• search hit 1 of 1
Back to Result List

Characterization of the ATLAS-type Micromegas Detectors

Charakterisierung von Micromegas-Detektoren des ATLAS-Typs

Please always quote using this URN: urn:nbn:de:bvb:20-opus-167323
  • Micromegas are parallel-plate gaseous detectors with micro-pattern readout structures that are able to measure precisely and efficiently at high particle rates. Their difference with respect to other gaseous detectors is that the space in which particles ionise the gas and create electrons is separated from the region in which these electrons are multiplied (or amplified) by a thin metallic mesh. In the ionisation region, typically a few mm thick, a moderate field of a few hundred V/cm is applied. The amplification region with a homogeneousMicromegas are parallel-plate gaseous detectors with micro-pattern readout structures that are able to measure precisely and efficiently at high particle rates. Their difference with respect to other gaseous detectors is that the space in which particles ionise the gas and create electrons is separated from the region in which these electrons are multiplied (or amplified) by a thin metallic mesh. In the ionisation region, typically a few mm thick, a moderate field of a few hundred V/cm is applied. The amplification region with a homogeneous electrical field of 40--50~kV/cm is only 100--150~$\upmu$m thick. The latter guarantees that the positive ions produced in the amplification process are rapidly evacuated and the possibility to build up space charge at high rate is reduced. Critical in micromegas detectors are sparks in the thin amplification region in the presence of the high electrical field. This problem was solved in 2011 by introducing a spark protection scheme. It consists of a layer of resistive strips on top of the readout strips, separated from the latter by a thin insulation layer. Micromegas with the spark protection scheme were selected as instrumentation of the first ATLAS forward muon station (NSW) in the upgrade of the ATLAS detector for the operation of the Large Hadron Collider (LHC) at high luminosity (HL-LHC), expected for 2026. The main subjects of this thesis are: the characterisation of the first micromegas quadruplet prototypes for the NSW detectors; the characterisation of the materials used in the spark-protection system; and the study of the influence of the mesh distance holders (pillars) on the detector performance. The thesis starts with a brief introduction into the LHC and ATLAS projects, followed by a chapter that explains the reason for the upgrade of the ATLAS muon system and shows the layout of the NSW. The first of the three main chapters covers the construction and the characterisation of the first two prototypes for the NSW detectors. These detectors comprise four detection layers and have the same mechanical structure as the NSW detectors. The mechanical precision as well as the homogeneity of the detector response are discussed. The latter has been measured using X-rays and cosmic rays. The spatial resolution that can be achieved with these detectors precision has been measured at the MAMI accelerator at Mainz with low-energy electrons. The chapter is completed by a section that describes the successful integration of a data acquisition system (DAQ) into the official ATLAS DAQ system that was required for an initially planned installation of one of the prototypes on the existing Small Wheel. The next chapter presents a study of the influence of temperature and humidity changes on the resistive strips used in the spark protection system. In addition the long-term stability of the resistive material has been measured accumulating charge equivalent to 100 years of operation in the HL-LHC and exposing the samples to intense gamma irradiation equivalent to 10 years of HL-LHC operation. The third part covers the impact of the mesh distance holders (pillars) on the performance of the detector. This study has been performed with a 10 x 10 cm$^2$ bulk-micromegas with two different pillar shapes. Both 5.9 keV gammas from a $^{55}$Fe and 8 keV X-rays from a Cu target were used. In this context also the electrostatic charge-up of the detector is discussed. In the Appendices one finds a summary of the fundamental physics relevant for gaseous detectors as well as some supporting material for the topics covered in the main part of the thesis.show moreshow less
  • Micromegas-Detektoren sind Gas-Detektoren aus der Familie der Parallel-Platten-Detektoren mit sehr feinen Auslese-Elementen, die präzise und effizient bei hohen Teilchenraten messen können. Sie unterscheiden sich von anderen Gas-Detektoren dadurch, dass der Bereich, in dem die zu messenden Teilchen das Gas ionisieren und damit Elektronen produzieren, von dem Bereich, in dem diese Elektronen vervielfältigt werden, durch ein feines metallisches Gitter getrennt ist. Im Ionisationsbereich der gewöhnlich mehrere mm dick ist, wird ein moderatesMicromegas-Detektoren sind Gas-Detektoren aus der Familie der Parallel-Platten-Detektoren mit sehr feinen Auslese-Elementen, die präzise und effizient bei hohen Teilchenraten messen können. Sie unterscheiden sich von anderen Gas-Detektoren dadurch, dass der Bereich, in dem die zu messenden Teilchen das Gas ionisieren und damit Elektronen produzieren, von dem Bereich, in dem diese Elektronen vervielfältigt werden, durch ein feines metallisches Gitter getrennt ist. Im Ionisationsbereich der gewöhnlich mehrere mm dick ist, wird ein moderates elektrisches Feld von einigen hundert Volt angelegt. Der Vervielfachungs- oder Verstärkungsbereich mit einem homogenen elektrischen Feld von $\sim$40--50 kV/cm ist nur 100--150 $\upmu$m dick. Dadurch können die positiven Ionen, die im Vervielfältigungsprozess entstehen, schnell abgeleitet werden und der Aufbau von Raumladung bei hohen Teilchenraten wird begrenzt. Ein kritisches Element der Micromegas Detektoren sind spontane Entladungen in dem starken elektrischen Feld und dem sehr dünnen Verstärkungsbereich. Diese Problem wurde 2011 durch die Einführung einer Schutzschicht gelöst. Diese besteht aus einer dünnen Isolationsschicht über den Auslesestreifen, auf die Widerstandsstreifen aufgebracht werden. Micromegas-Detektoren mit Widerstandsschutz wurden für die Instrumentierung der ersten Station des ATLAS Myon-Systems in Vorwärtsrichtung (NSW) als Mess- und Auslöse-Instrumente für den Betrieb des Large Hadron Colliders (LHC) bei höherer Luminosität (HL-LHC, ab 2020) gewählt. Das Ziel dieser Arbeit ist: 1. die Messung der Eigenschaften der ersten Micromegas NSW Prototypen; 2. die Untersuchung der Eigenschaften des Materials, das für die Widerstandsstreifen benutzt wird; und 3. die Bestimmung des Einflusses der Gitter-Abstandshalter (pillars) auf die Eigenschaften des Detektors. Die Arbeit beginnt mit einer kurzen Einführung, die den LHC und das ATLAS Projekt vorstellt, gefolgt von einem Kapitel, das erklärt, warum die jetzt installierten Myon-Detektoren ersetzt werden müssen, um bei einer konsequenten Erhöhung der LHC-Luminosität nicht an Messgenauigkeit zu verlieren. Es zeigt dann wie die neue Myon Station, das New Small Wheel (NSW), aussehen wird. Im ersten der Hauptkapitel werden der Bau und die Untersuchung der ersten beiden Prototypen für die NSW Detektoren beschrieben. Diese Detektoren (MMSW) bestehen aus vier Messlagen und haben die gleiche mechanische Struktur wie die NSW Detektoren. Sowohl die mechanische Präzision als auch die Homogenität der Signale über den gesamten Detektor und die Teilchen-Nachweiswahrscheinlichkeit werden diskutiert. Letztere wurden mit Röntgenstrahlen und Teilchen aus der kosmischen Strahlung gemessen. Die Ortsauflösung wurde am MAMI Beschleuniger in Mainz mit nieder energetischen Elektronen gemessen. Das Kapitel wird komplettiert durch einen Abschnitt, der die erfolgreiche Integration eines Datenerfassungssystems für die MMSW Detektoren in das offizielle ATLAS Datenerfassungssystem beschreibt. Solch ein System wurde für die ursprünglich geplante Installation eines der MMSW Detektoren in ATLAS gebraucht. Danach wird die Untersuchung der Eigenschaften der Widerstandsstreifen präsentiert, insbesondere deren Abhängigkeit von Temperatur und relativer Luftfeuchtigkeit, sowie ihr Langzeitverhalten. Dafür wurden die Streifen einem Stromfluss ausgesetzt der 100 Jahren Betrieb im LHC entspricht, zum anderen einer Gamma Strahlendosis ausgesetzt, wie sie bei einem 10-jährigen LHC Betrieb erwartet wird. Im dritten Teil folgt eine ausführliche Studie des Einflusses der Gitter-Abstands-halter (pillars) auf die Ortsauflösung und die Nachweiswahrscheinlichkeit. Diese Studie wurde mit einem 10 $\times$ 10 cm$^2$ großen Micromegas Detektor mit zwei verschiedenen Abstandshalterformen sowohl mit 5.9 keV Gamma-Strahlen von einer $^{55}$Fe Quelle, als auch mit 8 keV Photonen aus einer Röntgen-Quelle durchgeführt. In diesem Zusammenhang wird auch die elektrostatische Aufladung des Detektors diskutiert. Im Anhang findet sich eine Zusammenfassung der physikalischen Grundlagen, die für Gasdetektoren relevant sind, sowie zusätzliches Material zu den oben beschriebenen Kapiteln.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Ourania SidiropoulouORCiD
URN:urn:nbn:de:bvb:20-opus-167323
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Thomas Trefzger, Prof. Dr. Otmar Biebel, Prof. Dr. Werner Porod
Date of final exam:2018/08/03
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Tag:ATLAS New Small Wheels (NSW); micro pattern gaseous detectors; micromegas detectors; muon spectrometer; resistive micromegas
PACS-Classification:10.00.00 THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS (for experimental methods and instrumentation for elementary-particle physics, see section 29)
50.00.00 PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES
Release Date:2018/08/31
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International