### Refine

#### Year of publication

#### Document Type

- Book (10) (remove)

#### Language

- English (10) (remove)

#### Keywords

- SAS <Programm> (4)
- Zeitreihenanalyse (4)
- Box-Jenkins-Verfahren (2)
- Box–Jenkins Program (2)
- Frequency Domain (2)
- SAS (2)
- State-Space Models (2)
- Time Series Analysis (2)
- Time series analyses (2)
- Zustandsraummodelle (2)
- Anatomie (1)
- Bewusstsein (1)
- Churriter (1)
- Entwicklung (1)
- Extremwert (1)
- Gedächtnisbildung (1)
- Gedächtnisleistung (1)
- Glück (1)
- Happiness (1)
- Hurrians (1)
- Jugend (1)
- Kind (1)
- Logik (1)
- Mesopotamia (1)
- Mesopotamien (1)
- Rangstatistik (1)
- Selbst (1)
- Statistik (1)
- Well-being (1)
- Wohlbefinden (1)
- consciousness (1)
- self (1)

The aim of the book is to ground the logical origins of consciousness in what I have previously called the ‘minimal self’. The idea is that elementary forms of consciousness are logically dependent not, as is commonly assumed, on ownership of an anatomical brain or nervous system, but on the intrinsic reflexivity that defines minimal selfhood. The book seeks to trace the logical pathway by which minimal selfhood gives rise to the possible appearance of consciousness. It is argued that in specific circumstances it thus makes sense to ascribe elementary consciousness to certain predatory single-celled organisms such as amoebae and dinoflagellates as well as to some of the simpler animals. Such an argument involves establishing exactly what those specific circumstances are and determining how elementary consciousness differs in nature and scope from its more complex manifestations.

The analysis of real data by means of statistical methods with the aid of a software package common in industry and administration usually is not an integral part of mathematics studies, but it will certainly be part of a future professional work. The present book links up elements from time series analysis with a selection of statistical procedures used in general practice including the statistical software package SAS. Consequently this book addresses students of statistics as well as students of other branches such as economics, demography and engineering, where lectures on statistics belong to their academic training. But it is also intended for the practician who, beyond the use of statistical tools, is interested in their mathematical background. Numerous problems illustrate the applicability of the presented statistical procedures, where SAS gives the solutions. The programs used are explicitly listed and explained. No previous experience is expected neither in SAS nor in a special computer system so that a short training period is guaranteed. This book is meant for a two semester course (lecture, seminar or practical training) where the first three chapters can be dealt within the first semester. They provide the principal components of the analysis of a time series in the time domain. Chapters 4, 5 and 6 deal with its analysis in the frequency domain and can be worked through in the second term. In order to understand the mathematical background some terms are useful such as convergence in distribution, stochastic convergence, maximum likelihood estimator as well as a basic knowledge of the test theory, so that work on the book can start after an introductory lecture on stochastics. Each chapter includes exercises. An exhaustive treatment is recommended. Chapter 7 (case study) deals with a practical case and demonstrates the presented methods. It is possible to use this chapter independent in a seminar or practical training course, if the concepts of time series analysis are already well understood. This book is consecutively subdivided in a statistical part and an SAS-specific part. For better clearness the SAS-specific parts are highlighted. This book is an open source project under the GNU Free Documentation License.

This volume brings together several authors from different areas of psychology and the neighbouring social sciences. Each one contributes their own perspective on the growing interest topic of subjective well-being. The aim of the volume is to present these divergent perspectives and to foster communication between the different areas. Split into three parts, this volume initially discusses the general perspectives of subjective well-being and addresses fundamental questions, secondly it discusses the dynamics of subjective well-being and more specific research issues to give a better understanding of the general phenomenon, and thirdly the book emphasizes the social context in which people experience and report their happiness and satisfaction. The book will be of great interest to social and clinical psychologists, students of psychology and sociology and health professionals.

The analysis of real data by means of statistical methods with the aid of a software package common in industry and administration usually is not an integral part of mathematics studies, but it will certainly be part of a future professional work. The present book links up elements from time series analysis with a selection of statistical procedures used in general practice including the statistical software package SAS Statistical Analysis System). Consequently this book addresses students of statistics as well as students of other branches such as economics, demography and engineering, where lectures on statistics belong to their academic training. But it is also intended for the practician who, beyond the use of statistical tools, is interested in their mathematical background. Numerous problems illustrate the applicability of the presented statistical procedures, where SAS gives the solutions. The programs used are explicitly listed and explained. No previous experience is expected neither in SAS nor in a special computer system so that a short training period is guaranteed. This book is meant for a two semester course (lecture, seminar or practical training) where the first two chapters can be dealt with in the first semester. They provide the principal components of the analysis of a time series in the time domain. Chapters 3, 4 and 5 deal with its analysis in the frequency domain and can be worked through in the second term. In order to understand the mathematical background some terms are useful such as convergence in distribution, stochastic convergence, maximum likelihood estimator as well as a basic knowledge of the test theory, so that work on the book can start after an introductory lecture on stochastics. Each chapter includes exercises. An exhaustive treatment is recommended. This book is consecutively subdivided in a statistical part and an SAS-specific part. For better clearness the SAS-specific part, including the diagrams generated with SAS, always starts with a computer symbol, representing the beginning of a session at the computer, and ends with a printer symbol for the end of this session. This book is an open source project under the GNU Free Documentation License.