Laservibrometrische Schwingungsmessungen am "Floating Mass Transducer" des teilimplantierbaren Mittelohrhörgerätes "Vibrant Soundbridge"

Laservibrometric vibration measurements of the „Floating Mass Transducer“ part of the semi-implantable middle ear hearing device „Vibrant Soundbridge“

Please always quote using this URN: urn:nbn:de:bvb:20-opus-39531
  • Zur apparativen Versorgung von Schwerhörigkeiten stehen seit mehreren Jahrzehnten äußerlich zu tragende (konventionelle) Hörgeräte zur Verfügung. Fast ebenso lange wird an implantierbaren Hörgeräten geforscht, um verschiedene systembedingte Eigenschaften konventioneller Hörgeräte zu verbessern. Konventionelle Hörgeräte wandeln Luftschall in elektrische Signale um und geben diese verstärkt als Luftschall wieder aus. Statt der Lautsprechermembran konventioneller Hörgeräte, versetzt der elektromechanische Wandler implantierbarer MittelohrhörgeräteZur apparativen Versorgung von Schwerhörigkeiten stehen seit mehreren Jahrzehnten äußerlich zu tragende (konventionelle) Hörgeräte zur Verfügung. Fast ebenso lange wird an implantierbaren Hörgeräten geforscht, um verschiedene systembedingte Eigenschaften konventioneller Hörgeräte zu verbessern. Konventionelle Hörgeräte wandeln Luftschall in elektrische Signale um und geben diese verstärkt als Luftschall wieder aus. Statt der Lautsprechermembran konventioneller Hörgeräte, versetzt der elektromechanische Wandler implantierbarer Mittelohrhörgeräte über eine direkte Ankopplung das Mittel- bzw. das Innenohr in Schwingungen. Erst im letzten Jahrzehnt konnten sich (teil-)implantierbare Mittelohrhörgeräte in der klinischen Anwendung durchsetzen und stehen heutzutage zwar nicht als Ersatz der konventionellen Hörgeräte, jedoch als sinnvolle Ergänzung in der Patientenversorgung zur Verfügung. Das weltweit am häufigsten implantierte System ist die sogenannte Vibrant Soundbridge. Der elektromechanische Wandler des Systems Vibrant Soundbridge nennt sich Floating Mass Transducer (FMT). Diese flottierende Masse ist ein kleiner Magnet im Innern eines etwa 2 mm großen Titantönnchens, das von einer elektrischen Spule umwickelt ist. Wird ein Wechselstrom an diese Spule angelegt, bewegt sich der Magnet mit der Frequenz des Stromes vor- und zurück. Das Gehäuse bewegt sich entgegengesetzt und überträgt die Schwingungen nach entsprechender Ankopplung auf die Gehörknöchelchenkette bzw. das runde Fenster. Das Ziel der vorliegenden Arbeit war es, die Schwingungsvorgänge und die Leistungsfähigkeit des FMT von der technischen Seite aus zu untersuchen, um Hinweise zu gewinnen, den klinischen Erfolg verbessern zu können. Zum besseren Verständnis der verwendeten (und dem Mediziner meist nicht trivialen) mathematischen und physikalischen Methoden werden einige theoretische Grundlagen zu Schwingungsmodellen und deren Berechnung in der Arbeit referiert. Das Schwingungsverhalten zweier zur Verfügung stehender FMTs als Messobjekte wurde mittels eines Laserdopplervibrometers (LDV) untersucht. Die Laserdopplervibrometrie ist ein berührungsloses Messverfahren, bei dem durch die Frequenzverschiebung des vom Objekt reflektierten Lasermessstrahls kleinste Schwingungsgeschwindigkeiten und damit -auslenkungen bis in den Femtometerbereich (10^-15 m) gemessen werden können. Es wurde zunächst die messtechnische Linearität der FMTs geprüft. Danach wurde der Einfluss der Kabellänge des Anregungskabels auf die Schwingung untersucht. In weiteren Messreihen erfolgte die Bestimmung der Anzahl der Freiheitsgrade, die der FMT während der Schwingung ausnutzt. Mit einem veränderten Versuchsaufbau wurde schließlich noch die Kraft bestimmt, die der FMT je anliegender Spannung auf eine angekoppelte Struktur auszuüben vermag. Es konnte gezeigt werden, dass die Schwingungsamplitude des FMTs linear proportional zu Anregungsspannung ist. Die Kabellänge des Zuleitungskabels nimmt normalerweise keinen Einfluss auf das Schwingungsverhalten des FMTs. Bei sehr kurz eingefasstem Kabel konnte jedoch ein deutlicher Effekt nachgewiesen werden. Die Schwingung in 5 von 6 Freiheitsgraden wurde nachgewiesen, wobei der FMT hauptsächlich 3 Freiheitsgrade nutzt. Es überwiegt die gewünschte pistonartige translatorische Bewegung entlang der Längsachse. Unter der Verwendung von physikalischen Schwingungsmodellen zu gekoppelten Schwingungen konnten die Messwerte der FMT-Schwingung mit einem theoretisch berechneten Kurvenverlauf zur Deckung gebracht werden. Anschließend konnten dadurch die Schwingungskoeffizienten der Differentialgleichung bestimmt werden. Aus dem Ergebnis ließ sich eine Kraft von größenordnungsmäßig 3 mN pro Volt Anregungsspannung errechnen. Über die Umrechnung der Kraft auf äquivalente Schalldruckpegel am Stapes konnten die Messwerte mit Literaturangaben verglichen werden und eine gute Korrelation gezeigt werden. Die Ergebnisse werden vor dem Hintergrund der Anwendbarkeit in der Klinik und der Forschung diskutiert. Während das Schwingungsverhalten in drei Dimensionen Untersuchungsansätze zur Ankopplung des FMTs am Amboss und am runden Fenster aufzeigt, lassen sich die Angaben der Kraft und der Koeffizienten der Differentialgleichung für Felsenbeinmessungen z. B. mit einem FMT als Schwingungs-Aktor nutzen.show moreshow less
  • Besides conventional hearing aids for treatment of sensorineural hearing loss there are implantable hearing devices in focus of investigation since decades. Where conventional hearing aids have a loudspeaker to lead the amplified sound to the tympanic membrane, implantable hearing devices include an electromechanical transducer which directly connects to the middle ear structures. The electromechanical transducer of the Vibrant Soundbridge is the so-called Floating Mass Transducer (FMT). It consists of a floating magnet built in a tiny titaniumBesides conventional hearing aids for treatment of sensorineural hearing loss there are implantable hearing devices in focus of investigation since decades. Where conventional hearing aids have a loudspeaker to lead the amplified sound to the tympanic membrane, implantable hearing devices include an electromechanical transducer which directly connects to the middle ear structures. The electromechanical transducer of the Vibrant Soundbridge is the so-called Floating Mass Transducer (FMT). It consists of a floating magnet built in a tiny titanium housing surrounded by an electric coil. An alternating current passing through the coil sets the magnet and therefore the housing in a back and forth motion. Since the FMT is affixed to the long process of the incus or to the round window of the middle ear, the vibrations are forwarded to the inner ear. Two FMTs were analyzed and characterized by Laser Doppler Vibrometry (LDV). LDV is a non-contact measurement system used to measure smallest vibrations with displacement dimensions of even femtometer (10^-15 m). First, the linearity of the specimen were proved. Then the influence of the length of the electric connection wire of the FMT was investigated. In a third set up the number of degrees of freedom of the FMT was determined. In another examination the theoretically possible driving force of the FMT was measured. The vibration amplitude of the FMT is linear proportional to the excitation voltage. Only with a very short handled connection wire the vibration motion of the FMT is affected. The motion follows mainly 3 of 6 degrees of freedom whereas the favourable piston like motion is most. The driving force was calculated in a dimension of 3 millinewton per volt. The measured data were compared with current literature and proved a good correlation. Findings are discussed in view of practicability in clinical and research scope, i.e. connection of the FMT to the incus or to the round window and using the FMT as a vibrating actor in temporal bone experiments.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Georg Tobias Strenger
URN:urn:nbn:de:bvb:20-opus-39531
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Medizinische Fakultät
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen
Date of final exam:2009/10/29
Language:German
Year of Completion:2009
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Mittelohr; Hörgerät
Tag:Laservibrometer; Vibrant Soundbridge; implantierbar
Laservibrometry; Vibrant Soundbridge; hearing aid; implantable; middle ear
Release Date:2009/11/02
Advisor:Univ.-Prof. Jan Helms