Analysis of Virulence Factors of Legionella pneumophila

JÖRG HACKER, MANFRED OTT, EVA WINTERMEYER,
BIRGIT LUDWIG, and GUNTER FISCHER

Theodor-Boveri-Institut für Biowissenschaften der Universität Würzburg, Lehrstuhl für
Mikrobiologie, 8700 Würzburg, Germany

1 MPG Arbeitsgruppe „Enzymologie der Peptidbindung“, Biotechnicum, 4050 Halle/Saale,
Germany

With 3 Figures

Summary

Legionella pneumophila, the causative agent of Legionnaires’ disease is a facultative
intracellular bacterium, which in the course of human infection multiplies in lung mac­
rophages predominantly manifesting as pneumonia. The natural habitat of Legionella is
found in sweet water reservoirs and man-made water systems. Virulent L. pneumophila
spontaneously convert to an avirulent status at a high frequency. Genetic approaches have
led to the identification of various L. pneumophila genes. The mip (macrophage infectivity
potentiator) determinant remains at present the sole established virulence factor. The Mip
protein exhibits activity of a peptidyl prolyl cis trans isomerase (PPiase), an enzyme which is
able to bind the immunosuppressant FK506 and is involved in protein folding. The recently
cloned major outer membrane protein (MOMP) could play a role in the uptake of legionell­
ae by macrophages. Cellular models are useful in studying the intracellular replication of
legionellae in eukaryotic cells. Human cell lines and protozoan models are appropriate for
this purpose. By using U 937 macrophage-like cells and Acanthamoeba castellanii as hosts,
we could discriminate virulent and avirulent L. pneumophila variants since only the virulent
strain was capable of intracellular growth at 37°C. By using these systems we further
demonstrated that a hemolytic factor cloned and characterized in our laboratory, legiolysin
(lly), had no influence on the intracellular growth of L. pneumophila.

Zusammenfassung

Legionella pneumophila, der Erreger der Legionärskrankheit, ist ein fakultativ intrazel­
 luläres Bakterium. Im Zuge einer Infektion der menschlichen Atemwege, die sich als
Pneumonie manifestiert, vermehren sich Legionellen intrazellulär in Lungenmakrophagen.
Legionellen kommen natürlicherweise in Süßwasserhabitaten, einschließlich Wasserlei­
tungsanlagen vor. Aus virulenten L. pneumophila-Stämmen können spontan und mit hoher
Frequenz avirulente Varianten entstehen. Genetische Arbeiten führten zur Identifizierung
verschiedener L. pneumophila-Genen. Bisher konnte nur die mip („macrophage infectivity
potentiator“)-Determinante eindeutig als Virulenzgen identifiziert werden. Das Mip-Protein
bildet eine Peptidyl-Prolyl-cis-trans-Isomerase (PPiase)-Aktivität aus, die durch Zugabe des
Analysis of Virulence Factors of Legionella pneumophila

Legionella pneumophila, the Causative Agent of Legionnaires’ Disease

L. pneumophila was first described in 1977, during the year following the outbreak of epidemic pneumonia in Philadelphia in 1976 (36). The causative agent of the disease, which was termed Legionnaires’ disease was identified as a Gram-negative rod-like bacterium with special growth requirements in the laboratory (55). In addition to L. pneumophila, 31 species of the genus Legionella have been described in the meantime, and half of them have been reported to be pathogenic for humans (13). The clinical manifestation of Legionella infections is pneumonia, but also a non-pneumonic disease, termed Pontiac fever, is due to Legionella infections.

Legionellae are found ubiquitously in sweet water reservoirs, where the presence of protozoa supports their growth (45). Infection of humans starts with the inhalation of aerosolized water-borne legionellae. Elderly and immuno-compromized persons are highly susceptible to infection by legionellae. In the course of infection, which is accompanied by high fever, legionellae multiply in lung macrophages, leading to severe tissue damage (13, 55). Lethal consequences of Legionnaires’ disease have been reported quite often, especially in the case of nosocomial outbreaks (41). Transmission from human to human has not been observed.

Legionellae spontaneously convert to an avirulent status, with a relatively high frequency (8). Avirulent variants which can be enriched by culturing on special laboratory media, differ from their virulent parents in numerous aspects. Morphologically, avirulent strains tend to display an elongated cell shape (39), they furthermore show reduced serum resistance (7) and survival in aerosols (12). Strikingly, the capability to replicate intracellularly in either monocytes and macrophages or even in protozoa is lost (26, 38, 42, 49). Virulence of legionellae is assessed by intranasal or intraperitoneal infection of guinea pigs which seem to have been the only appropriate animal model to date (2, 49). Little is presently known about the factors contributing to the virulence of legionellae. The comparison of virulent and avirulent counterparts is an effective approach which results in a better understanding of Legionella pathogenicity. In addition to this approach, genetic attempts to clone and characterize putative Legionella-specific virulence factors have been undertaken in recent years.

The Mip Protein: A Legionella Virulence Factor with an Unusual Enzymatic Activity

Several groups have reported about the construction of Legionella genomic libraries from patient isolates (17, 20, 21). Various L. pneumophila-specific proteins have been cloned in E. coli K-12. The most intensively studied protein is the so-called Mip ("macrophage infect..."
tivity potentiator" factor, a membrane-associated protein of 24 kDa (15, 17). It was conclusively demonstrated that the ability of Mip-negative mutants of L. pneumophila to invade eukaryotic cells was reduced by a factor of 100 when compared to Mip-positive cells (11). In addition, a mutation in the mip gene resulted in an attenuation of virulence as estimated in the guinea pig model (10). \textit{In vitro} and \textit{in vitro} virulence could be restored by reintroduction of functionally active \textit{mip} sequences into the Mip-negative mutants.

The \textit{mip} sequences are highly conserved among virulent and non-virulent strains of \textit{L. pneumophila} (Table 1, ref. 9). It exhibits homology with \textit{mip}-like genes of other \textit{Legionella} species (2, 9). Interestingly, genes which show a degree of about 50% homology to the \textit{mip} determinant of \textit{L. pneumophila} are also located on the genomes of other pathogenic bacteria like \textit{Chlamydia trachomatis}, \textit{Neisseria meningitidis} and \textit{Pseudomonas aeruginosa}, thus furthering the argument of a common mechanism for these proteins in the pathogenesis of bacteria.

The amino acid sequence from the C-terminal part of the Mip protein also shares homologies with eukaryotic FK506 binding proteins (FKBPs) which, together with cyclophilins, form the substance class of immunophilins. They are involved in the regulation of early T-cell activation (47). The immunophilins are able to bind the immunosuppressants, FK596 (in the case of FKBPs) and ciclosporin (in the case of cyclophilins). In addition, they exhibit peptidly prolyl cis trans isomerase (PPiase) activity, i.e. they isomerize cis peptidyl-proline bonds to the trans configuration and may play a role in protein folding (19, 30).

Consequently, we expressed the Mip factor in a vector system suitable for the isolation and characterization of the protein. To our surprise, we were able to show that Mip indeed

<table>
<thead>
<tr>
<th>Organism</th>
<th>Protein</th>
<th>Homology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Legionella pneumophila}</td>
<td>Mip</td>
<td>99.6%</td>
<td>16</td>
</tr>
<tr>
<td>\textit{strain Wadsworth}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Legionella pneumophila}</td>
<td>Mip</td>
<td>99.6%</td>
<td>Ludwig, unpublished data</td>
</tr>
<tr>
<td>\textit{strain U21 S6}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Legionella micdadei}</td>
<td>Mip-like protein</td>
<td>88.4%</td>
<td>1</td>
</tr>
<tr>
<td>\textit{Neisseria meningitidis}</td>
<td>ORF in the vicinity of pili genes</td>
<td>59.8%</td>
<td>43</td>
</tr>
<tr>
<td>\textit{Chlamydia trachomatis}</td>
<td>L2-Protein1</td>
<td>56.2%</td>
<td>32</td>
</tr>
<tr>
<td>\textit{Pseudomonas aeruginosa}</td>
<td>ORF in the vicinity of alginate synthesis genes</td>
<td>50.0%</td>
<td>28</td>
</tr>
<tr>
<td>\textit{Man}</td>
<td>FKBP of T cells2</td>
<td>55.2%</td>
<td>32, 49</td>
</tr>
<tr>
<td>\textit{Saccharomyces cerevisiae}</td>
<td>FKBP</td>
<td>54%</td>
<td>54</td>
</tr>
<tr>
<td>\textit{Man}</td>
<td>FKBP of human cancer cell line</td>
<td>53.4%</td>
<td>27</td>
</tr>
<tr>
<td>\textit{Neurospora crassa}</td>
<td>FKBP</td>
<td>56.8%</td>
<td>53</td>
</tr>
</tbody>
</table>

1 The sequence of the C-terminal part of the L2 protein was used for comparison.
2 FK506 binding protein.
Analysis of Virulence Factors of Legionella pneumophila

exhibited PPiase activity which could be inhibited by FK506 in a nanomolar range (18). Presently studies are underway to decide whether or not this particular enzymatic activity contributes to the pathogenicity of Legionella.

Molecular Cloning of Other Putative Virulence Factors

Besides the Mip protein, several other Legionella antigens were identified and characterized which may function as virulence factors (see Table 2). A recently done by Engleberg and others (16) the 19 kDa peptidoglycan-associated protein of Legionella (Ppl) has been cloned and sequenced in our laboratory (31). This protein is associated with the murein layer of the bacterial surface and exhibits a distinct homology to lipoproteins of E. coli and Haemophilus influenzae. The role of Ppl in pathogenicity of legionellae has to be established yet.

The major outer membrane protein (MOMP) of L. pneumophila has been previously cloned (24). The MOMP protein binds the C3 factor of the complement, thereby mediating the macrophageal engulfment of Legionella (3). The gene ompS encodes the 28 kDa protein which also can be covalently linked to peptidoglycan, forming a structure of 31 kDa. Oligomers of 28 kDa and 31 kDa form a complex of 100 kDa which can be isolated from Legionella surfaces (24, 25). The MOMP complex is further

Table 2. L. pneumophila genes cloned in E. coli K-12

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mol. weight of the protein</th>
<th>Function/Description</th>
<th>Contribution to pathogenicity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>mip</td>
<td>24 kDa</td>
<td>"macrophage infectivity potentiator", involved in intracellular survival, PPiase activity</td>
<td>+</td>
<td>10, 11, 18</td>
</tr>
<tr>
<td>msp</td>
<td>38 kDa</td>
<td>"major secretory protein" metallo-protease, cytotoxic and hemolytic activity</td>
<td>-</td>
<td>5, 29, 51</td>
</tr>
<tr>
<td>lly</td>
<td>39 kDa</td>
<td>"legiolysin", hemolytic activity, involved in pigment production</td>
<td>-</td>
<td>56</td>
</tr>
<tr>
<td>pplA</td>
<td>19 kDa</td>
<td>"peptidoglycan-associated protein of Legionella"</td>
<td>n.d.</td>
<td>16, 31</td>
</tr>
<tr>
<td>ompS</td>
<td>28 kDa-31 kDa</td>
<td>Major outer membrane protein (MOMP), 100 kDa complex, involved in uptake of legionellae by C3-opsonization, attachment</td>
<td>+</td>
<td>3, 24, 25</td>
</tr>
<tr>
<td>hspB</td>
<td>60 kDa</td>
<td>"Heat shock proteins", housekeeping functions</td>
<td>n.d.</td>
<td>22, 23, 46</td>
</tr>
<tr>
<td>sodB</td>
<td>n.d.</td>
<td>Iron-superoxide dismutase</td>
<td>n.d.</td>
<td>50</td>
</tr>
<tr>
<td>recA</td>
<td>38 kDa</td>
<td>homologous recombination UV-induced</td>
<td>n.d.</td>
<td>57</td>
</tr>
</tbody>
</table>

n.d., not determined.

21 Zbl. Bakt. 278/2-3
involved in an opsonization-independent attachment to human cells (44). Furthermore, the 60 kDa heat shock protein (Hsp) of \textit{L. pneumophila} was cloned by Hoffman et al. and other groups (20, 22, 46). It is immunodominant, displaying homology to the groEL family of heat shock proteins (23). Mutations in the \textit{htp} locus indicating that the “house-keeping” functions of this protein would make it indispensable for the bacterium could not be obtained.

Two hemolytic proteins have been cloned, and one of them, theMsp (major secretory protein) is 38 kDa metallo-protease for which also cytotoxic effects on CHO cells have been demonstrated (5, 29). On the other hand, Msp-negative mutants remain virulent (51). The other hemolytic protein, legiolysin (Lly), was intensively studied in our laboratory. The 39 kDa protein expressed in \textit{E. coli} K-12 exhibited brown pigment production in addition to hemolysis (56). Recently, an iron-superoxide dismutase which may be involved in the defense against the intracellular attack has been cloned from \textit{L. pneumophila} (50). Additionally, the 38 kDa RecA homologous protein of \textit{L. pneumophila} was cloned (57) and shown to have functions similar to the \textit{E. coli} RecA protein.

The cloned genes of \textit{L. pneumophila} were also useful for differentiation of \textit{L. pneumophila} strains from isolates of other species. DNA probes derived from the legiolysin (Lly) and the peptidoglycan-associated protein of \textit{Legionella} (ppi) were used in the study of a large number of strains. We found that under conditions of high stringency hybridization, \textit{L. pneumophila} reacted exclusively with these DNA probes. By applying low stringency conditions for hybridization, the genus \textit{Legionella} could be differentiated from other Gram-negative bacteria (4, 40).

\textit{Construction of Genomic Mutants}

Genetic attempts to analyse putative virulence factors of legionellae were hindered by numerous obstacles. Legionellae harbor a restriction system which functions as a defense against incoming DNA (35). Heterologous transfer of plasmids can only be achieved via conjugation and at relatively low frequency. Counterselection necessary for the isolation of \textit{trans}-conjugants is restricted to a narrow spectrum of antibiotic resistance (37). To date, random transposon mutagenesis did not lead to an identification of virulence factors with the result that factors other than those obtained in the \textit{E. coli} K-12 system (see above) have not been identified genetically. Genomic mutations were created by allelic exchange mutagenesis using the cloned genes. One of the approaches had been the use of mobilizable \textit{pir}-dependent plasmids from the \textit{incX} group (51). These were shown to be transferred to \textit{Legionella}. They do not replicate due to the lack of the \textit{Pir} protein in the recipient. Mutations can be therefore obtained by selecting the recombinational event concomitantly with the introduction of an antibiotic resistance marker. Experiments utilizing \textit{Col E1}-derived plasmids for mutagenesis \textit{via} allelic exchange have also been successfully reported (11).

We inserted a kanamycin resistance gene into the legiolysin-coding sequence. The respective fragment was subcloned into pMSS 706-1. This plasmid is a derivative of the \textit{pir}-dependent R6K (52) carrying an additional chloramphenicol resistance marker. Heterospecific conjugation was carried out between the \textit{pir} \textit{E. coli} donor in which the genetic manipulations had been performed and a restriction-deficient derivative of the \textit{L. pneumophila} Philadelphia I strain, JR 32 (35). Mobilization of the construct was achieved through the chromosomal \textit{tra} function of the \textit{E. coli} donor which acted upon
the mob sequences present on the plasmid. Trans-conjugants were selected by streptomycin resistance (for the recipient L. pneumophila JR 32) and kanamycin resistance for allelic exchange of the wild type lly locus with the mutant DNA. Integration of the plasmid was excluded by the chloramphenicol-sensitive phenotype of the trans-conjugants (Fig. 1).

The mutants obtained were characterized genetically and phenotypically showing that disruption of the lly gene by the insertion of kanamycin resistance resulted in a loss of brown pigment production. Interestingly, a marked influence on the hemolytic activity of the mutant could not be observed. This has been explained by the fact that L. pneumophila carries additional hemolytic factors which may mask the hemolytic activity of the legiolysin (6). Reintroduction of intact lly sequences by transferring them via a stable replicating pMMB 34 derivative (incQ) resulted in restoration of brown pigment production. The influence of the lly mutation was also tested in models for intracellular replication of Legionella.

Cellular Models for Intracellular Replication

Various cellular models for intracellular replication of Legionella have been established. It could be shown that human cell lines are appropriate for this purpose. These include HeLa cells (14), HL 60 monocytes (34) and U 937 macrophage-like cells (42). In addition, recent data have shown that protozoan models such as Acanthamoeba castellanii are especially useful in the differentiation of virulent from avirulent variants (38,

![Diagram](image)

Fig. 1. Construction of a Lly" mutant of L. pneumophila Philadelphia I (JR 32) by allelic exchange.
We tested the Lly-negative *L. pneumophila* mutant for intracellular growth in U937 macrophage-like cells and in *A. castellanii*. The invasion assay begins with the centrifugation of the legionellae onto the host cells and an incubation for 2 hours, so that legionellae can establish themselves intracellularly. Hereafter, the supernatant is removed and remaining extracellular legionellae are killed by gentamicin treatment (80 μg/ml) applied for one hour. After washing, fresh antibiotic free-medium is added. Colony-forming units of viable legionellae are counted at time “0”, i.e. directly after gentamicin treatment, 3 and 1 day after infection (p.i.), by plating serial dilutions of the disrupted cultures on special *Legionella* medium.

The tests were performed using the virulent Philadelphia I strain, an avirulent derivative (XXXV) and the Lly-negative mutant at 37°C. In Fig. 2 it can be seen that 1 d p.i., the Lly-negative mutant “displayed intracellular CFU values” similar to those obtained for the virulent Philadelphia parent. From these data, we conclude that the legiolysin has no influence on intracellular replication of *L. pneumophila*. Perhaps the involvement of lly in pigment production confers an advantage to legionellae with regard to their survival in the environmental reservoir. Fig. 3 illustrates the intracellular location of legionellae in phagosomes of U937 cells and, during the later stage of the intracellular life cycle, in the cytoplasm. Since the growth temperature had been reported to have an influence on the survival of *L. pneumophila* in *A. castellanii* (38), the strains were further tested at 30°C with *A. castellanii* as a host (Table 3). It could be shown that the avirulent derivative of the Philadelphia I strain was also capable of growth in *Acanthamoeba* at 30°C (49).

Acknowledgements. Our own studies included in this work were supported by the Bundesministerium für Forschung und Technologie (BMFT 01 K, 8829). We gratefully acknowledge the critical comments of Laurence E. Phillips and the editorial assistance of H. Kurz.
Fig. 3. Electronmicroscopic examination of thin sections of U937 cells infected by legionellae. The intracellular location of *L. pneumophila* in phagosomes (above) in the early stage of invasion is shown (magnification 20 000×). In a later stage of the intracellular life cycle, legionellae are found in the cytoplasm (below, magnification 30 000×).

Table 3. Intracellular growth behavior and *in vivo* virulence of *L. pneumophila* Philadelphia I and derivatives

<table>
<thead>
<tr>
<th>Strain</th>
<th>Intracellular growth in U937 cells A. castellanii</th>
<th>30°C</th>
<th>37°C</th>
<th>in vivo virulence (i.p. infection of guinea pigs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. pneumophila</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Philadelphia I</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L. pneumophila</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XXXV, avirulent</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. pneumophila</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n.d.</td>
</tr>
<tr>
<td>JR 32, Lly⁺</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

n.d., not determined.
References

20. Hacker, J., M. Ott, B. Ludwig, and U. Rdest: Intracellular survival and expression of
22. Hoffman, P. S., C. A. Butler, and F. C. Quinn: Cloning and temperature-dependent
expression in Escherichia coli of a Legionella pneumophila gene coding for a genus-
23. Hoffman, P. S., L. Houston, and C. A. Butler: Legionella pneumophila htpAB heat
shock operon: nucleotide sequence and expression of the 60-kilodalton antigen in
L. pneumophila-infected HeLa cells. Infect. Immun. 58 (1990), 3380–3387
24. Hoffman, P. S., M. Repely, and W. Weeratna: Cloning and nucleotide sequence of a gene
(ompS) encoding the major outer membrane protein of Legionella pneumophila. J.
Bact. 174 (1992) 914–920
25. Hoffman, P. S., J. H. Seyer, and C. A. Butler: Molecular characterization of the 28- and
31-kilodalton subunits of the Legionella pneumophila major outer membrane protein. J.
Bact. 174 (1992) 908–913
26. Horwitz, M. A.: Characterization of avirulent mutant Legionella pneumophila that sur-
1310–1328
Molecular cloning of a membrane-associated human FK506- and rapamycin-binding
T. K. Misra: Nucleotide sequence of the regulatory region controlling alginate synthesis
31–38
29. Keen, M. G. and P. S. Hoffman: Characterization of a Legionella pneumophila extracel-
732–738
30. Lang, K., F. X. Schmid, and G. Fischer: Catalysis of protein folding by prolyliso-
31. Ludwig, B., A. Schmid, R. Marre, and J. Hacker: Cloning, genetic analysis, and nu-
cleotide sequence of a determinant coding for a 19-kilodalton peptidoglycan-associated
32. Lundemose, A. G., S. Birkelund, S. J. Fey, P. Mose Larsen, and G. Christiansen: Chlamy-
dia trachomatis contains a protein similar to the Legionella pneumophila mip gene
M. Suzuki: Complementary DNA encoding the human T-cell FK 506-binding protein,
a peptidylprolyl cis-trans isomerase distinct from cyclophilin. Proc. Natl. Acad. Sci. USA
87 (1990) 5440–5443
34. Marra, A., M. A. Horwitz, and H. A. Shumann: The HL-60 model for the interaction of
2738–2744
with increased ability to act as recipient in heterospecific matings. J. Bact. 171 (1989)
2238–2240
36. McDade, J. E., C. C. Shepard, D. W. Fraser, T. R. Tsai, M. A. Redus, and W. R. Dowdle:
Legionnaires' disease: isolation of a bacterium and demonstration its role in other
38. Moffat, J. F. and L. S. Tompkins: A quantitative model of intracellular growth of
296–301