Processing peptidase of Neurospora mitochondria
Two-step cleavage of imported ATPase subunit 9

Bernd SCHMIDT, Elmar WACHTER, Walter SEBALD, and Walter NEUPERT
Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Ludwig-Maximilians-Universität München; and
Gesellschaft für Biotechnologische Forschung mbH, Braunschweig

Subunit 9 (dicyclohexylcarbodiimide binding protein, 'proteolipid') of the mitochondrial F, F-O-ATPase is a
nuclearly coded protein in Neurospora crassa. It is synthesized on free cytoplasmic ribosomes as a larger precursor
with an NH2-terminal peptide extension. The peptide extension is cleaved off after transport of the protein into
the mitochondria. A processing activity referred to as processing peptidase that cleaves the precursor to subunit
9 and other mitochondrial precursors is described and characterized using a cell-free system. Precursor synthesized
in vivo was incubated with extracts of mitochondria. Processing peptidase required Mn2+ for its activity.
Localization studies suggested that it is a soluble component of the mitochondrial matrix. The precursor was
cleaved in two sequential steps via an intermediate-sized polypeptide. The intermediate form in the processing of
subunit 9 was also seen in vivo and upon import of the precursor into isolated mitochondria in vitro. The two
cleavage sites in the precursor molecule were determined. The data indicate that: (a) the correct NH2-terminus
of the mature protein was generated, (b) the NH2-terminal amino acid of the intermediate-sized polypeptide is
isoleucine in position -31. The cleavage sites show similarity of primary structure. It is concluded that processing
peptidase removes the peptide extension from the precursor to subunit 9 (and probably other precursors) after
translocation of these polypeptides (or the NH2-terminal part of these polypeptides) into the matrix space of
mitochondria.

The majority of mitochondrial proteins are encoded by
nuclear genes [1]. They are synthesized on free cytoplasmic
ribosomes as water-soluble species, i.e. precursor proteins [2].
In many cases these precursor forms carry NH2-terminal pep­tide extensions not present in the mature proteins [3]. The free
precursors are then selectively transported to their functional
sites within the mitochondria. Transport is accompanied by
one or more processing steps which may include covalent
modifications of precursor proteins and/or proteolytic
removal of peptide extensions. The assembly of cytochromes c
and c1 requires the covalent attachment of the heme group
[4–6]. In a few cases proteolytic processing takes place in two
steps, as has been shown for cytochrome c1 in Neurospora
and yeast and for cytochrome b2 in yeast [5, 6].

The mitochondrial enzymes involved in processing have
not been extensively characterized. Proteolytic activities have
been detected in extracts of mitochondria from different
sources [7–9], which can remove the NH2-terminal peptide
extensions or at least part of them from precursor proteins.
A partial purification of this activity from yeast mitochondria
has been achieved [10]. The processing activities investigated
so far have several features in common: they appear to be
soluble components of the mitochondrial matrix and they
require divalent metal ions such as Mn2+ or Zn2+ for full
activity. The processing activity responsible for the second
cleavage of cytochromes c1 and b2 is thought to reside on the
outer face of the inner mitochondrial membrane [6]. This
latter activity does not require divalent metal ions, but a
sub mitochondrial processing assay has not yet been estab­lished.

We have characterized the processing activity referred to as
processing peptidase with cleaves the precursor to Neurospora
ATPase subunit 9 ('proteolipid', dicyclohexylcarbodiimide
binding protein, Su 9). The precursor (pre Su 9) has an M, of
16400 whereas the mature protein has an M, of 10 500 [11].
We have used a cell-free translation system as a source for the
precursor, and extracts from isolated Neurospora mito­chondria as a source of processing peptidase. The activity
depends on the presence of divalent metal ions and can be
inhibited by chelating agents. It appears to be located in the
mitochondrial matrix and cleaves pre Su 9 in two steps via an
intermediate-sized polypeptide. The two cleavage sites show
striking similarities in their primary structure. It is suggested
that the intermediate-sized polypeptide represents a true inter­mediate in the assembly pathway of Su 9.

MATERIALS AND METHODS

Growth of Neurospora and preparation of mitochondria

Neurospora crassa wild-type 74A was grown and metabolically
labeled as described [12]. Mitochondria were isolated
after disrupting cells by grinding with sand according to
published procedures [12]. The isolation medium was 0.25 M
succrose, 1 mM EDTA, 30 mM Tris/HCl, pH 7.5, 1 mM
phenylmethylsulfonyl fluoride.

Subfractionation of mitochondria

For preparation of mitochondrial extracts, mitochondria
were suspended at a concentration of 5 mg mitochondrial
Synthesis of precursor proteins

Cell-free synthesis of Neurospora precursor proteins in rabbit reticulocyte lysates was carried out as before [13]. Post-ribosomal supernatants of lysates were desalted by centrifuging through Sephadex G-25 equilibrated with 30 mM Tris/HCl, pH 8.2 and stored in aliquots of 100 μl at -75°C.

For sequencing experiments the precursor to Su 9 was synthesized \textit{in vitro} in a total volume of 20-60 μl of translation mixture (reticulocyte lysates, Amersham Buchler, Braunschweig, FRG) in the presence of 1.2 mCi/ml [35S]methionine (1250 Ci/mmol, Amersham) or 1 mCi/ml [3H]leucine (110 Ci/mmol, NEN Chem., Boston, MA, USA). The lysates were programmed with hybridization-selected mRNA specific for Su 9 [14].

Transfer in vivo of subunit 9

Neurospora cells were grown for 14 h as described above. An aliquot of the culture containing 30 mg of cells was removed and cooled to 8°C. Cells were labeled with 5 μCi/ml [3H]leucine (50 Ci/mmol, NEN Chem., Boston, MA) for 3 min, and the assay was divided into three portions. The first portion was immediately precipitated by adding trichloroacetic acid to a final concentration of 0.3 M. The remaining two portions were subjected to another incubation for 3 min at 8°C in the presence of 0.1 mg/ml cycloheximide or cycloheximide and EDTA/1,10-phenanthroline (5 mM/1 mM, respectively). Then these portions were also precipitated with trichloroacetic acid. The samples were kept at 0°C for 30 min, washed with 5 ml of acetone and dissolved in 1 ml of 1% (w/v) sodium dodecylsulfate, 50 mM NaP, pH 8.0 by boiling for 5 min. After dilution with Triton containing buffer (1% w/v Triton X-100, 0.3 M NaCl, 5 mM EDTA, 10 mM Tris/HCl, pH 7.5) the samples were immunoprecipitated for Su 9 as described previously [11].

Isolation of proteins and immunoprecipitation

Cytosolic proteinase inhibitor fraction was prepared according to the following protocol: 150 g of freshly harvested Neurospora cells were washed in 6 l of ice-cold water. Cells were homogenized in a Waring blender after adding 450 ml of water. The slurry was made 5% (v/v) in perchloric acid and incubated for 10 min at 65°C. After cooling to room temperature, 5 M KOH was added until neutral pH was reached. The mixture was centrifuged for 10 min at 12000 x g. The supernatant was subjected to fractionation by ammonium sulphate precipitation. Material that precipitated between 25% and 75% saturation was collected and dissolved in water. After a clarifying spin (20 min at 29000 x g) the solution was vigorously stirred for 5 min with an equal volume of chloroform. The aqueous phase was recovered by centrifugation and lyophilized. The dried material was redissolved in 10 ml of water and subjected to gel filtration on a Sephadex G-25 column (25 x 350 mm) equilibrated with water. The flow rate was 120 ml/h. Turbid fractions appearing in the void volume were pooled, lyophilized and redissolved in water at a protein concentration of 1 mg/ml and stored at -20°C. The yield was 250 μg/g of hyphae. This fraction was able to inhibit mitochondria associated proteolytic activity measured with azocoll as a substrate by 90% at a ratio of 140 μg/mg mitochondrial protein.

Isolation of proteins, preparations of antibodies and immunoprecipitation of Su 9 [11, 15], Fe-ATPase subunit β [16], Fe-S protein [5], cytochrome c1 [5], porin [17], and citrate synthase [18] were performed as described earlier.

Determination of enzymatic activities

Fumarase and succinate-cytochrome-c-reductase activities were determined according to [19, 20]. Adenylate kinase was assayed in a mixture composed of 1 ml of 130 mM KCl, 6 mM MgSO4, 100 mM Tris/HCl, pH 7.5, 20 μl of 0.1 M NADH, 5 μl of 0.1 M ATP, 10 μl of 50 mM phosphoenol pyruvate, 5 μl of 1 mM rotenone, 5 μl of 1.5 mM oligomycin, 10 μl of a mixture of pyruvate kinase and lactate dehydrogenase (20 U/ml each), 200 μl of the sample. The reaction was started by adding 5 μl of 0.15 M AMP and followed by the decrease of absorbance at 366 nm. The samples for fumarase and adenylate kinase assays were adjusted to 2.5% (w/v) Genapol X-100 (Hoechst AG, Frankfurt, FRG) immediately before starting the reaction. The processing activity was determined as follows: 100 μl of desalted reticulocyte lysate containing radiolabeled precursor proteins were mixed with 100-400 μl containing the sample to be assayed and 30 mM Tris/HCl, pH 8.2. Then 10 μl of 10% (w/v) Triton X-100, 1 μl of 0.1 M phenylmethylsulfonyl fluoride (in ethanol) and 2 μl of 0.1 M MnCl2 were added per 100 μl of assay volume. The mixture was incubated for 1 h at 25°C. The reaction was stopped by adding 10 μl of 3 M NaCl, 50 mM EDTA, pH 8.2 per 100 μl of volume. The processing products were analyzed by immunoprecipitation, dodecylsulfate polyacrylamide electrophoresis and fluorography (see below).

Analytical procedures

Protein was determined according to Bradford [21]. Electrophoresis in 16% polyacrylamide gels was carried out according to Laemmli [22]. Fluorography and densitometry of films were performed as previously [23, 24]. Isolation of
proteins for Edman degradation was carried out by immunoprecipitation and subsequent electrophoresis. After fluorography the bands of interest were cut out, washed in water and extracted with 600 µl of 1% (w/v) SDS, 30 mM NaPi, pH 8.2 at 57°C overnight. The eluted material was subjected to automated solid phase Edman degradation [25]. Immunoreplica analysis using lactoperoxidase linked to sheep anti-rabbit-antibodies was performed as described in [26].

RESULTS

Processing peptidase cleaves the precursor to ATPase subunit 9 in two steps

Radiolabeled reticulocyte lysates containing pre Su 9 were incubated with a fixed amount of an extract prepared from Neurospora mitochondria. The processing products were analyzed by immunoprecipitating the samples with antibodies against Su 9. The time course of processing over a period of 1.5 h is shown in Fig. 1 A. The appearance of mature-sized Su 9 (Fig. 1A, lane 10) is preceded by the formation of a band which has an M_r of 13000. This intermediate was also observed, when intact Neurospora mitochondria were incubated with radiolabeled reticulocyte lysates in the presence of chelating agents to inhibit processing peptidase [16]. The processing activity observed in this experiment is clearly contributed by the mitochondrial extract, because upon incubation without extract there was no detectable processing (Fig. 1 A, lane 9). As mentioned earlier [11], the antibody against Su 9 does not precipitate the precursor very efficiently, apparently because the large additional sequence consisting of 66 essentially hydrophilic amino acids [14] shields or alters antibody binding sites on the 81 amino acid sequence corresponding to the mature protein. The time course shown in Fig. 1 A was quantified by densitometry of exposed films (Fig. 1 B) and compared to a dose-response curve that was processed in the same way (Fig. 1 C). The last point in the dose-response curve showed a band pattern comparable to that of lane 5 in Fig. 1 A. Both curves gave essentially a linear response up to a point where approximately equal amounts of intermediate-sized and mature-sized Su 9 were produced. So it is possible to regard them a standard curves of enzymatic activity to which any given activity can be compared and quantified irrespective of whether one calculates the ratio m/i (m = amount of mature Su 9, i = amount of intermediate) or the sum of processing products m + i.

Processing peptidase activity depends on the presence of Mn²⁺

Processing activities in extracts of mitochondria were shown to depend on the presence of divalent metal ions such as Zn²⁺ or Mn²⁺ [7, 8]. This is also true for Neurospora processing peptidase (Fig. 2, lane 2 versus lane 3). Accordingly, processing peptidase is inhibited by chelating agents such as phenanthrolines and EDTA (Fig. 2, lanes 4—6). This experiment also shows that not only the first step is metal dependent (Fig. 2, lanes 4, 6), but also the second step (Fig. 2, lane 2). If the second step does not require metal ions, one would except to see only mature Su 9 in Fig. 2, lane 2. The Mn²⁺-concentration in this sample was suboptimal.

The inhibition of processing peptidase by chelating agents was also observed in vivo. Neurospora cells were pulse labeled with [³H]leucine and subjected to a chase period in the presence and absence of EDTA and 1,10-phenanthroline. As shown in Fig. 3, the chelating agents inhibited the production of mature Su 9 and conserved the band pattern obtained during the pulse showing precursor, intermediate, and mature Su 9. The conditions employed were not such as to inhibit transport of proteins into mitochondria. Transport of ADP/
ATP carrier, a protein whose precursor has no cleavable peptide extension [27] was not inhibited (data not shown), which indicates that transfer of proteins into mitochondria is not unspecifically affected. This result further suggests that intermediate sized Su 9 is not an in vitro artifact.

Processing peptidase could not be inhibited by N-ethylmaleimide, p-hydroxymercuribenzoate, benzamidine, phenylmethylsulfonyl fluoride, 1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), N-tosyl-lysine chloromethyl ketone (TLCK), apro tin, bestatin or EGTA (data not shown). This is in agreement with the behaviour of mitochondrial processing enzymes described by others [8, 10]. Another characteristic of the peptidase is that the activity in this assay is stimulated about three fold by Triton X-100 (Fig. 4) for this observation might be that the detergent mimics a membranous environment for the precursor thus facilitating the action of processing peptidase. It was suggested previously [16] that pre Su 9 embedded in the inner membrane of mitochondria is the substrate for processing peptidase in intact mitochondria.
Processing peptidase is water-soluble. Mitochondria were sonicated and centrifuged to separate membranes from the water-soluble fraction. The distribution of the matrix marker citrate synthase (A) and the outer membrane marker porin (B) was monitored by immunoreplica analysis. Lanes 1–3, 10, 5, 2.5 μg, respectively, of untreated mitochondria; lane 4, the supernatant fraction, corresponding to 10 μg of untreated mitochondria; lane 5, membrane fraction, corresponding to 10 μg of untreated mitochondria. (C) The fractions were assayed for processing peptidase activity in aliquots of desalted lysate containing radiolabeled precursors (100 μl each) in a final volume of 225 μl for 1 h. The samples were immunoprecipitated for F1-ATPase subunit β (F1β), cytochrome c1, and the Fe-S protein of the bc1-complex (ubiquinol-cytochrome c-reductase) (Fig. 6). The precursor to F1β was processed to the mature-sized polypeptide. The precursor to cytochrome c1 was processed to an intermediate-sized band. This intermediate was observed in intact cells and in whole mitochondria in vitro [5]. Further processing has been shown to require the covalent addition of a heme group and the action of a protease different from the metal-dependent matrix protease [6]. The precursor to the Fe-S protein was not processed by processing peptidase extracted from mitochondria. The reason for this is not known. One possibility is that this precursor is easily denatured under the conditions used, so that is no longer a substrate for processing peptidase. It is equally possible that a prerequisite for the proteolytic processing is the addition of Fe which might not work in our system, or that a specific membrane precursor orientation is required which is not available in our assay system.

Processing peptidase acts differently on various precursor proteins

The processing of precursor proteins other than pre Su 9 was investigated in the standard processing assay. Radiolabeled reticulocyte lysates were incubated with mitochondrial extract for 1 h. The samples were immunoprecipitated for F1-ATPase subunit β (F1β), cytochrome c1, and the Fe-S protein of the bc1-complex (ubiquinol-cytochrome c-reductase) (Fig. 6). The precursor to F1β was processed to the mature-sized polypeptide. The precursor to cytochrome c1 was processed to an intermediate-sized band. This intermediate was observed in intact cells and in whole mitochondria in vitro [5]. Further processing has been shown to require the covalent addition of a heme group and the action of a protease different from the metal-dependent matrix protease [6]. The precursor to the Fe-S protein was not processed by processing peptidase extracted from mitochondria. The reason for this is not known. One possibility is that this precursor is easily denatured under the conditions used, so that is no longer a substrate for processing peptidase. It is equally possible that a prerequisite for the proteolytic processing is the addition of Fe which might not work in our system, or that a specific membrane precursor orientation is required which is not available in our assay system.

Fig. 5. Processing peptidase is water-soluble. Mitochondria were sonicated and centrifuged to separate membranes from the water-soluble fraction. The distribution of the matrix marker citrate synthase (A) and the outer membrane marker porin (B) was monitored by immunoreplica analysis. Lanes 1–3, 10, 5, 2.5 μg, respectively, of untreated mitochondria; lane 4, the supernatant fraction, corresponding to 10 μg of untreated mitochondria; lane 5, membrane fraction, corresponding to 10 μg of untreated mitochondria. (C) The fractions were assayed for processing peptidase activity in aliquots of desalted lysate containing radiolabeled precursors (100 μl each) in a final volume of 225 μl for 1 h. The samples were immunoprecipitated for F1-ATPase subunit β (F1β), cytochrome c1, and the Fe-S protein of the bc1-complex (ubiquinol-cytochrome c-reductase) (Fig. 6). The precursor to F1β was processed to the mature-sized polypeptide. The precursor to cytochrome c1 was processed to an intermediate-sized band. This intermediate was observed in intact cells and in whole mitochondria in vitro [5]. Further processing has been shown to require the covalent addition of a heme group and the action of a protease different from the metal-dependent matrix protease [6]. The precursor to the Fe-S protein was not processed by processing peptidase extracted from mitochondria. The reason for this is not known. One possibility is that this precursor is easily denatured under the conditions used, so that is no longer a substrate for processing peptidase. It is equally possible that a prerequisite for the proteolytic processing is the addition of Fe which might not work in our system, or that a specific membrane precursor orientation is required which is not available in our assay system.

Fig. 6. Processing of various mitochondrial precursor proteins. Aliquots of desalted lysate containing radiolabeled precursors (100 μl each) were incubated with 20 μl of mitochondrial extract for 1 h in a final volume of 225 μl. The samples were immunoprecipitated for ATPase subunit β, cytochrome c1, and the Fe/S protein. The precursors were immunoprecipitated from untreated lysates and the respective mature proteins from mitochondria labeled in vivo. After electrophoresis, the bands were visualized by fluorography. Lanes 1–3, ATPase subunit β; lanes 4–6, cytochrome c1; lanes 7–9, Fe/S protein; lanes 1, 4, 7, precursors; lanes 2, 5, 8, processing products; lanes 3, 6, 9, mature proteins; p, precursor; i, intermediate; m, mature
Processing peptidase cleaves the precursor to ATPase subunit 9 at the correct site

Molecular cloning made possible the determination of the amino acid sequence of pre Su 9 \[14\]. To determine the cleavage sites of processing peptidase in the pre Su 9 molecule, we carried out sequencing experiments with mature-sized and intermediate-sized Su 9. The precursor was synthesized in reticulocyte lysates programmed with hybridization-selected mRNA \[14\] in the presence of labeled methionine. After processing with a matrix fraction obtained from digitonin-treated mitochondria, the processing products were immunoprecipitated, and subjected to electrophoresis. Mature and intermediate forms of Su 9 were eluted from the gel and subjected to automated solid phase Edman degradation. Fig. 7A shows the result of the sequencing of the mature-sized protein. There are two methionine peaks at position 9 and 18 as in the mature protein and an additional peak at position 14 coming from a lysine residue. Su 9 is coupled via lysine residues to the solid phase, so each lysine must also give a signal \[25\]. This result clearly indicates that the correct amino terminus is produced by processing peptidase. When the intermediate was sequenced, one lysine and one methionine peak was observed in the 11th and 15th cycle, respectively. In this experiment, extensive washing of the solid phase after binding of intermediate Su 9 was omitted. Thus, un especifically absorbed material was eluted during the first Edman step resulting in a peak that does not tail. There is only one possibility that this pattern fits into the sequence of pre Su 9: the NH\textsubscript{2}-terminal of the intermediate is isoleucine in position -31 (Fig. 7B, upper part). To confirm this interpretation, leucine-labeled intermediate was sequenced (Fig. 7B, lower part). This intermediate was obtained by carrying out the processing assay with precursor that had been incubated with antibodies to Su 9. Under these conditions the precursor was quantitatively processed only to the intermediate, and no mature Su 9 was observed (data not shown). Two leucine peaks were detected in the 7th and 10th cycle. The sequence -Leu-Xaa-Xaa-Leu- occurs only once in the whole precursor molecule between the positions leucine-25 and leucine-21. This again strongly suggests that isoleucine-31 is the NH\textsubscript{2}-terminal amino acid of the intermediate.

Table 1 summarizes these results. The amino acid sequences around the cleavage sites of pre Su 9 are presented. They show striking similarities in that they appear to follow the rule (concerning the properties of amino acids): hydrophobic-polar-Lys-Arg-small-bulky hydrophobic. Such a sequence is also found in the precursor to yeast cytochrome c peroxidase \[29\] that seems to indicate a putative first cleavage site. It was suggested \[6\] that this precursor is cleaved in two steps during its assembly, the first step being catalyzed by the matrix protease. It should be mentioned, however, that the cleavage site in this protein has not been determined. Despite the remarkable homology between these sequences, it is not known whether they represent recognition sites for processing peptidase.

DISCUSSION

The processing peptidase present in extracts of mitochondria cleaves the precursor to ATPase subunit 9 in a specific manner, so that the correct NH\textsubscript{2}-terminus of the mature protein is produced. Processing peptidase is a metal-dependent enzyme located in the mitochondrial matrix. Proteolytic processing activities from different sources have been

Table 1. Comparison of the cleavage sites

The amino acid sequences around the cleavage sites in the precursor to Su 9 (A, first cleavage site; B, second cleavage site) are denoted in the three letter code. The sequences given start with (A) alanine-38 and (B) glutamine-7. (C) The amino acid sequence around a putative cleavage site in the precursor to yeast cytochrome c peroxidase \[29\] starting with arginine-56 is presented. The cleavage sites are indicated by an arrow

<table>
<thead>
<tr>
<th></th>
<th>Ala-Ala-Val-Ser-Lys-Arg-Thr-Ile</th>
<th>Glu-Glu-Thr-Lys-Arg-Ala-Thr-Ser-Ser-Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ala-Glu-Val-Ser-Lys-Arg-Thr-Ile-Glu-Thr-Gly</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Glu-Glu-Thr-Lys-Arg-Ala-Thr-Ser-Ser-Glu</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Arg-Thr-Ala-His-Lys-Arg-Ser-Leu-Tyr-Leu-Phe</td>
<td></td>
</tr>
</tbody>
</table>
described [7–10, 30, 31]. These activities show a high degree of homology in function and properties when compared to Neurospora processing peptidase. Processing peptidase appears to be responsible for the cleavage of a number of precursor proteins that are destined for different submitochondrial compartments. It is not known, however, how many different peptidases in the matrix of mitochondria are required for the processing of the probably several hundred different precursor proteins. Interestingly, yeast mitochondria contain a processing activity that cleaves Neurospora pre Su 9 correctly [15], although the homologous protein in yeast is made inside the mitochondria [32]. This implies that there may be only a limited number of processing peptidases or even only one such enzyme. This would be similar to the situation with secreted proteins in the endoplasmic reticulum and in bacteria [33, 34].

The matrix location of processing peptidase implies that pre Su 9 has to cross the inner mitochondrial membrane partially during its assembly to expose the NH₂-terminal extra sequence to the matrix. The rest of the precursor molecule is some evidence that the kinetic intermediate during processing of pre Su 9. A two-step processing of pre Su 9 was expected since precursor first cleavage. The probably under normal conditions the rate-limiting step is the pathway of Su 9. No additional processing steps between mature Su 9 have been observed. However, additional sequence between intermediate and mature forms which is exceptionally large. For the two-step processing is not known.

There are several lines of evidence that pre Su 9 is cleaved in two steps by the same enzyme: (a) both processing steps take place in the same subcompartment of mitochondria, i.e. the matrix; (b) both steps show the same sensitivity to inhibitors; (c) the cleavage sites are very similar to each other. Other precursor proteins that are cleaved in two steps appear to require two different proteolytic processing enzymes from probably different submitochondrial locations. This has been shown for cytochrome c [5, 6] in Neurospora and yeast and for cytochrome b₂ [6, 10] in yeast. It is also probably true for yeast cytochrome c peroxidase [6]. The submitochondrial location of the second processing enzyme is not clear, because an assay in a mitochondria-free system is not yet available.

We are grateful to Rika Zitmann for excellent technical assistance and Dr M. A. Harmey for help in preparing the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft, grant Ne 101/19 and the Fonds der Chemischen Industrie.

REFERENCES

B. Schmidt, E. Wachter, and W. Neupert, Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Ludwig-Maximilians-Universität München, Goethestraße 33, D-8000 München 2, Federal Republic of Germany

W. Sebald, Gesellschaft für Biotechnologische Forschung mbH, Mascheroderweg 1, D-3300 Braunschweig-Stöckheim, Federal Republic of Germany