Analyse biologisch aktiver, oxidierter Lipide in Pflanzen und Menschen
Analysis of biologically acitve, oxidized lipids in plants and humans
Please always quote using this URN: urn:nbn:de:bvb:20-opus-20424
- Durch freie, radikalkatalysierte Oxidation von Linolensäure können in vitro und in vivo meh-rere Klassen von Phytoprostanen gebildet werden. Im Rahmen der vorliegenden Arbeit wur-den Phytoprostane in Pflanzenmaterial (Blättern, Blütenpollen), Speiseölen sowie in mensch-lichen Körperflüssigkeiten (Blut und Urinproben) untersucht. Zusätzlich wurden neue Metho-den entwickelt, um Phytohormone sowie verschiedene Metabolite des pflanzlichen Primär- und Sekundärstoffwechsels zusammen mit einer gemeinsamen Aufarbeitung erfassen und bestimmen zu können.Durch freie, radikalkatalysierte Oxidation von Linolensäure können in vitro und in vivo meh-rere Klassen von Phytoprostanen gebildet werden. Im Rahmen der vorliegenden Arbeit wur-den Phytoprostane in Pflanzenmaterial (Blättern, Blütenpollen), Speiseölen sowie in mensch-lichen Körperflüssigkeiten (Blut und Urinproben) untersucht. Zusätzlich wurden neue Metho-den entwickelt, um Phytohormone sowie verschiedene Metabolite des pflanzlichen Primär- und Sekundärstoffwechsels zusammen mit einer gemeinsamen Aufarbeitung erfassen und bestimmen zu können. Blütenpollen enthalten mehrere mmol/g an Phytoprostanen, darunter PPA1/PPB1, PPE1 und PPF1. Physiologisch relevant sind jedoch nur die Mengen, die sich nach Extraktion in einem wässrigen Puffer wiederfinden lassen. Deshalb wurden hier erstmals wässrige Extrakte von Birkenpollen untersucht. In diesen befanden sich durchschnittlich 60 nmol PPE1 und 10 nmol PPF1 pro g extrahiertem Pollen. Pflanzenöle enthalten a-Linolensäure bis zu einem Gewichtsanteil von 56 % (m/m). In Spei-seölen aus ausgesuchten Pflanzenarten (Leinöl, Sojaöl, Olivenöl), Walnussöl, Traubenkernöl) und parenteraler Nahrung (Intralipid) wurden die Phytoprostanklassen A1, B1, D1, E1, F1 und deoxy-J1 nachgewiesen und quantifiziert. In frischen Ölen wurden große Mengen an Phy-toprostanen (0,4 – 101 mg/g Öl) gefunden, welche teilweise frei und teilweise verestert vorla-gen. Der absolute Phytoprostangehalt der Öle nahm in folgender Reihe ab: Leinöl » Sojaöl > Olivenöl > Walnussöl > Rapsöl >> Traubenkernöl. (a-Tocopherol). In allen untersuchten Ö-len dominierten entweder PPE1 oder PPF1 als häufigste Phytoprostanklasse. PPA1 und PPB1 waren lediglich als untergeordnete Bestandteile enthalten. PPD1 und dPPJ1 konnten nur in sehr geringen Mengen gefunden werden. Wenn ein Öl bei längerer Lagerung autoxidiert, können die Gehalte an oxidierten Fettsäuren um ein Vielfaches ansteigen. Es konnte gezeigt werden, dass bei der Autoxidation von Spei-seölen weitere Phytoprostane entstehen und die Konzentrationen von PPE1 und PPF1 im Öl bis auf das 10-fache ansteigen können. Weiterhin wurde dabei die Bildung von detektierbaren Mengen dPPJ1 nachgewiesen. Die Kinetik der Phytoprostanbildung folgte dem für andere Autoxidationsprodukte typischem zeitlichen Verlauf und erst nach Überschreiten einer Induk-tionsperiode traten vermehrt Phytoprostane auf. Im menschlichen Verdauungstrakt sind Phytoprostane chemisch stabil. Allerdings können im sauren Milieu des Magens (pH 0-2) Dehydratisierungen auftreten: Nach Inkubation von PPE1 in 0,1 M HCl waren nach 3 h noch 97 % intakt, wohingegen 3 % nichtenzymatisch zu PPA1 konvertiert waren. Unter den gleichen Bedingungen wurden 19 % der inkubierten PGD1 zu dPGJ1 dehydratisiert. In den Pflanzenölen veresterte PPF1 wurden mit Schweinepankreas-Lipase innerhalb 1 h zu 44 bis 100 % hydrolysiert. Raffinierte Speiseöle, welche fast ausschließlich aus Triacylglyce-riden zusammengesetzt sind, wurden die veresterten PPF1 sogar zu fast 100 % hydrolysiert. Weiterhin konnte erstmals gezeigt werden, dass Phytoprostane nach oraler Aufnahme resor-biert werden können und anschließend mit dem Urin ausgeschieden werden. Nach Verzehr von Pflanzenölen (Sojaöl, Olivenöl, Traubenkernöl) wurden die Spiegel von PPF1 in Blut und Urin bestimmt. Dabei zeigte sich eine deutliche Korrelation zwischen dem Phytoprostangehalt der Öle und dem Gehalt in den Blut- und Urinproben: Nach Konsum von Oliven- oder Sojaöl konnten innerhalb von 24 h PPF1 in Blut und Urin wiedergefunden werden, wohingegen der Konsum von Traubenkernöl in den untersuchten Zeiträumen weder im Blut noch im Urin zu detektierbaren PPF1-Mengen führte. Im Blut lag PPF1 verestert vor: Im Serum von Olivenöl-Konsumenten konnten durchschnittlich 1,22 nmol/l PPF1 gefunden werden. Das Serum eines Sojaöl-Konsumenten enthielt 0,97 nmol PPF1/l. Die Ausscheidung von unmetabolisierten PPF1 mit dem Urin erfolgte fast vollständig innerhalb der ersten 8 h nach dem Konsum der Öle, 8 bis 24 h danach konnten im Urin nur noch sehr geringe Mengen PPF1 detektiert wer-den. In den Urinproben der Konsumenten von Olivenöl oder Sojaöl konnten nach 0-4 h durch-schnittlich 2,02 bzw. 0,43 pmol PPF1/mg Kreatinin und nach 4-8 h 1,39 bzw. 0,68 pmol PPF1/mg Kreatinin gefunden werden. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, welche die simultane Bestimmung von Phytohormonen, Oxylipinen und Fettsäuren ermöglicht. Weiterhin wurden Methoden zur Metabolit-Analytik entwickelt, mit welchen Konzentrationsunterschiede zwischen zwei Pro-ben direkt verglichen werden können. Zur Markierung von der Carboxylgruppe von Oxylipinen, Phytohormonen und Aminosäuren mit 18O-Sauerstoff wurden allgemein anwendbare Methoden entwickelt. Die [18O]2-markierten Verbindungen erwiesen sich als stabil und eigneten sich als interner Standard in der GC-MS und HPLC-MS Analytik.…
- Free radical catalyzed oxidation of linolenic acid leads to the formation of several classes of phytoprostanes, which can occur in vitro and in vivo. In the present thesis, phytoprostanes have been determined in plant material (leaves, pollen), fatty oils and human body fluids (blood and urine samples). Within this work, existing methods were optimized in order to detect all phytoprostane classes in various materials. In addition, new methods for simultane-ous detection and quantification of phytohormones and other plant primary and secondaryFree radical catalyzed oxidation of linolenic acid leads to the formation of several classes of phytoprostanes, which can occur in vitro and in vivo. In the present thesis, phytoprostanes have been determined in plant material (leaves, pollen), fatty oils and human body fluids (blood and urine samples). Within this work, existing methods were optimized in order to detect all phytoprostane classes in various materials. In addition, new methods for simultane-ous detection and quantification of phytohormones and other plant primary and secondary metabolites together in one sampling procedure were developed. Pollen grains contain phytoprostanes in amounts of some mmol/g, among them PPA1/PPB1, PPE1 und PPF1. However, only the concentrations that can be achieved after extraction with water are physiologically relevant. Therefore, the quantity of phytoprostanes that can be ex-tracted with aqueous buffer was examined. In aqueous birch pollen extract, considerable amounts of PPE1 and PPF1 have been found, ranging around 60 nmol PPE1 and 10 nmol PPF1 per gram extracted pollen. Vegetable oils contain a-linolenic acid in concentrations up to 50% (m/m). In edible oils from selected plant species (linseed oil, soybean oil, olive oil, walnut oil, grapeseed oil) and par-enteral nutrition (intralipid) the phytoprostane classes A1, B1, D1, E1, F1 and deoxy-J1 were identified and quantified. High levels of phytoprostanes (0,4 – 101 mg / g oil) in both free and esterified form were found even in apparently fresh oils. Linseed oil and soybean oil con-tained the highest levels of phytoprostanes (26 µg / g and 29 µg /g, respectively). The abso-lute phytoprostane content of the oil declined in the following order: Linseed oil » soybean oil > olive oil > walnut oil > rapeseed oil >> grape seed oil. Surprisingly, the total amount of phytoprostanes did not correlate well with the linolenic acid content and the content of vita-min E (a-tocopherole). In all oils, either PPE1 or PPF1 was the dominant phytoprostane class. PPA1 and PPB1 were only minor components. PPD1 was found in very small amounts whereas dPPJ1 could exclusively be detected in natural soybean oil. Moreover, levels of oxidized lipids dramatically increase when oils become autoxidized upon prolonged storage. It was shown that during autoxidation of edible oils the levels of PPE1 and PPF1 may raise 10-fold. Furthermore, the formation of detectable amounts of dPPJ1 was demonstrated. The formation of phytoprostanes showed the kinetics typical for all autoxidation products and the amount of oxylipin increased after an induction period. In the human gastrointestinal tract, phytoprostanes are chemically stable. Indeed, exposed to the acidic conditions in the stomach (pH 0-2), dehydration reactions may take place. After incubation of PPE1 in 0,1 M HCl for 3 h, 97% remained intact while 3% were non-enzymatically converted to PPA1. Under the same conditions, 19% of the incubated PGD1 were converted into dPGJ1.Pancreatic lipase released 44 to 100 % of PPF1 esterified in the plant oils within 1 h. Refined oils that consist almost completely of triacylglyceroles were hydrolyzed nearly by 100 %. Furthermore, absorption of phytoprostanes from the human intestinal tract and excretion into urine could be demonstrated for the first time. After oral consumption of 100 ml of a vegeta-ble oil (olive oil, soybean oil or grape seed oil) PPF1 levels were determined in blood and urine. A strong correlation could be found between the amount of phytoprostanes in the oil and the PPF1-content of the blood and urine samples. Within 24 hours after consuming olive or soybean oil, PPF1 were found in the examined body fluids, whereas after the intake of grape seed oil, PPF1 could be detected neither in blood nor in urine. In blood, PPF1 occurred esterified and the collected blood samples of olive oil consumers contained 1,22 nmol/l PPF1 on average while in the blood of one consumer of soybean oil 0,97 nmol PPF1/l could be de-tected. Excretion of the unmetabolized PPF1 in urine occurred nearly completely during the first 8 hours and 8 to 24 hours after the oil intake only very small amount of PPF1 were still measured. 0-4 h after the oil consumption the urine of olive or soybean oil consumers con-tained on average 2,02 and 0,43 pmol PPF1/mg creatinine and after 4-8 h 1,39 and 0,68 pmol PPF1/mg creatinine, respectively. A method that allows the simultaneous determination of phytohormones, oxylipins and fatty acids was developed. Additionally, methods were developed that enable a direct comparison of two different samples in a sum of metabolites. These methods were shown to be suitable for the determination of fatty acids and amino acids. For the labeling of oxylipins, acidic phytohormones and amino acids with 18O in the carboxyl group general methods were established. The [18O2]-labelled compounds are stable and suit-able as internal standards for GC/MS and HPLC/MS analysis.…
Author: | Kathrin Karg |
---|---|
URN: | urn:nbn:de:bvb:20-opus-20424 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Biologie |
Faculties: | Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften |
Date of final exam: | 2006/11/17 |
Language: | German |
Year of Completion: | 2006 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie |
GND Keyword: | Prostaglandine; Pflanzen; Mensch |
Tag: | Isoprostane; Jasmonate; Oxylipine; Phytoprostane; Prostaglandine isoprostanes; jasmonates; oxylipins; phytoprostanes; prostaglandins |
Release Date: | 2006/11/24 |
Advisor: | Prof. Dr. Martin J. Müller |