Investigations of the EPR parameters of bioradicals by density functional methods

DFT-Untersuchungen der EPR-Parameter von Bioradikalen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-19108
  • Quantum chemical modeling of electron paramagnetic resonance (EPR) parameters, in combination with data from the modern high-field/high-frequency EPR (HF-EPR) techniques, constitutes an invaluable analytical tool for gaining insight into radical-protein interactions, which determine the specificity and directionality of the radical-mediated biochemical processes. This thesis reports a series of density functional (DFT) studies on EPR parameters of several biologically relevant radicals and a series of molecular devices inspired byQuantum chemical modeling of electron paramagnetic resonance (EPR) parameters, in combination with data from the modern high-field/high-frequency EPR (HF-EPR) techniques, constitutes an invaluable analytical tool for gaining insight into radical-protein interactions, which determine the specificity and directionality of the radical-mediated biochemical processes. This thesis reports a series of density functional (DFT) studies on EPR parameters of several biologically relevant radicals and a series of molecular devices inspired by radical-protein interaction in photosystem I (PS-I). We demonstrate our methodology’s accuracy and capacity to provide insight into the in vivo environment and reactivity of bioradicals. Our DFT approach for the calculation of electronic g-tensors has been applied to semiquinone radical anions in the different protein environments of photosynthetic reaction centers. Supermolecular models have been constructed, based on combined crystallographic and quantum chemical structure data, for the QA and QB active sites of bacterial reaction centers, for the A1 site of PS-I, as well as for ubisemiquinone in frozen 2-propanol. After scaling of the computed gx components by 0.92, both gx and gy components computed at gradient-corrected DFT level with accurate spin-orbit operators agree with HF-EPR reference data essentially to within experimental accuracy in all four systems studied. The influence of the various semiquinone-protein non-covalent interactions has been studied by successive removal of individual residues from the models. The effects of hydrogen bonding to the two carbonyl oxygen atoms of the semiquinones was found to be nonadditive, due to compensating spin-polarization effects. The effects of tryptophan-semiquinone -stacking are different for QA and A1 sites. This may be traced back to a different alignment of the interacting fragments and to differential spin polarization. In the next part of this work our DFT methodology has been applied to the semiquinone in the environment of the “high-affinity” binding site of quinol oxidase (QH site). Recent multi-frequency EPR studies of the QH binding site of quinol oxidase have suggested a very asymmetric hydrogen-bonding environment for the semiquinone radical anion state. Single-sided hydrogen bonding to the O1 carbonyl position was one of the proposals, which contrasts with some previous experimental indications. The density functional calculations of the EPR parameters (g-tensors, 13C, 1H, and 17O hyperfine tensors) for a wide variety of supermolecular model complexes have been used to provide insight into the detailed relations between structure, environment and EPR parameters of ubisemiquinone radical anions. A single-sided binding model is not able to account for the experimentally observed low gx component of the g-tensor nor for the observed magnitude of the asymmetry of the 13C carbonyl hyperfine coupling (HFC) tensors. Based on the detailed comparison between computation and experiment, a model with two hydrogen bonds to O1 and one hydrogen bond to O4 was suggested for the QH site, but a model with one more hydrogen bond on each side could not be excluded. Additionally, several general conclusions on the interrelations between EPR parameters and hydrogen bond patterns of ubisemiquinones in proteins were provided. The computational studies related to the mechanism of electron transfer in PS-I gave an impetus to the theoretical design, based on quantum-chemical calculations, of relatively small rotational molecular motors made up from intramolecularly connected dyads consisting of a quinone unit and a pyrrole or indole moiety. It was shown computationally for several systems, depending on the length and attachment points of the interconnecting chains, that a reduction of the quinone to the semiquinone radical anion or quinolate dianion states leads to a reversible intramolecular reorientation from a -stacked to a T-stacked arrangement. In the rearranged structures, a hydrogen bond from the pyrrole or indole N-H function to the semiquinone or quinolate -system is created upon reduction. In some systems, hydrogen bonds to the semiquinone or quinolate oxygen atoms are partly feasible and will be preferred over T-stacking. It was shown that the intramolecular interactions modify the quinone redox potentials. The electronic g-tensors computed for the semiquinone states reflected characteristically the presence and nature of hydrogen bonds to the semiquinone and were suggested as suitable EPR spectroscopic probes for the preferred structures. Intramolecular proton transfer was observed to be possible in the dianionic state. In contrast to semiquinones, which represent paramagnetic states of enzyme cofactors, glycyl radicals are genuine protein radicals. As a step towards an in-depth understanding of the EPR parameters of glycyl radicals in proteins, the hyperfine- tensors and, particularly, the g-tensor of N-acetylglcyl in the environment of a single crystal of N-acetylglycine have been studied by systematic state-of-the-art quantum chemical calculations on various suitable model systems. The quantitative computation of the g-tensors for such glycyl-derived radicals is a veritable challenge, mainly due to the very small g-anisotropy combined with a non-symmetrical, delocalized spin-density distribution and several atoms with comparable spin-orbit contributions to the g-tensors. The choice of gauge origin of the magnetic vector potential, and of approximate spin-orbit operators, both turn out to be more critical than found in previous studies of g-tensors for organic radicals. Environmental effects, included by supermolecular hydrogen-bonded models, were found to be moderate, due to a partial compensation between the influences from intramolecular and intermolecular hydrogen bonds. The largest effects on the g-tensor are caused by the conformation of the radical. The DFT methods employed systematically overestimate both the gx and gy components of the g-tensor. This is important for investigations on the protein-glycyl radicals (see next paragraph). The 1H and 13C hyperfine couplings depend only slightly on the supermolecular model chosen and appear less sensitive probes of detailed structure and environment. The number of enzymes that require a glycyl-based radical for their function is growing. Here we provide systematic quantum-chemical studies of spin-density distributions, electronic g-tensors, and hyperfine couplings of various models of protein-bound glycyl radicals. Similarly to what was found for N-acetylglycyl (see previous paragraph), the small g-anisotropy for this delocalized, unsymmetrical system presents appreciable challenges to state-of-the-art computational methodology. This pertains to the quality of structure optimization, as well as to the choice of spin-orbit Hamiltonian and gauge origin of the magnetic vector potential. Environmental effects due to hydrogen bonding are complicated and depend in a subtle fashion on the different intramolecular hydrogen bonding for different conformations of the radical. Indeed, the conformation has the largest overall effect on the computed g-tensors (less so on the hyperfine-tensors). We discuss this in the context of different g-tensors obtained by recent HF-EPR measurements for three different enzymes. Based on results of calibration study for N-acetylglycyl, we support that the glycyl radical observed for E.coli anaerobic ribonucleotide reductase (ARNR) has a fully extended conformation, which differs from those of the corresponding radicals in pyruvate formate-lyase (PFL) or benzylsuccinate synthase (BSS).show moreshow less
  • Die quantenchemische Modellierung von Parametern der elektronenparamagnetischen Resonanz (EPR) stellt, in Kombination mit Daten aus modernen Hochfeld-/Hochfrequenz (HF) EPR-Techniken, eine überaus wichtige analytische Methode dar, um Einblicke in die Radikal-Protein-Wechselwirkung zu gewinnen. Diese Wechselwirkung bestimmt zu einem großen Teil die Abläufe radikalischer biochemischer Prozesse. In dieser Arbeit untersuchten wir in einer Reihe von Dichtefunktionaltheorie (DFT)-Studien die EPR-Parameter diverser biologisch wichtiger Radikale sowieDie quantenchemische Modellierung von Parametern der elektronenparamagnetischen Resonanz (EPR) stellt, in Kombination mit Daten aus modernen Hochfeld-/Hochfrequenz (HF) EPR-Techniken, eine überaus wichtige analytische Methode dar, um Einblicke in die Radikal-Protein-Wechselwirkung zu gewinnen. Diese Wechselwirkung bestimmt zu einem großen Teil die Abläufe radikalischer biochemischer Prozesse. In dieser Arbeit untersuchten wir in einer Reihe von Dichtefunktionaltheorie (DFT)-Studien die EPR-Parameter diverser biologisch wichtiger Radikale sowie mehrerer durch Radikal-Protein-Wechselwirkungen im Photosystem I inspirierter Modellsysteme. Wir demonstrierten die Genauigkeit sowie die Kapazität unserer Methode, um Einblicke in die in vivo Umgebung und Reaktivität von Bioradikalen zu erhalten. Unser DFT-Ansatz zur Berechnung elektronischer g-Tensoren wurde auf Semichinonradikalanionen in verschiedenen Proteinumgebungen photosynthetischer Reaktionszentren angewandt. Supermolekulare Modelle wurden, basierend auf einer Kombination aus kristallographischen und quantenchemischen Strukturdaten, für die aktiven Zentren QA und QB bakterieller Reaktionszentren, für A1 des Photosystems I sowie für Ubisemichinon in gefrorenem 2-Propanol erstellt. Nach der Skalierung der berechneten ∆gx Komponenten um 0.92 stimmen die auf gradienten-korrigertem DFT-Niveau mit den bestenverfügbaren Spin-Bahn-Operatoren berechneten Komponenten ∆gx sowie ∆gy mit den Hochfeld-EPR-Referenzdaten innerhalb der experimentellen Genauigkeit in allen vier untersuchten Systemen überein. Der Einfluss verschiedener nichtkovalenter Wechselwirkungen zwischen dem Semichinon und dem Protein wurde durch das sukzessive Verkleinern der Modellsysteme studiert. Dabei wurde festgestellt, dass der Effekt der Wasserstoffbrückenbindung zu den beiden Carbonyl-Sauerstoff-Atomen der Semichinone wegen der kompensierenden Spinpolarisationseffekte nicht additiv ist. Der Effekt der Tryptophan-Semichinon -Stapelung hat auf QA und A1 unterschiedliche Auswirkungen. Dies konnte auf die andersartige Ausrichtung der wechselwirkenden Fragmente sowie auf die unterschiedliche Spinpolarisation zurückgeführt werden. Im nächsten Teil dieser Arbeit wurden Semichinone der so genannten „hoch-affinen“ Bindungsstelle der Chinoloxidase (QH) untersucht. Vor kurzem durchgeführte Multifrequenz-EPR-Studien der QH der Chinoloxidase legten asymmetrische Wasserstoffbrückenbindungen zum Semichinonradikalanion nahe. Eine einzelne Wasserstoffbrückenbindung zum O1 des Carbonyls war ein weiteres vorgeschlagenes Strukturmerkmal, das allerdings im Gegensatz zu früheren experimentellen Hinweisen stünde. Wir haben DFT Berechnungen der EPR-Parameter (g-Tensoren, 13C-, 1H- und 17O-Hyperfeinkopplungstensoren) einer großen Anzahl von supermolekularen Modellkomplexen durchgeführt, um detaillierte Einblicke in die Zusammenhänge zwischen Struktur, Umgebung und EPR-Parametern von Ubisemichinon-Radikalanionen zu gewinnen. Ein Bindungsmodell, das nur eine einzige Wasserstoffbrücke berücksichtigt, ist demnach weder in der Lage, die experimentell beobachteten niedrigen gx-Komponenten der g-Tensoren, noch die beobachtete große Asymmetrie von 13C-Carbonyl HFC-Tensoren zu erklären. Basierend auf einem detaillierten Vergleich zwischen Rechnung und Experiment wurde ein Modell mit zwei Wasserstoffbrückenbindungen zu O1 und einer Wasserstoffbrückenbindung zu O4 für QH vorgeschlagen. Ein Modell mit jeweils einer Wasserstoffbrückenbindung mehr kann jedoch ebenfalls nicht völlig ausgeschlossen werden. Zusätzlich wurden weitere erkannte Zusammenhänge zwischen EPR-Parametern und Wasserstoffbrückenbindungen von Ubisemichinonen in Proteinen diskutiert. Theoretische Untersuchungen bezüglich des Mechanismus des Elektronentransfers im Photosystem I gaben den Anstoß, relativ kleine rotierende molekulare Motoren, bestehend aus intramolekular verbundenen Dyaden, welche eine Chinoneinheit sowie eine Pyrrol- oder Indoleinheit verknüpfen, zu modellieren. Die Berechnungen zeigten, dass für einige Systeme, abhängig von der Länge und den Anknüpfungspunkten der verbundenen Ketten, eine Reduktion des Chinons zum Semichinonradikalanion oder Chinolatdianion mit einer reversiblen intramolekularen Neuorientierung weg von einer -Stapelung und hin zu einer T-Stapelung auftritt. Durch die Umstrukturierung wird eine Wasserstoffbrückenbindung der Pyrrol- oder Indol-N-H-Funktion zum Semichinon- oder Chinolat--Systems nach der Reduktion ausgebildet. In einigen Systemen bilden sich jedoch Wasserstoffbrückenbindungen zum Semichinon- oder Chinolat-Sauerstoffatom aus, die gegenüber der T-Stapelung bevorzugt werden. Die intramolekularen Wechselwirkungen verändern das Redoxpotential des Chinons. Der elektronische g-Tensor, welcher für die Semichinone berechnet wurde, beweist eindeutig das Vorhandensein dieser Wasserstoffbrückenbindung zum Semichinon. g-Tensoren stellen somit eine geeignete Kenngröße in der EPR Spektroskopie dar, um strittige Strukturen aufzuklären. Wir halten auch einen intramolekularer Protonentransfer im dianionischen Zustand für möglich. Im Gegensatz zu Semichinonen welche paramagnetische Zustände von Enzymen-Cofaktoren darstellen sind Glyclradikale echte Proteinradikale. Als Schritt zum tiefer gehenden Verständnis von EPR-Parametern des Glycylradikals in Proteinen wurden die Hyperfeinkopplungstensoren und insbesondere der g-Tensor des N-Acetylglycyls durch systematische hochgenaue quantenchemischen Berechnungen an diversen geeigneten Modellsystemen untersucht. Die quantitative Berechnung von g-Tensoren für solche Glycyl-ähnlichen Radikale ist eine enorme Herausforderung, insbesondere wegen der sehr kleinen g-Anisotropie. Diese ist zudem mit einer nichtsymmetrischen delokalisierten Spindichteverteilung auf verschiedene Atome des Moleküls verbunden, die mit vergleichbaren Spinbahneffekten zum g-Tensor beitragen. Die Wahl eines geeigneten Eichursprungs des magnetischen Vektorpotentials und geeigneter Spin-Bahn-Operatoren, gestaltete sich weitaus anspruchsvoller als in vorausgegangen Arbeiten zu g-Tensoren organischer Radikale. Umgebungseffekte, die durch supermolekulare Wasserstoffbrückenbindungs-Modelle berücksichtigt wurden, stellen sich hingegen als nicht so schwerwiegend heraus, zum Teil durch die gegenseitige Kompensierung des Einflusses von intramolekularen und intermolekularen Wasserstoffbrückenbindungen. Den größten Einfluss auf den g-Tensor übt die Konformation des Radikals aus. Die angewendete DFT Methode überschätzt systematisch sowohl die ∆gx als auch die ∆gy Komponente des g-Tensors. Dieses Ergebnis ist wichtig für Untersuchungen von Protein-Glycyl-Radikalen (siehe weiter unten). Die 1H und 13C Hyperfeinkopplungen hängen nur wenig von den gewählten supermolekularen Modellen ab und scheinen weniger empfindlich gegenüber der genauen Struktur und Umgebung des Moleküls zu sein. Die Anzahl der bekannten Enzyme, die als funktionelle Gruppe ein Glycyl-Radikal besitzen, wird immer größer. Wir führten in dieser Arbeit eine systematische quantenchemische Studie zur Spindichteverteilung, elektronischem g-Tensor und Hyperfeinkopplungskonstanten diverser Modelle von Protein-gebundenen Glycylradikalen durch. Wie schon bei N-Acetylglycyl gesehen (siehe oben) stellt auch hier die geringe g-Anisotropie dieses delokalisierten, asymmetrischen Systems selbst für moderne Rechenmethoden eine beträchtliche Herausforderung dar. Dies betrifft zum einen die Qualität der Strukturoptimierung, zum anderen die Wahl des Spin-Bahn-Operators und des Eichursprungs des magnetischen Vektorpotentials. Umgebungseffekte aufgrund der Ausbildung von Wasserstoffbrückenbindungen hängen in komplizierter Weise von den verschiedenen intramolekularen Wasserstoffbrückenbindungen verschiedener Konformationen des Radikals ab. Die jeweilige Konformation hat insgesamt gesehen die größte Auswirkung auf den berechneten g-Tensor (jedoch weniger auf den Hyperfeinkopplungstensor). Wir diskutierten dies im Zusammenhang verschiedener g-Tensoren, welche vor kurzem durch Hochfeld-EPR Messungen für drei verschiedene Enzyme erhalten wurden. Basierend auf den Resultaten der Kalibrierungsstudie an N-Acetylgylcyl, schlagen wir vor, dass das Glycylradikal, welches für die E.coli anaerobische Ribonucleotid Reductase (RNR) beobachtet wurde, eine gestreckte Konformation besitzt, die sich von derjenigen der entsprechenden Radikale der Pyruvat Format-Lyase (PFL) oder Benzylsuccinatsynthase (BSS) unterscheidet.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sylwia Kacprzak
URN:urn:nbn:de:bvb:20-opus-19108
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Date of final exam:2006/08/21
Language:English
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Biologisches System; Radikal <Chemie>; Elektronenspinresonanz; Dichtefunktionalformalismus
Tag:Bioradikale; DFT; EPR
Bioradicals; DFT; EPR
Release Date:2006/08/22
Advisor:Prof. Martin Kaupp