Antagonist Binding Profiles of Five Cloned Human Muscarinic Receptor Subtypes

FRANK DÖRJE, JÜRGEN WESS, GÜNTER LAMCREHT, REINHOLD TACKE, ERNST MUTSCHLER and MARK R. BRANN

Laboratory of Molecular Biology (F.D., J.W., M.R.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892; Department of Pharmacology (F.D., G.L., E.M.), University of Frankfurt, Theodor-Stern-Str 7, Gebäude 754, D-6000 Frankfurt/M., Federal Republic of Germany; and Institute of Inorganic Chemistry (R.T.), University of Karlsruhe, Engesserstraße, D-7500 Karlsruhe, Federal Republic of Germany

Accepted for publication November 5, 1990

ABSTRACT

A variety of muscarinic antagonists are currently used as tools to pharmacologically subclassify muscarinic receptors into M1, M2 and M3 subtypes. In the present study, we have determined the affinity profiles of several of these antagonists at five cloned human muscarinic receptors (m1-m5) stably expressed in Chinese hamster ovary cells (CHO-K1). At all five receptors, the (R)-enantiomers of trihexyphenidyl and hexbutinol displayed considerably higher affinities (up to 525-fold) than their corresponding (S)-isomers. The stereoselectivity ratios [inhibition constant(S)/inhibition constant(R)] for both pairs of enantiomers were lowest at m2 receptors, suggesting that less stringent configurational demands are made by this receptor subtype. The "M1-selective" antagonist (R)-trihexyphenidyl exhibited high affinities for m1 and m4 receptors. The "M2-selective" antagonists himbacine, (±)-5,11-dihydro-11-[[2-[di(propylamino)methyl]-1-piperidinyl(ethyl)amino]carbonyl]-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one (AF-DX 384), 11-{[4-[4-diethylamino]butyl]-1-piperidinyl}acetetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one (AQ-RA 741) and (±)-[4-[2-[[diethy lamino(methyl)]-1-piperidinyl](acetyl)]-5,11-di-hydro-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one [AF-DX 250, (+) enantiomer of AF-DX 116] exhibited high affinities for m2 and m4, intermediate affinities for m1 and m3 and low affinities for m5 receptors. This selectivity profile was most prominent for AQ-RA 741, which displayed 195- and 129-fold higher affinities for m2 and m4 receptors than for m5 receptors. The "M3-selective" antagonist (±)-p-fluoro-hexahydro-sila-difenidol hydrochloride (p-F-HHSiD) exhibited high affinity for m1, m3 and m4 receptors. 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) bound with up to 7-fold higher affinities to m1, m3, m4 and m5 receptors than to m2 receptors. Although none of the tested antagonists showed more than 2-fold selectivity for one subtype over the other subtypes, each receptor displayed a unique antagonist binding profile.

By the use of selective antagonists, pharmacologists have identified at least three muscarinic receptor subtypes, designated M1, M2 and M3. Antagonists used in this subclassification include pirenzepine (M1 selective), AF-DX 116, methoctramine, himbacine (M2 selective) and HHSiD, p-F-HHSiD, sila-hexocyclium and 4-DAMP (M3 selective) (for reviews, see Mitchelson, 1988; Lambrecht et al., 1989a; see also table 3).

Received for publication August 6, 1990.

1 This work was supported in part by the Fonds des Verbandes der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (J.W., G.L., R.T. and E.M.). F.D. received a studentship from the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie.

2 Present address: Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 3D-02, Bethesda MD 20892.

3 Present address: Neuroscience Research Unit, Department of Psychiatry, University of Vermont, Burlington, VT 05405.

ABBREVIATIONS: HHSiD, (+)-hexahydro-sila-difenidol hydrochloride; [3H]NMS, [3H]N-methylscopolamine chloride; 4-DAMP, 4-diphenylacetoxy-N-methylpiperidine methiodide; p-F-HHSiD, (±)-p-fluoro-hexahydro-sila-difenidol hydrochloride; AF-DX 250, (+)-[11-[2-[[diethy lamino(methyl)]-1-piperidinyl]acetyl]-5,11-di-hydro-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one; AQ-RA 741, 11-{[4-[4-diethylamino]butyl]-1-piperidinyl}acetetyl)-5,11-di-hydro-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one; AF-DX 384, (±)-5,11-dihydro-11-[[2-[di(propylamino)methyl]-1-piperidinyl(ethyl)amino]carbonyl]-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one; K, inhibition constant.

More recently, five muscarinic receptors have been cloned (m1-m5) (for reviews, see Hulme et al., 1990; Jones et al., in press) and shown to be widely expressed in the brain and in peripheral tissues (Peralta et al., 1987; Buckley et al., 1988; Maeda et al., 1988; Weiner et al., 1990). While conventional pharmacologic studies on muscarinic receptor subtypes are complicated by the fact that most tissues express a mixture of different muscarinic receptor genes (Buckley et al., 1988; Maeda et al., 1988; Weiner et al., 1990), the use of transformed cell lines individually expressing the various receptors offers the advantage that distinct subtypes can be studied in isolation. To date, only a limited characterization of the antagonist binding properties of the m1 to m5 receptors has been performed (Bonner et al., 1987, 1988; Peralta et al., 1987; Akiba et al., 1988; Buckley et al., 1989). In these studies, the antagonist binding properties of
the m2 and m3 receptors correlated well with those of the pharmacologically defined M2 and M3 subtypes (Peralta et al., 1987; Akiba et al., 1988; Buckley et al., 1989). However, the antagonist binding properties of both m1 and m4 receptors were similar to those of M1 receptors, suggesting that the putative M1 receptors may be composed of a mixture of these two receptor proteins (Buckley et al., 1989).

Many of the antagonists commonly used to classify muscarinic receptor subtypes have not been studied at cloned receptors. To ensure a judicious use of these compounds as pharmacologic tools for receptor subclassification and to further characterize the antagonist binding properties of the m1 to m5 receptors, we have determined the affinities of 11 muscarinic antagonists (fig. 1) for the five cloned human muscarinic receptors stably expressed in CHO-K1 cells. The enantiomers of trihexyphenidyl and hexbutinol were tested to study the stereochemical demands of the individual subtypes. These stereoisomers have been used as tools to classify M1 to M5 muscarinic receptor subtypes (Lambrecht et al., 1988b, 1989a; Feifel et al., 1990). Furthermore, we have investigated two widely used "selective" antagonists, 4-DAMP (Barlow et al., 1976; Doods et al., 1987) and p-F-HHSID (Lambrecht et al., 1988a, 1989a,b), as well as a series of "M2-selective" antagonists including methoctramine (Melchiorre et al., 1987; Waelbroeck et al., 1989a), himbacine (Gilani and Cobbin 1986; Lazareno and Roberts 1989), AF-DX 384, AQ-RA 741 and AF-DX 250 [(+)-enantiomer of AF-DX 116] (Eberlein et al., 1989; Engel et al., 1989) (for chemical structures, see fig. 1). AF-DX 384 and AQ-RA 741 are new derivatives of the well-known antimuscarinic drug AF-DX 116 and have been found to be more potent and/or selective than the parent compound (Eberlein et al., 1989).

Materials and Methods

Cell culture. Chinese hamster ovary cells (CHO-K1) were obtained from the American Type Culture Collection. Except for the overnight transfection procedure, cells were incubated at 37°C in a humidified atmosphere (5% CO2) as a monolayer culture in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum (Gibco, Grand Island, NY), 100 units/ml each of penicillin G and streptomycin, and 4 mM glutamine (M.A. Bioproducts, Walkersville, MD).

Transfection procedure. The CHO-K1 cell lines stably expressing the human m2 to m5 receptors have been described previously (Buckley et al., 1989). To establish a cell line expressing the human m1 receptor, CHO-K1 cells were transformed with a plasmid containing the human m1 coding sequence (Bonner et al., 1988) inserted into the pcD expression vector (Okayama and Berg, 1983). Cells were transfected according to the method of Chen and Okayama (1987) using a modified calcium phosphate procedure involving the use of cotransfected pcDneo as a selectable marker. Selection with the neomycin analog G 418 (600 µg/ml; Gibco, NY) was started 72 h after transfection and continued for 2 to 3 weeks. Media were changed every 3 days. Clonal cell lines were obtained by single-cell cloning and assayed for [3H]NMS binding capacity.

Fig. 1. Chemical structures of muscarinic antagonists employed in this study. *Centers of chirality.
Membrane preparation. Cells were grown to about 80% confluence, washed, scraped into ice-cold binding buffer and homogenized for 30 sec using a Brinkmann Homogenizer (setting 5). Membranes were pelleted at 16,000 x g for 15 min and rehomogenized. Protein concentrations were determined according to the method of Bradford (1976) using a Bio-Rad protein assay kit. Membranes were stored frozen at -80°C before use.

Radioligand binding studies. Binding buffer consisted of 25 mM sodium phosphate (pH 7.4) containing 5 mM magnesium chloride. Assays were conducted in 1 ml total volume. Final membrane protein concentrations (in µg/ml) were: m1, 6; m2, 10; m3, 5; m4, 3; and m5, 4. In [3H]NMS saturation experiments, 8 to 10 different concentrations of the radioligand (2–1400 pM) were employed. For displacement experiments, the concentration of [3H]NMS was 150 pM and 10 different concentrations of the cold displacers were used. Specific binding was defined as the difference in [3H]NMS binding in the absence and presence of 1 µM atropine. Incubations were carried out at 22°C for 3 h. Assays were terminated by filtration through a Brandell cell harvester onto Whatman GF/C filters. Membranes were washed three times with 5 ml of ice-cold binding buffer before being dried, transferred to 10 ml of scintillant (New England Nuclear Aquasol) and counted in an LKB β-counter.

Data analysis. Data from direct binding experiments were fitted to the equation:

\[a = (B_{\text{max}} x^*/k)/(1 + x^*/k) \]

to derive the Hill coefficient \(n \) and to:

\[a = (B_{\text{max}} x/K_0)/(1 + x/K_0) \]

to obtain the dissociation constant \(K_0 \) and the total number of binding sites \(B_{\text{max}} \) (\(a = [3H]NMS \) specifically bound; \(x = [3H]NMS \) concentration). Data from displacement experiments were fitted to the equation:

\[\% [3H]NMS \text{ bound} = 100 - \left(100x/K_0/(1 + x/K_0) \right) \]

to obtain the Hill number \(n \) and to:

\[\% [3H]NMS \text{ bound} = 100 - \left[100x/IC_{50}/(1 + x/IC_{50}) \right] \]

to derive the IC_{50} value (\(x = \) concentration of the cold inhibitor). \(K_i \) values were calculated by the method of Cheng and Prusoff (1973):

\[K_i = IC_{50}/(1 + L/K_0) \]

where \(L \) is the concentration of the radioligand, IC_{50} is the concentration of drug causing 50% inhibition of the specific radioligand binding and \(K_0 \) the dissociation constant of the radioligand receptor complex. Data were analyzed by a nonlinear least-squares curve fitting procedure using the program DATAPLOT (distributed by the National Technical Information Services) run on a VAX II computer.

Statistical evaluation. Results are expressed as mean values ± S.E.M. of \(n \) experiments. Statistical significance was assessed using Student’s \(t \) test or Scheffe’s method (Wallenstein et al., 1980); \(P < 0.05 \) was accepted as being significant.

Drugs. Drugs were obtained from the following sources: [3H]NMS (71 Ci/mmol; New England Nuclear, Boston, MA); atropine sulfate, 4-DAMP and methoctramine tetrahydrochloride (Research Biochemi-

Table 1

<table>
<thead>
<tr>
<th>Receptor</th>
<th>(K_i) [pM]</th>
<th>(n)</th>
<th>(B_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>54 ± 1</td>
<td>0.96 ± 0.06</td>
<td>2518 ± 125</td>
</tr>
<tr>
<td>m2</td>
<td>83 ± 4</td>
<td>0.94 ± 0.06</td>
<td>747 ± 21</td>
</tr>
<tr>
<td>m3</td>
<td>52 ± 2</td>
<td>0.94 ± 0.11</td>
<td>1830 ± 40</td>
</tr>
<tr>
<td>m4</td>
<td>26 ± 5</td>
<td>0.95 ± 0.05</td>
<td>1778 ± 182</td>
</tr>
<tr>
<td>m5</td>
<td>106 ± 11</td>
<td>0.94 ± 0.11</td>
<td>954 ± 90</td>
</tr>
</tbody>
</table>

* \(K_i \), dissociation constant; \(n \), Hill coefficient.
TABLE 2
Binding parameters of muscarinic antagonists at five human muscarinic receptor subtypes
The affinity estimates were derived from \([^3H]NMS\) displacement experiments and represent the mean (±S.E.M.; n = 3-5) for the negative logarithm of the \(K_i\). The Hill coefficients are given in parentheses. Hill numbers shown are not significantly different from unity (P > .05; unpaired, one-tailed Student's t test).

<table>
<thead>
<tr>
<th>Antagonist</th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
<th>m5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-Trihexyphenidyl</td>
<td>9.43 ± 0.07</td>
<td>8.15 ± 0.04</td>
<td>8.61 ± 0.05</td>
<td>9.08 ± 0.04</td>
<td>8.30 ± 0.05</td>
</tr>
<tr>
<td>(S)-Trihexyphenidyl</td>
<td>6.91 ± 0.05</td>
<td>6.31 ± 0.15</td>
<td>5.89 ± 0.02</td>
<td>6.57 ± 0.08</td>
<td>6.17 ± 0.07</td>
</tr>
<tr>
<td>(R)-Hexbutinol</td>
<td>8.68 ± 0.02</td>
<td>7.68 ± 0.04</td>
<td>8.67 ± 0.06</td>
<td>8.52 ± 0.09</td>
<td>8.26 ± 0.06</td>
</tr>
<tr>
<td>(S)-Hexbutinol</td>
<td>7.58 ± 0.03</td>
<td>7.14 ± 0.05</td>
<td>7.34 ± 0.05</td>
<td>7.71 ± 0.06</td>
<td>7.12 ± 0.07</td>
</tr>
<tr>
<td>Pirenzepine</td>
<td>8.20 ± 0.13</td>
<td>6.65 ± 0.05</td>
<td>6.88 ± 0.06</td>
<td>7.43 ± 0.05</td>
<td>7.05 ± 0.04</td>
</tr>
<tr>
<td>p-F-HHSiD</td>
<td>7.55 ± 0.03</td>
<td>6.88 ± 0.04</td>
<td>7.81 ± 0.02</td>
<td>7.50 ± 0.01</td>
<td>7.03 ± 0.04</td>
</tr>
<tr>
<td>Methoctramine</td>
<td>9.24 ± 0.06</td>
<td>8.42 ± 0.07</td>
<td>9.28 ± 0.02</td>
<td>8.93 ± 0.10</td>
<td>8.98 ± 0.00</td>
</tr>
<tr>
<td>Af-DX 384</td>
<td>7.3 ± 0.11</td>
<td>7.88 ± 0.09</td>
<td>6.67 ± 0.09</td>
<td>7.50 ± 0.04</td>
<td>6.87 ± 0.07</td>
</tr>
<tr>
<td>Himbacine</td>
<td>6.57 ± 0.08</td>
<td>8.00 ± 0.05</td>
<td>7.03 ± 0.03</td>
<td>6.79 ± 0.05</td>
<td>6.31 ± 0.05</td>
</tr>
<tr>
<td>AF-DX 250</td>
<td>7.51 ± 0.08</td>
<td>8.82 ± 0.07</td>
<td>7.18 ± 0.07</td>
<td>8.00 ± 0.08</td>
<td>8.27 ± 0.04</td>
</tr>
<tr>
<td>AQ-RA 741</td>
<td>7.54 ± 0.03</td>
<td>8.37 ± 0.04</td>
<td>7.20 ± 0.04</td>
<td>8.19 ± 0.00</td>
<td>8.68 ± 0.05</td>
</tr>
<tr>
<td>AF-DX 250</td>
<td>6.37 ± 0.02</td>
<td>7.28 ± 0.03</td>
<td>6.18 ± 0.02</td>
<td>6.79 ± 0.04</td>
<td>5.82 ± 0.02</td>
</tr>
</tbody>
</table>

Data taken from Wess et al., 1991.

cals, Natick, MA); (R)- and (S)-trihexyphenidyl hydrochloride (enantiomeric purity >99.9%; Schjelderup et al., 1987; Lambrecht et al., 1988b) (Dr. A. J. Asan, Oslo, Norway); himbacine hydrochloride (Dr. W. C. Taylor, Sydney, Australia); AF-DX 250 (enantiomeric purity >98.9%; Engel et al., 1989), AQ-RA 741 and AF-DX 384 (Dr. Karl Thomae GmbH, Biberach an der Riss, Federal Republic of Germany); p-F-HHSiD and (R)- and (S)-hexbutinol (enantiomeric purity >99.8%; Tacke et al., 1989) were synthesized in our laboratories (p-F-HHSiD was prepared by analogy to the synthesis of HHSiD, Tacke et al., 1985).

Results

[^3H]NMS saturation experiments. In all saturation experiments, the muscarinic antagonist \([^3H]NMS\) showed binding isotherms characterized by Hill numbers not significantly different from unity (fig. 2, table 1). The obtained dissociation constant values (table 1) ranged from 26 pm for m4 to 106 pm for m5 receptors. The \([^3H]NMS\) affinity for the human m1 receptor was similar to that found for the rat m1 receptor (Buckley et al., 1989). Whereas the dissociation constant values determined at m3, m4 and m5 receptors closely resembled those previously reported, we observed a \([^3H]NMS\) affinity for m2 receptors which was 5-fold higher than described by Buckley et al. (1989).

[^3H]NMS displacement experiments. The binding parameters of the tested muscarinic antagonists are given in table 2. Unlike in previous studies (Peralta et al., 1987; Buckley et al., 1989), all compounds displaced \([^3H]NMS\) binding to all five human muscarinic receptors (m1-m5) with simple mass action isotherms (shown for (R)- and (S)-trihexyphenidyl and AQ-RA 741 in fig. 3). None of the Hill coefficients was significantly different from unity (table 2), entirely consistent with the presence of a single population of muscarinic binding sites in each cell line. At all five receptor subtypes, the (R)-enantiomers of trihexyphenidyl and hexbutinol displayed considerably higher affinities than the corresponding (S)-configured iso-

mers (table 2, fig. 4). The stereoselectivity ratios \([K(S)/K(R)]\) for the enantiomers of trihexyphenidyl and hexbutinol ranged from 69 (m2) to 525 (m3) and from 5 (m2) to 21 (m3), respectively (fig. 4). The "M2-selective" antagonist (R)-tri hexyphenidyl (Lambrecht et al., 1988b, Waelbroeck et al., 1988b) exhibited high affinity to both m1 and m4 receptors. (R)-Hexbutinol displayed the same qualitative affinity profile as p-F-HHSiD.

The "M3-selective" agent p-F-HHSiD (Lambrecht et al., 1988b, 1989a,b) showed similar affinities for m1, m3, m4 and m5 receptors, whereas its affinity for m2 receptors was at least 3-fold lower (P < .05) than for the other subtypes. All five "M3-selective" muscarinic antagonists employed (methoctramine, himbacine, AF-DX 384, AQ-RA 741 and AF-DX 250) bound with high affinities to both m2 and m4 receptors, with intermediate affinities to m1 and m3 receptors, and, with the exception of methoctramine, with even lower affinities to m5 receptors (table 2). This feature was most prominent for AQ-RA 741, which discriminated between m2 vs. m5 and m4 vs. m5 receptors by factors of 195 and 129 (P < .05), respectively.

Discussion

The characterization of muscarinic receptor subtypes has been complicated by the presence of multiple muscarinic binding sites in most tissues. To overcome this difficulty, the affinity profiles of a series of selective muscarinic antagonists has been studied by the use of CHO-K1 cell lines stably transformed with the five human muscarinic receptor genes (m1-m5).

It has been suggested that muscarinic receptor subtypes can be characterized based on their stereoselective interaction with chiral antagonists (Lambrecht et al., 1988b, 1989a; Ettze and Figala, 1988; Eveleigh et al., 1989; Feifel et al., 1990). In agree-
The (R)-enantiomers of trihexyphenidyl and hexbutinol displayed considerably higher (up to 525-fold) affinities to all five subtypes than their corresponding (S)-enantiomers. Stereoselectivity ratios \((K(S)/K(R)) \) were lowest at m2 receptors (fig. 4), suggesting that less stringent configurational demands are made by this subtype. Stereoselectivity ratios found for m1, m3, m4 and m5 receptors differed by a factor of less than 4, thus limiting the utility of the employed stereoisomers to subclassify muscarinic receptors. The "M1-selective" antagonist (R)-trihexyphenidyl (Lambrecht et al., 1988b; Waelbroeck et al., 1989) is widely used in both functional and radioligand binding studies to discriminate between M1 and M3 muscarinic receptors by a factor of 3 as indicated by > and proved to be significant (P < .05).

Affinity profiles for M1, M3 and M4 muscarinic receptors according to references: * Lambrecht et al., 1986b; * Feillet et al., 1990; * Lambrecht et al., 1988a; * Dorje et al., 1990 (it should be noted that the pirenzepine derivative shows about 10-fold higher affinity for M1 receptors in the rabbit vas deferens than for rat cortical M1 receptors (Lazareno and Roberts, 1989)); * Lambrecht et al., 1988b; * Eberlein et al., 1989.

The "selective" muscarinic antagonist 4-DAMP (Barlow et al., 1976; Doods et al., 1987) is widely used in both functional and radioligand binding studies to discriminate between M1 and M3 vs. M2 receptors. In our study, this compound exhibited similar high affinities for m1, m3, m4 and m5 but up to 7-fold lower affinity for m2 receptors. This binding profile is shared by the pirenzepine derivative UH-AH 37 (Wess et al., 1991) and sila-hexocyclium (Buckley et al., 1989).

Methoctramine (Melchiorre et al., 1987; Waelbroeck et al., 1989a), himbacine (Gilani and Cobbin, 1986; Lazareno and Roberts, 1989), AF-DX 250 [the (+)-enantiomer of AF-DX 116; Engel et al., 1989], AF-DX 384 and AQ-RA 741 (Eberlein et al., 1989) are classified as "M2-selective" antagonists. We found, however, that all five antagonists possess similarly high affinities to both m2 and m4 receptors (table 2). Nevertheless,
methoctramine, himbacine and the derivatives of AF-DX 116 represent valuable tools to distinguish between m2 and m4 receptors vs. all other subtypes. For example, all five compounds clearly discriminate between m2 (m4) and m3 receptors with affinity differences ranging from 9- (himbacine) to 16-fold (methoctramine). With the exception of himbacine, which showed about a 10-fold higher affinity for m2 (m4) than for m1 receptors, the ability of these compounds to distinguish between m2 (m4) receptors and m1 receptors was less pronounced. Most remarkably, himbacine, AF-DX 384, AQ-RA 741 and AF-DX 250 bound to m5 receptors with substantially reduced affinities compared with all other subtypes (table 2). AQ-RA 741, for instance, displayed 195- and 129-fold lower affinities for m5 than for m2 and m4 receptors, respectively. The close similarity between the selectivity profiles of himbacine and the three AF-DX 116 derivatives is reflected in the chemical structures of these agents. All four antagonists are composed of a tricyclic ring system linked to a substituted piperidine ring by a short side chain (fig. 1).

Our data indicate that muscarinic antagonists can be grouped based on their receptor-selectivity profiles. The most striking examples are the group of antagonists displaying high affinities for m1 and m4 receptors, and the group of compounds exhibiting preferential binding for m2 and m4 receptors (tables 2 and 3). One might speculate that the differential binding selectivities of each group of antagonists are dependent on distinct receptor domains. For instance, residues that are identical between the m1 and m4 receptors may be important in the binding of m1/m4 selective compounds, whereas regions conserved among m2 and m4 receptors may be essential in the binding of m2/m4 selective antagonists. Sequence analysis of the receptors provides numerous candidate regions. To determine the potential importance of these domains for subtype-selective antagonist binding, we are presently preparing chimeric muscarinic receptors. It is hoped that these studies will allow a precise definition of the multiple structural determinants that apparently contribute to subtype-selective drug interaction.

Although none of the tested antagonists showed a marked selectivity for one subtype over all other subtypes, distinct selectivity profiles are apparent. In general, these profiles are consistent with the known selectivities of antagonists for muscarinic receptors that lead to the M1/M2/M3 classification (table 3). However, the present data also highlight the limitations of this pharmacologic scheme, demonstrating the necessity to determine antagonist affinities to all five muscarinic receptor subtypes. Whereas the antagonist affinities determined for cloned m2 and m3 receptors (this study) generally correlated well with those for the pharmacologically defined M2 and M3 subtypes, the assignment of the M1 receptor is more problematic. The antagonist binding properties of both m1 and m4 receptor proteins were similar to those of the putative M1 receptors. Thus, the identification of muscarinic receptors with M1-like antagonist binding properties in a given tissue may be indicative of either m1 or m4 or a mixture of these two receptor subtypes.

Whereas most antagonists bound to m1 and m4 receptors with similar affinities, two compounds, pirenzepine and himbacine, are able to discriminate between these two subtypes. Pirenzepine showed 6-fold higher affinity for m1 than for m4 receptors (Wess et al., 1991), whereas himbacine exhibited 10-fold selectivity for m4 receptors. Given the relatively low selectivity of pirenzepine, himbacine appears to be the most valuable tool to distinguish between m1 and m4 receptors.

The fact that the antagonists currently used to classify muscarinic receptors lack a clear subtype-selectivity may explain that only three major subtypes (putative M1-M3) have been identified in classic pharmacologic studies. In this study, we have shown that all five muscarinic receptors exhibit unique antagonist binding profiles. Therefore, the judicious use of a variety of selected antagonists should eventually allow the pharmacologic identification of all five muscarinic receptor subtypes.

In conclusion, our study has further substantiated the utility of cloned receptors stably expressed in mammalian cell lines to unambiguously determine the selectivity profile of muscarinic antagonists. Given the considerable therapeutic potential of subtype-selective antimuscarinic agents (Wess et al., 1990), this approach should be extremely useful for the future development of novel antimuscarinic drugs.

Acknowledgments

We are grateful to Dr. A. J. Assen (Oslo, Norway), Dr. W. C. Taylor (Sydney, Australia) and Dr. B. Wetzl (Dr. Karl Thomae GmbH, Biberach, Federal Republic of Germany) for the generous gift of drugs. We also thank Mrs. U. Hermanni and Mrs. M. Wagner-Roder for help in the preparation of the figures.

References

Akihisa et al., 1988.

Buckley et al., 1990.

Bonner et al., 1988.

Dorje et al., 1990.

Engel et al., 1989.

Eveling et al., 1989.

Fehr et al., 1989.

Wagner-Roder et al., 1989.

Wagner-Roder et al., 1990.

References

Feurdean, R., Wagnér-Roder, M., Strohmann, C., Tacke, R., Warlbrock, M., Christoph, J., Mutschler, E. and Lambeck, G.: Stereoselective

Send reprint requests to: Frank Dörje, Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 3D-02, Bethesda, MD 20892.