• Treffer 2 von 15
Zurück zur Trefferliste

Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-302897
  • Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2’-bipyridine-6,6’-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. TheInspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2’-bipyridine-6,6’-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{−1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O–O bond formation via nucleophilic attack.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Niklas Noll, Ana-Maria Krause, Florian Beuerle, Frank WürthnerORCiDGND
URN:urn:nbn:de:bvb:20-opus-302897
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Deutsch):Nature Catalysis
Erscheinungsjahr:2022
Auflage:accepted version
Originalveröffentlichung / Quelle:Nature Catalysis (2022) 5: 867–877. https://doi.org/10.1038/s41929-022-00843-x
DOI:https://doi.org/10.1038/s41929-022-00843-x
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 54 Chemie / 547 Organische Chemie
Freie Schlagwort(e):catalysis; catalyst synthesis; catalytic mechanisms; enzyme; homogeneous catalysis; molecular; photocatalysis; supramolecular chemistry; water oxidation
Datum der Freischaltung:15.02.2023
Embargo-Datum:03.04.2023
EU-Projektnummer / Contract (GA) number:787937
OpenAIRE:OpenAIRE
Anmerkungen:
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/s41929-022-00843-x
Lizenz (Deutsch):License LogoDeutsches Urheberrecht