### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (97)
- Journal article (24)
- Book (5)
- Master Thesis (3)
- Other (3)
- Report (3)
- Conference Proceeding (2)
- Book article / Book chapter (1)
- Preprint (1)

#### Keywords

- Optimale Kontrolle (9)
- Newton-Verfahren (7)
- Extremwertstatistik (6)
- Nichtlineare Optimierung (6)
- Nash-Gleichgewicht (5)
- optimal control (5)
- Differentialgleichung (4)
- Extremwerttheorie (4)
- MPEC (4)
- Mathematik (4)

#### Institute

- Institut für Mathematik (139) (remove)

Statistical Procedures for modelling a random phenomenon heavily depend on the choice of a certain family of probability distributions. Frequently, this choice is governed by a good mathematical feasibility, but disregards that some distribution properties may contradict reality. At most, the choosen distribution may be considered as an approximation. The present thesis starts with a construction of distributions, which uses solely available information and yields distributions having greatest uncertainty in the sense of the maximum entropy principle. One of such distributions is the monotonic distribution, which is solely determined by its support and the mean. Although classical frequentist statistics provides estimation procedures which may incorporate prior information, such procedures are rarely considered. A general frequentist scheme for the construction of shortest confidence intervals for distribution parameters under prior information is presented. In particular, the scheme is used for establishing confidence intervals for the mean of the monotonic distribution and compared to classical procedures. Additionally, an approximative procedure for the upper bound of the support of the monotonic distribution is proposed. A core purpose of auditing sampling is the determination of confidence intervals for the mean of zero-inflated populations. The monotonic distribution is used for modelling such a population and is utilised for the procedure of a confidence interval under prior information for the mean. The results are compared to two-sided intervals of Stringer-type.

The work at hand discusses various universality results for locally univalent and conformal metrics.
In Chapter 2 several interesting approximation results are discussed. Runge-type Theorems for holomorphic and meromorphic locally univalent functions are shown. A well-known local approximation theorem for harmonic functions due to Keldysh is generalized to solutions of the curvature equation.
In Chapter 3 and 4 these approximation theorems are used to establish universality results for locally univalent functions and conformal metrics. In particular locally univalent analogues for well-known universality results due Birkhoff, Seidel & Walsh and Heins are shown.

This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve optimal control problems with differential models and cost functionals ranging from smooth to discontinuous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides necessary optimality conditions for an optimal solution. In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is augmented by a quadratic penalty term consisting of the current control function and the control function from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian function pointwise in order to determine a control update. Since the PMP does not require any differ- entiability with respect to the control argument, the SQH scheme can be used to solve optimal control problems with both smooth and non-convex or even discontinuous cost functionals. The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a framework in which the convergence analysis of the SQH scheme can be carried out. In this framework, convergence of the scheme means that the calculated solution fulfills the PMP condition. The governing differential models of the considered optimal control problems are ordinary differential equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which means that all steps of the scheme can be carried out and provide a result in finite time. The second part part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the PMP conditions. In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term such that the minimization of the corresponding augmented Hamiltonian results in a control updated that reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems. The first one is an optimal quantum control problem where it is shown that the SQH method converges much faster to an optimal solution than a globalized Newton method. The second optimal control problem is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme is proved is applicable for this highly non-linear case. Next, the case of PDE control problems is considered. First a general framework is discussed in which a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of the augmentation term, which penalizes the violation of the state constraint, the measure of this state constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control problem with a non-smooth L\(^1\)-tracking term and a non-smooth state equation is investigated. For this purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal control problem. The final part of this thesis is devoted to a class of FP models related to specific stochastic processes. The discussion starts with a focus on random walks where also jumps are included. This framework allows a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in the PMP framework, two drift-diffusion processes and the corresponding FP models with two different control strategies for an optimal control problem with an expectation functional are considered. In the first strategy, the controls depend on time and in the second one, the controls depend on space and time. In both cases a solution to the corresponding optimal control problem is characterized with the PMP conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP consistent solution. The case of a space and time dependent control strategy results in a special structure of the corresponding PMP conditions that is exploited in another solution method, the so-called direct Hamiltonian (DH) method.

Beatty sets (also called Beatty sequences) have appeared as early as 1772 in the astronomical studies of Johann III Bernoulli as a tool for easing manual calculations and - as Elwin Bruno Christoffel pointed out in 1888 - lend themselves to exposing intricate properties of the real irrationals. Since then, numerous researchers have explored a multitude of arithmetic properties of Beatty sets; the interrelation between Beatty sets and modular inversion, as well as Beatty sets and the set of rational primes, being the central topic of this book. The inquiry into the relation to rational primes is complemented by considering a natural generalisation to imaginary quadratic number fields.

Lagrange Multiplier Methods for Constrained Optimization and Variational Problems in Banach Spaces
(2018)

This thesis is concerned with a class of general-purpose algorithms for constrained minimization problems, variational inequalities, and quasi-variational inequalities in Banach spaces.
A substantial amount of background material from Banach space theory, convex analysis, variational analysis, and optimization theory is presented, including some results which are refinements of those existing in the literature. This basis is used to formulate an augmented Lagrangian algorithm with multiplier safeguarding for the solution of constrained optimization problems in Banach spaces. The method is analyzed in terms of local and global convergence, and many popular problem classes such as nonlinear programming, semidefinite programming, and function space optimization are shown to be included as special cases of the general setting.
The algorithmic framework is then extended to variational and quasi-variational inequalities, which include, by extension, Nash and generalized Nash equilibrium problems. For these problem classes, the convergence is analyzed in detail. The thesis then presents a rich collection of application examples for all problem classes, including implementation details and numerical results.

This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant.
\begin{align*}
\partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t))
\end{align*}
The model was introduced for the case of a single particle by Lagoutière, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves.
The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered.
The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling.
Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs.
Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.

Finite volume methods for compressible Euler equations suffer from an excessive diffusion in the limit of low Mach numbers. This PhD thesis explores new approaches to overcome this.
The analysis of a simpler set of equations that also possess a low Mach number limit is found to give valuable insights. These equations are the acoustic equations obtained as a linearization of the Euler equations. For both systems the limit is characterized by a divergencefree velocity. This constraint is nontrivial only in multiple spatial dimensions. As the Jacobians of the acoustic system do not commute, acoustics cannot be reduced to some kind of multi-dimensional advection. Therefore first an exact solution in multiple spatial dimensions is obtained. It is shown that the low Mach number limit can be interpreted as a limit of long times.
It is found that the origin of the inability of a scheme to resolve the low Mach number limit is the lack a discrete counterpart to the limit of long times. Numerical schemes whose discrete stationary states discretize all the analytic stationary states of the PDE are called stationarity preserving. It is shown that for the acoustic equations, stationarity preserving schemes are vorticity preserving and are those that are able to resolve the low Mach limit (low Mach compliant). This establishes a new link between these three concepts.
Stationarity preservation is studied in detail for both dimensionally split and multi-dimensional schemes for linear acoustics. In particular it is explained why the same multi-dimensional stencils appear in literature in very different contexts: These stencils are unique discretizations of the divergence that allow for stabilizing stationarity preserving diffusion.
Stationarity preservation can also be generalized to nonlinear systems such as the Euler equations. Several ways how such numerical schemes can be constructed for the Euler equations are presented. In particular a low Mach compliant numerical scheme is derived that uses a novel construction idea. Its diffusion is chosen such that it depends on the velocity divergence rather than just derivatives of the different velocity components. This is demonstrated to overcome the low Mach number problem. The scheme shows satisfactory results in numerical simulations and has been found to be stable under explicit time integration.