Handlungsüberwachung bei Schizophrenien und Zykloiden Psychosen – Ein Vergleich der diagnostischen Untergruppen anhand der „error-related negativity“ (ERN)

Inaugural – Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius-Maximilians-Universität Würzburg

vorgelegt von

Julia Caterine Marschelke
aus Kassel

Hannover, März 2011
Referent: Prof. Dr. med. Andreas Fallgatter
Korreferentin: Prof. Dr. med. Claudia Sommer

Dekan: Prof. Dr. Matthias Frosch

Tag der mündlichen Prüfung:
13.04.2012

Die Promovendin ist Ärztin
INHALTSVERZEICHNIS

1 EINLEITUNG UND ÜBERBLICK .. 1

2 THEORETISCHE GRUNDLAGEN .. 3

2.1 Schizophrenien und Zykloide Psychosen – eine Zusammenfassung .. 3
 2.1.1 Allgemeine Grundlagen zur Schizophrenie 3
 2.1.2 Die Leonhard-Klassifikation der endogenen Psychosen 5
 2.1.2.1 Die klassische Schizophrenie 6
 2.1.2.2 Die Zykloiden Psychosen 7

2.2 Elektrophysiologische Grundlagen ... 8
 2.2.1 Das Elektroenzephalogramm ... 8
 2.2.2 Ereigniskorrelierte Potentiale (EKPs) 10

2.3 Die „error-related negativity“ (ERN) ... 12
 2.3.1 Testverfahren ... 12
 2.3.2 Elektrophysiologische Eigenschaften der ERN 13
 2.3.3 Interpretationsansätze zur ERN ... 14
 2.3.3.1 „Error-detection“-Theorie .. 14
 2.3.3.2 „Conflict-monitoring“-Theorie 14
 2.3.3.3 „Reinforcement-learning“-Theorie 15

2.4 Der anteriore cinguläre Kortex (ACC) ... 17
 2.4.1 Lokalisation und Anatomie .. 17
 2.4.2 Der ACC und die ERN ... 17
 2.4.3 Der ACC, die ERN und weitere Hirnstrukturen 19
 2.4.4 Strukturelle Aspekte des ACC ... 21
2.5 Weitere Fehlerpotentiale .. 23
 2.5.1 Die „error-positivity“ (Pe) ... 23
 2.5.1.1 Elektrophysiologische und neuroanatomische Aspekte
der Pe ... 23
 2.5.1.2 Interpretationsansätze zur Pe 24
 2.5.2 Die „correct-response negativity“ (CRN) 26

2.6 Posterror-slowing .. 27
 2.6.1 ERN und posterror-slowing .. 29

2.7 Der ACC und elektrophysiologische Veränderungen bei
Schizophrenien .. 29
 2.7.1 Grundlagen zur Hypofrontalität 29
 2.7.2 Hypofrontalität im ACC .. 30
 2.7.3 Die ERN im Rahmen von Schizophrenien 33
 2.7.4 „Error-positivity“ und „correct-response negativity“ bei
Schizophrenien .. 35
 2.7.5 Posterror-slowing bei schizophrenen Erkrankungen 36
 2.7.6 Neue Aspekte der Hypofrontalität 37

2.8 Zielsetzung dieser Arbeit ... 39

3 MATERIAL UND METHODEN ... 41

3.1 Elektrophysiologische Untersuchung 41
 3.1.1 Untersuchungsbedingungen ... 41
 3.1.2 Paradigma ... 41
 3.1.3 Elektroenzephalogramm .. 43
 3.1.4 EEG-Auswertung ... 44

3.2 Stichprobenbeschreibung ... 45

3.3 Stichprobencharakteristika ... 46

3.4 Statistische Auswertung der Daten 54
4 ERGEBNISSE ... 57
 4.1 Ergebnisse der Verhaltensdaten ... 57
 4.2 Ergebnisse der ERN-Daten ... 60
 4.3 Pe-Auswertung .. 66
 4.4 Latenzen .. 69
 4.5 Kovarianz-Analysen ... 70
 4.6 Korrelationen ... 71
 4.6.1 Korrelationen elektrophysiologischer Daten mit den Verhaltensdaten 71
 4.6.2 Korrelationen elektrophysiologischer Daten mit der Medikation 72
 4.6.3 Korrelationen elektrophysiologischer Daten mit Angaben zur Krankheitsdauer 74
 4.7 Zusammenfassung der Ergebnisse .. 75
 4.7.1 Verhaltensdaten ... 75
 4.7.2 ERN ... 75
 4.7.3 Pe .. 76
 4.7.4 Kovarianzen und Korrelationen ... 76

5 DISKUSSION ... 78
 5.1 Diskussion der Verhaltensdaten ... 79
 5.2 Diskussion der ERN-Daten ... 81
 5.2.1 Allgemeine Aspekte der ERN-Daten .. 81
 5.2.2 ERN-Daten – Ein Vergleich von klassischen Schizophrenien und Zykliden Psychosen .. 83
 5.2.3 Die ERN-Daten im Licht der theoretischen Grundlagen .. 84
 5.2.4 Die ERN und Verhaltensdaten ... 87
5.2.5 Einfluss der Medikation ... 90
 5.2.5.1 Antipsychotische Therapie .. 90
 5.2.5.2 Antidepressive Therapie ... 96

5.3 Diskussion der Pe-Daten ... 101
 5.3.1 Allgemeine Aspekte der Pe-Daten ... 101
 5.3.2 Einfluss von Alter und Fehlerrate ... 101
 5.3.3 Bedeutung einer reduzierten Pe-Amplitude im Rahmen
 von Schizophrenien und Zykloid Psychosen 104
 5.3.4 Pe und posterior-slowing ... 106
 5.3.5 Frühe und späte Pe ... 108

5.4 Diskussion der CRN .. 109

5.5 Kritikpunkte dieser Arbeit ... 110

6 Zusammenfassung und Ausblick ... 113

7 Literaturverzeichnis .. 116

8 Abbildungsverzeichnis .. 128

9 Tabelleverzeichnis ... 129

10 Abkürzungsverzeichnis ... 130
1 EINLEITUNG UND ÜBERBLICK

In der vorliegenden Arbeit sollen nun die eben beschriebenen Einschränkungen bei Patienten mit Erkrankungen aus dem schizophrenen Formenkreis mittels
EINLEITUNG UND ÜBERBLICK

Zur Verfeinerung der klinischen Differenzierung werden vermehrt auch bildgebende und andere diagnostische Hilfsmittel eingesetzt (Strik et al., 1996, Ehlis et al., 2005). Mit der „error-related negativity“ und weiteren elektrophysiologischen Parametern von Interesse werden durch die vorliegende Untersuchung die bisherigen Ergebnisse auf diesem Gebiet ergänzt.

2 THEORETISCHE GRUNDLAGEN

2.1 Schizophrenien und Zykloide Psychosen – eine Zusammenfassung

2.1.1 Allgemeine Grundlagen zur Schizophrenie

Trotz einer Punktprävalenz (Häufigkeit zu einem bestimmten Zeitpunkt) von ungefähr 0,3 %, einer Lebenszeitprävalenz (Wahrscheinlichkeit, mindestens einmal im Leben an einer Schizophrenie zu erkranken) von ca. 1 % und einer jährlichen Inzidenz von 0,2 – 0,6 pro 1000 Einwohner (0,05 %) handelt es sich bei der Schizophrenie um eine Erkrankung, die gemeinsam mit der unipolaren Depression und Alkoholerkrankungen zu den Krankheiten gehört, die in der Altersgruppe der 15 – 44-Jährigen durch die krankheitsbedingten Behinderungen zur im Vergleich stärksten Beeinträchtigung der Lebensqualität führen (Brunnhuber, Frauenknecht, Lieb, 2005).

Für die Erkrankung an einer Schizophrenie wird eine multi-faktorielle Genese angenommen, die heute noch nicht vollständig geklärt ist. So spielen genetische Faktoren und auch Veränderungen in den Neurotransmitter-Systemen (Dopamin, Glutamat, Serotonin) eine Rolle. Zusätzlich wird speziellen Umweltfaktoren und psychosozialen Komponenten eine erhebliche Bedeutung zugesprochen, letztere vor allem als Auslöser für die Erkrankung oder das Auftreten von Rezidiven. Zu den Umweltfaktoren gehören unter anderem pränatale Virusinfektionen und andere Schwangerschafts- und Geburtskomplikationen (Brunnhuber et al., 2005).

Als psychiatrische Differentialdiagnose müssen im ICD 10-System von der Schizophrenie unter anderem die so genannten akuten vorübergehenden psychotischen Störungen (F23.X) abgegrenzt werden. Hierbei handelt es sich je nach Form um ein akut polymorphes psychotisches Krankheitsbild entweder mit oder ohne Symptome einer Schizophrenie (F23.0 oder F23.1) oder um eine akute schizophreniforme psychotische Störung (F23.2). Charakteristisch sind für diese Störungsbilder ein akuter Krankheitsbeginn innerhalb von weniger als 2 Wochen, häufig eine akute Belastung im Vorfeld, der gutartige Verlauf mit Vollremission sowie ein typisches schnelles Hin- und Herwechseln zwischen den auftretenden Symptomen (polymorph).

2.1.2 Die Leonhard-Klassifikation der endogenen Psychosen

Eine andere differenzierte Unterscheidung und Klassifikation der schizophrenen Erkrankungen ist bekannt als die Leonhard-Klassifikation (1963). Karl Leonhard bietet in seiner „Differenzierten Diagnostik der endogenen Psychosen, abnormen Persönlichkeitsstrukturen und neurotischen Entwicklungen“ eine genaue Vorstellung von Symptomen, Verlauf und Endzustand der jeweiligen Unter-
Die vorliegenden Arbeit liegt eine Einteilung der teilnehmenden Patienten in das genannte Klassifikationssystem nach Leonhard zugrunde.

2.1.2.1 Die klassische Schizophrenie

Die beiden beschriebenen Gruppen der Schizophrenien enthalten jeweils drei Unterdiagnosen, die sich durch besondere Symptomkomplexe unterscheiden.

2.1.2.2 Die Zykloiden Psychosen

Gemeinsam ist den oben beschriebenen Krankheitsformen die therapeutische Vorgehensweise. Sowohl die Schizophrenien als auch die Zykloiden Psychosen werden vor allem mit Antipsychotika und unter Berücksichtigung individueller Bedürfnisse mit weiteren Psychopharmaka behandelt.

Das von Leonhard beschriebene Bild der Zykloiden Psychose ist im Rahmen der ICD-10-Klassifikation mit den vorübergehenden akuten psychotischen Störungen (F23.X) vergleichbar, welche weiter oben bereits beschrieben wurden. Im Bereich der Schizophrenien (F20.X) liefert die ICD-10 eine von Leonhard abweichende Nomenklatur. Sowohl die systematischen als auch die unsystematischen Schizophrenien können jedoch weitestgehend unter diese Gruppe subsumiert werden.

2.2 Elektrophysiologische Grundlagen

2.2.1 Das Elektroenzephalogramm

Im weiteren Verlauf des Jahrhunderts gesellte sich zu verfeinerten Techniken in der Aufzeichnung auch die genauere Erkenntnis über die physiologischen Grundlagen des Elektroenzephalogramms (EEG).
Hierbei handelt es sich um die Ableitung von Hirnströmen von der Schädeloberfläche, die dadurch entstehen, dass es im Bereich von Nervenzell-Populationen durch synchrone Erregung oder deren Hemmung zu Potentialdifferenzen im Extrazellulärraum kommt und dadurch elektrische Ströme im Sinne eines gleichgerichteten Dipols entstehen. Diese können mittels Elektroden zum Beispiel über eine bipolare oder eine unipolare Ableitung gemessen, ihr zeitlicher Verlauf beurteilt und in begrenztem Rahmen der generierende Hirnabschnitt lokализiert werden. Da die Begründung den Rahmen dieser Arbeit in diesem Zusammenhang überschreiten würde, soll an dieser Stelle lediglich festgestellt werden, dass im EEG im Wesentlichen die erregenden synaptischen Prozesse registriert werden (Ebner & Deuschl, 2006).

Die so im EEG gemessenen Potentialdifferenzen kommen vor allem durch die Potentialänderungen an den Dendriten der kortikalen Pyramidenzellen zustande (Silbernagel, Lang, 2005).

Im Rahmen dieser Arbeit werden diese Negativierungen (als Zeichen einer Erregung) im entsprechenden Diagramm nach unten aufgetragen.

Im EEG tritt typischerweise eine Spontanaktivität auf, die sich durch ständige Potentialänderungen und damit Amplitudenausschläge im EEG, die in unterschiedlicher Frequenz auftreten, auszeichnet. Die Frequenzen bewegen sich im Spontan-EEG im Bereich zwischen ca. 0,5 – 40 Hz und werden je nach Frequenz bestimmten Wellen zugeordnet: Alpha-Wellen (8 – 13 Hz), Beta-Wellen (14 – 40 Hz), Theta-Wellen (4 – 7 Hz) und Delta-Wellen (< 4 Hz) (Ebner & Deuschl, 2006).
Neben der Spontanaktivität lassen sich mit Hilfe des EEG auch solche Aktivitäten darstellen, die bewusst provoziert oder auch evoziert werden (Evozierte Potentiale, EVP). Die Stimulation einer solchen Aktivität kann zum Beispiel durch die Reizung eines peripheren Nervs oder eines Sinnesorgans erfolgen. Diese Reizung führt dann im Zuge ihrer Verarbeitung im zentralen Nervensystem zu einer dort messbaren Erregung (siehe dazu auch Kapitel 2.2.2).

Das EEG spielt in der heutigen neurophysiologischen Forschung in Psychiatrie und Neurologie bei zunehmender Verbesserung der zahlreichen bildgebenden Verfahren wie Magnetresonanztomographie (MRT) oder Positronen-Emissions-Tomographie (PET) eine vermeintlich untergeordnete Rolle. Was aber immer wieder den Rückgriff auf diese Methode begründet, ist die bestmögliche zeitliche Auflösung der gemessenen Aktivitäten durch das EEG und die direkte Messung neuronaler Prozesse. Zusätzliche Vorteile sind, dass es sich außerdem um eine nicht-invasive Untersuchung handelt, die zudem kostengünstig ist.

2.2.2 Ereigniskorrelierte Potentiale (EKPs)

Die eben beschriebenen evozierten Potentiale befassen sich mit speziellen Nervenzeitbahnen oder Nervenzellgruppen, die durch die Art der Provokation explizit angeregt werden. So eignen sich visuell evozierte Potentiale zur Prüfung des Sehnervs, akustisch evozierte zur Reizung der Hörbahn. Mittels somato-sensorisch evozierter Potentiale lassen sich periphere Nerven beurteilen.

In ähnlicher Art und Weise lassen sich nun auch kognitive Prozesse stimulieren. Damit wird eine Einschätzung der Leistungen möglich, die mit der kognitiven und weniger mit der sensorischen oder motorischen Verarbeitung einer gestellten Aufgabe in Verbindung stehen. Im Allgemeinen teilt man die so erhaltenen ereignis-korrelierten Potentiale (EKPs) in solche ein, die an die Verarbeitung des gegebenen Reizes (stimulusbezogen) gebunden sind und auf der anderen Seite in solche, die mit kognitiven Prozessen im Zusammenhang mit der gegebenen Antwort bzw. Reaktion gekoppelt sind (reaktionsbezogen).

Im Elektroenzephalogramm bilden sich also fortlaufend die psychologischen Prozesse ab, die bei der Bearbeitung einer gestellten Aufgabe aktiv werden. Dadurch wird ein Potentialverlauf messbar, der sich durch Eigenschaften wie Polarität, Peak-(Spitzen-)Amplitude und Latenz beschreiben lässt.

Im Sinne der Idee, dass die Informationsverarbeitung im Gehirn Prozesse involviert, die gleichzeitig und überlappend ablaufen, kann man davon ausgehen, dass zu dem Potentialverlauf mehrere „Komponenten“ beitragen. Was den neuranatomischen Ursprung dieser Komponenten angeht, so bestehen hier dieselben Limitationen, die sich generell beim Elektroenzephalogramm bei der Zuordnung von Potentialänderungen zu bestimmten Hirnarealen ergeben (so genanntes „inverses Problem“).

Als Beispiel für die bekannteste stimulusbezogene Komponente ist an dieser Stelle die so genannte P3 oder P300 zu nennen, die ab ca. 300 ms nach der Reizdarbietung zu finden ist. Sie spiegelt Abläufe der bewussten Informationsverarbeitung und von Aufmerksamkeitsprozessen wider.

Eine ebenfalls prominente Komponente, die sich durch einen negativen Peak auszeichnet, ist die so genannte „error-related negativity“ (ERN), die Gegenstand dieser Arbeit ist. Bei ihr handelt es sich typischerweise um eine Komponente, die im Rahmen reaktionsbezogener Prozesse reproduzierbar ist, hier vor allem bei der Fehlerverarbeitung. Auf ihre Bedeutung wird im Folgenden noch näher eingegangen.

Da es sich bei den EKPs im Allgemeinen um (im Vergleich zum „Hintergrund-EEG“) niedrig-amplitudige Potentiale handelt, werden in der Verarbeitung des jeweiligen EEGs möglichst viele Epochen, die den relevanten Zeitraum um einen Stimulus oder eine Reaktion enthalten, gesammelt und gemittelt. Dadurch können die EKPs vom Spontan-EEG gelöst und sichtbar gemacht werden (vgl. z. B. Lopes da Silva, 1999).
2.3 Die „error-related negativity“ (ERN)

2.3.1 Testverfahren

2.3.2 Elektrophysiologische Eigenschaften der ERN

Im Elektroenzephalogramm findet sich die ERN zeitlich gesehen ungefähr 100 – 150 ms nach dem elektromyographisch feststellbaren Beginn der motorischen Aktivität, die letztlich zum Fehler führt (zum Beispiel fehlerhafter Tastendruck). Ein anderer, einfacher anzuwendender Messzeitpunkt für die ERN ist die tatsächlich sichtbare gegebene falsche Antwort. Die Latenz ist dann etwas kürzer und meist zwischen 50 und 100 ms nach dem begangenen Fehler zu finden (Gehring et al., 1993; Falkenstein et al., 2000; Dehaene et al., 1994; Bernstein et al., 1995).

Die ERN weist in der Regel eine frontozentrale Lokalisation auf, wobei die Maximal-Amplitude sich meist im Bereich der Fz- bzw. Cz-Elektrode findet (Falkenstein et al., 2000; Dehaene et al., 1994; Gehring & Fencsik, 2001).

Die Amplitude der ERN, die bis zu 10 μV erreichen kann, wird von unterschiedlichen Faktoren beeinflusst, zu denen zum Beispiel das Bestehen von Zeitdruck, hohe Anforderungen bezüglich der Ausführungsqualität im Vorfeld des Versuches (Gehring et al., 1993) oder auch die Qualität des Fehlers zählen: Eine deutliche Diskrepanz zwischen erforderter Reaktion und letztlich ausgeführter Reaktion führt in diesem Sinne zu einer Zunahme der ERN-Amplitude (Falkenstein et al., 2000; Bernstein et al., 1995). Ebenso ist die Latenzzeit der ERN variabel. So zeigt sich bei einer Kombination von akustischer und visueller Stimulus-Darbietung eine verlängerte Latenz für die ERN nach Antworten auf akustische Reize (Falkenstein et al., 2000). In derselben Studie fanden sich außerdem verkürzte Latenzen der ERN nach „false alarms“ im Rahmen einer Go/NoGo-Aufgabe im Vergleich zu den ERN-Latenzen, die im Rahmen eines einfachen 2-Antwort-Auswahl-Verfahrens auftraten.
2.3.3 Interpretationsansätze zur ERN

2.3.3.1 „Error-detection“-Theorie

Bei Betrachtung der Studien, die sich mit einer differenzierten Interpretation der kognitiven Bedeutung der ERN auseinandersetzen, findet sich eine auffallend detaillierte Unterteilung von Fehler- und Antwortverarbeitungsprozessen in verschiedene Schritte beziehungsweise Teilbereiche. Da die ERN nach inkorrekten Antworten eines Individuums auftritt und in diesem Rahmen zuverlässig reproduzierbar ist, vermuten einige Autoren in der ERN das Korrelat einer Form von Fehler-Erkennung („error-detection“, Gehring et al., 1993). Sie gehen weiter davon aus, dass eine Diskrepanz zwischen falsch gegebener Antwort und richtiger (gefordelter) Antwort bzw. der Vergleich zwischen beabsichtigter Reaktion und auf der anderen Seite aktuell durchgeführter Reaktion zur Fehlerfindung und damit zur ERN im Elektroenzephalogramm führt (Scheffers et al., 1996; Coles et al., 1995). Diese Hypothese wurde unter anderem durch den Befund untermauert, dass das Ausmaß jener Diskrepanz mit der Amplitude der ERN korreliert, das heißt eine deutliche Inkongruenz zwischen ausgeführter Antwort und geforderter richtiger Antwort provoziert eine größere ERN (Falkenstein et al., 2000).

2.3.3.2 „Conflict-monitoring“-Theorie

Andere Autoren dagegen verfolgen die Theorie, dass die ERN ein neurophysiologisches Korrelat eines so genannten Antwort- oder Reaktionskonfliktes darstellt. Vordergründig ist hier, im Gegensatz zur oben genannten Theorie, weniger die eigentliche Feststellung eines Fehlers als vielmehr der interne Konflikt, der durch das Vorhandensein zweier konkurrierender Antwortmöglichkeiten entsteht („Conflict-monitoring-theory“, van Veen et al., 2002). Der Zwiespalt werde dabei durch folgende Konstellation ausgelöst: Nach einer fehlerhaften Reaktion dauert die Verarbeitung des gegebenen Stimulus weiterhin an. Im

\subsection*{2.3.3.3 „Reinforcement-learning“-Theorie}

Eine neuere prominente Theorie bezüglich der Rolle der ERN basiert auf dem Konzept der so genannten „reinforcement-learning“-Theorie (Holroyd and Coles, 2002; Nieuwenhuis et al., 2004). Der eigentliche Generator für die ERN, nicht im Sinne des örtlichen Ursprungs als vielmehr im Sinne eines Auslösers, findet sich, laut Vertretern dieser Theorie, im dopaminergen System des Mesenzephalons. Hierbei handelt es sich um eine Gruppe von Kernen, zu denen
2.4 Der anteriore cinguläre Kortex (ACC)

2.4.1 Lokalisation und Anatomie

Trotz auseinander gehender Meinungen und Annahmen hinsichtlich der Bedeutung der ERN in der kognitiven Verarbeitung von Fehlern, besteht unter den Wissenschaftlern weitestgehend Einigung, wenn es um den Abschnitt des menschlichen Gehirns geht, der für die Generierung der negativen Potentialänderung verantwortlich ist.

2.4.2 Der ACC und die ERN

Viele Autoren gehen davon aus, dass der anteriore cinguläre Kortex in die kognitiven Prozesse involviert ist, die durch die ERN widerspiegelt werden. Diese
Vermutung konnte in der Vergangenheit durch diverse bildgebende und elektrophysiologische Methoden belegt werden, welche die Hirnabschnitte detektieren, die im gefragten Zeitabschnitt die höchste elektrische oder stoffwechselbedingte Aktivität aufweisen. Zu diesen Methoden gehören unter anderem Brain Electric Source Analysis (BESA, Dehaene et al., 1994), Low Resolution Electromagnetic Tomography (LORETA, Herrmann et al., 2004) und funktionelle Magnetresonanztomographie (fMRT, Kiehl et al., 2000). Besonders letzterer Methode wird eine hervorragende räumliche Auflösung zugesprochen, während die klassische Untersuchung mit dem Elektroenzephalogramm mit ereigniskorrelierten Potentialen eine exakte Darstellung der zeitlichen Komponente liefern kann.

Mit Blick auf die ERN, hervorgerufen durch die Aktivität des ACC, kann somit, im Rahmen ihrer zahlreichen Interpretationsmöglichkeiten, vom ACC unter anderem als einem wichtigen Ort für Fehler-Ermittlung, für das Wahrnehmen von Antwortkonflikten, Antwortauswahl sowie für Verhaltenskontrolle und -anpassung ausgegangen werden. Im Rahmen der „conflict-monitoring“-Theorie der ERN (siehe oben) fanden so zum Beispiel van Veen et al. (2002) ein starke Aktivierung des ACC in fMRT-Untersuchungen, wenn der Proband Aufgaben zu bewältigen hatte, die mit internem Konflikt, dessen Einschätzung und Bewältigung einhergingen. Eine solche Aktivierung trete genau dann auf, wenn zwei inkompatible Antwortmöglichkeiten simultan auftreten, und spiegelt somit die Aufdeckung des dadurch entstehenden Konfliktes wider (Botvinick et al., 2001).

Mit Bezug auf die oben detailliert aufgeführte „reinforcement-learning“-Theorie zogen die Autoren Rückschlüsse auf eine Bedeutung des ACC bei Lernprozessen. Holroyd et al. (2002) zitieren hier Studien, die eine ACC-Aktivität in den frühen Stadien von Lernvorgängen fanden, welche bei zunehmender Internalisierung der geforderten Aufgabe, im Sinne von „gelernt“, abnahm (Jenkins et al., 1994; Raichle et al., 1994). In eigenen Studien bestätigten Holroyd et al. ihre weiterführende Hypothese, dass die Anpassungsfähigkeit des ACC, die für neue Aufgaben, also Lernen, erforderlich ist, durch Einflussnahme des dopa-
minergen mesenzephalen Systems getriggert und reguliert wird. Der ACC selbst habe dann die Funktion einer Instanz, die in der Lage ist, aus diversen Hirnregionen mit motorischen Kontrollfunktionen (Corpora amygdala, orbitofrontaler Kortex, dorsolateraler präfrontaler Kortex) diejenige herauszufiltern, die einen optimalen Lösungsansatz für die aktuell geforderte Aufgabe liefern könnte.

2.4.3 Der ACC, die ERN und weitere Hirnstrukturen

Auch wenn der ACC als der wesentliche Fokus für die Generierung der ERN gilt, so gibt es doch Annahmen, dass weitere Hirnregionen zur Amplitude des Potentials beitragen könnten, so zum Beispiel der Gyrus postcentralis oder auch der supplementär-motorische Kortex (Herrmann et al., 2004). Im Rahmen von neuroanatomischen Untersuchungen konnten verschiedenste Interaktionen zwischen dem ACC und anderen Hirnarealen nachgewiesen werden, woraus weitere Funktionsbereiche des ACC abgeleitet werden können. Diese Interaktionen könnten dann auch das synchrone Auftreten von Aktivität solcher Areale zum Zeitpunkt der ACC-Aktivierung und somit der ERN erklären; eine direkte Beteiligung an der Entstehung der ERN wäre dann möglich, wenn auch nicht

Umgekehrt existieren aber auch Theorien, die im DLPFC diejenige Struktur sehen, die dem ACC funktionell vorgeschaltet ist. Der DLPFC habe eine Rolle in der Kontrolle, Neuimplementierung und Adaptation motorischen Verhaltens, und im ACC sei eine nachgeschaltete Struktur zu sehen, die dem DLPFC zur letztendlichen Ausführung dieser Aufgaben dient (Bates & Goldman-Rakic, 1993; Morecraft & Van Hoesen, 1991; Paus et al., 1993, Van Hoesen et al., 1993).

In eine ähnliche Richtung argumentieren Gehring et al. (2000). Sie konnten bei Patienten mit Läsionen im Bereich des lateralen präfrontalen Kortex Defizite in der Fehlerwahrnehmung feststellen. Im EEG der betroffenen Personen zeigte sich zwar eine uneingeschränkte ERN nach fehlerhaften Leistungen, eine derartige Potentialänderung war jedoch mit gleich stark ausgeprägter Amplitude auch bei korrekten Antworten zu finden. Eine mögliche Erklärung wäre dann ein Einfluss des präfrontalen Kortex auf die Möglichkeiten des ACC, zwischen falsch und richtig zu unterscheiden. Defektzustände in jenem Bereich des Kor-
tex könnten dann eben diese Fähigkeit des ACC, zwischen falsch und richtig zu unterscheiden, einschränken.

2.4.4 Strukturelle Aspekte des ACC

Weitere Studien beschäftigten sich mit einer differenzierteren Unterteilung des ACC, der somit nicht grundsätzlich als komplette Struktur, sondern auch partiell aktiviert werden kann. Dabei kann neben einer funktionellen auch von einer strukturellen Unterteilung des ACC und daher auch der Prozesse ausgegangen werden, die mit Verhaltensteuerung im Allgemeinen verknüpft sind.

Bekräftigt wird die Hypothese der oben genannten Autoren durch die oben beschriebene enge Verbindung des ACC mit limbischen und paralimbischen Hirnarealen, wohingegen gerade der kaudale Anteil des ACC Verknüpfungen mit Regionen aufweist, die unter anderem mit motorisch-exekutiven Aufgaben be-

Insgesamt stellen diese vielfältigen Vermutungen jedoch nicht die Hypothese in Frage, dass die ERN im ACC generiert wird. Letztendlich ungeklärt bleiben allerdings die genauen Abläufe, die zur Aktivierung des ACC oder Teilen des ACC führen und damit die ERN und auch weitere elektrophysiologisch relevante Potentiale hervorrufen. Bei der offensichtlichen Komplexität der Vorgänge, die Fehlerverarbeitung, Fehlereinschätzung, Verhaltensauswahl, -kontrolle und -verbesserung betreffen, ist es schwer vorstellbar, dass eine einzelne zerebrale Struktur verantwortlich ist. Dies bestätigt sich in den zahlreichen Studien, die den Einfluss verschiedenster Hirnareale auf die Funktion des ACC und wiederum dessen Einfluss auf verschiedenste Hirnareale belegen und somit die Idee von einem Informationsnetzwerk aufbringen, das es dem Menschen ermöglicht, sein Verhalten an äußere Bedingungen und Anforderungen anzupassen.
2.5 Weitere Fehlerpotentiale

2.5.1 Die „error-positivity“ (Pe)

2.5.1.1 Elektrophysiologische und neuroanatomische Aspekte der Pe

In Verbindung mit der ERN findet in der Literatur häufig noch ein weiteres, diesmal jedoch positives Potential im EEG Aufmerksamkeit. Diese sogenannte Fehler-Positivität („error-positivity“, Pe, Falkenstein et al., 1991) tritt im EEG typischerweise circa 200 – 500 ms nach einer fehlerhaften Antwort auf, also etwas später als die ERN.

Topographisch gesehen hat sie ihr Maximum in zentro-parietalen Bereichen (Ehlis et al., 2005; Leuthold et al., 1999), im Elektroenzephalogramm typischerweise im Bereich der Pz- und Cz-Elektrode (Falkenstein et al., 2000).

Auch hier wurden verschiedene bildgebende Methoden angewandt, um die neuronalen Strukturen, die als Quelle für die Pe in Frage kommen, genauer zu identifizieren. Herrmann et al. (2004) fanden mittels der so genannten LORETA-Methode (Low Resolution Electromagnetic Tomography) während des Auftretens der Pe gesteigerte zerebrale Aktivität in Bereichen des ACC, hier im Bereich der Brodman-Region 24. Die Vorstellung, dass die Pe im Bereich des ACC generiert wird, wurde bereits im Vorfeld durch van Veen et al. (2002b)

2.5.1.2 Interpretationsansätze zur Pe

Dass dieses Potential bewusste Schritte in der Fehlerverarbeitung markiert, brachte Nieuwenhuis et al. (2001) auf die weiteren Hypothesen, dass die Pe entweder tatsächlich die Fehlererkennung per se widerspiegelt oder aber mit den Strategien verbunden ist, die nach der Fehlererkennung der Kontrolle und der Anpassung des weiteren Verhaltens dienen.

Eine neuere Hypothese zur kognitiven Bedeutung der Pe basiert auf der Unterscheidung zwischen zwei Arten von Fehlern. Auf der einen Seite existieren die bewussten Fehler, also solche, die von der Testperson wahrgenommen werden, auf der anderen Seite stehen die unbewussten Fehler, die im Verlauf eines Versuches nicht als Fehler realisiert werden. Eine deutlich reduzierte Amplitude der Pe nach unbewussten im Vergleich zu bewussten Fehlern ließ Nieuwenhuis et al. (2001) zu dem Schluss kommen, dass die Pe eben vermutlich den Prozess der Fehlererkennung repräsentiert. Die Unterscheidung zwischen bewusst und unbewusst gemachten Fehlern wurde in der jüngeren Vergangenheit durch verschiedene Autoren aufgegriffen. O’Connell et al. (2007) konnten das Ergebnis von Niewenhuis et al. replizieren. Letztgenannte Untersuchung hatte zunächst eine okulomotorisch orientierte Aufgabe gewählt, O’Connell et al. nutzten hingegen eine modifizierte Go/NoGo-Aufgabe, die die Gültigkeit dieser Hypothese auch auf solche manuell ausgeführten Aufgaben erweiterte. Anders als die ERN, die bei bewussten und auch unbemerkten Fehlern gleichermaßen auftritt, ist die Pe also bei bewusst wahrgenommenen Fehlern ausgeprägter. Vidal et al. (2000) stellten in ihren Untersuchungen fest, dass die Pe fehlerspe-
zifisch ist, also nur bedingt wird durch das Auftreten von fehlerhaften Antworten, nicht jedoch durch eine korrekte Antwort oder durch einen partiellen Fehler (elektromyographisch messbare unterschwellige Muskel-Aktivierung der falschen Antwort bei letztlich richtiger Antwort). Auch darin unterscheiden sich Pe und ERN, welche in modifizierter Form auch nach korrekten Antworten vermutet wird.

2.5.2 Die „correct-response negativity“ (CRN)

Ein anderer Erklärungsansatz beschreibt die CRN als Ergebnis davon, dass der Proband fälschlicherweise annimmt, er habe einen Fehler gemacht. Sie würde quasi auch dann hervorgerufen, wenn der Proband lediglich gedanklich einen Fehler macht, tatsächlich jedoch die richtige Antwort gegeben hat (Coles et al., 2001).

2.6 Posterror-slowing

Neben den auf elektrophysiologischer Ebene messbaren Hinweisen auf ein „Fehlerverarbeitungssystem“ (vgl. z. B. ERN und Pe, s. o.) werden auf Verhaltensebene auch Phänomene beschrieben, die einen möglichen Versuch der Fehlerkorrektur repräsentieren und somit Prozesse der Fehlerverarbeitung widerspiegeln könnten. Ein Zeichen für eine beabsichtigte Korrektur kann zum Beispiel ein „Nachdrücken“ der richtigen Taste sein, nachdem man die fehlerhafte Taste bereits gedrückt hat, oder auch ein generell schwächerer Tastendruck bei fehlerhaften Versuchen in Relation zur Kraft, die beim richtigen Tastendruck ausgeübt wird (Gehring et al., 2000, Botvinick et al., 2001).
Von Interesse war in diesem Zusammenhang auch immer wieder das so genannte „posterror-slowing“, das sich in Reaktionsaufgaben, in denen die möglichst schnelle Antwortgebung betont wurde, wiederfindet. Betrachtet werden hierbei die Versuche, die auf einen Versuch folgen, bei dem eine fehlerhafte Antwort gegeben wurde. Diese „Posterror-Versuche“ zeichnen sich dadurch aus, dass die Reaktionszeiten des jeweiligen Individuums deutlich verlängert sind im Vergleich zu ihrer eigentlichen mittleren Reaktionszeit (Gehring et al., 2001) und so auch im Vergleich zur Reaktionszeit bei Versuchen, die auf einen vorgehenden, korrekt beantworteten Versuch folgen („post-correct“). Dieses Phänomen konnte in diversen Studien repliziert werden (Gehring et al., 2001; Botvinick et al., 2001, Nieuwenhuis et al., 2001). Nieuwenhuis et al. (2001) stellten in einer differenzierten Betrachtung darüber hinaus fest, dass dieses posterror-slowing sich lediglich bei bewussten Fehlern manifestiert, es jedoch nicht zu der verlangsamten Reaktionszeit kommt, wenn der Proband den vorhergehenden Fehler gar nicht bemerkt hat.

2.6.1 ERN und posterror-slowing

2.7 Der ACC und elektrophysiologische Veränderungen bei Schizophrenien

2.7.1 Grundlagen zur Hypofrontalität

auch Gedächtnisleistungen in Verbindung zu bringen sind. Im Laufe der Jahre konnten durch die zunehmende Verbesserung und die geeignete Kombination von immer differenzierteren Test- und Untersuchungsverfahren nicht nur die beteiligten neuroanatomischen Strukturen genauer beleuchtet werden, sondern auch Rückschlüsse auf die betroffenen kognitiven Prozesse, die minder oder fehl funktionieren, gezogen werden.

Zu den verschiedenen Testverfahren zählen unter anderem der Continuous Performance Test (Fallgatter et al., 2003), der Stroop-Colour-Naming Test (Alain et al., 2002), der Eriksen Flanker Task (Kopp et al., 1999), der California Verbal Learning Test (Hazlett et al., 2000) und viele weitere Verfahren, die Antwort- und Reaktionsverhalten, dessen Kontrolle sowie Fehlererkennung und -verarbeitung, aber auch Gedächtnis und Lernprozesse einbeziehen.

Der Bildgebung dienten auch hier unter anderem die low resolution electromagnetic tomography (LORETA), die Positronen-Emissions-Tomographie (PET) und auch die funktionelle Magnetresonanztomographie (fMRT).

Wie im folgenden Kapitel detailliert besprochen wird, konnte der inadäquate Gebrauch frontal gelegener Hirnstrukturen im Sinne einer Hypofrontalität bei Patienten mit einer Schizophrenie in diversen Studien vor allem auch hinsichtlich der Aktivierung des ACC demonstriert werden. Zu erwähnen sei an dieser Stelle, dass im Rahmen von Schizophrenien auch Beeinträchtigungen anderer, nicht frontal gelegener Hirnareale, zu finden waren, wie zum Beispiel in temporal lokalisierten Abschnitten (siehe dazu auch Kapitel 2.8.2).

2.7.2 Hypofrontalität im ACC

In Übereinstimmung mit der Hypofrontalitätstheorie konnte in verschiedensten Untersuchungen in den vergangenen Jahren nachvollzogen werden, dass vor allem auch die Aktivität des ACC als eine präfrontal lokalisierte Hirnstruktur bei Patienten mit einer schizophrenen Erkrankung sowohl funktionell als auch strukturell beeinträchtigt ist. Der ACC ist, wie bereits oben erwähnt, für diverse Abläufe im Gehirn verantwortlich, die mit dem Wahrnehmen von Fehlern und

Mit Blick auf all diese Prozesse, die entscheidend sind für das Verhalten eines Menschen in seiner Umwelt, die interne Steuerung dieses Verhaltens und für den Umgang mit externen Anforderungen, lassen sich dann auch Rückschlüsse auf pathologische Veränderungen in den jeweiligen Verhaltensmustern ziehen. Diese können dann die Vielfalt an Symptomen mit erklären, die im Verlauf einer schizophrenen Erkrankung auftreten können.

In der Vergangenheit wurden verschiedene Studien durchgeführt, die mittels diverser Testverfahren die vermutete Hypofrontalität im Bereich des ACC verifizieren konnten.

Gleichzeitig führen generell Fehler, auch unter der genannten NoGo-Kondition, zum Auftreten einer ERN (siehe auch Kapitel 2.3.1; Falkenstein et al., 1999; Vidal et al.; 2000), welche anerkanntermaßen im Bereich des ACC generiert wird. Eine fehlende Steigerung der ACC-Aktivität unter den Bedingungen wie bei Fallgatter et al. als Zeichen mangelnder Handlungskontrolle sowie eine reduzierte ERN-Amplitude als Korrelat einer mangelhaften Fehlerverarbeitung können als zwei Zeichen für eine Hypoaktivität des ACC gewertet werden.
Ebenfalls unterstützt wird die Idee von einem unzureichenden Gebrauch frontal gelegener Hirnabschnitte durch Studien, die mittels PET die regionale Durchblutung während solcher Aufgaben messen, die eben diese Strukturen involvieren. Das von Hazlett et al. (2000) verwendete Testverfahren konnte eine reduzierte Durchblutung in frontalen Hirnabschnitten, so auch im ACC, und eine von den Kontrollpersonen abweichende Aktivierung temporaler Hirnareale bei schizophrenchen Patienten nachweisen. Kombiniert mit einem Verfahren zur Wortgedächtnisprüfung bestätigten die Ergebnisse dieser Studie die Annahme, dass Patienten mit einer Schizophrenie generell schlechter erinnern und darüber hinaus nicht in der Lage sind, geeignete Strategien anzuwenden, die dazu dienen, Informationen adäquat zu kodieren, zu verarbeiten und wieder abzurufen.

2.7.3 Die ERN im Rahmen von Schizophrenien

Die ERN als typischer elektrophysiologischer Marker für die Aktivität des ACC kann, ebenso wie bildgebende Befunde, als Parameter dienen, die Ausprägung von Fehlfunktionen im Frontalhirn zu quantifizieren und damit aufgrund der Bedeutung der ERN (siehe oben) Rückschlüsse auf daraus möglicherweise entstehende Symptome zu ziehen.

soziation von verkleinerter ERN-Amplitude und psychomotorischer Verlangsamung bei Patienten.

2.7.4 „Error-positivity“ und „correct-response negativity“ bei Schizophrenien

Neben der ERN zeigt sich auch die sogenannte „correct-response negativity“ (CRN; Vidal et al., 2000; Falkenstein et al., 2000, siehe oben) in den EEGs von Patienten pathologisch verändert in der Hinsicht, dass sie generell größer ist als die CRN von gesunden Personen und so die Amplitudengröße der ERN erreicht (Mathalon et al., 2002). Eine veränderte CRN im Rahmen von Schizophrenien wurde unterschiedlich interpretiert. Auf der einen Seite könnte sie auf einen stärkeren Konflikt beim Antworten generell oder auf das Auftreten von so genannten Teilfehlern im Antwort-Prozess trotz generell richtiger Antwort hinweisen (Mathalon et al., 2002). Auf der anderen Seite könnte die speziell bei Patienten abnorm vergrößerte CRN eine Persistenz des inneren Konfliktes trotz richtiger Antwort oder darüber hinaus einen Antwort-Konflikt widerspiegeln, der über die Dauer des gesamten Versuches besteht, also völlig unabhängig von der Ausführungsqualität der geforderten Antwort ist (Mathalon et al., 2002).

Ebenso wie bei Schizophrenen ist auch bei Patienten mit Läsionen im Bereich des lateralen präfrontalen Kortex (PFC) diese Art der Veränderung der CRN beschrieben worden (Gehring et al., 2000). Bei gleichzeitig unveränderter ERN nach falschen Antworten schlossen die Autoren auf einen Einfluss dieser ana-
tomischen Struktur auf die suffiziente Unterscheidung zwischen falsch und richtig. Cohen et al. (2000; zitiert nach Mathalon et al., 2002) erklärten sich dieses elektrophysiologische Phänomen folgendermaßen: Ein defizitär arbeitender DLPFC/PFC liefere nicht die nötigen höhergeschalteten Kontrollmechanismen bezüglich Reaktionsmöglichkeiten und deren Relevanz. Der ACC sei dann nicht mehr in der Lage, adäquat auf die geforderte Aufgabe zu reagieren und generiere in Folge davon eine ERN nach jedem Versuch, unabhängig davon, ob richtig oder falsch bearbeitet.

2.7.5 Posterror-slowing bei schizophrenen Erkrankungen

Im Zuge der mannigfaltigen Theorien zur beeinträchtigten und veränderten Fehlerwahrnehmung und -verarbeitung bei Patienten mit einer Erkrankung aus dem schizophrenen Formenkreis wurde auch das Auftreten von posterror-slowing bei Patienten untersucht und mit gesunden Normpersonen verglichen. Hier gab es Studien, die bei Patienten neben generell verlangsamen Reaktionszeiten ein vermindertes posterror-slowing im Sinne einer weniger starken Verlangsamung der Reaktionszeiten bei Versuchen nach vorhergehenden fehlerhaften Antworten demonstrieren konnten (Alain et al., 2002). Sie vermuten darin das Korrelat einer beeinträchtigten Antwortwahrnehmung und einer beeinträchtigten Reaktion auf die eigene Antwort basierend auf gestörten Prozessen bei der Fehler-Detektion. Ein eingeschränktes posterror-slowing bei Schizo-

Andere Autoren konnten keinen Unterschied zwischen Patienten und Kontrollpersonen im Bezug auf das Ausmaß an postterror-slowing feststellen (Laurens et al., 2003; Mathalon et al., 2002). In diesen Fällen zeigten beide Probandengruppen im selben Ausmaß die erwartete Verlängerung der Reaktionszeit bei den Postterror-Versuchen.

2.7.6 Neue Aspekte der Hypofrontalität

In den letzten Jahren wurde vermehrt der Ansatz verfolgt, die Zykloiden Psychosen als „benigne“ Form durch elektrophysiologische Untersuchungen von den klassischen Schizophrenien zu separieren.

Im Verlauf eines Continuous Performance Tests (CPT) zum Beispiel konnte durch die so genannte NoGo-Anteriorisierung (NGA) als ein neurophysiologi-

Auch andere elektrophysiologische Komponenten, wie zum Beispiel die P300 als weiteres ereignis-korreliertes Potential, wiesen Veränderungen in derselben Richtung auf. Hier fand sich ebenfalls eine stärkere Reduktion der Amplitude bei Patienten mit der Diagnose einer klassischen Schizophrenie im Gegensatz zu denen mit einer Zykloiden Psychose (Strik et al., 1996).

Zusammenfassend lässt sich sagen, dass Patienten mit einer Zykloiden Psychose nicht nur klinisch, sondern auch im Rahmen verschiedener neuropsychologischer und neurophysiologischer Untersuchungen abweichende Muster im Vergleich zu klassischen Schizophrenien aufweisen.

NoGo-Anteriorisierung eine schwerere Einschränkung bei Patienten mit einer systematischen Schizophrenie feststellen. Solche mit einer unsystematischen Form zeigten zwar auch eine deutliche Reduktion der NGA, jedoch nicht in dem Ausmaß wie bei der zuerst genannten Gruppe.

2.8 Zielsetzung dieser Arbeit

Als Parameter dient der Bearbeitung dieser Fragestellungen, vor allem der eventuellen Differenzierung der beiden Patientengruppen, die ERN, die hier im Rahmen einer modifizierten Version des Eriksen Flanker Task erhoben wird.
3 MATERIAL UND METHODEN

3.1 Elektrophysiologische Untersuchung

3.1.1 Untersuchungsbedingungen

Die Untersuchungen fanden in einem Raum im Labor für Psychophysiologie und funktionelle Bildgebung der Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie der Universität Würzburg statt. Der Proband saß bequem auf einem Stuhl, während ihm auf einem Bildschirm (iiyama, Vision Master Pro 410), der in einem Abstand von 120 cm auf einem Tisch vor ihm positioniert war, das Paradigma präsentiert wurde. Der Raum war für die Zeit des Versuches abgedunkelt und jegliche Form der Störung wurde vermieden. Zur Vermeidung von Ablenkung stand zu beiden Seiten des Patienten beziehungsweise des Tisches ein Wandschirm. Vor dem Versuch gab jeder Teilnehmer sein informiertes schriftliches Einverständnis für die Untersuchung.

3.1.2 Paradigma

Das angewandte Paradigma in dieser Arbeit ist eine Version des Eriksen Flanker Tasks (Eriksen & Eriksen, 1974). Hierbei handelt es sich um ein anerkanntes und häufig genutztes Verfahren, das mittels Provokation so genannter ereignis-korrelierter Potentiale (EKP) der Überprüfung kognitiver Prozesse im Gehirn dient. Ursprünglich fand es häufig Anwendung bei Untersuchungen, die sich mit Prozessen der Informationsverarbeitung beschäftigen, zu denen unter anderem Stimulus-Bewertung, Antwort-Auswahl und die Initiierung motorischer Reaktionen gehören. Im Rahmen dieser Arbeit diente die Abwandlung des Paradigmas zur Evokation der oben beschriebenen „error-related negativity“ (ERN) und der „error positivity“ (Pe) und somit zur Testung von Fehlerwahrnehmung und -verarbeitung im Bereich frontaler Hirnabschnitte.

Zunächst wurde ein Übungsteil durchgeführt, der aus 42 Pfeilkombinationen bestand. Er diente zum einen dazu, den Probanden mit der Aufgabe vertraut zu machen, zum anderen wurde in diesem Rahmen der individuelle Median der Reaktionszeit bei richtigen Antworten bestimmt, wobei nur die letzten 32 Übungsdurchgänge in diese Berechnung eingingen. Im eigentlichen Versuch wurde dann während der 1000 ms dauernden Pause nach der Stimuluspräsentation dieser individuelle Zeitwert als obere Begrenzung für den Zeitraum genommen, innerhalb dessen die Antwort gegeben werden musste. Andernfalls erschien ein weiterer Feedbackreiz, der die verspätete Antwort signalisierte (!).
Im Hauptteil der Untersuchung wurden insgesamt 400 solcher Versuche präsentiert, auf die der Proband antworten musste. Aufgeteilt wurde die Untersuchung in zwei Blocks à 200 Durchgänge mit einer dazwischen liegenden Pause, deren Länge der Proband selbst bestimmen konnte.

3.1.3 Elektroenzephalogramm

„Notch“-Filter eingesetzt um den störenden Einfluss umgebender elektrischer Geräte zu vermeiden. Während der laufenden Aufzeichnung wurden simultan die Zeitpunkte der Stimulus-Präsentation, des Tastendrucks und des Feedback-Reizes im EEG registriert.

3.1.4 EEG-Auswertung

Die gesuchten EKPs, in dieser Arbeit die ERN und die Pe, wurden sowohl für korrekte als auch für fehlerhafte Reaktionen im gemittelten Potential individuell und semi-automatisch detektiert (durch u. g. Algorithmus mit nachfolgender visueller Inspektion der ermittelten Peaks). Basierend auf zahlreichen Literaturangaben wurde zu diesem Zweck für die ERN das Intervall zwischen der Ant-
wört, sprich dem Tastendruck, und den folgenden 150 ms genauer betrachtet. Hier wurde nach dem negativsten Ausschlag im EEG gesucht. Von Interesse waren aufgrund der Studienlage zur Topographie der ERN die Elektroden Cz und Fz. Für die „error-positivity“ wurde der größte positive Ausschlag im Bereich zwischen 100 – 350 ms nach der Antwort markiert. Hier waren vor allem die Pz-Elektrode und die Cz-Elektrode von Bedeutung. Durchgänge mit richtiger, aber zu langsamer Reaktion (vgl. 3.1.2) wurden in der Analyse nicht weiter berücksichtigt.

3.2 Stichprobenbeschreibung

Schwerwiegende internistische und/oder neurologische Erkrankungen hätten zum Ausschluss aus der Studie geführt. Keiner der teilnehmenden Patienten erfüllte eines dieser Ausschlusskriterien.

Bei der Auswertung der persönlichen Daten konnte ein Patient aufgrund fehlender Unterlagen nicht berücksichtigt werden. Es wurden daher lediglich die elektrophysiologischen und die bekannten soziodemographischen Eckdaten dieses Patienten miteinbezogen.

Unter den letztlich eingeschlossenen Patienten fanden sich 20 Probanden mit der Diagnose einer Zykloiden Psychose, davon 7 Patienten mit einer Angst-

3.3 Stichprobencharakteristika

9,1, Altersspanne 25 – 58 Jahre, KS: 41,5 ± 8,9, Altersspanne 23 – 54 Jahre, NP: 35,6 ± 13,4, Altersspanne 23 – 60 Jahre, p = 0,20). Ebenso zeigte die Verteilung im Bezug auf das Geschlecht beim Vergleich der Gruppen keine signifikanten Unterschiede (p = 0,19, vgl. Tabelle 1). Im Durchschnitt besuchten die Patienten der ZP-Gruppe die Schule für 10,9 ± 1,75 Jahre, die der KS-Gruppe für 10,0 ± 1,54 Jahre. Im Gesamtgruppenvergleich mit den Normprobanden (Schuljahre 12,8 ± 0,8) zeigte sich ein signifikanter Unterschied im Bezug auf die Dauer des Schulbesuches in Jahren (p < 0,001; vgl. Tabelle 1). Ein nachgeschalteter t-Test konnte diese Signifikanz, wie erwartet, vor allem zwischen der Gruppe der Normpersonen und den beiden Patientengruppen bestätigen (ZP vs. NP: $t_{26} = -4,05, p < 0,001; KS vs. NP: t_{29} = -7,09, p < 0,001$). Die Dauer des Schulbesuches unterschied sich jedoch zwischen den beiden Patientengruppen nur mit tendenzieller Signifikanz ($t_{37} = -1,90; p = 0,07$).

Tabelle 1: Stichprobencharakteristika

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Normpersonen</th>
<th>Test-Statistik / Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>36,8 ± 9,1</td>
<td>41,5 ± 8,9</td>
<td>35,6 ± 13,4</td>
<td>$F_{2, 53} = 1,66; p = 0,20$</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>m: 14, w: 6</td>
<td>m: 14, w: 6</td>
<td>m: 7, w: 9</td>
<td>$\chi^2 = 3,36; df = 2; p = 0,19$</td>
</tr>
<tr>
<td>Schuljahre</td>
<td>10,9 ± 1,7</td>
<td>10,0 ± 1,5</td>
<td>12,8 ± 0,8</td>
<td>$F_{2, 52} = 16,82; p < 0,001$</td>
</tr>
<tr>
<td>Händigkeit</td>
<td>15 RH, 4 LH</td>
<td>19 RH, 1 LH</td>
<td>15 RH, 1 LH</td>
<td>$p = 0,30 #$</td>
</tr>
</tbody>
</table>

Anmerkungen: m = männlich; w = weiblich; RH = rechtshändig; LH = linkshändig; df = Anzahl der Freiheitsgrade; # = Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für $2 \times k$ – Kontingenztafeln (Freeman & Halton, 1951).

tion der beiden eben beschriebenen, also Nikotinkonsum zusammen mit regel-
mäßigem Alkoholgenuss. Zunächst erfolgte ein Vergleich der beiden Patienten-
gruppen untereinander, gefolgt von einem Vergleich aller drei Gruppen. Der zu-
erst genannte Vergleich erwies sich als statistisch nicht signifikant (p = 0,43, vgl. Tabelle 2).

Tabelle 2: Genussmittel-Konsum Patienten

<table>
<thead>
<tr>
<th></th>
<th>Zykoide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nikotin<sup>1</sup></td>
<td>2</td>
<td>2</td>
<td>p = 0,43 #</td>
</tr>
<tr>
<td>Alkohol<sup>2</sup></td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nikotin<sup>1</sup> und Alkohol<sup>2</sup></td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

¹ = Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für 2 x k – Kontingenztafeln (Freeman & Halton, 1951). Anmerkungen: ¹ = am Versuchstag konsumiert; ² = regelmäßiger Alkoholkonsum

Unter Einbezug der Daten der Normpersonen (vgl. Tabelle 3) ergab nun sowohl der Vergleich dieser Gruppe mit den einzelnen Patientengruppen (NP vs. ZP: p = 0,02; NP vs. KS: p = 0,005) als auch der Vergleich der Normpersonen mit dem gesamten Patientenkollektiv (p = 0,007) signifikante Ergebnisse. Dies wurde dadurch bedingt, dass zum einen in der Normgruppe die Anzahl der Personen, die gar keine Genussmittel konsumieren, höher liegt als in den Patientengruppen. Zum anderen findet sich bei keiner der untersuchten Normpersonen ein regelmäßiger Alkoholkonsum, weder allein noch in Kombination mit Nikotinkonsum. Lediglich drei Teilnehmer aus dieser Gruppe konsumieren regelmäßig Nikotin.

Tabelle 3: Genussmittel-Konsum Patienten/Normpersonen
MATERIAL UND METHODEN

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Normpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>10</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Nikotin(^1)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Alkohol(^2)</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Nikotin(^1) und</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Alkohol(^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen: \(^1\) = am Versuchstag konsumiert; \(^2\) = regelmäßiger Alkoholkonsum

Internistische Begleiterkrankungen umfassten in den Stichproben Hepatitiden und Diagnosen im Rahmen des metabolischen Syndroms (Adipositas, essentielle Hypertonie, Dyslipoproteinämie, Diabetes mellitus) (vgl. Tabelle 4). Insgesamt zeigte sich die Verteilung sowohl zwischen den beiden Patientengruppen (\(p = 0,83\)), als auch zwischen den Normpersonen und der ZP- bzw. KS-Gruppe als nicht-signifikant unterschiedlich (NP vs. ZP: \(p = 1,0\); NP vs. KS: \(p = 0,81\)).

Tabelle 4: Internistische Begleiterkrankungen

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Normpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine internistischen Komorbiditäten</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Metabolisches Syndrom</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitiden</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Ebenfalls mit in dieser Gruppe erfasst wurden auch Erkrankungen aus dem schizophrenen Formenkreis, wobei lediglich ein Patient aus der KS-Gruppe ei-
ne familiäre Belastung mit einer solchen Erkrankung aufwies (vgl. Tabelle 5).

Tabelle 5: Psychiatrische Erkrankungen in der Familie

<table>
<thead>
<tr>
<th></th>
<th>Zykoide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Normpersonen</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine familiäre Belastung</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>p = 0,005 #</td>
</tr>
<tr>
<td>Familiäre Belastung</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

= Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für 2 x k - Kontingenztafeln (Freeman & Halton, 1951).

Zu dem signifikanten Ergebnis trägt vor allem die Tatsache bei, dass in der ZP-Gruppe psychiatrische Erkrankungen in der Familie bei knapp 75 % der Patienten gar nicht vorkamen, bei den Normpersonen waren es sogar 85 % der Teilnehmer, die keine psychiatrischen Erkrankungen in der Familie aufwiesen. Im Gegensatz dazu stehen die Ergebnisse der KS-Gruppe, bei der bei über der Hälfte (60 %) der Patienten eine solche familiäre Belastung zu finden war.

Tabelle 6: Befunde Routine-EEG

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne pathologischen Befund</td>
<td>15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Alpha-Abweichung</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Alpha-Abweichung, medikamentenbedingt</td>
<td>1</td>
<td>2</td>
<td>(p = 0,48) #</td>
</tr>
<tr>
<td>Herdbefund und/oder epilepsietypische Potentiale</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(# = \text{Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für } 2 \times k \)-Kontingenztafeln (Freeman & Halton, 1951).

Tabelle 7: Befunde Bildgebung

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht vorhanden</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Vorhanden, o. p. B.</td>
<td>9</td>
<td>10</td>
<td>(p = 0,75) #</td>
</tr>
<tr>
<td>Vorhanden, pathologisch verändert</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

o. p. B. = ohne pathologischen Befund; \(# = \text{Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für } 2 \times k \)-Kontingenztafeln (Freeman & Halton, 1951).

Ein anderer Punkt von Interesse war der Zeitraum zwischen aktuellem stationärem Aufnahmetag und dem Tag, an dem der Versuch durchgeführt wurde. Zum Zeitpunkt des Versuches befand sich kein Patient auf der Akut-Station der Klinik. Die KS-Gruppe befand sich zum Versuchszeitpunkt im Schnitt seit 30,8 ± 19,6 Tage in stationärer Behandlung. Im Gegensatz dazu waren die Patienten der ZP-Gruppe 41,5 ± 15,9 Tage in der Klinik bevor sie am Versuch teilnahmen. Der Unterschied erwies sich als statistisch tendenziell signifikant (p = 0,07; vgl. Tabelle 8).

Tabelle 8: Klinische Stichprobenbeschreibung

<table>
<thead>
<tr>
<th></th>
<th>Zykloide Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkrankungsdauer (Monate)</td>
<td>146,6 ± 125,5</td>
<td>208,4 ± 138,0</td>
<td>(t_{37} = 1,46; p = 0,15)</td>
</tr>
<tr>
<td>Anzahl stationärer Aufenthalte</td>
<td>7,1 ± 9,3</td>
<td>8,5 ± 6,8</td>
<td>(t_{37} = 0,52; p = 0,61)</td>
</tr>
<tr>
<td>Dauer aktueller Aufenthalt (Tage)</td>
<td>70,7 ± 39,6</td>
<td>50,4 ± 24,6</td>
<td>(t_{37} = -1,94; p = 0,06)</td>
</tr>
<tr>
<td>Aufenthalt am Versuchstag (Tage)</td>
<td>41,5 ± 15,9</td>
<td>30,8 ± 19,6</td>
<td>(t_{37} = -1,87; p = 0,07)</td>
</tr>
</tbody>
</table>

Tabelle 9: Verteilung antipsychotischer Medikation

<table>
<thead>
<tr>
<th></th>
<th>Zyklode Psychosen</th>
<th>Klassische Schizophrenie</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nur Atypika</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nur Typika</td>
<td>4</td>
<td>8</td>
<td>p = 0,19 #</td>
</tr>
<tr>
<td>Gemischt Atypika/Typika</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

= Signifikanzniveau nach der Freeman-Halton Erweiterung des exakten Fisher-Tests für 2 x k - Kontingenztafeln (Freeman & Halton, 1951).

Gruppe gut dreiviertel der Patienten (80 %, n = 16) überhaupt nicht mit einer antidepressiven Therapie versorgt waren. In der ZP-Gruppe hingegen kamen weniger als die Hälfte der Patienten (42,1 %, n = 8) ohne eine antidepressive Therapie aus, während die verbleibenden Patienten entweder mit SSRI oder trizyklischen Antidepressiva komediziert wurden ($\chi^2 = 5,91; \text{df} = 1; \text{p} = 0,017$).

3.4 Statistische Auswertung der Daten

Im Rahmen der Stichprobenbeschreibung wurden neben Chi-Quadrat-Tests beim Vergleich der beiden Patientengruppen univariate Varianzanalysen zum Vergleich aller drei untersuchter Gruppen (Zykloide Psychose, klassische Schizophrenie, Normperson) angewandt (s. o.). Als statistisch signifikant galt ein Ergebnis bei einem $\text{p} < 0,05$, p-Werte bis 0,1 wurden als statistischer Trend und somit tendenziell signifikant bezeichnet. Stellte sich die erwartete Häufigkeit einzelner Zellen beim Chi-Quadrat-Test als < 5 heraus, so wurde die exakte
Signifikanz (1-seitig) mithilfe des Fisher-Tests bzw. einer entsprechenden Erweiterung nach Freeman-Halton (Freeman & Halton, 1951) errechnet. Bei der Auswertung der elektrophysiologischen Daten (Amplituden und Latenzen) kamen dreifaktorielle Varianzanalysen mit Messwiederholung zum Einsatz. Als Zwischensubjektfaktor diente die Gruppe/Diagnose (Normperson vs. Zykloide Psychose vs. Klassische Schizophrenie), als Innersubjektfaktoren die Elektrodenposition (Fz/Cz für die ERN, Cz/Pz für die Pe) und die Reaktion (richtig oder falsch).
4 Ergebnisse

4.1 Ergebnisse der Verhaltensdaten

Für die Analyse der Verhaltensdaten dienten univariate Varianzanalysen zum Vergleich der drei Versuchsgruppen. Für die Parameter Anzahl gemachter Fehler, mittlere Reaktionszeit (RT, reaction time) bei fehlerhaften und richtigen Reaktionen sowie Posterror- und Postcorrect-Reaktionszeiten ergab sich zwischen den Gruppen kein signifikanter Unterschied (vgl. Tabelle 10). Ein signifikantes Ergebnis fand sich lediglich bei der Anzahl korrekter Antworten in dem Sinne, dass Normpersonen im Durchschnitt häufiger eine richtige Antwort gaben als die Patienten. Posthoc durchgeführte t-Tests zwischen den einzelnen Gruppen demonstrierten, dass dieser Effekt auf eine signifikant höhere Anzahl korrekter Antworten der Normpersonen sowohl gegenüber den KS- \((t_{28} = -3,02; \ p = 0,005)\) als auch den ZP-Patienten \((t_{32} = -2,78; \ p = 0,009)\) zurückzuführen ist. Die beiden Patientengruppen unterschieden sich in der Anzahl nicht signifikant \((t_{38} = -0,65; \ p = 0,52)\).

Tabelle 10: Gruppenvergleiche (Verhaltensdaten)

<table>
<thead>
<tr>
<th></th>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antworten falsch</td>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>95,9</td>
<td>56,16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zyklische Psychosen</td>
<td>20</td>
<td>105,2</td>
<td>59,93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normpersonen</td>
<td>16</td>
<td>76,13</td>
<td>50,10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F_{2,53} = 1,23; \ p = 0,30)</td>
</tr>
<tr>
<td>Fehler-RT (ms)</td>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>459,70</td>
<td>121,76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zyklische Psychosen</td>
<td>20</td>
<td>434,07</td>
<td>99,50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normpersonen</td>
<td>16</td>
<td>388,92</td>
<td>100,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F_{2,53} = 1,92; \ p = 0,16)</td>
</tr>
<tr>
<td>Antworten Korrekt</td>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>233,45</td>
<td>113,60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zyklische Psychosen</td>
<td>20</td>
<td>254,45</td>
<td>87,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normpersonen</td>
<td>16</td>
<td>319,56</td>
<td>51,46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F_{2,53} = 4,29; \ p = 0,019)</td>
</tr>
</tbody>
</table>
Erbnisse

Fortsetzung Tabelle 10: Gruppenvergleiche (Verhaltensdaten)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrekt-RT (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>487,62</td>
<td>106,78</td>
<td>(F_{2,53} = 1,96; p = 0,15)</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>463,52</td>
<td>89,26</td>
<td></td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>424,68</td>
<td>85,75</td>
<td></td>
</tr>
<tr>
<td>Posterror-RT (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>19*</td>
<td>503,47</td>
<td>114,67</td>
<td>(F_{2,51} = 1,32; p = 0,28)</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>19*</td>
<td>465,67</td>
<td>109,45</td>
<td></td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>444,79</td>
<td>100,72</td>
<td></td>
</tr>
<tr>
<td>Postcorrect-RT (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>483,36</td>
<td>114,71</td>
<td>(F_{2,53} = 1,87; p = 0,16)</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>467,99</td>
<td>90,31</td>
<td></td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>421,55</td>
<td>82,79</td>
<td></td>
</tr>
</tbody>
</table>

\(RT = \) Reaktionszeit, \(M = \) Mittelwert, \(SD = \) Standardabweichung, \(* = \) bei einer Person nicht erhältlich

Ein ebensolcher Test verglich auf diese Art und Weise die Reaktionszeiten für Posterror- und die für Postcorrect-Versuche, um so das Auftreten des Posterror-slowing-Phänomens sichtbar zu machen. Hier zeigte sich ein statistisch signifikanter Unterschied zwischen den beiden mittleren Reaktionszeiten nur in der Gruppe der Normpersonen, jedoch bei keiner der beiden Patientengruppen (vgl. Abbildung 1b).
Abbildung 1:

a) Vergleich der Reaktionszeiten für fehlerhafte und korrekte Versuche. KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,002, ** p = 0,007, *** p < 0,001;
b) Vergleich der Reaktionszeiten für Posterror- und Postcorrect-Versuche. KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,10, ** p = 0,96, *** p = 0,001, n.s.: nicht signifikant

Um die drei Versuchsgruppen direkt hinsichtlich ihres posterror-slowings vergleichen zu können, wurde abschließend ein Differenzmaß berechnet, das sich aus der Subtraktion der Reaktionszeit nach korrekten Durchgängen von der mittleren Reaktionszeit nach fehlerhaften Durchgängen ergab (RT posterror –

Tabelle 11: Posterror-slowing (Gruppenvergleiche)

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenz Posterror-</td>
<td>Klassische Schizophrenie</td>
<td>19*</td>
<td>18,63</td>
<td>47,36</td>
<td>t_{27} = -0,37; p = 0,71</td>
</tr>
<tr>
<td>Postcorrect-RT</td>
<td>Normpersonen</td>
<td>16</td>
<td>23,24</td>
<td>23,40</td>
<td>t_{26} = -1,74; p = 0,09</td>
</tr>
<tr>
<td></td>
<td>Zykloide Psychosen</td>
<td>19*</td>
<td>0,58</td>
<td>50,74</td>
<td>t_{36} = 1,13; p = 0,26</td>
</tr>
<tr>
<td></td>
<td>Normpersonen</td>
<td>16</td>
<td>23,24</td>
<td>23,40</td>
<td></td>
</tr>
</tbody>
</table>

* = bei einer Person nicht erhältlich

4.2 Ergebnisse der ERN-Daten

Hauptaugenmerk lag bei der Auswertung der ERN-bezogenen Daten auf möglichen Unterschieden in der Amplitudenhöhe zwischen den drei untersuchten Gruppen (ZP, KS, NP). Um diese möglichen Differenzen darzustellen, wurde zunächst eine drei-faktorielle Varianzanalyse (ANOVA) mit Messwiederholung
ERGEBNISSE

für die Amplitude der ERN durchgeführt. Die Zwischen- und die Innersubjektfaktoren wurden wie bereits im Methodenteil beschrieben festgelegt. Die Amplitudenhöhe wurde jeweils an den einzelnen Elektrodenpositionen (Cz- und Fz-Elektrode) sowie getrennt für richtige und falsche Reaktionen betrachtet (AFz_ERN_ri/fa, ACz_ERN_ri/fa; vgl. Tabelle 12).

Tabelle 12: Amplitude (μV) der ERN

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFz_ERN_ri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>-2,42</td>
<td>1,70</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-2,73</td>
<td>2,63</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-1,78</td>
<td>2,63</td>
</tr>
<tr>
<td>ACz_ERN_ri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>-1,32</td>
<td>2,11</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-2,36</td>
<td>3,23</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-0,21</td>
<td>4,11</td>
</tr>
<tr>
<td>AFz_ERN_fa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>-2,20</td>
<td>1,84</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-3,37</td>
<td>3,51</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-2,90</td>
<td>3,21</td>
</tr>
<tr>
<td>ACz_ERN_fa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>-2,47</td>
<td>2,31</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-2,94</td>
<td>3,51</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-4,22</td>
<td>4,07</td>
</tr>
</tbody>
</table>

M = Mittelwert, SD = Standardabweichung; AFz_ERN_ri / AFz_ERN_fa = Amplitude der ERN an Fz nach richtigen bzw. falschen Antworten; ACz_ERN_ri / ACz_ERN_fa = Amplitude der ERN an Cz nach richtigen bzw. falschen Antworten

Die Analyse ergab einen hoch-signifikanten Haupeffekt für den Innersubjektfaktor Reaktion (F₁, 53 = 31,21; p < 0,001). Grundlegend war hier eine signifikant größere Amplitude der ERN nach falschen im Vergleich zu richtigen Antworten. Darüber hinaus zeigten sich signifikante Interaktionen zwischen Reaktion und Gruppe (F₂, 53 = 9,02; p < 0,001), sowie Reaktion und Position (F₁, 53 = 21,67;
p < 0,001). Zusätzlich fand sich eine signifikante Dreifach-Interaktion von Reaktion, Elektrodenposition und Gruppe (F$_{2,53} = 7,73$; p = 0,001).

Zur genaueren Untersuchung der gefundenen Effekte und deren Ursprung wurden posthoc-Analysen durchgeführt. Die einfachen Interaktionen wurden in diesen Analysen mit in die Auswertung der höherwertigen Dreifach-Interaktion einbezogen, da diese alle Zwischen- und Innersubjektfaktoren der beiden Zweifach-Interaktionen umfasst. Zunächst einmal zeigten posthoc durchgeführte univariate Varianzanalysen für keines der vier Amplitudenmaße (AFz_ERN_ri, ACz_ERN_ri, AFz_ERN_fa, ACz_ERN_fa) einen signifikanten Einfluss des Faktors „Gruppe“ (F < 2,04, p > 0,14). Zur weiteren Auflösung der gefundenen Interaktionen wurden posthoc t-Tests für gepaarte Stichproben angewandt, welche innerhalb jeder Gruppe die Unterschiede zwischen den Amplitudenhöhen der ERN an einer Elektrodenposition nach richtiger beziehungsweise falscher Antwort überprüfen sollten. Statistisch signifikante Ergebnisse fanden sich hier bei der Gruppe der Normpersonen an beiden Elektrodenpositionen im Sinne einer deutlich ausgeprägteren ERN-Amplitude nach falschen im Vergleich zu richtigen Antworten (Fz: $t_{15} = 2,87$, p = 0,012; Cz: $t_{15} = 4,99$, p < 0,001; vgl. Abbildung 2, rechts).

Derselbe Effekt zeigte sich bei den Patienten mit einer klassischen Schizophrenie an der Cz-Elektrode ($t_{19} = 2,66$, p = 0,016; vgl. Abbildung 2, links unten), während er an der Fz-Elektrode keine statistische Signifikanz erreichte ($t_{19} = -0,81$, p = 0,43). In der Gruppe der Zykloiden Psychosen fand sich für keinen der beiden Vergleiche ein signifikanter Unterschied zwischen den Amplituden nach korrekten und fehlerhaften Reaktionen ($t_{19} = 1,69$ bzw. 1,42; p = 0,11 bzw. 0,17; vgl. Abbildung 2, links oben).
Abbildung 2: Grand averages für korrekte und fehlerhafte Reaktionen in den drei Versuchsgruppen an Elektrodenposition Cz (*** p < 0.001, * p < 0.05 für t-Vergleiche „fehlerhafte vs. korrekte Reaktionen“ der ERN-Amplituden).

Tabelle 13: ERN Differenz-Amplitude (Gruppenvergleich)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängige Variable: ERN-Differenzmaß an Fz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>0,22</td>
<td>1,25</td>
<td></td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-0,64</td>
<td>1,70</td>
<td>F\textsubscript{2,53} = 3,72; (p = 0,031)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-1,12</td>
<td>1,56</td>
<td></td>
</tr>
<tr>
<td>Abhängige Variable: ERN-Differenzmaß an Cz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>-1,16</td>
<td>1,95</td>
<td></td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>-0,58</td>
<td>1,81</td>
<td>F\textsubscript{2,53} = 10,63; (p < 0,001)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>-4,01</td>
<td>3,21</td>
<td></td>
</tr>
</tbody>
</table>

\(M = \) Mittelwert, \(SD = \) Standardabweichung

Der folgende posthoc t-Test zur weiteren Analyse dieses Befundes machte dann die Herkunft dieses Effektes transparent. Der Vergleich der einzelnen Gruppen untereinander ergab zwischen den Normpersonen und den Patienten der KS-Gruppe einen signifikanten Unterschied der Amplituden-Differenzen an beiden Elektrodenpositionen (Fz: \(t_{34} = 2,88; p = 0,007 \); Cz: \(t_{24} = 3,12; p = 0,005 \), während zwischen den Normpersonen und der ZP-Gruppe nur an der Cz-Elektrode ein solcher Unterschied signifikant wurde (\(t_{23} = 3,81; p = 0,001 \); Fz: \(t_{34} = 0,87; p = 0,39 \)). Der Vergleich der beiden Patientengruppen untereinander zeigte an der Cz-Elektrode keinen signifikanten Unterschied (\(t_{38} = -0,98, p = 0,34 \)). An der Fz-Elektrode zeigte sich ein statistischer Trend für eine stärker ausgeprägte relative Negativierung nach Falschantworten in der Gruppe der Zykloiden Psychosen im Vergleich zu Patienten der KS-Gruppe (\(t_{38} = 1,84; p = 0,07 \); vgl. Abbildung 3a und b).
Abbildung 3:
a) Gruppenvergleich der ERN-Differenzmaß-Amplitude an Cz.KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,34, ** p = 0,01, *** p = 0,005;
b) Gruppenvergleich der ERN-Differenzmaß-Amplitude an Fz. KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,07, ** p = 0,39, *** p = 0,007, n.s.: nicht signifikant
4.3 Pe-Auswertung

Auch die Auswertung der Daten zu den Amplituden der Pe bestand zunächst aus einer messwiederholten drei-faktoriellen Varianzanalyse mit denselben Zwischen- und Innersubjektfaktoren (vgl. Tabelle 14).

Auch hier fand sich ein signifikanter Haupeffekt für den Innersubjektfaktor Reaktion \((F_{1, 53} = 27,78; p < 0,001) \), der auch hier eine höhere Amplitude des Potentials nach falschen Antworten belegte. Nur tendenziell signifikant wurde der Haupeffekt für den Innersubjektfaktor Position \((F_{1, 53} = 3,49; p = 0,067) \), wobei tendenziell höhere Amplituden an Cz als an Pz auftraten. Signifikante Interaktionen bestanden zwischen den Faktoren Position und Reaktion \((F_{1, 53} = 4,41; p = 0,041) \), sowie zwischen Gruppe und Reaktion \((F_{2, 53} = 4,16; p = 0,021) \) beziehungsweise Gruppe und Position \((F_{2, 53} = 3,71; p = 0,031) \).

Tabelle 14: Amplitude der Pe (\(\mu \text{V} \)) nach richtigen vs. falschen Reaktionen an Elektrodenposition Cz bzw. Pz

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACz_Pe_ri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>1,51</td>
<td>1,65</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>1,43</td>
<td>2,51</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>3,24</td>
<td>2,85</td>
</tr>
<tr>
<td>APz_Pe_ri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>1,41</td>
<td>1,94</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>2,15</td>
<td>1,97</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>2,01</td>
<td>2,72</td>
</tr>
<tr>
<td>ACz_Pe_fa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>2,61</td>
<td>2,25</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>2,98</td>
<td>3,29</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>6,84</td>
<td>4,95</td>
</tr>
<tr>
<td>APz_Pe_fa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>2,06</td>
<td>2,33</td>
</tr>
<tr>
<td>Zykloide Psychosen</td>
<td>20</td>
<td>2,94</td>
<td>2,78</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>4,51</td>
<td>2,21</td>
</tr>
</tbody>
</table>

\(M = \text{Mittelwert, SD = Standardabweichung; ACz_Pe_ri / ACz_Pe_fa = Amplitude der Pe an Cz nach richtigen bzw. falschen Antworten; APz_Pe_ri / APz_Pe_fa = Amplitude der Pe an Pz nach richtigen bzw. falschen Antworten} \)
Abbildung 4:
a) Amplitude der Pe (richtige Reaktion; gemittelt über Cz und Pz). KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,57, ** p = 0,27, *** p = 0,10, n.s. = nicht signifikant;
b) Amplitude der Pe (fehlerhafte Reaktion; gemittelt über Cz und Pz). KS: klassische Schizophrenie; ZP: Zykloide Psychose; NP: Normpersonen; * p = 0,40, ** p = 0,009, *** p = 0,001, n.s. = nicht signifikant

Für die Analyse der Interaktion zwischen den Faktoren „Gruppe“ und „Reaktion“ wurde zunächst die Amplitude der Pe für richtige und falsche Antworten über die beiden Elektrodenpositionen (Cz und Pz) hinweg gemittelt. Die posthoc durchgeführte Varianzanalyse ergab für die so gemittelte Amplitude der Pe bei richtigen Antworten keinen signifikanten Effekt der Diagnosegruppe ($F_{2, 53} =$
1,55; p = 0,22), jedoch fand sich für die mittlere Pe nach Falsch-Antworten ein signifikanter Unterschied zwischen den Gruppen (F₂, 53 = 8,03; p = 0,001) (vgl. Abbildung 4a und b). In einer daran angeschlossenen posthoc-Analyse wurde der Gruppeneffekt bei fehlerhaften Reaktionen weiter untersucht. Die entsprechende t-Statistik zeigte hier, dass die Normpersonen im Gruppenmittel eine signifikant höhere Pe-Amplitude nach Falschantworten aufwiesen als Patienten der KS- (t₃₄ = -3,68; p = 0,001) und auch der ZP-Gruppe (t₃₄ = -2,75; p = 0,009; vgl. Abbildung 3b). Beide Patientengruppen unterschieden sich hinsichtlich dieses Maßes nicht signifikant voneinander (t₃₈ = -0,86; p = 0,40).

Bei der posthoc-Analyse der signifikanten Interaktion „Reaktion x Position“ fiel auf, dass – gemittelt über alle Versuchsgruppen – die Amplitude der Pe nach falschen Reaktionen marginal signifikant größer an Cz als an Pz war (t₅₅ = 2,00; p = 0,051), während sich kein statistisch bedeutsamer Unterschied zwischen den Elektrodenpositionen für die Amplitude der Pe nach richtigen Reaktionen ergab (t₅₅ = 0,44; p = 0,66).

In einem weiteren Schritt galt es nun noch die Interaktion zwischen den Faktoren „Position“ und „Gruppe“ zu klären. Dazu wurden zunächst die Daten für die Bedingungen „richtige/falsche“ Antwort gemittelt, da der entsprechende Effekt unabhängig von der Reaktion auftrat (ACz_Pe_rifa vs. APz_Pe_rifa). In einer univariaten Varianzanalyse für den Vergleich zwischen den Gruppen ergab sich für die Amplitude an der Cz-Elektrode ein signifikantes Ergebnis, an der Pz-Elektrode fand sich lediglich eine tendenzielle Signifikanz (Cz: F₂, 53 = 7,17, p = 0,002; Pz: F₂, 53 = 2,65, p = 0,08). Im Folgenden diente ein posthoc durchgeführter t-Test einem Vergleich der einzelnen Gruppen untereinander. An erster Stelle stand wiederum der Vergleich der Normpersonen mit der KS-Gruppe. Sowohl an Pz, vor allem aber an Cz, fand sich ein statistisch signifikantes Ergebnis, in dem Sinne, dass die Pe-Amplitude an beiden Elektrodenpositionen bei den Normpersonen signifikant höher war als bei den Patienten der KS-Gruppe (vgl. Tabelle 15). Derselbe statistisch signifikante Effekt ergab sich zwischen Normpersonen und ZP-Patienten lediglich an der Cz-Elektrode, an der
Pz-Elektrode blieb er hingegen aus. Erneut ergab der direkte Patientengruppenvergleich keine signifikanten Unterschiede, weder an der Cz- noch an der Pz-Elektrode (vgl. Tabelle 15).

Tabelle 15: Amplitude der Pe (μV) an der Cz- vs. Pz-Elektrode gemittelt über die Antwortmöglichkeiten („richtig/falsch“) im Zwischengruppenvergleich

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Test-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACz_Pe_rifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>2,06</td>
<td>1,69</td>
<td>(t_{21} = -3,20; p = 0,004)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>5,04</td>
<td>3,41</td>
<td></td>
</tr>
<tr>
<td>APz_Pe_rifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassische Schizophrenie</td>
<td>20</td>
<td>1,73</td>
<td>1,96</td>
<td>(t_{34} = -2,41; p = 0,02)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>3,26</td>
<td>1,81</td>
<td></td>
</tr>
<tr>
<td>ACz_Pe_rifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zyklode Psychosen</td>
<td>20</td>
<td>2,20</td>
<td>2,61</td>
<td>(t_{34} = -2,83; p = 0,008)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>5,04</td>
<td>3,41</td>
<td></td>
</tr>
<tr>
<td>APz_Pe_rifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zyklode Psychosen</td>
<td>20</td>
<td>2,54</td>
<td>2,16</td>
<td>(t_{34} = -1,07; p = 0,29)</td>
</tr>
<tr>
<td>Normpersonen</td>
<td>16</td>
<td>3,26</td>
<td>1,81</td>
<td></td>
</tr>
</tbody>
</table>

\(M = \text{Mittelwert}, \ SD = \text{Standardabweichung}; ACz_Pe_rifa = \text{mittlere Amplitude der Pe an Position Cz}; APz_Pe_rifa = \text{mittlere Amplitude der Pe an Position Pz} \)

4.4 Latenzen

Zur Vervollständigung der gesammelten Daten wurden auch die Latenzen der untersuchten Potentiale erfasst und ausgewertet. Hinsichtlich der Latenz der ERN lagen nach der durchgeführten drei-faktoriellen Varianzanalyse keine statistisch signifikanten Ergebnisse vor. Lediglich die Interaktion „Reaktion x Position“ wies einen statistischen Trend auf (\(F_{1, 53} = 3,41, p = 0,07 \)). In einem anschließend durchgeführten t-Test zeigte sich, dass dieser Effekt von einer signifikant längeren Latenz der ERN an der Fz-Elektrode nach falschen im Vergleich
zu richtigen Antworten herrührte ($t_{55} = -2.21, p = 0.03$). Weitere posthoc-Tests wurden nicht durchgeführt.

Die Latenzzeiten für die Pe zeigten statt eines statistischen Trends eine signifikante Interaktion der beiden besagten Innersubjektfaktoren ($F_{1, 53} = 6.48, p = 0.01$). Die posthoc-Untersuchung ergab hier, dass die gefundene Interaktion auf zwei Effekten beruhte: Zum einen darauf, dass die Pe-Latenzen an der Pz-Elektrode für falsche Antworten signifikant länger waren als nach richtigen Antworten ($t_{55} = -3.09, p = 0.003$), zum anderen darauf, dass die Latenzen nach richtigen Antworten sich an den beiden Elektrodenpositionen signifikant unterschieden. Dabei waren die Latenzen an der Cz-Elektrode deutlich länger als an der Pz-Elektrode ($t_{55} = 2.82, p = 0.007$). Bei fehlendem Einfluss des Zwischen-subjektfaktors Gruppe wurde auch hier auf weitere Analysen verzichtet.

4.5 Kovarianz-Analysen

Ergebisse

4.6 Korrelationen

4.6.1 Korrelationen elektrophysiologischer Daten mit den Verhaltensdaten

Über die Gesamtgruppe der Versuchsteilnehmer (n = 56) ergab sich eine signifikante negative Korrelation zwischen der Anzahl begangener Fehler und der Amplitude der Pe an Cz (r = -0,39, p = 0,003); an Pz war diese Korrelation knapp nicht signifikant, sondern nur als statistischer Trend zu finden (r = -0,26, p = 0,055). In diesem Sinne war die Amplitude der Pe umso kleiner je mehr Fehler gemacht wurden.

Aufgrund der zum Teil vorhandenen Gruppenunterschiede zwischen Patienten und Kontrollprobanden sowohl hinsichtlich des ERN-Effekts als auch hinsichtlich des posterror-slowings wurde zusätzlich überprüft, ob die gefundene Korrelation in der Gesamtgruppe möglicherweise alleinig auf Mittelwertsunterschiede zwischen den Diagnosegruppen in beiden Maßen zurückzuführen sein könnte. Hier zeigte sich allerdings, dass auch innerhalb der Gruppe der Patienten eine tendenziell signifikante Korrelation beider Maße auftrat (r = -0,29; p = 0,08), so dass es unwahrscheinlich erscheint, dass es sich beim gefundenen Zusammenhang lediglich um eine „Pseudokorrelation“ handelt. Innerhalb der Gruppe
Ergebnisse

der Kontrollprobanden war ebenfalls ein negativer Zusammenhang beider Maße vorhanden, der allerdings keine statistische Signifikanz erreichte (r = -0,11; p = 0,69).

4.6.2 Korrelationen elektrophysiologischer Daten mit der Medikation

Um einen möglichen Einfluss der Medikation, die die Patienten (n = 39) erhielten, sichtbar zu machen, wurden auch hier Korrelationen zwischen den entscheidenden elektrophysiologischen Parametern zur ERN und den jeweiligen Daten zur Medikamenteneinnahme berechnet. Signifikant wurde hier eine positive Korrelation zwischen der ERN-Amplituden-Differenz (relative Amplitude, siehe auch unter 4.6.1) an der Fz-Elektrode und der Gesamtmedikation (in Chlorpromazin-Analoga). Je größer die Gesamtmedikation mit Antipsychotika war, desto positiver zeigte sich der Wert für die ERN-Differenz, d.h. desto geringer ausgeprägt war der „ERN-Effekt“ (im Sinne einer großen ERN nach falschen und einer kleinen ERN nach richtigen Antworten) an der Fz-Elektrode (r = 0,42, p = 0,007). An der Cz-Elektrode war eine tendenziell signifikante positive Korrelation nur zwischen der Medikation und dem Absolutwert der ERN-Amplitude zu finden (r = 0,28, p = 0,08), nicht jedoch zwischen Medikation und „ERN-Effekt“, wie sie sich an der Fz-Elektrode präsentierte.

In einer etwas detaillierteren Betrachtung der Medikation wurde im Anschluss noch auf einen Zusammenhang zwischen den elektrophysiologischen Ergebnissen und einer Behandlung mit typischen versus atypischen Antipsychotika geprüft. Hierbei wurde, diagnoseübergreifend, unterschieden zwischen Patienten, die ausschließlich Typika, ausschließlich Atypika oder eine mit typischen Antipsychotika kombinierte Atypika-Medikation erhielten. Hier zeigten sich für keine der Untergruppen signifikante Korrelationen zwischen der Tagesdosis antipsychotischer Medikation und der Ausprägung der ERN oder Pe. Lediglich die Patienten, die eine mit anderen Antipsychotika gemischte Atypika-Dosierung erhielten, präsentierten eine tendenziell signifikante Korrelation zwischen der
Menge dieser gemischten Medikation und dem bereits oben beschriebenen „ERN-Effekt“ (relative Amplitude der ERN) an der Fz-Elektrode \((r = 0,51, p = 0,09)\), ebenfalls im Sinne einer positiven Korrelation (siehe oben). Erwähnenswert ist, dass eine zusätzliche Prüfung auf (diagnosegruppenübergreifende) Unterschiede zwischen den Medikationsgruppen (Atypika, Typika, gemischte antipsychotische Medikation) in diesem Zusammenhang einen signifikanten Effekt auf die Amplitude der Pe nach korrekten Reaktionen (Cz: \(F_2, 36 = 3,69, p = 0,035\)) sowie ein Einfluss auf die relative ERN-Amplitude (korrekte – fehlerhafte Reaktionen; s.o.) zeigte (Fz: \(F_2, 36 = 4,45, p = 0,019\)). Post-hoc durchgeführte t-Tests führten den Ursprung dieses Medikationseffekts auf die Gruppe von Patienten zurück, die eine gemischte antipsychotische Behandlung erhielten \((n = 12)\), da diese auf der einen Seite eine verringerte relative ERN-Amplitude \((0,79 \pm 1,61 \mu V)\) und auf der anderen Seite erhöhte Pe-Amplituden nach korrekten Reaktionen zeigten \((2,76 \pm 2,23 \mu V)\), und zwar sowohl im Vergleich zu atypisch \((n = 15;\) ERN: \(-0,44 \pm 1,20 \mu V, t_{25} = -2,27, p = 0,032;\) Pe: \(1,12 \pm 2,02 \mu V, t_{25} = -2,01, p = 0,055)\) als auch im Vergleich zu typisch medizierten Patienten \((n = 12;\) ERN: \(-0,87 \pm 1,49 \mu V, t_{22} = -2,63, p = 0,015;\) Pe: \(0,70 \pm 1,64 \mu V, t_{22} = -2,58, p = 0,017)\). Zwischen den zuletzt genannten Gruppen ergaben sich keine signifikanten Unterschiede \((t_{25} = 0,84 bzw. 0,58, p > 0,4)\). Eine abschließende Berechnung zeigte, dass die Patienten (auch hier diagnoseübergreifend), die sowohl mit atypischen als auch mit typischen Antipsychotika behandelt wurden, eine signifikant höhere Gesamtmedikation (in Chlorpromazin-Analoga) erhielten \((F_{2, 36} = 7,23, p = 0,002)\). Ein daran angeschlossener t-Test bestätigte dieses Ergebnis. Die gemischts-medizierten Patienten bekamen signifikant mehr Antipsychotika als die der Patientengruppe mit einer reinen Atypika-Medikation \((t_{25} = -3,29, p = 0,006)\). Im Vergleich mit den Patienten ohne jegliche Atypika-Medikation zeigte sich ein tendenziell signifikantes Ergebnis \((t_{22} = -1,89, p = 0,07)\), ebenfalls im Sinne einer höheren Medikation bei den Patienten mit einer gemischten Antipsychotika-Medikation.

Neben den hier beschriebenen Korrelationsprüfungen war noch ein weiterer Aspekt seitens der Medikation von Bedeutung. Der signifikante Unterschied
zwischen den beiden Patientengruppen bezüglich der Einnahme von Antidepressiva (siehe Material und Methoden, Kapitel 3.3, Seite 50) veranlasste uns dazu zu überprüfen, ob eine solche Medikation Einfluss auf die in dieser Arbeit relevanten elektrophysiologischen Parameter (ERN-Amplitude an Cz und Fz beziehungsweise EMDifferenz-Amplitude (relative Negativierung) sowie Pe-Amplitude an Cz und Pz) hat. Hier konnte für die ERN-Amplitude an Cz und Fz sowie für die relative Negativierung an Cz kein signifikanter Unterschied zwischen den beiden Medikationsgruppen (antidepressive Medikation vs. keine antidepressive Medikation) festgestellt werden (Cz: \(t_{37} = -0,01, p = 1,00 \); Fz: \(t_{37} = 0,98, p = 0,33 \); Cz-Differenz: \(t_{19} = 0,64, p = 0,53 \)). Lediglich an der Fz-Elektrode zeigte sich ein tendenziell signifikantes Ergebnis in dem Sinne, dass Patienten, die eine antidepressive Medikation einnahmen, einen ausgeprägteren ERN-Effekt zeigten (\(t_{37} = 1,90, p = 0,07 \)). Für die Pe-Amplituden fand sich an keiner der beiden Elektrodenpositionen ein signifikantes Ergebnis (Cz: \(t_{37} = -0,42, p = 0,68 \); Fz: \(t_{37} = -1,59, p = 0,12 \)).

4.6.3 Korrelationen elektrophysiologischer Daten mit Angaben zur Krankheitsdauer

Abschließend war noch die Bedeutung von Krankheitsdauer, letztendlicher Gesamtdauer des aktuellen stationär-psychiatrischen Aufenthaltes, sowie Dauer des Aufenthaltes zum Zeitpunkt der Untersuchung für die Daten zur ERN- und Pe-Amplitude nach falschen Antworten von Interesse. Zwischen den untersuchten Parametern fanden sich keine statistisch signifikanten Korrelationen.
4.7 Zusammenfassung der Ergebnisse

4.7.1 Verhaltensdaten

4.7.2 ERN

Der Zwischengruppenvergleich der ERN-Amplitude nach richtigen bzw. falschen Antworten an den zwei Elektrodenpositionen (Fz, Cz) ergab zunächst keine signifikanten Ergebnisse. Ein Vergleich der Amplituden (richtig vs. falsch) innerhalb der einzelnen Gruppen ergab dann aber, dass die Teilnehmer der Normgruppe an beiden Elektrodenpositionen einen signifikanten Unterschied zwischen den gefundenen ERN-Amplituden aufwiesen, wobei jeweils stärkere Negativierungen nach fehlerhaften im Vergleich zu korrekten Reaktionen zu beobachten waren. Dieses war bei den Patientengruppen lediglich in der KS-Gruppe an der Cz-Elektrode der Fall.

Transparenter wurden Gruppenunterschiede bezüglich der ERN durch die Berechnung des Differenzmaßes aus der ERN-Amplitude nach falschen und richtigen Antworten und den anschließenden Vergleich dieses relativen Amplitudenmaßes. An beiden Elektrodenpositionen fand sich ein signifikanter Grup-
E R G E B N I S S E

4.7.3 Pe

4.7.4 Kovarianzen und Korrelationen

Alter und Fehlerzahl hatten als Kovariaten auf die Ergebnisse zur ERN-Amplitude keinen Einfluss. Auch bei der Pe blieben bei Aufnahme dieser Kovariaten in das berechnete Modell qualitativ alle Ergebnisse erhalten.

Im Rahmen der Korrelationsberechnungen zeigte sich eine negative Korrelation zwischen der Pe-Amplitude und der Fehlerzahl sowie ein statistischer Trend für eine Korrelation zwischen der relativen ERN-Amplitude und dem posterror-
5 **DISKUSSION**

Auf diese Art und Weise wurde bereits in anderen Studien versucht, neben klinischen auch andere diagnostische Parameter zu gewinnen, die die offensichtlichen Unterschiede in Verlauf, Prognose und Symptomerscheinung belegen könnten (Ehlis et al., 2005; Strik et al., 1996). Diese Studien beschäftigten sich
mit anderen frontalhirnrelevanten Parametern wie dem P300-Potential oder der NoGo-Anteriorisierung.

Neben der ERN als Hauptparameter von Interesse wurde noch die so genannte „error-positivity“ in die Betrachtungen mit einbezogen, welche bislang seltener als die ERN Gegenstand der Forschung war. Es werden aber zunehmend die neurophysiologischen und -psychologischen Hintergründe auch dieses Potentials erforscht, was es auch für die Untersuchung und Interpretation im Rahmen von schizophrenen Erkrankungen zugänglich macht. In der bisherigen Studienlage waren bis jetzt keine Abweichungen dieses Potentials bei Patienten mit einer schizophrenen Erkrankung festgestellt worden (Mathalon et al., 2002; Alain et al., 2002; Bates et al., 2004).

Ebenso wurden grundlegende Verhaltensdaten bei dem gestellten Paradigma registriert und Aspekte wie Medikation, soziodemographische Daten sowie Eckdaten der individuellen Krankheitsgeschichte der Patienten in die Analysen mit einbezogen und mit den korrespondierenden Daten der Normpersonen sowie zwischen den einzelnen Patientengruppen verglichen.

5.1 Diskussion der Verhaltensdaten

Patienten häufiger einzelne Versuche ausgelassen haben, sprich gar keine Taste gedrückt haben. So konnte es zu einer sich gegenseitig nicht bedingenden Relation zwischen den beiden Summen von korrekten beziehungsweise falschen Antworten kommen.

Im Rahmen weiterer Ergebnisse ließ sich das bereits von diversen Autoren (Christ et al., 2000; Herrmann et al., 2004; Luu et al., 2003; Alain et al., 2002) gefundene Phänomen replizieren, dass die Reaktionszeiten für Fehler signifikant schneller sind als die für richtige Antworten. Dieses war für beide Patientengruppen und für die Probanden der Kontrollgruppe der Fall. Dieser Tatsache könnte eine unvollständige Verarbeitung des gegebenen Stimulus oder auch eine nicht ausgereifte Antwortselektion zugrunde liegen, die dann zu einer fehlerhaften und verfrühten Reaktion führen.

In einem weiteren Schritt wurden auch die Parameter betrachtet, die der Darstellung eines eventuell vorhandenen posterror-slowings dienen. Dazu gehören die Reaktionszeiten, die bei Versuchen nach vorhergehenden fehlerhaften be ziehungsweise korrekten Antworten gemessen wurden. Obwohl sich kein Unterschied zwischen den Versuchsgruppen für die einzelnen Reaktionszeiten selbst zeigte, fand sich in der Gruppe der Normpersonen ein signifikanter Un-
Diskussion

5.2 Diskussion der ERN-Daten

5.2.1 Allgemeine Aspekte der ERN-Daten

Ein wichtiger Aspekt dieser Arbeit war, wie bereits oben beschrieben, die Darstellung der ERN mit Hilfe des Eriksen Flanker Paradigmas und die Veränderungen des Potentials, das als Marker und Spiegel für die Frontalhirnfunktion gilt, im Rahmen von Schizophrenien und Zykloiden Psychosen. Die Ergebnisse konnten die wichtigsten elektrophysiologischen Eigenschaften der ERN replizieren. Unter dem topographischen Gesichtspunkt fand sich, wie angenommen, eine ERN vor allem im Bereich der Cz- und auch der Fz-Elektrode. Es fand sich eine deutliche Amplitudensteigerung nach falschen im Vergleich zu richtigen Antworten (p < 0,001). Dieser Effekt war bei den Normpersonen an beiden Elektrodenpositionen mit deutlicher statistischer Signifikanz

Insgesamt gehen die Ergebnisse jedoch konform mit der Vielzahl von Studien, die bei Patienten aus dem schizophrenen Formenkreis eine eingeschränkte ERN-Amplitude nach Fehlern demonstриerten (Alain et al., 2002; Bates et al., 2002; Mathalon et al., 2002). Zusätzlich zu diesen Ergebnissen liefert die vorliegende Arbeit einen differenzierten Vergleich der beiden untersuchten Patientengruppen, welcher in den folgenden Abschnitten diskutiert werden soll.
5.2.2 ERN-Daten – Ein Vergleich von klassischen Schizophrenien und Zykloiden Psychosen

In der bestehenden Literatur liegen bis jetzt noch keine Arbeiten zur Ausprägung der ERN bei Patienten mit einer Zykloiden Psychose vor. Hier konnte durch die vorliegende Arbeit gezeigt werden, dass auch bei dieser Subgruppe schizophrener Spektrumserkrankungen eine entsprechende Beeinträchtigung zu finden ist.

Beim direkten Vergleich der ERN-Differenzamplituden (relative Negativierung; s. o.) der beiden Patientengruppen fand sich kein signifikanter Unterschied an der Cz-Elektrode. Lediglich an der Fz-Elektrode fand sich ein statistischer Trend für eine stärker ausgeprägte relative Negativierung nach Falschantworten bei den ZP-Patienten im Vergleich zu den Patienten der KS-Gruppe. Dieses Ergebnis ließ zwar zunächst an ein vermeintlich besseres Abschneiden der Patienten mit einer Zykloiden Psychose denken. Im Gegensatz dazu stand jedoch der Befund, dass der klassische „ERN-Effekt“ (signifikant stärkere Negativierung nach falschen im Vergleich zu richtigen Reaktionen) lediglich in der Gruppe der Normpersonen, nicht aber der ZP-Patienten statistisch nachweisbar war (weder an Fz noch an Cz). Die Gruppe der klassischen Schizophrenien zeigte den erwarteten Effekt zumindest an einer der beiden Elektrodenpositionen (Cz). Bei Betrachtung sämtlicher Ergebnisse zur ERN, auch der deskriptiven Statistiken, wird zudem deutlich, dass die gefundenen Effekte vor allem an der Cz-Elektrode ausgeprägt sind, was mit entsprechenden Ergebnissen aus der Literatur übereinstimmt. Daher interpretieren wir die eben aufgeführten Ergebnisse eher mit Blick auf die Cz-Elektrode. Dann wird deutlich, dass die ZP-Patienten zum einen klar von den Ergebnissen der Kontrollgruppe abweichen. Zum anderen ist ein entscheidender Befund, dass sie sich an dieser Stelle nicht signifikant von den Patienten mit einer klassischen Schizophrenie unterscheiden. Darüber hinaus findet sich innerhalb der ZP-Gruppe gar kein statistisch signifikanter Hinweis auf eine ERN, da sich die Amplituden an Cz (und auch an Fz) für falsche und richtige Antworten nicht signifikant unterscheiden. Damit liegen sie in diesem Zusammenhang hinsichtlich

Unter dem Punkt „Einfluss der Medikation“ wird der Aspekt der fehlenden Differenzierung dieser beiden Patientengruppen anhand der ERN nochmals aufgegriffen. Grundsätzlich können jedoch die veränderten ERN-Eigenschaften bei den ZP-Patienten als konform mit den dazu bestehenden Interpretationsansätzen bei Schizophrenen gesehen werden (vgl. 5.2.3).

5.2.3 Die ERN-Daten im Licht der theoretischen Grundlagen

Allgemein gesprochen geht es bei den über die ERN beobachteten Defiziten um gestörte Prozesse der Fehlerwahrnehmung, der Fehlerverarbeitung und dem damit verbundenen Verhalten der Individuen. Hierbei handelt es sich um Prozesse, die eng mit der Funktion des Frontalhirns verknüpft sind. Mit Blick auf die verschiedenen, in der Einleitung detailliert aufgeführten Theorien, die zur grundsätzlichen Bedeutung der ERN existieren, lassen sich daher folgende Rückschlüsse auf mögliche pathologische Mechanismen ziehen, die einer Veränderung dieses Potentials zugrunde liegen.

Im Licht der „error detection“-Theorie würde es sich am ehesten um eine Unfähigkeit der Patienten handeln, eigene Fehler wahrzunehmen. Genauer betrachtet würde diese auf eine fehlende beziehungsweise mangelhafte interne Repräsentation der gegebenen (falschen) Antwort und/oder der eigentlich geforderten
Diskussion

(richtigen) Antwort zurückgehen, welche normalerweise auf dem Boden bestehender Diskrepanzen zwischen den beiden Antworten eine adäquate ERN hervorriefe (Scheffers et al., 1996; Coles et al., 1995).

In gewisser Weise ähnlich wie bei der ersten Theorie würde es sich somit um ein Unvermögen handeln, die beiden Antwortmöglichkeiten zu realisieren, zu analysieren und / oder in den korrekten Zusammenhang zu bringen.

Beide bisher genannten Theorien implizieren ein Unvermögen der Patienten, ihr eigenes Verhalten zu beobachten und damit zu kontrollieren, und zwar im Zusammenhang mit externen Reizen und Anforderungen, die eine solche Fähigkeit nötig machen. Auch in den diversen Studien der letzten Jahre mit schizophrenen Patienten wird dieser Ansatz bekräftigt (Mathalon et al., 2002; Bates et al., 2002). Mit Blick auf die vielfältigen Symptomausprägungen bei schizophrenen Erkrankungen und Zykloiden Psychosen ließe sich durch diesen Mangel an interner Kontrolle oder auch die Fehlfunktion des Kontrollvorganges zum Beispiel das Auftreten von Positivsymptomen erklären (Frith, 1987; Frith & Done, 1989). Unterstrichen wird diese Vermutung durch Untersuchungen, die bei schizophrenen Patienten, bei denen eine paraoid Symptomatik im Vordergrund stand, die Veränderungen der ERN in größerem Ausmaß fanden als bei nicht-paranoiden Patienten (Kopp et al., 1999; Mathalon et al., 2002).
Zur Vollständigkeit soll noch die „reinforcement learning“-Theorie Erwähnung finden (Holroyd and Coles, 2002; Nieuwenhuis et al., 2004). Wie bereits in der Einleitung erwähnt, steht bei dieser Theorie der Neurotransmitter Dopamin im Vordergrund, der bekanntermaßen an den pathophysiologischen Veränderungen im zentralen Nervensystem bei schizophrenen Erkrankungen eine entscheidende Rolle spielt. Dies ist auch daran festzumachen, dass viele der medikamentösen Therapiestrategien im dopaminergen Transmittersystem angreifen und wirken.

Bei der Hypothese dieser Theorie stellt sich die mögliche Verbindung zwischen ERN-Verminderung und neurophysiologischer Grundlage als wesentlich komplexer heraus. Gründe für die Beeinträchtigung könnten laut dieser Theorie durch Störungen nicht nur im Bereich des ACC, dem letztendlichen Generator der ERN, zu finden sein. Vielmehr könnten auch vorgeschaltete Bereiche wie die Basalganglien und das mesenzephale dopaminerge System an einer Amplitudenreduktion beteiligt sein.

Diskussion

oder auch den überdeutlichen Affektschwankungen zum Beispiel bei einer Angst-Glückspychose mit raschem Wechsel zwischen den beiden Polen sind auch emotional geprägte Fähigkeiten, wie die Motivation, bei solchen Patienten häufig eingeschränkt.

Mit Blick auf die weiterführende Studienlage zu dieser Fragestellung wird jedoch deutlich, dass für die eben genannten Prozesse, die mit Emotion oder Motivation gekoppelt sind, eher Teile des ACC aktiviert werden, die rostral, also noch weiter vorne liegen als die, von denen angenommen wird, dass sie im Zuge der ERN aktiv sind. In der Einleitung wurde bereits ausführlich beschrieben, dass dieser rostrale Teil des ACC reichliche Verbindungen zu limbischen Strukturen hat und vermutlich als für die emotionale Komponente beim Verhalten zuständig zu sehen ist (Devinsky et al., 1995; Bush et al. 2000). Im Gegensatz dazu konnte gezeigt werden, dass die ERN in der Region des ACC generiert wird, die vielfach als kognitiver Teil dieser Hirnstruktur bezeichnet wird (van Veen et al., 2002; Kiehl et al. 2000; Bush et al., 2000) und insgesamt weiter dorso-kaudal lokalisiert ist. Darüber hinaus wurde vor allem die „error-positivity“ mit dem rostralen ACC in Verbindung gebracht (O’Connell et al., 2007; van Veen et al. 2002), was am ehesten für dieses Potential einen Anteil an emotionalen Prozessen wahrscheinlich macht. Gemeinsam mit den Ergebnissen der vorliegenden Untersuchung zur Pe, die im Kapitel weiter unten genauer diskutiert werden, würden wir daher die ERN-Abweichungen bei schizophrenen Erkrankungen am ehesten im Sinne der weiter oben beschriebenen (kognitiven) Theorien sehen.

5.2.4 Die ERN und Verhaltensdaten

Außerdem von Interesse waren mögliche Korrelationen zwischen der ERN und einzelnen Verhaltensdaten. Bereits im Methodenteil wurde erläutert, dass entsprechende Zusammenhänge in der Gesamtstichprobe analysiert wurden. Dabei fanden sich bis auf einen statistischen Trend (s. u.) keine signifikanten Ergebnisse. Hier wurde unter anderem auch die Relation zwischen ERN-

den einzelnen Versuchspersonen über den gesamten Testdurchlauf relativ konstant blieben.

5.2.5 Einfluss der Medikation

5.2.5.1 Antipsychotische Therapie

Typische Antipsychotika können im EEG zu gehäufter Delta- und Theta-Aktivität, einzelne Medikamente (Chlorpromazin) auch zu Spike-Wave- oder Sharp-Wave-Komplexen (Neundörfer, 2002) führen. Antipsychotika aus dem atypischen Spektrum führen häufig zu ausgeprägteren EEG-Veränderungen (Juckel, 2003; Centorrino et al., 2002), vor allem Clozapin. Hier steht, bei erhaltinem Alpha-Grundrhythmus, die fokale Frequenzverlangsamtung mit vermehrten Delta-Wellen (vor allem frontalbetont) im Vordergrund, aber auch das Auftreten epilepsietypischer Potentiale ist bekannt (Juckel, 2003). Bei den beschriebenen Phänomenen handelt es sich also um allgemeine Veränderungen,
mögliche Veränderungen ereignis-korrelierter Potentiale wie der ERN oder der Pe können daraus nicht entnommen werden.
Im weiteren Verlauf wurden verschiedene Korrelationen berechnet. Eine Korrelationsprüfung zwischen der ERN-Amplituden-Differenz (relative Amplitude, siehe auch 4.6.1) an der Fz-Elektrode und der Gesamtmedikation (in Chlorpromazin-Analoga) ergab ein signifikantes Ergebnis, wobei eine größere Gesamtmedikation mit Antipsychotika mit einem verschlechterten ERN-Effekt verbunden war.
Eine diagnostikübergreifende Testung auf mögliche Korrelationen zwischen den erhaltenen Medikamentendosen und den elektrophysiologischen Ergebnissen in den einzelnen Medikationsgruppen (Atypika, Typika, gemischte Medikation) ergab weder für die Atypika noch für die Typika Signifikanzen. Das heißt, weder Patienten, die ausschließlich Atypika bekamen, noch solche, die überhaupt kei-
ne Atypika, sondern nur Typika, erhielten, wiesen einen statistisch signifikanten Zusammenhang zwischen der Dosis der Medikation und der Amplitude der ERN oder der Pe auf.

Bei den Patienten, die eine gemischte Medikation erhielten, spiegelte sich jedoch in der Korrelationsprüfung das Ergebnis wider, das bereits für die Gesamtmedikation gefunden worden war (siehe oben). Dabei zeigte sich ebenfalls eine statistisch signifikante Korrelation zwischen der relativen ERN-Amplitude an der Fz-Elektrode und der Medikation, wobei auch hier die ERN umso deutlicher ausgeprägt war, je weniger gemischte Medikation die Patienten erhielten.

Eine genauere Untersuchung zeigte dann, dass diese Medikationsgruppe sich bezüglich der relativen ERN-Amplitude an Fz auch von den beiden anderen Gruppen (nur Atypika, nur Typika) signifikant unterschied, wobei die Patienten mit einer gemischten Medikation eine im Vergleich reduzierte ERN-Amplitude aufwiesen. Eine abschließende Berechnung belegte dann, dass die zuletzt genannte Patientengruppe mit einer gemischten Medikation signifikant mehr Antipsychotika (Gesamtdosis in Chlorpromazin-Analoga) erhielten, als die Patienten der anderen Medikationsgruppen (nur Atypika, nur Typika).

Diskussion

rung (NGA), finden (Ehlis et al., 2005). Diese NGA, die in der Einleitung bereits erwähnt wurde, zeigte sich auch in einer anderen Studie sowohl bei Schizophrenen mit antipsychotischer Therapie als auch bei einer Untergruppe ohne eine solche Medikation gleichermaßen eingeschränkt (Fallgatter et al., 2003), was einen prinzipiellen Einfluss antipsychotischer Medikation auf diesen Parameter unwahrscheinlich macht.

Auf der anderen Seite existieren diverse Studien, die, ganz im Gegenteil, einen positiven Einfluss einer antipsychotischen Therapie auf das Gehirn finden. Hierbei schnitten vor allem die atypischen Antipsychotika gut ab, indem sie unter anderem zu einer verbesserten NGA bei den Patienten (Ehlis et al., 2007) führten.

Eine Studie von Bates et al. (2002) impliziert auch einen positiven Einfluss atypischer Antipsychotika auf die ERN-Amplitude. Die Autoren beobachteten hier die ERN bei Schizophrenen über einen Zeitraum von 6 Wochen unter antipsychotischer Therapie. Die ERN war in ihrer Amplitude zunächst deutlich reduziert, erholt sich aber im Laufe der Behandlung. Die Patienten dieser Gruppe wurden überwiegend mit Atypika behandelt, was daher auf einen positiven Einfluss dieser Medikamentengruppe auf die ERN schließen lassen könnte. Für diese Tatsache sprechen auch verschiedenste Studien, die bereits einen günstigen Effekt atypischer Antipsychotika auf den Frontalkortex belegen konnten (Braus et al., 2001; Ende et al., 2000).

Die in der vorliegenden Arbeit gefundenen Ergebnisse lassen keinen sicheren Rückschluss auf einen möglichen Einfluss der Medikamentenklasse auf die ERN zu. Zum einen lässt sich nicht bestätigen, dass die atypischen Antipsychotika einen günstigeren Effekt auf die relative ERN-Amplitude haben, da weder eine signifikante Korrelation zwischen diesen beiden Parameter besteht, noch ein signifikant besserer ERN-Effekt im Vergleich zu der Patientengruppe mit einer reinen Typika-Medikation zu finden ist. Lediglich die gemischte Medikationsgruppe schneidet im Bezug auf den ERN-Effekt schlechter ab als die Atypika-Gruppe. Zum anderen hat die alleinige Medikation mit typischen Antipsychotika keinen nachteiligen Einfluss auf die relative ERN-Amplitude, sodass man
Diskussion

Eine Erklärung für den negativen Zusammenhang zwischen der Amplitude der ERN an Fz und der antipsychotischen Gesamtmedikation und damit gegebenenfalls auch für den weniger ausgeprägten ERN-Effekt an Fz bei den Patienten mit einer gemischten Antipsychotika-Medikation könnte darin bestehen, dass eine hohe Antipsychotika-Dosis möglicherweise in direktem Zusammenhang mit der aktuellen Dauer des stationären Aufenthalts der Patienten stand. Es wäre zum Beispiel denkbar, dass Patienten mit einer geringeren Medikationsdosis sich bereits länger in stationärer Behandlung befanden. Eine vergleichsweise geringe Medikation am Ende eines stationären Aufenthaltes zusammen mit dem Abklingen der akuten Phase könnte zu einer verbesserten Leistung in diesem Versuch, besserer Vigilanz und zu einer möglichen Erholung der beeinträchtigten ERN geführt haben. Oder anders gesagt, eine geringere Dosis könnte für einen weiter fortgeschrittenen Heilungsprozess oder einen weniger stark ausgeprägten Krankheitsverlauf und somit geringere Einschränkungen bei der ERN sprechen. Um einen möglichen Einfluss der Krankheitsdauer auf die ERN zu prüfen, wurden daher auch hier Korrelationen berechnet, welche aber weder für die gesamte Krankheitsdauer noch für die Gesamtdauer des aktuellen Aufenthaltes oder die Dauer des Aufenthaltes am Versuchstag einen Zusammenhang zwischen den elektrophysiologischen Parametern und den genannten Zeitfaktoren herstellen konnten. Auch wenn dieses Ergebnis zunächst gegen einen direkten Zusammenhang dieser Daten spricht, so kann eine Be-
deutung des Faktors Zeit oder der aktuellen Symptomschwere für die ERN nicht ausgeschlossen werden. Hier könnten weitere Studien, die ein in dieser Hinblick besser vergleichbares Patientenkollektiv miteinbeziehen bzw. zumindest standardisierte Erhebungen der aktuellen Symptomatik vornehmen, genauere Daten liefern.

Abschließend kann die Frage nach einem Einfluss der antipsychotischen Therapie nicht genau geklärt werden. Ein direkter Zusammenhang zwischen einer solchen Therapie und Veränderungen der ERN und Pe konnte bis jetzt nicht nachgewiesen werden. Zu vermerken ist an dieser Stelle auch, dass der in der vorliegenden Studie fundene Effekt nur an der Fz-Elektrode zu finden war, was seine Bedeutung insofern schmälert, als sämtliche Ergebnisse dieser Studie sich vor allem an der Cz-Elektrode manifestierten oder zumindest hier am ausgeprägtesten waren.
Es bleibt jedoch zu vermerken, dass eine Korrelation zwischen der Gesamtmedikation mit Antipsychotika und dem ERN-Effekt an Fz festzustellen war, weshalb ein eventueller Einfluss der Medikation auf die berichteten Gruppenvergleiche nicht auszuschließen ist.

5.2.5.2 Antidepressive Therapie

Zur weiteren Überprüfung der Frage nach einem Einfluss der Antidepressiva auf die relevanten elektrophysiologischen Parameter in der vorliegenden Arbeit wurden diese Parameter zwischen solchen Patienten, die eine antidepressive Medikation bekamen und solchen, die ohne Antidepressiva auskamen, verglichen, unabhängig von der Diagnose. Hierbei fand sich kein signifikanter Ergebnis für die ERN an der Cz- und der Fz-Elektrode sowie für die ERN-Amplituden-Differenz (relative Negativierung) an Cz. Lediglich für die ERN-Amplituden-Differenz an der Fz-Elektrode wurde ein statistischer Trend sichtbar. Im Bezug auf die Amplituden der Pe blieb ebenfalls ein statistisch signifikanter Effekt aus. Diese Ergebnisse machen einen Einfluss der antidepressiven Therapie auf die Pe und die ERN insgesamt eher unwahrscheinlich.

Der oben beschriebene statistische Trend für den ERN-Effekt an Fz besagt, dass Patienten, die eine antidepressive Medikation einnahmen, einen ausgeprägteren ERN-Effekt aufwiesen. Dies lässt zunächst auch an einen möglicherweise positiven Effekt der Antidepressiva denken. Demnach müssten jedoch die Patienten der ZP-Gruppe aufgrund einer häufigeren Therapie mit Antidepressiva besser abschneiden, was sie jedoch, entgegen unserer Hypothese,
nicht tun. Darüber hinaus sind in dieser Arbeit, wie bereits in Abschnitt 5.2.2 erwähnt, vor allem die Ergebnisse an der Cz-Elektrode von Relevanz.

Insgesamt halten wir es für unwahrscheinlich, dass die gefundenen Effekte bei den Patienten mit einer Zykliden Psychose lediglich auf eine vermehrte Therapie mit Antidepressiva unter diesen Patienten zurückzuführen sind. Dennoch ist zu beachten, dass es sich bei den antidepressiven Therapeutika um Medikamente handelt, die die Funktion des zentralen Nervensystems beeinflussen. Inwieweit von einem möglichen Medikamenteneinfluss auch die für die ERN und Pe relevanten Abschnitte im Frontalhirn betroffen sind und ob die Wirkung dieser Medikamente tatsächlich die von diesen Potentialen repräsentierten kognitiven Prozesse moduliert, ist bis jetzt nicht klar.

siologischen Parameter (ERN und Pe), ganz unabhängig von der Medikation, beeinflusst haben.
Wie bereits an verschiedenen Stellen erwähnt, gehen manche Autoren davon aus, dass die ERN affektiv geprägte Prozesse widerspiegeln könnte (Vidal et al., 2000; Kiehl et al., 2001; Braver et al., 2001). Gestörter und veränderter Affekt im Rahmen einer depressiven Phase könnte daher als Ursache für eine eingeschränkte ERN gesehen werden. Die allgemeine Studienlage zeigt jedoch, dass die ERN eher für kognitive Aspekte bedeutsam ist, im ACC also weiter dorsokaudal generiert wird (van Veen et al., 2002; Kiehl et al. 2000; Bush et al., 2000) (siehe auch unter 5.2.3).

Erwähnt werden sollen an dieser Stelle jedoch Studien von Ruchsow et al. (2004, 2006), die eine verminderte ERN bei depressiven Patienten fanden. Ihre Befunde waren jedoch beschränkt auf die ERN in Fehler-Trials, die auf einen vorangehenden Fehler folgten, also auf eine spezifische Untergruppe von Fehlern, die nicht expliziter Gegenstand der vorliegenden Untersuchung war.
Die Pe wird eher als ein elektrophysiologisches Korrelat von Prozessen angesehen, die an Emotion und Motivation gekoppelt sind. Sie entsteht im rostral gelegenen Teil des ACC, dessen enge Verbindungen zum limbischen System diese Vermutung verschiedener Autoren unterstützten (O’Connell et al., 2007; van Veen et al. 2002, Bush et al., 2000) (siehe auch 5.2.3). Veränderungen des emotional-geprägten Verhaltens der Patienten als Symptome einer Depression könnten daher die bei uns gefundene eingeschränkte Pe der beiden Patienten-

Dennoch können Symptome wie Antriebsstörungen, Anhedonie und auch Konzentrationsstörungen als mögliche depressive Begleitsymptomatik nicht völlig ausgeschlossen werden. Daher könnte man durchaus davon ausgehen, dass fehlende Konzentration und Motivation im Rahmen der Aufgabenstellung zu einer Modulation der Pe geführt haben. Ebenso stellt sich die Frage, ob eine solche Veränderung der Pe nicht auch durch ein mangelndes Bewusstwerden eines Fehlers aufgrund der vorliegenden Symptomatik hervorgerufen werden könnte. In Kapitel 5.3.3 wird diese Fragestellung noch genauer diskutiert.
5.3 Diskussion der Pe-Daten

5.3.1 Allgemeine Aspekte der Pe-Daten

5.3.2 Einfluss von Alter und Fehlerrate

Wie bereits in der Einleitung erwähnt, konnten reduzierte Amplituden der Pe bei Patienten mit Diagnosen aus dem schizophrenen Formenkreis bis jetzt nicht gefunden werden. In Studien, die sich mit ereignis-korrelierten Potentialen im Allgemeinen beschäftigen, also bei gesunden Probanden und ohne die Frage nach pathologischen Abweichungen, konnte jedoch ein Einfluss von höherem
Lebensalter und hoher Fehlerrate auf die Pe-Amplitude festgestellt werden (Falkenstein et al., 2000).

Die Ergebnisse der vorliegenden Verhaltensdaten zeigten bei beiden Patien-
tengruppen eine zu den Normpersonen vergleichbare mittlere Fehlerrate, was
mit den Ergebnissen früherer Studien übereinstimmt (Laurens et al., 2003; Ba-
tes et al., 2004; Alain et al., 2002). Wenn Verhaltensunterschiede festgestellt
wurden, dann meist nur unter speziellen Bedingungen (non-match-trials in einer
die picture-word-verification-Aufgabe, Mathalon et al., 2002; false alarms in einem
Continuous Performance Test, Fallgatter et al., 2003). Im Rahmen der Studien
von Alain et al., Bates et al. und Mathalon et al. konnten jeweils keine Auffällig-
keiten der Pe-Amplitude bei den entsprechenden Patienten festgestellt werden.
Dies steht im Widerspruch zur vorliegenden Untersuchung, in der eine einge-
schränkte Pe-Amplitude sowohl bei Patienten der KS- als auch der ZP-Gruppe
beobachtet wurde (trotz ebenfalls vergleichbarer Fehlerraten). In der Zusam-
menschau schließen diese Ergebnisse zwar einen generellen Einfluss der Feh-
lerrate auf die Pe-Amplitude nicht aus (siehe Ergebnis der Korrelationsprüfung),
jedoch kann die Fehlerrate vermutlich nicht für die Pe-Amplitudenunterschiede
zwischen Patienten und Normpersonen – wie sie in der vorliegenden Studie
auftraten – verantwortlich gemacht werden. Untermauert wird diese Hypothese
von der Tatsache, dass sich bei Mathalon et al. (2002) unter derjenigen Ver-
suchsbedingung, die eine signifikant höhere Fehlerrate bei den Patienten pro-
vozierte, ebenfalls keine Veränderung der Pe zeigte.

Zusammenfassend lässt sich ein Einfluss der Fehlerrate auf das Verhalten der
Pe-Amplitude in dieser Studie nicht ausschließen, da die Korrelationsanalyse
einen signifikanten Zusammenhang demonstrieren konnte. Allerdings handelt
es sich hierbei vermutlich um einen allgemeinen Zusammenhang, der für alle
Beteiligten gleichermaßen gilt und der nicht dazu dienen kann, die Unterschiede
der Pe-Amplituden zwischen Patienten und Normpersonen zu erklären.
An dieser Stelle stehen weitere Untersuchungen aus, die zum Beispiel bei grö-
ßereren Probandenzahlen eine Kombination verschiedener Paradigmen anwen-
den, die aufgrund unterschiedlicher Schweregrade in der Lage sind, unter-
schiedlich hohe Fehlerraten hervorzurufen. Auf diesem Wege könnte dann di-
rekt die Pe-Amplitude bei unterschiedlich hohen Fehlerraten verglichen werden.
5.3.3 Bedeutung einer reduzierten Pe-Amplitude im Rahmen von Schizophrenien und Zykloidalen Psychosen

Die Tatsache, dass im Rahmen der vorliegenden Untersuchung eine beeinträchtigte Pe-Amplitude bei schizophrenen Patienten gefunden wurde, kann darauf rückschließen lassen, dass es letztlich die durch die Pe widergespiegelten kognitiven Prozesse sind, die bei solchen Patienten eingeschränkt oder verändert sind und somit zu einer reduzierten Amplitude führen.

Zu den kognitiven Prozessen, die hinter der Pe vermutet werden, gehören aufgrund ihres konstanten Auftretens nach fehlerhaften Reaktionen unter anderem die Fehlerwahrnehmung, -evaluation oder -verarbeitung. Außerdem betonen verschiedene Autoren, dass die Pe möglicherweise auch eine emotions- bzw. motivationsbedingte Komponente im Rahmen der eben genannten Prozesse darstellt (van Veen et al., 2002, Bush et al., 2000).

Eine Einschränkung dieses Potentials würde dann auf eine mangelnde Fähigkeit hinweisen, Fehler adäquat einzuschätzen und ihnen im gegebenen Kontext die richtige Bedeutung beizumessen, um zukünftige Fehler zu vermeiden. Im weiteren Sinne hinge dies auch mit der Fähigkeit zusammen, das eigene Verhalten zu beobachten, richtig einzuschätzen und situationsgerecht anzupassen, also mit Prozessen, die bei Patienten mit einer Erkrankung aus dem schizophrrenen Formenkreis häufig eingeschränkt sind (Carter et al., 2001; Morris et al., 2006; Frith et al., 1989).

An dieser Stelle sei auch noch einmal auf die bereits zitierten Studien verwiesen, die die Regulierung von motivations- und emotionsbedingtem Verhalten funktionell Strukturen des ACC zuordnen (Bush et al., 2002; Mesulam et al., 1990; Knutson et al., 2000). Eine Verminderung der Pe könnte daher auch im Sinne einer gestörten affektiven Komponente bei der Wahrnehmung von eigenen Fehlern interpretiert werden. Ebenso könnte die Aufgabe an sich, welche so konzipiert ist, dass ausreichend viele Fehler gemacht werden, dazu führen, dass insbesondere die Patienten die Motivation verlieren und einen Fehler nicht mehr bewusst wahrnehmen und somit auch nicht bewusst und emotional bewerten. Einen ähnlichen Effekt könnte dann auch die schnelle Abfolge der einzelnen Versuche und die Länge des Gesamtversuches insbesondere auf das
Verhalten der Patienten gehabt haben. Auch dies könnte eine Verminderung der Pe mit bedingt haben.

5.3.4 Pe und posterror-slowing

DISKUSSION

könnte dann kurzfristige Maßnahmen zur Vermeidung von Fehlern repräsentieren, während die Pe für solche Maßnahmen steht, die in längerfristigen und zukunftsorientierten Veränderungen im Verhalten resultieren. Eine Prüfung dieser Hypothese steht jedoch noch aus.

5.3.5 Frühe und späte Pe

Zuletzt soll noch der Ansatz einiger Autoren erwähnt werden, die Pe in zwei Komponenten, eine frühe und eine späte Pe, zu unterteilen (van Veen et al., 2002). Dieser Studie zufolge hat die frühe Pe ihr Maximum ungefähr 180 ms nach der Antwort mit einem topographischen Maximum an der Cz-Elektrode. Die späte Komponente erreicht ihr Maximum nach ca. 300 ms und ist eher im Bereich der Pz-Elektrode zu messen. Interessanterweise konnte mittels eines Dipol-Modells in dieser Studie demonstriert werden, dass die frühe Pe in anatomisch deckungsgleichen kaudalen Abschnitten des ACC generiert wird wie die ERN, während die späte Pe im rostralen Anteil und zusätzlich in oberen parietalen Kortexabschnitten lokalisiert ist. Diese Tatsache ließ die Autoren darauf schließen, dass die frühe Pe in dieselben Schritte wie die ERN bezüglich Verhaltenskontrolle involviert sei.

Im Rahmen der vorliegenden Studie waren keine entscheidenden Auffälligkeiten bezüglich der Pe-Latenzen zu finden, und auch der Faktor „Diagnose“ blieb ohne Einfluss. Auffällig ist jedoch, dass die hier gefundenen absoluten Werte der Latenzen weitestgehend nicht innerhalb der in der Einleitung genannten Zeitspanne für die übliche Pe-Latenz (200 – 500 ms) lagen, sondern etwas kürzer ausfielen. In Zusammenschau mit der eingeschränkten Amplitude der Pe könnte man darauf schließen, dass es sich bei diesem Potential nicht wie zunächst angenommen um eine eigentliche Pe handelt. Es könnte stattdessen sein, dass es sich hierbei um die oben beschriebene frühe Komponente des Pe-Komplexes handelt. Dafür spräche auch, dass alle Effekte, die für dieses Potential gefunden wurden, an der Cz-Elektrode ausgeprägter waren. Handelte es sich hierbei tatsächlich um diese frühe Komponente und ginge man davon aus,
Diskussion

dass dieses Potential in demselben Bereich des ACC generiert wird wie die ERN, dann würde sich auch die verminderte Amplitude beider Potentiale bei Patienten aus dem schizophrenen Formenkreis erklären lassen. Die funktionelle Bedeutung einer solchen frühen Komponente ist bis jetzt noch nicht ausreichend geklärt (Endrass et al., 2007; O’Connell et al., 2007), auch wenn angenommen wird, dass sie zusammen mit der ERN Aspekte desselben Systems zur Fehlerwahrnehmung repräsentiert (Endrass et al., 2007, van Veen et al., 2002).

5.4 Diskussion der CRN

5.5 Kritikpunkte dieser Arbeit

Kritisch zu sehen ist bei der vorliegenden Studie, dass im Vorfeld kein Parameter für den Schweregrad der Erkrankung eingeführt wurde, zum Beispiel eine
Abschließend stellt sich noch die Frage, ob die Bedingungen, unter denen das Paradigma präsentiert wurde, eventuell nicht geeignet waren, um eine möglichst gute ERN hervorzurufen. Die extremen Anforderungen an das Reaktionsvermögen und die Konzentration könnten bei den Patienten durchaus zu einem Mangel an Engagement und damit zur qualitativ eingeschränkten Durchführung des Versuches geführt haben. Dies wäre jedoch keine Erklärung für den fehlenden Unterschied zwischen ZP- und KS-Patienten.

Als elektrophysiologische Parameter, die einer Unterscheidung der beiden Krankheitsbilder dienen, wurden bis jetzt weitestgehend stimulusevozierte ereigniskorrelierte Potentiale (NGA, P300) überprüft. Die „error-related negativity“ (ERN) wurde bis jetzt nicht als möglicherweise relevantes elektrophysiologisches Potential untersucht. Im Rahmen der vorliegenden Arbeit wurde dieses Potential zwischen den beiden Patientengruppen verglichen, unter der Annahme, dass sich die ERN zwischen den Gruppen unterscheidet und so zur ätiologischen und diagnostischen Abgrenzung von Zykloiden Psychosen und klassischen Schizophrenien beitragen kann. Die allgemeine Studienlage postuliert in

An dieser Stelle wäre es sicherlich interessant, einen Vergleich der ERN auch noch mittels unterschiedlicher Testverfahren, bei größeren Patientengruppen und unter standardisierten Bedingungen, was zum Beispiel Medikation und Zeitpunkt der Untersuchung betrifft, vorzunehmen. Zusätzlich könnten auch bildgebende Verfahren wie PET oder fMRT herangezogen werden und den elektrophysiologischen Vergleich ergänzen und mögliche Unterschiede in der Aktivierung frontal gelegener Hirnstrukturen darstellen.

Weitere Untersuchungen könnten auch bei der Pe dazu dienen, das Ergebnis zu verifizieren. Gerade aufgrund der kognitiven Bedeutung der Pe, die im Bereich von bewusster Fehlverarbeitung, aber auch im Bereich von emotionalgeprägten Prozessen gesehen wird, ist eine Variation der Testverfahren, was zum Beispiel den Anspruch an Konzentration und Motivation betrifft, von besonderem Interesse. Ebenso könnte eine stärkere Differenzierung bezüglich Symptomatik und -ausprägung bei den Patienten im Hinblick auf den kognitiven Aspekt der Pe auch noch einen genaueren Vergleich der Pe zwischen
Patienten mit einer Zykloiden Psychose und Patienten mit einer klassischen Schizophrenie ermöglichen.
7 LITERATURVERZEICHNIS

C. Alain, H. E. Mc Neely, Yu He , B. K. Christensen and R. West, 2002. Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia, Cerebral Cortex 12, 840-846

F.M. Benes, J. McSparren, E.D. Bird, J.P. SanGiovanni, S.L. Vincent, 1991. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients, Arch Gen Psychiatry 48, 996-1001

I. Berman, B. Viegner, A. Merson, E. Allan, D. Pappas, A.I. Green, 1997. Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia, Schizophrenia Research 25, 1-10

J. Bortz, Statistik für Human- und Sozialwissenschaftler, 6. Auflage 2005, Springer Medizin Verlag Heidelberg

A. Ebner, G. Deuschi, EEG, 1. Auflage 2006, Georg Thieme Verlag Stuttgart

G.H. Freeman, J.H. Halton, 1951. Note on an exact treatment of contingency goodness-of-fit and other problems of significance, Biometrika 38, 141-149

C.D. Frith, 1987. The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action, Psychological Medicine 17, 631-648

C.D. Frith, D.J. Done, 1989. Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action, Psychological Medicine 19, 359-363

S.M. Gabriel, V. Haroutunian, P. Powchik, W.G. Honer, M. Davidson, P. Davies, et al., 1997. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia, Arch Gen Psychiatry 54, 559-566

S. Silbernagel, F. Lang, Taschenatlas der Pathophysiologie, 2. Auflage 2005, Georg Thieme Verlag Stuttgart

ABBLDUNGSVERZEICHNIS

8 ABBILDUNGSVERZEICHNIS

Abbildung 1:
 a) Vergleich der Reaktionszeiten für fehlerhafte und korrekte Versuche
 b) Vergleich der Reaktionszeiten für Posterror- und Postcorrect-Versuche. ... 59

Abbildung 2:
 Grand averages für korrekte und fehlerhafte Reaktionen in den drei Versuchsgruppen an Elektrodenposition Cz 63

Abbildung 3:
 a) Gruppenvergleich der ERN-Differenzmaß-Amplitude an Cz
 b) Gruppenvergleich der ERN-Differenzmaß-Amplitude an Fz 65

Abbildung 4:
 a) Amplitude der Pe (richtige Reaktion; gemittelt über Cz und Pz)
 b) Amplitude der Pe (fehlerhafte Reaktion; gemittelt über Cz und Pz) ... 67
9 TABELLENVERZEICHNIS

Tabelle 1: Stichprobencharakteristika .. 47
Tabelle 2: Genussmittel-Konsum Patienten ... 48
Tabelle 3: Genussmittel-Konsum Patienten/Normpersonen 48
Tabelle 4: Internistische Begleiterkrankungen 49
Tabelle 5: Psychiatrische Erkrankungen in der Familie 50
Tabelle 6: Befunde Routine-EEG .. 51
Tabelle 7: Befunde Bildgebung ... 51
Tabelle 8: Klinische Stichprobenbeschreibung 52
Tabelle 9: Verteilung antipsychotischer Medikation 53
Tabelle 10: Gruppenvergleiche (Verhaltensdaten) 57
Tabelle 11: Posterror-slowing (Gruppenvergleiche) 60
Tabelle 12: Amplitude (μV) der ERN ... 61
Tabelle 13: ERN Differenz-Amplitude (Gruppenvergleich) 64
Tabelle 14: Amplitude der Pe (μV) nach richtigen vs. falschen Reaktionen an Elektrodenposition Cz bzw. Pz ... 66
Tabelle 15: Amplitude der Pe (μV) an der Cz- vs. Pz-Elektrode gemittelt über die Antwortmöglichkeiten im Zwischengruppenvergleich 69
10 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Anteriorer Cingulärer Kortex</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>BESA</td>
<td>Brain Electric Source Analysis</td>
</tr>
<tr>
<td>BPRS</td>
<td>Brief Psychiatric Rating Scale</td>
</tr>
<tr>
<td>CPT</td>
<td>Continuous Performance Test</td>
</tr>
<tr>
<td>CRN</td>
<td>correct-response negativity</td>
</tr>
<tr>
<td>DLPFC</td>
<td>Dorsolateraler Präfrontaler Kortex</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>Diagnostic and Statistical Manual of Mental Disorders</td>
</tr>
<tr>
<td>EEG</td>
<td>Elektroenzephalogramm</td>
</tr>
<tr>
<td>EKP</td>
<td>Ereigniskorriertes Potential</td>
</tr>
<tr>
<td>ERN</td>
<td>error-related negativity</td>
</tr>
<tr>
<td>ERST</td>
<td>Experimental Run-Time System</td>
</tr>
<tr>
<td>EVP</td>
<td>Evozierte Potentiale</td>
</tr>
<tr>
<td>FMRT</td>
<td>Funktionelle Magnetresonanz-Tomographie</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Statistical Classification of Diseases</td>
</tr>
<tr>
<td>KS</td>
<td>Klassische Schizophrenie</td>
</tr>
<tr>
<td>LORETA</td>
<td>Low Resolution Electromagnetic Tomography</td>
</tr>
<tr>
<td>M</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanz-Tomographie</td>
</tr>
<tr>
<td>NGA</td>
<td>NoGo-Anteriorisierung</td>
</tr>
<tr>
<td>PANSS</td>
<td>Positive and Negative Syndrome Scale</td>
</tr>
<tr>
<td>Pe</td>
<td>error-positivity</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>PFC</td>
<td>Präfrontaler Kortex</td>
</tr>
<tr>
<td>RT</td>
<td>Reaction time</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selektive Serotonin-Wiederaufnahme-Hemmer</td>
</tr>
<tr>
<td>ZP</td>
<td>Zykloide Psychose</td>
</tr>
</tbody>
</table>
DANKSAGUNG

Ich möchte mich an dieser Stelle bei meinem Doktorvater Herrn Prof. Fallgatter bedanken, der mir die Promotion ermöglicht und sie geleitet hat. Außerdem danke ich Frau Prof. Sommer für die Erstellung des Zweitgutachtens für diese Promotionsarbeit.

Ganz besonderer Dank gilt Frau Dr. Ehlis, die mich unermüdlich, geduldig und über die Maßen kompetent bei der Entstehung dieser Arbeit unterstützt hat.

Meiner Familie danke ich für die moralische, geistige und finanzielle Unterstützung, mit der sie mich durch das Studium und durch die Promotion begleitet hat.