Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen
Refine
Is part of the Bibliography
- yes (258)
Year of publication
Document Type
- Doctoral Thesis (190)
- Journal article (68)
Keywords
- cochlear implant (11)
- BERA (10)
- HSM-Satztest (10)
- Cochlear-Implantat (9)
- Schwindel (9)
- Sprachverstehen (9)
- vertigo (9)
- Sprachaudiometrie (8)
- Comet Assay (7)
- Neurootologie (7)
Institute
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (258)
- Graduate School of Life Sciences (8)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (7)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (6)
- Pathologisches Institut (5)
- Klinik und Poliklinik für Strahlentherapie (4)
- Neurologische Klinik und Poliklinik (3)
- Institut für Humangenetik (2)
- Klinik und Poliklinik für Nuklearmedizin (2)
- Medizinische Klinik und Poliklinik I (2)
Sonstige beteiligte Institutionen
Ag- but not ZnO-nanoparticles disturb the airway epithelial barrier at subtoxic concentrations
(2023)
Inhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles. The aim of this study was to investigate whether subtoxic concentrations of zinc oxide (ZnO)- and silver (Ag)-NPs have an influence on upper airway barrier integrity. Nasal epithelial cells from 17 donors were cultured at the air–liquid interface and exposed to ZnO- and Ag-NPs. Barrier function, quantified by transepithelial electrical resistance (TEER), decreased after treatment with 10 µg/mL Ag-NPs, but FITC-dextran permeability remained stable and no change in mRNA levels of tight junction proteins and E-cadherin was detected by real-time quantitative PCR (RT-qPCR). The results indicate that subtoxic concentrations of Ag-NPs may already induce damage of the upper airway epithelial barrier in vitro. The lack of similar disruption by ZnO-NPs of similar size suggests a specific effect by Ag-NPs.
Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats’ CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.
Das Vestibularisschwannom ist ein Tumor, dessen Entstehung noch nicht vollständig geklärt ist. Jeder kann von dieser seltenen Erkrankung betroffen sein. Darum ist es wichtig, die Ergebnisse der verschiedenen Therapieoptionen regelmäßig aufzuarbeiten und die Möglichkeiten einer Hörrehabilitation mit konventionellen oder implantierbaren Hörsystemen sowie Ansätze zur Schwindelrehabilitation oder einer möglichen Prähabilitation zu evaluieren. Mit der transtemporalen mikrochirurgischen Tumorexstirpation kann eine Heilung und bei einem großen Teil der Patienten auch ein Hörerhalt erzielt werden. Je jünger die Patienten sind, aber vor allem auch je besser sie vor der Operation hören, desto höher sind auch die Chancen auf einen Hörerhalt. Es zeigte sich jedoch auch, dass bei Patienten mit initial schlechterem Hören, welche dann operiert wurden, dieses zum Teil wieder verbessert werden konnte. Daher sind Ansätze, mehr Patienten eine transtemporale Tumorresektion anzubieten durchaus sinnvoll, auch um die Chancen auf eine Hörverbesserung zu ermöglichen. Des Weiteren sollte auch bei Patienten mit Schwindelbeschwerden eine Operation als Behandlungsoption erwogen werden. Die Prähabilitation mit Gentamicin-Injektionen in das Mittelohr scheint eine neue Möglichkeit zu sein, das zentrale Nervensystem schon auf den Ausfall des Vestibularorgans vorzubereiten. Durch die ototoxische Wirkung des Gentamicins und den potenziellen Hörverlust, wäre jedoch eine Kombination dieser Prähabilitation mit einem hörerhaltenden Eingriff über den transtemporalen Zugang risikobehaftet. Eine zentrale Kompensation der Schwindelbeschwerden sollte nach dem Eingriff mit einer gezielten Schwindelrehabilitation unterstützt werden. Während bei dieser vor allem physiotherapeutische Übungen angewandt werden, gibt es im Hinblick auf eine Hörrehabilitation schon verschiedene medizintechnische Optionen. Aktuell gibt es vor allem Studien zu den implantierbaren Hörhilfen und neue Daten zu den konservativen Möglichkeiten einer Hörrehabilitation sind eher die Ausnahme. Die Nutzung einer konservativen Hörhilfe sollte jedoch vor dem Entscheid zu einer operativen Lösung über implantierbare Systeme konsequent angewandt werden. Die in dieser Arbeit aufgezeigten positiven Momente bei der Versorgung von VS-Patienten prä- und posttherapeutisch mit herkömmlichen Hörgeräten sollten weiteren Eingang in die klinische Routine finden.
Salivary gland tumors (SGTs) are a relevant, highly diverse subgroup of head and neck tumors whose entity determination can be difficult. Confocal Raman imaging in combination with multivariate data analysis may possibly support their correct classification. For the analysis of the translational potential of Raman imaging in SGT determination, a multi-stage evaluation process is necessary. By measuring a sample set of Warthin tumor, pleomorphic adenoma and non-tumor salivary gland tissue, Raman data were obtained and a thorough Raman band analysis was performed. This evaluation revealed highly overlapping Raman patterns with only minor spectral differences. Consequently, a principal component analysis (PCA) was calculated and further combined with a discriminant analysis (DA) to enable the best possible distinction. The PCA-DA model was characterized by accuracy, sensitivity, selectivity and precision values above 90% and validated by predicting model-unknown Raman spectra, of which 93% were classified correctly. Thus, we state our PCA-DA to be suitable for parotid tumor and non-salivary salivary gland tissue discrimination and prediction. For evaluation of the translational potential, further validation steps are necessary.
Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorf distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be
attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance beneft of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.
Seed amplification assays (SAA) are becoming commonly used in synucleinopathies to detect α-synuclein aggregates. Studies in Parkinson’s disease (PD) and isolated REM-sleep behavior disorder (iRBD) have shown a considerably lower sensitivity in the olfactory epithelium than in CSF or skin. To get an insight into α-synuclein (α-syn) distribution within the nervous system and reasons for low sensitivity, we compared SAA assessment of nasal brushings and skin biopsies in PD (n = 27) and iRBD patients (n = 18) and unaffected controls (n = 30). α-syn misfolding was overall found less commonly in the olfactory epithelium than in the skin, which could be partially explained by the nasal brushing matrix exerting an inhibitory effect on aggregation. Importantly, the α-syn distribution was not uniform: there was a higher deposition of misfolded α-syn across all sampled tissues in the iRBD cohort compared to PD (supporting the notion of RBD as a marker of a more malignant subtype of synucleinopathy) and in a subgroup of PD patients, misfolded α-syn was detectable only in the olfactory epithelium, suggestive of the recently proposed brain-first PD subtype. Assaying α-syn of diverse origins, such as olfactory (part of the central nervous system) and skin (peripheral nervous system), could increase diagnostic accuracy and allow better stratification of patients.
Purpose
While [\(^{18}\)F]-fluorodeoxyglucose ([\(^{18}\)F]FDG) is the standard for positron emission tomography/computed tomography (PET/CT) imaging of oral squamous cell carcinoma (OSCC), diagnostic specificity is hampered by uptake in inflammatory cells such as neutrophils or macrophages. Recently, molecular imaging probes targeting fibroblast activation protein α (FAP), which is overexpressed in a variety of cancer-associated fibroblasts, have become available and might constitute a feasible alternative to FDG PET/CT.
Methods
Ten consecutive, treatment-naïve patients (8 males, 2 females; mean age, 62 ± 9 years) with biopsy-proven OSCC underwent both whole-body [\(^{18}\)F]FDG and [\(^{68}\)Ga]FAPI-04 (FAP-directed) PET/CT for primary staging prior to tumor resection and cervical lymph node dissection. Detection of the primary tumor, as well as the presence and number of lymph node and distant metastases was analysed. Intensity of tracer accumulation was assessed by means of maximum (SUV\(_{max}\)) and peak (SUV\(_{peak}\) standardized uptake values. Histological work-up including immunohistochemical staining for FAP served as standard of reference.
Results
[\(^{18}\)F]FDG and FAP-directed PET/CT detected all primary tumors with a SUVmax of 25.5 ± 13.2 (FDG) and 20.5 ± 6.4 (FAP-directed) and a SUVpeak of 16.1 ± 10.3 ([\(^{18}\)F]FDG) and 13.8 ± 3.9 (FAP-directed), respectively. Regarding cervical lymph node metastases, FAP-directed PET/CT demonstrated comparable sensitivity (81.3% vs. 87.5%; P = 0.32) and specificity (93.3% vs. 81.3%; P = 0.16) to [\(^{18}\)F]FDG PET/CT. FAP expression on the cell surface of cancer-associated fibroblasts in both primary lesions as well as lymph nodes metastases was confirmed in all samples.
Conclusion
FAP-directed PET/CT in OSCC seems feasible. Future research to investigate its potential to improve patient staging is highly warranted.
Background: The benefit of hearing rehabilitation is often measured using audiological tests or subjective questionnaires/interviews. It is important to consider both aspects in order to evaluate the overall benefits. Currently, there is no standardized method for reporting combined audiological and patient reported subjective outcome measures in clinical practice. Therefore, this study focuses on showing the patient’s audiological, as well as subjective outcomes in one graph using data from an existing study. Method: The present paper illustrated a graph presenting data on four quadrants with audiological and subjective findings. These quadrants represented speech comprehension in quiet (unaided vs. aided) as WRS% at 65 dB SPL, speech recognition in noise (unaided vs. aided) as SRT dB SNR, sound field threshold (unaided vs. aided) as PTA\(_4\) in dB HL, wearing time and patient satisfaction questionnaire results. Results: As an example, the HEARRING graph in this paper represented audiological and subjective datasets on a single patient level or a cohort of patients for an active bone conduction hearing implant solution. The graph offered the option to follow the user’s performance in time. Conclusion: The HEARRING graph allowed representation of a combination of audiological measures with patient reported outcomes in one single graph, indicating the overall benefit of the intervention. In addition, the correlation and consistency between some results (e.g., aided threshold and aided WRS) can be better visualized. Those users who lacked performance benefits on one or more parameters and called for further insight could be visually identified.
Different effects of conditional Knock-Out of Stat3 on the sensory epithelium of the Organ of Corti
(2024)
The mammalian cochlea detects sound in response to vibration at frequency-dependent positions along the cochlea duct. The sensory outer hair cells, which are surrounded by supporting cells, act as a signal amplifier by changing their cell length. This is called electromotility. To ensure correct electrical transmission during mechanical forces, a certain resistance of the sensory epithelium is a prerequisite for correct transduction of auditory information. This resistance is managed by microtubules and its posttranslational modification in the supporting cells of the sensory epithelium of the cochlea. Stat3 is a transcription factor, with its different phosphorylation sites, is involved in many cellular processes like differentiation, inflammation, cell survival and microtubule dynamics, depending on cell type and activated pathway. While Stat3 has a wide range of intracellular roles, the question arose, how and if Stat3 is involved in cells of the organ of Corti to ensure a correct hearing.
To test this, Cre/loxp system were used to perform conditional Knock-Out (cKO) of Stat3 in outer hair cells or supporting cells either before hearing onset or after hearing onset. Hearing performances included DPOAE and ABR measurements, while molecular were performed by sequencing. Additionally, morphological examination was used by immunohistochemistry and electron microscopy.
A cKO of Stat3 before and after hearing onset in outer hair cells leads to hearing impairments, whereas synapses, nerve fibers and mitochondria were not affected. Bulk sequencing analyzation of outer hair cells out of cKO mice before hearing onset resulted in a disturbance of cellular homeostasis and extracellular signals. A cKO of Stat3 in the outer hair cells after hearing onset resulted in inflammatory signaling pathway with increased cytokine production and upregulation of NF-kb pathway. In supporting cells, cKO of Stat3 only after hearing onset resulted in a hearing impairment. However, synapses, nerve soma and fibers were not affected of a cKO of Stat3 in supporting cells. Nevertheless, detyronisated modification of microtubules were altered, which can lead to an instability of supporting cells during hearing.
In conclusion, Stat3 likely interact in a cell-specific and function-specific manner in cells of the organ of Corti. While a cKO in outer hair cells resulted in increased cytokine production, supporting cells altered its stability due to decreased detyronisated modification of microtubules. Together the results indicated that Stat3 is an important protein for hearing performances. However, additional investigations of the molecular mechanism are needed to understand the role of Stat3 in the cells of the organ of Corti.
Background
Eye movement abnormalities are commonplace in neurological disorders. However, unaided eye movement assessments lack granularity. Although videooculography (VOG) improves diagnostic accuracy, resource intensiveness precludes its broad use. To bridge this care gap, we here validate a framework for smartphone video-based nystagmography capitalizing on recent computer vision advances.
Methods
A convolutional neural network was fine-tuned for pupil tracking using > 550 annotated frames: ConVNG. In a cross-sectional approach, slow-phase velocity of optokinetic nystagmus was calculated in 10 subjects using ConVNG and VOG. Equivalence of accuracy and precision was assessed using the “two one-sample t-test” (TOST) and Bayesian interval-null approaches. ConVNG was systematically compared to OpenFace and MediaPipe as computer vision (CV) benchmarks for gaze estimation.
Results
ConVNG tracking accuracy reached 9–15% of an average pupil diameter. In a fully independent clinical video dataset, ConVNG robustly detected pupil keypoints (median prediction confidence 0.85). SPV measurement accuracy was equivalent to VOG (TOST p < 0.017; Bayes factors (BF) > 24). ConVNG, but not MediaPipe, achieved equivalence to VOG in all SPV calculations. Median precision was 0.30°/s for ConVNG, 0.7°/s for MediaPipe and 0.12°/s for VOG. ConVNG precision was significantly higher than MediaPipe in vertical planes, but both algorithms’ precision was inferior to VOG.
Conclusions
ConVNG enables offline smartphone video nystagmography with an accuracy comparable to VOG and significantly higher precision than MediaPipe, a benchmark computer vision application for gaze estimation. This serves as a blueprint for highly accessible tools with potential to accelerate progress toward precise and personalized Medicine.