### Refine

#### Document Type

- Journal article (4)
- Preprint (1)

#### Language

- English (5) (remove)

#### Keywords

- nonsmooth optimization (2)
- Pontryagin maximum principle (1)
- SQH method (1)
- cancer (1)
- elliptic PDE (1)
- elliptic problems (1)
- finite differences (1)
- fredholm operator (1)
- jump-diffusion processes (1)
- multigrid schemes (1)

First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control problems and to validate the theoretical estimates.

A sequential quadratic Hamiltonian (SQH) scheme for solving different classes of non-smooth and non-convex PDE optimal control problems is investigated considering seven different benchmark problems with increasing difficulty. These problems include linear and nonlinear PDEs with linear and bilinear control mechanisms, non-convex and discontinuous costs of the controls, L\(^1\) tracking terms, and the case of state constraints.
The SQH method is based on the characterisation of optimality of PDE optimal control problems by the Pontryagin's maximum principle (PMP). For each problem, a theoretical discussion of the PMP optimality condition is given and results of numerical experiments are presented that demonstrate the large range of applicability of the SQH scheme.

A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.

An efficient multigrid finite-differences scheme for solving elliptic Fredholm partial integro-differential equations (PIDE) is discussed. This scheme combines a second-order accurate finite difference discretization of the PIDE problem with a multigrid scheme that includes a fast multilevel integration of the Fredholm operator allowing the fast solution of the PIDE problem. Theoretical estimates of second-order accuracy and results of local Fourier analysis of convergence of the proposed multigrid scheme are presented. Results of numerical experiments validate these estimates and demonstrate optimal computational complexity of the proposed framework.

A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer―a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.