Aus der Frauenklinik und Poliklinik
der Universität Würzburg
Direktor: Professor Dr. med. Johannes Dietl

Geburtseinleitung mit 2 mg Prostaglandin-E₂-Vaginalgel
bei unreifem Zervixbefund (Bishop-Score ≤ 5)

Inaugural – Dissertation
zur Erlangung der Doktorwürde der
Medizinischen Fakultät
der
Bayerischen Julius-Maximilians-Universität zu Würzburg

vorgelegt von

Thomas Bernar

aus Würzburg

Würzburg, Juni 2004
Referent: Priv.-Doz. Dr. med. Thomas Müller
Koreferent: Prof. Dr. med. Johannes Dietl
Dekan: Prof. Dr. med. Stefan Silbernagl

Der Promovend ist Arzt
für meine Kinder Jonas, Giulia und Tobias
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Physiologie des Geburtsbeginns .. 1
 1.1.1 Zervixreifung .. 1
 1.1.2 Bishop-Score .. 3
 1.2 Geburtseinleitung .. 3
 1.2.1 Indikationen .. 4
 1.2.2 Kontraindikationen ... 4
 1.2.3 Geschichte der Geburtseinleitung .. 5
 1.3 Prostaglandine in der Geburtshilfe .. 7
 1.3.1 Wirkung der Prostaglandine .. 7
 1.3.2 Präparate und Applikationswege .. 8
 1.3.3 Nebenwirkungen ... 10
 1.3.4 Kontraindikationen ... 10
 1.4 Insulin-like growth factor binding protein 1.. 10
 1.5 Vorzeitiger Blasensprung .. 11

2 Fragestellungen ... 13
 2.1 Effektivität der Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel bei vorzeitigem
 Blasensprung und unreifem Zervixbefund ... 13
 2.2 Praediktiver Wert des phIGFBP-1 (phosphoryliertes Insulin-like Growth Factor
 Binding Protein-1) bei Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel und
 unreifem Zervixbefund .. 13

3 Methodik .. 14
 3.1 Patientenkollektiv .. 14
 3.1.1 Einschlusskriterien ... 14
 3.1.2 Ausschlusskriterien ... 14
 3.2 Vorgehensweise ... 14
 3.2.1 Aufklärung .. 14
 3.2.2 Blutabnahme ... 14
 3.2.3 Vaginale Untersuchung .. 15
 3.2.4 Einleitung mit Prostaglandin-E2-Vaginalgel .. 15
3.3 Geburtseinleitung mit 2 mg Prostaglandin-E₂-Vaginalgel bei vorzeitigem Blasensprung und unreifem Zervixbefund ... 15

3.3.1 Vorgehensweise .. 15

3.4 Geburtseinleitung mit 2 mg Prostaglandin-E₂-Vaginalgel ohne vorzeitigem Blasensprung bei unreifem Zervixbefund ... 16

3.4.1 actim Partus test ... 16

3.4.2 Vorgehensweise .. 16

3.5 Untersuchungsparameter .. 17

3.5.1 Ausgangssituation ... 17

3.5.2 Prostaglandin-Gel-Applikationen ... 18

3.5.3 Oxytozingabe und Amniotomie im Geburtsverlauf .. 18

3.5.4 Schmerzbehandlung .. 18

3.5.5 Geburtsmodus .. 18

3.5.6 Zeitintervalle ... 18

3.5.7 Kumulative vaginale Entbindungsrate nach 24 Stunden 18

3.5.8 Uterine Überstimulierung .. 19

3.5.9 Wehenhemmende Medikamente .. 19

3.5.10 Postpartale Komplikationen ... 19

3.5.11 Perinatales Ergebnis ... 19

3.6 Statistik .. 19

4 Ergebnisse ... 21

4.1 Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel bei vorzeitigem Blasensprung und unreifem Zervixbefund ... 21

4.1.1 Ausgangssituation ... 21

4.1.2 Bishop-Score bei Einleitungsbeginn .. 22

4.1.3 Prostaglandingel-Applikationen ... 22

4.1.4 Oxytozingabe und Amniotomie im Geburtsverlauf .. 23

4.1.5 Schmerzbehandlung .. 24

4.1.6 Geburtsmodus .. 24

4.1.7 Zeitintervalle ... 26

4.1.8 Kumulative vaginale Entbindungsrate nach 24 Stunden 27

4.1.9 Uterine Überstimulierung .. 27
1 Einleitung

1.1 Physiologie des Geburtsbeginns

Während der Schwangerschaft kommt es an der Gebärmutter zu einer Vielzahl struktureller, humoraler und zellulärer Veränderungen, die letztendlich zur Geburt führen. Vorraussetzung für den normalen Geburtsverlauf am Termin ist das koordinierte Zusammenwirken von Zervixreifung, Muttermundseröffnung und Wehentätigkeit. Dieser Mechanismus, der wahrscheinlich maternale, fetale und plazentare Faktoren beinhaltet, ist für den Menschen bisher nicht genau verstanden [1, 2].

1.1.1 Zervixreifung

Während der Schwangerschaft besteht die wesentliche Funktion der Zervix im Verschluss der Gebärmutter. Unter der Geburt weitet sich dieser Teil der Gebärmutter relativ schnell bis auf einen Durchmesser von 10 cm auf und verwandelt sich postpartal innerhalb weniger Wochen wieder in eine feste Zervix zurück. Diese Vorgänge erfolgen nicht nur auf ein passives Nachgeben gegenüber der Wehentätigkeit hin. Vielmehr finden auf molekularer Ebene während der späten Schwangerschaft allmähliche Reifungsprozesse in der Zervix statt, die bei Eintritt der Wehentätigkeit die rasche Dilatation der Zervix innerhalb weniger Stunden ermöglichen [3].

Reguliert wird die Aktivität von Entzündungszellen durch Zytokine und Chemokine. Interleukin-8, das chemotaktisch wirkt und neutrophile Granulozyten aktiviert und degranuliert, wird von aktivierten Makrophagen und Fibroblasten freigesetzt. Während der Zervixdilatation steigen auch die Konzentrationen von Interleukin-1β, Interleukin-6 und TNF-α in zervikalen Stroma an [9, 10]. Das proinflammatorische Interleukin-1β führt zur Produktion und Freisetzung von Interleukin-8 aus den Zervixfibroblasten. Interleukin-1β fördert außerdem die Freisetzung von Arachidonsäure aus dem Myometrium und die Synthese von Prostaglandin-E₂ [11].
Zusammengefasst ist die Zervixreifung ein multifaktorielles Geschehen bei dem Bindegewebszellen und Entzündungszellen durch Freisetzung von humoralen Mediatoren und Proteasen eine Umbau der Extrazellulärmatrix der Zervix hervorrufen [12].

1.1.2 Bishop-Score

Der Reifezustand der Zervix lässt sich mit dem Bishop-Score objektivieren. Bei der vaginalen Untersuchung lässt sich der Stand der Portio, die Zervixlänge, die Konsistenz und die Weite des Muttermunds sowie die Höhe des kindlichen Köpfchens in cm zur Interspinaleebene erfassen. Durch das Addieren der Punkte ergibt sich der Bishop-Score [13].

Tabelle 1: Bishop-Score

<table>
<thead>
<tr>
<th>Befund</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand der Portio</td>
<td></td>
</tr>
<tr>
<td>sakral</td>
<td>0</td>
</tr>
<tr>
<td>mediosakral</td>
<td>1</td>
</tr>
<tr>
<td>median</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Zervixlänge</td>
<td></td>
</tr>
<tr>
<td>> 2 cm</td>
<td>0</td>
</tr>
<tr>
<td>1-2 cm</td>
<td>1</td>
</tr>
<tr>
<td>0,5-1 cm</td>
<td>2</td>
</tr>
<tr>
<td>< 0,5 cm</td>
<td>3</td>
</tr>
<tr>
<td>Konsistenz</td>
<td></td>
</tr>
<tr>
<td>derb</td>
<td>0</td>
</tr>
<tr>
<td>mittel</td>
<td>1</td>
</tr>
<tr>
<td>weich</td>
<td>2</td>
</tr>
<tr>
<td>Muttermundseröffnung</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-2 cm</td>
<td>1</td>
</tr>
<tr>
<td>3-4 cm</td>
<td>2</td>
</tr>
<tr>
<td>> 4 cm</td>
<td>3</td>
</tr>
<tr>
<td>Höhe des vorangehenden Teils</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>-1/0</td>
<td>2</td>
</tr>
<tr>
<td>+1/+2</td>
<td>3</td>
</tr>
</tbody>
</table>

1.2 Geburtseinleitung

1.2.1 Indikationen
Das grundsätzliche Ziel der medikamentösen Geburtseinleitung ist, durch die Beendigung der Schwangerschaft ein besseres perinatales Ergebnis für Mutter und Kind zu erreichen als bei einer abwartenden Haltung [14].

1.2.1.1 Fetale Indikationen
Die häufigsten fetalen Indikationen für eine Geburtseinleitung sind ein vorzeitiger Blasensprung mit einem erhöhten Risiko für eine fetale und maternale Infektion (z.B. Amnioninfektionssyndrom) und eine Überschreitung des Geburtstermins welche mit einer erhöhten perinatalen Mortalität einhergeht.
Weitere häufige Ursachen sind der Gestationsdiabetes, mit dem Risiko einer fetalen Makrosomie, sowie die Placentainsuffizienz mit möglichen Folgen einer fetalen Wachstumsrestriktion, Oligohydramnion, Doppler- oder CTG-Pathologie.
Darüber hinaus gibt es noch zahlreiche weitere Indikationen, wie z.B. fetale Makrosomie ohne Gestationsdiabetes, einen intrauterinen Fruchttod in der Vorgeschichte oder fetale Fehlbildungen (z.B. zystische Nierendysplasien), die eine vorzeitige Beendigung der Schwangerschaft indizieren können.

1.2.1.2 Mütterliche Indikationen
Die häufigste mütterliche Indikation ist das Vorliegen einer hypertensiven Schwangerschaftserkrankung (HES). Dazu zählen der schwangerschaftsinduzierte Hypertonus (SIH), die Präeklampsie (Hypertonus mit Proteinurie) und das beginnende HELLP-Syndrom (Hypertonie, erhöhte Leberenzyme, verminderte Thrombozyten).
Diese stellen zumeist sekundär auch eine fetale Gefährdung dar.
Sonstige mütterliche Erkrankungen und Beschwerden wie z.B. Ödeme, Karpaltunnelsyndrom, Symphysenschmerzen, Atemnot, Übelkeit, Zustand nach tiefer Beinvenentrombose, Mammakarzinom in der Schwangerschaft sowie der ausdrückliche Wunsch der Patientin können eine vorzeitige Beendigung der Schwangerschaft indizieren.

1.2.2 Kontraindikationen
Als Kontraindikationen für eine Geburtseinleitung gelten alle geburshilflichen Situationen, die keine vaginale Entbindung erlauben. Dies sind z. B. Placenta praevia,
vorzeitige Placentalösung, kindliche Querlage, fetopelvine Disproportion und drohende kindliche Asphyxie. Auch stellen akute mütterliche oder kindliche Gefahrensituationen, die eine sofortige Entbindung erfordern, eine absolute Kontraindikation für eine Geburtseinleitung dar.

Nach vorangegangener Sectio cesarea mit uterinem Querschnitt erscheint eine Geburtseinleitung vertretbar, während der Uteruslängsschnitt aufgrund einer deutlich höheren Rupturgefahr eine absolute Kontraindikation für eine Geburtseinleitung und vielmehr eine Sectioindikation darstellt [16].

Darüber hinaus gibt es substanzspezifische Gegenanzeigen wie Nieren-, Herz- oder Leberschäden, asthmatische Erkrankungen, Lungenerkrankungen, Infektionen und Glaukom sowie Überempfindlichkeit gegen Prostaglandine.

Multiparität, Mehrlinge und Steißlage stellen keine absoluten Kontraindikationen für eine Geburtseinleitung dar [14, 15]

1.2.3 Geschichte der Geburtseinleitung

Theobald entwickelte die Methode fort und schuf damit die Basis für die klassische Geburtseinleitung mittels Amniotomie und intravenöser Oxytozin-Zufuhr. 1953 gelang es Tuppy und Duvigneaud gleichzeitig, die chemische Struktur von Oxytozin aufzuklären. Boissonas erhielt 1956 für die technische Synthese des Oktapeptids den Nobelpreis.

1.3 Prostaglandine in der Geburtshilfe

Heutzutage sind Prostaglandine präpartal die Mittel der Wahl zur Geburtseinleitung bei unreifem Zervixbefund, weil sie sowohl das Myometrium stimulieren, als auch eine Zervixreifung induzieren (Abbildung 1). Postpartal werden Prostaglandine zur Behandlung atonischer Uterusblutungen eingesetzt.

Abbildung 1: Wirkung der Prostaglandine auf Myometrium und Zervix [14]

1.3.1 Wirkung der Prostaglandine

Prostaglandine wirken als lokale Hormone, die unmittelbar nach ihrer Wirkung zu inaktiven Metaboliten abgebaut werden. Nach spontanem Wehenbeginn, nach Geburtseinleitung mit Oxytozin, durch Amniotomie und nach exogener PG-Zufuhr kommt es zu einem dramatischen Anstieg der Metaboliten von PGE$_2$ und PGF$_{2\alpha}$ im peripheren mütterlichen Blut [19]. Der Grund für die zentrale Rolle der Prostaglandine für den Geburtsmechanismus beim Menschen stellt ihre mehrfache Wirkung dar. Einerseits lösen sie Kontraktionen im Myometrium aus, andererseits bewirken sie eine Fülle von biophysikalischen und biochemischen Veränderungen im Bereich der Zervix,
die klinisch zu einer Erweichung und einer Reduktion des zervikalen Widerstands führen [20, 17].
Darüber hinaus induzieren Prostaglandine die Bildung von Gap junctions, elektronenmikroskopisch nachweisbaren Zellbrücken zwischen den Myometriumzellen, die für eine koordinierte Erregungsübertragung zwischen den Muskelzellen notwendig sind [21].
Prostaglandine bewirken zudem eine vermehrte Sensibilisierung gegenüber körpereigenem Oxytozin durch Induktion von Oxytozin-Rezeptoren [19].
Diese Wirkungen ergänzen sich in idealer Weise, um eine Geburt zu induzieren [22].

1.3.2 Präparate und Applikationswege
Grundsätzlich können Prostaglandine zur Geburtseinleitung per os, intravenös, extraamnial, intrazervikal und intravaginal verabreicht werden.
Bei exogener systemischer Zufuhr wirken Prostaglandine aber nicht nur auf das Myometrium und die Zervix, sondern auch auf die glatte Muskulatur des Magen-Darm-Trakts und der Gefäße. Daraus erklärt sich, dass die zunächst eingeführte intravenöse bzw. orale Applikation die in diese Substanzgruppe gesetzten Hoffnungen nicht erfüllen konnte [23]. Einerseits war die Wirkung auf die Zervix ungenügend, andererseits kam es zu einer hohen Rate von vornehmlich gastrointestinalen Nebenwirkungen wie Übelkeit und Erbrechen. Inzwischen ergibt sich die Indikation für eine intravenöse Applikation nur noch zur Behandlung der Atonie und zur Abortinduktion.
Die ersten Erfolge wurden mit der extraamnialen Instillation einer PGF$_{2\alpha}$-Lösung oder von PGE$_2$-haltigem Gel erzielt. Diese Applikationsform wird jedoch von den Patientinnen als unangenehm empfunden und ist mit einem erhöhten Risiko einer aufsteigenden Infektion verbunden [25]. Heutzutage werden die intrazervikale (lokal) und die intravaginale (loko-systemisch) Darreichungsform favorisiert.
Es haben sich einige klinische Anwendungsrichtlinien herauskristallisiert [26, 27, 28]:

- Da synthetisch hergestellte Prostaglandinderivate eine stark uterotone Wirkung sowie eine längere Halbwertszeit mit dadurch bedingter herabgesetzter Steuerbarkeit besitzen, sollten zur Geburtseinleitung bei lebensfähigem Kind nur natürliche Prostaglandine eingesetzt werden.

- PGE\(_2\) verfügt über eine stärkere Wirkung auf den Bereich der Zervix und sollte daher dem PGF\(_{2\alpha}\) zur Geburtseinleitung vorgezogen werden [29].

Die Resorption wird durch mehrere Faktoren beeinflusst.

- Je näher am Uterus das PG-Depot appliziert wird, desto stärker ist die Resorption.
- Auch die Galenik spielt für die Resorption eine große Rolle. Diese ist bei Gelen ausgeprägter als bei Tabletten.

In Deutschland werden verschiedene lokale Applikationsverfahren eingesetzt:

- Die 3 mg PGE\(_2\)-Vaginaltablette hat den Vorteil einer einfachen Applikation bei guter Effektivität, jedoch verzögerter Resorption. Sie wird zur Geburtseinleitung bei reifer Zervix (Bishop-Score > 5) empfohlen.

- Das 0,5 mg PGE\(_2\)-Intrazervikalgel besitzt die höchste Effektivität bei unreifer Zervix (Bishop-Score ≤ 5), hat jedoch durch die Problematik der umständlichen intrazervikalen Applikationsform eine deutlich niedrigere Akzeptanz. Darüber hinaus kommt es nicht selten zu einem unkontrollierten Abfließen entweder in den retroamnialen Raum mit der Gefahr der Überstimulierung oder in die Scheide mit dem Risiko des Wirkungsverlusts.

- Das 1 mg oder 2 mg PGE\(_2\)-Vaginalgel ist seit 1997 zugelassen ab einem Bishop-Score ≥ 4. Begonnen werden soll mit einer initialen Dosis von 1 mg, gefolgt von einer zweiten Gabe von 1 mg oder 2 mg nach 6 Stunden in Abhängigkeit von dem erreichten Geburtsfortschritt. Es verbindet den Vorteil einer einfachen Applikation mit einer gleichmäßigeren Resorption bei ebenso guter Effektivität. Nicht zugelassen in Deutschland, wohl aber in anderen Ländern, ist bisher die vaginale oder orale Applikation von Misoprostol (PGE\(_1\)).

Zur Geburtseinleitung bei unreifer Zervix (Bishop-Score ≤ 5) wird die intrazervikale Gabe von 0,5 mg PGE\(_2\)-Gel empfohlen [14]. Bei unreifer Zervix zeigt jedoch das 2 mg
PGE₂-Vaginalgel einen Wirkungsvorteil gegenüber der intrazervikalen PGE₂-Gelapplikation ohne Erhöhung der Rate uteriner Überstimulierungen [30, 31]. Auch kann mit der 2 mg Dosierung ein signifikant besseres Einleitungsergebnis erreicht werden als mit dem 1 mg PGE₂-Vaginalgel [32]. Wir verwenden zur Geburteseinleitung bei unreif der Zervix in jedem Fall das 2 mg PGE₂-Vaginalgel (Minprostin® E₂ Vaginalgel 2 mg, Pharmacia).

1.3.3 Nebenwirkungen

1.3.4 Kontraindikationen

1.4 Insulin-like growth factor binding protein 1

Insulin-like growth factor binding protein 1 (IGFBP-1) ist ein Sekretionsprodukt der Dezidua zellen. IGFBP-1 kommt in 5 Isoformen vor, davon hat eine einen sehr hohen, drei einen geringeren Phosphorylierungsgrad, eine weitere ist nicht phosphoryliert. Dephosphoryliertes und gering phosphoryliertes IGFBP-1 wird vom dezidualisierten Endometrium sezerniert und liegt im Fruchtwasser in sehr hoher Konzentration vor. Die hochphosphorylierte Isoform wird nicht sezerniert [34]. Bei reifender Zervix und

1.5 Vorzeitiger Blasensprung

Ziel der Geburtseinleitung bei vorzeitigem Blasensprung ist die Prävention eines Amnioninfektionssyndroms, dessen Auftreten wesentlich vom Intervall zwischen Blasensprung und Geburt abhängt. Die Rate infektionsassozierter maternaler und fetaler Komplikationen verdoppelt sich bei Weheneintritt 7 bis 12 Stunden nach vorzeitigem Blasensprung im Vergleich zum Einsetzen muttermundswirksamer Wehen.
innerhalb von 6 Stunden. Zwölf Stunden nach Blasensprung steigt die Komplikationsrate sogar um das 3- bis 5-fache an [39].
2 Fragestellungen

2.1 Effektivität der Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel bei vorzeitigem Blasensprung und unreifem Zervixbefund

Das Risiko eines Amnioninfektionssyndroms nach vorzeitigem Blasensprung hängt entscheidend von der Länge des Intervalls zwischen Blasensprung und Geburt ab. Wir untersuchten, ob unser Vorgehen der Geburtseinleitung nach 12 Stunden mit 2 mg PGE2-Gel intravaginal (Minprostin® E2 Vaginalgel 2 mg, Fa. Pharmacia, Heppenheim) bei unreifer Zervix eine effektive und sichere Methode darstellt.

2.2 Praediktiver Wert des phIGFBP-1 (phosphoryliertes Insulin-like Growth Factor Binding Protein-1) bei Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel und unreifem Zervixbefund

Eine effektive Geburtseinleitung sollte zur vaginalen Entbindung innerhalb von 24 Stunden führen. Wir untersuchten, ob sich anhand des Nachweises von phosphoryliertem IGFBP-1 im Zervikalsekret eine Vorhersage über den Erfolg einer Geburtseinleitung bei unreifem Zervixbefund (Bishop-Score ≤ 5) mit 2 mg PGE2-Gel intravaginal treffen lässt.
3 Methodik

3.1 Patientenkollektiv

3.1.1 Einschlusskriterien
In die Studie wurden Erst- und Mehrgebärende mit Einlingsschwangerschaften in Schädellage aufgenommen, bei welchen aus mütterlicher oder fetaler Indikation die Geburt eingeleitet wurde. Es wurden ausschließlich Schwangere mit einem Bishop-Score ≤ 5 und einem Schwangerschaftsalter von mindestens 34 kompletten Schwangerschaftswochen in die Studie aufgenommen.

3.1.2 Ausschlusskriterien
Ausschlusskriterien waren neben den bekannten Kontraindikationen für Prostaglandine Kontraindikationen für eine Geburtseinleitung (z.B. Placenta praevia, fetopelvine Disproportion, drohende kindliche Asphyxie, vorzeitige Plazentalösung, Querlage, Zustand nach Uteruslängsschnitt). Ausgeschlossen wurden Patientinnen mit endogenen Wehen und erhöhten Entzündungszeichen (Leukozyten $> 15000/\mu l$, CRP $> 1,5$ g/dl).

3.2 Vorgehensweise

3.2.1 Aufklärung

3.2.2 Blutabnahme
Allen Patientinnen wurde ein venöser Zugang gelegt. Die Entzündungsparameter Leukozytenzahl und CRP wurden bestimmt.
3.2.3 Vaginale Untersuchung

Unmittelbar vor der ersten Prostaglandin-Gel-Applikation wurde ein Kardiotokogramm (CTG) abgeleitet und der Bishop-Score durch eine vaginale Untersuchung ermittelt. Es wurden nur Patientinnen in die Studie aufgenommen, bei denen der initiale Bishop-Score ≤ 5 war.

3.2.4 Einleitung mit Prostaglandin-E₂-Vaginalgel

3.3 Geburtseinleitung mit 2 mg Prostaglandin-E₂-Vaginalgel bei vorzeitigem Blasensprung und unreifem Zervixbefund

3.3.1 Vorgehensweise

Nach einem gesicherten vorzeitigen Blasensprung wurde nach 12 Stunden und ausbleibender Wehentätigkeit mit der Geburtseinleitung begonnen [40]. Ausgewertet wurden alle Patientinnen die mit 2 mg Prostaglandin-E₂-Vaginalgel nach dem beschriebenen Schema eingeleitet wurden.
3.4 Geburtseinleitung mit 2 mg Prostaglandin-E₂-Vaginalgel ohne vorzeitigem Blasensprung bei unreifem Zervixbefund

3.4.1 *actim Partus test*

Nach Herstellerangaben ist ein positives Ergebnis ab einer phosphorylierten IGFBP-1-Konzentration von ca. 10 µg/l erkennbar.

3.4.2 *Vorgehensweise*

Unmittelbar vor der ersten Prostaglandin-Gel-Applikation wurde bei den Patientinnen eine sterile Speculumuntersuchung durchgeführt. Dabei erfolgten der klinische Ausschluss eines Blasensprungs sowie die Entnahme der Zervikalsekretprobe mittels eines sterilen Dacron-Tupfers der dafür für ca. 10 bis 15 Sekunden in der Zervix belassen wurde. Sofort anschließend wurde der *actim Partus test* nach Herstellerangaben durchgeführt.

Das Testergebnis ist negativ, wenn auf der Membran nur eine farbige Bande (Kontrollbande) erscheint (Abbildung 2).
Das Testergebnis ist positiv, wenn zwei farbige Banden (Testbande und Kontrollbande) erscheinen (Abbildung 3).

Der Test ist nicht auswertbar, wenn auf der Membran keine Banden erscheinen.

3.5 Untersuchungsparameter

3.5.1 Ausgangssituation

Zu Beginn der Geburtseinleitung wurden folgende Ausgangsparameter dokumentiert:

- Anamnestische Daten der Patientin (Alter in Jahren, Größe in cm, Gewicht in kg, Gravidität, Parität, Zustand nach Kaiserschnitt und Schwangerschaftsalter in kompletten Schwangerschaftswochen).
- Indikation der Geburtseinleitung (vorzeitiger Blasensprung, Terminüberschreitung, HES, CTG-Pathologie, Placentainsuffizienz oder fetale Retardierung, Diabetes mellitus und sonstige).
- Entzündungsparameter (Leukozyten, CRP).
- Bishop-Score bei Einleitungsbeginn.
• Messung des phosphorylierten IGFBP-1 mithilfe des actim Partus test im Zervikalsekret falls kein Blasensprung vorlag.

3.5.2 Prostaglandin-Gel-Applikationen

6-8 Stunden nach der ersten Applikation wurde erneut eine vaginale Untersuchung durchgeführt. Falls keine Wehen auftreten und sich der Bishop-Score \(\leq 8 \) darstellte, wurde die Prostaglandin-Gel-Applikation wiederholt. Dabei wurde der Zeitpunkt, der Bishop-Score sowie die Anzahl der Prostaglandinapplikationen dokumentiert.

3.5.3 Oxytozingabe und Amniotomie im Geburtsverlauf

3.5.4 Schmerzbehandlung

Zur Schmerzbehandlung unter der Geburt wurde ein Opioid (Meptid), die Periduralanästhesie oder Spasmolytika nach klinischen Belangen eingesetzt.

3.5.5 Geburtsmodus

Neben dem Geburtsmodus (spontan, Vakuumextraktion, Kaiserschnitt) wurde die Indikation bei operativ beendeten Geburten dokumentiert.

3.5.6 Zeitintervalle

Die Zeitabstände von der ersten PG-Applikation bis zum Wehenbeginn, bis zur vollständigen Eröffnung des Muttermundes und bis zur Geburt wurden dokumentiert. Ebenso die Dauer der aktiven Pressperiode sowie die Dauer der Plazentaperiode.

3.5.7 Kumulative vaginale Entbindungsrangle nach 24 Stunden

Eine Einleitung galt als erfolgreich, wenn die Patientin innerhalb von 24 Stunden vaginal geboren hatte.
3.5.8 Uterine Überstimulierung
Polysystolie (≥ 5 Wehen in 10 Minuten) und Dauerkontraktionen (Wehendauer ≥ 2 Minuten) wurden anhand der CTG-Auswertung ermittelt.

3.5.9 Wehenhemmende Medikamente
β-Sympathomimetika (Fenoterol) wurden zur Wehenhemmung intravenös als Bolusinjektion (Notfalltokolyse) oder Dauerinfusion nach klinischen Belangen eingesetzt, z.B. beim Legen des Periduralkatheters oder bei pathologischem CTG.

3.5.10 Postpartale Komplikationen
Es wurden postpartale Komplikationen wie verstärkte Nachblutung über 1000 ml und die Notwendigkeit einer manuellen Nachtastung oder Kürettage erfasst.

3.5.11 Perinatales Ergebnis

- pH-Wert 7,19 – 7,15: leichte Azidämie
- pH-Wert 7,14 – 7,10: mittelgradige Azidämie
- pH-Wert 7,09 – 7,00: fortgeschrittene Azidämie
- pH-Wert < 7,00: schwere Azidämie

3.6 Statistik
Bei normalverteilten Parametern wurde die Streuung um den Mittelwert als einfache Standardabweichung angegeben. Bei nicht normalverteilten Werten wurde der Median angegeben.
4 Ergebnisse

Zwischen 09/00 und 07/02 wurden an der Universitäts-Frauenklinik Würzburg 194 Patientinnen rekrutiert. Davon wurden 105 Patientinnen wegen vorzeitigem Blasensprung eingeleitet. Bei 89 Patientinnen bestanden andere Indikationen. Bei diesen Patientinnen wurde der actim Partus test durchgeführt.

4.1 Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel bei vorzeitigem Blasensprung und unreifem Zervixbefund

4.1.1 Ausgangssituation

83 Patientinnen erfüllten die Einschlusskriterien. Das mittlere Alter betrug 30,0 ± 4,6 Jahre (MW ± Standardabweichung), das Gestationsalter 38,5 ± 1,9 SSW. Der Anteil der Primiparae betrug 54%. 5 (6%) Patientinnen hatten einen Kaiserschnitt in der Vorgeschichte.

Bis auf das Alter der Patientinnen ergab sich kein signifikanter Unterschied bei Primiparae oder Multiparae (Tabelle 2). Keine Unterschiede zeigten sich auch in Abhängigkeit vom Bishop-Score bei Einleitungsbeginn (Tabelle 3).

Tabelle 2: Gesamtkollektiv und Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Patientinnen</td>
<td>83</td>
<td>45 (54%)</td>
<td>38 (46%)</td>
</tr>
<tr>
<td>Alter [a]</td>
<td>30,0 ± 4,6</td>
<td>28,8 ± 4,4*</td>
<td>31,3 ± 4,5*</td>
</tr>
<tr>
<td>Größe [cm]</td>
<td>166 ± 6,6</td>
<td>167 ± 6,8</td>
<td>166 ± 6,5</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>80,3 ± 13,6</td>
<td>81,5 ± 15,6</td>
<td>78,9 ± 10,7</td>
</tr>
<tr>
<td>Zustand nach Sectio</td>
<td>5 (6%)</td>
<td>-</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>Schwangerschaftsalter [SSW]</td>
<td>38,2 ± 2,0</td>
<td>38,8 ± 1,7</td>
<td>38,2 ± 2,0</td>
</tr>
</tbody>
</table>

* p < 0,05
Tabelle 3: Gesamtkollektiv und Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Patientinnen</td>
<td>83</td>
<td>39 (47%)</td>
<td>44 (53%)</td>
</tr>
<tr>
<td>Alter [a]</td>
<td>30,0 ± 4,6</td>
<td>30,9 ± 4,6</td>
<td>29,1 ± 4,4</td>
</tr>
<tr>
<td>Größe [cm]</td>
<td>166 ± 6,6</td>
<td>167 ± 7</td>
<td>166 ± 6</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>80,3 ± 13,6</td>
<td>79,9 ± 11,2</td>
<td>80,7 ± 15,5</td>
</tr>
<tr>
<td>Zustand nach Sectio</td>
<td>5 (6%)</td>
<td>4 (10%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Parität</td>
<td>1,65 ± 0,93</td>
<td>1,72 ± 1,03</td>
<td>1,59 ± 0,84</td>
</tr>
<tr>
<td>Primiparae</td>
<td>45 (54%)</td>
<td>21 (54%)</td>
<td>24 (55%)</td>
</tr>
<tr>
<td>Schwangerschaftsaltater [SSW]</td>
<td>38,2 ± 2,0</td>
<td>38,1 ± 2,0</td>
<td>38,9 ± 1,7</td>
</tr>
<tr>
<td>Initialer Bishop-Score</td>
<td>3,5 ± 1,3</td>
<td>2,3 ± 0,9</td>
<td>4,5 ± 0,5</td>
</tr>
</tbody>
</table>

4.1.2 Bishop-Score bei Einleitungsbeginn

Tabelle 4: Zusammenhang zwischen Bishop-Score und Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialer Bishop-Score</td>
<td>3,5 ± 1,3</td>
<td>3,5 ± 1,4</td>
<td>3,5 ± 1,3</td>
</tr>
<tr>
<td>Initialer Bishop-Score < 4</td>
<td>39 (47%)</td>
<td>21 (47%)</td>
<td>18 (47%)</td>
</tr>
</tbody>
</table>

4.1.3 Prostaglandingel-Applikationen

Mehr als eine Prostaglandingel-Applikation wurde bei 29% der Patientinnen benötigt. 5 Patientinnen bekamen 3 Applikationen, 1 Patientin benötigte 4 Applikationen. Die Anzahl der PGE₂-Vaginalgelapplikationen betrug im Mittel 1,4 ± 0,7. Es zeigten sich keine signifikanten Unterschiede bezüglich der Parität (Tabelle 5) und des Bishop-Scores bei Einleitungsbeginn (Tabelle 6).
Tabelle 5: Mehrfache Prostaglandin-Applikationen in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrfach PGE2-Gabe</td>
<td>24 (29%)</td>
<td>14 (31%)</td>
<td>10 (26%)</td>
</tr>
<tr>
<td>Anzahl PGE2-Gaben</td>
<td>1,4 ± 0,7</td>
<td>1,4 ± 0,7</td>
<td>1,3 ± 0,6</td>
</tr>
</tbody>
</table>

Tabelle 6: Mehrfache Prostaglandin-Applikationen in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrfach PG-E2-Gabe</td>
<td>24 (29%)</td>
<td>13 (33%)</td>
<td>11 (25%)</td>
</tr>
<tr>
<td>Anzahl PG-E2-Gaben</td>
<td>1,4 ± 0,7</td>
<td>1,5 ± 0,8</td>
<td>1,3 ± 0,5</td>
</tr>
</tbody>
</table>

4.1.4 Oxytozingabe und Amniotomie im Geburtsverlauf

In der frühen Eröffnungsperiode bis zu einer Muttermundsweite von 3 cm wurde von 88% der Patientinnen kein Oxytozin zur Wehenunterstützung benötigt. Es ergaben sich signifikante Unterschiede bezüglich Parität und Muttermundsreihe (Tabelle 7, Tabelle 8).

Eine Oxytozinunterstützung erhielten 30% der Patientinnen in der Eröffnungsperiode (EP) und 40% der Patientinnen in der Austreibungsperiode (AP). In der Eröffnungsperiode ergaben sich keine signifikanten Unterschiede bezüglich Parität oder initialem Bishop-Score. In der Austreibungsperiode benötigten Multiparae mit 24% signifikant weniger Oxytozin als Primiparae mit 53% (Tabelle 7). Der Bishop-Score bei Einleitungsbeginn hatte darauf keinen Einfluss (Tabelle 8).

Tabelle 7: Oxytozingabe im Geburtsverlauf in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muttermundseröffnung auf 3 cm ohne Oxytozin</td>
<td>73 (88%)</td>
<td>36 (80%)*</td>
<td>37 (97%)*</td>
</tr>
<tr>
<td>Oxytozin in der EP</td>
<td>25 (30%)</td>
<td>17 (38%)</td>
<td>8 (21%)</td>
</tr>
<tr>
<td>Oxytozin in der AP</td>
<td>33 (40%)</td>
<td>24 (53%)**</td>
<td>9 (24%)**</td>
</tr>
</tbody>
</table>

* p < 0,05, ** p < 0,01
Tabelle 8: Oxytozingabe im Geburtsverlauf in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th>Muttermundseröffnung auf 3 cm ohne Oxytozin</th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muttermundseröffnung auf 3 cm ohne Oxytozin</td>
<td>73 (88%)</td>
<td>31 (79%)*</td>
<td>42 (95%)*</td>
</tr>
<tr>
<td>Oxytozin in der EP</td>
<td>25 (30%)</td>
<td>15 (38%)</td>
<td>10 (23%)</td>
</tr>
<tr>
<td>Oxytozin in der AP</td>
<td>33 (40%)</td>
<td>15 (38%)</td>
<td>18 (41%)</td>
</tr>
</tbody>
</table>

* p < 0,05

4.1.5 Schmerzbehandlung

Zur Schmerzbehandlung unter der Geburt wurde bei 34% der Patientinnen eine PDA gelegt. Bei Multiparae wurde mit 21% signifikant seltener eine PDA gelegt als bei Primiparae mit 44% (Tabelle 9).

Meptid oder andere Schmerzmittel wurde bei 23% bzw. 7% der Patientinnen verwendet. Zur Spasmolyse wurden Suppositorien in 29% der Fälle, eine intravenöse Spasmolyse in 17% der Fälle verabreicht.

Der Bishop-Score bei Einleitungsbeginn hatte auf die Schmerzbehandlung keinen Einfluss (Tabelle 10).

Tabelle 9: Schmerzbehandlung und Spasmolyse in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>28 (34%)</td>
<td>20 (44%)*</td>
<td>8 (21%)*</td>
</tr>
<tr>
<td>Meptid</td>
<td>19 (23%)</td>
<td>11 (24%)</td>
<td>8 (21%)</td>
</tr>
<tr>
<td>Anderes Schmerzmittel</td>
<td>6 (7%)</td>
<td>3 (7%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Spasmyotikum supp.</td>
<td>24 (29%)</td>
<td>15 (33%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>Spasmyotikum i.v.</td>
<td>14 (17%)</td>
<td>8 (18%)</td>
<td>6 (16%)</td>
</tr>
</tbody>
</table>

* p < 0,05
Tabelle 10: Schmerzbehandlung und Spasmolyse in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>28 (34%)</td>
<td>17 (44%)</td>
<td>11 (25%)</td>
</tr>
<tr>
<td>Meptid</td>
<td>19 (23%)</td>
<td>8 (21%)</td>
<td>11 (25%)</td>
</tr>
<tr>
<td>Anderes Schmerzmittel</td>
<td>6 (7%)</td>
<td>1 (3%)</td>
<td>5 (11%)</td>
</tr>
<tr>
<td>Spasmolytikum supp.</td>
<td>24 (29%)</td>
<td>14 (36%)</td>
<td>10 (23%)</td>
</tr>
<tr>
<td>Spasmolytikum i.v.</td>
<td>14 (17%)</td>
<td>8 (21%)</td>
<td>6 (14%)</td>
</tr>
</tbody>
</table>

4.1.6 Geburtsmodus

Multiparae hatten mit 95% signifikant häufiger eine Spontangeburt als Primiparae mit 76% (Tabelle 11). Eine Vakuumextraktion wurde in 7% der Fälle durchgeführt. Die Sectio-Rate betrug 9%. Der Bishop-Score bei Einleitungsbeginn hatte auf den Geburtsmodus keinen Einfluss (Tabelle 12).

Tabelle 11: Geburtsmodus in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontangeburt</td>
<td>70 (84%)</td>
<td>34 (76%)*</td>
<td>36 (95%)*</td>
</tr>
<tr>
<td>Vakuumextraktion</td>
<td>6 (7%)</td>
<td>5 (11%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Sectio</td>
<td>7 (9%)</td>
<td>6 (13%)</td>
<td>1 (3%)</td>
</tr>
</tbody>
</table>

* p < 0,05

Tabelle 12: Geburtsmodus in Abhängigkeit vom Bishop-Score bei Einleitungsbeginn

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontangeburt</td>
<td>70 (84%)</td>
<td>31 (79%)</td>
<td>39 (89%)</td>
</tr>
<tr>
<td>Vakuumextraktion</td>
<td>6 (7%)</td>
<td>3 (8%)</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Sectio</td>
<td>7 (9%)</td>
<td>5 (13%)</td>
<td>2 (5%)</td>
</tr>
</tbody>
</table>
4.1.7 Zeitintervalle

Die Austreibungsperiode betrug im Median 45 Minuten, die Pressperiode 17 Minuten. Dabei zeigten sich signifikant kürzere Zeiten für Multiparae im Vergleich zu Primiparae (Tabelle 13). Der Bishop-Score bei Einleitungsbeginn hatte darauf keinen Einfluss (Tabelle 14).

Die Plazentaperiode betrug im Median 12 Minuten ohne signifikante Unterschiede bezüglich der Parität oder des Bishop-Scores.

Tabelle 13: Zeitintervalle in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th>Parität</th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung bis Wehen [h]</td>
<td>4,0 (2,0-8,5)</td>
<td>4,2 (1,8-10,7)</td>
<td>4,0 (2,0-7,5)</td>
</tr>
<tr>
<td>Wehen bis Geburt [h]</td>
<td>4,5 (3,0-8,9)</td>
<td>6,5 (4,1-11,2) ***</td>
<td>3,3 (2,0-4,8) ***</td>
</tr>
<tr>
<td>Einleitung bis Geburt [h]</td>
<td>10,5 (5,6-16,6)</td>
<td>13,3 (6,6-21,8) **</td>
<td>8,0 (4,9-11,9) **</td>
</tr>
<tr>
<td>Austreibungsperiode [min]</td>
<td>45 (20-89)</td>
<td>75,5 (39-156) ***</td>
<td>20 (11,5-52) ***</td>
</tr>
<tr>
<td>Pressperiode [min]</td>
<td>17 (10-27)</td>
<td>24 (17-43) ***</td>
<td>10 (7,5-16,5) ***</td>
</tr>
<tr>
<td>Plazentaperiode [min]</td>
<td>12 (8,25-20,25)</td>
<td>12 (8-16)</td>
<td>11 (8,5-21,5)</td>
</tr>
</tbody>
</table>

* p < 0,05; ** p < 0,01; *** p < 0,001
Tabelle 14: Zeitintervalle in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung bis Wehen [h]</td>
<td>4,0 (2.0-8,5)</td>
<td>5,8 (2,0-12,3)*</td>
<td>3,0 (1,7-7,3)*</td>
</tr>
<tr>
<td>Wehen bis Geburt [h]</td>
<td>4,5 (3,0-8,9)</td>
<td>5,2 (3,1-8,9)</td>
<td>4,4 (2,9-8,7)</td>
</tr>
<tr>
<td>Einleitung bis Geburt [h]</td>
<td>10,5 (5,6-16,6)</td>
<td>12,6 (7,1-21,3)*</td>
<td>8,0 (5,4-13,5)*</td>
</tr>
<tr>
<td>Austreibungsperiode [min]</td>
<td>45 (20-89)</td>
<td>61 (20,5-93,5)</td>
<td>32,5 (15-92,5)</td>
</tr>
<tr>
<td>Pressperiode [min]</td>
<td>17 (10-27)</td>
<td>14,5 (9,5-26,25)</td>
<td>18 (10,75-31)</td>
</tr>
<tr>
<td>Plazentaperiode [min]</td>
<td>12 (8,25-20,25)</td>
<td>11,5 (6,75-21)</td>
<td>12 (9,75-19)</td>
</tr>
</tbody>
</table>

* p < 0,05

4.1.8 Kumulative vaginale Entbindungsrate nach 24 Stunden

Tabelle 15: Erfolgreiche Einleitung in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Einleitung (vaginal, innerhalb 24 Stunden)</td>
<td>73 (88%)</td>
<td>38 (84%)</td>
<td>35 (92%)</td>
</tr>
</tbody>
</table>

Tabelle 16: Erfolgreiche Einleitung in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Einleitung (vaginal, innerhalb 24 Stunden)</td>
<td>73 (88%)</td>
<td>32 (82%)</td>
<td>41 (93%)</td>
</tr>
</tbody>
</table>

4.1.9 Uterine Überstimulierung

Polysytolien wurden bei 11%, Dauerkontraktionen bei 2% der Patientinnen beobachtet ohne signifikante Unterschiede bezüglich der Parität oder des Bishop-Scores bei Einleitungsbeginn (Tabelle 17, Tabelle 18).
Tabelle 17: Uterine Überstimulierung in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysystolien</td>
<td>9 (11%)</td>
<td>7 (16%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Dauerkontraktionen</td>
<td>2 (2%)</td>
<td>2 (4%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 18: Uterine Überstimulierung in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysystolien</td>
<td>9 (11%)</td>
<td>5 (13)</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Dauerkontraktionen</td>
<td>2 (2%)</td>
<td>1 (3%)</td>
<td>6 (14%)</td>
</tr>
</tbody>
</table>

4.1.10 Wehenhemmende Medikamente

Ein Akuttokolyse wurde bei 7%, eine Dauertokolyse bei 22% der Patientinnen verabreicht. Multiparae erhielten mit 11% signifikant seltener eine Dauertokolyse als Primiparae mit 31% (Tabelle 19). Allerdings war eine Dauertokolyse häufig Voraussetzung für das Legen einer PDA, die bei Primiparae signifikant häufiger verwendet wurde (siehe 4.1.5 Schmerzbehandlung, Tabelle 9). Der Bishop-Score bei Einleitungsbeginn hatte auf die Gabe von Wehenhemmenden Medikamenten keinen signifikanten Einfluss (Tabelle 20).

Tabelle 19: Tokolyse in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akuttokolyse</td>
<td>6 (7%)</td>
<td>3 (7%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Dauertokolyse</td>
<td>18 (22%)</td>
<td>14 (31%)*</td>
<td>4 (11%)*</td>
</tr>
</tbody>
</table>

* p < 0,05
Tabelle 20: Tokolyse in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akuttokolyse</td>
<td>6 (7%)</td>
<td>4 (10%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Dauertokolyse</td>
<td>18 (22%)</td>
<td>12 (31%)</td>
<td>6 (14%)</td>
</tr>
</tbody>
</table>

4.1.11 Postpartale Komplikationen

Tabelle 21: Postpartale Komplikationen in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachblutung über 1000 ml</td>
<td>2 (2%)</td>
<td>0</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Nachtastung oder Kürettage</td>
<td>4 (5%)</td>
<td>0*</td>
<td>4 (11%)*</td>
</tr>
</tbody>
</table>

* p < 0,05

Tabelle 22: Postpartale Komplikationen in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachblutung über 1000 ml</td>
<td>2 (2%)</td>
<td>0</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Nachtastung oder Kürettage</td>
<td>4 (5%)</td>
<td>1 (3%)</td>
<td>3 (7%)</td>
</tr>
</tbody>
</table>

4.1.12 Perinatales Ergebnis

Der mittlere arterielle pH betrug $7,26 \pm 0,08$. 22% der Kinder hatten einen arteriellen pH unter 7,20. 2 Kinder hatten einen arteriellen pH unter 7,10, wobei kein arterieller pH
unter 7,08 auftrat. Kinder von Multiparae hatten mit 7,28 ± 0,08 einen signifikant höheren arteriellen pH als Kinder von Erstgebärenden mit 7,24 ± 0,07.

Auch der Basenüberschuss zeigte einen signifikanten Zusammenhang zur Parität.

Die klinische Beurteilung der Kinder ergab einen mittleren 5 Minuten APGAR von 9,6 ± 0,7 sowie einen mittleren 10 Minuten APGAR von 9,8 ± 0,4 ohne Unterschiede bezüglich der Parität der Mütter (Tabelle 23). Der Bishop-Score bei Einleitungsbeginn hatte keinen Einfluss auf das „fetal outcome“ (Tabelle 24).

Tabelle 23: Perinatales Ergebnis in Abhängigkeit von der Parität

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Primiparae</th>
<th>Multiparae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtsgewicht [g]</td>
<td>3235 ± 482</td>
<td>3244 ± 199</td>
<td>3224 ± 468</td>
</tr>
<tr>
<td>pHart</td>
<td>7,26 ± 0,08</td>
<td>7,24 ± 0,07*</td>
<td>7,28 ± 0,08*</td>
</tr>
<tr>
<td>pHart < 7,20</td>
<td>18 (22%)</td>
<td>13 (29%)</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>pHart < 7,10</td>
<td>2 (2%)</td>
<td>2 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>BE [mmol/l]</td>
<td>-5,7 ± 2,9</td>
<td>-6,5 ±3,0**</td>
<td>-4,8 ± 2,6**</td>
</tr>
<tr>
<td>BE < -10 mmol/l</td>
<td>10 (12%)</td>
<td>8 (18%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>APGAR 5 Min</td>
<td>9,6 ± 0,7</td>
<td>9,5 ± 0,7</td>
<td>9,7 ± 0,6</td>
</tr>
<tr>
<td>APGAR 5 Min < 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>APGAR 10 Min</td>
<td>9,8 ± 0,4</td>
<td>9,8 ± 0,5</td>
<td>9,9 ± 0,3</td>
</tr>
<tr>
<td>APGAR 10 Min < 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* p < 0,05; ** p < 0,01
Tabelle 24: Perinatales Ergebnis in Abhängigkeit vom initialen Bishop-Score

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>Bishop-Score < 4</th>
<th>Bishop-Score > 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtsgewicht [g]</td>
<td>3235 ± 482</td>
<td>3204 ± 529</td>
<td>3263 ± 440</td>
</tr>
<tr>
<td>pHart</td>
<td>7,26 ± 0,08</td>
<td>7,26 ± 0,07</td>
<td>7,25 ± 0,08</td>
</tr>
<tr>
<td>pHart < 7,20</td>
<td>18 (21,7%)</td>
<td>7 (18%)</td>
<td>11 (25%)</td>
</tr>
<tr>
<td>pHart < 7,10</td>
<td>2 (2%)</td>
<td>2 (5%)</td>
<td>0</td>
</tr>
<tr>
<td>BE [mmol/l]</td>
<td>-5,7 ± 2,9</td>
<td>-5,9 ± 3,3</td>
<td>-5,5 ± 2,7</td>
</tr>
<tr>
<td>BE < -10 mmol/l</td>
<td>10 (12%)</td>
<td>6 (15%)</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>APGAR 5 Min</td>
<td>9,6 ± 0,7</td>
<td>9,6 ± 0,6</td>
<td>9,6 ± 0,7</td>
</tr>
<tr>
<td>APGAR 5 Min < 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>APGAR 10 Min</td>
<td>9,8 ± 0,4</td>
<td>9,8 ± 0,4</td>
<td>9,8 ± 0,4</td>
</tr>
<tr>
<td>APGAR 10 Min < 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2 Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel ohne vorzeitigem Blasensprung bei unreifem Zervixbefund

4.2.1 Ausgangssituation

70 Patientinnen erfüllten die Einschlusskriterien. Bei 11 (16%) Patientinnen war der actim Partus test positiv (phIGFBP-1 positiv), bei 59 (84%) Patientinnen negativ (phIGFBP-1 negativ). Die Patientinnen in beiden Gruppen unterschieden sich nicht in Alter, Parität und Schwangerschaftsalter (Tabelle 25).
Tabelle 25: Gesamtkollektiv und phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Patientinnen</td>
<td>70</td>
<td>11 (16%)</td>
<td>59 (84%)</td>
</tr>
<tr>
<td>Alter [a]</td>
<td>28,7 ± 4,7</td>
<td>29,8 ± 3,2</td>
<td>28,5 ± 5,0</td>
</tr>
<tr>
<td>Größe [cm]</td>
<td>168,2 ± 6,2</td>
<td>165,7 ± 4,9</td>
<td>168,6 ± 6,4</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>86,3 ± 14,6</td>
<td>83,6 ± 14,3</td>
<td>86,8 ± 14,7</td>
</tr>
<tr>
<td>Zustand nach Sectio</td>
<td>5 (7%)</td>
<td>1 (9%)</td>
<td>4 (7%)</td>
</tr>
<tr>
<td>Parität</td>
<td>1,7 ± 0,8</td>
<td>1,8 ± 1,0</td>
<td>1,7 ± 0,8</td>
</tr>
<tr>
<td>Primiparae</td>
<td>35 (50%)</td>
<td>5 (45%)</td>
<td>30 (51%)</td>
</tr>
<tr>
<td>Schwangerschaftsalter [SSW]</td>
<td>39,8 ± 1,7</td>
<td>39,3 ± 2,1</td>
<td>39,9 ± 1,6</td>
</tr>
</tbody>
</table>

4.2.2 Einleitungsindikation

Die häufigste Indikation zur Geburtseinleitung ohne vorzeitigen Blasensprung war mit 47% die Überschreitung des Geburtstermins. Deutlich seltener (10%) waren hypertensive Schwangerschaftserkrankungen (HES) der Grund für eine Geburtseinleitung. Weitere Indikationen waren fetale Retardierung (6%), Gestationsdiabetes (6%) sowie eine CTG-Pathologie (1%). Sonstige Indikationen waren eine verminderte Fruchtwassermenge (Oligohydramnion), fetale Makrosomie ohne Gestationsdiabetes, Zustand nach intrauterinem Fruchttod, fetale Fehlbildungen (z.B. multizystische Nierendegeneration). Sonstige mütterliche Erkrankungen und Beschwerden wie z.B. Ödeme, Karpaltunnelsyndrom, Symphysenschmerzen, Atemnot, Übelkeit, Zustand nach tiefer Beinvenentrombose, Mammakarzinom in der Schwangerschaft sowie der ausdrückliche Wunsch der Patientin induzierten eine vorzeitige Beendigung der Schwangerschaft. Dabei zeigten sich keine Unterschiede bezüglich des phIGFBP-1 bei Einleitungsbeginn (Tabelle 26).
Tabelle 26: Einleitungsindikationen

<table>
<thead>
<tr>
<th>Indikation</th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminüberschreitung</td>
<td>33 (47%)</td>
<td>4 (36%)</td>
<td>29 (49%)</td>
</tr>
<tr>
<td>HES</td>
<td>7 (10%)</td>
<td>1 (9%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Fetale Retardierung</td>
<td>4 (6%)</td>
<td>2 (18%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Gestationsdiabetes</td>
<td>4 (6%)</td>
<td>1 (9%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>CTG-Pathologie</td>
<td>1 (1%)</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>21 (30%)</td>
<td>3 (27%)</td>
<td>18 (31%)</td>
</tr>
</tbody>
</table>

4.2.3 Bishop-Score bei Einleitungsbeginn

Der mittlere Bishop-Score bei Einleitungsbeginn war 2,9 ± 1,6 und zeigte keinen signifikanten Unterschied in den beiden Gruppen.

Bei positivem phIGFBP-1 hatten jedoch mit 27% signifikant weniger Patientinnen einen Bishop-Score < 4 als bei negativen phIGFBP-1 (66%) (p = 0,017) (Tabelle 27, Abbildung 4).

Tabelle 27: Bishop-Scores bei Einleitungsbeginn in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialer Bishop-Score</td>
<td>2,9 ± 1,6</td>
<td>3,6 ± 1,6</td>
<td>2,8 ± 1,5</td>
</tr>
<tr>
<td>Initialer Bishop-Score < 4</td>
<td>42 (60%)</td>
<td>3 (27%)*</td>
<td>39 (66%)*</td>
</tr>
</tbody>
</table>

* p < 0,05
4.2.4 Prostaglandin-Gel-Applikationen

Mehr als eine Prostaglandingel-Applikation wurde bei 33% der Patientinnen benötigt. Die Anzahl der PGE2-Vaginalgelapplikationen betrug im Mittel 1,5 ± 0,9. Es zeigten sich keine signifikanten Unterschiede zwischen beiden Gruppen (Tabelle 28).

Tabelle 28: Mehrfache Prostaglandin-Applikationen in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrfach PG-E2-Gabe</td>
<td>23 (33%)</td>
<td>4 (36%)</td>
<td>19 (32%)</td>
</tr>
<tr>
<td>Anzahl PG-E2-Gaben</td>
<td>1,5 ± 0,9</td>
<td>1,4 ± 0,5</td>
<td>1,5 ± 0,9</td>
</tr>
</tbody>
</table>
4.2.5 Oxytozingabe und Amniotomie im Geburtsverlauf

Tabelle 29: Oxytozingabe und Amniotomie im Geburtsverlauf in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muttermundseröffnung auf 3 cm ohne Oxytozin</td>
<td>57 (81%)</td>
<td>11 (100%)</td>
<td>46 (78%)</td>
</tr>
<tr>
<td>Oxytozin in der EP</td>
<td>18 (26%)</td>
<td>3 (27%)</td>
<td>15 (25%)</td>
</tr>
<tr>
<td>Amniotomie in der EP</td>
<td>4 (6%)</td>
<td>0</td>
<td>4 (7%)</td>
</tr>
<tr>
<td>Oxytozin in der AP</td>
<td>20 (29%)</td>
<td>2 (18%)</td>
<td>18 (31%)</td>
</tr>
<tr>
<td>Amniotomie in der AP</td>
<td>11 (16%)</td>
<td>3 (27%)</td>
<td>8 (14%)</td>
</tr>
</tbody>
</table>

4.2.6 Schmerzbehandlung

Es ergab sich kein signifikanter Unterschied in der Schmerzbehandlung zwischen den Gruppen (Tabelle 30).
Tabelle 30: Schmerzbehandlung und Spasmolyse in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>24 (34%)</td>
<td>2 (18%)</td>
<td>22 (37%)</td>
</tr>
<tr>
<td>Meptid</td>
<td>13 (19%)</td>
<td>2 (18%)</td>
<td>11 (19%)</td>
</tr>
<tr>
<td>Anderes Schmerzmittel</td>
<td>9 (13%)</td>
<td>1 (9%)</td>
<td>8 (14%)</td>
</tr>
<tr>
<td>Spasmolytikum supp.</td>
<td>24 (34%)</td>
<td>1 (9%)</td>
<td>23 (39%)</td>
</tr>
<tr>
<td>Spasmolytikum i.v.</td>
<td>10 (14%)</td>
<td>1 (9%)</td>
<td>9 (15%)</td>
</tr>
</tbody>
</table>

4.2.7 Geburtsmodus
Bezüglich Sectio rate und Vakuumextraktion lies sich keine Signifikanz zwischen den beiden Gruppen nachweisen (Tabelle 31).

Tabelle 31: Geburtsmodus in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontangeburt</td>
<td>54 (77%)</td>
<td>11 (100%)*</td>
<td>43 (73%)*</td>
</tr>
<tr>
<td>Vakuumextraktion</td>
<td>5 (7%)</td>
<td>0</td>
<td>5 (8%)</td>
</tr>
<tr>
<td>Sectio</td>
<td>11 (16%)</td>
<td>0</td>
<td>11 (19%)</td>
</tr>
</tbody>
</table>

* p < 0,05

4.2.8 Zeitintervalle
Die Zeitintervalle zeigten keine signifikante Unterschiede in Abhängigkeit von der Nachweisbarkeit von phIGFBP-1 (Tabelle 32).
Tabelle 32: Zeitintervalle in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung bis Wehen</td>
<td>6,0 (4,3-9,6)</td>
<td>5,3 (4,5-11,2)</td>
<td>6,1 (4,3-9,6)</td>
</tr>
<tr>
<td>Wehen bis Geburt</td>
<td>5,0 (2,6-9,9)</td>
<td>3,4 (1,4-5,9)</td>
<td>5,3 (2,9-11,2)</td>
</tr>
<tr>
<td>Einleitung bis Geburt</td>
<td>11,7 (8,2-21,0)</td>
<td>9,1 (6,2-16,0)</td>
<td>12,7 (8,9-21,9)</td>
</tr>
<tr>
<td>Austreibungsperiode</td>
<td>36,5 (10-85)</td>
<td>20 (6-31)</td>
<td>39 (10-88)</td>
</tr>
<tr>
<td>Pressperiode</td>
<td>12 (6-23)</td>
<td>11 (6-31)</td>
<td>13,5 (5-22)</td>
</tr>
<tr>
<td>Plazentaperiode</td>
<td>15 (9-33)</td>
<td>12 (9-23)</td>
<td>16,5 (8-36)</td>
</tr>
</tbody>
</table>

4.2.9 Kumulative vaginale Entbindungsrate nach 24 Stunden

Bei positivem phIGFBP-1-Nachweis wurden 91% der Patientinnen, bei negativem phIGFBP-1-Nachweis wurden 68% der Patientinnen innerhalb von 24 Stunden nach PGE₂-Gabe vaginal entbunden. Dieser Unterschied ist nicht signifikant (Tabelle 33).

Tabelle 33: Erfolgreiche Einleitung in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Einleitung</td>
<td>50 (71%)</td>
<td>10 (91%)</td>
<td>40 (68%)</td>
</tr>
<tr>
<td>(vaginal, innerhalb 24 Stunden)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.10 Uterine Überstimulierung

Tabelle 34: Uterine Überstimulierung in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysystolien</td>
<td>15 (21%)</td>
<td>2 (18%)</td>
<td>13 (22%)</td>
</tr>
<tr>
<td>Dauerkontraktionen</td>
<td>4 (6%)</td>
<td>0</td>
<td>4 (7%)</td>
</tr>
</tbody>
</table>

4.2.11 Wehenhemmende Medikamente

Tabelle 35: Tokolyse in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akuttokolyse</td>
<td>9 (13%)</td>
<td>0</td>
<td>9 (15%)</td>
</tr>
<tr>
<td>Dauertokolyse</td>
<td>32 (46%)</td>
<td>5 (45%)</td>
<td>27 (46%)</td>
</tr>
</tbody>
</table>

4.2.12 Postpartale Komplikationen

Insgesamt trat nur eine postpartale Blutung über 1000 ml auf. Eine manuelle Nachtastung oder eine Kürettage war in 9% der Fälle nötig. Es zeigte sich kein signifikanter Unterschied zwischen den Gruppen (Tabelle 36).

Tabelle 36: Postpartale Komplikationen in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachblutung über 1000 ml</td>
<td>1 (1%)</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Nachtastung oder Kürettage</td>
<td>6 (9%)</td>
<td>1 (9%)</td>
<td>5 (8%)</td>
</tr>
</tbody>
</table>
4.2.13 **Perinatales Ergebnis**

Der mittlere arterielle pH betrug 7,23 ± 0,09. 35% der Kinder hatten einen arteriellen pH unter 7,20. 6 Kinder hatten einen arteriellen pH unter 7,10, wobei kein arterieller pH unter 7,00 auftrat. Der mittlere Basenüberschuss (BE) im arteriellen Nabelschnurblut betrug 6,5 ± 3,6.

Der Nachweis von phosphoryliertem IGFBP-1 in Zervikalsekret bei Einleitungsbeginn hatte keinen Einfluss auf das „fetal outcome“ (Tabelle 37).

Tabelle 37: Perinatales Ergebnis in Abhängigkeit vom phIGFBP-1-Nachweis

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>phIGFBP-1 positiv</th>
<th>phIGFBP-1 negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtsgewicht [g]</td>
<td>3476 ± 574</td>
<td>3577 ± 696</td>
<td>3457 ± 553</td>
</tr>
<tr>
<td>pHart</td>
<td>7,23 ± 0,09</td>
<td>7,27 ± 0,08</td>
<td>7,22 ± 0,09</td>
</tr>
<tr>
<td>pHart < 7,20</td>
<td>25 (35%)</td>
<td>2 (18%)</td>
<td>23 (39%)</td>
</tr>
<tr>
<td>pHart < 7,10</td>
<td>6 (9%)</td>
<td>0</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>BE [mmol/l]</td>
<td>-6,5 ± 3,6</td>
<td>-5,2 ± 3,2</td>
<td>-6,7 ± 3,6</td>
</tr>
<tr>
<td>BE < -10 mmol/l</td>
<td>14 (20%)</td>
<td>2 (18%)</td>
<td>12 (20%)</td>
</tr>
<tr>
<td>APGAR 5 Min</td>
<td>9,4 ± 0,9</td>
<td>9,6 ± 0,7</td>
<td>9,4 ± 1,0</td>
</tr>
<tr>
<td>APGAR 5 Min < 7</td>
<td>1 (1%)</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>APGAR 10 Min</td>
<td>9,6 ± 0,7</td>
<td>9,8 ± 0,6</td>
<td>9,6 ± 0,8</td>
</tr>
<tr>
<td>APGAR 10 Min < 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
5 Diskussion

Heutzutage sind Prostaglandine (PGE$_2$) die Mittel der Wahl zur Geburtseinleitung bei unreifem Zervixbefund, da sie eine Reifung der Zervix induzieren und zusätzlich das Myometrium stimulieren. Derzeitiger Standard bei unreifer Zervix (Bishop-Score ≤ 5) ist die intrazervikale Gabe von 0,5 mg PGE$_2$-Gel [14].

Das PGE$_2$-Vaginalgel ist in Deutschland seit 1997 ab einem Bishop-Score von 4 zugelassen. Hinsichtlich der Pharmakokinetik verhalten sich intrazervikale und vaginale PGE$_2$-Gelgabe ähnlich. Der Vorteil der vaginalen Applikation liegt im weniger invasiven und damit für die Patientin akzeptableren Vorgehen.

Kemp et al. konnten in einer prospektiv randomisierten Multizenterstudie bei einem Bishop-Score von 3 und 4 einen Wirkungsvorteil des 2 mg PGE$_2$-Vaginalgel gegenüber der intrazervikalen 0,5 mg PGE$_2$-Gelapplikation nachweisen, die Rate uteriner Überstimulierungen war dabei nicht erhöht [30]. Corrado et al. konnten in einer Studie mit 233 Patientinnen bei einem Bishop-Score ≤ 5 keinen Unterschied zwischen dem 1 mg PGE$_2$-Vaginalgel und der intrazervikalen 0,5 mg PGE$_2$-Gelapplikation nachweisen. Auch bei einem Bishop-Score < 4 gab es keine Unterschiede zwischen den
Applikationsformen [42]. Irion et al. wiesen in einer Studie mit 247 Patientinnen eine höhere Effektivität des 2 mg PGE₂-Vaginalgels gegenüber dem 0,5 mg PGE₂-Intrazervikalgel bei einem Bishop-Score von ≤ 4 nach [31]. Auch kann mit der 2 mg Dosierung bei unreifem Zervixbefund und Erstgebarenden ein signifikant besseres Einleitungsergebnis erreicht werden als mit dem 1 mg PGE₂-Vaginalgel [43]. Da aufgrund dieser Studien bei unreifem Zervixbefund die Applikation von 2 mg PGE₂-Vaginalgel zur Geburtseinleitung der Applikation von 1 mg PGE₂-Vaginalgel und 0,5 mg PGE₂-Intrazervikalgel überlegen erscheint wurde in dieser Studie in jedem Fall das 2 mg PGE₂-Vaginalgel verwendet.

Es gibt nur wenige Studien die die Effektivität des 2 mg PGE₂-Vaginalgels bei einem Bishop-Score ≤ 5 nachweisen. Ein Ziel unserer Studie war zu überprüfen, ob unser Vorgehen der Geburtseinleitung nach 12 Stunden mit 2 mg PGE₂-Gel intravaginal bei unreifer Zervix (Bishop-Score ≤ 5) eine effektive und sichere Methode darstellt.

Eine der häufigsten Indikationen zur Geburtseinleitung ist der vorzeitige Blasensprung. Das Risiko eines Amnioninfektionssyndroms nach vorzeitigem Blasensprung hängt entscheidend von der Länge des Intervalls zwischen Blasensprung und Geburt ab. Die Rate infektionsassoziierter maternaler und fetaler Komplikationen verdoppelt sich bei Weheneintritt 7 bis 12 Stunden nach vorzeitigem Blasensprung im Vergleich zum Einsetzen muttermundswirksamer Wehen innerhalb von 6 Stunden. Zwölf Stunden nach Blasensprung steigt die Komplikationsrate sogar um das 3- bis 5-fache an [39]. Daher ist in diesem Fall das Zeitintervall von der Geburtseinleitung bis zur Entbindung entscheidend. In unserer Studie betrug dieses im Median 10,5 Stunden. Dabei ergaben sich signifikante Unterschiede bezüglich der Parität und des initialen Bishop-Scores. Multiparae wurden mit 8,0 Stunden signifikant schneller entbunden als Primiparae mit 13,3 Stunden (p<0,01). Auch der Bishop-Score bei Einleitungsbeginn hatte einen Einfluss auf die Zeit bis zur Geburt. Patientinnen mit einem Bishop-Score >3 wurden mit 8,0 Stunden signifikant schneller entbunden als Patientinnen mit einem Bishop-Score < 4 mit 12,6 Stunden (p<0,05). Dabei zeigte sich jedoch, dass bei Multiparae nur das Zeitintervall von Beginn regelmäßiger Wehentätigkeit bis zur Geburt signifikant kürzer war als bei Primiparae (p<0,001). Im Gegensatz dazu war bei Patientinnen mit einem Bishop-Score > 3 nur das Zeitintervall vom Einleitungsbeginn bis zum Beginn regelmäßiger Wehentätigkeit signifikant kürzer als bei Patientinnen mit einem Bishop-
Score < 4 (p<0.05). Zusammenfassend lässt sich sagen, dass das Zeitintervall vom Einleitungsbeginn bis zum Beginn regelmäßiger Wehentätigkeit vor allem vom Bishop-Score bei Einleitungsbeginn abhängig ist und die Zeit danach bis zur Geburt vor allem durch die Parität beeinflusst wird (Tabelle 13, Tabelle 14).

In unserer Studie führte die Geburtseinleitung mit 2 mg Prostaglandin-Vaginalgel bei Patientinnen mit vorzeitigem Blasensprung trotz unreifem Zervixbefund in einem hohen Prozentsatz (88%) innerhalb von 24 h zu einer vaginalen Entbindung (Tabelle 15, Tabelle 16). Auch ohne vorzeitigen Blasensprung betrug die Rate an erfolgreichen Geburtseinleitungen immerhin noch 71% (Tabelle 33). Dies entspricht den Raten an erfolgreicher Geburtseinleitung mit 0,5 mg PGE$_2$-Intrazervikalgel bei unreifer Zervix in der Literatur mit einer vaginalen Entbindungsrate von 64 – 86% [44, 30]. Dabei zeigten sich jedoch in unserer Studie bei vorzeitigem Blasensprung keine signifikanten Unterschiede bezüglich der Parität oder des initialen Bishop-Scores, was sicherlich an der geringen Fallzahl liegt.

Für die Effektivität einer Geburtseinleitung scheint bei unreifem Zervixbefund der Bishop-Score keine so große Rolle zu spielen wie die Parität [45]. Multiparae haben ein besseres Ansprechen auf PGE₂ als Primiparae [46]. Warum die Parität für die Geburt und die Geburtseinleitung so entscheidend ist, ist nicht abschließend geklärt. Ein Grund könnte die höhere Konzentration der Metaboliten von PGE₂ und PGF₂α im Plasma von Multiparae am Ende der Schwangerschaft sein [47].

Nuutilla et al. fanden bei reifer Zervix (Bishop-Score > 5) mit einem Median von 27,0 µg/l eine signifikant höhere zervikale phosphorylierte IGFBP-1 Konzentration als bei Frauen mit unreifer Zervix (Bishop-Score ≤ 5) mit einem Median von 6,6 µg/l. Der actim Partus test zeigt ein positives Ergebnis erst über einer Konzentration von 10 µg/l phIGFBP-1 an. Dies erklärt möglicherweise die niedrige Rate von 16% positiven Testergebnissen in unserer Studie, da alle Patientinnen einen initialen Bishop-Score von
≤ 5 aufwiesen (Tabelle 25). Schaut man sich die Verteilung des Bishop-Scores bei Einleitungsbeginn an (Abbildung 4), so zeigt sich, dass bei positivem actim Partus test signifikant mehr Patientinnen einen Bishop-Score von 4 oder 5 aufwiesen. Aufgrund der geringen Fallzahl und der niedrigen Rate an positiven pH1GFBP-1 zeigte sich jedoch keine Signifikanz der Mittelwerte des Bishop-Scores zwischen den beiden Gruppen (Tabelle 27).

Interessante Ergebnisse zeigt der Verlauf der Geburtseinleitung. So benötigte keine Patientin mit positivem pH1GFBP-1-Nachweis eine Oxytozinunterstützung zur Muttermundseröffnung auf 3 cm. Bei negativem pH1GFBP-1-Nachweis waren dies immerhin 22%. Aufgrund der geringen Fallzahl ergab sich jedoch keine statistische Signifikanz (Tabelle 29).

Ziel der Studie war zu untersuchen, ob sich anhand des Nachweises von phosphoryliertem IGFBP-1 im Zervikalsekret eine Vorhersage über den Erfolg einer Geburtseinleitung bei unreifem Zervixbefund (Bishop-Score ≤ 5) mit 2 mg PGE2-Gel intravaginal treffen lässt. Definiert man eine erfolgreiche Geburtseinleitung als solche die zu einer vaginalen Entbindung innerhalb von 24 Stunden führt, so lässt sich eine prädiktiver Wert durch den actim Partus test in diesem Kollektiv nicht nachweisen. Dies resultiert möglicherweise einerseits aus der zu hohen Nachweisgrenze des Tests (> 10 µg/l), andererseits aus der geringen Fallzahl. Wenn man die 24 Stunden Grenze außer Acht lässt, zeigt sich eine signifikant höhere Spontangeburtsrate (Tabelle 31).

Eine Tendenz zu einem schnelleren Geburtsverlauf bei positivem actim Partus test lässt sich aus unserer Studie sicherlich erkennen, auch wenn sich keine statistischen Signifikanz nachweisen lassen (Tabelle 32).
6 Zusammenfassung

Das Ziel einer medikamentösen Geburteinleitung ist, durch die Beendigung der Schwangerschaft ein besseres perinatales Ergebnis für Mutter und Kind zu erreichen als bei einer abwartenden Haltung. Da bei unreifem Zervixbefund die Applikation von 2 mg PGE₂-Vaginalgel der Applikation von 1 mg PGE₂-Vaginalgel und 0,5 mg PGE₂-Intrazervikalgel überlegen erscheint wurde in dieser Studie überprüft, ob die Geburteinleitung nach 12 Stunden mit 2 mg PGE₂-Gel intravaginal bei unreifer Zervix (Bishop-Score \(\leq 5 \)) eine effektive und sichere Methode darstellt. Die Geburteinleitung mit 2 mg PGE₂-Vaginalgel führte bei Patientinnen mit vorzeitigem Blasensprung trotz unreifem Zervixbefund in einem hohen Prozentsatz (88%) innerhalb von 24 h zu einer vaginalen Entbindung. Dabei zeigte sich vor allem der Einfluss der Parität auf die Wirksamkeit der Geburteinleitung bei unreifem Zervixbefund.

7 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Austreibungsperiode</td>
</tr>
<tr>
<td>BE</td>
<td>Basenüberschuss (Base excess)</td>
</tr>
<tr>
<td>BS</td>
<td>Blasensprung</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CTG</td>
<td>Kardiotokogramm</td>
</tr>
<tr>
<td>EP</td>
<td>Eröffnungsperiode</td>
</tr>
<tr>
<td>HELLP</td>
<td>Hemolysis, Elevated Liver enzymes, Low Platelets</td>
</tr>
<tr>
<td>HES</td>
<td>Hypertensive Erkrankungen in der Schwangerschaft</td>
</tr>
<tr>
<td>IGFBP-1</td>
<td>Insulin-like Growth Factor Binding Protein-1</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>MBU</td>
<td>Mikroblutuntersuchung</td>
</tr>
<tr>
<td>pHart</td>
<td>arterieller Nabelschnur pH</td>
</tr>
<tr>
<td>PDA</td>
<td>Periduralanästhesie</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E₂</td>
</tr>
<tr>
<td>PGF₂α</td>
<td>Prostaglandin F₂α</td>
</tr>
<tr>
<td>phIGFBP-1</td>
<td>phosphoryliertes IGFBP-1 (Insulin-like Growth Factor Binding Protein-1)</td>
</tr>
<tr>
<td>SIH</td>
<td>Schwangerschaftsinduzierte Hypertonie</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswochen, gerechnet nach der letzten Periodenblutung</td>
</tr>
<tr>
<td>supp.</td>
<td>Suppositorium</td>
</tr>
<tr>
<td>vag.</td>
<td>vaginal</td>
</tr>
</tbody>
</table>
8 Tabellen und Abbildungen

Tabelle 1: Bishop-Score ..3
Tabelle 2: Gesamtkollektiv und Parität ...21
Tabelle 3: Gesamtkollektiv und Bishop-Score ...22
Tabelle 4: Zusammenhang zwischen Bishop-Score und Parität22
Tabelle 5: Mehrfache Prostaglandin-Applikationen in Abhängigkeit von der Parität ..23
Tabelle 6: Mehrfache Prostaglandin-Applikationen in Abhängigkeit vom initialen Bishop-Score ..23
Tabelle 7: Oxytozingabe im Geburtsverlauf in Abhängigkeit von der Parität23
Tabelle 8: Oxytozingabe im Geburtsverlauf in Abhängigkeit vom initialen Bishop-Score ..24
Tabelle 9: Schmerzbehandlung und Spasmolyse in Abhängigkeit von der Parität24
Tabelle 10: Schmerzbehandlung und Spasmolyse in Abhängigkeit vom initialen Bishop-Score ..25
Tabelle 11: Geburtsmodus in Abhängigkeit von der Parität ..25
Tabelle 12: Geburtsmodus in Abhängigkeit vom initialen Bishop-Score bei Einleitungsbeginn ..25
Tabelle 13: Zeitintervalle in Abhängigkeit von der Parität ..26
Tabelle 14: Zeitintervalle in Abhängigkeit vom initialen Bishop-Score27
Tabelle 15: Erfolgreiche Einleitung in Abhängigkeit von der Parität27
Tabelle 16: Erfolgreiche Einleitung in Abhängigkeit vom initialen Bishop-Score ...27
Tabelle 17: Uterine Überstimulierung in Abhängigkeit von der Parität28
Tabelle 18: Uterine Überstimulierung in Abhängigkeit vom initialen Bishop-Score ..28
Tabelle 19: Tokolyse in Abhängigkeit von der Parität ..28
Tabelle 20: Tokolyse in Abhängigkeit vom initialen Bishop-Score29
Tabelle 21: Postpartale Komplikationen in Abhängigkeit von der Parität29
Tabelle 22: Postpartale Komplikationen in Abhängigkeit vom initialen Bishop-Score ..29
Tabelle 23: Perinatales Ergebnis in Abhängigkeit von der Parität30
Tabelle 24: Perinatales Ergebnis in Abhängigkeit vom initialen Bishop-Score
Tabelle 25: Gesamtkollektiv und phIGFBP-1-Nachweis
Tabelle 26: Einleitungsindikationen
Tabelle 27: Bishop-Scores bei Einleitungsbeginn in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 28: Mehrfache Prostaglandin-Applikationen in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 29: Oxytozingabe und Amniotomie im Geburtsverlauf in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 30: Schmerzbehandlung und Spasmolyse in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 31: Geburtsmodus in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 32: Zeitintervalle in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 33: Erfolgreiche Einleitung in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 34: Uterine Überstimulierung in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 35: Tokolyse in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 36: Postpartale Komplikationen in Abhängigkeit vom phIGFBP-1-Nachweis
Tabelle 37: Perinatales Ergebnis in Abhängigkeit vom phIGFBP-1-Nachweis

Abbildung 1: Wirkung der Prostaglandine auf Myometrium und Zervix [14]
Abbildung 2: actim Partus Teststreifen mit negativem Testergebnis
Abbildung 3: actim Partus Teststreifen mit positivem Testergebnis
Abbildung 4: Nachweisbarkeit von phosphoryliertem IGFBP-1 im Zervikalsekret in Abhängigkeit vom Bishop-Score bei Einleitungsbeginn
9 Literatur

Danksagung

Herrn Prof. Dr. med. Johannes Dietl danke ich für die Ermöglichung der Dissertation an der Klinik und Poliklinik für Gynäkologie und Geburtshilfe der Universität Würzburg.

Herrn Priv.-Doz. Dr. med. Thomas Müller danke ich für die Überlassung des Themas und die gute Betreuung.

Meinen Kollegen danke ich für die Unterstützung der Studie, insbesondere für die Durchführung der Tests im Bereitschaftsdienst.

Herrn Dr. med. Lorenz Rieger danke ich für das Korrekturlesen und die vielen Anregungen.

Meiner Frau Dr. Anna Bernar danke ich für die viele Geduld und Unterstützung.
Lebenslauf

Persönliche Daten

Name: Thomas Bernar, geb. Praxl
Anschrift: Hermann-Zürrlein-Str. 8
Geburtsdatum: 28.03.1970
Geburtsort: Passau
Familienstand: verheiratet, drei Kinder

Schulausbildung

1976 - 1980 Grundschule Waldkirchen
1980 - 1989 Johannes-Gutenberg-Gymnasium Waldkirchen
1989 Allgemeine Hochschulreife

Ersatzdienst

06/1989 - 10/1990 Individuelle-Schwerbehinderten-Betreuung

Hochschulausbildung

1991 - 1998 Studium der Humanmedizin an der Julius-Maximilians-
Universität, Würzburg
09/1993 Ärztliche Vorprüfung
03/1995 Erster Abschnitt der Ärztlichen Prüfung
09/1997 Zweiter Abschnitt der Ärztlichen Prüfung
11/1998 Dritter Abschnitt der Ärztlichen Prüfung

Praktisches Jahr

10/1997 - 02/1998 Innere Medizin, Missionsärztliche Klinik Würzburg
02/1997 - 06/1998 Gynäkologie und Geburtshilfe, Missionsärztliche
Klinik Würzburg
06/1998 - 09/1998 Chirurgie, Missionsärztliche Klinik Würzburg

Klinische Tätigkeit

03/1999 - 06/2001 Arzt im Praktikum, Frauenklinik und Poliklinik der
Universität Würzburg
Seit 06/2001 Assistenzarzt, Frauenklinik und Poliklinik der
Universität Würzburg

Würzburg, den 02.06.2004

[Signature]