 ± 289</td>
</tr>
<tr>
<td>Procainamid</td>
<td>13 ± 2</td>
<td>$90,2 \pm 19,0$</td>
</tr>
<tr>
<td>TMA</td>
<td>1000 ± 100</td>
<td>360 ± 136</td>
</tr>
<tr>
<td>TPeA</td>
<td>$0,43 \pm 0,09$</td>
<td>$3,44 \pm 1,32$</td>
</tr>
</tbody>
</table>

Tab. 6: Hemmkonstanten von rOCT1 und hOCT2 für verschiedene organische Kationen auf den Transport von $[^{14}\text{C}]$-TEA. Ermittelt aus der nichtlinearen Anpassung der jeweiligen Hemmkinetik bei erwiesen transportablen Substanzen (kursiv) an das kompetitive Inhibitormodell ($K_{i \text{ c}}$), bei erwiesen nicht transportablen Substanzen (fett) an das nicht-kompetitive Inhibitormodell ($K_{i \text{ nc}}$) bzw. bei noch nicht näher einzustufenden Substanzen an eine monoexponentielle Gleichung mit Bestimmung der IC$_{50}$. Gemessen wurde die TEA-Aufnahme im Bereich des jeweiligen Km-Wertes: Bei rOCT1 wurden 100 µM, bei hOCT2 60 µM $[^{14}\text{C}]$-TEA eingesetzt. Jede Kinetik wurde mit 9 Meßpunkten zu jeweils $n = 7 - 9$ Oozyten erstellt.

4 Werte aus GRÜNDERMANN D., 1994 (Diss.). Alle nach kompetitivem Modell errechnet.
Spezifitäten der Transportkinetik von hOCT2

Abb. 16: Hemmung des TEA-Transportes via hOCT2 durch Decynium22, Chinin und Procainamid. Aufgetragen sind die Mediane ± S.E.M. der relativen Aufnahme von 60 µM [14C]-TEA in rOCT1-exprimierende Oozyten über 60 min (jeweils n = 7 - 9). Für Decynium22 und Procainamid sind die Mediane zweier separater Versuche aufgetragen. Die ungehemmte TEA-Aufnahme betrug im Mittel 233,8 pmol h⁻¹ Oozyte⁻¹. Die Relativenaufnahmewerte wurden der nichtlinearen Regression entsprechend dem nicht-kompetitiven Modell bzw. einer einfachen monoexponentiellen Funktion unterworfen. Hierbei errechnet sich für Decynium22 ein Ki von 0,191 ± 0,021 µM, für Chinin ein Ki von 6,66 ± 2,82 µM, für Procainamid eine IC50 von 90,2 ± 19,0 µM bzw. ein Ki von 109 ± 20 µM. Entsprechend dem monoexponentiellen Fitting scheint Chinin maximal eine 50-prozentige Hemmung zu erzielen.
3. Ergebnisse

Abb. 17: Hemmung des Dopamin-Transportes via rOCT1 (a) und hOCT2 (b) durch Amantadin. Mediane ± S.E.M. der relativen [³H]-Dopamin-Aufnahme (60 min) in rOCT1-exprimierende Oozyten bei 20 µM bzw. in hOCT2-exprimierende Oozyten bei 200 µM (jeweils n = 8 bzw. 9). Die ungehemmte Dopaminaufnahme betrug via rOCT1 219 pmol h⁻¹ Oozyte⁻¹ bzw. via hOCT2 129 pmol h⁻¹ Oozyte⁻¹. Nach nichtlinearer Anpassung der Relativhemmwerthe an eine monoexponentielle Funktion errechnet sich für Amantadin bei rOCT1 eine IC₅₀ von 25,2 ± 5,0 µM bzw. bei hOCT2 eine IC₅₀ von 59,1 ± 12,0 µM. Bei vergleichhalber dargestellter Anpassung an das nicht-kompetitive Modell errechnen sich Kᵢ-Werte von 20,1 ± 6,0 für rOCT1 bzw. 46,4 ± 7,2 µM für hOCT2. Auf rOCT1 scheint Amantadin zusätzlich noch eine partielle hochaffine Hemmkomponente aufzuweisen.
Amantadin und Dopamin

Da hOCT2 auch Dopamin transportiert und in Neuronen exprimiert wird [BUSCH A.E. et al., 1998], könnte ihm eine Bedeutung in der Rückresorption von Neurotransmittern zukommen. Amantadin wird zur Behandlung des Morbus Parkinson eingesetzt, welcher durch ein Unterangebot an Dopamin in verschiedenen cerebralen Kerngebieten gekennzeichnet ist und durch dopaminerge Medikation behandelbar ist. Daher erschien es interessant zu untersuchen, ob Amantadin nicht nur den rOCT1- vermitteltelten, sondern auch den hOCT2-vermittelten Transport von Dopamin zu hemmen vermag. Durch einen solchen Mechanismus, welcher die Dopamin-Konzentration im synaptischen Spalt erhöhen könnte, könnte zumindest eine Wirkkomponente des diesbezüglich noch kontrovers diskutierten Amantadins erklärt werden. Tatsächlich ließ sich die Dopaminaufnahme (bei 200 µM) in hOCT2-exprimierende Oozyten durch Amantadin mit einer IC₅₀ von 59,1 ± 12,0 µM hemmen (siehe Abbildung 17.). Hiermit findet sich bei hOCT2 eine etwas niedrigere Affinität für Amantadin als bei rOCT1.

3.2.3 trans- Effekte

Analog zu rOCT1 war für hOCT2 zu zeigen, ob auch letzterer enzymkinetisch zur Klasse der Uniporter zu rechnen ist oder etwa obligat an ein Austauschsubstrat gebunden ist. Deshalb wurden auch mit hOCT2 Effluxversuche durchgeführt um zu testen, ob hOCT2 wie rOCT1 unter trans-zero-Bedingung zu transportieren vermag und trans-stimulierbar ist.

Für hOCT2 wurden die gleichen Versuchsbedingungen wie für rOCT1 gewählt, insbesondere wurden für die Effluxversuche nur optisch einwandfreie, cholinsubstituierte (PCG-ORi-kultivierte) Oozyten verwendet. Mit 120 fmol/Oozyte [³H]-MPP-Tracer (370 Bq/Oozyte) injizierte hOCT2-exprimierende Oozyten zeigten
3. Ergebnisse

Abb. 18: MPP-Efflux via hOCT2 unter trans-zero-Bedingung, unter trans-Stimulation durch TEA (1,5 mM) und unter trans-Hemmung durch Cyanin 863 (75 µM). Mittelwerte ± S.E.M. (jeweils n = 4) des kumulativen [3H]-MPP-Effluxes aus mit 120 fmol MPP vorinjizierten, cholinsubstituierten Oozyten. Der Efflux aus wasserinjizierten Kontrollozyten (trans-TEA) ist als gestrichelte Linie orientierend dargestellt.
<table>
<thead>
<tr>
<th>Bedingung</th>
<th>hOCT2</th>
<th>H₂O</th>
<th>p</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-zero</td>
<td>3,80 ± 0,91</td>
<td>1,17 ± 0,11</td>
<td>0,0608</td>
<td>(5)</td>
</tr>
<tr>
<td>trans-MPP</td>
<td>6,75 ± 1,09</td>
<td>1,72 ± 0,50</td>
<td>< 0,02</td>
<td>**</td>
</tr>
<tr>
<td>trans-TEA</td>
<td>10,33 ± 0,47</td>
<td>1,40 ± 0,42</td>
<td>< 0,0001</td>
<td>***</td>
</tr>
<tr>
<td>trans-Cyanin</td>
<td>1,18 ± 0,14</td>
<td>1,11 ± 0,09</td>
<td>0,1923</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

t-Test:

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>verglichen mit</th>
<th>p</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>hOCT2 trans-zero</td>
<td>hOCT2 trans-MPP</td>
<td>0,0840</td>
<td>(5)</td>
</tr>
<tr>
<td>hOCT2 trans-zero</td>
<td>hOCT2 trans-TEA</td>
<td>0,0020</td>
<td>***</td>
</tr>
<tr>
<td>hOCT2 trans-zero</td>
<td>hOCT2 trans-Cyanin</td>
<td>0,0609</td>
<td>(5)</td>
</tr>
</tbody>
</table>

Tab. 7: Vergleich der initialen Raten des hOCT2-vermittelten MPP-Effluxes aus cholinsubstituierten Oozyten (aus Abbildung 18). Die cis-Konzentration von [³H]-MPP betrug 240 nM, die trans-Konzentrationen von MPP 200 µM, TEA 1,5 mM, Cyanin863 75 µM. Die initialen Raten wurden aus den Efflux-Kennlinien jeder einzelnen Oozyte errechnet und mittels t-Test miteinander verglichen.

in einer Badlösung aus ORi ohne transportables Substrat auf der trans-Seite (trans-zero-Bedingung, siehe Abbildung 18) einen signifikanten, über fünf Minuten nahezu linearen Efflux von MPP mit einer initialen Transportrate von 3,80 ± 0,91 fmol/min ([3H]-MPP via hOCT2 trans-zero, n=4). Wasserinjizierte Kontrolloozyten dagegen zeigten einen endogenen, möglicherweise leckbedingten, nach drei Minuten jedoch nicht mehr wesentlich zunehmenden Tracer-Efflux mit einer initialen Rate von 1,17 ± 0,11 fmol/min. Dieser hOCT2-spezifische Efflux war hemmbar durch Zugabe von 75 µM Cyanin863 in der Badlösung. Hierbei errechnet sich eine initiale Rate von 1,18 ± 0,14 fmol/min ([3H]-MPP via hOCT2 trans-Cyanin863, n=4). Somit findet sich unter trans-zero-Bedingung ein hOCT2-spezifischer, cyaninhemmbarer Transport (Efflux) von MPP (vergleiche hierzu auch Abbildung 18 und Tabelle 7). Somit vermag auch hOCT2 als Uniporter zu funktionieren und ist definitiv nicht als obligater Austauscher an ein auch endogen in Xenopus-Oozyten vorhandenes Substrat wie z.B. Cholin gekoppelt.

Darüberhinaus fanden sich in Anwesenheit sättigender Konzentrationen von TEA (1,5 mM) und MPP (200 µM) in der Badlösung (trans) deutlich gesteigerte [3H]-MPP-Effluxe, die sich in exponentieller Weise einer Sättigung nähern und initiale Raten (siehe Abbildung 18) von 10,33 ± 0,47 bzw. 6,75 ± 1,09 fmol/min zeigen (n=4, für TEA p < 0,02 gegenüber trans-zero). Wasserinjizierte Kontolloozyten zeigten dagegen keine Steigerung des endogenen [3H]-MPP-Leck-Effluxes durch trans-MPP oder -TEA (vergleiche hierzu Tabelle 7). Die unterschiedlich starke trans-Stimulation von hOCT2 durch TEA und MPP mag darin begründet liegen dass die trans-Konzentration von MPP nur ca. 10-fach über dem entsprechenden K_M des Einwärtstransports (19,4 ± 2,5 µM) lag, während TEA in ca. 20-fach höherer Konzentration (K_M 74,8 ±12,5 µM) angeboten wurde. Auch hier scheint somit eine deutliche Konzentrationsabhängigkeit der trans-Stimulation vorzuliegen. Zusammengefasst findet sich eine signifikante trans-Stimulation des hOCT2-vermittelten Transportes durch sättigende Konzentrationen transportabler Substrate, sodaß hOCT2 als Transporter vom Uniporter-Typ zu klassifizieren ist.
Abb. 19: Konzentrationsabhängigkeit der trans-Hemmung des MPP-Effluxes via hOCT2 durch Cyanin863. Die Mittelwerte ± S.E.M. der initialen Raten des kumulativen [³H]-MPP-Effluxes aus mit 120 fmol [³H]-MPP vorinjizierten Oozyten (jeweils n = 4) wurden um die endogene Effluxrate bereinigt und mit der trans-zero-Rate in Relation gesetzt. Bei Anpassung an das nicht kompetitive Modell errechnet sich ein $K_{i trans}$ für Cyanin863 von 7,58 ± 2,35 µM. Zum Vergleich beträgt die aus monoexponentieller Anpassung errechnete IC₅₀ 8,75 ± 2,98 µM. Die mittlere hOCT2-spezifische trans-zero-Rate betrug 4,46 ± 0,47 fmol/min.
3.3 Elektrochemische Eigenschaften von rOCT1

Die Transporter der OCT-Familie sind zum einen potentialabhängige Carrier, d.h. der Substrattransport erfolgt in Abhängigkeit vom Membranpotential unterschiedlich stark. Darüberhinaus konnte mittlerweile gezeigt werden, dass die Affinitäten für Transportsubstrate (K_M-Werte) und Hemmstoffe (K_I-Werte) in gewissem Rahmen potentialabhängig sind [BUSCH A.E. et al., 1996a]. Darüberhinaus transportiert OCT in elektrogener Weise Substanzen, welche pH-abhängig oder permanent positiv geladen sind, sodass Transport- und Inhibitionsmessungen an OCT-exprimierenden Oozyten auch elektrophysiologisch möglich sind. Im Rahmen der Kooperation mit PD Dr. Andreas E. Busch, Physiologisches Institut der Universität Tübingen wurden rOCT1, hOCT2 und hOCT1 ausführlich elektrophysiologisch charakterisiert. Kationische Transportsubstrate wie z.B. MPP oder TEA induzieren bei Superfusion rOCT1-exprimierender Oozyten einen Einwärtsstrom, der durch im voltage-clamp-Paradigma durch den Strom charakterisiert wird, der notwendig ist, um das geklemmte Membranpotential der Oozyte auf dem eingestellten Wert zu halten. Hierbei konnten auch für den substratinduzierten Strom Konzentrationsabhängigkeit und Sättigbarkeit gemessen und entsprechende K_M- und I_max.-Werte ermittelt werden [BUSCH A.E. et al., 1996a].

Allgemein wurde bislang angenommen, dass dem bei Substratsuperfusion gemessenen Strom zusammen mit dem Substrat Ladung im Verhältnis 1:1 transportiert wird. Aufgrund dieser Hypothese wurden oft elektrophysiologisch und mittels Tracerflux gewonnene transportkinetische Parameter unkritisch als austauschbar behandelt. Erstmalig fielen jedoch Diskrepanzen auf, als an hOCT2-exprimierenden Oozyten elektrophysiologisch ein von den Tracerfluxergebnissen größenordnungsmäßig unterschiedlicher K_M-Wert für MPP ermittelt wurde [GORBOULEV V. et al. 1997]: Der MPP-induzierte Einwärtsstrom von hOCT2-Oozyten zeigte einen K_M von 1,2 µM, während im Tracer-Influx (im Rahmen dieser Arbeit, s.o.) für die

Um dieses Strom-Transport-Verhältnis für rOCT1 zu bestimmen, wurden in einem Simultanversuch an der gleichen Oozytencharge für mehrere organische Kationen der induzierte Maximalstrom I_{max} mit der jeweiligen maximalen Aufnahme V_{max} bei gleicher Substratkonzentration verglichen (Abb. 20). Bei den elektrophysiologischen Messungen wurde jede Bedingung an jeweils 5 Oozyten gemessen, die Tracerfluxversuche wurden an 7 Oozyten pro Bedingung durchgeführt. Für MPP (160 µM) wurde eine cyaninhemmbare Aufnahme von $109,6 \pm 20,6 \, \text{pmol/h}$ gemessen, für NMN (6 mM) $434,8 \pm 42,5 \, \text{pmol/h}$ und für TEA 298,6 $\pm 50,7 \, \text{pmol/h}$ (Mediane \pm S.E.M.). Parallel wurden folgende, mit dem jeweiligen Klemmpotential verrechnete substratinduzierte Ströme gemessen (arithmetisches Mittel, Werte von Dr. A.E. Busch): MPP (160 µM): $14 \pm 3 \, \text{nA}$, NMN (6 mM): $40 \pm 8 \, \text{nA}$, TEA (1 mM): $42 \pm 8 \, \text{nA}$. Die Aufnahme von Ladungseinheiten pro Zeiteinheit (Q_e) lässt sich einfach aus dem gemessenen Strom I und den Konstanten e (Elementarladung, $e = 1,602 \cdot 10^{-19} \, \text{C}$) und N_A (Avogadro-Konstante, $N_A = 6,022 \cdot 10^{23} \, \text{mol}^{-1}$) errechnen:

$$Q_e = \frac{I}{(e \cdot N_A)}$$

Der Ionenfluss Q_i (in mol/s) ergibt sich dann aus dem Ladungsfluss Q_e durch Division durch die Ladung des Ions z. Da es sich bei allen gemessenen Substraten um einwertige Kationen handelt, ist $Q_i = Q_e$ und es ergeben sich für die getesteten Substrate folgende Ionen-Transportraten: für MPP 522 pmol/h, für NMN 1493 pmol/h und für TEA 1567 pmol/h. Dies sind 3,3- bis 5-fach höhere Werte als maßgeblich der Tracermessung tatsächlich transportiert wird. Somit besteht rechnerisch eine erhebliche Diskrepanz zwischen kationeninduziertem Strom und
Abb. 20: Kationentransport und kationeninduzierter Strom via rOCT1. Durch Zugabe von MPP (160 µM), NMN (6 mM) und TEA (1,5 mM) in die Badlösung von rOCT1-exprimierenden Oozyten induzierter Tracer-Transport über 60 min (oberes Diagramm, [³H]-MPP, [³H]-NMN, [¹⁴C]-TEA in pmol/h als Mediane ± S.E.M. bei n = 7) bzw. Einwärtsstrom (unteres Diagramm, in nA als arithmetisches Mittel ± S.E.M. bei n = 5). Das Klemmpotential bei den elektrophysiologisch untersuchten Oozyten lag zwischen –16 und –40 mV. Kontrolloozyten zeigten keinen signifikanten kationeninduzierten Strom.
3.4 Symmetrieverhalten im Bindungs- und Transportmechanismus von rOCT1

3.4.1 cis- und trans-Verhalten von Transportsubstraten

Durch die Entwicklung der Effluxmethodik im Rahmen dieser Arbeit bestand erstmals die Möglichkeit, rOCT1 als Prototyp der polyspezifischen Kationentransporter im Expressionssystem Xenopus-Oozyte auf seine Transportersymmetrie zu untersuchen. Wie bereits im Kapitel 3.1.3 ausgeführt, transportiert rOCT1 im Influxparadigma das Transportsubstrat von der extrazellulären zur zytosolischen Membranseite, was seiner physiologischen Rolle in der basolateralen Membran des proximalen Tubulus und der sinusoidalen Hepatozytenmembran am nächsten kommt. Es ist leicht vorstellbar, dass diese Transportrichtung seitens der Transporterkinetik energetisch bevorzugt ist. Als Uniporter ist rOCT1 jedoch auch in der Lage, Substrate in der entgegengesetzten Richtung zu transportieren, was für die trans-Stimulation schließlich Voraussetzung ist. Insofern müsste der Transporter „im Rückwärtsgang“, also bei Substrattransport von intrazellulär nach extrazellulär ungünstigere kinetische Charakteristika zeigen. Mithilfe des Effluxparadigmas war dieser Fragestellung einfach nachzugehen.

Zunächst ist naheliegend, dass sich rOCT1 in der maximalen Transportgeschwindigkeit (V_{max}) zwischen den beiden Transportrichtungen unterscheiden könnte. Hierzu wären z.B. die V_{max}-Werte des MPP-Influxes mit denen des MPP-Effluxes zu vergleichen. Hierbei sind jedoch mehrere Punkte zu beachten. Zum einen ändert sich V_{max} in Abhängigkeit von der Anwesenheit eines Substrates auf der trans-Seite (trans-Stimulation) und es ist davon auszugehen, dass rOCT1 im Influxparadigma durch endogene Substrate des Oozytendotters, z.B. Cholin (welches aus Gründen der Konstanthaltung der intrazellulären Konzentration...

Die initiale Transportrate für MPP im Influx bei 240 nM lässt sich leicht mithilfe der Michaelis-Menten-Gleichung aus den Ergebnissen der in Abbildung 7a dargestellten Zeitkinetik der MPP-Aufnahme in rOCT1-exprimierende Oozyten bei sättigender MPP-Konzentration (160 µM) errechnen. Hierbei lag die (differenzielle, rOCT1-spezifische) initiale Transportrate (V_max) bei 1,67 pmol/min. Für eine Substratkonzentration von 240 nM errechnet sich demnach für die Transportrate v:

\[v = \frac{V_{max} \cdot S}{K_M + S} \]
cis-trans-Asymmetrie von rOCT1

\[v_{240 \text{ nM}} = \frac{1670 \text{ fmol min}^{-1} \cdot 240 \text{ fmol} \mu\text{l}^{-1}}{9600 \text{ fmol} \mu\text{l}^{-1} + 240 \text{ fmol} \mu\text{l}^{-1}} \]

\[v_{240 \text{ nM}} = 40,7 \text{ fmol min}^{-1} \]

3. Ergebnisse

Abb. 21: Konzentrationsabhängigkeit der trans-Stimulation des MPP-Effluxes via rOCT1 durch MPP. Mittelwerte ± S.E.M. der initialen Raten des kumulativen [³H]-MPP-Effluxes aus mit 120 fmol [³H]-MPP vorinjizierten und cholinsubstituierten Oozyten (jeweils n = 4 - 5). Der Efflux aus wasserinjizierten Kontrollozyten (trans-MPP, n = 4) ist linear und ist als gestrichelte Linie orientierend dargestellt. Bei nichtlinearer Anpassung der rOCT1-Kurve an das MICHAELIS-MENTEN-Modell errechnet sich nach Abzug des unspezifischen Effluxes (Kontrolle) ein K_S für MPP von $12,4 \pm 7,2 \, \mu$M. Die maximale trans-Stimulation der initialen Effluxrate beträgt somit $223 \pm 10\%$.
denkbar, dass sich die Affinität des (im Efflux) von innen nach außen in beladenem Zustand laufenden Transporters gegenüber dem (stimulierenden) Transportsubstrat anders verhält als in umgekehrter Richtung beim Influx.

Zur Klärung dieser Fragestellung war die Beobachtung von Nutzen, dass die trans-Stimulation des MPP-Effluxes konzentrationsabhängig zu sein schien. Daher wurden MPP-Effluxversuche an rOCT1 durchgeführt, bei denen die trans-stimulierende MPP-Konzentration in der Badlösung systematisch variiert wurde. Der \[^3H\]-MPP-Efflux (cis-Konzentration 240 nM intrazellulär, 370 Bq/ Oozyte) aus rOCT1-exprimierenden und wasserinjizierten Kontrolloozyten wurde über 5 min. für jede Oozyte einzeln (pro Versuchsbedingung 4 bis 5 Oozyten) gemessen und die jeweilige Kennlinie monoexponentiell gefittet. Aus den hieraus berechneten initialen Effluxraten wurde das arithmetische Gruppenmittel ± S.E.M. gebildet, gegen den unspezifischen Efflux der Kontrollen differenziell bereinigt und gegen die trans-Substratkonzentration aufgetragen. Es zeigte sich, dass die maximale trans-Stimulation bereits bei 160 µM MPP erreicht wird und eine weitere Steigerung (bis 1 mM) keine weitere Stimulation des Effluxes erbringt. Die rOCT1-spezifische trans-zero-Effluxrate lag bei 4,80 ± 0,07 fmol/min., die maximale trans-Stimulation bei 11,9 ± 0,2 fmol/min. dies entspricht einem Faktor 2,5. An die Effluxraten wurde die MICHAELIS-MENTEN-Gleichung angepasst. Hieraus ergab sich für die (dem cis-K_M- Wert entsprechende) Stimulationskonstante K_s der trans-Stimulation des \[^3H\]-MPP-Effluxes via rOCT1 durch MPP: K_s = 12,4 ± 7,2 µM. Dieser Wert liegt sehr nahe an dem für rOCT1 bestimmten cis-K_M für MPP (9,6 ± 1,5 µM). Insofern scheint einerseits die Transstimulation entsprechend der bisherigen Theorie über Substratbindung an der Transportbindungsstelle vermittelt zu sein. Andererseits besteht für diese Bindungsstelle bei rOCT1 eine cis-trans-Symmetrie.
3. Ergebnisse

3.4.2 cis- und trans-Verhalten kompetitiver und nicht-kompetitiver Hemmstoffe

Transportabilität sich im Tracerinflux nur schlecht untersuchen lässt, da der Hintergrund der unspezifischen Bindung eine transportvermittelte Aufnahme überdeckt. Dies ist zum Beispiel der Fall bei Chinidin und Acetylcholin. Im MPP-Efflux zeigt Acetylcholin (500 µM) eine trans-Stimulation, Chinidin (40 µM) dagegen eine trans-Hemmung (Abbildung 22). Somit ist Acetylcholin als transportabler („kompetitiver“), Chinidin als nicht transportabler („nicht-kompetitiver“) Hemmstoff zu klassifizieren.

Parallel dazu wurden Effluxversuche durchgeführt, bei denen der [3H]-MPP-Auswärtstransport aus Oozyten durch Zugabe der oben genannten Hemmstoffe in unterschiedlicher Konzentration in die Badlösung (trans) gehemmt wurde. Die aus
Abb. 23: Konzentrationsabhängigkeit der trans-Hemmung des MPP-Effluxes via rOCT1 durch Tetrapentylammonium (TPeA) und Decynium22. Die Mittelwerte ± S.E.M. der initialen Raten des kumulativen [³H]-MPP-Effluxes aus mit 120 fmol [³H]-MPP vorinjizierten Oozyten (jeweils n = 4 bzw. 8) wurden um die endogene Effluxrate bereinigt und mit der trans-zero-Rate in Relation gesetzt. Bei Anpassung an das nicht-kompetitive Modell errechnen sich der $K_{i,trans}$ für TPeA von 1,63 ± 0,28 µM bzw. für Decynium22 66,6 ± 9,2 µM. Zum Vergleich betragen die aus monoexponentieller Anpassung errechneten IC$_{50}$ 1,7 ± 0,6 µM bzw. 67,2 ± 12,5 µM. Die mittleren rOCT1-spezifischen trans-zero-Raten betrugen 3,27 ± 0,14 bzw. 2,07 ± 0,05 fmol/min.
Ergebnisse

<table>
<thead>
<tr>
<th>Hemmstoff</th>
<th>Hemmung des MPP-Transportes via rOCT1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dissoziationskonstante [µmol/l ± S.E.]</td>
</tr>
<tr>
<td></td>
<td>Kᵢ₂cis</td>
</tr>
<tr>
<td>Decynium22</td>
<td>4,7 ± 1,2</td>
</tr>
<tr>
<td>Cyanin863</td>
<td>5,6 ± 0,5</td>
</tr>
<tr>
<td>TPeA</td>
<td>2,2 ± 0,7</td>
</tr>
<tr>
<td>Chinin</td>
<td>48,5 ± 17,8</td>
</tr>
</tbody>
</table>

Dass die gezeigten Unterschiede – insbesondere im Fall von Chinin – auf unterschiedlichem Diffusionsverhalten der Hemmstoffe, sprich deren Lipophilität, beruhen, ist demgegenüber relativ unwahrscheinlich. Wäre dies der Fall, so müsste ein deutlicher Unterschied in den Hemmkonstanten von Chinin auf den MPP-Transport zu finden sein, wenn mit bzw. ohne Hemmstoffvorinkubation gemessen wird. Um dies auszuschließen wurden zwei Hemmkinetiken für Chinin auf den rOCT1-vermittelten Influx von 14 µM MPP erstellt: mit und ohne Chinin-Vorinkubation (14 min). Hierbei zeigt Chinin mit Vorinkubation eine Hemmkonstante Kᵢ = 11,1 ± 3,0 µM, demgegenüber ist ohne Vorinkubation Kᵢ = 11,9 ± 2,8 µM, was nicht signifikant verschieden ist. Warum diese Werte jedoch niedriger sind als bei einer MPP-Konzentration von 0,24 µM (siehe Tabelle 8) und wie der Unterschied zwischen den Kᵢ-Werten von Chinin für *cis* und *trans* zu interpretieren ist, wird im Kapitel 4.2 ausführlich diskutiert.
4.

Diskussion

4.1 Unterschiede und Gemeinsamkeiten von hOCT2 und rOCT1
4.2 Symmetrie und Asymmetrie von rOCT1
4.1 Unterschiede und Gemeinsamkeiten von hOCT2 und rOCT1

Nach der Klonierung des Prototyps der Transporterfamilie für Organische Kationen, rOCT1 [Gründemann D., 1994 (Diss.)], wurden mittels PCR zunächst zwei humane Homologe ermittelt und nachfolgend kloniert [Gorbolev V. et al., 1997]. Hiervon zeigte das hOCT2 genannte Konstrukt eine gute funktionelle Expression im Xenopus-Oozyten-System. Da eine Übertragung funktioneller Daten, die an rOCT1 aus der Ratte erhoben wurden, auf die Verhältnisse im Menschen nicht ohne weiteres zulässig ist, war eine eingehende funktionelle Charakterisierung von hOCT2 notwendig und von grundlegendem Interesse. Hinzu kommt, dass hOCT2 sequentiell dem Rattenhomolog rOCT2 näher steht als rOCT1 selbst.

4. Diskussion

Transportspezifität

Die wesentliche Gemeinsamkeit von rOCT1 und hOCT2 ist die Polyspezifität für transportable organische Kationen. Strukturell unterschiedliche Kationen werden jedoch mit jeweils verschiedener Affinität transportiert. Hierbei ist insbesondere ein Aspartat an Stelle 475 bestimmend, wie kürzlich gezeigt werden konnte [GORBOULEV V. et al., 1999]. Somit ist plausibel, dass es auch zwischen den Homologen rOCT1 und hOCT2 Unterschiede und Gemeinsamkeiten hinsichtlich der differenziellen Substrataffinität geben kann. Insofern zeigen hOCT2 und rOCT1 größenordnungsmäßig vergleichbare Affinitäten für TEA (75,8 ± 12,5 bzw. 95 ± 10 µM) und NMN (298 ± 62 bzw. 403 ± 150 µM). Eine im Vergleich zu rOCT1 fast dreifach höhere Affinität zeigt hOCT2 für Cholin (210 ± 45 im Vergleich zu 620 ±139 µM). Demgegenüber transportiert hOCT2 MPP, Histamin und vor allem Dopamin mit zum Teil wesentlich niedrigerer Affinität als rOCT1 (siehe Tabelle 4, Kapitel 3.2.1). In ähnlicher Weise finden sich Unterschiede und Gemeinsamkeiten hinsichtlich der Transportkapazität, d.h. der maximalen Transportgeschwindigkeit unter sättigenden Substratkonzentrationen. Im Vergleich zu rOCT1 zeigt hOCT2 für MPP eine gleich hohe, für TEA eine 2,2-fach, für Cholin eine 2,5-fach und für NMN sogar eine 2,7-fach höhere Transportkapazität (vgl. Tabelle 5, Kapitel 3.2.1).

Substratspektrum und die hier beschriebenen kinetischen Eigenschaften von hOCT2 und rOCT1 stehen in Einklang mit ihrer bislang vermuteten Funktion: Beide tragen wesentlich zur Homöostase von Metaboliten und zur Exkretion von Toxinen und Pharmaka auf hepatobiliärem und renalem Wege bei. Sie vermitteln hier den ersten Schritt der aktiven Sekretion organischer Kationen im Rahmen des transepithelialen Transports [KOEPSELL H., 1998].

Zusätzlich wurde für hOCT2 auch die Expression in Neuronen gezeigt [BUSCH A.E. et al., 1998], sodaß diesem auch eine Rolle in der Homöostase von Neurotransmittern im Zentralen Nervensystem zuzukommen scheint. Hierbei ist insbesondere an die Rückresorption von Neurotransmittern aus dem Interzellulärraum nach synaptischer Freisetzung zu denken. Tatsächlich vermittelt hOCT2 einen hochkapazitären, polyspezifischen und eher niederaffinen Transport von Monoamin-Neurotransmittern. Insbesondere für Histamin, Dopamin und Acetylcholin konnte ein hOCT2-spezifischer Transport gezeigt werden. Es ist zu vermuten, dass hOCT2 neben den höheraffinen und spezifischeren, natriumgekoppelten Neurotransmittercarbon in Glia und Neuronen einen globalen Reservemechanismus für die Rückresorption freigesetzter Neurotransmitter darstellt.

Hemmstoffspektrum

Nicht nur hinsichtlich der Transportsubstrate, sondern auch hinsichtlich der Hemmbarkeit durch organische Kationen besteht bei hOCT2 und rOCT1 eine differenzielle Polyspezifität. Eine Reihe typischer rOCT1-Hemmstoffe hemmen den hOCT2-vermittelten TEA-Transport mit höherer Affinität als den rOCT1-vermittelten (siehe Tabelle 6): Es sind dies Tetramethylammonium (für hOCT2 2,8-fach höhere Affinität als für rOCT1), Pancuronium (2,9-fach), NMN (3,3-fach) und MPP (4,9-fach). Demgegenüber zeigt hOCT2 gegenüber anderen Substanzen eine deutlich geringere Hemmbarkeit als rOCT1: Hierzu gehören Mepiperphenidol (3,2-fach höhere Hemmkonstante für hOCT2), Procainamid (6,9-fach), Chinin (7,2-fach), Tetrapentylammonium (8-fach) Desipramin (12-fach) und 3-O-Methyl-Isoprenalin mit 21-facher Hemmkonstante. Relativ gut vergleichbar sind dagegen die Affinitäten für die beiden Fluoreszenzfarbstoffe Decynium22 (1,9-fach höhere Affinität für hOCT2) und Cyanin863 (1,5-fach höhere Affinität bei rOCT1).

Von besonderer Bedeutung ist die Hemmbarkeit des hOCT2-vermittelten Dopamin-Transportes durch Amantadin. Da hOCT2 auch in Neuronen exprimiert wird und dort wohl an der globalen Rückresorption von Neurotransmittern mitwirkt, könnte dieser Mechanismus auch zumindest eine Teilkomponente des Wirkmechanismus von Amantadin in der Behandlung des dopaminergen Defizits bei Parkinson-Syndromen darstellen: Es konnte in dieser Arbeit gezeigt werden, daß sich der Transport von Dopamin durch hOCT2 mit Amantadin recht hochaffin (Kᵢ = 46,4 ± 7,2 µM, wenn von nicht-kompetitiver Hemmung ausgegangen wird) hemmen lässt.
Hierdurch könnte es zu einer Erhöhung von Dopamin im Interzellulärraum und somit auch im synaptischen Spalt kommen, wodurch Therapieeffekte erklärbar wären.

trans-Effekte

Bislang war nur vermutet aber nicht bewiesen worden, dass rOCT1 als Uniporter funktioniert und transstimulierbar ist [GRÜNDEMANN D., 1994 (Diss.)]. Dies konnte in der vorliegenden Arbeit gezeigt werden. rOCT1 vermag in *trans-zero*-Situation Substrate zu translozieren und ist nicht an ein obligates Austauschsubstrat für die Reorientierung in den Ausgangszustand gebunden. Sättigende Konzentrationen transportabler Substrate bewirken dagegen eine bis zu 2,4-fache Transstimulation des Transportes. Gleichermaßen konnte für hOCT2 Funktionalität unter *trans-zero*-Bedingung und Transstimulierbarkeit gezeigt werden. Somit sind hOCT2 und rOCT1 als Uniporter zu klassifizieren und sind keine obligat gekoppelten Austauscher. Beide Vertreter der OCT-Familie sind außerdem *trans*-hemmbar durch nicht-kompetitive Hemmstoffe wie z.B. Cyanin863. In analoger Weise wurde mittlerweile auch für das humane rOCT1-Homolog hOCT1 nach Expression in HeLa-Zellen dessen Trans-Stimulierbarkeit gezeigt [ZHANG L. *et al.*, 1998b]
4.2 Symmetrie und Asymmetrie von rOCT1

Zunächst ergibt sich aus den Ergebnissen dieser Arbeit eine direktionale Asymmetrie von rOCT1. Bei direkt vergleichbaren Transportbedingungen liegt die ermittelte initiale Transportrate für MPP im Influx bei 40,7 fmol/min, während die gleiche Rate im Efflux mit ca. 8,6 fmol/min fast um den Faktor 5 geringer ist. Selbst unter der Annahme, dass rOCT1 im Influxparadigma unter maximaler *trans*-Stimulation durch intrazelluläre endogene Transportsubstrate läuft, während im Efflux-Paradigma eine *trans-zero*-Situation vorliegt, ist der Unterschied zwischen Einwärts- und Auswärtsstransport größer als der alleine durch *trans*-Stimulation zu erwartende Effekt, welcher maximal eine 2,23-fache Steigerung des Transports erbringt (siehe Kapitel 3.4). In ähnlicher Weise ist der Einwand denkbar, dass rOCT1 im Effluxparadigma von im Oozytendotter enthaltenen potentiellen endogenen organischen Kationen kompetitiv gehemmt wird. Aufgrund der Cholinsubstitution während der Kulturphase der in Influx und Efflux verwendeten Oozyten ist jedoch für beide Transportrichtungsparadigmen von einer gleichen intrazellulären Cholinkonzentration auszugehen, welche aufgrund der Sättigungssituation die
Wirkung potentieller endogener Substrate nivelliert und ausgleicht. Somit liegt sowohl im Efflux- wie im Influxparadigma die gleiche potentielle Kompetition vor. Demnach ist eine eventuelle kompetitive Hemmung in beiden Transportrichtungen gleich und kann vernachlässigt werden.

Aus den Ergebnissen ist zu folgern, dass OCT selbst unter maximaler trans-Stimulation (in beide Richtungen) von außen nach innen mindestens doppelt so schnell transportiert als von innen nach außen, was mit seiner Aufnahmefunktion bei basolateraler Lokalisation in sezernierenden Epithelien in plausibler Weise konform ist. Im Gegensatz hierzu wäre beispielsweise für einen apikal oder luminal lokализierten Transporter, welcher ebenfalls zur Netto-Sekretion von Substanzen beitragen soll, eine bevorzugte Transportrichtung von innen nach außen zu erwarten. Für letztere Transporter wird dies auch dadurch realisiert, dass diese meist protonengekoppelte Austauscher sind, deren direktionale Asymmetrie extern vom bestehenden H⁺-Gradienten festgelegt ist.

Bezüglich des Phänomens der trans-Stimulation läßt sich die Hypothese aufstellen, dass sie über die gleiche Bindungsstelle vermittelt wird wie der Substrattransport selbst. Dies ergibt sich aus der Beobachtung, dass die Stimulationskonstante für die trans-Stimulation des MPP-Effluxes durch MPP (12,4 ± 7,2 μM) sehr nahe beim KM für den MPP-Influx (9,6 ± 1,5 μM) liegt. Auch scheint (zumindest bei rOCT1) die cis-Hemmung des TEA-Transportes durch MPP die gleiche Bindungsstelle zu benutzen, da der entsprechende Ki ebenfalls dem KM für MPP sehr nahe kommt. Dies spricht für sich alleine bereits für die kompetitive Natur der Hemmung durch MPP. Demgegenüber scheinen bei hOCT2 die Bindungsstellenverhältnisse nicht vergleichbar einfach zu sein. Hier findet sich ein Ki für die Hemmung des TEA-Transports durch MPP (2,68 ± 0,62 μM) weit unterhalb des KM-Wertes für den MPP-Transport (19,4 ± 2,5 μM), während für NMN beide Werte identisch sind (Ki = 299 ± 34 μM bzw. KM = 298 ± 62 μM). Es ist zu vermuten, dass bei hOCT2 ein komplexerer Inhibitionsmechanismus für MPP vorliegt, z.B. über zwei differente Bindungsstellen oder Bindungszustände. Allgemein ist hervorzuheben, dass in der vorliegenden Arbeit mit dem Ausdruck
„Bindungsstelle“ keine topologische Aussage bezüglich der Proteinstruktur von OCT getroffen werden kann. Es ist darunter vielmehr ein funktionell umschriebener Bereich oder Zustand des Transporters zu verstehen.

4. Diskussion

Es ist andererseits auch vorstellbar, dass ein von *cis* angebotener Hemmstoff zunächst mit dem Transportssubstrat um eine Bindungsstelle kompetieren muß bevor er seine Hemmwirkung zu entfalten vermag, die durchaus in der Summe nicht-kompetitiv sein kann. Dies wäre z.B. der Fall wenn der Inhibitor zunächst auf die andere (*trans*) Membranseite transloziert werden müsste um von dort über eine zweite Bindungsstelle zu hemmen [KRUPKA R.M., 1983]. In diesem Fall müsste die Dissoziationskonstante für die *cis*-Hemmung höher sein als für die *trans*-Hemmung des gleichen Inhibitors. Auffälligerweise trifft genau dieser Sachverhalt für Chinin zu: Sein *cis*-Ki liegt mit 48,5 ± 17,8 µM gut 20-fach über dem *trans*-Ki (2,1 ± 0,4 µM, jeweils gemessen bei 0,24 µM [³H]-MPP und ohne Chinin-Vorinkubation). Dies bedeutet, dass Chinin seine hemmende Wirkung zumindest zum wesentlichen Anteil von der intrazellulär gelegenen oder der *trans*-Seite von rOCT1 entfaltet. Hieraus ergibt sich jedoch die Frage wie Chinin dorthin gelangt, passiv *per diffusionem* oder durch Transport. Zur Klärung dieser Frage ist zum einen die Beobachtung hilfreich, dass Chinin tatsächlich transportiert wird, was bislang aufgrund der hohen unspezifischen Membranbindung des Tracersubstrats schwierig detektierbar war. Zum anderen ist der Befund wichtig, dass Chinin bei einer höheren Konzentration des Transportsubstrates (MPP) rOCT1 besser hemmt als bei einer niedrigen. In Kapitel 3.4 wurde gezeigt, dass Chinin den MPP-Transport von *cis* bei einer MPP-Konzentration von 14 µM unabhängig von einer Chinin-Vorinkubation mit *K*_{i,cis} = 11,1 ± 3,0 µM (mit Vorinkubation) bzw. *K*_{i,cis} = 11,9 ± 2,8 µM (ohne Vorinkubation) hemmt. Somit ist eine passive Diffusion des lipophilen Chinin durch die Zellmembran auf die Innenseite nicht entscheidend. Beide Hemmkonstanten liegen jedoch auffälligerweise um den Faktor 4 niedriger als bei einer *cis* MPP-Konzentration von 0,24 µM. Dies ist mit einer eventuellen Kompetition zwischen Chinin und MPP nicht zu erklären (In einem solchen Falle müsste die Hemmkonstante bei einer niedrigeren Transportsubstratkonzentration niedriger sein als bei einer hohen.). Sehr wohl jedoch dadurch, dass der Transporter bei der höheren MPP-Konzentration schneller transportiert und dabei auch mehr Chinin nach intrazellulär verschiebt. So wird intrazellulär eine höhere Chinin-Konzentration erreicht und Chinin hemmt von der intrazellulären Transporterseite aus besser. Dies

5.

Zusammenfassung

Zur Klärung der Fragestellungen wurde das Expressionsmodell Xenopus-Oozyte durch die Etablierung der sogenannten Effluxmethodik funktionell und methodisch wesentlich erweitert.
6. Literatur

potential-sensitive, polyspecific organic cation transporter (OCT3) most

KOEHLER M.R., GORBOULEV V., KOEPSELL H., STEINLEIN C. & SCHMID
M. (1996) Roct1, a rat polyspecific transporter gene for the excretion of
cationic drugs, maps to chromosome 1q11-12. Mamm Genome 7, 247-248.

KOEHLER M.R., WISSINGER B., GORBOULEV V., KOEPSELL H. & SCHMID
M. (1997) The two human organic cation transporter genes SLC22A1 and
SLC22A2 are located on chromosome 6q26. Cytogenet Cell Genet 79, 198-
200.

KOEPSELL H. (1998) Organic Cation Transporters in Intestine, Kidney, Liver, and
Brain. Annu. Rev. Physiol. 60, 243-266.

KOEPSELL H., GORBOULEV V., ARNDT P., ULZHEIMER J.C. & KARBACH
Pflügers Arch. - Eur J Physiol 431, R24

and Function of Renal Organic Cation Transporters. News in Physiological
Sciences 13, 11-16.

KOEPSELL H., ARNDT P. (1999) Molecular Pharmacology of

by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its

membrane carriers that mediate electrogenic bidirectional transport of

LANG F., WALDEGGER S., SÜSSBRICH H., ULZHEIMER J.C., GORBOULEV
cations and bases by the renal organic cation transporter OCT1. Biol Chem
377, S28-Meeting abstract

LANGSTON J.W., FORNO L.S., REBERT C.S. & IRWIN I. (1984) 1-methyl-4-
phenylpyridinium ion (MPP+): Identification of a metabolite of MPTP, a

MAGER S., MIN C., HENRY D.J., CHAVKIN C., HOFFMAN B.J., DAVIDSON

VERHAAGH S., SCHWEIFER N., BARLOW D.P. & ZWART R. (1999) Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a

7. Appendix

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinin</td>
<td></td>
</tr>
<tr>
<td>Chinidin</td>
<td></td>
</tr>
<tr>
<td>Decynium22</td>
<td></td>
</tr>
<tr>
<td>Desipramin</td>
<td></td>
</tr>
<tr>
<td>Cyanin863</td>
<td></td>
</tr>
<tr>
<td>Procainamide</td>
<td></td>
</tr>
<tr>
<td>Dopamin</td>
<td></td>
</tr>
<tr>
<td>Histamin</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamid</td>
<td></td>
</tr>
<tr>
<td>Cisplatin</td>
<td></td>
</tr>
<tr>
<td>MPP</td>
<td></td>
</tr>
<tr>
<td>NMN</td>
<td></td>
</tr>
<tr>
<td>Strukturformeln</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Corticosteron</td>
<td>Cholin</td>
</tr>
<tr>
<td>[Strukturformel von Corticosteron]</td>
<td>[Strukturformel von Cholin]</td>
</tr>
<tr>
<td>Taurocholat</td>
<td>Acetylcholin</td>
</tr>
<tr>
<td>[Strukturformel von Taurocholat]</td>
<td>[Strukturformel von Acetylcholin]</td>
</tr>
<tr>
<td>TPeA</td>
<td>TMA</td>
</tr>
<tr>
<td>[Strukturformel von TPeA]</td>
<td>[Strukturformel von TMA]</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>TEA</td>
</tr>
<tr>
<td>[Strukturformel von Pancuronium]</td>
<td>[Strukturformel von TEA]</td>
</tr>
<tr>
<td>d-Tubo-curarin</td>
<td>Spermin</td>
</tr>
<tr>
<td>[Strukturformel von d-Tubo-curarin]</td>
<td>[Strukturformel von Spermin]</td>
</tr>
<tr>
<td>Isoprenalin</td>
<td>Amantadin</td>
</tr>
<tr>
<td>[Strukturformel von Isoprenalin]</td>
<td>[Strukturformel von Amantadin]</td>
</tr>
</tbody>
</table>
Danksagung

Für die Betreuung, Einlernung in die Methodik und hilfreiche Unterstützung bei der experimentellen Arbeit danke ich Frau Dr. Maike Veyhl, für die Bereitstellung der OCT-Klone und Hilfestellung bei den molekularbiologischen Arbeiten danke ich Herrn Dr. V. Gorboulev und Frau Dr. A. Akhoundova. Für technische Unterstützung danke ich Frau I. Schatz, und für die Tierpflege Frau Engel, alle Anatomisches Institut I, Würzburg.

Für die fruchtbare Kooperation auf elektrophysiologischem Gebiet danke ich den Herren PD Dr. Andreas Busch und Dr. Stefan Bröer, damals Physiologisches Institut der Universität Tübingen.

Herrn Prof. Dr. H. Koepsell danke ich sehr herzlich für die Überlassung des Themas, die verständnisvolle und geduldige Betreuung und Diskussion der Arbeit.

Nicht zuletzt danke ich auch meinen Eltern und meiner Partnerin María del Carmen Roldán Pareja für das geduldige Verständnis und Unterstützung bei der Anfertigung der Arbeit.
Lebenslauf

Würzburg, den 5.11.2002

Jochen C. Ulzheimer