Automated classification of synaptic vesicles in electron tomograms of C. elegans using machine learning

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-176831
  • Synaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical “clear core” vesicles (CCV) and the typically larger “dense core” vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulatorsSynaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical “clear core” vesicles (CCV) and the typically larger “dense core” vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3]. To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Kristin Verena Kaltdorf, Maria Theiss, Sebastian Matthias Markert, Mei Zhen, Thomas Dandekar, Christian StigloherORCiD, Philipp KollmannsbergerORCiD
URN:urn:nbn:de:bvb:20-opus-176831
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Fakultät für Biologie / Center for Computational and Theoretical Biology
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLoS ONE
Erscheinungsjahr:2018
Band / Jahrgang:13
Heft / Ausgabe:10
Seitenangabe:e0205348
Originalveröffentlichung / Quelle:PLoS ONE 2018, 13(10):e0205348. DOI: 10.1371/journal.pone.0205348
DOI:https://doi.org/10.1371/journal.pone.0205348
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Freie Schlagwort(e):Caenorhabditis elegans; machine learning; synaptic vesicles
Datum der Freischaltung:27.02.2019
Sammlungen:Open-Access-Publikationsfonds / Förderzeitraum 2018
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International