### Refine

#### Document Type

- Journal article (9)
- Doctoral Thesis (3)

#### Language

- English (12) (remove)

#### Keywords

- topological insulators (12) (remove)

#### Institute

The electrodynamics of topological insulators (TIs) is described by modified Maxwell’s equations, which contain additional terms that couple an electric field to a magnetization and a magnetic field to a polarization of the medium, such that the coupling coefficient is quantized in odd multiples of α/4π per surface. Here we report on the observation of this so-called topological magnetoelectric effect. We use monochromatic terahertz (THz) spectroscopy of TI structures equipped with a semitransparent gate to selectively address surface states. In high external magnetic fields, we observe a universal Faraday rotation angle equal to the fine structure constant α=e\(^{2}\)/2E\(_{0}\)hc (in SI units) when a linearly polarized THz radiation of a certain frequency passes through the two surfaces of a strained HgTe 3D TI. These experiments give insight into axion electrodynamics of TIs and may potentially be used for a metrological definition of the three basic physical constants.

We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q=0 (long-wavelength) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Landé g factors for the bulk and edge electrons. The variety of counterintuitive spin-response properties revealed in our study arises from the system’s versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrödinger-type physics; it mimics the behavior of chiral Dirac fermions or reflects the material’s symmetry-protected topological order.

Density functional theory (DFT) is applied to study the atomic, electronic, and spin structures of the Au monolayer at the Ge(111) surface. It is found that the theoretically determined most stable atomic geometry is described by the conjugated honeycomb-chained-trimer (CHCT) model, in a very good agreement with experimental data. The calculated electronic structure of the system, being in qualitatively good agreement with the photoemission measurements, shows fingerprints of the many-body effects (self-interaction corrections) beyond the LDA or GGA approximations. The most interesting property of this surface system is the large spin splitting of its metallic surface bands and the undulating spin texture along the hexagonal Fermi contours, which highly resembles the spin texture at the Dirac state of the topological insulator Bi\(_{2}\)Te\(_{3}\). These properties make this system particularly interesting from both fundamental and technological points of view.

This thesis describes the studies of topological superconductivity, which is predicted to
emerge when pair correlations are induced into the surface states of 2D and 3D topolog-
ical insulators (TIs). In this regard, experiments have been designed to investigate the
theoretical ideas ﬁrst pioneered by Fu and Kane that in such system Majorana bound
states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys.
Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new
quasiparticle which is its own antiparticle and can be used as building blocks for fault
tolerant topological quantum computing.
After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the
understanding of the ﬁeld of topology in the context of condensed matter physics with a
focus on topological band insulators and topological superconductors. Starting from a
Chern insulator, the concepts of topological band theory and the bulk boundary corre-
spondence are explained. It is then shown that the low energy Hamiltonian of mercury
telluride (HgTe) quantum wells of an appropriate thickness can be written as two time
reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect.
In such a system, spin-polarized one dimensional conducting states form at the edges
of the material, while the bulk is insulating. This concept is extended to 3D topological
insulators with conducting 2D surface states. As a preliminary step to treating topological
superconductivity, a short review of the microscopic theory of superconductivity, i.e. the
theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of
Majorana end modes in a one dimensional superconducting chain is explained using the
Kitaev model. Finally, topological band insulators and conventional superconductivity
are combined to effectively engineer p-wave superconductivity. One way to investigate
these states is by measuring the periodicity of the phase of the Josephson supercurrent
in a topological Josephson junction. The signature is a 4π-periodicity compared to the
2π-periodicity in conventional Josephson junctions. The proof of the presence of this
effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in
chapters 3 to 6.
Chapter 3 describes in detail the transport of a 3D topological insulator based weak
link under radio-frequency radiation. The chapter starts with a review of the state of
research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc-
ing superconducting correlations into the topological surface states and the theoretical
predictions of 3D TI based Josephson junctions. Josephson junctions based on strained
HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the
dc transport of the devices is analysed. The critical current as a function of temperature
is measured and it is possible to determine the induced superconducting gap. Under
rf illumination Shapiro steps form in the current voltage characteristic. A missing ﬁrst
step at low frequencies and low powers is found in our devices. This is a signature of
a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a
147148 SUMMARY
function of frequency, power, device geometry and magnetic ﬁeld - it is shown that the
results are in agreement with the presence of a single gapless Andreev doublet and several
conventional modes.
Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson
junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in
the framework of an equivalent circuit representation, namely the resistively shunted
Josephson junction model (RSJ-model). The numerical modelling is in agreement with
the experimental results in chapter 3. First, the missing of odd Shapiro steps can be
understood by a small 4π-periodic supercurrent contribution and a large number of
modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro
steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes
like Landau Zener tunnelling are most probably not responsible for the 4π contribution.
In a next step the periodicity of Josephson junctions based on quantum spin Hall
insulators using are investigated in chapter 5. A fabrication process of Josephson junctions
based on inverted HgTe quantum wells was successfully developed. In order to achieve a
good proximity effect the barrier material was removed and the superconductor deposited
without exposing the structure to air. In a next step a gate electrode was fabricated which
allows the chemical potential of the quantum well to be tuned. The measurement of the
diffraction pattern of the critical current Ic due to a magnetic ﬁeld applied perpendicular
to the sample plane was conducted. In the vicinity to the expected quantum spin Hall
phase, the pattern resembles that of a superconducting quantum interference device
(SQUID). This shows that the current ﬂows predominantly on the edges of the mesa.
This observation is taken as a proof of the presence of edge currents. By irradiating the
sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This
evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment
is repeated using a weak link based on a non-inverted HgTe quantum well. This material
is expected to be a normal band insulator without helical edge channels. In this device,
all the expected Shapiro steps are observed even at low frequencies and over the whole
gate voltage range. This shows that the observed phenomena are directly connected
to the topological band structure. Both features, namely the missing of odd Shapiro
steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin
Hall regime, and thus provide evidence for induced topological superconductivity in the
helical edge states.
A more direct way to probe the periodicity of the Josephson supercurrent than using
Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment
is presented in chapter 6. A conventional Josephson junction converts a dc bias V to
an ac current with a characteristic Josephson frequency fJ
= eV /h. In a topological
Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A
new measurement setup was developed in order to measure the emitted spectrum of a
single Josephson junction. With this setup the spectrum of a HgTe quantum well based
Josephson junction was measured and the emission at half the Josephson frequency fJ /2
was detected. In addition, fJ emission is also detected depending on the gate voltage and
detection frequency. The spectrum is again dominated by half the Josephson emission at
low voltages while the conventional emission is determines the spectrum at high voltages.
A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149
voltage and frequency range. The linewidth of the detected frequencies gives a measure
on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2
line has been deduced. This is generally shorter than for the fJ line (3–4ns).
The last part of the thesis, chapter 7, reports on the induced superconducting state
in a strained HgTe layer investigated by point-contact Andreev reﬂection spectroscopy.
For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter
of the oriﬁce was chosen to be smaller than the mean free path estimated from magne-
totransport measurements. Thus one gets a ballistic point-contact which allows energy
resolved spectroscopy. One part of the mesa is covered with a superconductor which
induces superconducting correlations into the surface states of the topological insulator.
This experiment therefore probes a single superconductor normal interface. In contrast to
the Josephson junctions studied previously, the geometry allows the acquisition of energy
resolved information of the induced superconducting state through the measurement
of the differential conductance dI/dV as a function of applied dc bias for various gate
voltages, temperatures and magnetic ﬁelds. An induced superconducting order parame-
ter of about 70µeV was extracted but also signatures of the niobium gap at the expected
value around Δ Nb
≈ 1.1meV have been found. Simulations using the theory developed by
Blonder, Tinkham and Klapwijk and an extended model taking the topological surface
states into account were used to ﬁt the data. The simulations are in agreement with a
small barrier at the topological insulator-induced topological superconductor interface
and a high barrier at the Nb to topological insulator interface. To understand the full con-
ductance curve as a function of applied voltage, a non-equilibrium driven transformation
is suggested. The induced superconductivity is suppressed at a certain bias value due to
local electron population. In accordance with this suppression, the relevant scattering
regions change spatially as a function of applied bias.
To conclude, it is emphasized that the experiments conducted in this thesis found
clear signatures of induced topological superconductivity in HgTe based quantum well
and bulk devices and opens up the avenue to many experiments. It would be interesting
to apply the developed concepts to other topological matter-superconductor hybrid
systems. The direct spectroscopy and manipulation of the Andreev bound states using
circuit quantum electrodynamic techniques should be the next steps for HgTe based
samples. This was already achieved in superconducting atomic break junctions by the
group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development
would be the on-chip detection of the emitted spectrum as a function of the phase φ
through the junction. In this connection, the topological junction needs to be shunted
by a parallel ancillary junction. Such a setup would allow the current phase relation
I(φ) directly and the lifetime of the bound states to be measured directly. By coupling
this system to a spectrometer, which can be another Josephson junction, the energy
dependence of the Andreev bound states E(φ) could be obtained. The experiments on
the Andreev reﬂection spectroscopy described in this thesis could easily be extended to
two dimensional topological insulators and to more complex geometries, like a phase
bias loop or a tunable barrier at the point-contact. This work might also be useful for
answering the question how and why Majorana bound states can be localized in quantum
spin Hall systems.

Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
(2015)

The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a noninverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

The adiabatic insertion of a \(\pi\) flux into a quantum spin Hall insulator gives rise to localized spin and charge fluxon states. We demonstrate that \(\pi\) fluxes can be used in exact quantum Monte Carlo simulations to identify a correlated \(Z_2\) topological insulator using the example of the Kane-Mele-Hubbard model. In the presence of repulsive interactions, a \(\pi\) flux gives rise to a Kramers doublet of spin-fluxon states with a Curie-law signature in the magnetic susceptibility. Electronic correlations also provide a bosonic mode of magnetic excitons with tunable energy that act as exchange particles and mediate a dynamical interaction of adjustable range and strength between spin fluxons. \(\pi\) fluxes can therefore be used to build models of interacting spins. This idea is applied to a three-spin ring and to one-dimensional spin chains. Because of the freedom to create almost arbitrary spin lattices, correlated topological insulators with \(\pi\) fluxes represent a novel kind of quantum simulator, potentially useful for numerical simulations and experiments.

Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility (~ 30 000 cm\(^2\)=Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant \(2\pi\)-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments.

Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion.
They are regarded to be of considerable future use in spintronics and for quantum computation.
Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics.
In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal.
Let us summarize our primary results.
Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region.
We thereby rely on and extend the method of refermionizable points.
Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder.
We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.

In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation.
The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model,
we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin.
Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states.
In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance,
but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system.