### Refine

#### Has Fulltext

- yes (9)

#### Is part of the Bibliography

- yes (9)

#### Document Type

#### Keywords

- Extremwertstatistik (9) (remove)

#### Institute

#### ResearcherID

- C-2593-2016 (1)

In Janssen and Reiss (1988) it was shown that in a location model of a Weibull type sample with shape parameter -1 < a < 1 the k(n) lower extremes are asymptotically local sufficient. In the present paper we show that even global sufficiency holds. Moreover, it turns out that convergence of the given statistical experiments in the deficiency metric does not only hold for compact parameter sets but for the whole real line.

On the Fragility Index
(2011)

The Fragility Index captures the amount of risk in a stochastic system of arbitrary dimension. Its main mathematical tool is the asymptotic distribution of exceedance counts within the system which can be derived by use of multivariate extreme value theory. Thereby the basic assumption is that data comes from a distribution which lies in the domain of attraction of a multivariate extreme value distribution. The Fragility Index itself and its extension can serve as a quantitative measure for tail dependence in arbitrary dimensions. It is linked to the well known extremal index for stochastic processes as well the extremal coefficient of an extreme value distribution.

We introduce some mathematical framework for extreme value theory in the space of continuous functions on compact intervals and provide basic definitions and tools. Continuous max-stable processes on [0,1] are characterized by their “distribution functions” G which can be represented via a norm on function space, called D-norm. The high conformity of this setup with the multivariate case leads to the introduction of a functional domain of attraction approach for stochastic processes, which is more general than the usual one based on weak convergence. We also introduce the concept of “sojourn time transformation” and compare several types of convergence on function space. Again in complete accordance with the uni- or multivariate case it is now possible to get functional generalized Pareto distributions (GPD) W via W = 1 + log(G) in the upper tail. In particular, this enables us to derive characterizations of the functional domain of attraction condition for copula processes. Moreover, we investigate the sojourn time above a high threshold of a continuous stochastic process. It turns out that the limit, as the threshold increases, of the expected sojourn time given that it is positive, exists if the copula process corresponding to Y is in the functional domain of attraction of a max-stable process. If the process is in a certain neighborhood of a generalized Pareto process, then we can replace the constant threshold by a general threshold function and we can compute the asymptotic sojourn time distribution.

The Mediterranean area reveals a strong vulnerability to future climate change due to a high exposure to projected impacts and a low capacity for adaptation highlighting the need for robust regional or local climate change projections, especially for extreme events strongly affecting the Mediterranean environment. The prevailing study investigates two major topics of the Mediterranean climate variability: the analysis of dynamical downscaling of present-day and future temperature and precipitation means and extremes from global to regional scale and the comprehensive investigation of temperature and rainfall extremes including the estimation of uncertainties and the comparison of different statistical methods for precipitation extremes. For these investigations, several observational datasets of CRU, E-OBS and original stations are used as well as ensemble simulations of the regional climate model REMO driven by the coupled global general circulation model ECHAM5/MPI-OM and applying future greenhouse gas (GHG) emission and land degradation scenarios.

Extreme value theory aims at modeling extreme but rare events from a probabilistic point of view. It is well-known that so-called generalized Pareto distributions, which are briefly reviewed in Chapter 1, are the only reasonable probability distributions suited for modeling observations above a high threshold, such as waves exceeding the height of a certain dike, earthquakes having at least a certain intensity, and, after applying a simple transformation, share prices falling below some low threshold. However, there are cases for which a generalized Pareto model might fail. Therefore, Chapter 2 derives certain neighborhoods of a generalized Pareto distribution and provides several statistical tests for these neighborhoods, where the cases of observing finite dimensional data and of observing continuous functions on [0,1] are considered. By using a notation based on so-called D-norms it is shown that these tests consistently link both frameworks, the finite dimensional and the functional one. Since the derivation of the asymptotic distributions of the test statistics requires certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It provides in particular some examples of distributions that satisfy the null hypothesis and of those that do not. Since continuous copula processes are crucial tools for the functional versions of the proposed tests, it is also discussed whether those copula processes actually exist for a given set of data. Moreover, some practical advice is given how to choose the free parameters incorporated in the test statistics. Finally, a simulation study in Chapter 4 compares the in total three different test statistics with another test found in the literature that has a similar null hypothesis. This thesis ends with a short summary of the results and an outlook to further open questions.

Extreme value theory is concerned with the stochastic modeling of rare and extreme events. While fundamental theories of classical stochastics - such as the laws of small numbers or the central limit theorem - are used to investigate the asymptotic behavior of the sum of random variables, extreme value theory focuses on the maximum or minimum of a set of observations. The limit distribution of the normalized sample maximum among a sequence of independent and identically distributed random variables can be characterized by means of so-called max-stable distributions.
This dissertation concerns with different aspects of the theory of max-stable random vectors and stochastic processes. In particular, the concept of 'differentiability in distribution' of a max-stable process is introduced and investigated. Moreover, 'generalized max-linear models' are introduced in order to interpolate a known max-stable random vector by a max-stable process. Further, the connection between extreme value theory and multivariate records is established. In particular, so-called 'complete' and 'simple' records are introduced as well as it is examined their asymptotic behavior.

This thesis covers a wide range of results for when a random vector is in the max-domain of attraction of max-stable random vector. It states some new theoretical results in D-norm terminology, but also gives an explaination why most approaches to multivariate extremes are equivalent to this specific approach. Then it covers new methods to deal with high-dimensional extremes, ranging from dimension reduction to exploratory methods and explaining why the Huessler-Reiss model is a powerful parametric model in multivariate extremes on par with the multivariate Gaussian distribution in multivariate regular statistics. It also gives new results for estimating and inferring the multivariate extremal dependence structure, strategies for choosing thresholds and compares the behavior of local and global threshold approaches. The methods are demonstrated in an artifical simulation study, but also on German weather data.

This cumulative dissertation is organized as follows:
After the introduction, the second chapter, based on “Asymptotic independence of bivariate order statistics” (2017) by Falk and Wisheckel, is an investigation of the asymptotic dependence behavior of the components of bivariate order statistics. We find that the two components of the order statistics become asymptotically independent for certain combinations of (sequences of) indices that are selected, and it turns out that no further assumptions on the dependence of the two components in the underlying sample are necessary. To establish this, an explicit representation of the conditional distribution of bivariate order statistics is derived.
Chapter 3 is from “Conditional tail independence in archimedean copula models” (2019) by Falk, Padoan and Wisheckel and deals with the conditional distribution of an Archimedean copula, conditioned on one of its components. We show that its tails are independent under minor conditions on the generator function, even if the unconditional tails were dependent. The theoretical findings are underlined by a simulation study and can be generalized to Archimax copulas.
“Generalized pareto copulas: A key to multivariate extremes” (2019) by Falk, Padoan and Wisheckel lead to Chapter 4 where we introduce a nonparametric approach to estimate the probability that a random vector exceeds a fixed threshold if it follows a Generalized Pareto copula. To this end, some theory underlying the concept of Generalized Pareto distributions is presented first, the estimation procedure is tested using a simulation and finally applied to a dataset of air pollution parameters in Milan, Italy, from 2002 until 2017.
The fifth chapter collects some additional results on derivatives of D-norms, in particular a condition for the existence of directional derivatives, and multivariate spacings, specifically an explicit formula for the second-to-last bivariate spacing.