### Refine

#### Keywords

- Large Hadron Collider (3)
- EW (1)
- Higgs boson (1)
- NLO Computations (1)
- NLO QCD (1)
- NLO computations (1)
- RECOLA (1)
- SHERPA (1)
- next-to-leading-order electroweak corrections (1)
- vector-boson scattering (1)

#### Institute

This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa +Recola framework allows for the computation of – in principle – any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell–Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.

Complete NLO corrections to W\(^{+}\)W\(^{+}\) scattering and its irreducible background at the LHC
(2017)

The process pp → μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj final state should be preferably measured together.

The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ\(^{+}\)μ\(^{−}\)e\(^{+}\)ν\(_{e}\), μ\(^{+}\)μ\(^{−}\)e\(^{−}\)ν\(_{e}\), μ\(^{+}\)μ\(^{−}\)μ\(^{+}\)ν\(_{μ}\), and μ\(^{+}\)μ\(^{−}\)μ\(^{−}\)ν\(_{μ}\) at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between −3% and −6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to −30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.