### Refine

#### Document Type

- Journal article (4)
- Doctoral Thesis (2)

#### Keywords

- superconductivity (6) (remove)

#### Institute

Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility (~ 30 000 cm\(^2\)=Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant \(2\pi\)-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments.

We report a detailed experimental and theoretical study of the electronic structure of \(Mo_{1-x}Re_x\) random alloys. We have measured electronic band dispersions for clean and hydrogen-covered \(Mo_{1-x}Re_x\) ( 110) with x = 0-0.25 using angle-resolved photoemission spectroscopy. Our results suggest that the bulk and most surface electronic bands shift relative to the Fermi level systematically and approximately rigidly with Re concentration. We distinguish and quantify two contributions to these shifts: a raise of the Fermi energy and an increase of the overall bandwidth. Alloy bands calculated using the first-principles Korringa-Kohn-Rostoker coherent-potential-approximation method accurately predict both of these effects. As derived from the rigid band model, the Fermi energy shift is inversely related to the bulk density of states in this energy region. Using our results, we also characterize an electronic topological transition of the bulk Fermi surface and relate this to bulk transport properties. Finally, we distinguish effects beyond the rigid band approximation: a highly surface-localized state and a composition-dependent impact of the spin-orbit interaction.

The combination of a topological insulator (TI) and a superconductor (S), which together
form a TI/S interface, is expected to influence the possible surface states in the
TI. It is of special interest, if the theoretical prediction of zero energy Majorana states
in this system is verifiable. This thesis presents the experimental realization of such
an interface between the TI strained bulk HgTe and the S Nb and studies if the afore
mentioned expectations are met.
As these types of interfaces were produced for the first time the initial step was
to develop a new lithographic process. Optimization of the S deposition technique as
well as the application of cleaning processes allowed for reproducible fabrication of
structures. In parallel the measurement setup was upgraded to be able to execute the
sensitive measurements at low energy. Furthermore several filters have been implemented
into the system to reduce high frequency noise and the magnetic field control
unit was additionally replaced to achieve the needed resolution in the μT range.
Two kinds of basic geometries have been studied: Josephson junctions (JJs) and
superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts
with a small separation on a HgTe layer. These S/TI/S junctions are one of the
most basic structures possible and are studied via transport measurements. The transport
through this geometry is strongly influenced by the behavior at the two S/TI
interfaces. In voltage dependent differential resistance measurements it was possible
to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are
able to traverse the HgTe gap between both interfaces multiple times while keeping
phase coherence. Additionally using BTK theory it was possible to extract the interface
transparency of several junctions. This allowed iterative optimization for the highest
transparency via lithographic improvements at these interfaces. The increased transparency
and thus the increased coupling of the Nb’s superconductivity to the HgTe
results in a deeper penetration of the induced superconductivity into the HgTe. Due
to this strong coupling it was possible to enter the regime, where a supercurrent is
carried through the complete HgTe layer. For the first time the passing of an induced
supercurrent through strained bulk HgTe was achieved and thus opened the area for
detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded,
which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic
field compared to the JJ geometry allowed to conclude how the junction depends
on the phase difference between both superconducting contacts. Theoretical calculations
predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link
material between the contacts, due to the presence of Majorana modes. It could clearly
be shown that despite the usage of a TI the phase still was 2p periodic. By varying
further influencing factors, like number of modes and phase coherence length in the
junction, it might still be possible to reach the 4p regime with bound Majorana states
in the future. A good candidate for further experiments was found in capped HgTe
samples, but here the fabrication process still has to be developed to the same quality
as for the uncapped HgTe samples.
The second type of geometry studied in this thesis was a DC-SQUID, which consists
of two parallel JJs and can also be described as an interference device between two JJs.
The DC-SQUID devices were produced in two configurations: The symmetric SQUID,
where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear,
but instead has a 90° bent. These configurations allow to test, if the predicted
uniformity of the superconducting band gap for induced superconductivity in a TI
is valid. While the phase of the symmetric SQUID is not influenced by the shape of
the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID
in case of an uniform band gap and out of phase if p- or d-wave superconductivity
is dominating the transport, due to the 90° junction. As both devices are measured
one after another, the problem of drift in the coil used to create the magnetic field has
to be overcome in order to decide if the oscillations of both types of SQUIDs are in
phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h
the measurements on both configurations have to be conducted in a few hours. Only
then the total shift is small enough to compare them with each other. For this to be
possible a novel measurement system based on a real time micro controller was programmed,
which allows a much faster extraction of the critical current of a device. The
measurement times were reduced from days to hours, circumventing the drift problems
and enabling the wanted comparison. After the final system optimizations it has
been shown that the comparison should now be possible. Initial measurements with
the old system hinted that both types of SQUIDs are in phase and thus the expected
uniform band gap is more likely. With all needed optimizations in place it is now up
to the successors of this project to conclusively prove this last point.
This thesis has proven that it is possible to induce superconductivity in strained
bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and
Kane in 2008 for the appearance of Majorana bound states. Based on this work it is
now possible to further explore induced superconductivity in strained bulk HgTe to
finally reach a regime, where the Majorana states are both stable and detectable.

Two-dimensional electron gases (2DEGs) at transition-metal oxide (TMO) interfaces, and boundary states in topological insulators, are being intensively investigated. The former system harbors superconductivity, large magneto-resistance, and ferromagnetism. In the latter, honeycomb-lattice geometry plus bulk spin-orbit interactions lead to topologically protected spin-polarized bands. 2DEGs in TMOs with a honeycomb-like structure could yield new states of matter, but they had not been experimentally realized, yet. We successfully created a 2DEG at the (111) surface of KTaO3, a strong insulator with large spin-orbit coupling. Its confined states form a network of weakly-dispersing electronic gutters with 6-fold symmetry, a topology novel to all known oxide-based 2DEGs. If those pertain to just one Ta-(111) bilayer, model calculations predict that it can be a topological metal. Our findings demonstrate that completely new electronic states, with symmetries not realized in the bulk, can be tailored in oxide surfaces, promising for TMO-based devices.

Current theoretical studies of electronic correlations in transition metal oxides typically only account for the local repulsion between d-electrons even if oxygen ligand p-states are an explicit part of the effective Hamiltonian. Interatomic interactions such as U-pd between d- and (ligand) p-electrons, as well as the local interaction between p-electrons, are neglected. Often, the relative d-p orbital splitting has to be adjusted 'ad hoc' on the basis of the experimental evidence. By applying the merger of local density approximation and dynamical mean field theory to the prototypical case of the three-band Emery dp model for the cuprates, we demonstrate that, without any 'ad hoc' adjustment of the orbital splitting, the charge transfer insulating state is stabilized by the interatomic interaction U-pd. Our study hence shows how to improve realistic material calculations that explicitly include the p-orbitals.

This thesis contains two major parts: The first part introduces the reader into three independent concepts of treating strongly correlated many body physics. These are, on the analytical side the SO(5)-theory (Chap.3), which poses the general frame. On the numerical side these are the Stochastic Series Expansion (SSE) (Chap.1) and the Contractor Renormalization Group (CORE) approach (Chap. 2}). The central idea of this thesis was to combine these above concepts, in order to achieve a better understanding of the high-T_c superconductors (HTSC). The results obtained by this combination can be found in the second major part of this thesis (chapters 4 and 5). The main idea of this thesis, i.e., to combine the SO(5)-theory with the capabilities of bosonic Quantum-Monte Carlo simulations and those of the CORE approach, has been proven to be a very successful Ansatz. Two different approaches, one based on symmetry and one on renormalization-group arguments, motivate an effective bosonic Hamiltonian. In a subsequent step the effective Hamiltonian has been simulated efficiently using the SSE. The results reproduce salient experiments on high-T_c superconductors. In addition, it has been shown that the model can be extended to capture also charge ordering. These results also form a profound basis for further studies, for example one could address the open question of SO(5)-symmetry restoration at a multicritical point in the extended pSO(5) model, where longer ranged interactions are included.