### Refine

#### Year of publication

#### Document Type

- Journal article (37)
- Preprint (1)

#### Keywords

- Organische Chemie (35)
- boron (2)
- carbenes (2)
- diborenes (2)
- diradicals (2)
- Hyperfine coupling constants (1)
- Indirect and direct contributions to A<sub>iso</sub> (1)
- Influence of excitation classes (1)
- Spin density (1)
- chemical bonding (1)
- hydrolysis (1)
- kinetics (1)
- molecular mechanics (1)
- natural products (1)
- organometallic chemistry (1)
- quantum mechanics (1)

Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking.
Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM) and density functional theory (DFT) based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pK a values of the N-3 nitrogen atom.
Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account.

Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.

Density functional theory is applied to the calculation ofthe isotropic byperfine coupJing constants in some small molecules. Various functionals are tested. The agreement of the calculated values to experimental data and values obtained from sophisticated ab initio methods depends on the functionals used and the system under consideration. With respect to spin density calculations the functional of Lee, Yang and Parr with Becke's excbange functional (BLYP) is found to give good results for tbe heavier center of the CH and the NH molecule, while the spin densities of other molecules such as OH, H\(_2\)CN, H\(_2\)CO\(^+\), NO and O\(_2\) deviate considerably from experimental and/or other theoretical results (30%-60%). In cases where the singly occupied orbital can contribute to the isotropic hyperfine coupling constants, accurate results are obtained. The reason fortbis is analyzed.

The hyperfine structures of the isoelectronic molecules CCO. CNN, and NCN in their triplet ground states (X\(^3 \sum ^-\)) are investigated by means of ab initio methods. The infrared frequencies and geometries are detennined and compared with experiment. Configuration selected multireference configuration interaction calculations in combination with perturbation theory to correct the wave function (MRD-CI/B\(_K\)) employing extended atomic orbital (AO) basis sets yielded very accurate hyperfine properties. The theoretical values for CCO are in excellent agreement with the experimental values determined by Smith and Weltner [J. Chem. Phys. 62,4592 (1975)]. For CNN, the first assignment of Smith and Weltner for the two nitrogen atoms has to be changed. A qualitative discussion of the electronic structure discloses no simple relation between the structure of the singly occupied orbitals and the measured hyperfine coupling constants. Vibrational effects were found to be of little importance.

A comparative ab initio study of the Si\(_2\)C\(_4\), Si\(_3\)C\(_3\), Si\(_4\)C\(_2\) clusters
(1994)

Various structural possibilities for the Si\(_2\)C\(_4\) and Si\(_4\)C\(_2\) clusters are investigated by employing a basis set of triple-zeta plus polarization quality; electron correlation is generally accounted for by second-order M0ller-Plesset and, in certain instances, by higher-order perturbation (CASPT2) approaches. The building-up principle recently suggested from an analysis of Si\(_3\)C\(_3\) clusters is found to be fully operative for Si\(_2\)C\(_4\) and Si\(_4\)C\(_2\) clusters. A comparison of the structure and stability of various geometrical arrangements in the series C\(_6\) , Si\(_2\)C\(_4\) , Si\(_3\)C\(_3\) , Si\(_4\)C\(_2\), and Si\(_6\) shows that linear and planar structures become rapidly less stable if carbons are replaced by silicons and that the three-dimensional bipyramidal forms become less favorable as soon as silicons are exchanged by carbons in the parent Si\(_6\) structure. The effects can be rationalized in qualitative terms based on differences in silicon and carbon bonding.

Results ofan ab initio study ofthe hyperfine structure of the X\(^2\)A', A\(^2\) A" ( 1\(^2 \Pi\)) system ofthe formyl radical are presented. Special attention is paid to the analysis of the interplay between the vibronic and magnetic hyperfine etfects. The results of computations are in very good agreement with the available experimental findings. The values for the hyperfine coupling constants in lower bending Ievels of both electronic species are predicted.

The minimum energy path for the reaction O(\(^3\)P\(_g\)) + C\(_2\)H\(_4\)(\(^1\)A\(_g\)) has been calculated by optimizing all relevant geometrical parameters along the approach of oxygen to ethene. A barrier of 4.7 kcal/mol in the \(^3\)A"( ... 9a'\(^2\)- 10a'3a") potential energy surface and an energy difference of 14.4 kcal/mol between the product and the fragments is found at the multireference-configuration interaction level. The corresponding values at the lower-level treatment CASSCF are 9 kcal/mol for the barrier and 9 kcal/mol for the depth of the potential; this shows the importance of inclusion of electron correlation. The barrier for CH\(_2\) rotation for the lowestenergy structure (asymmetric OC\(_2\)H\(_4\)) is around 5 kcal/mol. The energy gap to the first excited state \(^3\)A'( ... 9a'l0a'3a'12) is found tobe 3.6 kcal/mol in MRD-CI calculations at the ground-state minimum. Comparison with \(^3\)CH\(_2\) + C\(_2\)H\(_4\) shows that in this system the lowest-energy surface is \(^3\)A', i.e., the state which is the excited state in 0 + C\(_2\)H\(_4\). This difference in energy ordering of \(^3\)A' and \(^3\)A" states results from the fact that the p\(_x\), p\(_y\), p\(_z\) degeneracy of oxygen orbitals is lifted in \(^3\)CH\(_2\)leading to b\(_1\), b\(_2\). and a\(_1\) MOs whereby the lowest b\(_2\) (a") remains doubly occupied; as a consequence, the reaction pattem between the oxygen and \(^3\)CH\(_2\) approach is different, which is also quite apparent in the calculated charge transfer.

Various structural possibilities for Si\(_3\)C\(_3\) clusters are investigated by ab initio calculations employing basis sets of double- and triple-zeta quality augmented by d polarization functions. Correlation effects are included by a second-order Moeller Piesset perturbation treatment. For the two lowest-lying structures higher-order correlation corrections and multi-reference effects are also included. Bonding features are investigated by two different types of population analyses to obtain insight into the nature of chemical bonding. A total of 17 stationary points were investigated, 14 of which correspond to local minima and three being transition states. The energetically lowest-lying structures are: A "pyramidlike" structure with various multicenter bonds, followed by a es symmetric isomer closely related to the ground state Si6 structure. Planar structures, favoured in small carbon clusters, lie higher in energy and are transition states. The lowest-lying triplet system is found to be the linear nonsymmetric Si - C-C-C-Si -Si structure, which is calculated to lie about 38 kcalfmole above the singlet ground state. A building-up principle based on bonding criteria is suggested for the occurence of the various structural possibilities.

The energy difference between the three lowest-lying isomers of C\(_6\) the linear \(^3 \sum ^-\) state and the two ring forms,the benzene structure (\(^1\)A\(_{18}\)) possessing D\(_{6h}\) symmetry and a distorted cyclic form ( \(^1\)A'\(_1\), D\(_{3h}\) symmetry) have been calculated using various ab initio methods. Variational methods such as multireference configuration interaction (MR-CI) and complete active space second order perturbatiOn treatment (CASPT2) have been applied, as weil as perturbational treatments and coupled cluster calculations (CCD). The correlation of all valence shell electrons is found to be important for a balanced description of the isomers of C\(_6\) . Methods which do not account for higher-order effects appropriately proved to be unsuitable for calculating the energy difference correctly. The results from multireference configuration interaction methods show that the isomers are close in energy with the cyclic forms somewhat lower than the linear form. The ring form possessing D\(_{3h}\) symmetry (\(^1\)A'\(_1\)} is found tobe the lowest-lying structure.